xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AVR/MCTargetDesc/AVRAsmBackend.cpp (revision 43e29d03f416d7dda52112a29600a7c82ee1a91e)
1 //===-- AVRAsmBackend.cpp - AVR Asm Backend  ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AVRAsmBackend class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "MCTargetDesc/AVRAsmBackend.h"
14 #include "MCTargetDesc/AVRFixupKinds.h"
15 #include "MCTargetDesc/AVRMCTargetDesc.h"
16 #include "llvm/MC/MCAsmBackend.h"
17 #include "llvm/MC/MCAssembler.h"
18 #include "llvm/MC/MCContext.h"
19 #include "llvm/MC/MCDirectives.h"
20 #include "llvm/MC/MCELFObjectWriter.h"
21 #include "llvm/MC/MCExpr.h"
22 #include "llvm/MC/MCFixupKindInfo.h"
23 #include "llvm/MC/MCObjectWriter.h"
24 #include "llvm/MC/MCSubtargetInfo.h"
25 #include "llvm/MC/MCValue.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 
30 // FIXME: we should be doing checks to make sure asm operands
31 // are not out of bounds.
32 
33 namespace adjust {
34 
35 using namespace llvm;
36 
37 static void signed_width(unsigned Width, uint64_t Value,
38                          std::string Description, const MCFixup &Fixup,
39                          MCContext *Ctx = nullptr) {
40   if (!isIntN(Width, Value)) {
41     std::string Diagnostic = "out of range " + Description;
42 
43     int64_t Min = minIntN(Width);
44     int64_t Max = maxIntN(Width);
45 
46     Diagnostic += " (expected an integer in the range " + std::to_string(Min) +
47                   " to " + std::to_string(Max) + ")";
48 
49     if (Ctx) {
50       Ctx->reportError(Fixup.getLoc(), Diagnostic);
51     } else {
52       llvm_unreachable(Diagnostic.c_str());
53     }
54   }
55 }
56 
57 static void unsigned_width(unsigned Width, uint64_t Value,
58                            std::string Description, const MCFixup &Fixup,
59                            MCContext *Ctx = nullptr) {
60   if (!isUIntN(Width, Value)) {
61     std::string Diagnostic = "out of range " + Description;
62 
63     int64_t Max = maxUIntN(Width);
64 
65     Diagnostic +=
66         " (expected an integer in the range 0 to " + std::to_string(Max) + ")";
67 
68     if (Ctx) {
69       Ctx->reportError(Fixup.getLoc(), Diagnostic);
70     } else {
71       llvm_unreachable(Diagnostic.c_str());
72     }
73   }
74 }
75 
76 /// Adjusts the value of a branch target before fixup application.
77 static void adjustBranch(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
78                          MCContext *Ctx = nullptr) {
79   // We have one extra bit of precision because the value is rightshifted by
80   // one.
81   unsigned_width(Size + 1, Value, std::string("branch target"), Fixup, Ctx);
82 
83   // Rightshifts the value by one.
84   AVR::fixups::adjustBranchTarget(Value);
85 }
86 
87 /// Adjusts the value of a relative branch target before fixup application.
88 static void adjustRelativeBranch(unsigned Size, const MCFixup &Fixup,
89                                  uint64_t &Value, MCContext *Ctx = nullptr) {
90   // We have one extra bit of precision because the value is rightshifted by
91   // one.
92   signed_width(Size + 1, Value, std::string("branch target"), Fixup, Ctx);
93 
94   // Rightshifts the value by one.
95   AVR::fixups::adjustBranchTarget(Value);
96 }
97 
98 /// 22-bit absolute fixup.
99 ///
100 /// Resolves to:
101 /// 1001 kkkk 010k kkkk kkkk kkkk 111k kkkk
102 ///
103 /// Offset of 0 (so the result is left shifted by 3 bits before application).
104 static void fixup_call(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
105                        MCContext *Ctx = nullptr) {
106   adjustBranch(Size, Fixup, Value, Ctx);
107 
108   auto top = Value & (0xf00000 << 6);   // the top four bits
109   auto middle = Value & (0x1ffff << 5); // the middle 13 bits
110   auto bottom = Value & 0x1f;           // end bottom 5 bits
111 
112   Value = (top << 6) | (middle << 3) | (bottom << 0);
113 }
114 
115 /// 7-bit PC-relative fixup.
116 ///
117 /// Resolves to:
118 /// 0000 00kk kkkk k000
119 /// Offset of 0 (so the result is left shifted by 3 bits before application).
120 static void fixup_7_pcrel(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
121                           MCContext *Ctx = nullptr) {
122   adjustRelativeBranch(Size, Fixup, Value, Ctx);
123 
124   // Because the value may be negative, we must mask out the sign bits
125   Value &= 0x7f;
126 }
127 
128 /// 12-bit PC-relative fixup.
129 /// Yes, the fixup is 12 bits even though the name says otherwise.
130 ///
131 /// Resolves to:
132 /// 0000 kkkk kkkk kkkk
133 /// Offset of 0 (so the result isn't left-shifted before application).
134 static void fixup_13_pcrel(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
135                            MCContext *Ctx = nullptr) {
136   adjustRelativeBranch(Size, Fixup, Value, Ctx);
137 
138   // Because the value may be negative, we must mask out the sign bits
139   Value &= 0xfff;
140 }
141 
142 /// 6-bit fixup for the immediate operand of the STD/LDD family of
143 /// instructions.
144 ///
145 /// Resolves to:
146 /// 10q0 qq10 0000 1qqq
147 static void fixup_6(const MCFixup &Fixup, uint64_t &Value,
148                     MCContext *Ctx = nullptr) {
149   unsigned_width(6, Value, std::string("immediate"), Fixup, Ctx);
150 
151   Value = ((Value & 0x20) << 8) | ((Value & 0x18) << 7) | (Value & 0x07);
152 }
153 
154 /// 6-bit fixup for the immediate operand of the ADIW family of
155 /// instructions.
156 ///
157 /// Resolves to:
158 /// 0000 0000 kk00 kkkk
159 static void fixup_6_adiw(const MCFixup &Fixup, uint64_t &Value,
160                          MCContext *Ctx = nullptr) {
161   unsigned_width(6, Value, std::string("immediate"), Fixup, Ctx);
162 
163   Value = ((Value & 0x30) << 2) | (Value & 0x0f);
164 }
165 
166 /// 5-bit port number fixup on the SBIC family of instructions.
167 ///
168 /// Resolves to:
169 /// 0000 0000 AAAA A000
170 static void fixup_port5(const MCFixup &Fixup, uint64_t &Value,
171                         MCContext *Ctx = nullptr) {
172   unsigned_width(5, Value, std::string("port number"), Fixup, Ctx);
173 
174   Value &= 0x1f;
175 
176   Value <<= 3;
177 }
178 
179 /// 6-bit port number fixup on the `IN` family of instructions.
180 ///
181 /// Resolves to:
182 /// 1011 0AAd dddd AAAA
183 static void fixup_port6(const MCFixup &Fixup, uint64_t &Value,
184                         MCContext *Ctx = nullptr) {
185   unsigned_width(6, Value, std::string("port number"), Fixup, Ctx);
186 
187   Value = ((Value & 0x30) << 5) | (Value & 0x0f);
188 }
189 
190 /// 7-bit data space address fixup for the LDS/STS instructions on AVRTiny.
191 ///
192 /// Resolves to:
193 /// 1010 ikkk dddd kkkk
194 static void fixup_lds_sts_16(const MCFixup &Fixup, uint64_t &Value,
195                              MCContext *Ctx = nullptr) {
196   unsigned_width(7, Value, std::string("immediate"), Fixup, Ctx);
197   Value = ((Value & 0x70) << 8) | (Value & 0x0f);
198 }
199 
200 /// Adjusts a program memory address.
201 /// This is a simple right-shift.
202 static void pm(uint64_t &Value) { Value >>= 1; }
203 
204 /// Fixups relating to the LDI instruction.
205 namespace ldi {
206 
207 /// Adjusts a value to fix up the immediate of an `LDI Rd, K` instruction.
208 ///
209 /// Resolves to:
210 /// 0000 KKKK 0000 KKKK
211 /// Offset of 0 (so the result isn't left-shifted before application).
212 static void fixup(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
213                   MCContext *Ctx = nullptr) {
214   uint64_t upper = Value & 0xf0;
215   uint64_t lower = Value & 0x0f;
216 
217   Value = (upper << 4) | lower;
218 }
219 
220 static void neg(uint64_t &Value) { Value *= -1; }
221 
222 static void lo8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
223                 MCContext *Ctx = nullptr) {
224   Value &= 0xff;
225   ldi::fixup(Size, Fixup, Value, Ctx);
226 }
227 
228 static void hi8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
229                 MCContext *Ctx = nullptr) {
230   Value = (Value & 0xff00) >> 8;
231   ldi::fixup(Size, Fixup, Value, Ctx);
232 }
233 
234 static void hh8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
235                 MCContext *Ctx = nullptr) {
236   Value = (Value & 0xff0000) >> 16;
237   ldi::fixup(Size, Fixup, Value, Ctx);
238 }
239 
240 static void ms8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
241                 MCContext *Ctx = nullptr) {
242   Value = (Value & 0xff000000) >> 24;
243   ldi::fixup(Size, Fixup, Value, Ctx);
244 }
245 
246 } // namespace ldi
247 } // namespace adjust
248 
249 namespace llvm {
250 
251 // Prepare value for the target space for it
252 void AVRAsmBackend::adjustFixupValue(const MCFixup &Fixup,
253                                      const MCValue &Target, uint64_t &Value,
254                                      MCContext *Ctx) const {
255   // The size of the fixup in bits.
256   uint64_t Size = AVRAsmBackend::getFixupKindInfo(Fixup.getKind()).TargetSize;
257 
258   unsigned Kind = Fixup.getKind();
259   switch (Kind) {
260   default:
261     llvm_unreachable("unhandled fixup");
262   case AVR::fixup_7_pcrel:
263     adjust::fixup_7_pcrel(Size, Fixup, Value, Ctx);
264     break;
265   case AVR::fixup_13_pcrel:
266     adjust::fixup_13_pcrel(Size, Fixup, Value, Ctx);
267     break;
268   case AVR::fixup_call:
269     adjust::fixup_call(Size, Fixup, Value, Ctx);
270     break;
271   case AVR::fixup_ldi:
272     adjust::ldi::fixup(Size, Fixup, Value, Ctx);
273     break;
274   case AVR::fixup_lo8_ldi:
275     adjust::ldi::lo8(Size, Fixup, Value, Ctx);
276     break;
277   case AVR::fixup_lo8_ldi_pm:
278   case AVR::fixup_lo8_ldi_gs:
279     adjust::pm(Value);
280     adjust::ldi::lo8(Size, Fixup, Value, Ctx);
281     break;
282   case AVR::fixup_hi8_ldi:
283     adjust::ldi::hi8(Size, Fixup, Value, Ctx);
284     break;
285   case AVR::fixup_hi8_ldi_pm:
286   case AVR::fixup_hi8_ldi_gs:
287     adjust::pm(Value);
288     adjust::ldi::hi8(Size, Fixup, Value, Ctx);
289     break;
290   case AVR::fixup_hh8_ldi:
291   case AVR::fixup_hh8_ldi_pm:
292     if (Kind == AVR::fixup_hh8_ldi_pm)
293       adjust::pm(Value);
294 
295     adjust::ldi::hh8(Size, Fixup, Value, Ctx);
296     break;
297   case AVR::fixup_ms8_ldi:
298     adjust::ldi::ms8(Size, Fixup, Value, Ctx);
299     break;
300 
301   case AVR::fixup_lo8_ldi_neg:
302   case AVR::fixup_lo8_ldi_pm_neg:
303     if (Kind == AVR::fixup_lo8_ldi_pm_neg)
304       adjust::pm(Value);
305 
306     adjust::ldi::neg(Value);
307     adjust::ldi::lo8(Size, Fixup, Value, Ctx);
308     break;
309   case AVR::fixup_hi8_ldi_neg:
310   case AVR::fixup_hi8_ldi_pm_neg:
311     if (Kind == AVR::fixup_hi8_ldi_pm_neg)
312       adjust::pm(Value);
313 
314     adjust::ldi::neg(Value);
315     adjust::ldi::hi8(Size, Fixup, Value, Ctx);
316     break;
317   case AVR::fixup_hh8_ldi_neg:
318   case AVR::fixup_hh8_ldi_pm_neg:
319     if (Kind == AVR::fixup_hh8_ldi_pm_neg)
320       adjust::pm(Value);
321 
322     adjust::ldi::neg(Value);
323     adjust::ldi::hh8(Size, Fixup, Value, Ctx);
324     break;
325   case AVR::fixup_ms8_ldi_neg:
326     adjust::ldi::neg(Value);
327     adjust::ldi::ms8(Size, Fixup, Value, Ctx);
328     break;
329   case AVR::fixup_16:
330     adjust::unsigned_width(16, Value, std::string("port number"), Fixup, Ctx);
331 
332     Value &= 0xffff;
333     break;
334   case AVR::fixup_16_pm:
335     Value >>= 1; // Flash addresses are always shifted.
336     adjust::unsigned_width(16, Value, std::string("port number"), Fixup, Ctx);
337 
338     Value &= 0xffff;
339     break;
340 
341   case AVR::fixup_6:
342     adjust::fixup_6(Fixup, Value, Ctx);
343     break;
344   case AVR::fixup_6_adiw:
345     adjust::fixup_6_adiw(Fixup, Value, Ctx);
346     break;
347 
348   case AVR::fixup_port5:
349     adjust::fixup_port5(Fixup, Value, Ctx);
350     break;
351 
352   case AVR::fixup_port6:
353     adjust::fixup_port6(Fixup, Value, Ctx);
354     break;
355 
356   case AVR::fixup_lds_sts_16:
357     adjust::fixup_lds_sts_16(Fixup, Value, Ctx);
358     break;
359 
360   // Fixups which do not require adjustments.
361   case FK_Data_1:
362   case FK_Data_2:
363   case FK_Data_4:
364   case FK_Data_8:
365     break;
366 
367   case FK_GPRel_4:
368     llvm_unreachable("don't know how to adjust this fixup");
369     break;
370   }
371 }
372 
373 std::unique_ptr<MCObjectTargetWriter>
374 AVRAsmBackend::createObjectTargetWriter() const {
375   return createAVRELFObjectWriter(MCELFObjectTargetWriter::getOSABI(OSType));
376 }
377 
378 void AVRAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
379                                const MCValue &Target,
380                                MutableArrayRef<char> Data, uint64_t Value,
381                                bool IsResolved,
382                                const MCSubtargetInfo *STI) const {
383   if (Fixup.getKind() >= FirstLiteralRelocationKind)
384     return;
385   adjustFixupValue(Fixup, Target, Value, &Asm.getContext());
386   if (Value == 0)
387     return; // Doesn't change encoding.
388 
389   MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());
390 
391   // The number of bits in the fixup mask
392   auto NumBits = Info.TargetSize + Info.TargetOffset;
393   auto NumBytes = (NumBits / 8) + ((NumBits % 8) == 0 ? 0 : 1);
394 
395   // Shift the value into position.
396   Value <<= Info.TargetOffset;
397 
398   unsigned Offset = Fixup.getOffset();
399   assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
400 
401   // For each byte of the fragment that the fixup touches, mask in the
402   // bits from the fixup value.
403   for (unsigned i = 0; i < NumBytes; ++i) {
404     uint8_t mask = (((Value >> (i * 8)) & 0xff));
405     Data[Offset + i] |= mask;
406   }
407 }
408 
409 std::optional<MCFixupKind> AVRAsmBackend::getFixupKind(StringRef Name) const {
410   unsigned Type;
411   Type = llvm::StringSwitch<unsigned>(Name)
412 #define ELF_RELOC(X, Y) .Case(#X, Y)
413 #include "llvm/BinaryFormat/ELFRelocs/AVR.def"
414 #undef ELF_RELOC
415              .Case("BFD_RELOC_NONE", ELF::R_AVR_NONE)
416              .Case("BFD_RELOC_16", ELF::R_AVR_16)
417              .Case("BFD_RELOC_32", ELF::R_AVR_32)
418              .Default(-1u);
419   if (Type != -1u)
420     return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
421   return std::nullopt;
422 }
423 
424 MCFixupKindInfo const &AVRAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
425   // NOTE: Many AVR fixups work on sets of non-contignous bits. We work around
426   // this by saying that the fixup is the size of the entire instruction.
427   const static MCFixupKindInfo Infos[AVR::NumTargetFixupKinds] = {
428       // This table *must* be in same the order of fixup_* kinds in
429       // AVRFixupKinds.h.
430       //
431       // name                    offset  bits  flags
432       {"fixup_32", 0, 32, 0},
433 
434       {"fixup_7_pcrel", 3, 7, MCFixupKindInfo::FKF_IsPCRel},
435       {"fixup_13_pcrel", 0, 12, MCFixupKindInfo::FKF_IsPCRel},
436 
437       {"fixup_16", 0, 16, 0},
438       {"fixup_16_pm", 0, 16, 0},
439 
440       {"fixup_ldi", 0, 8, 0},
441 
442       {"fixup_lo8_ldi", 0, 8, 0},
443       {"fixup_hi8_ldi", 0, 8, 0},
444       {"fixup_hh8_ldi", 0, 8, 0},
445       {"fixup_ms8_ldi", 0, 8, 0},
446 
447       {"fixup_lo8_ldi_neg", 0, 8, 0},
448       {"fixup_hi8_ldi_neg", 0, 8, 0},
449       {"fixup_hh8_ldi_neg", 0, 8, 0},
450       {"fixup_ms8_ldi_neg", 0, 8, 0},
451 
452       {"fixup_lo8_ldi_pm", 0, 8, 0},
453       {"fixup_hi8_ldi_pm", 0, 8, 0},
454       {"fixup_hh8_ldi_pm", 0, 8, 0},
455 
456       {"fixup_lo8_ldi_pm_neg", 0, 8, 0},
457       {"fixup_hi8_ldi_pm_neg", 0, 8, 0},
458       {"fixup_hh8_ldi_pm_neg", 0, 8, 0},
459 
460       {"fixup_call", 0, 22, 0},
461 
462       {"fixup_6", 0, 16, 0}, // non-contiguous
463       {"fixup_6_adiw", 0, 6, 0},
464 
465       {"fixup_lo8_ldi_gs", 0, 8, 0},
466       {"fixup_hi8_ldi_gs", 0, 8, 0},
467 
468       {"fixup_8", 0, 8, 0},
469       {"fixup_8_lo8", 0, 8, 0},
470       {"fixup_8_hi8", 0, 8, 0},
471       {"fixup_8_hlo8", 0, 8, 0},
472 
473       {"fixup_diff8", 0, 8, 0},
474       {"fixup_diff16", 0, 16, 0},
475       {"fixup_diff32", 0, 32, 0},
476 
477       {"fixup_lds_sts_16", 0, 16, 0},
478 
479       {"fixup_port6", 0, 16, 0}, // non-contiguous
480       {"fixup_port5", 3, 5, 0},
481   };
482 
483   // Fixup kinds from .reloc directive are like R_AVR_NONE. They do not require
484   // any extra processing.
485   if (Kind >= FirstLiteralRelocationKind)
486     return MCAsmBackend::getFixupKindInfo(FK_NONE);
487 
488   if (Kind < FirstTargetFixupKind)
489     return MCAsmBackend::getFixupKindInfo(Kind);
490 
491   assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
492          "Invalid kind!");
493 
494   return Infos[Kind - FirstTargetFixupKind];
495 }
496 
497 bool AVRAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count,
498                                  const MCSubtargetInfo *STI) const {
499   // If the count is not 2-byte aligned, we must be writing data into the text
500   // section (otherwise we have unaligned instructions, and thus have far
501   // bigger problems), so just write zeros instead.
502   assert((Count % 2) == 0 && "NOP instructions must be 2 bytes");
503 
504   OS.write_zeros(Count);
505   return true;
506 }
507 
508 bool AVRAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
509                                           const MCFixup &Fixup,
510                                           const MCValue &Target) {
511   switch ((unsigned)Fixup.getKind()) {
512   default:
513     return Fixup.getKind() >= FirstLiteralRelocationKind;
514   // Fixups which should always be recorded as relocations.
515   case AVR::fixup_7_pcrel:
516   case AVR::fixup_13_pcrel:
517   case AVR::fixup_call:
518     return true;
519   }
520 }
521 
522 MCAsmBackend *createAVRAsmBackend(const Target &T, const MCSubtargetInfo &STI,
523                                   const MCRegisterInfo &MRI,
524                                   const llvm::MCTargetOptions &TO) {
525   return new AVRAsmBackend(STI.getTargetTriple().getOS());
526 }
527 
528 } // end of namespace llvm
529