xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/MCTargetDesc/ARMTargetStreamer.cpp (revision c66ec88fed842fbaad62c30d510644ceb7bd2d71)
1 //===- ARMTargetStreamer.cpp - ARMTargetStreamer class --*- C++ -*---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ARMTargetStreamer class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "MCTargetDesc/ARMMCTargetDesc.h"
14 #include "llvm/MC/ConstantPools.h"
15 #include "llvm/MC/MCAsmInfo.h"
16 #include "llvm/MC/MCContext.h"
17 #include "llvm/MC/MCExpr.h"
18 #include "llvm/MC/MCStreamer.h"
19 #include "llvm/MC/MCSubtargetInfo.h"
20 #include "llvm/Support/ARMBuildAttributes.h"
21 #include "llvm/Support/TargetParser.h"
22 
23 using namespace llvm;
24 
25 //
26 // ARMTargetStreamer Implemenation
27 //
28 
29 ARMTargetStreamer::ARMTargetStreamer(MCStreamer &S)
30     : MCTargetStreamer(S), ConstantPools(new AssemblerConstantPools()) {}
31 
32 ARMTargetStreamer::~ARMTargetStreamer() = default;
33 
34 // The constant pool handling is shared by all ARMTargetStreamer
35 // implementations.
36 const MCExpr *ARMTargetStreamer::addConstantPoolEntry(const MCExpr *Expr, SMLoc Loc) {
37   return ConstantPools->addEntry(Streamer, Expr, 4, Loc);
38 }
39 
40 void ARMTargetStreamer::emitCurrentConstantPool() {
41   ConstantPools->emitForCurrentSection(Streamer);
42   ConstantPools->clearCacheForCurrentSection(Streamer);
43 }
44 
45 // finish() - write out any non-empty assembler constant pools.
46 void ARMTargetStreamer::finish() { ConstantPools->emitAll(Streamer); }
47 
48 // reset() - Reset any state
49 void ARMTargetStreamer::reset() {}
50 
51 void ARMTargetStreamer::emitInst(uint32_t Inst, char Suffix) {
52   unsigned Size;
53   char Buffer[4];
54   const bool LittleEndian = getStreamer().getContext().getAsmInfo()->isLittleEndian();
55 
56   switch (Suffix) {
57   case '\0':
58     Size = 4;
59 
60     for (unsigned II = 0, IE = Size; II != IE; II++) {
61       const unsigned I = LittleEndian ? (Size - II - 1) : II;
62       Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT);
63     }
64 
65     break;
66   case 'n':
67   case 'w':
68     Size = (Suffix == 'n' ? 2 : 4);
69 
70     // Thumb wide instructions are emitted as a pair of 16-bit words of the
71     // appropriate endianness.
72     for (unsigned II = 0, IE = Size; II != IE; II = II + 2) {
73       const unsigned I0 = LittleEndian ? II + 0 : II + 1;
74       const unsigned I1 = LittleEndian ? II + 1 : II + 0;
75       Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT);
76       Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT);
77     }
78 
79     break;
80   default:
81     llvm_unreachable("Invalid Suffix");
82   }
83   getStreamer().emitBytes(StringRef(Buffer, Size));
84 }
85 
86 // The remaining callbacks should be handled separately by each
87 // streamer.
88 void ARMTargetStreamer::emitFnStart() {}
89 void ARMTargetStreamer::emitFnEnd() {}
90 void ARMTargetStreamer::emitCantUnwind() {}
91 void ARMTargetStreamer::emitPersonality(const MCSymbol *Personality) {}
92 void ARMTargetStreamer::emitPersonalityIndex(unsigned Index) {}
93 void ARMTargetStreamer::emitHandlerData() {}
94 void ARMTargetStreamer::emitSetFP(unsigned FpReg, unsigned SpReg,
95                                   int64_t Offset) {}
96 void ARMTargetStreamer::emitMovSP(unsigned Reg, int64_t Offset) {}
97 void ARMTargetStreamer::emitPad(int64_t Offset) {}
98 void ARMTargetStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
99                                     bool isVector) {}
100 void ARMTargetStreamer::emitUnwindRaw(int64_t StackOffset,
101                                       const SmallVectorImpl<uint8_t> &Opcodes) {
102 }
103 void ARMTargetStreamer::switchVendor(StringRef Vendor) {}
104 void ARMTargetStreamer::emitAttribute(unsigned Attribute, unsigned Value) {}
105 void ARMTargetStreamer::emitTextAttribute(unsigned Attribute,
106                                           StringRef String) {}
107 void ARMTargetStreamer::emitIntTextAttribute(unsigned Attribute,
108                                              unsigned IntValue,
109                                              StringRef StringValue) {}
110 void ARMTargetStreamer::emitArch(ARM::ArchKind Arch) {}
111 void ARMTargetStreamer::emitArchExtension(uint64_t ArchExt) {}
112 void ARMTargetStreamer::emitObjectArch(ARM::ArchKind Arch) {}
113 void ARMTargetStreamer::emitFPU(unsigned FPU) {}
114 void ARMTargetStreamer::finishAttributeSection() {}
115 void
116 ARMTargetStreamer::AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) {}
117 void ARMTargetStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) {}
118 
119 static ARMBuildAttrs::CPUArch getArchForCPU(const MCSubtargetInfo &STI) {
120   if (STI.getCPU() == "xscale")
121     return ARMBuildAttrs::v5TEJ;
122 
123   if (STI.hasFeature(ARM::HasV8Ops)) {
124     if (STI.hasFeature(ARM::FeatureRClass))
125       return ARMBuildAttrs::v8_R;
126     return ARMBuildAttrs::v8_A;
127   } else if (STI.hasFeature(ARM::HasV8_1MMainlineOps))
128     return ARMBuildAttrs::v8_1_M_Main;
129   else if (STI.hasFeature(ARM::HasV8MMainlineOps))
130     return ARMBuildAttrs::v8_M_Main;
131   else if (STI.hasFeature(ARM::HasV7Ops)) {
132     if (STI.hasFeature(ARM::FeatureMClass) && STI.hasFeature(ARM::FeatureDSP))
133       return ARMBuildAttrs::v7E_M;
134     return ARMBuildAttrs::v7;
135   } else if (STI.hasFeature(ARM::HasV6T2Ops))
136     return ARMBuildAttrs::v6T2;
137   else if (STI.hasFeature(ARM::HasV8MBaselineOps))
138     return ARMBuildAttrs::v8_M_Base;
139   else if (STI.hasFeature(ARM::HasV6MOps))
140     return ARMBuildAttrs::v6S_M;
141   else if (STI.hasFeature(ARM::HasV6Ops))
142     return ARMBuildAttrs::v6;
143   else if (STI.hasFeature(ARM::HasV5TEOps))
144     return ARMBuildAttrs::v5TE;
145   else if (STI.hasFeature(ARM::HasV5TOps))
146     return ARMBuildAttrs::v5T;
147   else if (STI.hasFeature(ARM::HasV4TOps))
148     return ARMBuildAttrs::v4T;
149   else
150     return ARMBuildAttrs::v4;
151 }
152 
153 static bool isV8M(const MCSubtargetInfo &STI) {
154   // Note that v8M Baseline is a subset of v6T2!
155   return (STI.hasFeature(ARM::HasV8MBaselineOps) &&
156           !STI.hasFeature(ARM::HasV6T2Ops)) ||
157          STI.hasFeature(ARM::HasV8MMainlineOps);
158 }
159 
160 /// Emit the build attributes that only depend on the hardware that we expect
161 // /to be available, and not on the ABI, or any source-language choices.
162 void ARMTargetStreamer::emitTargetAttributes(const MCSubtargetInfo &STI) {
163   switchVendor("aeabi");
164 
165   const StringRef CPUString = STI.getCPU();
166   if (!CPUString.empty() && !CPUString.startswith("generic")) {
167     // FIXME: remove krait check when GNU tools support krait cpu
168     if (STI.hasFeature(ARM::ProcKrait)) {
169       emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9");
170       // We consider krait as a "cortex-a9" + hwdiv CPU
171       // Enable hwdiv through ".arch_extension idiv"
172       if (STI.hasFeature(ARM::FeatureHWDivThumb) ||
173           STI.hasFeature(ARM::FeatureHWDivARM))
174         emitArchExtension(ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM);
175     } else {
176       emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString);
177     }
178   }
179 
180   emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(STI));
181 
182   if (STI.hasFeature(ARM::FeatureAClass)) {
183     emitAttribute(ARMBuildAttrs::CPU_arch_profile,
184                       ARMBuildAttrs::ApplicationProfile);
185   } else if (STI.hasFeature(ARM::FeatureRClass)) {
186     emitAttribute(ARMBuildAttrs::CPU_arch_profile,
187                       ARMBuildAttrs::RealTimeProfile);
188   } else if (STI.hasFeature(ARM::FeatureMClass)) {
189     emitAttribute(ARMBuildAttrs::CPU_arch_profile,
190                       ARMBuildAttrs::MicroControllerProfile);
191   }
192 
193   emitAttribute(ARMBuildAttrs::ARM_ISA_use, STI.hasFeature(ARM::FeatureNoARM)
194                                                 ? ARMBuildAttrs::Not_Allowed
195                                                 : ARMBuildAttrs::Allowed);
196 
197   if (isV8M(STI)) {
198     emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
199                       ARMBuildAttrs::AllowThumbDerived);
200   } else if (STI.hasFeature(ARM::FeatureThumb2)) {
201     emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
202                       ARMBuildAttrs::AllowThumb32);
203   } else if (STI.hasFeature(ARM::HasV4TOps)) {
204     emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed);
205   }
206 
207   if (STI.hasFeature(ARM::FeatureNEON)) {
208     /* NEON is not exactly a VFP architecture, but GAS emit one of
209      * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */
210     if (STI.hasFeature(ARM::FeatureFPARMv8)) {
211       if (STI.hasFeature(ARM::FeatureCrypto))
212         emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8);
213       else
214         emitFPU(ARM::FK_NEON_FP_ARMV8);
215     } else if (STI.hasFeature(ARM::FeatureVFP4))
216       emitFPU(ARM::FK_NEON_VFPV4);
217     else
218       emitFPU(STI.hasFeature(ARM::FeatureFP16) ? ARM::FK_NEON_FP16
219                                                : ARM::FK_NEON);
220     // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture
221     if (STI.hasFeature(ARM::HasV8Ops))
222       emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
223                     STI.hasFeature(ARM::HasV8_1aOps)
224                         ? ARMBuildAttrs::AllowNeonARMv8_1a
225                         : ARMBuildAttrs::AllowNeonARMv8);
226   } else {
227     if (STI.hasFeature(ARM::FeatureFPARMv8_D16_SP))
228       // FPv5 and FP-ARMv8 have the same instructions, so are modeled as one
229       // FPU, but there are two different names for it depending on the CPU.
230       emitFPU(STI.hasFeature(ARM::FeatureD32)
231                   ? ARM::FK_FP_ARMV8
232                   : (STI.hasFeature(ARM::FeatureFP64) ? ARM::FK_FPV5_D16
233                                                       : ARM::FK_FPV5_SP_D16));
234     else if (STI.hasFeature(ARM::FeatureVFP4_D16_SP))
235       emitFPU(STI.hasFeature(ARM::FeatureD32)
236                   ? ARM::FK_VFPV4
237                   : (STI.hasFeature(ARM::FeatureFP64) ? ARM::FK_VFPV4_D16
238                                                       : ARM::FK_FPV4_SP_D16));
239     else if (STI.hasFeature(ARM::FeatureVFP3_D16_SP))
240       emitFPU(
241           STI.hasFeature(ARM::FeatureD32)
242               // +d32
243               ? (STI.hasFeature(ARM::FeatureFP16) ? ARM::FK_VFPV3_FP16
244                                                   : ARM::FK_VFPV3)
245               // -d32
246               : (STI.hasFeature(ARM::FeatureFP64)
247                      ? (STI.hasFeature(ARM::FeatureFP16)
248                             ? ARM::FK_VFPV3_D16_FP16
249                             : ARM::FK_VFPV3_D16)
250                      : (STI.hasFeature(ARM::FeatureFP16) ? ARM::FK_VFPV3XD_FP16
251                                                          : ARM::FK_VFPV3XD)));
252     else if (STI.hasFeature(ARM::FeatureVFP2_SP))
253       emitFPU(ARM::FK_VFPV2);
254   }
255 
256   // ABI_HardFP_use attribute to indicate single precision FP.
257   if (STI.hasFeature(ARM::FeatureVFP2_SP) && !STI.hasFeature(ARM::FeatureFP64))
258     emitAttribute(ARMBuildAttrs::ABI_HardFP_use,
259                   ARMBuildAttrs::HardFPSinglePrecision);
260 
261   if (STI.hasFeature(ARM::FeatureFP16))
262     emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP);
263 
264   if (STI.hasFeature(ARM::FeatureMP))
265     emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP);
266 
267   if (STI.hasFeature(ARM::HasMVEFloatOps))
268     emitAttribute(ARMBuildAttrs::MVE_arch, ARMBuildAttrs::AllowMVEIntegerAndFloat);
269   else if (STI.hasFeature(ARM::HasMVEIntegerOps))
270     emitAttribute(ARMBuildAttrs::MVE_arch, ARMBuildAttrs::AllowMVEInteger);
271 
272   // Hardware divide in ARM mode is part of base arch, starting from ARMv8.
273   // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M).
274   // It is not possible to produce DisallowDIV: if hwdiv is present in the base
275   // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits.
276   // AllowDIVExt is only emitted if hwdiv isn't available in the base arch;
277   // otherwise, the default value (AllowDIVIfExists) applies.
278   if (STI.hasFeature(ARM::FeatureHWDivARM) && !STI.hasFeature(ARM::HasV8Ops))
279     emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt);
280 
281   if (STI.hasFeature(ARM::FeatureDSP) && isV8M(STI))
282     emitAttribute(ARMBuildAttrs::DSP_extension, ARMBuildAttrs::Allowed);
283 
284   if (STI.hasFeature(ARM::FeatureStrictAlign))
285     emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
286                   ARMBuildAttrs::Not_Allowed);
287   else
288     emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
289                   ARMBuildAttrs::Allowed);
290 
291   if (STI.hasFeature(ARM::FeatureTrustZone) &&
292       STI.hasFeature(ARM::FeatureVirtualization))
293     emitAttribute(ARMBuildAttrs::Virtualization_use,
294                   ARMBuildAttrs::AllowTZVirtualization);
295   else if (STI.hasFeature(ARM::FeatureTrustZone))
296     emitAttribute(ARMBuildAttrs::Virtualization_use, ARMBuildAttrs::AllowTZ);
297   else if (STI.hasFeature(ARM::FeatureVirtualization))
298     emitAttribute(ARMBuildAttrs::Virtualization_use,
299                   ARMBuildAttrs::AllowVirtualization);
300 }
301