1 //===-- ARMUnwindOpAsm.cpp - ARM Unwind Opcodes Assembler -------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the unwind opcode assembler for ARM exception handling 10 // table. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMUnwindOpAsm.h" 15 #include "llvm/Support/ARMEHABI.h" 16 #include "llvm/Support/LEB128.h" 17 #include "llvm/Support/MathExtras.h" 18 #include <cassert> 19 20 using namespace llvm; 21 22 namespace { 23 24 /// UnwindOpcodeStreamer - The simple wrapper over SmallVector to emit bytes 25 /// with MSB to LSB per uint32_t ordering. For example, the first byte will 26 /// be placed in Vec[3], and the following bytes will be placed in 2, 1, 0, 27 /// 7, 6, 5, 4, 11, 10, 9, 8, and so on. 28 class UnwindOpcodeStreamer { 29 private: 30 SmallVectorImpl<uint8_t> &Vec; 31 size_t Pos = 3; 32 33 public: 34 UnwindOpcodeStreamer(SmallVectorImpl<uint8_t> &V) : Vec(V) {} 35 36 /// Emit the byte in MSB to LSB per uint32_t order. 37 void EmitByte(uint8_t elem) { 38 Vec[Pos] = elem; 39 Pos = (((Pos ^ 0x3u) + 1) ^ 0x3u); 40 } 41 42 /// Emit the size prefix. 43 void EmitSize(size_t Size) { 44 size_t SizeInWords = (Size + 3) / 4; 45 assert(SizeInWords <= 0x100u && 46 "Only 256 additional words are allowed for unwind opcodes"); 47 EmitByte(static_cast<uint8_t>(SizeInWords - 1)); 48 } 49 50 /// Emit the personality index prefix. 51 void EmitPersonalityIndex(unsigned PI) { 52 assert(PI < ARM::EHABI::NUM_PERSONALITY_INDEX && 53 "Invalid personality prefix"); 54 EmitByte(ARM::EHABI::EHT_COMPACT | PI); 55 } 56 57 /// Fill the rest of bytes with FINISH opcode. 58 void FillFinishOpcode() { 59 while (Pos < Vec.size()) 60 EmitByte(ARM::EHABI::UNWIND_OPCODE_FINISH); 61 } 62 }; 63 64 } // end anonymous namespace 65 66 void UnwindOpcodeAssembler::EmitRegSave(uint32_t RegSave) { 67 if (RegSave == 0u) 68 return; 69 70 // One byte opcode to save register r14 and r11-r4 71 if (RegSave & (1u << 4)) { 72 // The one byte opcode will always save r4, thus we can't use the one byte 73 // opcode when r4 is not in .save directive. 74 75 // Compute the consecutive registers from r4 to r11. 76 uint32_t Mask = RegSave & 0xff0u; 77 uint32_t Range = countTrailingOnes(Mask >> 5); // Exclude r4. 78 // Mask off non-consecutive registers. Keep r4. 79 Mask &= ~(0xffffffe0u << Range); 80 81 // Emit this opcode when the mask covers every registers. 82 uint32_t UnmaskedReg = RegSave & 0xfff0u & (~Mask); 83 if (UnmaskedReg == 0u) { 84 // Pop r[4 : (4 + n)] 85 EmitInt8(ARM::EHABI::UNWIND_OPCODE_POP_REG_RANGE_R4 | Range); 86 RegSave &= 0x000fu; 87 } else if (UnmaskedReg == (1u << 14)) { 88 // Pop r[14] + r[4 : (4 + n)] 89 EmitInt8(ARM::EHABI::UNWIND_OPCODE_POP_REG_RANGE_R4_R14 | Range); 90 RegSave &= 0x000fu; 91 } 92 } 93 94 // Two bytes opcode to save register r15-r4 95 if ((RegSave & 0xfff0u) != 0) 96 EmitInt16(ARM::EHABI::UNWIND_OPCODE_POP_REG_MASK_R4 | (RegSave >> 4)); 97 98 // Opcode to save register r3-r0 99 if ((RegSave & 0x000fu) != 0) 100 EmitInt16(ARM::EHABI::UNWIND_OPCODE_POP_REG_MASK | (RegSave & 0x000fu)); 101 } 102 103 /// Emit unwind opcodes for .vsave directives 104 void UnwindOpcodeAssembler::EmitVFPRegSave(uint32_t VFPRegSave) { 105 // We only have 4 bits to save the offset in the opcode so look at the lower 106 // and upper 16 bits separately. 107 for (uint32_t Regs : {VFPRegSave & 0xffff0000u, VFPRegSave & 0x0000ffffu}) { 108 while (Regs) { 109 // Now look for a run of set bits. Remember the MSB and LSB of the run. 110 auto RangeMSB = 32 - countLeadingZeros(Regs); 111 auto RangeLen = countLeadingOnes(Regs << (32 - RangeMSB)); 112 auto RangeLSB = RangeMSB - RangeLen; 113 114 int Opcode = RangeLSB >= 16 115 ? ARM::EHABI::UNWIND_OPCODE_POP_VFP_REG_RANGE_FSTMFDD_D16 116 : ARM::EHABI::UNWIND_OPCODE_POP_VFP_REG_RANGE_FSTMFDD; 117 118 EmitInt16(Opcode | ((RangeLSB % 16) << 4) | (RangeLen - 1)); 119 120 // Zero out bits we're done with. 121 Regs &= ~(-1u << RangeLSB); 122 } 123 } 124 } 125 126 /// Emit unwind opcodes to copy address from source register to $sp. 127 void UnwindOpcodeAssembler::EmitSetSP(uint16_t Reg) { 128 EmitInt8(ARM::EHABI::UNWIND_OPCODE_SET_VSP | Reg); 129 } 130 131 /// Emit unwind opcodes to add $sp with an offset. 132 void UnwindOpcodeAssembler::EmitSPOffset(int64_t Offset) { 133 if (Offset > 0x200) { 134 uint8_t Buff[16]; 135 Buff[0] = ARM::EHABI::UNWIND_OPCODE_INC_VSP_ULEB128; 136 size_t ULEBSize = encodeULEB128((Offset - 0x204) >> 2, Buff + 1); 137 emitBytes(Buff, ULEBSize + 1); 138 } else if (Offset > 0) { 139 if (Offset > 0x100) { 140 EmitInt8(ARM::EHABI::UNWIND_OPCODE_INC_VSP | 0x3fu); 141 Offset -= 0x100; 142 } 143 EmitInt8(ARM::EHABI::UNWIND_OPCODE_INC_VSP | 144 static_cast<uint8_t>((Offset - 4) >> 2)); 145 } else if (Offset < 0) { 146 while (Offset < -0x100) { 147 EmitInt8(ARM::EHABI::UNWIND_OPCODE_DEC_VSP | 0x3fu); 148 Offset += 0x100; 149 } 150 EmitInt8(ARM::EHABI::UNWIND_OPCODE_DEC_VSP | 151 static_cast<uint8_t>(((-Offset) - 4) >> 2)); 152 } 153 } 154 155 void UnwindOpcodeAssembler::Finalize(unsigned &PersonalityIndex, 156 SmallVectorImpl<uint8_t> &Result) { 157 UnwindOpcodeStreamer OpStreamer(Result); 158 159 if (HasPersonality) { 160 // User-specifed personality routine: [ SIZE , OP1 , OP2 , ... ] 161 PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX; 162 size_t TotalSize = Ops.size() + 1; 163 size_t RoundUpSize = (TotalSize + 3) / 4 * 4; 164 Result.resize(RoundUpSize); 165 OpStreamer.EmitSize(RoundUpSize); 166 } else { 167 // If no personalityindex is specified, select ane 168 if (PersonalityIndex == ARM::EHABI::NUM_PERSONALITY_INDEX) 169 PersonalityIndex = (Ops.size() <= 3) ? ARM::EHABI::AEABI_UNWIND_CPP_PR0 170 : ARM::EHABI::AEABI_UNWIND_CPP_PR1; 171 if (PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0) { 172 // __aeabi_unwind_cpp_pr0: [ 0x80 , OP1 , OP2 , OP3 ] 173 assert(Ops.size() <= 3 && "too many opcodes for __aeabi_unwind_cpp_pr0"); 174 Result.resize(4); 175 OpStreamer.EmitPersonalityIndex(PersonalityIndex); 176 } else { 177 // __aeabi_unwind_cpp_pr{1,2}: [ {0x81,0x82} , SIZE , OP1 , OP2 , ... ] 178 size_t TotalSize = Ops.size() + 2; 179 size_t RoundUpSize = (TotalSize + 3) / 4 * 4; 180 Result.resize(RoundUpSize); 181 OpStreamer.EmitPersonalityIndex(PersonalityIndex); 182 OpStreamer.EmitSize(RoundUpSize); 183 } 184 } 185 186 // Copy the unwind opcodes 187 for (size_t i = OpBegins.size() - 1; i > 0; --i) 188 for (size_t j = OpBegins[i - 1], end = OpBegins[i]; j < end; ++j) 189 OpStreamer.EmitByte(Ops[j]); 190 191 // Emit the padding finish opcodes if the size is not multiple of 4. 192 OpStreamer.FillFinishOpcode(); 193 194 // Reset the assembler state 195 Reset(); 196 } 197