xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AVR/AVRISelLowering.cpp (revision 25ecdc7d52770caf1c9b44b5ec11f468f6b636f3)
1 //===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that AVR uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AVRISelLowering.h"
15 
16 #include "llvm/ADT/StringSwitch.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/Support/ErrorHandling.h"
26 
27 #include "AVR.h"
28 #include "AVRMachineFunctionInfo.h"
29 #include "AVRSubtarget.h"
30 #include "AVRTargetMachine.h"
31 #include "MCTargetDesc/AVRMCTargetDesc.h"
32 
33 namespace llvm {
34 
35 AVRTargetLowering::AVRTargetLowering(const AVRTargetMachine &TM,
36                                      const AVRSubtarget &STI)
37     : TargetLowering(TM), Subtarget(STI) {
38   // Set up the register classes.
39   addRegisterClass(MVT::i8, &AVR::GPR8RegClass);
40   addRegisterClass(MVT::i16, &AVR::DREGSRegClass);
41 
42   // Compute derived properties from the register classes.
43   computeRegisterProperties(Subtarget.getRegisterInfo());
44 
45   setBooleanContents(ZeroOrOneBooleanContent);
46   setBooleanVectorContents(ZeroOrOneBooleanContent);
47   setSchedulingPreference(Sched::RegPressure);
48   setStackPointerRegisterToSaveRestore(AVR::SP);
49   setSupportsUnalignedAtomics(true);
50 
51   setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
52   setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
53 
54   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
55   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
56   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
57   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
58 
59   for (MVT VT : MVT::integer_valuetypes()) {
60     for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
61       setLoadExtAction(N, VT, MVT::i1, Promote);
62       setLoadExtAction(N, VT, MVT::i8, Expand);
63     }
64   }
65 
66   setTruncStoreAction(MVT::i16, MVT::i8, Expand);
67 
68   for (MVT VT : MVT::integer_valuetypes()) {
69     setOperationAction(ISD::ADDC, VT, Legal);
70     setOperationAction(ISD::SUBC, VT, Legal);
71     setOperationAction(ISD::ADDE, VT, Legal);
72     setOperationAction(ISD::SUBE, VT, Legal);
73   }
74 
75   // sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types
76   // revert into a sub since we don't have an add with immediate instruction.
77   setOperationAction(ISD::ADD, MVT::i32, Custom);
78   setOperationAction(ISD::ADD, MVT::i64, Custom);
79 
80   // our shift instructions are only able to shift 1 bit at a time, so handle
81   // this in a custom way.
82   setOperationAction(ISD::SRA, MVT::i8, Custom);
83   setOperationAction(ISD::SHL, MVT::i8, Custom);
84   setOperationAction(ISD::SRL, MVT::i8, Custom);
85   setOperationAction(ISD::SRA, MVT::i16, Custom);
86   setOperationAction(ISD::SHL, MVT::i16, Custom);
87   setOperationAction(ISD::SRL, MVT::i16, Custom);
88   setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
89   setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
90   setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
91 
92   setOperationAction(ISD::ROTL, MVT::i8, Custom);
93   setOperationAction(ISD::ROTL, MVT::i16, Expand);
94   setOperationAction(ISD::ROTR, MVT::i8, Custom);
95   setOperationAction(ISD::ROTR, MVT::i16, Expand);
96 
97   setOperationAction(ISD::BR_CC, MVT::i8, Custom);
98   setOperationAction(ISD::BR_CC, MVT::i16, Custom);
99   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
100   setOperationAction(ISD::BR_CC, MVT::i64, Custom);
101   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
102 
103   setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
104   setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
105   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
106   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
107   setOperationAction(ISD::SETCC, MVT::i8, Custom);
108   setOperationAction(ISD::SETCC, MVT::i16, Custom);
109   setOperationAction(ISD::SETCC, MVT::i32, Custom);
110   setOperationAction(ISD::SETCC, MVT::i64, Custom);
111   setOperationAction(ISD::SELECT, MVT::i8, Expand);
112   setOperationAction(ISD::SELECT, MVT::i16, Expand);
113 
114   setOperationAction(ISD::BSWAP, MVT::i16, Expand);
115 
116   // Add support for postincrement and predecrement load/stores.
117   setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
118   setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
119   setIndexedLoadAction(ISD::PRE_DEC, MVT::i8, Legal);
120   setIndexedLoadAction(ISD::PRE_DEC, MVT::i16, Legal);
121   setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
122   setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
123   setIndexedStoreAction(ISD::PRE_DEC, MVT::i8, Legal);
124   setIndexedStoreAction(ISD::PRE_DEC, MVT::i16, Legal);
125 
126   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
127 
128   setOperationAction(ISD::VASTART, MVT::Other, Custom);
129   setOperationAction(ISD::VAEND, MVT::Other, Expand);
130   setOperationAction(ISD::VAARG, MVT::Other, Expand);
131   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
132 
133   // Atomic operations which must be lowered to rtlib calls
134   for (MVT VT : MVT::integer_valuetypes()) {
135     setOperationAction(ISD::ATOMIC_SWAP, VT, Expand);
136     setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Expand);
137     setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand);
138     setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand);
139     setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand);
140     setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand);
141     setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand);
142   }
143 
144   // Division/remainder
145   setOperationAction(ISD::UDIV, MVT::i8, Expand);
146   setOperationAction(ISD::UDIV, MVT::i16, Expand);
147   setOperationAction(ISD::UREM, MVT::i8, Expand);
148   setOperationAction(ISD::UREM, MVT::i16, Expand);
149   setOperationAction(ISD::SDIV, MVT::i8, Expand);
150   setOperationAction(ISD::SDIV, MVT::i16, Expand);
151   setOperationAction(ISD::SREM, MVT::i8, Expand);
152   setOperationAction(ISD::SREM, MVT::i16, Expand);
153 
154   // Make division and modulus custom
155   setOperationAction(ISD::UDIVREM, MVT::i8, Custom);
156   setOperationAction(ISD::UDIVREM, MVT::i16, Custom);
157   setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
158   setOperationAction(ISD::SDIVREM, MVT::i8, Custom);
159   setOperationAction(ISD::SDIVREM, MVT::i16, Custom);
160   setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
161 
162   // Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co.
163   setOperationAction(ISD::MUL, MVT::i8, Expand);
164   setOperationAction(ISD::MUL, MVT::i16, Expand);
165 
166   // Expand 16 bit multiplications.
167   setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
168   setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
169 
170   // Expand multiplications to libcalls when there is
171   // no hardware MUL.
172   if (!Subtarget.supportsMultiplication()) {
173     setOperationAction(ISD::SMUL_LOHI, MVT::i8, Expand);
174     setOperationAction(ISD::UMUL_LOHI, MVT::i8, Expand);
175   }
176 
177   for (MVT VT : MVT::integer_valuetypes()) {
178     setOperationAction(ISD::MULHS, VT, Expand);
179     setOperationAction(ISD::MULHU, VT, Expand);
180   }
181 
182   for (MVT VT : MVT::integer_valuetypes()) {
183     setOperationAction(ISD::CTPOP, VT, Expand);
184     setOperationAction(ISD::CTLZ, VT, Expand);
185     setOperationAction(ISD::CTTZ, VT, Expand);
186   }
187 
188   for (MVT VT : MVT::integer_valuetypes()) {
189     setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
190     // TODO: The generated code is pretty poor. Investigate using the
191     // same "shift and subtract with carry" trick that we do for
192     // extending 8-bit to 16-bit. This may require infrastructure
193     // improvements in how we treat 16-bit "registers" to be feasible.
194   }
195 
196   // Division rtlib functions (not supported), use divmod functions instead
197   setLibcallName(RTLIB::SDIV_I8, nullptr);
198   setLibcallName(RTLIB::SDIV_I16, nullptr);
199   setLibcallName(RTLIB::SDIV_I32, nullptr);
200   setLibcallName(RTLIB::UDIV_I8, nullptr);
201   setLibcallName(RTLIB::UDIV_I16, nullptr);
202   setLibcallName(RTLIB::UDIV_I32, nullptr);
203 
204   // Modulus rtlib functions (not supported), use divmod functions instead
205   setLibcallName(RTLIB::SREM_I8, nullptr);
206   setLibcallName(RTLIB::SREM_I16, nullptr);
207   setLibcallName(RTLIB::SREM_I32, nullptr);
208   setLibcallName(RTLIB::UREM_I8, nullptr);
209   setLibcallName(RTLIB::UREM_I16, nullptr);
210   setLibcallName(RTLIB::UREM_I32, nullptr);
211 
212   // Division and modulus rtlib functions
213   setLibcallName(RTLIB::SDIVREM_I8, "__divmodqi4");
214   setLibcallName(RTLIB::SDIVREM_I16, "__divmodhi4");
215   setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
216   setLibcallName(RTLIB::UDIVREM_I8, "__udivmodqi4");
217   setLibcallName(RTLIB::UDIVREM_I16, "__udivmodhi4");
218   setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
219 
220   // Several of the runtime library functions use a special calling conv
221   setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN);
222   setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN);
223   setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN);
224   setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN);
225 
226   // Trigonometric rtlib functions
227   setLibcallName(RTLIB::SIN_F32, "sin");
228   setLibcallName(RTLIB::COS_F32, "cos");
229 
230   setMinFunctionAlignment(Align(2));
231   setMinimumJumpTableEntries(UINT_MAX);
232 }
233 
234 const char *AVRTargetLowering::getTargetNodeName(unsigned Opcode) const {
235 #define NODE(name)       \
236   case AVRISD::name:     \
237     return #name
238 
239   switch (Opcode) {
240   default:
241     return nullptr;
242     NODE(RET_FLAG);
243     NODE(RETI_FLAG);
244     NODE(CALL);
245     NODE(WRAPPER);
246     NODE(LSL);
247     NODE(LSR);
248     NODE(ROL);
249     NODE(ROR);
250     NODE(ASR);
251     NODE(LSLLOOP);
252     NODE(LSRLOOP);
253     NODE(ROLLOOP);
254     NODE(RORLOOP);
255     NODE(ASRLOOP);
256     NODE(BRCOND);
257     NODE(CMP);
258     NODE(CMPC);
259     NODE(TST);
260     NODE(SELECT_CC);
261 #undef NODE
262   }
263 }
264 
265 EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
266                                           EVT VT) const {
267   assert(!VT.isVector() && "No AVR SetCC type for vectors!");
268   return MVT::i8;
269 }
270 
271 SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const {
272   //:TODO: this function has to be completely rewritten to produce optimal
273   // code, for now it's producing very long but correct code.
274   unsigned Opc8;
275   const SDNode *N = Op.getNode();
276   EVT VT = Op.getValueType();
277   SDLoc dl(N);
278   assert(isPowerOf2_32(VT.getSizeInBits()) &&
279          "Expected power-of-2 shift amount");
280 
281   // Expand non-constant shifts to loops.
282   if (!isa<ConstantSDNode>(N->getOperand(1))) {
283     switch (Op.getOpcode()) {
284     default:
285       llvm_unreachable("Invalid shift opcode!");
286     case ISD::SHL:
287       return DAG.getNode(AVRISD::LSLLOOP, dl, VT, N->getOperand(0),
288                          N->getOperand(1));
289     case ISD::SRL:
290       return DAG.getNode(AVRISD::LSRLOOP, dl, VT, N->getOperand(0),
291                          N->getOperand(1));
292     case ISD::ROTL: {
293       SDValue Amt = N->getOperand(1);
294       EVT AmtVT = Amt.getValueType();
295       Amt = DAG.getNode(ISD::AND, dl, AmtVT, Amt,
296                         DAG.getConstant(VT.getSizeInBits() - 1, dl, AmtVT));
297       return DAG.getNode(AVRISD::ROLLOOP, dl, VT, N->getOperand(0), Amt);
298     }
299     case ISD::ROTR: {
300       SDValue Amt = N->getOperand(1);
301       EVT AmtVT = Amt.getValueType();
302       Amt = DAG.getNode(ISD::AND, dl, AmtVT, Amt,
303                         DAG.getConstant(VT.getSizeInBits() - 1, dl, AmtVT));
304       return DAG.getNode(AVRISD::RORLOOP, dl, VT, N->getOperand(0), Amt);
305     }
306     case ISD::SRA:
307       return DAG.getNode(AVRISD::ASRLOOP, dl, VT, N->getOperand(0),
308                          N->getOperand(1));
309     }
310   }
311 
312   uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
313   SDValue Victim = N->getOperand(0);
314 
315   switch (Op.getOpcode()) {
316   case ISD::SRA:
317     Opc8 = AVRISD::ASR;
318     break;
319   case ISD::ROTL:
320     Opc8 = AVRISD::ROL;
321     ShiftAmount = ShiftAmount % VT.getSizeInBits();
322     break;
323   case ISD::ROTR:
324     Opc8 = AVRISD::ROR;
325     ShiftAmount = ShiftAmount % VT.getSizeInBits();
326     break;
327   case ISD::SRL:
328     Opc8 = AVRISD::LSR;
329     break;
330   case ISD::SHL:
331     Opc8 = AVRISD::LSL;
332     break;
333   default:
334     llvm_unreachable("Invalid shift opcode");
335   }
336 
337   while (ShiftAmount--) {
338     Victim = DAG.getNode(Opc8, dl, VT, Victim);
339   }
340 
341   return Victim;
342 }
343 
344 SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
345   unsigned Opcode = Op->getOpcode();
346   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
347          "Invalid opcode for Div/Rem lowering");
348   bool IsSigned = (Opcode == ISD::SDIVREM);
349   EVT VT = Op->getValueType(0);
350   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
351 
352   RTLIB::Libcall LC;
353   switch (VT.getSimpleVT().SimpleTy) {
354   default:
355     llvm_unreachable("Unexpected request for libcall!");
356   case MVT::i8:
357     LC = IsSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8;
358     break;
359   case MVT::i16:
360     LC = IsSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16;
361     break;
362   case MVT::i32:
363     LC = IsSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
364     break;
365   }
366 
367   SDValue InChain = DAG.getEntryNode();
368 
369   TargetLowering::ArgListTy Args;
370   TargetLowering::ArgListEntry Entry;
371   for (SDValue const &Value : Op->op_values()) {
372     Entry.Node = Value;
373     Entry.Ty = Value.getValueType().getTypeForEVT(*DAG.getContext());
374     Entry.IsSExt = IsSigned;
375     Entry.IsZExt = !IsSigned;
376     Args.push_back(Entry);
377   }
378 
379   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
380                                          getPointerTy(DAG.getDataLayout()));
381 
382   Type *RetTy = (Type *)StructType::get(Ty, Ty);
383 
384   SDLoc dl(Op);
385   TargetLowering::CallLoweringInfo CLI(DAG);
386   CLI.setDebugLoc(dl)
387       .setChain(InChain)
388       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
389       .setInRegister()
390       .setSExtResult(IsSigned)
391       .setZExtResult(!IsSigned);
392 
393   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
394   return CallInfo.first;
395 }
396 
397 SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op,
398                                               SelectionDAG &DAG) const {
399   auto DL = DAG.getDataLayout();
400 
401   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
402   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
403 
404   // Create the TargetGlobalAddress node, folding in the constant offset.
405   SDValue Result =
406       DAG.getTargetGlobalAddress(GV, SDLoc(Op), getPointerTy(DL), Offset);
407   return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
408 }
409 
410 SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op,
411                                              SelectionDAG &DAG) const {
412   auto DL = DAG.getDataLayout();
413   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
414 
415   SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(DL));
416 
417   return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
418 }
419 
420 /// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC.
421 static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) {
422   switch (CC) {
423   default:
424     llvm_unreachable("Unknown condition code!");
425   case ISD::SETEQ:
426     return AVRCC::COND_EQ;
427   case ISD::SETNE:
428     return AVRCC::COND_NE;
429   case ISD::SETGE:
430     return AVRCC::COND_GE;
431   case ISD::SETLT:
432     return AVRCC::COND_LT;
433   case ISD::SETUGE:
434     return AVRCC::COND_SH;
435   case ISD::SETULT:
436     return AVRCC::COND_LO;
437   }
438 }
439 
440 /// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for
441 /// the given operands.
442 SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
443                                      SDValue &AVRcc, SelectionDAG &DAG,
444                                      SDLoc DL) const {
445   SDValue Cmp;
446   EVT VT = LHS.getValueType();
447   bool UseTest = false;
448 
449   switch (CC) {
450   default:
451     break;
452   case ISD::SETLE: {
453     // Swap operands and reverse the branching condition.
454     std::swap(LHS, RHS);
455     CC = ISD::SETGE;
456     break;
457   }
458   case ISD::SETGT: {
459     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
460       switch (C->getSExtValue()) {
461       case -1: {
462         // When doing lhs > -1 use a tst instruction on the top part of lhs
463         // and use brpl instead of using a chain of cp/cpc.
464         UseTest = true;
465         AVRcc = DAG.getConstant(AVRCC::COND_PL, DL, MVT::i8);
466         break;
467       }
468       case 0: {
469         // Turn lhs > 0 into 0 < lhs since 0 can be materialized with
470         // __zero_reg__ in lhs.
471         RHS = LHS;
472         LHS = DAG.getConstant(0, DL, VT);
473         CC = ISD::SETLT;
474         break;
475       }
476       default: {
477         // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows
478         // us to  fold the constant into the cmp instruction.
479         RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
480         CC = ISD::SETGE;
481         break;
482       }
483       }
484       break;
485     }
486     // Swap operands and reverse the branching condition.
487     std::swap(LHS, RHS);
488     CC = ISD::SETLT;
489     break;
490   }
491   case ISD::SETLT: {
492     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
493       switch (C->getSExtValue()) {
494       case 1: {
495         // Turn lhs < 1 into 0 >= lhs since 0 can be materialized with
496         // __zero_reg__ in lhs.
497         RHS = LHS;
498         LHS = DAG.getConstant(0, DL, VT);
499         CC = ISD::SETGE;
500         break;
501       }
502       case 0: {
503         // When doing lhs < 0 use a tst instruction on the top part of lhs
504         // and use brmi instead of using a chain of cp/cpc.
505         UseTest = true;
506         AVRcc = DAG.getConstant(AVRCC::COND_MI, DL, MVT::i8);
507         break;
508       }
509       }
510     }
511     break;
512   }
513   case ISD::SETULE: {
514     // Swap operands and reverse the branching condition.
515     std::swap(LHS, RHS);
516     CC = ISD::SETUGE;
517     break;
518   }
519   case ISD::SETUGT: {
520     // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
521     // fold the constant into the cmp instruction.
522     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
523       RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
524       CC = ISD::SETUGE;
525       break;
526     }
527     // Swap operands and reverse the branching condition.
528     std::swap(LHS, RHS);
529     CC = ISD::SETULT;
530     break;
531   }
532   }
533 
534   // Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of
535   // using the default and/or/xor expansion code which is much longer.
536   if (VT == MVT::i32) {
537     SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
538                                 DAG.getIntPtrConstant(0, DL));
539     SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
540                                 DAG.getIntPtrConstant(1, DL));
541     SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
542                                 DAG.getIntPtrConstant(0, DL));
543     SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
544                                 DAG.getIntPtrConstant(1, DL));
545 
546     if (UseTest) {
547       // When using tst we only care about the highest part.
548       SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHShi,
549                                 DAG.getIntPtrConstant(1, DL));
550       Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
551     } else {
552       Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo);
553       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp);
554     }
555   } else if (VT == MVT::i64) {
556     SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
557                                 DAG.getIntPtrConstant(0, DL));
558     SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
559                                 DAG.getIntPtrConstant(1, DL));
560 
561     SDValue LHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
562                                DAG.getIntPtrConstant(0, DL));
563     SDValue LHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
564                                DAG.getIntPtrConstant(1, DL));
565     SDValue LHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
566                                DAG.getIntPtrConstant(0, DL));
567     SDValue LHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
568                                DAG.getIntPtrConstant(1, DL));
569 
570     SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
571                                 DAG.getIntPtrConstant(0, DL));
572     SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
573                                 DAG.getIntPtrConstant(1, DL));
574 
575     SDValue RHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
576                                DAG.getIntPtrConstant(0, DL));
577     SDValue RHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
578                                DAG.getIntPtrConstant(1, DL));
579     SDValue RHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
580                                DAG.getIntPtrConstant(0, DL));
581     SDValue RHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
582                                DAG.getIntPtrConstant(1, DL));
583 
584     if (UseTest) {
585       // When using tst we only care about the highest part.
586       SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS3,
587                                 DAG.getIntPtrConstant(1, DL));
588       Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
589     } else {
590       Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS0, RHS0);
591       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS1, RHS1, Cmp);
592       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS2, RHS2, Cmp);
593       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS3, RHS3, Cmp);
594     }
595   } else if (VT == MVT::i8 || VT == MVT::i16) {
596     if (UseTest) {
597       // When using tst we only care about the highest part.
598       Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue,
599                         (VT == MVT::i8)
600                             ? LHS
601                             : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8,
602                                           LHS, DAG.getIntPtrConstant(1, DL)));
603     } else {
604       Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS, RHS);
605     }
606   } else {
607     llvm_unreachable("Invalid comparison size");
608   }
609 
610   // When using a test instruction AVRcc is already set.
611   if (!UseTest) {
612     AVRcc = DAG.getConstant(intCCToAVRCC(CC), DL, MVT::i8);
613   }
614 
615   return Cmp;
616 }
617 
618 SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
619   SDValue Chain = Op.getOperand(0);
620   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
621   SDValue LHS = Op.getOperand(2);
622   SDValue RHS = Op.getOperand(3);
623   SDValue Dest = Op.getOperand(4);
624   SDLoc dl(Op);
625 
626   SDValue TargetCC;
627   SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
628 
629   return DAG.getNode(AVRISD::BRCOND, dl, MVT::Other, Chain, Dest, TargetCC,
630                      Cmp);
631 }
632 
633 SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
634   SDValue LHS = Op.getOperand(0);
635   SDValue RHS = Op.getOperand(1);
636   SDValue TrueV = Op.getOperand(2);
637   SDValue FalseV = Op.getOperand(3);
638   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
639   SDLoc dl(Op);
640 
641   SDValue TargetCC;
642   SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
643 
644   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
645   SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
646 
647   return DAG.getNode(AVRISD::SELECT_CC, dl, VTs, Ops);
648 }
649 
650 SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
651   SDValue LHS = Op.getOperand(0);
652   SDValue RHS = Op.getOperand(1);
653   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
654   SDLoc DL(Op);
655 
656   SDValue TargetCC;
657   SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, DL);
658 
659   SDValue TrueV = DAG.getConstant(1, DL, Op.getValueType());
660   SDValue FalseV = DAG.getConstant(0, DL, Op.getValueType());
661   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
662   SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
663 
664   return DAG.getNode(AVRISD::SELECT_CC, DL, VTs, Ops);
665 }
666 
667 SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
668   const MachineFunction &MF = DAG.getMachineFunction();
669   const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
670   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
671   auto DL = DAG.getDataLayout();
672   SDLoc dl(Op);
673 
674   // Vastart just stores the address of the VarArgsFrameIndex slot into the
675   // memory location argument.
676   SDValue FI = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), getPointerTy(DL));
677 
678   return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
679                       MachinePointerInfo(SV), 0);
680 }
681 
682 SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
683   switch (Op.getOpcode()) {
684   default:
685     llvm_unreachable("Don't know how to custom lower this!");
686   case ISD::SHL:
687   case ISD::SRA:
688   case ISD::SRL:
689   case ISD::ROTL:
690   case ISD::ROTR:
691     return LowerShifts(Op, DAG);
692   case ISD::GlobalAddress:
693     return LowerGlobalAddress(Op, DAG);
694   case ISD::BlockAddress:
695     return LowerBlockAddress(Op, DAG);
696   case ISD::BR_CC:
697     return LowerBR_CC(Op, DAG);
698   case ISD::SELECT_CC:
699     return LowerSELECT_CC(Op, DAG);
700   case ISD::SETCC:
701     return LowerSETCC(Op, DAG);
702   case ISD::VASTART:
703     return LowerVASTART(Op, DAG);
704   case ISD::SDIVREM:
705   case ISD::UDIVREM:
706     return LowerDivRem(Op, DAG);
707   }
708 
709   return SDValue();
710 }
711 
712 /// Replace a node with an illegal result type
713 /// with a new node built out of custom code.
714 void AVRTargetLowering::ReplaceNodeResults(SDNode *N,
715                                            SmallVectorImpl<SDValue> &Results,
716                                            SelectionDAG &DAG) const {
717   SDLoc DL(N);
718 
719   switch (N->getOpcode()) {
720   case ISD::ADD: {
721     // Convert add (x, imm) into sub (x, -imm).
722     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
723       SDValue Sub = DAG.getNode(
724           ISD::SUB, DL, N->getValueType(0), N->getOperand(0),
725           DAG.getConstant(-C->getAPIntValue(), DL, C->getValueType(0)));
726       Results.push_back(Sub);
727     }
728     break;
729   }
730   default: {
731     SDValue Res = LowerOperation(SDValue(N, 0), DAG);
732 
733     for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
734       Results.push_back(Res.getValue(I));
735 
736     break;
737   }
738   }
739 }
740 
741 /// Return true if the addressing mode represented
742 /// by AM is legal for this target, for a load/store of the specified type.
743 bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL,
744                                               const AddrMode &AM, Type *Ty,
745                                               unsigned AS, Instruction *I) const {
746   int64_t Offs = AM.BaseOffs;
747 
748   // Allow absolute addresses.
749   if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) {
750     return true;
751   }
752 
753   // Flash memory instructions only allow zero offsets.
754   if (isa<PointerType>(Ty) && AS == AVR::ProgramMemory) {
755     return false;
756   }
757 
758   // Allow reg+<6bit> offset.
759   if (Offs < 0)
760     Offs = -Offs;
761   if (AM.BaseGV == 0 && AM.HasBaseReg && AM.Scale == 0 && isUInt<6>(Offs)) {
762     return true;
763   }
764 
765   return false;
766 }
767 
768 /// Returns true by value, base pointer and
769 /// offset pointer and addressing mode by reference if the node's address
770 /// can be legally represented as pre-indexed load / store address.
771 bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
772                                                   SDValue &Offset,
773                                                   ISD::MemIndexedMode &AM,
774                                                   SelectionDAG &DAG) const {
775   EVT VT;
776   const SDNode *Op;
777   SDLoc DL(N);
778 
779   if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
780     VT = LD->getMemoryVT();
781     Op = LD->getBasePtr().getNode();
782     if (LD->getExtensionType() != ISD::NON_EXTLOAD)
783       return false;
784     if (AVR::isProgramMemoryAccess(LD)) {
785       return false;
786     }
787   } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
788     VT = ST->getMemoryVT();
789     Op = ST->getBasePtr().getNode();
790     if (AVR::isProgramMemoryAccess(ST)) {
791       return false;
792     }
793   } else {
794     return false;
795   }
796 
797   if (VT != MVT::i8 && VT != MVT::i16) {
798     return false;
799   }
800 
801   if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
802     return false;
803   }
804 
805   if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
806     int RHSC = RHS->getSExtValue();
807     if (Op->getOpcode() == ISD::SUB)
808       RHSC = -RHSC;
809 
810     if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) {
811       return false;
812     }
813 
814     Base = Op->getOperand(0);
815     Offset = DAG.getConstant(RHSC, DL, MVT::i8);
816     AM = ISD::PRE_DEC;
817 
818     return true;
819   }
820 
821   return false;
822 }
823 
824 /// Returns true by value, base pointer and
825 /// offset pointer and addressing mode by reference if this node can be
826 /// combined with a load / store to form a post-indexed load / store.
827 bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
828                                                    SDValue &Base,
829                                                    SDValue &Offset,
830                                                    ISD::MemIndexedMode &AM,
831                                                    SelectionDAG &DAG) const {
832   EVT VT;
833   SDLoc DL(N);
834 
835   if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
836     VT = LD->getMemoryVT();
837     if (LD->getExtensionType() != ISD::NON_EXTLOAD)
838       return false;
839   } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
840     VT = ST->getMemoryVT();
841     if (AVR::isProgramMemoryAccess(ST)) {
842       return false;
843     }
844   } else {
845     return false;
846   }
847 
848   if (VT != MVT::i8 && VT != MVT::i16) {
849     return false;
850   }
851 
852   if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
853     return false;
854   }
855 
856   if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
857     int RHSC = RHS->getSExtValue();
858     if (Op->getOpcode() == ISD::SUB)
859       RHSC = -RHSC;
860     if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) {
861       return false;
862     }
863 
864     Base = Op->getOperand(0);
865     Offset = DAG.getConstant(RHSC, DL, MVT::i8);
866     AM = ISD::POST_INC;
867 
868     return true;
869   }
870 
871   return false;
872 }
873 
874 bool AVRTargetLowering::isOffsetFoldingLegal(
875     const GlobalAddressSDNode *GA) const {
876   return true;
877 }
878 
879 //===----------------------------------------------------------------------===//
880 //             Formal Arguments Calling Convention Implementation
881 //===----------------------------------------------------------------------===//
882 
883 #include "AVRGenCallingConv.inc"
884 
885 /// Registers for calling conventions, ordered in reverse as required by ABI.
886 /// Both arrays must be of the same length.
887 static const MCPhysReg RegList8[] = {
888     AVR::R25, AVR::R24, AVR::R23, AVR::R22, AVR::R21, AVR::R20,
889     AVR::R19, AVR::R18, AVR::R17, AVR::R16, AVR::R15, AVR::R14,
890     AVR::R13, AVR::R12, AVR::R11, AVR::R10, AVR::R9,  AVR::R8};
891 static const MCPhysReg RegList16[] = {
892     AVR::R26R25, AVR::R25R24, AVR::R24R23, AVR::R23R22,
893     AVR::R22R21, AVR::R21R20, AVR::R20R19, AVR::R19R18,
894     AVR::R18R17, AVR::R17R16, AVR::R16R15, AVR::R15R14,
895     AVR::R14R13, AVR::R13R12, AVR::R12R11, AVR::R11R10,
896     AVR::R10R9,  AVR::R9R8};
897 
898 static_assert(array_lengthof(RegList8) == array_lengthof(RegList16),
899         "8-bit and 16-bit register arrays must be of equal length");
900 
901 /// Analyze incoming and outgoing function arguments. We need custom C++ code
902 /// to handle special constraints in the ABI.
903 /// In addition, all pieces of a certain argument have to be passed either
904 /// using registers or the stack but never mixing both.
905 template <typename ArgT>
906 static void
907 analyzeArguments(TargetLowering::CallLoweringInfo *CLI, const Function *F,
908                  const DataLayout *TD, const SmallVectorImpl<ArgT> &Args,
909                  SmallVectorImpl<CCValAssign> &ArgLocs, CCState &CCInfo) {
910   unsigned NumArgs = Args.size();
911   // This is the index of the last used register, in RegList*.
912   // -1 means R26 (R26 is never actually used in CC).
913   int RegLastIdx = -1;
914   // Once a value is passed to the stack it will always be used
915   bool UseStack = false;
916   for (unsigned i = 0; i != NumArgs;) {
917     MVT VT = Args[i].VT;
918     // We have to count the number of bytes for each function argument, that is
919     // those Args with the same OrigArgIndex. This is important in case the
920     // function takes an aggregate type.
921     // Current argument will be between [i..j).
922     unsigned ArgIndex = Args[i].OrigArgIndex;
923     unsigned TotalBytes = VT.getStoreSize();
924     unsigned j = i + 1;
925     for (; j != NumArgs; ++j) {
926       if (Args[j].OrigArgIndex != ArgIndex)
927         break;
928       TotalBytes += Args[j].VT.getStoreSize();
929     }
930     // Round up to even number of bytes.
931     TotalBytes = alignTo(TotalBytes, 2);
932     // Skip zero sized arguments
933     if (TotalBytes == 0)
934       continue;
935     // The index of the first register to be used
936     unsigned RegIdx = RegLastIdx + TotalBytes;
937     RegLastIdx = RegIdx;
938     // If there are not enough registers, use the stack
939     if (RegIdx >= array_lengthof(RegList8)) {
940       UseStack = true;
941     }
942     for (; i != j; ++i) {
943       MVT VT = Args[i].VT;
944 
945       if (UseStack) {
946         auto evt = EVT(VT).getTypeForEVT(CCInfo.getContext());
947         unsigned Offset = CCInfo.AllocateStack(TD->getTypeAllocSize(evt),
948                                                TD->getABITypeAlign(evt));
949         CCInfo.addLoc(
950             CCValAssign::getMem(i, VT, Offset, VT, CCValAssign::Full));
951       } else {
952         unsigned Reg;
953         if (VT == MVT::i8) {
954           Reg = CCInfo.AllocateReg(RegList8[RegIdx]);
955         } else if (VT == MVT::i16) {
956           Reg = CCInfo.AllocateReg(RegList16[RegIdx]);
957         } else {
958           llvm_unreachable(
959               "calling convention can only manage i8 and i16 types");
960         }
961         assert(Reg && "register not available in calling convention");
962         CCInfo.addLoc(CCValAssign::getReg(i, VT, Reg, VT, CCValAssign::Full));
963         // Registers inside a particular argument are sorted in increasing order
964         // (remember the array is reversed).
965         RegIdx -= VT.getStoreSize();
966       }
967     }
968   }
969 }
970 
971 /// Count the total number of bytes needed to pass or return these arguments.
972 template <typename ArgT>
973 static unsigned getTotalArgumentsSizeInBytes(const SmallVectorImpl<ArgT> &Args) {
974   unsigned TotalBytes = 0;
975 
976   for (const ArgT& Arg : Args) {
977     TotalBytes += Arg.VT.getStoreSize();
978   }
979   return TotalBytes;
980 }
981 
982 /// Analyze incoming and outgoing value of returning from a function.
983 /// The algorithm is similar to analyzeArguments, but there can only be
984 /// one value, possibly an aggregate, and it is limited to 8 bytes.
985 template <typename ArgT>
986 static void analyzeReturnValues(const SmallVectorImpl<ArgT> &Args,
987                                 CCState &CCInfo) {
988   unsigned NumArgs = Args.size();
989   unsigned TotalBytes = getTotalArgumentsSizeInBytes(Args);
990   // CanLowerReturn() guarantees this assertion.
991   assert(TotalBytes <= 8 && "return values greater than 8 bytes cannot be lowered");
992 
993   // GCC-ABI says that the size is rounded up to the next even number,
994   // but actually once it is more than 4 it will always round up to 8.
995   if (TotalBytes > 4) {
996     TotalBytes = 8;
997   } else {
998     TotalBytes = alignTo(TotalBytes, 2);
999   }
1000 
1001   // The index of the first register to use.
1002   int RegIdx = TotalBytes - 1;
1003   for (unsigned i = 0; i != NumArgs; ++i) {
1004     MVT VT = Args[i].VT;
1005     unsigned Reg;
1006     if (VT == MVT::i8) {
1007       Reg = CCInfo.AllocateReg(RegList8[RegIdx]);
1008     } else if (VT == MVT::i16) {
1009       Reg = CCInfo.AllocateReg(RegList16[RegIdx]);
1010     } else {
1011       llvm_unreachable("calling convention can only manage i8 and i16 types");
1012     }
1013     assert(Reg && "register not available in calling convention");
1014     CCInfo.addLoc(CCValAssign::getReg(i, VT, Reg, VT, CCValAssign::Full));
1015     // Registers sort in increasing order
1016     RegIdx -= VT.getStoreSize();
1017   }
1018 }
1019 
1020 SDValue AVRTargetLowering::LowerFormalArguments(
1021     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1022     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1023     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1024   MachineFunction &MF = DAG.getMachineFunction();
1025   MachineFrameInfo &MFI = MF.getFrameInfo();
1026   auto DL = DAG.getDataLayout();
1027 
1028   // Assign locations to all of the incoming arguments.
1029   SmallVector<CCValAssign, 16> ArgLocs;
1030   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1031                  *DAG.getContext());
1032 
1033   // Variadic functions do not need all the analysis below.
1034   if (isVarArg) {
1035     CCInfo.AnalyzeFormalArguments(Ins, ArgCC_AVR_Vararg);
1036   } else {
1037     analyzeArguments(nullptr, &MF.getFunction(), &DL, Ins, ArgLocs, CCInfo);
1038   }
1039 
1040   SDValue ArgValue;
1041   for (CCValAssign &VA : ArgLocs) {
1042 
1043     // Arguments stored on registers.
1044     if (VA.isRegLoc()) {
1045       EVT RegVT = VA.getLocVT();
1046       const TargetRegisterClass *RC;
1047       if (RegVT == MVT::i8) {
1048         RC = &AVR::GPR8RegClass;
1049       } else if (RegVT == MVT::i16) {
1050         RC = &AVR::DREGSRegClass;
1051       } else {
1052         llvm_unreachable("Unknown argument type!");
1053       }
1054 
1055       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1056       ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1057 
1058       // :NOTE: Clang should not promote any i8 into i16 but for safety the
1059       // following code will handle zexts or sexts generated by other
1060       // front ends. Otherwise:
1061       // If this is an 8 bit value, it is really passed promoted
1062       // to 16 bits. Insert an assert[sz]ext to capture this, then
1063       // truncate to the right size.
1064       switch (VA.getLocInfo()) {
1065       default:
1066         llvm_unreachable("Unknown loc info!");
1067       case CCValAssign::Full:
1068         break;
1069       case CCValAssign::BCvt:
1070         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1071         break;
1072       case CCValAssign::SExt:
1073         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1074                                DAG.getValueType(VA.getValVT()));
1075         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1076         break;
1077       case CCValAssign::ZExt:
1078         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1079                                DAG.getValueType(VA.getValVT()));
1080         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1081         break;
1082       }
1083 
1084       InVals.push_back(ArgValue);
1085     } else {
1086       // Sanity check.
1087       assert(VA.isMemLoc());
1088 
1089       EVT LocVT = VA.getLocVT();
1090 
1091       // Create the frame index object for this incoming parameter.
1092       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1093                                      VA.getLocMemOffset(), true);
1094 
1095       // Create the SelectionDAG nodes corresponding to a load
1096       // from this parameter.
1097       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DL));
1098       InVals.push_back(DAG.getLoad(LocVT, dl, Chain, FIN,
1099                                    MachinePointerInfo::getFixedStack(MF, FI),
1100                                    0));
1101     }
1102   }
1103 
1104   // If the function takes variable number of arguments, make a frame index for
1105   // the start of the first vararg value... for expansion of llvm.va_start.
1106   if (isVarArg) {
1107     unsigned StackSize = CCInfo.getNextStackOffset();
1108     AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
1109 
1110     AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(2, StackSize, true));
1111   }
1112 
1113   return Chain;
1114 }
1115 
1116 //===----------------------------------------------------------------------===//
1117 //                  Call Calling Convention Implementation
1118 //===----------------------------------------------------------------------===//
1119 
1120 SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1121                                      SmallVectorImpl<SDValue> &InVals) const {
1122   SelectionDAG &DAG = CLI.DAG;
1123   SDLoc &DL = CLI.DL;
1124   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1125   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1126   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1127   SDValue Chain = CLI.Chain;
1128   SDValue Callee = CLI.Callee;
1129   bool &isTailCall = CLI.IsTailCall;
1130   CallingConv::ID CallConv = CLI.CallConv;
1131   bool isVarArg = CLI.IsVarArg;
1132 
1133   MachineFunction &MF = DAG.getMachineFunction();
1134 
1135   // AVR does not yet support tail call optimization.
1136   isTailCall = false;
1137 
1138   // Analyze operands of the call, assigning locations to each operand.
1139   SmallVector<CCValAssign, 16> ArgLocs;
1140   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1141                  *DAG.getContext());
1142 
1143   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1144   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1145   // node so that legalize doesn't hack it.
1146   const Function *F = nullptr;
1147   if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1148     const GlobalValue *GV = G->getGlobal();
1149 
1150     F = cast<Function>(GV);
1151     Callee =
1152         DAG.getTargetGlobalAddress(GV, DL, getPointerTy(DAG.getDataLayout()));
1153   } else if (const ExternalSymbolSDNode *ES =
1154                  dyn_cast<ExternalSymbolSDNode>(Callee)) {
1155     Callee = DAG.getTargetExternalSymbol(ES->getSymbol(),
1156                                          getPointerTy(DAG.getDataLayout()));
1157   }
1158 
1159   // Variadic functions do not need all the analysis below.
1160   if (isVarArg) {
1161     CCInfo.AnalyzeCallOperands(Outs, ArgCC_AVR_Vararg);
1162   } else {
1163     analyzeArguments(&CLI, F, &DAG.getDataLayout(), Outs, ArgLocs, CCInfo);
1164   }
1165 
1166   // Get a count of how many bytes are to be pushed on the stack.
1167   unsigned NumBytes = CCInfo.getNextStackOffset();
1168 
1169   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1170 
1171   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1172 
1173   // First, walk the register assignments, inserting copies.
1174   unsigned AI, AE;
1175   bool HasStackArgs = false;
1176   for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) {
1177     CCValAssign &VA = ArgLocs[AI];
1178     EVT RegVT = VA.getLocVT();
1179     SDValue Arg = OutVals[AI];
1180 
1181     // Promote the value if needed. With Clang this should not happen.
1182     switch (VA.getLocInfo()) {
1183     default:
1184       llvm_unreachable("Unknown loc info!");
1185     case CCValAssign::Full:
1186       break;
1187     case CCValAssign::SExt:
1188       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg);
1189       break;
1190     case CCValAssign::ZExt:
1191       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg);
1192       break;
1193     case CCValAssign::AExt:
1194       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg);
1195       break;
1196     case CCValAssign::BCvt:
1197       Arg = DAG.getNode(ISD::BITCAST, DL, RegVT, Arg);
1198       break;
1199     }
1200 
1201     // Stop when we encounter a stack argument, we need to process them
1202     // in reverse order in the loop below.
1203     if (VA.isMemLoc()) {
1204       HasStackArgs = true;
1205       break;
1206     }
1207 
1208     // Arguments that can be passed on registers must be kept in the RegsToPass
1209     // vector.
1210     RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1211   }
1212 
1213   // Second, stack arguments have to walked in reverse order by inserting
1214   // chained stores, this ensures their order is not changed by the scheduler
1215   // and that the push instruction sequence generated is correct, otherwise they
1216   // can be freely intermixed.
1217   if (HasStackArgs) {
1218     for (AE = AI, AI = ArgLocs.size(); AI != AE; --AI) {
1219       unsigned Loc = AI - 1;
1220       CCValAssign &VA = ArgLocs[Loc];
1221       SDValue Arg = OutVals[Loc];
1222 
1223       assert(VA.isMemLoc());
1224 
1225       // SP points to one stack slot further so add one to adjust it.
1226       SDValue PtrOff = DAG.getNode(
1227           ISD::ADD, DL, getPointerTy(DAG.getDataLayout()),
1228           DAG.getRegister(AVR::SP, getPointerTy(DAG.getDataLayout())),
1229           DAG.getIntPtrConstant(VA.getLocMemOffset() + 1, DL));
1230 
1231       Chain =
1232           DAG.getStore(Chain, DL, Arg, PtrOff,
1233                        MachinePointerInfo::getStack(MF, VA.getLocMemOffset()),
1234                        0);
1235     }
1236   }
1237 
1238   // Build a sequence of copy-to-reg nodes chained together with token chain and
1239   // flag operands which copy the outgoing args into registers.  The InFlag in
1240   // necessary since all emited instructions must be stuck together.
1241   SDValue InFlag;
1242   for (auto Reg : RegsToPass) {
1243     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, InFlag);
1244     InFlag = Chain.getValue(1);
1245   }
1246 
1247   // Returns a chain & a flag for retval copy to use.
1248   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1249   SmallVector<SDValue, 8> Ops;
1250   Ops.push_back(Chain);
1251   Ops.push_back(Callee);
1252 
1253   // Add argument registers to the end of the list so that they are known live
1254   // into the call.
1255   for (auto Reg : RegsToPass) {
1256     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
1257   }
1258 
1259   // Add a register mask operand representing the call-preserved registers.
1260   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1261   const uint32_t *Mask =
1262       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
1263   assert(Mask && "Missing call preserved mask for calling convention");
1264   Ops.push_back(DAG.getRegisterMask(Mask));
1265 
1266   if (InFlag.getNode()) {
1267     Ops.push_back(InFlag);
1268   }
1269 
1270   Chain = DAG.getNode(AVRISD::CALL, DL, NodeTys, Ops);
1271   InFlag = Chain.getValue(1);
1272 
1273   // Create the CALLSEQ_END node.
1274   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
1275                              DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
1276 
1277   if (!Ins.empty()) {
1278     InFlag = Chain.getValue(1);
1279   }
1280 
1281   // Handle result values, copying them out of physregs into vregs that we
1282   // return.
1283   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, DL, DAG,
1284                          InVals);
1285 }
1286 
1287 /// Lower the result values of a call into the
1288 /// appropriate copies out of appropriate physical registers.
1289 ///
1290 SDValue AVRTargetLowering::LowerCallResult(
1291     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1292     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
1293     SmallVectorImpl<SDValue> &InVals) const {
1294 
1295   // Assign locations to each value returned by this call.
1296   SmallVector<CCValAssign, 16> RVLocs;
1297   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1298                  *DAG.getContext());
1299 
1300   // Handle runtime calling convs.
1301   if (CallConv == CallingConv::AVR_BUILTIN) {
1302     CCInfo.AnalyzeCallResult(Ins, RetCC_AVR_BUILTIN);
1303   } else {
1304     analyzeReturnValues(Ins, CCInfo);
1305   }
1306 
1307   // Copy all of the result registers out of their specified physreg.
1308   for (CCValAssign const &RVLoc : RVLocs) {
1309     Chain = DAG.getCopyFromReg(Chain, dl, RVLoc.getLocReg(), RVLoc.getValVT(),
1310                                InFlag)
1311                 .getValue(1);
1312     InFlag = Chain.getValue(2);
1313     InVals.push_back(Chain.getValue(0));
1314   }
1315 
1316   return Chain;
1317 }
1318 
1319 //===----------------------------------------------------------------------===//
1320 //               Return Value Calling Convention Implementation
1321 //===----------------------------------------------------------------------===//
1322 
1323 bool AVRTargetLowering::CanLowerReturn(
1324     CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
1325     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
1326   if (CallConv == CallingConv::AVR_BUILTIN) {
1327     SmallVector<CCValAssign, 16> RVLocs;
1328     CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1329     return CCInfo.CheckReturn(Outs, RetCC_AVR_BUILTIN);
1330   }
1331 
1332   unsigned TotalBytes = getTotalArgumentsSizeInBytes(Outs);
1333   return TotalBytes <= 8;
1334 }
1335 
1336 SDValue
1337 AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1338                                bool isVarArg,
1339                                const SmallVectorImpl<ISD::OutputArg> &Outs,
1340                                const SmallVectorImpl<SDValue> &OutVals,
1341                                const SDLoc &dl, SelectionDAG &DAG) const {
1342   // CCValAssign - represent the assignment of the return value to locations.
1343   SmallVector<CCValAssign, 16> RVLocs;
1344 
1345   // CCState - Info about the registers and stack slot.
1346   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1347                  *DAG.getContext());
1348 
1349   MachineFunction &MF = DAG.getMachineFunction();
1350 
1351   // Analyze return values.
1352   if (CallConv == CallingConv::AVR_BUILTIN) {
1353     CCInfo.AnalyzeReturn(Outs, RetCC_AVR_BUILTIN);
1354   } else {
1355     analyzeReturnValues(Outs, CCInfo);
1356   }
1357 
1358   SDValue Flag;
1359   SmallVector<SDValue, 4> RetOps(1, Chain);
1360   // Copy the result values into the output registers.
1361   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1362     CCValAssign &VA = RVLocs[i];
1363     assert(VA.isRegLoc() && "Can only return in registers!");
1364 
1365     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1366 
1367     // Guarantee that all emitted copies are stuck together with flags.
1368     Flag = Chain.getValue(1);
1369     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1370   }
1371 
1372   // Don't emit the ret/reti instruction when the naked attribute is present in
1373   // the function being compiled.
1374   if (MF.getFunction().getAttributes().hasAttribute(
1375           AttributeList::FunctionIndex, Attribute::Naked)) {
1376     return Chain;
1377   }
1378 
1379   const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
1380 
1381   unsigned RetOpc =
1382     AFI->isInterruptOrSignalHandler()
1383         ? AVRISD::RETI_FLAG
1384         : AVRISD::RET_FLAG;
1385 
1386   RetOps[0] = Chain; // Update chain.
1387 
1388   if (Flag.getNode()) {
1389     RetOps.push_back(Flag);
1390   }
1391 
1392   return DAG.getNode(RetOpc, dl, MVT::Other, RetOps);
1393 }
1394 
1395 //===----------------------------------------------------------------------===//
1396 //  Custom Inserters
1397 //===----------------------------------------------------------------------===//
1398 
1399 MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI,
1400                                                   MachineBasicBlock *BB) const {
1401   unsigned Opc;
1402   const TargetRegisterClass *RC;
1403   bool HasRepeatedOperand = false;
1404   MachineFunction *F = BB->getParent();
1405   MachineRegisterInfo &RI = F->getRegInfo();
1406   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1407   DebugLoc dl = MI.getDebugLoc();
1408 
1409   switch (MI.getOpcode()) {
1410   default:
1411     llvm_unreachable("Invalid shift opcode!");
1412   case AVR::Lsl8:
1413     Opc = AVR::ADDRdRr; // LSL is an alias of ADD Rd, Rd
1414     RC = &AVR::GPR8RegClass;
1415     HasRepeatedOperand = true;
1416     break;
1417   case AVR::Lsl16:
1418     Opc = AVR::LSLWRd;
1419     RC = &AVR::DREGSRegClass;
1420     break;
1421   case AVR::Asr8:
1422     Opc = AVR::ASRRd;
1423     RC = &AVR::GPR8RegClass;
1424     break;
1425   case AVR::Asr16:
1426     Opc = AVR::ASRWRd;
1427     RC = &AVR::DREGSRegClass;
1428     break;
1429   case AVR::Lsr8:
1430     Opc = AVR::LSRRd;
1431     RC = &AVR::GPR8RegClass;
1432     break;
1433   case AVR::Lsr16:
1434     Opc = AVR::LSRWRd;
1435     RC = &AVR::DREGSRegClass;
1436     break;
1437   case AVR::Rol8:
1438     Opc = AVR::ROLBRd;
1439     RC = &AVR::GPR8RegClass;
1440     break;
1441   case AVR::Rol16:
1442     Opc = AVR::ROLWRd;
1443     RC = &AVR::DREGSRegClass;
1444     break;
1445   case AVR::Ror8:
1446     Opc = AVR::RORBRd;
1447     RC = &AVR::GPR8RegClass;
1448     break;
1449   case AVR::Ror16:
1450     Opc = AVR::RORWRd;
1451     RC = &AVR::DREGSRegClass;
1452     break;
1453   }
1454 
1455   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1456 
1457   MachineFunction::iterator I;
1458   for (I = BB->getIterator(); I != F->end() && &(*I) != BB; ++I);
1459   if (I != F->end()) ++I;
1460 
1461   // Create loop block.
1462   MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1463   MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
1464 
1465   F->insert(I, LoopBB);
1466   F->insert(I, RemBB);
1467 
1468   // Update machine-CFG edges by transferring all successors of the current
1469   // block to the block containing instructions after shift.
1470   RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1471                 BB->end());
1472   RemBB->transferSuccessorsAndUpdatePHIs(BB);
1473 
1474   // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB.
1475   BB->addSuccessor(LoopBB);
1476   BB->addSuccessor(RemBB);
1477   LoopBB->addSuccessor(RemBB);
1478   LoopBB->addSuccessor(LoopBB);
1479 
1480   Register ShiftAmtReg = RI.createVirtualRegister(&AVR::LD8RegClass);
1481   Register ShiftAmtReg2 = RI.createVirtualRegister(&AVR::LD8RegClass);
1482   Register ShiftReg = RI.createVirtualRegister(RC);
1483   Register ShiftReg2 = RI.createVirtualRegister(RC);
1484   Register ShiftAmtSrcReg = MI.getOperand(2).getReg();
1485   Register SrcReg = MI.getOperand(1).getReg();
1486   Register DstReg = MI.getOperand(0).getReg();
1487 
1488   // BB:
1489   // cpi N, 0
1490   // breq RemBB
1491   BuildMI(BB, dl, TII.get(AVR::CPIRdK)).addReg(ShiftAmtSrcReg).addImm(0);
1492   BuildMI(BB, dl, TII.get(AVR::BREQk)).addMBB(RemBB);
1493 
1494   // LoopBB:
1495   // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1496   // ShiftAmt = phi [%N, BB],      [%ShiftAmt2, LoopBB]
1497   // ShiftReg2 = shift ShiftReg
1498   // ShiftAmt2 = ShiftAmt - 1;
1499   BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftReg)
1500       .addReg(SrcReg)
1501       .addMBB(BB)
1502       .addReg(ShiftReg2)
1503       .addMBB(LoopBB);
1504   BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftAmtReg)
1505       .addReg(ShiftAmtSrcReg)
1506       .addMBB(BB)
1507       .addReg(ShiftAmtReg2)
1508       .addMBB(LoopBB);
1509 
1510   auto ShiftMI = BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2).addReg(ShiftReg);
1511   if (HasRepeatedOperand)
1512     ShiftMI.addReg(ShiftReg);
1513 
1514   BuildMI(LoopBB, dl, TII.get(AVR::SUBIRdK), ShiftAmtReg2)
1515       .addReg(ShiftAmtReg)
1516       .addImm(1);
1517   BuildMI(LoopBB, dl, TII.get(AVR::BRNEk)).addMBB(LoopBB);
1518 
1519   // RemBB:
1520   // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
1521   BuildMI(*RemBB, RemBB->begin(), dl, TII.get(AVR::PHI), DstReg)
1522       .addReg(SrcReg)
1523       .addMBB(BB)
1524       .addReg(ShiftReg2)
1525       .addMBB(LoopBB);
1526 
1527   MI.eraseFromParent(); // The pseudo instruction is gone now.
1528   return RemBB;
1529 }
1530 
1531 static bool isCopyMulResult(MachineBasicBlock::iterator const &I) {
1532   if (I->getOpcode() == AVR::COPY) {
1533     Register SrcReg = I->getOperand(1).getReg();
1534     return (SrcReg == AVR::R0 || SrcReg == AVR::R1);
1535   }
1536 
1537   return false;
1538 }
1539 
1540 // The mul instructions wreak havock on our zero_reg R1. We need to clear it
1541 // after the result has been evacuated. This is probably not the best way to do
1542 // it, but it works for now.
1543 MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI,
1544                                                 MachineBasicBlock *BB) const {
1545   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1546   MachineBasicBlock::iterator I(MI);
1547   ++I; // in any case insert *after* the mul instruction
1548   if (isCopyMulResult(I))
1549     ++I;
1550   if (isCopyMulResult(I))
1551     ++I;
1552   BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::EORRdRr), AVR::R1)
1553       .addReg(AVR::R1)
1554       .addReg(AVR::R1);
1555   return BB;
1556 }
1557 
1558 MachineBasicBlock *
1559 AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1560                                                MachineBasicBlock *MBB) const {
1561   int Opc = MI.getOpcode();
1562 
1563   // Pseudo shift instructions with a non constant shift amount are expanded
1564   // into a loop.
1565   switch (Opc) {
1566   case AVR::Lsl8:
1567   case AVR::Lsl16:
1568   case AVR::Lsr8:
1569   case AVR::Lsr16:
1570   case AVR::Rol8:
1571   case AVR::Rol16:
1572   case AVR::Ror8:
1573   case AVR::Ror16:
1574   case AVR::Asr8:
1575   case AVR::Asr16:
1576     return insertShift(MI, MBB);
1577   case AVR::MULRdRr:
1578   case AVR::MULSRdRr:
1579     return insertMul(MI, MBB);
1580   }
1581 
1582   assert((Opc == AVR::Select16 || Opc == AVR::Select8) &&
1583          "Unexpected instr type to insert");
1584 
1585   const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent()
1586                                 ->getParent()
1587                                 ->getSubtarget()
1588                                 .getInstrInfo();
1589   DebugLoc dl = MI.getDebugLoc();
1590 
1591   // To "insert" a SELECT instruction, we insert the diamond
1592   // control-flow pattern. The incoming instruction knows the
1593   // destination vreg to set, the condition code register to branch
1594   // on, the true/false values to select between, and a branch opcode
1595   // to use.
1596 
1597   MachineFunction *MF = MBB->getParent();
1598   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
1599   MachineBasicBlock *FallThrough = MBB->getFallThrough();
1600 
1601   // If the current basic block falls through to another basic block,
1602   // we must insert an unconditional branch to the fallthrough destination
1603   // if we are to insert basic blocks at the prior fallthrough point.
1604   if (FallThrough != nullptr) {
1605     BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(FallThrough);
1606   }
1607 
1608   MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1609   MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1610 
1611   MachineFunction::iterator I;
1612   for (I = MF->begin(); I != MF->end() && &(*I) != MBB; ++I);
1613   if (I != MF->end()) ++I;
1614   MF->insert(I, trueMBB);
1615   MF->insert(I, falseMBB);
1616 
1617   // Transfer remaining instructions and all successors of the current
1618   // block to the block which will contain the Phi node for the
1619   // select.
1620   trueMBB->splice(trueMBB->begin(), MBB,
1621                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
1622   trueMBB->transferSuccessorsAndUpdatePHIs(MBB);
1623 
1624   AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(3).getImm();
1625   BuildMI(MBB, dl, TII.getBrCond(CC)).addMBB(trueMBB);
1626   BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(falseMBB);
1627   MBB->addSuccessor(falseMBB);
1628   MBB->addSuccessor(trueMBB);
1629 
1630   // Unconditionally flow back to the true block
1631   BuildMI(falseMBB, dl, TII.get(AVR::RJMPk)).addMBB(trueMBB);
1632   falseMBB->addSuccessor(trueMBB);
1633 
1634   // Set up the Phi node to determine where we came from
1635   BuildMI(*trueMBB, trueMBB->begin(), dl, TII.get(AVR::PHI), MI.getOperand(0).getReg())
1636     .addReg(MI.getOperand(1).getReg())
1637     .addMBB(MBB)
1638     .addReg(MI.getOperand(2).getReg())
1639     .addMBB(falseMBB) ;
1640 
1641   MI.eraseFromParent(); // The pseudo instruction is gone now.
1642   return trueMBB;
1643 }
1644 
1645 //===----------------------------------------------------------------------===//
1646 //  Inline Asm Support
1647 //===----------------------------------------------------------------------===//
1648 
1649 AVRTargetLowering::ConstraintType
1650 AVRTargetLowering::getConstraintType(StringRef Constraint) const {
1651   if (Constraint.size() == 1) {
1652     // See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html
1653     switch (Constraint[0]) {
1654     default:
1655       break;
1656     case 'a': // Simple upper registers
1657     case 'b': // Base pointer registers pairs
1658     case 'd': // Upper register
1659     case 'l': // Lower registers
1660     case 'e': // Pointer register pairs
1661     case 'q': // Stack pointer register
1662     case 'r': // Any register
1663     case 'w': // Special upper register pairs
1664       return C_RegisterClass;
1665     case 't': // Temporary register
1666     case 'x': case 'X': // Pointer register pair X
1667     case 'y': case 'Y': // Pointer register pair Y
1668     case 'z': case 'Z': // Pointer register pair Z
1669       return C_Register;
1670     case 'Q': // A memory address based on Y or Z pointer with displacement.
1671       return C_Memory;
1672     case 'G': // Floating point constant
1673     case 'I': // 6-bit positive integer constant
1674     case 'J': // 6-bit negative integer constant
1675     case 'K': // Integer constant (Range: 2)
1676     case 'L': // Integer constant (Range: 0)
1677     case 'M': // 8-bit integer constant
1678     case 'N': // Integer constant (Range: -1)
1679     case 'O': // Integer constant (Range: 8, 16, 24)
1680     case 'P': // Integer constant (Range: 1)
1681     case 'R': // Integer constant (Range: -6 to 5)x
1682       return C_Immediate;
1683     }
1684   }
1685 
1686   return TargetLowering::getConstraintType(Constraint);
1687 }
1688 
1689 unsigned
1690 AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
1691   // Not sure if this is actually the right thing to do, but we got to do
1692   // *something* [agnat]
1693   switch (ConstraintCode[0]) {
1694   case 'Q':
1695     return InlineAsm::Constraint_Q;
1696   }
1697   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
1698 }
1699 
1700 AVRTargetLowering::ConstraintWeight
1701 AVRTargetLowering::getSingleConstraintMatchWeight(
1702     AsmOperandInfo &info, const char *constraint) const {
1703   ConstraintWeight weight = CW_Invalid;
1704   Value *CallOperandVal = info.CallOperandVal;
1705 
1706   // If we don't have a value, we can't do a match,
1707   // but allow it at the lowest weight.
1708   // (this behaviour has been copied from the ARM backend)
1709   if (!CallOperandVal) {
1710     return CW_Default;
1711   }
1712 
1713   // Look at the constraint type.
1714   switch (*constraint) {
1715   default:
1716     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1717     break;
1718   case 'd':
1719   case 'r':
1720   case 'l':
1721     weight = CW_Register;
1722     break;
1723   case 'a':
1724   case 'b':
1725   case 'e':
1726   case 'q':
1727   case 't':
1728   case 'w':
1729   case 'x': case 'X':
1730   case 'y': case 'Y':
1731   case 'z': case 'Z':
1732     weight = CW_SpecificReg;
1733     break;
1734   case 'G':
1735     if (const ConstantFP *C = dyn_cast<ConstantFP>(CallOperandVal)) {
1736       if (C->isZero()) {
1737         weight = CW_Constant;
1738       }
1739     }
1740     break;
1741   case 'I':
1742     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1743       if (isUInt<6>(C->getZExtValue())) {
1744         weight = CW_Constant;
1745       }
1746     }
1747     break;
1748   case 'J':
1749     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1750       if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) {
1751         weight = CW_Constant;
1752       }
1753     }
1754     break;
1755   case 'K':
1756     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1757       if (C->getZExtValue() == 2) {
1758         weight = CW_Constant;
1759       }
1760     }
1761     break;
1762   case 'L':
1763     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1764       if (C->getZExtValue() == 0) {
1765         weight = CW_Constant;
1766       }
1767     }
1768     break;
1769   case 'M':
1770     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1771       if (isUInt<8>(C->getZExtValue())) {
1772         weight = CW_Constant;
1773       }
1774     }
1775     break;
1776   case 'N':
1777     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1778       if (C->getSExtValue() == -1) {
1779         weight = CW_Constant;
1780       }
1781     }
1782     break;
1783   case 'O':
1784     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1785       if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) ||
1786           (C->getZExtValue() == 24)) {
1787         weight = CW_Constant;
1788       }
1789     }
1790     break;
1791   case 'P':
1792     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1793       if (C->getZExtValue() == 1) {
1794         weight = CW_Constant;
1795       }
1796     }
1797     break;
1798   case 'R':
1799     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1800       if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) {
1801         weight = CW_Constant;
1802       }
1803     }
1804     break;
1805   case 'Q':
1806     weight = CW_Memory;
1807     break;
1808   }
1809 
1810   return weight;
1811 }
1812 
1813 std::pair<unsigned, const TargetRegisterClass *>
1814 AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1815                                                 StringRef Constraint,
1816                                                 MVT VT) const {
1817   // We only support i8 and i16.
1818   //
1819   //:FIXME: remove this assert for now since it gets sometimes executed
1820   // assert((VT == MVT::i16 || VT == MVT::i8) && "Wrong operand type.");
1821 
1822   if (Constraint.size() == 1) {
1823     switch (Constraint[0]) {
1824     case 'a': // Simple upper registers r16..r23.
1825       return std::make_pair(0U, &AVR::LD8loRegClass);
1826     case 'b': // Base pointer registers: y, z.
1827       return std::make_pair(0U, &AVR::PTRDISPREGSRegClass);
1828     case 'd': // Upper registers r16..r31.
1829       return std::make_pair(0U, &AVR::LD8RegClass);
1830     case 'l': // Lower registers r0..r15.
1831       return std::make_pair(0U, &AVR::GPR8loRegClass);
1832     case 'e': // Pointer register pairs: x, y, z.
1833       return std::make_pair(0U, &AVR::PTRREGSRegClass);
1834     case 'q': // Stack pointer register: SPH:SPL.
1835       return std::make_pair(0U, &AVR::GPRSPRegClass);
1836     case 'r': // Any register: r0..r31.
1837       if (VT == MVT::i8)
1838         return std::make_pair(0U, &AVR::GPR8RegClass);
1839 
1840       assert(VT == MVT::i16 && "inline asm constraint too large");
1841       return std::make_pair(0U, &AVR::DREGSRegClass);
1842     case 't': // Temporary register: r0.
1843       return std::make_pair(unsigned(AVR::R0), &AVR::GPR8RegClass);
1844     case 'w': // Special upper register pairs: r24, r26, r28, r30.
1845       return std::make_pair(0U, &AVR::IWREGSRegClass);
1846     case 'x': // Pointer register pair X: r27:r26.
1847     case 'X':
1848       return std::make_pair(unsigned(AVR::R27R26), &AVR::PTRREGSRegClass);
1849     case 'y': // Pointer register pair Y: r29:r28.
1850     case 'Y':
1851       return std::make_pair(unsigned(AVR::R29R28), &AVR::PTRREGSRegClass);
1852     case 'z': // Pointer register pair Z: r31:r30.
1853     case 'Z':
1854       return std::make_pair(unsigned(AVR::R31R30), &AVR::PTRREGSRegClass);
1855     default:
1856       break;
1857     }
1858   }
1859 
1860   return TargetLowering::getRegForInlineAsmConstraint(
1861       Subtarget.getRegisterInfo(), Constraint, VT);
1862 }
1863 
1864 void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
1865                                                      std::string &Constraint,
1866                                                      std::vector<SDValue> &Ops,
1867                                                      SelectionDAG &DAG) const {
1868   SDValue Result(0, 0);
1869   SDLoc DL(Op);
1870   EVT Ty = Op.getValueType();
1871 
1872   // Currently only support length 1 constraints.
1873   if (Constraint.length() != 1) {
1874     return;
1875   }
1876 
1877   char ConstraintLetter = Constraint[0];
1878   switch (ConstraintLetter) {
1879   default:
1880     break;
1881   // Deal with integers first:
1882   case 'I':
1883   case 'J':
1884   case 'K':
1885   case 'L':
1886   case 'M':
1887   case 'N':
1888   case 'O':
1889   case 'P':
1890   case 'R': {
1891     const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1892     if (!C) {
1893       return;
1894     }
1895 
1896     int64_t CVal64 = C->getSExtValue();
1897     uint64_t CUVal64 = C->getZExtValue();
1898     switch (ConstraintLetter) {
1899     case 'I': // 0..63
1900       if (!isUInt<6>(CUVal64))
1901         return;
1902       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1903       break;
1904     case 'J': // -63..0
1905       if (CVal64 < -63 || CVal64 > 0)
1906         return;
1907       Result = DAG.getTargetConstant(CVal64, DL, Ty);
1908       break;
1909     case 'K': // 2
1910       if (CUVal64 != 2)
1911         return;
1912       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1913       break;
1914     case 'L': // 0
1915       if (CUVal64 != 0)
1916         return;
1917       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1918       break;
1919     case 'M': // 0..255
1920       if (!isUInt<8>(CUVal64))
1921         return;
1922       // i8 type may be printed as a negative number,
1923       // e.g. 254 would be printed as -2,
1924       // so we force it to i16 at least.
1925       if (Ty.getSimpleVT() == MVT::i8) {
1926         Ty = MVT::i16;
1927       }
1928       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1929       break;
1930     case 'N': // -1
1931       if (CVal64 != -1)
1932         return;
1933       Result = DAG.getTargetConstant(CVal64, DL, Ty);
1934       break;
1935     case 'O': // 8, 16, 24
1936       if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24)
1937         return;
1938       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1939       break;
1940     case 'P': // 1
1941       if (CUVal64 != 1)
1942         return;
1943       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1944       break;
1945     case 'R': // -6..5
1946       if (CVal64 < -6 || CVal64 > 5)
1947         return;
1948       Result = DAG.getTargetConstant(CVal64, DL, Ty);
1949       break;
1950     }
1951 
1952     break;
1953   }
1954   case 'G':
1955     const ConstantFPSDNode *FC = dyn_cast<ConstantFPSDNode>(Op);
1956     if (!FC || !FC->isZero())
1957       return;
1958     // Soften float to i8 0
1959     Result = DAG.getTargetConstant(0, DL, MVT::i8);
1960     break;
1961   }
1962 
1963   if (Result.getNode()) {
1964     Ops.push_back(Result);
1965     return;
1966   }
1967 
1968   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1969 }
1970 
1971 Register AVRTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1972                                               const MachineFunction &MF) const {
1973   Register Reg;
1974 
1975   if (VT == LLT::scalar(8)) {
1976     Reg = StringSwitch<unsigned>(RegName)
1977       .Case("r0", AVR::R0).Case("r1", AVR::R1).Case("r2", AVR::R2)
1978       .Case("r3", AVR::R3).Case("r4", AVR::R4).Case("r5", AVR::R5)
1979       .Case("r6", AVR::R6).Case("r7", AVR::R7).Case("r8", AVR::R8)
1980       .Case("r9", AVR::R9).Case("r10", AVR::R10).Case("r11", AVR::R11)
1981       .Case("r12", AVR::R12).Case("r13", AVR::R13).Case("r14", AVR::R14)
1982       .Case("r15", AVR::R15).Case("r16", AVR::R16).Case("r17", AVR::R17)
1983       .Case("r18", AVR::R18).Case("r19", AVR::R19).Case("r20", AVR::R20)
1984       .Case("r21", AVR::R21).Case("r22", AVR::R22).Case("r23", AVR::R23)
1985       .Case("r24", AVR::R24).Case("r25", AVR::R25).Case("r26", AVR::R26)
1986       .Case("r27", AVR::R27).Case("r28", AVR::R28).Case("r29", AVR::R29)
1987       .Case("r30", AVR::R30).Case("r31", AVR::R31)
1988       .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
1989       .Default(0);
1990   } else {
1991     Reg = StringSwitch<unsigned>(RegName)
1992       .Case("r0", AVR::R1R0).Case("r2", AVR::R3R2)
1993       .Case("r4", AVR::R5R4).Case("r6", AVR::R7R6)
1994       .Case("r8", AVR::R9R8).Case("r10", AVR::R11R10)
1995       .Case("r12", AVR::R13R12).Case("r14", AVR::R15R14)
1996       .Case("r16", AVR::R17R16).Case("r18", AVR::R19R18)
1997       .Case("r20", AVR::R21R20).Case("r22", AVR::R23R22)
1998       .Case("r24", AVR::R25R24).Case("r26", AVR::R27R26)
1999       .Case("r28", AVR::R29R28).Case("r30", AVR::R31R30)
2000       .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
2001       .Default(0);
2002   }
2003 
2004   if (Reg)
2005     return Reg;
2006 
2007   report_fatal_error("Invalid register name global variable");
2008 }
2009 
2010 } // end of namespace llvm
2011