xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/MVELaneInterleavingPass.cpp (revision f126d349810fdb512c0b01e101342d430b947488)
1 //===- MVELaneInterleaving.cpp - Inverleave for MVE instructions ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass interleaves around sext/zext/trunc instructions. MVE does not have
10 // a single sext/zext or trunc instruction that takes the bottom half of a
11 // vector and extends to a full width, like NEON has with MOVL. Instead it is
12 // expected that this happens through top/bottom instructions. So the MVE
13 // equivalent VMOVLT/B instructions take either the even or odd elements of the
14 // input and extend them to the larger type, producing a vector with half the
15 // number of elements each of double the bitwidth. As there is no simple
16 // instruction, we often have to turn sext/zext/trunc into a series of lane
17 // moves (or stack loads/stores, which we do not do yet).
18 //
19 // This pass takes vector code that starts at truncs, looks for interconnected
20 // blobs of operations that end with sext/zext (or constants/splats) of the
21 // form:
22 //   %sa = sext v8i16 %a to v8i32
23 //   %sb = sext v8i16 %b to v8i32
24 //   %add = add v8i32 %sa, %sb
25 //   %r = trunc %add to v8i16
26 // And adds shuffles to allow the use of VMOVL/VMOVN instrctions:
27 //   %sha = shuffle v8i16 %a, undef, <0, 2, 4, 6, 1, 3, 5, 7>
28 //   %sa = sext v8i16 %sha to v8i32
29 //   %shb = shuffle v8i16 %b, undef, <0, 2, 4, 6, 1, 3, 5, 7>
30 //   %sb = sext v8i16 %shb to v8i32
31 //   %add = add v8i32 %sa, %sb
32 //   %r = trunc %add to v8i16
33 //   %shr = shuffle v8i16 %r, undef, <0, 4, 1, 5, 2, 6, 3, 7>
34 // Which can then be split and lowered to MVE instructions efficiently:
35 //   %sa_b = VMOVLB.s16 %a
36 //   %sa_t = VMOVLT.s16 %a
37 //   %sb_b = VMOVLB.s16 %b
38 //   %sb_t = VMOVLT.s16 %b
39 //   %add_b = VADD.i32 %sa_b, %sb_b
40 //   %add_t = VADD.i32 %sa_t, %sb_t
41 //   %r = VMOVNT.i16 %add_b, %add_t
42 //
43 //===----------------------------------------------------------------------===//
44 
45 #include "ARM.h"
46 #include "ARMBaseInstrInfo.h"
47 #include "ARMSubtarget.h"
48 #include "llvm/Analysis/TargetTransformInfo.h"
49 #include "llvm/CodeGen/TargetLowering.h"
50 #include "llvm/CodeGen/TargetPassConfig.h"
51 #include "llvm/CodeGen/TargetSubtargetInfo.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InstIterator.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/IntrinsicsARM.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/InitializePasses.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/Casting.h"
71 #include <algorithm>
72 #include <cassert>
73 
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "mve-laneinterleave"
77 
78 cl::opt<bool> EnableInterleave(
79     "enable-mve-interleave", cl::Hidden, cl::init(true),
80     cl::desc("Enable interleave MVE vector operation lowering"));
81 
82 namespace {
83 
84 class MVELaneInterleaving : public FunctionPass {
85 public:
86   static char ID; // Pass identification, replacement for typeid
87 
88   explicit MVELaneInterleaving() : FunctionPass(ID) {
89     initializeMVELaneInterleavingPass(*PassRegistry::getPassRegistry());
90   }
91 
92   bool runOnFunction(Function &F) override;
93 
94   StringRef getPassName() const override { return "MVE lane interleaving"; }
95 
96   void getAnalysisUsage(AnalysisUsage &AU) const override {
97     AU.setPreservesCFG();
98     AU.addRequired<TargetPassConfig>();
99     FunctionPass::getAnalysisUsage(AU);
100   }
101 };
102 
103 } // end anonymous namespace
104 
105 char MVELaneInterleaving::ID = 0;
106 
107 INITIALIZE_PASS(MVELaneInterleaving, DEBUG_TYPE, "MVE lane interleaving", false,
108                 false)
109 
110 Pass *llvm::createMVELaneInterleavingPass() {
111   return new MVELaneInterleaving();
112 }
113 
114 static bool isProfitableToInterleave(SmallSetVector<Instruction *, 4> &Exts,
115                                      SmallSetVector<Instruction *, 4> &Truncs) {
116   // This is not always beneficial to transform. Exts can be incorporated into
117   // loads, Truncs can be folded into stores.
118   // Truncs are usually the same number of instructions,
119   //  VSTRH.32(A);VSTRH.32(B) vs VSTRH.16(VMOVNT A, B) with interleaving
120   // Exts are unfortunately more instructions in the general case:
121   //  A=VLDRH.32; B=VLDRH.32;
122   // vs with interleaving:
123   //  T=VLDRH.16; A=VMOVNB T; B=VMOVNT T
124   // But those VMOVL may be folded into a VMULL.
125 
126   // But expensive extends/truncs are always good to remove. FPExts always
127   // involve extra VCVT's so are always considered to be beneficial to convert.
128   for (auto *E : Exts) {
129     if (isa<FPExtInst>(E) || !isa<LoadInst>(E->getOperand(0))) {
130       LLVM_DEBUG(dbgs() << "Beneficial due to " << *E << "\n");
131       return true;
132     }
133   }
134   for (auto *T : Truncs) {
135     if (T->hasOneUse() && !isa<StoreInst>(*T->user_begin())) {
136       LLVM_DEBUG(dbgs() << "Beneficial due to " << *T << "\n");
137       return true;
138     }
139   }
140 
141   // Otherwise, we know we have a load(ext), see if any of the Extends are a
142   // vmull. This is a simple heuristic and certainly not perfect.
143   for (auto *E : Exts) {
144     if (!E->hasOneUse() ||
145         cast<Instruction>(*E->user_begin())->getOpcode() != Instruction::Mul) {
146       LLVM_DEBUG(dbgs() << "Not beneficial due to " << *E << "\n");
147       return false;
148     }
149   }
150   return true;
151 }
152 
153 static bool tryInterleave(Instruction *Start,
154                           SmallPtrSetImpl<Instruction *> &Visited) {
155   LLVM_DEBUG(dbgs() << "tryInterleave from " << *Start << "\n");
156   auto *VT = cast<FixedVectorType>(Start->getType());
157 
158   if (!isa<Instruction>(Start->getOperand(0)))
159     return false;
160 
161   // Look for connected operations starting from Ext's, terminating at Truncs.
162   std::vector<Instruction *> Worklist;
163   Worklist.push_back(Start);
164   Worklist.push_back(cast<Instruction>(Start->getOperand(0)));
165 
166   SmallSetVector<Instruction *, 4> Truncs;
167   SmallSetVector<Instruction *, 4> Exts;
168   SmallSetVector<Use *, 4> OtherLeafs;
169   SmallSetVector<Instruction *, 4> Ops;
170 
171   while (!Worklist.empty()) {
172     Instruction *I = Worklist.back();
173     Worklist.pop_back();
174 
175     switch (I->getOpcode()) {
176     // Truncs
177     case Instruction::Trunc:
178     case Instruction::FPTrunc:
179       if (Truncs.count(I))
180         continue;
181       Truncs.insert(I);
182       Visited.insert(I);
183       break;
184 
185     // Extend leafs
186     case Instruction::SExt:
187     case Instruction::ZExt:
188     case Instruction::FPExt:
189       if (Exts.count(I))
190         continue;
191       for (auto *Use : I->users())
192         Worklist.push_back(cast<Instruction>(Use));
193       Exts.insert(I);
194       break;
195 
196     case Instruction::Call: {
197       IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
198       if (!II)
199         return false;
200 
201       switch (II->getIntrinsicID()) {
202       case Intrinsic::abs:
203       case Intrinsic::smin:
204       case Intrinsic::smax:
205       case Intrinsic::umin:
206       case Intrinsic::umax:
207       case Intrinsic::sadd_sat:
208       case Intrinsic::ssub_sat:
209       case Intrinsic::uadd_sat:
210       case Intrinsic::usub_sat:
211       case Intrinsic::minnum:
212       case Intrinsic::maxnum:
213       case Intrinsic::fabs:
214       case Intrinsic::fma:
215       case Intrinsic::ceil:
216       case Intrinsic::floor:
217       case Intrinsic::rint:
218       case Intrinsic::round:
219       case Intrinsic::trunc:
220         break;
221       default:
222         return false;
223       }
224       LLVM_FALLTHROUGH; // Fall through to treating these like an operator below.
225     }
226     // Binary/tertiary ops
227     case Instruction::Add:
228     case Instruction::Sub:
229     case Instruction::Mul:
230     case Instruction::AShr:
231     case Instruction::LShr:
232     case Instruction::Shl:
233     case Instruction::ICmp:
234     case Instruction::FCmp:
235     case Instruction::FAdd:
236     case Instruction::FMul:
237     case Instruction::Select:
238       if (Ops.count(I))
239         continue;
240       Ops.insert(I);
241 
242       for (Use &Op : I->operands()) {
243         if (!isa<FixedVectorType>(Op->getType()))
244           continue;
245         if (isa<Instruction>(Op))
246           Worklist.push_back(cast<Instruction>(&Op));
247         else
248           OtherLeafs.insert(&Op);
249       }
250 
251       for (auto *Use : I->users())
252         Worklist.push_back(cast<Instruction>(Use));
253       break;
254 
255     case Instruction::ShuffleVector:
256       // A shuffle of a splat is a splat.
257       if (cast<ShuffleVectorInst>(I)->isZeroEltSplat())
258         continue;
259       LLVM_FALLTHROUGH;
260 
261     default:
262       LLVM_DEBUG(dbgs() << "  Unhandled instruction: " << *I << "\n");
263       return false;
264     }
265   }
266 
267   if (Exts.empty() && OtherLeafs.empty())
268     return false;
269 
270   LLVM_DEBUG({
271     dbgs() << "Found group:\n  Exts:";
272     for (auto *I : Exts)
273       dbgs() << "  " << *I << "\n";
274     dbgs() << "  Ops:";
275     for (auto *I : Ops)
276       dbgs() << "  " << *I << "\n";
277     dbgs() << "  OtherLeafs:";
278     for (auto *I : OtherLeafs)
279       dbgs() << "  " << *I->get() << " of " << *I->getUser() << "\n";
280     dbgs() << "Truncs:";
281     for (auto *I : Truncs)
282       dbgs() << "  " << *I << "\n";
283   });
284 
285   assert(!Truncs.empty() && "Expected some truncs");
286 
287   // Check types
288   unsigned NumElts = VT->getNumElements();
289   unsigned BaseElts = VT->getScalarSizeInBits() == 16
290                           ? 8
291                           : (VT->getScalarSizeInBits() == 8 ? 16 : 0);
292   if (BaseElts == 0 || NumElts % BaseElts != 0) {
293     LLVM_DEBUG(dbgs() << "  Type is unsupported\n");
294     return false;
295   }
296   if (Start->getOperand(0)->getType()->getScalarSizeInBits() !=
297       VT->getScalarSizeInBits() * 2) {
298     LLVM_DEBUG(dbgs() << "  Type not double sized\n");
299     return false;
300   }
301   for (Instruction *I : Exts)
302     if (I->getOperand(0)->getType() != VT) {
303       LLVM_DEBUG(dbgs() << "  Wrong type on " << *I << "\n");
304       return false;
305     }
306   for (Instruction *I : Truncs)
307     if (I->getType() != VT) {
308       LLVM_DEBUG(dbgs() << "  Wrong type on " << *I << "\n");
309       return false;
310     }
311 
312   // Check that it looks beneficial
313   if (!isProfitableToInterleave(Exts, Truncs))
314     return false;
315 
316   // Create new shuffles around the extends / truncs / other leaves.
317   IRBuilder<> Builder(Start);
318 
319   SmallVector<int, 16> LeafMask;
320   SmallVector<int, 16> TruncMask;
321   // LeafMask : 0, 2, 4, 6, 1, 3, 5, 7   8, 10, 12, 14,  9, 11, 13, 15
322   // TruncMask: 0, 4, 1, 5, 2, 6, 3, 7   8, 12,  9, 13, 10, 14, 11, 15
323   for (unsigned Base = 0; Base < NumElts; Base += BaseElts) {
324     for (unsigned i = 0; i < BaseElts / 2; i++)
325       LeafMask.push_back(Base + i * 2);
326     for (unsigned i = 0; i < BaseElts / 2; i++)
327       LeafMask.push_back(Base + i * 2 + 1);
328   }
329   for (unsigned Base = 0; Base < NumElts; Base += BaseElts) {
330     for (unsigned i = 0; i < BaseElts / 2; i++) {
331       TruncMask.push_back(Base + i);
332       TruncMask.push_back(Base + i + BaseElts / 2);
333     }
334   }
335 
336   for (Instruction *I : Exts) {
337     LLVM_DEBUG(dbgs() << "Replacing ext " << *I << "\n");
338     Builder.SetInsertPoint(I);
339     Value *Shuffle = Builder.CreateShuffleVector(I->getOperand(0), LeafMask);
340     bool FPext = isa<FPExtInst>(I);
341     bool Sext = isa<SExtInst>(I);
342     Value *Ext = FPext ? Builder.CreateFPExt(Shuffle, I->getType())
343                        : Sext ? Builder.CreateSExt(Shuffle, I->getType())
344                               : Builder.CreateZExt(Shuffle, I->getType());
345     I->replaceAllUsesWith(Ext);
346     LLVM_DEBUG(dbgs() << "  with " << *Shuffle << "\n");
347   }
348 
349   for (Use *I : OtherLeafs) {
350     LLVM_DEBUG(dbgs() << "Replacing leaf " << *I << "\n");
351     Builder.SetInsertPoint(cast<Instruction>(I->getUser()));
352     Value *Shuffle = Builder.CreateShuffleVector(I->get(), LeafMask);
353     I->getUser()->setOperand(I->getOperandNo(), Shuffle);
354     LLVM_DEBUG(dbgs() << "  with " << *Shuffle << "\n");
355   }
356 
357   for (Instruction *I : Truncs) {
358     LLVM_DEBUG(dbgs() << "Replacing trunc " << *I << "\n");
359 
360     Builder.SetInsertPoint(I->getParent(), ++I->getIterator());
361     Value *Shuf = Builder.CreateShuffleVector(I, TruncMask);
362     I->replaceAllUsesWith(Shuf);
363     cast<Instruction>(Shuf)->setOperand(0, I);
364 
365     LLVM_DEBUG(dbgs() << "  with " << *Shuf << "\n");
366   }
367 
368   return true;
369 }
370 
371 bool MVELaneInterleaving::runOnFunction(Function &F) {
372   if (!EnableInterleave)
373     return false;
374   auto &TPC = getAnalysis<TargetPassConfig>();
375   auto &TM = TPC.getTM<TargetMachine>();
376   auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
377   if (!ST->hasMVEIntegerOps())
378     return false;
379 
380   bool Changed = false;
381 
382   SmallPtrSet<Instruction *, 16> Visited;
383   for (Instruction &I : reverse(instructions(F))) {
384     if (I.getType()->isVectorTy() &&
385         (isa<TruncInst>(I) || isa<FPTruncInst>(I)) && !Visited.count(&I))
386       Changed |= tryInterleave(&I, Visited);
387   }
388 
389   return Changed;
390 }
391