1 //===- MVELaneInterleaving.cpp - Inverleave for MVE instructions ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass interleaves around sext/zext/trunc instructions. MVE does not have 10 // a single sext/zext or trunc instruction that takes the bottom half of a 11 // vector and extends to a full width, like NEON has with MOVL. Instead it is 12 // expected that this happens through top/bottom instructions. So the MVE 13 // equivalent VMOVLT/B instructions take either the even or odd elements of the 14 // input and extend them to the larger type, producing a vector with half the 15 // number of elements each of double the bitwidth. As there is no simple 16 // instruction, we often have to turn sext/zext/trunc into a series of lane 17 // moves (or stack loads/stores, which we do not do yet). 18 // 19 // This pass takes vector code that starts at truncs, looks for interconnected 20 // blobs of operations that end with sext/zext (or constants/splats) of the 21 // form: 22 // %sa = sext v8i16 %a to v8i32 23 // %sb = sext v8i16 %b to v8i32 24 // %add = add v8i32 %sa, %sb 25 // %r = trunc %add to v8i16 26 // And adds shuffles to allow the use of VMOVL/VMOVN instrctions: 27 // %sha = shuffle v8i16 %a, undef, <0, 2, 4, 6, 1, 3, 5, 7> 28 // %sa = sext v8i16 %sha to v8i32 29 // %shb = shuffle v8i16 %b, undef, <0, 2, 4, 6, 1, 3, 5, 7> 30 // %sb = sext v8i16 %shb to v8i32 31 // %add = add v8i32 %sa, %sb 32 // %r = trunc %add to v8i16 33 // %shr = shuffle v8i16 %r, undef, <0, 4, 1, 5, 2, 6, 3, 7> 34 // Which can then be split and lowered to MVE instructions efficiently: 35 // %sa_b = VMOVLB.s16 %a 36 // %sa_t = VMOVLT.s16 %a 37 // %sb_b = VMOVLB.s16 %b 38 // %sb_t = VMOVLT.s16 %b 39 // %add_b = VADD.i32 %sa_b, %sb_b 40 // %add_t = VADD.i32 %sa_t, %sb_t 41 // %r = VMOVNT.i16 %add_b, %add_t 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "ARM.h" 46 #include "ARMBaseInstrInfo.h" 47 #include "ARMSubtarget.h" 48 #include "llvm/ADT/SetVector.h" 49 #include "llvm/Analysis/TargetTransformInfo.h" 50 #include "llvm/CodeGen/TargetLowering.h" 51 #include "llvm/CodeGen/TargetPassConfig.h" 52 #include "llvm/CodeGen/TargetSubtargetInfo.h" 53 #include "llvm/IR/BasicBlock.h" 54 #include "llvm/IR/Constant.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstIterator.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/IntrinsicsARM.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Value.h" 69 #include "llvm/InitializePasses.h" 70 #include "llvm/Pass.h" 71 #include "llvm/Support/Casting.h" 72 #include <algorithm> 73 #include <cassert> 74 75 using namespace llvm; 76 77 #define DEBUG_TYPE "mve-laneinterleave" 78 79 cl::opt<bool> EnableInterleave( 80 "enable-mve-interleave", cl::Hidden, cl::init(true), 81 cl::desc("Enable interleave MVE vector operation lowering")); 82 83 namespace { 84 85 class MVELaneInterleaving : public FunctionPass { 86 public: 87 static char ID; // Pass identification, replacement for typeid 88 89 explicit MVELaneInterleaving() : FunctionPass(ID) { 90 initializeMVELaneInterleavingPass(*PassRegistry::getPassRegistry()); 91 } 92 93 bool runOnFunction(Function &F) override; 94 95 StringRef getPassName() const override { return "MVE lane interleaving"; } 96 97 void getAnalysisUsage(AnalysisUsage &AU) const override { 98 AU.setPreservesCFG(); 99 AU.addRequired<TargetPassConfig>(); 100 FunctionPass::getAnalysisUsage(AU); 101 } 102 }; 103 104 } // end anonymous namespace 105 106 char MVELaneInterleaving::ID = 0; 107 108 INITIALIZE_PASS(MVELaneInterleaving, DEBUG_TYPE, "MVE lane interleaving", false, 109 false) 110 111 Pass *llvm::createMVELaneInterleavingPass() { 112 return new MVELaneInterleaving(); 113 } 114 115 static bool isProfitableToInterleave(SmallSetVector<Instruction *, 4> &Exts, 116 SmallSetVector<Instruction *, 4> &Truncs) { 117 // This is not always beneficial to transform. Exts can be incorporated into 118 // loads, Truncs can be folded into stores. 119 // Truncs are usually the same number of instructions, 120 // VSTRH.32(A);VSTRH.32(B) vs VSTRH.16(VMOVNT A, B) with interleaving 121 // Exts are unfortunately more instructions in the general case: 122 // A=VLDRH.32; B=VLDRH.32; 123 // vs with interleaving: 124 // T=VLDRH.16; A=VMOVNB T; B=VMOVNT T 125 // But those VMOVL may be folded into a VMULL. 126 127 // But expensive extends/truncs are always good to remove. FPExts always 128 // involve extra VCVT's so are always considered to be beneficial to convert. 129 for (auto *E : Exts) { 130 if (isa<FPExtInst>(E) || !isa<LoadInst>(E->getOperand(0))) { 131 LLVM_DEBUG(dbgs() << "Beneficial due to " << *E << "\n"); 132 return true; 133 } 134 } 135 for (auto *T : Truncs) { 136 if (T->hasOneUse() && !isa<StoreInst>(*T->user_begin())) { 137 LLVM_DEBUG(dbgs() << "Beneficial due to " << *T << "\n"); 138 return true; 139 } 140 } 141 142 // Otherwise, we know we have a load(ext), see if any of the Extends are a 143 // vmull. This is a simple heuristic and certainly not perfect. 144 for (auto *E : Exts) { 145 if (!E->hasOneUse() || 146 cast<Instruction>(*E->user_begin())->getOpcode() != Instruction::Mul) { 147 LLVM_DEBUG(dbgs() << "Not beneficial due to " << *E << "\n"); 148 return false; 149 } 150 } 151 return true; 152 } 153 154 static bool tryInterleave(Instruction *Start, 155 SmallPtrSetImpl<Instruction *> &Visited) { 156 LLVM_DEBUG(dbgs() << "tryInterleave from " << *Start << "\n"); 157 auto *VT = cast<FixedVectorType>(Start->getType()); 158 159 if (!isa<Instruction>(Start->getOperand(0))) 160 return false; 161 162 // Look for connected operations starting from Ext's, terminating at Truncs. 163 std::vector<Instruction *> Worklist; 164 Worklist.push_back(Start); 165 Worklist.push_back(cast<Instruction>(Start->getOperand(0))); 166 167 SmallSetVector<Instruction *, 4> Truncs; 168 SmallSetVector<Instruction *, 4> Exts; 169 SmallSetVector<Use *, 4> OtherLeafs; 170 SmallSetVector<Instruction *, 4> Ops; 171 172 while (!Worklist.empty()) { 173 Instruction *I = Worklist.back(); 174 Worklist.pop_back(); 175 176 switch (I->getOpcode()) { 177 // Truncs 178 case Instruction::Trunc: 179 case Instruction::FPTrunc: 180 if (!Truncs.insert(I)) 181 continue; 182 Visited.insert(I); 183 break; 184 185 // Extend leafs 186 case Instruction::SExt: 187 case Instruction::ZExt: 188 case Instruction::FPExt: 189 if (Exts.count(I)) 190 continue; 191 for (auto *Use : I->users()) 192 Worklist.push_back(cast<Instruction>(Use)); 193 Exts.insert(I); 194 break; 195 196 case Instruction::Call: { 197 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 198 if (!II) 199 return false; 200 201 switch (II->getIntrinsicID()) { 202 case Intrinsic::abs: 203 case Intrinsic::smin: 204 case Intrinsic::smax: 205 case Intrinsic::umin: 206 case Intrinsic::umax: 207 case Intrinsic::sadd_sat: 208 case Intrinsic::ssub_sat: 209 case Intrinsic::uadd_sat: 210 case Intrinsic::usub_sat: 211 case Intrinsic::minnum: 212 case Intrinsic::maxnum: 213 case Intrinsic::fabs: 214 case Intrinsic::fma: 215 case Intrinsic::ceil: 216 case Intrinsic::floor: 217 case Intrinsic::rint: 218 case Intrinsic::round: 219 case Intrinsic::trunc: 220 break; 221 default: 222 return false; 223 } 224 [[fallthrough]]; // Fall through to treating these like an operator below. 225 } 226 // Binary/tertiary ops 227 case Instruction::Add: 228 case Instruction::Sub: 229 case Instruction::Mul: 230 case Instruction::AShr: 231 case Instruction::LShr: 232 case Instruction::Shl: 233 case Instruction::ICmp: 234 case Instruction::FCmp: 235 case Instruction::FAdd: 236 case Instruction::FMul: 237 case Instruction::Select: 238 if (!Ops.insert(I)) 239 continue; 240 241 for (Use &Op : I->operands()) { 242 if (!isa<FixedVectorType>(Op->getType())) 243 continue; 244 if (isa<Instruction>(Op)) 245 Worklist.push_back(cast<Instruction>(&Op)); 246 else 247 OtherLeafs.insert(&Op); 248 } 249 250 for (auto *Use : I->users()) 251 Worklist.push_back(cast<Instruction>(Use)); 252 break; 253 254 case Instruction::ShuffleVector: 255 // A shuffle of a splat is a splat. 256 if (cast<ShuffleVectorInst>(I)->isZeroEltSplat()) 257 continue; 258 [[fallthrough]]; 259 260 default: 261 LLVM_DEBUG(dbgs() << " Unhandled instruction: " << *I << "\n"); 262 return false; 263 } 264 } 265 266 if (Exts.empty() && OtherLeafs.empty()) 267 return false; 268 269 LLVM_DEBUG({ 270 dbgs() << "Found group:\n Exts:"; 271 for (auto *I : Exts) 272 dbgs() << " " << *I << "\n"; 273 dbgs() << " Ops:"; 274 for (auto *I : Ops) 275 dbgs() << " " << *I << "\n"; 276 dbgs() << " OtherLeafs:"; 277 for (auto *I : OtherLeafs) 278 dbgs() << " " << *I->get() << " of " << *I->getUser() << "\n"; 279 dbgs() << "Truncs:"; 280 for (auto *I : Truncs) 281 dbgs() << " " << *I << "\n"; 282 }); 283 284 assert(!Truncs.empty() && "Expected some truncs"); 285 286 // Check types 287 unsigned NumElts = VT->getNumElements(); 288 unsigned BaseElts = VT->getScalarSizeInBits() == 16 289 ? 8 290 : (VT->getScalarSizeInBits() == 8 ? 16 : 0); 291 if (BaseElts == 0 || NumElts % BaseElts != 0) { 292 LLVM_DEBUG(dbgs() << " Type is unsupported\n"); 293 return false; 294 } 295 if (Start->getOperand(0)->getType()->getScalarSizeInBits() != 296 VT->getScalarSizeInBits() * 2) { 297 LLVM_DEBUG(dbgs() << " Type not double sized\n"); 298 return false; 299 } 300 for (Instruction *I : Exts) 301 if (I->getOperand(0)->getType() != VT) { 302 LLVM_DEBUG(dbgs() << " Wrong type on " << *I << "\n"); 303 return false; 304 } 305 for (Instruction *I : Truncs) 306 if (I->getType() != VT) { 307 LLVM_DEBUG(dbgs() << " Wrong type on " << *I << "\n"); 308 return false; 309 } 310 311 // Check that it looks beneficial 312 if (!isProfitableToInterleave(Exts, Truncs)) 313 return false; 314 315 // Create new shuffles around the extends / truncs / other leaves. 316 IRBuilder<> Builder(Start); 317 318 SmallVector<int, 16> LeafMask; 319 SmallVector<int, 16> TruncMask; 320 // LeafMask : 0, 2, 4, 6, 1, 3, 5, 7 8, 10, 12, 14, 9, 11, 13, 15 321 // TruncMask: 0, 4, 1, 5, 2, 6, 3, 7 8, 12, 9, 13, 10, 14, 11, 15 322 for (unsigned Base = 0; Base < NumElts; Base += BaseElts) { 323 for (unsigned i = 0; i < BaseElts / 2; i++) 324 LeafMask.push_back(Base + i * 2); 325 for (unsigned i = 0; i < BaseElts / 2; i++) 326 LeafMask.push_back(Base + i * 2 + 1); 327 } 328 for (unsigned Base = 0; Base < NumElts; Base += BaseElts) { 329 for (unsigned i = 0; i < BaseElts / 2; i++) { 330 TruncMask.push_back(Base + i); 331 TruncMask.push_back(Base + i + BaseElts / 2); 332 } 333 } 334 335 for (Instruction *I : Exts) { 336 LLVM_DEBUG(dbgs() << "Replacing ext " << *I << "\n"); 337 Builder.SetInsertPoint(I); 338 Value *Shuffle = Builder.CreateShuffleVector(I->getOperand(0), LeafMask); 339 bool FPext = isa<FPExtInst>(I); 340 bool Sext = isa<SExtInst>(I); 341 Value *Ext = FPext ? Builder.CreateFPExt(Shuffle, I->getType()) 342 : Sext ? Builder.CreateSExt(Shuffle, I->getType()) 343 : Builder.CreateZExt(Shuffle, I->getType()); 344 I->replaceAllUsesWith(Ext); 345 LLVM_DEBUG(dbgs() << " with " << *Shuffle << "\n"); 346 } 347 348 for (Use *I : OtherLeafs) { 349 LLVM_DEBUG(dbgs() << "Replacing leaf " << *I << "\n"); 350 Builder.SetInsertPoint(cast<Instruction>(I->getUser())); 351 Value *Shuffle = Builder.CreateShuffleVector(I->get(), LeafMask); 352 I->getUser()->setOperand(I->getOperandNo(), Shuffle); 353 LLVM_DEBUG(dbgs() << " with " << *Shuffle << "\n"); 354 } 355 356 for (Instruction *I : Truncs) { 357 LLVM_DEBUG(dbgs() << "Replacing trunc " << *I << "\n"); 358 359 Builder.SetInsertPoint(I->getParent(), ++I->getIterator()); 360 Value *Shuf = Builder.CreateShuffleVector(I, TruncMask); 361 I->replaceAllUsesWith(Shuf); 362 cast<Instruction>(Shuf)->setOperand(0, I); 363 364 LLVM_DEBUG(dbgs() << " with " << *Shuf << "\n"); 365 } 366 367 return true; 368 } 369 370 bool MVELaneInterleaving::runOnFunction(Function &F) { 371 if (!EnableInterleave) 372 return false; 373 auto &TPC = getAnalysis<TargetPassConfig>(); 374 auto &TM = TPC.getTM<TargetMachine>(); 375 auto *ST = &TM.getSubtarget<ARMSubtarget>(F); 376 if (!ST->hasMVEIntegerOps()) 377 return false; 378 379 bool Changed = false; 380 381 SmallPtrSet<Instruction *, 16> Visited; 382 for (Instruction &I : reverse(instructions(F))) { 383 if (I.getType()->isVectorTy() && 384 (isa<TruncInst>(I) || isa<FPTruncInst>(I)) && !Visited.count(&I)) 385 Changed |= tryInterleave(&I, Visited); 386 } 387 388 return Changed; 389 } 390