xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/MCTargetDesc/ARMMCTargetDesc.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- ARMMCTargetDesc.cpp - ARM Target Descriptions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides ARM specific target descriptions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARMMCTargetDesc.h"
14 #include "ARMAddressingModes.h"
15 #include "ARMBaseInfo.h"
16 #include "ARMInstPrinter.h"
17 #include "ARMMCAsmInfo.h"
18 #include "TargetInfo/ARMTargetInfo.h"
19 #include "llvm/DebugInfo/CodeView/CodeView.h"
20 #include "llvm/MC/MCAsmBackend.h"
21 #include "llvm/MC/MCCodeEmitter.h"
22 #include "llvm/MC/MCELFStreamer.h"
23 #include "llvm/MC/MCInstrAnalysis.h"
24 #include "llvm/MC/MCInstrInfo.h"
25 #include "llvm/MC/MCObjectWriter.h"
26 #include "llvm/MC/MCRegisterInfo.h"
27 #include "llvm/MC/MCStreamer.h"
28 #include "llvm/MC/MCSubtargetInfo.h"
29 #include "llvm/MC/TargetRegistry.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/TargetParser/Triple.h"
32 
33 using namespace llvm;
34 
35 #define GET_REGINFO_MC_DESC
36 #include "ARMGenRegisterInfo.inc"
37 
38 static bool getMCRDeprecationInfo(MCInst &MI, const MCSubtargetInfo &STI,
39                                   std::string &Info) {
40   if (STI.hasFeature(llvm::ARM::HasV7Ops) &&
41       (MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 15) &&
42       (MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) &&
43       // Checks for the deprecated CP15ISB encoding:
44       // mcr p15, #0, rX, c7, c5, #4
45       (MI.getOperand(3).isImm() && MI.getOperand(3).getImm() == 7)) {
46     if ((MI.getOperand(5).isImm() && MI.getOperand(5).getImm() == 4)) {
47       if (MI.getOperand(4).isImm() && MI.getOperand(4).getImm() == 5) {
48         Info = "deprecated since v7, use 'isb'";
49         return true;
50       }
51 
52       // Checks for the deprecated CP15DSB encoding:
53       // mcr p15, #0, rX, c7, c10, #4
54       if (MI.getOperand(4).isImm() && MI.getOperand(4).getImm() == 10) {
55         Info = "deprecated since v7, use 'dsb'";
56         return true;
57       }
58     }
59     // Checks for the deprecated CP15DMB encoding:
60     // mcr p15, #0, rX, c7, c10, #5
61     if (MI.getOperand(4).isImm() && MI.getOperand(4).getImm() == 10 &&
62         (MI.getOperand(5).isImm() && MI.getOperand(5).getImm() == 5)) {
63       Info = "deprecated since v7, use 'dmb'";
64       return true;
65     }
66   }
67   if (STI.hasFeature(llvm::ARM::HasV7Ops) &&
68       ((MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 10) ||
69        (MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 11))) {
70     Info = "since v7, cp10 and cp11 are reserved for advanced SIMD or floating "
71            "point instructions";
72     return true;
73   }
74   return false;
75 }
76 
77 static bool getMRCDeprecationInfo(MCInst &MI, const MCSubtargetInfo &STI,
78                                   std::string &Info) {
79   if (STI.hasFeature(llvm::ARM::HasV7Ops) &&
80       ((MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 10) ||
81        (MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 11))) {
82     Info = "since v7, cp10 and cp11 are reserved for advanced SIMD or floating "
83            "point instructions";
84     return true;
85   }
86   return false;
87 }
88 
89 static bool getARMStoreDeprecationInfo(MCInst &MI, const MCSubtargetInfo &STI,
90                                        std::string &Info) {
91   assert(!STI.hasFeature(llvm::ARM::ModeThumb) &&
92          "cannot predicate thumb instructions");
93 
94   assert(MI.getNumOperands() >= 4 && "expected >= 4 arguments");
95   for (unsigned OI = 4, OE = MI.getNumOperands(); OI < OE; ++OI) {
96     assert(MI.getOperand(OI).isReg() && "expected register");
97     if (MI.getOperand(OI).getReg() == ARM::PC) {
98       Info = "use of PC in the list is deprecated";
99       return true;
100     }
101   }
102   return false;
103 }
104 
105 static bool getARMLoadDeprecationInfo(MCInst &MI, const MCSubtargetInfo &STI,
106                                       std::string &Info) {
107   assert(!STI.hasFeature(llvm::ARM::ModeThumb) &&
108          "cannot predicate thumb instructions");
109 
110   assert(MI.getNumOperands() >= 4 && "expected >= 4 arguments");
111   bool ListContainsPC = false, ListContainsLR = false;
112   for (unsigned OI = 4, OE = MI.getNumOperands(); OI < OE; ++OI) {
113     assert(MI.getOperand(OI).isReg() && "expected register");
114     switch (MI.getOperand(OI).getReg()) {
115     default:
116       break;
117     case ARM::LR:
118       ListContainsLR = true;
119       break;
120     case ARM::PC:
121       ListContainsPC = true;
122       break;
123     }
124   }
125 
126   if (ListContainsPC && ListContainsLR) {
127     Info = "use of LR and PC simultaneously in the list is deprecated";
128     return true;
129   }
130 
131   return false;
132 }
133 
134 #define GET_INSTRINFO_MC_DESC
135 #define ENABLE_INSTR_PREDICATE_VERIFIER
136 #include "ARMGenInstrInfo.inc"
137 
138 #define GET_SUBTARGETINFO_MC_DESC
139 #include "ARMGenSubtargetInfo.inc"
140 
141 std::string ARM_MC::ParseARMTriple(const Triple &TT, StringRef CPU) {
142   std::string ARMArchFeature;
143 
144   ARM::ArchKind ArchID = ARM::parseArch(TT.getArchName());
145   if (ArchID != ARM::ArchKind::INVALID &&  (CPU.empty() || CPU == "generic"))
146     ARMArchFeature = (ARMArchFeature + "+" + ARM::getArchName(ArchID)).str();
147 
148   if (TT.isThumb()) {
149     if (!ARMArchFeature.empty())
150       ARMArchFeature += ",";
151     ARMArchFeature += "+thumb-mode,+v4t";
152   }
153 
154   if (TT.isOSNaCl()) {
155     if (!ARMArchFeature.empty())
156       ARMArchFeature += ",";
157     ARMArchFeature += "+nacl-trap";
158   }
159 
160   if (TT.isOSWindows()) {
161     if (!ARMArchFeature.empty())
162       ARMArchFeature += ",";
163     ARMArchFeature += "+noarm";
164   }
165 
166   return ARMArchFeature;
167 }
168 
169 bool ARM_MC::isPredicated(const MCInst &MI, const MCInstrInfo *MCII) {
170   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
171   int PredOpIdx = Desc.findFirstPredOperandIdx();
172   return PredOpIdx != -1 && MI.getOperand(PredOpIdx).getImm() != ARMCC::AL;
173 }
174 
175 bool ARM_MC::isCPSRDefined(const MCInst &MI, const MCInstrInfo *MCII) {
176   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
177   for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
178     const MCOperand &MO = MI.getOperand(I);
179     if (MO.isReg() && MO.getReg() == ARM::CPSR &&
180         Desc.operands()[I].isOptionalDef())
181       return true;
182   }
183   return false;
184 }
185 
186 uint64_t ARM_MC::evaluateBranchTarget(const MCInstrDesc &InstDesc,
187                                       uint64_t Addr, int64_t Imm) {
188   // For ARM instructions the PC offset is 8 bytes, for Thumb instructions it
189   // is 4 bytes.
190   uint64_t Offset =
191       ((InstDesc.TSFlags & ARMII::FormMask) == ARMII::ThumbFrm) ? 4 : 8;
192 
193   // A Thumb instruction BLX(i) can be 16-bit aligned while targets Arm code
194   // which is 32-bit aligned. The target address for the case is calculated as
195   //   targetAddress = Align(PC,4) + imm32;
196   // where
197   //   Align(x, y) = y * (x DIV y);
198   if (InstDesc.getOpcode() == ARM::tBLXi)
199     Addr &= ~0x3;
200 
201   return Addr + Imm + Offset;
202 }
203 
204 MCSubtargetInfo *ARM_MC::createARMMCSubtargetInfo(const Triple &TT,
205                                                   StringRef CPU, StringRef FS) {
206   std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
207   if (!FS.empty()) {
208     if (!ArchFS.empty())
209       ArchFS = (Twine(ArchFS) + "," + FS).str();
210     else
211       ArchFS = std::string(FS);
212   }
213 
214   return createARMMCSubtargetInfoImpl(TT, CPU, /*TuneCPU*/ CPU, ArchFS);
215 }
216 
217 static MCInstrInfo *createARMMCInstrInfo() {
218   MCInstrInfo *X = new MCInstrInfo();
219   InitARMMCInstrInfo(X);
220   return X;
221 }
222 
223 void ARM_MC::initLLVMToCVRegMapping(MCRegisterInfo *MRI) {
224   // Mapping from CodeView to MC register id.
225   static const struct {
226     codeview::RegisterId CVReg;
227     MCPhysReg Reg;
228   } RegMap[] = {
229       {codeview::RegisterId::ARM_R0, ARM::R0},
230       {codeview::RegisterId::ARM_R1, ARM::R1},
231       {codeview::RegisterId::ARM_R2, ARM::R2},
232       {codeview::RegisterId::ARM_R3, ARM::R3},
233       {codeview::RegisterId::ARM_R4, ARM::R4},
234       {codeview::RegisterId::ARM_R5, ARM::R5},
235       {codeview::RegisterId::ARM_R6, ARM::R6},
236       {codeview::RegisterId::ARM_R7, ARM::R7},
237       {codeview::RegisterId::ARM_R8, ARM::R8},
238       {codeview::RegisterId::ARM_R9, ARM::R9},
239       {codeview::RegisterId::ARM_R10, ARM::R10},
240       {codeview::RegisterId::ARM_R11, ARM::R11},
241       {codeview::RegisterId::ARM_R12, ARM::R12},
242       {codeview::RegisterId::ARM_SP, ARM::SP},
243       {codeview::RegisterId::ARM_LR, ARM::LR},
244       {codeview::RegisterId::ARM_PC, ARM::PC},
245       {codeview::RegisterId::ARM_CPSR, ARM::CPSR},
246       {codeview::RegisterId::ARM_FPSCR, ARM::FPSCR},
247       {codeview::RegisterId::ARM_FPEXC, ARM::FPEXC},
248       {codeview::RegisterId::ARM_FS0, ARM::S0},
249       {codeview::RegisterId::ARM_FS1, ARM::S1},
250       {codeview::RegisterId::ARM_FS2, ARM::S2},
251       {codeview::RegisterId::ARM_FS3, ARM::S3},
252       {codeview::RegisterId::ARM_FS4, ARM::S4},
253       {codeview::RegisterId::ARM_FS5, ARM::S5},
254       {codeview::RegisterId::ARM_FS6, ARM::S6},
255       {codeview::RegisterId::ARM_FS7, ARM::S7},
256       {codeview::RegisterId::ARM_FS8, ARM::S8},
257       {codeview::RegisterId::ARM_FS9, ARM::S9},
258       {codeview::RegisterId::ARM_FS10, ARM::S10},
259       {codeview::RegisterId::ARM_FS11, ARM::S11},
260       {codeview::RegisterId::ARM_FS12, ARM::S12},
261       {codeview::RegisterId::ARM_FS13, ARM::S13},
262       {codeview::RegisterId::ARM_FS14, ARM::S14},
263       {codeview::RegisterId::ARM_FS15, ARM::S15},
264       {codeview::RegisterId::ARM_FS16, ARM::S16},
265       {codeview::RegisterId::ARM_FS17, ARM::S17},
266       {codeview::RegisterId::ARM_FS18, ARM::S18},
267       {codeview::RegisterId::ARM_FS19, ARM::S19},
268       {codeview::RegisterId::ARM_FS20, ARM::S20},
269       {codeview::RegisterId::ARM_FS21, ARM::S21},
270       {codeview::RegisterId::ARM_FS22, ARM::S22},
271       {codeview::RegisterId::ARM_FS23, ARM::S23},
272       {codeview::RegisterId::ARM_FS24, ARM::S24},
273       {codeview::RegisterId::ARM_FS25, ARM::S25},
274       {codeview::RegisterId::ARM_FS26, ARM::S26},
275       {codeview::RegisterId::ARM_FS27, ARM::S27},
276       {codeview::RegisterId::ARM_FS28, ARM::S28},
277       {codeview::RegisterId::ARM_FS29, ARM::S29},
278       {codeview::RegisterId::ARM_FS30, ARM::S30},
279       {codeview::RegisterId::ARM_FS31, ARM::S31},
280       {codeview::RegisterId::ARM_ND0, ARM::D0},
281       {codeview::RegisterId::ARM_ND1, ARM::D1},
282       {codeview::RegisterId::ARM_ND2, ARM::D2},
283       {codeview::RegisterId::ARM_ND3, ARM::D3},
284       {codeview::RegisterId::ARM_ND4, ARM::D4},
285       {codeview::RegisterId::ARM_ND5, ARM::D5},
286       {codeview::RegisterId::ARM_ND6, ARM::D6},
287       {codeview::RegisterId::ARM_ND7, ARM::D7},
288       {codeview::RegisterId::ARM_ND8, ARM::D8},
289       {codeview::RegisterId::ARM_ND9, ARM::D9},
290       {codeview::RegisterId::ARM_ND10, ARM::D10},
291       {codeview::RegisterId::ARM_ND11, ARM::D11},
292       {codeview::RegisterId::ARM_ND12, ARM::D12},
293       {codeview::RegisterId::ARM_ND13, ARM::D13},
294       {codeview::RegisterId::ARM_ND14, ARM::D14},
295       {codeview::RegisterId::ARM_ND15, ARM::D15},
296       {codeview::RegisterId::ARM_ND16, ARM::D16},
297       {codeview::RegisterId::ARM_ND17, ARM::D17},
298       {codeview::RegisterId::ARM_ND18, ARM::D18},
299       {codeview::RegisterId::ARM_ND19, ARM::D19},
300       {codeview::RegisterId::ARM_ND20, ARM::D20},
301       {codeview::RegisterId::ARM_ND21, ARM::D21},
302       {codeview::RegisterId::ARM_ND22, ARM::D22},
303       {codeview::RegisterId::ARM_ND23, ARM::D23},
304       {codeview::RegisterId::ARM_ND24, ARM::D24},
305       {codeview::RegisterId::ARM_ND25, ARM::D25},
306       {codeview::RegisterId::ARM_ND26, ARM::D26},
307       {codeview::RegisterId::ARM_ND27, ARM::D27},
308       {codeview::RegisterId::ARM_ND28, ARM::D28},
309       {codeview::RegisterId::ARM_ND29, ARM::D29},
310       {codeview::RegisterId::ARM_ND30, ARM::D30},
311       {codeview::RegisterId::ARM_ND31, ARM::D31},
312       {codeview::RegisterId::ARM_NQ0, ARM::Q0},
313       {codeview::RegisterId::ARM_NQ1, ARM::Q1},
314       {codeview::RegisterId::ARM_NQ2, ARM::Q2},
315       {codeview::RegisterId::ARM_NQ3, ARM::Q3},
316       {codeview::RegisterId::ARM_NQ4, ARM::Q4},
317       {codeview::RegisterId::ARM_NQ5, ARM::Q5},
318       {codeview::RegisterId::ARM_NQ6, ARM::Q6},
319       {codeview::RegisterId::ARM_NQ7, ARM::Q7},
320       {codeview::RegisterId::ARM_NQ8, ARM::Q8},
321       {codeview::RegisterId::ARM_NQ9, ARM::Q9},
322       {codeview::RegisterId::ARM_NQ10, ARM::Q10},
323       {codeview::RegisterId::ARM_NQ11, ARM::Q11},
324       {codeview::RegisterId::ARM_NQ12, ARM::Q12},
325       {codeview::RegisterId::ARM_NQ13, ARM::Q13},
326       {codeview::RegisterId::ARM_NQ14, ARM::Q14},
327       {codeview::RegisterId::ARM_NQ15, ARM::Q15},
328   };
329   for (const auto &I : RegMap)
330     MRI->mapLLVMRegToCVReg(I.Reg, static_cast<int>(I.CVReg));
331 }
332 
333 static MCRegisterInfo *createARMMCRegisterInfo(const Triple &Triple) {
334   MCRegisterInfo *X = new MCRegisterInfo();
335   InitARMMCRegisterInfo(X, ARM::LR, 0, 0, ARM::PC);
336   ARM_MC::initLLVMToCVRegMapping(X);
337   return X;
338 }
339 
340 static MCAsmInfo *createARMMCAsmInfo(const MCRegisterInfo &MRI,
341                                      const Triple &TheTriple,
342                                      const MCTargetOptions &Options) {
343   MCAsmInfo *MAI;
344   if (TheTriple.isOSDarwin() || TheTriple.isOSBinFormatMachO())
345     MAI = new ARMMCAsmInfoDarwin(TheTriple);
346   else if (TheTriple.isWindowsMSVCEnvironment())
347     MAI = new ARMCOFFMCAsmInfoMicrosoft();
348   else if (TheTriple.isOSWindows())
349     MAI = new ARMCOFFMCAsmInfoGNU();
350   else
351     MAI = new ARMELFMCAsmInfo(TheTriple);
352 
353   unsigned Reg = MRI.getDwarfRegNum(ARM::SP, true);
354   MAI->addInitialFrameState(MCCFIInstruction::cfiDefCfa(nullptr, Reg, 0));
355 
356   return MAI;
357 }
358 
359 static MCStreamer *createELFStreamer(const Triple &T, MCContext &Ctx,
360                                      std::unique_ptr<MCAsmBackend> &&MAB,
361                                      std::unique_ptr<MCObjectWriter> &&OW,
362                                      std::unique_ptr<MCCodeEmitter> &&Emitter) {
363   return createARMELFStreamer(
364       Ctx, std::move(MAB), std::move(OW), std::move(Emitter),
365       (T.getArch() == Triple::thumb || T.getArch() == Triple::thumbeb),
366       T.isAndroid());
367 }
368 
369 static MCStreamer *
370 createARMMachOStreamer(MCContext &Ctx, std::unique_ptr<MCAsmBackend> &&MAB,
371                        std::unique_ptr<MCObjectWriter> &&OW,
372                        std::unique_ptr<MCCodeEmitter> &&Emitter) {
373   return createMachOStreamer(Ctx, std::move(MAB), std::move(OW),
374                              std::move(Emitter), false);
375 }
376 
377 static MCInstPrinter *createARMMCInstPrinter(const Triple &T,
378                                              unsigned SyntaxVariant,
379                                              const MCAsmInfo &MAI,
380                                              const MCInstrInfo &MII,
381                                              const MCRegisterInfo &MRI) {
382   if (SyntaxVariant == 0)
383     return new ARMInstPrinter(MAI, MII, MRI);
384   return nullptr;
385 }
386 
387 static MCRelocationInfo *createARMMCRelocationInfo(const Triple &TT,
388                                                    MCContext &Ctx) {
389   if (TT.isOSBinFormatMachO())
390     return createARMMachORelocationInfo(Ctx);
391   // Default to the stock relocation info.
392   return llvm::createMCRelocationInfo(TT, Ctx);
393 }
394 
395 namespace {
396 
397 class ARMMCInstrAnalysis : public MCInstrAnalysis {
398 public:
399   ARMMCInstrAnalysis(const MCInstrInfo *Info) : MCInstrAnalysis(Info) {}
400 
401   bool isUnconditionalBranch(const MCInst &Inst) const override {
402     // BCCs with the "always" predicate are unconditional branches.
403     if (Inst.getOpcode() == ARM::Bcc && Inst.getOperand(1).getImm()==ARMCC::AL)
404       return true;
405     return MCInstrAnalysis::isUnconditionalBranch(Inst);
406   }
407 
408   bool isConditionalBranch(const MCInst &Inst) const override {
409     // BCCs with the "always" predicate are unconditional branches.
410     if (Inst.getOpcode() == ARM::Bcc && Inst.getOperand(1).getImm()==ARMCC::AL)
411       return false;
412     return MCInstrAnalysis::isConditionalBranch(Inst);
413   }
414 
415   bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
416                       uint64_t &Target) const override {
417     const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
418 
419     // Find the PC-relative immediate operand in the instruction.
420     for (unsigned OpNum = 0; OpNum < Desc.getNumOperands(); ++OpNum) {
421       if (Inst.getOperand(OpNum).isImm() &&
422           Desc.operands()[OpNum].OperandType == MCOI::OPERAND_PCREL) {
423         int64_t Imm = Inst.getOperand(OpNum).getImm();
424         Target = ARM_MC::evaluateBranchTarget(Desc, Addr, Imm);
425         return true;
426       }
427     }
428     return false;
429   }
430 
431   std::optional<uint64_t>
432   evaluateMemoryOperandAddress(const MCInst &Inst, const MCSubtargetInfo *STI,
433                                uint64_t Addr, uint64_t Size) const override;
434 };
435 
436 } // namespace
437 
438 static std::optional<uint64_t>
439 // NOLINTNEXTLINE(readability-identifier-naming)
440 evaluateMemOpAddrForAddrMode_i12(const MCInst &Inst, const MCInstrDesc &Desc,
441                                  unsigned MemOpIndex, uint64_t Addr) {
442   if (MemOpIndex + 1 >= Desc.getNumOperands())
443     return std::nullopt;
444 
445   const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
446   const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
447   if (!MO1.isReg() || MO1.getReg() != ARM::PC || !MO2.isImm())
448     return std::nullopt;
449 
450   int32_t OffImm = (int32_t)MO2.getImm();
451   // Special value for #-0. All others are normal.
452   if (OffImm == INT32_MIN)
453     OffImm = 0;
454   return Addr + OffImm;
455 }
456 
457 static std::optional<uint64_t>
458 evaluateMemOpAddrForAddrMode3(const MCInst &Inst, const MCInstrDesc &Desc,
459                               unsigned MemOpIndex, uint64_t Addr) {
460   if (MemOpIndex + 2 >= Desc.getNumOperands())
461     return std::nullopt;
462 
463   const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
464   const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
465   const MCOperand &MO3 = Inst.getOperand(MemOpIndex + 2);
466   if (!MO1.isReg() || MO1.getReg() != ARM::PC || MO2.getReg() || !MO3.isImm())
467     return std::nullopt;
468 
469   unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm());
470   ARM_AM::AddrOpc Op = ARM_AM::getAM3Op(MO3.getImm());
471 
472   if (Op == ARM_AM::sub)
473     return Addr - ImmOffs;
474   return Addr + ImmOffs;
475 }
476 
477 static std::optional<uint64_t>
478 evaluateMemOpAddrForAddrMode5(const MCInst &Inst, const MCInstrDesc &Desc,
479                               unsigned MemOpIndex, uint64_t Addr) {
480   if (MemOpIndex + 1 >= Desc.getNumOperands())
481     return std::nullopt;
482 
483   const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
484   const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
485   if (!MO1.isReg() || MO1.getReg() != ARM::PC || !MO2.isImm())
486     return std::nullopt;
487 
488   unsigned ImmOffs = ARM_AM::getAM5Offset(MO2.getImm());
489   ARM_AM::AddrOpc Op = ARM_AM::getAM5Op(MO2.getImm());
490 
491   if (Op == ARM_AM::sub)
492     return Addr - ImmOffs * 4;
493   return Addr + ImmOffs * 4;
494 }
495 
496 static std::optional<uint64_t>
497 evaluateMemOpAddrForAddrMode5FP16(const MCInst &Inst, const MCInstrDesc &Desc,
498                                   unsigned MemOpIndex, uint64_t Addr) {
499   if (MemOpIndex + 1 >= Desc.getNumOperands())
500     return std::nullopt;
501 
502   const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
503   const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
504   if (!MO1.isReg() || MO1.getReg() != ARM::PC || !MO2.isImm())
505     return std::nullopt;
506 
507   unsigned ImmOffs = ARM_AM::getAM5FP16Offset(MO2.getImm());
508   ARM_AM::AddrOpc Op = ARM_AM::getAM5FP16Op(MO2.getImm());
509 
510   if (Op == ARM_AM::sub)
511     return Addr - ImmOffs * 2;
512   return Addr + ImmOffs * 2;
513 }
514 
515 static std::optional<uint64_t>
516 // NOLINTNEXTLINE(readability-identifier-naming)
517 evaluateMemOpAddrForAddrModeT2_i8s4(const MCInst &Inst, const MCInstrDesc &Desc,
518                                     unsigned MemOpIndex, uint64_t Addr) {
519   if (MemOpIndex + 1 >= Desc.getNumOperands())
520     return std::nullopt;
521 
522   const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
523   const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
524   if (!MO1.isReg() || MO1.getReg() != ARM::PC || !MO2.isImm())
525     return std::nullopt;
526 
527   int32_t OffImm = (int32_t)MO2.getImm();
528   assert(((OffImm & 0x3) == 0) && "Not a valid immediate!");
529 
530   // Special value for #-0. All others are normal.
531   if (OffImm == INT32_MIN)
532     OffImm = 0;
533   return Addr + OffImm;
534 }
535 
536 static std::optional<uint64_t>
537 // NOLINTNEXTLINE(readability-identifier-naming)
538 evaluateMemOpAddrForAddrModeT2_pc(const MCInst &Inst, const MCInstrDesc &Desc,
539                                   unsigned MemOpIndex, uint64_t Addr) {
540   const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
541   if (!MO1.isImm())
542     return std::nullopt;
543 
544   int32_t OffImm = (int32_t)MO1.getImm();
545 
546   // Special value for #-0. All others are normal.
547   if (OffImm == INT32_MIN)
548     OffImm = 0;
549   return Addr + OffImm;
550 }
551 
552 static std::optional<uint64_t>
553 // NOLINTNEXTLINE(readability-identifier-naming)
554 evaluateMemOpAddrForAddrModeT1_s(const MCInst &Inst, const MCInstrDesc &Desc,
555                                  unsigned MemOpIndex, uint64_t Addr) {
556   return evaluateMemOpAddrForAddrModeT2_pc(Inst, Desc, MemOpIndex, Addr);
557 }
558 
559 std::optional<uint64_t> ARMMCInstrAnalysis::evaluateMemoryOperandAddress(
560     const MCInst &Inst, const MCSubtargetInfo *STI, uint64_t Addr,
561     uint64_t Size) const {
562   const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
563 
564   // Only load instructions can have PC-relative memory addressing.
565   if (!Desc.mayLoad())
566     return std::nullopt;
567 
568   // PC-relative addressing does not update the base register.
569   uint64_t TSFlags = Desc.TSFlags;
570   unsigned IndexMode =
571       (TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift;
572   if (IndexMode != ARMII::IndexModeNone)
573     return std::nullopt;
574 
575   // Find the memory addressing operand in the instruction.
576   unsigned OpIndex = Desc.NumDefs;
577   while (OpIndex < Desc.getNumOperands() &&
578          Desc.operands()[OpIndex].OperandType != MCOI::OPERAND_MEMORY)
579     ++OpIndex;
580   if (OpIndex == Desc.getNumOperands())
581     return std::nullopt;
582 
583   // Base address for PC-relative addressing is always 32-bit aligned.
584   Addr &= ~0x3;
585 
586   // For ARM instructions the PC offset is 8 bytes, for Thumb instructions it
587   // is 4 bytes.
588   switch (Desc.TSFlags & ARMII::FormMask) {
589   default:
590     Addr += 8;
591     break;
592   case ARMII::ThumbFrm:
593     Addr += 4;
594     break;
595   // VLDR* instructions share the same opcode (and thus the same form) for Arm
596   // and Thumb. Use a bit longer route through STI in that case.
597   case ARMII::VFPLdStFrm:
598     Addr += STI->hasFeature(ARM::ModeThumb) ? 4 : 8;
599     break;
600   }
601 
602   // Eveluate the address depending on the addressing mode
603   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
604   switch (AddrMode) {
605   default:
606     return std::nullopt;
607   case ARMII::AddrMode_i12:
608     return evaluateMemOpAddrForAddrMode_i12(Inst, Desc, OpIndex, Addr);
609   case ARMII::AddrMode3:
610     return evaluateMemOpAddrForAddrMode3(Inst, Desc, OpIndex, Addr);
611   case ARMII::AddrMode5:
612     return evaluateMemOpAddrForAddrMode5(Inst, Desc, OpIndex, Addr);
613   case ARMII::AddrMode5FP16:
614     return evaluateMemOpAddrForAddrMode5FP16(Inst, Desc, OpIndex, Addr);
615   case ARMII::AddrModeT2_i8s4:
616     return evaluateMemOpAddrForAddrModeT2_i8s4(Inst, Desc, OpIndex, Addr);
617   case ARMII::AddrModeT2_pc:
618     return evaluateMemOpAddrForAddrModeT2_pc(Inst, Desc, OpIndex, Addr);
619   case ARMII::AddrModeT1_s:
620     return evaluateMemOpAddrForAddrModeT1_s(Inst, Desc, OpIndex, Addr);
621   }
622 }
623 
624 static MCInstrAnalysis *createARMMCInstrAnalysis(const MCInstrInfo *Info) {
625   return new ARMMCInstrAnalysis(Info);
626 }
627 
628 bool ARM::isCDECoproc(size_t Coproc, const MCSubtargetInfo &STI) {
629   // Unfortunately we don't have ARMTargetInfo in the disassembler, so we have
630   // to rely on feature bits.
631   if (Coproc >= 8)
632     return false;
633   return STI.getFeatureBits()[ARM::FeatureCoprocCDE0 + Coproc];
634 }
635 
636 // Force static initialization.
637 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMTargetMC() {
638   for (Target *T : {&getTheARMLETarget(), &getTheARMBETarget(),
639                     &getTheThumbLETarget(), &getTheThumbBETarget()}) {
640     // Register the MC asm info.
641     RegisterMCAsmInfoFn X(*T, createARMMCAsmInfo);
642 
643     // Register the MC instruction info.
644     TargetRegistry::RegisterMCInstrInfo(*T, createARMMCInstrInfo);
645 
646     // Register the MC register info.
647     TargetRegistry::RegisterMCRegInfo(*T, createARMMCRegisterInfo);
648 
649     // Register the MC subtarget info.
650     TargetRegistry::RegisterMCSubtargetInfo(*T,
651                                             ARM_MC::createARMMCSubtargetInfo);
652 
653     TargetRegistry::RegisterELFStreamer(*T, createELFStreamer);
654     TargetRegistry::RegisterCOFFStreamer(*T, createARMWinCOFFStreamer);
655     TargetRegistry::RegisterMachOStreamer(*T, createARMMachOStreamer);
656 
657     // Register the obj target streamer.
658     TargetRegistry::RegisterObjectTargetStreamer(*T,
659                                                  createARMObjectTargetStreamer);
660 
661     // Register the asm streamer.
662     TargetRegistry::RegisterAsmTargetStreamer(*T, createARMTargetAsmStreamer);
663 
664     // Register the null TargetStreamer.
665     TargetRegistry::RegisterNullTargetStreamer(*T, createARMNullTargetStreamer);
666 
667     // Register the MCInstPrinter.
668     TargetRegistry::RegisterMCInstPrinter(*T, createARMMCInstPrinter);
669 
670     // Register the MC relocation info.
671     TargetRegistry::RegisterMCRelocationInfo(*T, createARMMCRelocationInfo);
672   }
673 
674   // Register the MC instruction analyzer.
675   for (Target *T : {&getTheARMLETarget(), &getTheARMBETarget(),
676                     &getTheThumbLETarget(), &getTheThumbBETarget()})
677     TargetRegistry::RegisterMCInstrAnalysis(*T, createARMMCInstrAnalysis);
678 
679   for (Target *T : {&getTheARMLETarget(), &getTheThumbLETarget()}) {
680     TargetRegistry::RegisterMCCodeEmitter(*T, createARMLEMCCodeEmitter);
681     TargetRegistry::RegisterMCAsmBackend(*T, createARMLEAsmBackend);
682   }
683   for (Target *T : {&getTheARMBETarget(), &getTheThumbBETarget()}) {
684     TargetRegistry::RegisterMCCodeEmitter(*T, createARMBEMCCodeEmitter);
685     TargetRegistry::RegisterMCAsmBackend(*T, createARMBEAsmBackend);
686   }
687 }
688