1 //===- MVETailPredication.cpp - MVE Tail Predication ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead 11 /// branches to help accelerate DSP applications. These two extensions can be 12 /// combined to provide implicit vector predication within a low-overhead loop. 13 /// The HardwareLoops pass inserts intrinsics identifying loops that the 14 /// backend will attempt to convert into a low-overhead loop. The vectorizer is 15 /// responsible for generating a vectorized loop in which the lanes are 16 /// predicated upon the iteration counter. This pass looks at these predicated 17 /// vector loops, that are targets for low-overhead loops, and prepares it for 18 /// code generation. Once the vectorizer has produced a masked loop, there's a 19 /// couple of final forms: 20 /// - A tail-predicated loop, with implicit predication. 21 /// - A loop containing multiple VCPT instructions, predicating multiple VPT 22 /// blocks of instructions operating on different vector types. 23 /// 24 /// This pass inserts the inserts the VCTP intrinsic to represent the effect of 25 /// tail predication. This will be picked up by the ARM Low-overhead loop pass, 26 /// which performs the final transformation to a DLSTP or WLSTP tail-predicated 27 /// loop. 28 29 #include "ARM.h" 30 #include "ARMSubtarget.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/LoopPass.h" 33 #include "llvm/Analysis/ScalarEvolution.h" 34 #include "llvm/Analysis/ScalarEvolutionExpander.h" 35 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicsARM.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "mve-tail-predication" 48 #define DESC "Transform predicated vector loops to use MVE tail predication" 49 50 cl::opt<bool> 51 DisableTailPredication("disable-mve-tail-predication", cl::Hidden, 52 cl::init(true), 53 cl::desc("Disable MVE Tail Predication")); 54 namespace { 55 56 class MVETailPredication : public LoopPass { 57 SmallVector<IntrinsicInst*, 4> MaskedInsts; 58 Loop *L = nullptr; 59 ScalarEvolution *SE = nullptr; 60 TargetTransformInfo *TTI = nullptr; 61 62 public: 63 static char ID; 64 65 MVETailPredication() : LoopPass(ID) { } 66 67 void getAnalysisUsage(AnalysisUsage &AU) const override { 68 AU.addRequired<ScalarEvolutionWrapperPass>(); 69 AU.addRequired<LoopInfoWrapperPass>(); 70 AU.addRequired<TargetPassConfig>(); 71 AU.addRequired<TargetTransformInfoWrapperPass>(); 72 AU.addPreserved<LoopInfoWrapperPass>(); 73 AU.setPreservesCFG(); 74 } 75 76 bool runOnLoop(Loop *L, LPPassManager&) override; 77 78 private: 79 80 /// Perform the relevant checks on the loop and convert if possible. 81 bool TryConvert(Value *TripCount); 82 83 /// Return whether this is a vectorized loop, that contains masked 84 /// load/stores. 85 bool IsPredicatedVectorLoop(); 86 87 /// Compute a value for the total number of elements that the predicated 88 /// loop will process. 89 Value *ComputeElements(Value *TripCount, VectorType *VecTy); 90 91 /// Is the icmp that generates an i1 vector, based upon a loop counter 92 /// and a limit that is defined outside the loop. 93 bool isTailPredicate(Instruction *Predicate, Value *NumElements); 94 95 /// Insert the intrinsic to represent the effect of tail predication. 96 void InsertVCTPIntrinsic(Instruction *Predicate, 97 DenseMap<Instruction*, Instruction*> &NewPredicates, 98 VectorType *VecTy, 99 Value *NumElements); 100 }; 101 102 } // end namespace 103 104 static bool IsDecrement(Instruction &I) { 105 auto *Call = dyn_cast<IntrinsicInst>(&I); 106 if (!Call) 107 return false; 108 109 Intrinsic::ID ID = Call->getIntrinsicID(); 110 return ID == Intrinsic::loop_decrement_reg; 111 } 112 113 static bool IsMasked(Instruction *I) { 114 auto *Call = dyn_cast<IntrinsicInst>(I); 115 if (!Call) 116 return false; 117 118 Intrinsic::ID ID = Call->getIntrinsicID(); 119 // TODO: Support gather/scatter expand/compress operations. 120 return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load; 121 } 122 123 bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) { 124 if (skipLoop(L) || DisableTailPredication) 125 return false; 126 127 Function &F = *L->getHeader()->getParent(); 128 auto &TPC = getAnalysis<TargetPassConfig>(); 129 auto &TM = TPC.getTM<TargetMachine>(); 130 auto *ST = &TM.getSubtarget<ARMSubtarget>(F); 131 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 132 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 133 this->L = L; 134 135 // The MVE and LOB extensions are combined to enable tail-predication, but 136 // there's nothing preventing us from generating VCTP instructions for v8.1m. 137 if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) { 138 LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n"); 139 return false; 140 } 141 142 BasicBlock *Preheader = L->getLoopPreheader(); 143 if (!Preheader) 144 return false; 145 146 auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* { 147 for (auto &I : *BB) { 148 auto *Call = dyn_cast<IntrinsicInst>(&I); 149 if (!Call) 150 continue; 151 152 Intrinsic::ID ID = Call->getIntrinsicID(); 153 if (ID == Intrinsic::set_loop_iterations || 154 ID == Intrinsic::test_set_loop_iterations) 155 return cast<IntrinsicInst>(&I); 156 } 157 return nullptr; 158 }; 159 160 // Look for the hardware loop intrinsic that sets the iteration count. 161 IntrinsicInst *Setup = FindLoopIterations(Preheader); 162 163 // The test.set iteration could live in the pre-preheader. 164 if (!Setup) { 165 if (!Preheader->getSinglePredecessor()) 166 return false; 167 Setup = FindLoopIterations(Preheader->getSinglePredecessor()); 168 if (!Setup) 169 return false; 170 } 171 172 // Search for the hardware loop intrinic that decrements the loop counter. 173 IntrinsicInst *Decrement = nullptr; 174 for (auto *BB : L->getBlocks()) { 175 for (auto &I : *BB) { 176 if (IsDecrement(I)) { 177 Decrement = cast<IntrinsicInst>(&I); 178 break; 179 } 180 } 181 } 182 183 if (!Decrement) 184 return false; 185 186 LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n" 187 << *Decrement << "\n"); 188 return TryConvert(Setup->getArgOperand(0)); 189 } 190 191 bool MVETailPredication::isTailPredicate(Instruction *I, Value *NumElements) { 192 // Look for the following: 193 194 // %trip.count.minus.1 = add i32 %N, -1 195 // %broadcast.splatinsert10 = insertelement <4 x i32> undef, 196 // i32 %trip.count.minus.1, i32 0 197 // %broadcast.splat11 = shufflevector <4 x i32> %broadcast.splatinsert10, 198 // <4 x i32> undef, 199 // <4 x i32> zeroinitializer 200 // ... 201 // ... 202 // %index = phi i32 203 // %broadcast.splatinsert = insertelement <4 x i32> undef, i32 %index, i32 0 204 // %broadcast.splat = shufflevector <4 x i32> %broadcast.splatinsert, 205 // <4 x i32> undef, 206 // <4 x i32> zeroinitializer 207 // %induction = add <4 x i32> %broadcast.splat, <i32 0, i32 1, i32 2, i32 3> 208 // %pred = icmp ule <4 x i32> %induction, %broadcast.splat11 209 210 // And return whether V == %pred. 211 212 using namespace PatternMatch; 213 214 CmpInst::Predicate Pred; 215 Instruction *Shuffle = nullptr; 216 Instruction *Induction = nullptr; 217 218 // The vector icmp 219 if (!match(I, m_ICmp(Pred, m_Instruction(Induction), 220 m_Instruction(Shuffle))) || 221 Pred != ICmpInst::ICMP_ULE) 222 return false; 223 224 // First find the stuff outside the loop which is setting up the limit 225 // vector.... 226 // The invariant shuffle that broadcast the limit into a vector. 227 Instruction *Insert = nullptr; 228 if (!match(Shuffle, m_ShuffleVector(m_Instruction(Insert), m_Undef(), 229 m_Zero()))) 230 return false; 231 232 // Insert the limit into a vector. 233 Instruction *BECount = nullptr; 234 if (!match(Insert, m_InsertElement(m_Undef(), m_Instruction(BECount), 235 m_Zero()))) 236 return false; 237 238 // The limit calculation, backedge count. 239 Value *TripCount = nullptr; 240 if (!match(BECount, m_Add(m_Value(TripCount), m_AllOnes()))) 241 return false; 242 243 if (TripCount != NumElements || !L->isLoopInvariant(BECount)) 244 return false; 245 246 // Now back to searching inside the loop body... 247 // Find the add with takes the index iv and adds a constant vector to it. 248 Instruction *BroadcastSplat = nullptr; 249 Constant *Const = nullptr; 250 if (!match(Induction, m_Add(m_Instruction(BroadcastSplat), 251 m_Constant(Const)))) 252 return false; 253 254 // Check that we're adding <0, 1, 2, 3... 255 if (auto *CDS = dyn_cast<ConstantDataSequential>(Const)) { 256 for (unsigned i = 0; i < CDS->getNumElements(); ++i) { 257 if (CDS->getElementAsInteger(i) != i) 258 return false; 259 } 260 } else 261 return false; 262 263 // The shuffle which broadcasts the index iv into a vector. 264 if (!match(BroadcastSplat, m_ShuffleVector(m_Instruction(Insert), m_Undef(), 265 m_Zero()))) 266 return false; 267 268 // The insert element which initialises a vector with the index iv. 269 Instruction *IV = nullptr; 270 if (!match(Insert, m_InsertElement(m_Undef(), m_Instruction(IV), m_Zero()))) 271 return false; 272 273 // The index iv. 274 auto *Phi = dyn_cast<PHINode>(IV); 275 if (!Phi) 276 return false; 277 278 // TODO: Don't think we need to check the entry value. 279 Value *OnEntry = Phi->getIncomingValueForBlock(L->getLoopPreheader()); 280 if (!match(OnEntry, m_Zero())) 281 return false; 282 283 Value *InLoop = Phi->getIncomingValueForBlock(L->getLoopLatch()); 284 unsigned Lanes = cast<VectorType>(Insert->getType())->getNumElements(); 285 286 Instruction *LHS = nullptr; 287 if (!match(InLoop, m_Add(m_Instruction(LHS), m_SpecificInt(Lanes)))) 288 return false; 289 290 return LHS == Phi; 291 } 292 293 static VectorType* getVectorType(IntrinsicInst *I) { 294 unsigned TypeOp = I->getIntrinsicID() == Intrinsic::masked_load ? 0 : 1; 295 auto *PtrTy = cast<PointerType>(I->getOperand(TypeOp)->getType()); 296 return cast<VectorType>(PtrTy->getElementType()); 297 } 298 299 bool MVETailPredication::IsPredicatedVectorLoop() { 300 // Check that the loop contains at least one masked load/store intrinsic. 301 // We only support 'normal' vector instructions - other than masked 302 // load/stores. 303 for (auto *BB : L->getBlocks()) { 304 for (auto &I : *BB) { 305 if (IsMasked(&I)) { 306 VectorType *VecTy = getVectorType(cast<IntrinsicInst>(&I)); 307 unsigned Lanes = VecTy->getNumElements(); 308 unsigned ElementWidth = VecTy->getScalarSizeInBits(); 309 // MVE vectors are 128-bit, but don't support 128 x i1. 310 // TODO: Can we support vectors larger than 128-bits? 311 unsigned MaxWidth = TTI->getRegisterBitWidth(true); 312 if (Lanes * ElementWidth > MaxWidth || Lanes == MaxWidth) 313 return false; 314 MaskedInsts.push_back(cast<IntrinsicInst>(&I)); 315 } else if (auto *Int = dyn_cast<IntrinsicInst>(&I)) { 316 for (auto &U : Int->args()) { 317 if (isa<VectorType>(U->getType())) 318 return false; 319 } 320 } 321 } 322 } 323 324 return !MaskedInsts.empty(); 325 } 326 327 Value* MVETailPredication::ComputeElements(Value *TripCount, 328 VectorType *VecTy) { 329 const SCEV *TripCountSE = SE->getSCEV(TripCount); 330 ConstantInt *VF = ConstantInt::get(cast<IntegerType>(TripCount->getType()), 331 VecTy->getNumElements()); 332 333 if (VF->equalsInt(1)) 334 return nullptr; 335 336 // TODO: Support constant trip counts. 337 auto VisitAdd = [&](const SCEVAddExpr *S) -> const SCEVMulExpr* { 338 if (auto *Const = dyn_cast<SCEVConstant>(S->getOperand(0))) { 339 if (Const->getAPInt() != -VF->getValue()) 340 return nullptr; 341 } else 342 return nullptr; 343 return dyn_cast<SCEVMulExpr>(S->getOperand(1)); 344 }; 345 346 auto VisitMul = [&](const SCEVMulExpr *S) -> const SCEVUDivExpr* { 347 if (auto *Const = dyn_cast<SCEVConstant>(S->getOperand(0))) { 348 if (Const->getValue() != VF) 349 return nullptr; 350 } else 351 return nullptr; 352 return dyn_cast<SCEVUDivExpr>(S->getOperand(1)); 353 }; 354 355 auto VisitDiv = [&](const SCEVUDivExpr *S) -> const SCEV* { 356 if (auto *Const = dyn_cast<SCEVConstant>(S->getRHS())) { 357 if (Const->getValue() != VF) 358 return nullptr; 359 } else 360 return nullptr; 361 362 if (auto *RoundUp = dyn_cast<SCEVAddExpr>(S->getLHS())) { 363 if (auto *Const = dyn_cast<SCEVConstant>(RoundUp->getOperand(0))) { 364 if (Const->getAPInt() != (VF->getValue() - 1)) 365 return nullptr; 366 } else 367 return nullptr; 368 369 return RoundUp->getOperand(1); 370 } 371 return nullptr; 372 }; 373 374 // TODO: Can we use SCEV helpers, such as findArrayDimensions, and friends to 375 // determine the numbers of elements instead? Looks like this is what is used 376 // for delinearization, but I'm not sure if it can be applied to the 377 // vectorized form - at least not without a bit more work than I feel 378 // comfortable with. 379 380 // Search for Elems in the following SCEV: 381 // (1 + ((-VF + (VF * (((VF - 1) + %Elems) /u VF))<nuw>) /u VF))<nuw><nsw> 382 const SCEV *Elems = nullptr; 383 if (auto *TC = dyn_cast<SCEVAddExpr>(TripCountSE)) 384 if (auto *Div = dyn_cast<SCEVUDivExpr>(TC->getOperand(1))) 385 if (auto *Add = dyn_cast<SCEVAddExpr>(Div->getLHS())) 386 if (auto *Mul = VisitAdd(Add)) 387 if (auto *Div = VisitMul(Mul)) 388 if (auto *Res = VisitDiv(Div)) 389 Elems = Res; 390 391 if (!Elems) 392 return nullptr; 393 394 Instruction *InsertPt = L->getLoopPreheader()->getTerminator(); 395 if (!isSafeToExpandAt(Elems, InsertPt, *SE)) 396 return nullptr; 397 398 auto DL = L->getHeader()->getModule()->getDataLayout(); 399 SCEVExpander Expander(*SE, DL, "elements"); 400 return Expander.expandCodeFor(Elems, Elems->getType(), InsertPt); 401 } 402 403 // Look through the exit block to see whether there's a duplicate predicate 404 // instruction. This can happen when we need to perform a select on values 405 // from the last and previous iteration. Instead of doing a straight 406 // replacement of that predicate with the vctp, clone the vctp and place it 407 // in the block. This means that the VPR doesn't have to be live into the 408 // exit block which should make it easier to convert this loop into a proper 409 // tail predicated loop. 410 static void Cleanup(DenseMap<Instruction*, Instruction*> &NewPredicates, 411 SetVector<Instruction*> &MaybeDead, Loop *L) { 412 BasicBlock *Exit = L->getUniqueExitBlock(); 413 if (!Exit) { 414 LLVM_DEBUG(dbgs() << "ARM TP: can't find loop exit block\n"); 415 return; 416 } 417 418 for (auto &Pair : NewPredicates) { 419 Instruction *OldPred = Pair.first; 420 Instruction *NewPred = Pair.second; 421 422 for (auto &I : *Exit) { 423 if (I.isSameOperationAs(OldPred)) { 424 Instruction *PredClone = NewPred->clone(); 425 PredClone->insertBefore(&I); 426 I.replaceAllUsesWith(PredClone); 427 MaybeDead.insert(&I); 428 LLVM_DEBUG(dbgs() << "ARM TP: replacing: "; I.dump(); 429 dbgs() << "ARM TP: with: "; PredClone->dump()); 430 break; 431 } 432 } 433 } 434 435 // Drop references and add operands to check for dead. 436 SmallPtrSet<Instruction*, 4> Dead; 437 while (!MaybeDead.empty()) { 438 auto *I = MaybeDead.front(); 439 MaybeDead.remove(I); 440 if (I->hasNUsesOrMore(1)) 441 continue; 442 443 for (auto &U : I->operands()) { 444 if (auto *OpI = dyn_cast<Instruction>(U)) 445 MaybeDead.insert(OpI); 446 } 447 I->dropAllReferences(); 448 Dead.insert(I); 449 } 450 451 for (auto *I : Dead) { 452 LLVM_DEBUG(dbgs() << "ARM TP: removing dead insn: "; I->dump()); 453 I->eraseFromParent(); 454 } 455 456 for (auto I : L->blocks()) 457 DeleteDeadPHIs(I); 458 } 459 460 void MVETailPredication::InsertVCTPIntrinsic(Instruction *Predicate, 461 DenseMap<Instruction*, Instruction*> &NewPredicates, 462 VectorType *VecTy, Value *NumElements) { 463 IRBuilder<> Builder(L->getHeader()->getFirstNonPHI()); 464 Module *M = L->getHeader()->getModule(); 465 Type *Ty = IntegerType::get(M->getContext(), 32); 466 467 // Insert a phi to count the number of elements processed by the loop. 468 PHINode *Processed = Builder.CreatePHI(Ty, 2); 469 Processed->addIncoming(NumElements, L->getLoopPreheader()); 470 471 // Insert the intrinsic to represent the effect of tail predication. 472 Builder.SetInsertPoint(cast<Instruction>(Predicate)); 473 ConstantInt *Factor = 474 ConstantInt::get(cast<IntegerType>(Ty), VecTy->getNumElements()); 475 476 Intrinsic::ID VCTPID; 477 switch (VecTy->getNumElements()) { 478 default: 479 llvm_unreachable("unexpected number of lanes"); 480 case 4: VCTPID = Intrinsic::arm_mve_vctp32; break; 481 case 8: VCTPID = Intrinsic::arm_mve_vctp16; break; 482 case 16: VCTPID = Intrinsic::arm_mve_vctp8; break; 483 484 // FIXME: vctp64 currently not supported because the predicate 485 // vector wants to be <2 x i1>, but v2i1 is not a legal MVE 486 // type, so problems happen at isel time. 487 // Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics 488 // purposes, but takes a v4i1 instead of a v2i1. 489 } 490 Function *VCTP = Intrinsic::getDeclaration(M, VCTPID); 491 Value *TailPredicate = Builder.CreateCall(VCTP, Processed); 492 Predicate->replaceAllUsesWith(TailPredicate); 493 NewPredicates[Predicate] = cast<Instruction>(TailPredicate); 494 495 // Add the incoming value to the new phi. 496 // TODO: This add likely already exists in the loop. 497 Value *Remaining = Builder.CreateSub(Processed, Factor); 498 Processed->addIncoming(Remaining, L->getLoopLatch()); 499 LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: " 500 << *Processed << "\n" 501 << "ARM TP: Inserted VCTP: " << *TailPredicate << "\n"); 502 } 503 504 bool MVETailPredication::TryConvert(Value *TripCount) { 505 if (!IsPredicatedVectorLoop()) { 506 LLVM_DEBUG(dbgs() << "ARM TP: no masked instructions in loop"); 507 return false; 508 } 509 510 LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n"); 511 512 // Walk through the masked intrinsics and try to find whether the predicate 513 // operand is generated from an induction variable. 514 SetVector<Instruction*> Predicates; 515 DenseMap<Instruction*, Instruction*> NewPredicates; 516 517 for (auto *I : MaskedInsts) { 518 Intrinsic::ID ID = I->getIntrinsicID(); 519 unsigned PredOp = ID == Intrinsic::masked_load ? 2 : 3; 520 auto *Predicate = dyn_cast<Instruction>(I->getArgOperand(PredOp)); 521 if (!Predicate || Predicates.count(Predicate)) 522 continue; 523 524 VectorType *VecTy = getVectorType(I); 525 Value *NumElements = ComputeElements(TripCount, VecTy); 526 if (!NumElements) 527 continue; 528 529 if (!isTailPredicate(Predicate, NumElements)) { 530 LLVM_DEBUG(dbgs() << "ARM TP: Not tail predicate: " << *Predicate << "\n"); 531 continue; 532 } 533 534 LLVM_DEBUG(dbgs() << "ARM TP: Found tail predicate: " << *Predicate << "\n"); 535 Predicates.insert(Predicate); 536 537 InsertVCTPIntrinsic(Predicate, NewPredicates, VecTy, NumElements); 538 } 539 540 // Now clean up. 541 Cleanup(NewPredicates, Predicates, L); 542 return true; 543 } 544 545 Pass *llvm::createMVETailPredicationPass() { 546 return new MVETailPredication(); 547 } 548 549 char MVETailPredication::ID = 0; 550 551 INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false) 552 INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false) 553