1 //===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead 11 /// branches to help accelerate DSP applications. These two extensions, 12 /// combined with a new form of predication called tail-predication, can be used 13 /// to provide implicit vector predication within a low-overhead loop. 14 /// This is implicit because the predicate of active/inactive lanes is 15 /// calculated by hardware, and thus does not need to be explicitly passed 16 /// to vector instructions. The instructions responsible for this are the 17 /// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the 18 /// the total number of data elements processed by the loop. The loop-end 19 /// LETP instruction is responsible for decrementing and setting the remaining 20 /// elements to be processed and generating the mask of active lanes. 21 /// 22 /// The HardwareLoops pass inserts intrinsics identifying loops that the 23 /// backend will attempt to convert into a low-overhead loop. The vectorizer is 24 /// responsible for generating a vectorized loop in which the lanes are 25 /// predicated upon an get.active.lane.mask intrinsic. This pass looks at these 26 /// get.active.lane.mask intrinsic and attempts to convert them to VCTP 27 /// instructions. This will be picked up by the ARM Low-overhead loop pass later 28 /// in the backend, which performs the final transformation to a DLSTP or WLSTP 29 /// tail-predicated loop. 30 // 31 //===----------------------------------------------------------------------===// 32 33 #include "ARM.h" 34 #include "ARMSubtarget.h" 35 #include "ARMTargetTransformInfo.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/LoopPass.h" 38 #include "llvm/Analysis/ScalarEvolution.h" 39 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 40 #include "llvm/Analysis/TargetLibraryInfo.h" 41 #include "llvm/Analysis/TargetTransformInfo.h" 42 #include "llvm/Analysis/ValueTracking.h" 43 #include "llvm/CodeGen/TargetPassConfig.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicsARM.h" 47 #include "llvm/IR/PatternMatch.h" 48 #include "llvm/InitializePasses.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/Local.h" 52 #include "llvm/Transforms/Utils/LoopUtils.h" 53 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "mve-tail-predication" 58 #define DESC "Transform predicated vector loops to use MVE tail predication" 59 60 cl::opt<TailPredication::Mode> EnableTailPredication( 61 "tail-predication", cl::desc("MVE tail-predication pass options"), 62 cl::init(TailPredication::Enabled), 63 cl::values(clEnumValN(TailPredication::Disabled, "disabled", 64 "Don't tail-predicate loops"), 65 clEnumValN(TailPredication::EnabledNoReductions, 66 "enabled-no-reductions", 67 "Enable tail-predication, but not for reduction loops"), 68 clEnumValN(TailPredication::Enabled, 69 "enabled", 70 "Enable tail-predication, including reduction loops"), 71 clEnumValN(TailPredication::ForceEnabledNoReductions, 72 "force-enabled-no-reductions", 73 "Enable tail-predication, but not for reduction loops, " 74 "and force this which might be unsafe"), 75 clEnumValN(TailPredication::ForceEnabled, 76 "force-enabled", 77 "Enable tail-predication, including reduction loops, " 78 "and force this which might be unsafe"))); 79 80 81 namespace { 82 83 class MVETailPredication : public LoopPass { 84 SmallVector<IntrinsicInst*, 4> MaskedInsts; 85 Loop *L = nullptr; 86 ScalarEvolution *SE = nullptr; 87 TargetTransformInfo *TTI = nullptr; 88 const ARMSubtarget *ST = nullptr; 89 90 public: 91 static char ID; 92 93 MVETailPredication() : LoopPass(ID) { } 94 95 void getAnalysisUsage(AnalysisUsage &AU) const override { 96 AU.addRequired<ScalarEvolutionWrapperPass>(); 97 AU.addRequired<LoopInfoWrapperPass>(); 98 AU.addRequired<TargetPassConfig>(); 99 AU.addRequired<TargetTransformInfoWrapperPass>(); 100 AU.addPreserved<LoopInfoWrapperPass>(); 101 AU.setPreservesCFG(); 102 } 103 104 bool runOnLoop(Loop *L, LPPassManager&) override; 105 106 private: 107 /// Perform the relevant checks on the loop and convert active lane masks if 108 /// possible. 109 bool TryConvertActiveLaneMask(Value *TripCount); 110 111 /// Perform several checks on the arguments of @llvm.get.active.lane.mask 112 /// intrinsic. E.g., check that the loop induction variable and the element 113 /// count are of the form we expect, and also perform overflow checks for 114 /// the new expressions that are created. 115 const SCEV *IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount); 116 117 /// Insert the intrinsic to represent the effect of tail predication. 118 void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *Start); 119 }; 120 121 } // end namespace 122 123 bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) { 124 if (skipLoop(L) || !EnableTailPredication) 125 return false; 126 127 MaskedInsts.clear(); 128 Function &F = *L->getHeader()->getParent(); 129 auto &TPC = getAnalysis<TargetPassConfig>(); 130 auto &TM = TPC.getTM<TargetMachine>(); 131 ST = &TM.getSubtarget<ARMSubtarget>(F); 132 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 133 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 134 this->L = L; 135 136 // The MVE and LOB extensions are combined to enable tail-predication, but 137 // there's nothing preventing us from generating VCTP instructions for v8.1m. 138 if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) { 139 LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n"); 140 return false; 141 } 142 143 BasicBlock *Preheader = L->getLoopPreheader(); 144 if (!Preheader) 145 return false; 146 147 auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* { 148 for (auto &I : *BB) { 149 auto *Call = dyn_cast<IntrinsicInst>(&I); 150 if (!Call) 151 continue; 152 153 Intrinsic::ID ID = Call->getIntrinsicID(); 154 if (ID == Intrinsic::start_loop_iterations || 155 ID == Intrinsic::test_start_loop_iterations) 156 return cast<IntrinsicInst>(&I); 157 } 158 return nullptr; 159 }; 160 161 // Look for the hardware loop intrinsic that sets the iteration count. 162 IntrinsicInst *Setup = FindLoopIterations(Preheader); 163 164 // The test.set iteration could live in the pre-preheader. 165 if (!Setup) { 166 if (!Preheader->getSinglePredecessor()) 167 return false; 168 Setup = FindLoopIterations(Preheader->getSinglePredecessor()); 169 if (!Setup) 170 return false; 171 } 172 173 LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n"); 174 175 bool Changed = TryConvertActiveLaneMask(Setup->getArgOperand(0)); 176 177 return Changed; 178 } 179 180 // The active lane intrinsic has this form: 181 // 182 // @llvm.get.active.lane.mask(IV, TC) 183 // 184 // Here we perform checks that this intrinsic behaves as expected, 185 // which means: 186 // 187 // 1) Check that the TripCount (TC) belongs to this loop (originally). 188 // 2) The element count (TC) needs to be sufficiently large that the decrement 189 // of element counter doesn't overflow, which means that we need to prove: 190 // ceil(ElementCount / VectorWidth) >= TripCount 191 // by rounding up ElementCount up: 192 // ((ElementCount + (VectorWidth - 1)) / VectorWidth 193 // and evaluate if expression isKnownNonNegative: 194 // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount 195 // 3) The IV must be an induction phi with an increment equal to the 196 // vector width. 197 const SCEV *MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, 198 Value *TripCount) { 199 bool ForceTailPredication = 200 EnableTailPredication == TailPredication::ForceEnabledNoReductions || 201 EnableTailPredication == TailPredication::ForceEnabled; 202 203 Value *ElemCount = ActiveLaneMask->getOperand(1); 204 bool Changed = false; 205 if (!L->makeLoopInvariant(ElemCount, Changed)) 206 return nullptr; 207 208 auto *EC= SE->getSCEV(ElemCount); 209 auto *TC = SE->getSCEV(TripCount); 210 int VectorWidth = 211 cast<FixedVectorType>(ActiveLaneMask->getType())->getNumElements(); 212 if (VectorWidth != 2 && VectorWidth != 4 && VectorWidth != 8 && 213 VectorWidth != 16) 214 return nullptr; 215 ConstantInt *ConstElemCount = nullptr; 216 217 // 1) Smoke tests that the original scalar loop TripCount (TC) belongs to 218 // this loop. The scalar tripcount corresponds the number of elements 219 // processed by the loop, so we will refer to that from this point on. 220 if (!SE->isLoopInvariant(EC, L)) { 221 LLVM_DEBUG(dbgs() << "ARM TP: element count must be loop invariant.\n"); 222 return nullptr; 223 } 224 225 // 2) Find out if IV is an induction phi. Note that we can't use Loop 226 // helpers here to get the induction variable, because the hardware loop is 227 // no longer in loopsimplify form, and also the hwloop intrinsic uses a 228 // different counter. Using SCEV, we check that the induction is of the 229 // form i = i + 4, where the increment must be equal to the VectorWidth. 230 auto *IV = ActiveLaneMask->getOperand(0); 231 auto *IVExpr = SE->getSCEV(IV); 232 auto *AddExpr = dyn_cast<SCEVAddRecExpr>(IVExpr); 233 234 if (!AddExpr) { 235 LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump()); 236 return nullptr; 237 } 238 // Check that this AddRec is associated with this loop. 239 if (AddExpr->getLoop() != L) { 240 LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n"); 241 return nullptr; 242 } 243 auto *Step = dyn_cast<SCEVConstant>(AddExpr->getOperand(1)); 244 if (!Step) { 245 LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: "; 246 AddExpr->getOperand(1)->dump()); 247 return nullptr; 248 } 249 auto StepValue = Step->getValue()->getSExtValue(); 250 if (VectorWidth != StepValue) { 251 LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue 252 << " doesn't match vector width " << VectorWidth << "\n"); 253 return nullptr; 254 } 255 256 if ((ConstElemCount = dyn_cast<ConstantInt>(ElemCount))) { 257 ConstantInt *TC = dyn_cast<ConstantInt>(TripCount); 258 if (!TC) { 259 LLVM_DEBUG(dbgs() << "ARM TP: Constant tripcount expected in " 260 "set.loop.iterations\n"); 261 return nullptr; 262 } 263 264 // Calculate 2 tripcount values and check that they are consistent with 265 // each other. The TripCount for a predicated vector loop body is 266 // ceil(ElementCount/Width), or floor((ElementCount+Width-1)/Width) as we 267 // work it out here. 268 uint64_t TC1 = TC->getZExtValue(); 269 uint64_t TC2 = 270 (ConstElemCount->getZExtValue() + VectorWidth - 1) / VectorWidth; 271 272 // If the tripcount values are inconsistent, we can't insert the VCTP and 273 // trigger tail-predication; keep the intrinsic as a get.active.lane.mask 274 // and legalize this. 275 if (TC1 != TC2) { 276 LLVM_DEBUG(dbgs() << "ARM TP: inconsistent constant tripcount values: " 277 << TC1 << " from set.loop.iterations, and " 278 << TC2 << " from get.active.lane.mask\n"); 279 return nullptr; 280 } 281 } else if (!ForceTailPredication) { 282 // 3) We need to prove that the sub expression that we create in the 283 // tail-predicated loop body, which calculates the remaining elements to be 284 // processed, is non-negative, i.e. it doesn't overflow: 285 // 286 // ((ElementCount + VectorWidth - 1) / VectorWidth) - TripCount >= 0 287 // 288 // This is true if: 289 // 290 // TripCount == (ElementCount + VectorWidth - 1) / VectorWidth 291 // 292 // which what we will be using here. 293 // 294 auto *VW = SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth)); 295 // ElementCount + (VW-1): 296 auto *Start = AddExpr->getStart(); 297 auto *ECPlusVWMinus1 = SE->getAddExpr(EC, 298 SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1))); 299 300 // Ceil = ElementCount + (VW-1) / VW 301 auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1, VW); 302 303 // Prevent unused variable warnings with TC 304 (void)TC; 305 LLVM_DEBUG({ 306 dbgs() << "ARM TP: Analysing overflow behaviour for:\n"; 307 dbgs() << "ARM TP: - TripCount = " << *TC << "\n"; 308 dbgs() << "ARM TP: - ElemCount = " << *EC << "\n"; 309 dbgs() << "ARM TP: - Start = " << *Start << "\n"; 310 dbgs() << "ARM TP: - BETC = " << *SE->getBackedgeTakenCount(L) << "\n"; 311 dbgs() << "ARM TP: - VecWidth = " << VectorWidth << "\n"; 312 dbgs() << "ARM TP: - (ElemCount+VW-1) / VW = " << *Ceil << "\n"; 313 }); 314 315 // As an example, almost all the tripcount expressions (produced by the 316 // vectoriser) look like this: 317 // 318 // TC = ((-4 + (4 * ((3 + %N) /u 4))<nuw> - start) /u 4) 319 // 320 // and "ElementCount + (VW-1) / VW": 321 // 322 // Ceil = ((3 + %N) /u 4) 323 // 324 // Check for equality of TC and Ceil by calculating SCEV expression 325 // TC - Ceil and test it for zero. 326 // 327 const SCEV *Div = SE->getUDivExpr( 328 SE->getAddExpr(SE->getMulExpr(Ceil, VW), SE->getNegativeSCEV(VW), 329 SE->getNegativeSCEV(Start)), 330 VW); 331 const SCEV *Sub = SE->getMinusSCEV(SE->getBackedgeTakenCount(L), Div); 332 LLVM_DEBUG(dbgs() << "ARM TP: - Sub = "; Sub->dump()); 333 334 // Use context sensitive facts about the path to the loop to refine. This 335 // comes up as the backedge taken count can incorporate context sensitive 336 // reasoning, and our RHS just above doesn't. 337 Sub = SE->applyLoopGuards(Sub, L); 338 LLVM_DEBUG(dbgs() << "ARM TP: - (Guarded) = "; Sub->dump()); 339 340 if (!Sub->isZero()) { 341 LLVM_DEBUG(dbgs() << "ARM TP: possible overflow in sub expression.\n"); 342 return nullptr; 343 } 344 } 345 346 // Check that the start value is a multiple of the VectorWidth. 347 // TODO: This could do with a method to check if the scev is a multiple of 348 // VectorWidth. For the moment we just check for constants, muls and unknowns 349 // (which use MaskedValueIsZero and seems to be the most common). 350 if (auto *BaseC = dyn_cast<SCEVConstant>(AddExpr->getStart())) { 351 if (BaseC->getAPInt().urem(VectorWidth) == 0) 352 return SE->getMinusSCEV(EC, BaseC); 353 } else if (auto *BaseV = dyn_cast<SCEVUnknown>(AddExpr->getStart())) { 354 Type *Ty = BaseV->getType(); 355 APInt Mask = APInt::getLowBitsSet(Ty->getPrimitiveSizeInBits(), 356 Log2_64(VectorWidth)); 357 if (MaskedValueIsZero(BaseV->getValue(), Mask, 358 L->getHeader()->getDataLayout())) 359 return SE->getMinusSCEV(EC, BaseV); 360 } else if (auto *BaseMul = dyn_cast<SCEVMulExpr>(AddExpr->getStart())) { 361 if (auto *BaseC = dyn_cast<SCEVConstant>(BaseMul->getOperand(0))) 362 if (BaseC->getAPInt().urem(VectorWidth) == 0) 363 return SE->getMinusSCEV(EC, BaseC); 364 if (auto *BaseC = dyn_cast<SCEVConstant>(BaseMul->getOperand(1))) 365 if (BaseC->getAPInt().urem(VectorWidth) == 0) 366 return SE->getMinusSCEV(EC, BaseC); 367 } 368 369 LLVM_DEBUG( 370 dbgs() << "ARM TP: induction base is not know to be a multiple of VF: " 371 << *AddExpr->getOperand(0) << "\n"); 372 return nullptr; 373 } 374 375 void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, 376 Value *Start) { 377 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 378 Module *M = L->getHeader()->getModule(); 379 Type *Ty = IntegerType::get(M->getContext(), 32); 380 unsigned VectorWidth = 381 cast<FixedVectorType>(ActiveLaneMask->getType())->getNumElements(); 382 383 // Insert a phi to count the number of elements processed by the loop. 384 Builder.SetInsertPoint(L->getHeader(), L->getHeader()->getFirstNonPHIIt()); 385 PHINode *Processed = Builder.CreatePHI(Ty, 2); 386 Processed->addIncoming(Start, L->getLoopPreheader()); 387 388 // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and 389 // thus represent the effect of tail predication. 390 Builder.SetInsertPoint(ActiveLaneMask); 391 ConstantInt *Factor = ConstantInt::get(cast<IntegerType>(Ty), VectorWidth); 392 393 Intrinsic::ID VCTPID; 394 switch (VectorWidth) { 395 default: 396 llvm_unreachable("unexpected number of lanes"); 397 case 2: VCTPID = Intrinsic::arm_mve_vctp64; break; 398 case 4: VCTPID = Intrinsic::arm_mve_vctp32; break; 399 case 8: VCTPID = Intrinsic::arm_mve_vctp16; break; 400 case 16: VCTPID = Intrinsic::arm_mve_vctp8; break; 401 } 402 Function *VCTP = Intrinsic::getDeclaration(M, VCTPID); 403 Value *VCTPCall = Builder.CreateCall(VCTP, Processed); 404 ActiveLaneMask->replaceAllUsesWith(VCTPCall); 405 406 // Add the incoming value to the new phi. 407 // TODO: This add likely already exists in the loop. 408 Value *Remaining = Builder.CreateSub(Processed, Factor); 409 Processed->addIncoming(Remaining, L->getLoopLatch()); 410 LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: " 411 << *Processed << "\n" 412 << "ARM TP: Inserted VCTP: " << *VCTPCall << "\n"); 413 } 414 415 bool MVETailPredication::TryConvertActiveLaneMask(Value *TripCount) { 416 SmallVector<IntrinsicInst *, 4> ActiveLaneMasks; 417 for (auto *BB : L->getBlocks()) 418 for (auto &I : *BB) 419 if (auto *Int = dyn_cast<IntrinsicInst>(&I)) 420 if (Int->getIntrinsicID() == Intrinsic::get_active_lane_mask) 421 ActiveLaneMasks.push_back(Int); 422 423 if (ActiveLaneMasks.empty()) 424 return false; 425 426 LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n"); 427 428 for (auto *ActiveLaneMask : ActiveLaneMasks) { 429 LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: " 430 << *ActiveLaneMask << "\n"); 431 432 const SCEV *StartSCEV = IsSafeActiveMask(ActiveLaneMask, TripCount); 433 if (!StartSCEV) { 434 LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n"); 435 return false; 436 } 437 LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP. Start is " << *StartSCEV 438 << "\n"); 439 SCEVExpander Expander(*SE, L->getHeader()->getDataLayout(), 440 "start"); 441 Instruction *Ins = L->getLoopPreheader()->getTerminator(); 442 Value *Start = Expander.expandCodeFor(StartSCEV, StartSCEV->getType(), Ins); 443 LLVM_DEBUG(dbgs() << "ARM TP: Created start value " << *Start << "\n"); 444 InsertVCTPIntrinsic(ActiveLaneMask, Start); 445 } 446 447 // Remove dead instructions and now dead phis. 448 for (auto *II : ActiveLaneMasks) 449 RecursivelyDeleteTriviallyDeadInstructions(II); 450 for (auto *I : L->blocks()) 451 DeleteDeadPHIs(I); 452 return true; 453 } 454 455 Pass *llvm::createMVETailPredicationPass() { 456 return new MVETailPredication(); 457 } 458 459 char MVETailPredication::ID = 0; 460 461 INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false) 462 INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false) 463