1 //===-- ARM/ARMMCCodeEmitter.cpp - Convert ARM code to machine code -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the ARMMCCodeEmitter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "MCTargetDesc/ARMAddressingModes.h" 14 #include "MCTargetDesc/ARMBaseInfo.h" 15 #include "MCTargetDesc/ARMFixupKinds.h" 16 #include "MCTargetDesc/ARMMCExpr.h" 17 #include "llvm/ADT/APFloat.h" 18 #include "llvm/ADT/APInt.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/MC/MCCodeEmitter.h" 23 #include "llvm/MC/MCContext.h" 24 #include "llvm/MC/MCExpr.h" 25 #include "llvm/MC/MCFixup.h" 26 #include "llvm/MC/MCInst.h" 27 #include "llvm/MC/MCInstrDesc.h" 28 #include "llvm/MC/MCInstrInfo.h" 29 #include "llvm/MC/MCRegisterInfo.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/Compiler.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <algorithm> 37 #include <cassert> 38 #include <cstdint> 39 #include <cstdlib> 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "mccodeemitter" 44 45 STATISTIC(MCNumEmitted, "Number of MC instructions emitted."); 46 STATISTIC(MCNumCPRelocations, "Number of constant pool relocations created."); 47 48 namespace { 49 50 class ARMMCCodeEmitter : public MCCodeEmitter { 51 const MCInstrInfo &MCII; 52 MCContext &CTX; 53 bool IsLittleEndian; 54 55 public: 56 ARMMCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx, bool IsLittle) 57 : MCII(mcii), CTX(ctx), IsLittleEndian(IsLittle) { 58 } 59 ARMMCCodeEmitter(const ARMMCCodeEmitter &) = delete; 60 ARMMCCodeEmitter &operator=(const ARMMCCodeEmitter &) = delete; 61 ~ARMMCCodeEmitter() override = default; 62 63 bool isThumb(const MCSubtargetInfo &STI) const { 64 return STI.getFeatureBits()[ARM::ModeThumb]; 65 } 66 67 bool isThumb2(const MCSubtargetInfo &STI) const { 68 return isThumb(STI) && STI.getFeatureBits()[ARM::FeatureThumb2]; 69 } 70 71 bool isTargetMachO(const MCSubtargetInfo &STI) const { 72 const Triple &TT = STI.getTargetTriple(); 73 return TT.isOSBinFormatMachO(); 74 } 75 76 unsigned getMachineSoImmOpValue(unsigned SoImm) const; 77 78 // getBinaryCodeForInstr - TableGen'erated function for getting the 79 // binary encoding for an instruction. 80 uint64_t getBinaryCodeForInstr(const MCInst &MI, 81 SmallVectorImpl<MCFixup> &Fixups, 82 const MCSubtargetInfo &STI) const; 83 84 /// getMachineOpValue - Return binary encoding of operand. If the machine 85 /// operand requires relocation, record the relocation and return zero. 86 unsigned getMachineOpValue(const MCInst &MI,const MCOperand &MO, 87 SmallVectorImpl<MCFixup> &Fixups, 88 const MCSubtargetInfo &STI) const; 89 90 /// getHiLo16ImmOpValue - Return the encoding for the hi / low 16-bit of 91 /// the specified operand. This is used for operands with :lower16: and 92 /// :upper16: prefixes. 93 uint32_t getHiLo16ImmOpValue(const MCInst &MI, unsigned OpIdx, 94 SmallVectorImpl<MCFixup> &Fixups, 95 const MCSubtargetInfo &STI) const; 96 97 bool EncodeAddrModeOpValues(const MCInst &MI, unsigned OpIdx, 98 unsigned &Reg, unsigned &Imm, 99 SmallVectorImpl<MCFixup> &Fixups, 100 const MCSubtargetInfo &STI) const; 101 102 /// getThumbBLTargetOpValue - Return encoding info for Thumb immediate 103 /// BL branch target. 104 uint32_t getThumbBLTargetOpValue(const MCInst &MI, unsigned OpIdx, 105 SmallVectorImpl<MCFixup> &Fixups, 106 const MCSubtargetInfo &STI) const; 107 108 /// getThumbBLXTargetOpValue - Return encoding info for Thumb immediate 109 /// BLX branch target. 110 uint32_t getThumbBLXTargetOpValue(const MCInst &MI, unsigned OpIdx, 111 SmallVectorImpl<MCFixup> &Fixups, 112 const MCSubtargetInfo &STI) const; 113 114 /// getThumbBRTargetOpValue - Return encoding info for Thumb branch target. 115 uint32_t getThumbBRTargetOpValue(const MCInst &MI, unsigned OpIdx, 116 SmallVectorImpl<MCFixup> &Fixups, 117 const MCSubtargetInfo &STI) const; 118 119 /// getThumbBCCTargetOpValue - Return encoding info for Thumb branch target. 120 uint32_t getThumbBCCTargetOpValue(const MCInst &MI, unsigned OpIdx, 121 SmallVectorImpl<MCFixup> &Fixups, 122 const MCSubtargetInfo &STI) const; 123 124 /// getThumbCBTargetOpValue - Return encoding info for Thumb branch target. 125 uint32_t getThumbCBTargetOpValue(const MCInst &MI, unsigned OpIdx, 126 SmallVectorImpl<MCFixup> &Fixups, 127 const MCSubtargetInfo &STI) const; 128 129 /// getBranchTargetOpValue - Return encoding info for 24-bit immediate 130 /// branch target. 131 uint32_t getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx, 132 SmallVectorImpl<MCFixup> &Fixups, 133 const MCSubtargetInfo &STI) const; 134 135 /// getThumbBranchTargetOpValue - Return encoding info for 24-bit 136 /// immediate Thumb2 direct branch target. 137 uint32_t getThumbBranchTargetOpValue(const MCInst &MI, unsigned OpIdx, 138 SmallVectorImpl<MCFixup> &Fixups, 139 const MCSubtargetInfo &STI) const; 140 141 /// getARMBranchTargetOpValue - Return encoding info for 24-bit immediate 142 /// branch target. 143 uint32_t getARMBranchTargetOpValue(const MCInst &MI, unsigned OpIdx, 144 SmallVectorImpl<MCFixup> &Fixups, 145 const MCSubtargetInfo &STI) const; 146 uint32_t getARMBLTargetOpValue(const MCInst &MI, unsigned OpIdx, 147 SmallVectorImpl<MCFixup> &Fixups, 148 const MCSubtargetInfo &STI) const; 149 uint32_t getARMBLXTargetOpValue(const MCInst &MI, unsigned OpIdx, 150 SmallVectorImpl<MCFixup> &Fixups, 151 const MCSubtargetInfo &STI) const; 152 153 /// getAdrLabelOpValue - Return encoding info for 12-bit immediate 154 /// ADR label target. 155 uint32_t getAdrLabelOpValue(const MCInst &MI, unsigned OpIdx, 156 SmallVectorImpl<MCFixup> &Fixups, 157 const MCSubtargetInfo &STI) const; 158 uint32_t getThumbAdrLabelOpValue(const MCInst &MI, unsigned OpIdx, 159 SmallVectorImpl<MCFixup> &Fixups, 160 const MCSubtargetInfo &STI) const; 161 uint32_t getT2AdrLabelOpValue(const MCInst &MI, unsigned OpIdx, 162 SmallVectorImpl<MCFixup> &Fixups, 163 const MCSubtargetInfo &STI) const; 164 165 uint32_t getITMaskOpValue(const MCInst &MI, unsigned OpIdx, 166 SmallVectorImpl<MCFixup> &Fixups, 167 const MCSubtargetInfo &STI) const; 168 169 /// getMVEShiftImmOpValue - Return encoding info for the 'sz:imm5' 170 /// operand. 171 uint32_t getMVEShiftImmOpValue(const MCInst &MI, unsigned OpIdx, 172 SmallVectorImpl<MCFixup> &Fixups, 173 const MCSubtargetInfo &STI) const; 174 175 /// getAddrModeImm12OpValue - Return encoding info for 'reg +/- imm12' 176 /// operand. 177 uint32_t getAddrModeImm12OpValue(const MCInst &MI, unsigned OpIdx, 178 SmallVectorImpl<MCFixup> &Fixups, 179 const MCSubtargetInfo &STI) const; 180 181 /// getThumbAddrModeRegRegOpValue - Return encoding for 'reg + reg' operand. 182 uint32_t getThumbAddrModeRegRegOpValue(const MCInst &MI, unsigned OpIdx, 183 SmallVectorImpl<MCFixup> &Fixups, 184 const MCSubtargetInfo &STI) const; 185 186 /// getT2AddrModeImm8s4OpValue - Return encoding info for 'reg +/- imm8<<2' 187 /// operand. 188 uint32_t getT2AddrModeImm8s4OpValue(const MCInst &MI, unsigned OpIdx, 189 SmallVectorImpl<MCFixup> &Fixups, 190 const MCSubtargetInfo &STI) const; 191 192 /// getT2AddrModeImm7s4OpValue - Return encoding info for 'reg +/- imm7<<2' 193 /// operand. 194 uint32_t getT2AddrModeImm7s4OpValue(const MCInst &MI, unsigned OpIdx, 195 SmallVectorImpl<MCFixup> &Fixups, 196 const MCSubtargetInfo &STI) const; 197 198 /// getT2AddrModeImm0_1020s4OpValue - Return encoding info for 'reg + imm8<<2' 199 /// operand. 200 uint32_t getT2AddrModeImm0_1020s4OpValue(const MCInst &MI, unsigned OpIdx, 201 SmallVectorImpl<MCFixup> &Fixups, 202 const MCSubtargetInfo &STI) const; 203 204 /// getT2ScaledImmOpValue - Return encoding info for '+/- immX<<Y' 205 /// operand. 206 template<unsigned Bits, unsigned Shift> 207 uint32_t getT2ScaledImmOpValue(const MCInst &MI, unsigned OpIdx, 208 SmallVectorImpl<MCFixup> &Fixups, 209 const MCSubtargetInfo &STI) const; 210 211 /// getMveAddrModeRQOpValue - Return encoding info for 'reg, vreg' 212 /// operand. 213 uint32_t getMveAddrModeRQOpValue(const MCInst &MI, unsigned OpIdx, 214 SmallVectorImpl<MCFixup> &Fixups, 215 const MCSubtargetInfo &STI) const; 216 217 /// getMveAddrModeQOpValue - Return encoding info for 'reg +/- imm7<<{shift}' 218 /// operand. 219 template<int shift> 220 uint32_t getMveAddrModeQOpValue(const MCInst &MI, unsigned OpIdx, 221 SmallVectorImpl<MCFixup> &Fixups, 222 const MCSubtargetInfo &STI) const; 223 224 /// getLdStSORegOpValue - Return encoding info for 'reg +/- reg shop imm' 225 /// operand as needed by load/store instructions. 226 uint32_t getLdStSORegOpValue(const MCInst &MI, unsigned OpIdx, 227 SmallVectorImpl<MCFixup> &Fixups, 228 const MCSubtargetInfo &STI) const; 229 230 /// getLdStmModeOpValue - Return encoding for load/store multiple mode. 231 uint32_t getLdStmModeOpValue(const MCInst &MI, unsigned OpIdx, 232 SmallVectorImpl<MCFixup> &Fixups, 233 const MCSubtargetInfo &STI) const { 234 ARM_AM::AMSubMode Mode = (ARM_AM::AMSubMode)MI.getOperand(OpIdx).getImm(); 235 switch (Mode) { 236 default: llvm_unreachable("Unknown addressing sub-mode!"); 237 case ARM_AM::da: return 0; 238 case ARM_AM::ia: return 1; 239 case ARM_AM::db: return 2; 240 case ARM_AM::ib: return 3; 241 } 242 } 243 244 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value. 245 /// 246 unsigned getShiftOp(ARM_AM::ShiftOpc ShOpc) const { 247 switch (ShOpc) { 248 case ARM_AM::no_shift: 249 case ARM_AM::lsl: return 0; 250 case ARM_AM::lsr: return 1; 251 case ARM_AM::asr: return 2; 252 case ARM_AM::ror: 253 case ARM_AM::rrx: return 3; 254 default: 255 llvm_unreachable("Invalid ShiftOpc!"); 256 } 257 } 258 259 /// getAddrMode2OffsetOpValue - Return encoding for am2offset operands. 260 uint32_t getAddrMode2OffsetOpValue(const MCInst &MI, unsigned OpIdx, 261 SmallVectorImpl<MCFixup> &Fixups, 262 const MCSubtargetInfo &STI) const; 263 264 /// getPostIdxRegOpValue - Return encoding for postidx_reg operands. 265 uint32_t getPostIdxRegOpValue(const MCInst &MI, unsigned OpIdx, 266 SmallVectorImpl<MCFixup> &Fixups, 267 const MCSubtargetInfo &STI) const; 268 269 /// getAddrMode3OffsetOpValue - Return encoding for am3offset operands. 270 uint32_t getAddrMode3OffsetOpValue(const MCInst &MI, unsigned OpIdx, 271 SmallVectorImpl<MCFixup> &Fixups, 272 const MCSubtargetInfo &STI) const; 273 274 /// getAddrMode3OpValue - Return encoding for addrmode3 operands. 275 uint32_t getAddrMode3OpValue(const MCInst &MI, unsigned OpIdx, 276 SmallVectorImpl<MCFixup> &Fixups, 277 const MCSubtargetInfo &STI) const; 278 279 /// getAddrModeThumbSPOpValue - Return encoding info for 'reg +/- imm12' 280 /// operand. 281 uint32_t getAddrModeThumbSPOpValue(const MCInst &MI, unsigned OpIdx, 282 SmallVectorImpl<MCFixup> &Fixups, 283 const MCSubtargetInfo &STI) const; 284 285 /// getAddrModeISOpValue - Encode the t_addrmode_is# operands. 286 uint32_t getAddrModeISOpValue(const MCInst &MI, unsigned OpIdx, 287 SmallVectorImpl<MCFixup> &Fixups, 288 const MCSubtargetInfo &STI) const; 289 290 /// getAddrModePCOpValue - Return encoding for t_addrmode_pc operands. 291 uint32_t getAddrModePCOpValue(const MCInst &MI, unsigned OpIdx, 292 SmallVectorImpl<MCFixup> &Fixups, 293 const MCSubtargetInfo &STI) const; 294 295 /// getAddrMode5OpValue - Return encoding info for 'reg +/- (imm8 << 2)' operand. 296 uint32_t getAddrMode5OpValue(const MCInst &MI, unsigned OpIdx, 297 SmallVectorImpl<MCFixup> &Fixups, 298 const MCSubtargetInfo &STI) const; 299 300 /// getAddrMode5FP16OpValue - Return encoding info for 'reg +/- (imm8 << 1)' operand. 301 uint32_t getAddrMode5FP16OpValue(const MCInst &MI, unsigned OpIdx, 302 SmallVectorImpl<MCFixup> &Fixups, 303 const MCSubtargetInfo &STI) const; 304 305 /// getCCOutOpValue - Return encoding of the 's' bit. 306 unsigned getCCOutOpValue(const MCInst &MI, unsigned Op, 307 SmallVectorImpl<MCFixup> &Fixups, 308 const MCSubtargetInfo &STI) const { 309 // The operand is either reg0 or CPSR. The 's' bit is encoded as '0' or 310 // '1' respectively. 311 return MI.getOperand(Op).getReg() == ARM::CPSR; 312 } 313 314 unsigned getModImmOpValue(const MCInst &MI, unsigned Op, 315 SmallVectorImpl<MCFixup> &Fixups, 316 const MCSubtargetInfo &ST) const { 317 const MCOperand &MO = MI.getOperand(Op); 318 319 // Support for fixups (MCFixup) 320 if (MO.isExpr()) { 321 const MCExpr *Expr = MO.getExpr(); 322 // Fixups resolve to plain values that need to be encoded. 323 MCFixupKind Kind = MCFixupKind(ARM::fixup_arm_mod_imm); 324 Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc())); 325 return 0; 326 } 327 328 // Immediate is already in its encoded format 329 return MO.getImm(); 330 } 331 332 /// getT2SOImmOpValue - Return an encoded 12-bit shifted-immediate value. 333 unsigned getT2SOImmOpValue(const MCInst &MI, unsigned Op, 334 SmallVectorImpl<MCFixup> &Fixups, 335 const MCSubtargetInfo &STI) const { 336 const MCOperand &MO = MI.getOperand(Op); 337 338 // Support for fixups (MCFixup) 339 if (MO.isExpr()) { 340 const MCExpr *Expr = MO.getExpr(); 341 // Fixups resolve to plain values that need to be encoded. 342 MCFixupKind Kind = MCFixupKind(ARM::fixup_t2_so_imm); 343 Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc())); 344 return 0; 345 } 346 unsigned SoImm = MO.getImm(); 347 unsigned Encoded = ARM_AM::getT2SOImmVal(SoImm); 348 assert(Encoded != ~0U && "Not a Thumb2 so_imm value?"); 349 return Encoded; 350 } 351 352 unsigned getT2AddrModeSORegOpValue(const MCInst &MI, unsigned OpNum, 353 SmallVectorImpl<MCFixup> &Fixups, 354 const MCSubtargetInfo &STI) const; 355 template<unsigned Bits, unsigned Shift> 356 unsigned getT2AddrModeImmOpValue(const MCInst &MI, unsigned OpNum, 357 SmallVectorImpl<MCFixup> &Fixups, 358 const MCSubtargetInfo &STI) const; 359 unsigned getT2AddrModeImm8OffsetOpValue(const MCInst &MI, unsigned OpNum, 360 SmallVectorImpl<MCFixup> &Fixups, 361 const MCSubtargetInfo &STI) const; 362 363 /// getSORegOpValue - Return an encoded so_reg shifted register value. 364 unsigned getSORegRegOpValue(const MCInst &MI, unsigned Op, 365 SmallVectorImpl<MCFixup> &Fixups, 366 const MCSubtargetInfo &STI) const; 367 unsigned getSORegImmOpValue(const MCInst &MI, unsigned Op, 368 SmallVectorImpl<MCFixup> &Fixups, 369 const MCSubtargetInfo &STI) const; 370 unsigned getT2SORegOpValue(const MCInst &MI, unsigned Op, 371 SmallVectorImpl<MCFixup> &Fixups, 372 const MCSubtargetInfo &STI) const; 373 374 unsigned getNEONVcvtImm32OpValue(const MCInst &MI, unsigned Op, 375 SmallVectorImpl<MCFixup> &Fixups, 376 const MCSubtargetInfo &STI) const { 377 return 64 - MI.getOperand(Op).getImm(); 378 } 379 380 unsigned getBitfieldInvertedMaskOpValue(const MCInst &MI, unsigned Op, 381 SmallVectorImpl<MCFixup> &Fixups, 382 const MCSubtargetInfo &STI) const; 383 384 unsigned getRegisterListOpValue(const MCInst &MI, unsigned Op, 385 SmallVectorImpl<MCFixup> &Fixups, 386 const MCSubtargetInfo &STI) const; 387 unsigned getAddrMode6AddressOpValue(const MCInst &MI, unsigned Op, 388 SmallVectorImpl<MCFixup> &Fixups, 389 const MCSubtargetInfo &STI) const; 390 unsigned getAddrMode6OneLane32AddressOpValue(const MCInst &MI, unsigned Op, 391 SmallVectorImpl<MCFixup> &Fixups, 392 const MCSubtargetInfo &STI) const; 393 unsigned getAddrMode6DupAddressOpValue(const MCInst &MI, unsigned Op, 394 SmallVectorImpl<MCFixup> &Fixups, 395 const MCSubtargetInfo &STI) const; 396 unsigned getAddrMode6OffsetOpValue(const MCInst &MI, unsigned Op, 397 SmallVectorImpl<MCFixup> &Fixups, 398 const MCSubtargetInfo &STI) const; 399 400 unsigned getShiftRight8Imm(const MCInst &MI, unsigned Op, 401 SmallVectorImpl<MCFixup> &Fixups, 402 const MCSubtargetInfo &STI) const; 403 unsigned getShiftRight16Imm(const MCInst &MI, unsigned Op, 404 SmallVectorImpl<MCFixup> &Fixups, 405 const MCSubtargetInfo &STI) const; 406 unsigned getShiftRight32Imm(const MCInst &MI, unsigned Op, 407 SmallVectorImpl<MCFixup> &Fixups, 408 const MCSubtargetInfo &STI) const; 409 unsigned getShiftRight64Imm(const MCInst &MI, unsigned Op, 410 SmallVectorImpl<MCFixup> &Fixups, 411 const MCSubtargetInfo &STI) const; 412 413 unsigned getThumbSRImmOpValue(const MCInst &MI, unsigned Op, 414 SmallVectorImpl<MCFixup> &Fixups, 415 const MCSubtargetInfo &STI) const; 416 417 unsigned NEONThumb2DataIPostEncoder(const MCInst &MI, 418 unsigned EncodedValue, 419 const MCSubtargetInfo &STI) const; 420 unsigned NEONThumb2LoadStorePostEncoder(const MCInst &MI, 421 unsigned EncodedValue, 422 const MCSubtargetInfo &STI) const; 423 unsigned NEONThumb2DupPostEncoder(const MCInst &MI, 424 unsigned EncodedValue, 425 const MCSubtargetInfo &STI) const; 426 unsigned NEONThumb2V8PostEncoder(const MCInst &MI, 427 unsigned EncodedValue, 428 const MCSubtargetInfo &STI) const; 429 430 unsigned VFPThumb2PostEncoder(const MCInst &MI, 431 unsigned EncodedValue, 432 const MCSubtargetInfo &STI) const; 433 434 uint32_t getPowerTwoOpValue(const MCInst &MI, unsigned OpIdx, 435 SmallVectorImpl<MCFixup> &Fixups, 436 const MCSubtargetInfo &STI) const; 437 438 void EmitByte(unsigned char C, raw_ostream &OS) const { 439 OS << (char)C; 440 } 441 442 void EmitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) const { 443 // Output the constant in little endian byte order. 444 for (unsigned i = 0; i != Size; ++i) { 445 unsigned Shift = IsLittleEndian ? i * 8 : (Size - 1 - i) * 8; 446 EmitByte((Val >> Shift) & 0xff, OS); 447 } 448 } 449 450 void encodeInstruction(const MCInst &MI, raw_ostream &OS, 451 SmallVectorImpl<MCFixup> &Fixups, 452 const MCSubtargetInfo &STI) const override; 453 454 template <bool isNeg, ARM::Fixups fixup> 455 uint32_t getBFTargetOpValue(const MCInst &MI, unsigned OpIdx, 456 SmallVectorImpl<MCFixup> &Fixups, 457 const MCSubtargetInfo &STI) const; 458 459 uint32_t getBFAfterTargetOpValue(const MCInst &MI, unsigned OpIdx, 460 SmallVectorImpl<MCFixup> &Fixups, 461 const MCSubtargetInfo &STI) const; 462 463 uint32_t getVPTMaskOpValue(const MCInst &MI, unsigned OpIdx, 464 SmallVectorImpl<MCFixup> &Fixups, 465 const MCSubtargetInfo &STI) const; 466 uint32_t getRestrictedCondCodeOpValue(const MCInst &MI, unsigned OpIdx, 467 SmallVectorImpl<MCFixup> &Fixups, 468 const MCSubtargetInfo &STI) const; 469 template <unsigned size> 470 uint32_t getMVEPairVectorIndexOpValue(const MCInst &MI, unsigned OpIdx, 471 SmallVectorImpl<MCFixup> &Fixups, 472 const MCSubtargetInfo &STI) const; 473 }; 474 475 } // end anonymous namespace 476 477 /// NEONThumb2DataIPostEncoder - Post-process encoded NEON data-processing 478 /// instructions, and rewrite them to their Thumb2 form if we are currently in 479 /// Thumb2 mode. 480 unsigned ARMMCCodeEmitter::NEONThumb2DataIPostEncoder(const MCInst &MI, 481 unsigned EncodedValue, 482 const MCSubtargetInfo &STI) const { 483 if (isThumb2(STI)) { 484 // NEON Thumb2 data-processsing encodings are very simple: bit 24 is moved 485 // to bit 12 of the high half-word (i.e. bit 28), and bits 27-24 are 486 // set to 1111. 487 unsigned Bit24 = EncodedValue & 0x01000000; 488 unsigned Bit28 = Bit24 << 4; 489 EncodedValue &= 0xEFFFFFFF; 490 EncodedValue |= Bit28; 491 EncodedValue |= 0x0F000000; 492 } 493 494 return EncodedValue; 495 } 496 497 /// NEONThumb2LoadStorePostEncoder - Post-process encoded NEON load/store 498 /// instructions, and rewrite them to their Thumb2 form if we are currently in 499 /// Thumb2 mode. 500 unsigned ARMMCCodeEmitter::NEONThumb2LoadStorePostEncoder(const MCInst &MI, 501 unsigned EncodedValue, 502 const MCSubtargetInfo &STI) const { 503 if (isThumb2(STI)) { 504 EncodedValue &= 0xF0FFFFFF; 505 EncodedValue |= 0x09000000; 506 } 507 508 return EncodedValue; 509 } 510 511 /// NEONThumb2DupPostEncoder - Post-process encoded NEON vdup 512 /// instructions, and rewrite them to their Thumb2 form if we are currently in 513 /// Thumb2 mode. 514 unsigned ARMMCCodeEmitter::NEONThumb2DupPostEncoder(const MCInst &MI, 515 unsigned EncodedValue, 516 const MCSubtargetInfo &STI) const { 517 if (isThumb2(STI)) { 518 EncodedValue &= 0x00FFFFFF; 519 EncodedValue |= 0xEE000000; 520 } 521 522 return EncodedValue; 523 } 524 525 /// Post-process encoded NEON v8 instructions, and rewrite them to Thumb2 form 526 /// if we are in Thumb2. 527 unsigned ARMMCCodeEmitter::NEONThumb2V8PostEncoder(const MCInst &MI, 528 unsigned EncodedValue, 529 const MCSubtargetInfo &STI) const { 530 if (isThumb2(STI)) { 531 EncodedValue |= 0xC000000; // Set bits 27-26 532 } 533 534 return EncodedValue; 535 } 536 537 /// VFPThumb2PostEncoder - Post-process encoded VFP instructions and rewrite 538 /// them to their Thumb2 form if we are currently in Thumb2 mode. 539 unsigned ARMMCCodeEmitter:: 540 VFPThumb2PostEncoder(const MCInst &MI, unsigned EncodedValue, 541 const MCSubtargetInfo &STI) const { 542 if (isThumb2(STI)) { 543 EncodedValue &= 0x0FFFFFFF; 544 EncodedValue |= 0xE0000000; 545 } 546 return EncodedValue; 547 } 548 549 /// getMachineOpValue - Return binary encoding of operand. If the machine 550 /// operand requires relocation, record the relocation and return zero. 551 unsigned ARMMCCodeEmitter:: 552 getMachineOpValue(const MCInst &MI, const MCOperand &MO, 553 SmallVectorImpl<MCFixup> &Fixups, 554 const MCSubtargetInfo &STI) const { 555 if (MO.isReg()) { 556 unsigned Reg = MO.getReg(); 557 unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg); 558 559 // In NEON, Q registers are encoded as 2x their register number, 560 // because they're using the same indices as the D registers they 561 // overlap. In MVE, there are no 64-bit vector instructions, so 562 // the encodings all refer to Q-registers by their literal 563 // register number. 564 565 if (STI.getFeatureBits()[ARM::HasMVEIntegerOps]) 566 return RegNo; 567 568 switch (Reg) { 569 default: 570 return RegNo; 571 case ARM::Q0: case ARM::Q1: case ARM::Q2: case ARM::Q3: 572 case ARM::Q4: case ARM::Q5: case ARM::Q6: case ARM::Q7: 573 case ARM::Q8: case ARM::Q9: case ARM::Q10: case ARM::Q11: 574 case ARM::Q12: case ARM::Q13: case ARM::Q14: case ARM::Q15: 575 return 2 * RegNo; 576 } 577 } else if (MO.isImm()) { 578 return static_cast<unsigned>(MO.getImm()); 579 } else if (MO.isFPImm()) { 580 return static_cast<unsigned>(APFloat(MO.getFPImm()) 581 .bitcastToAPInt().getHiBits(32).getLimitedValue()); 582 } 583 584 llvm_unreachable("Unable to encode MCOperand!"); 585 } 586 587 /// getAddrModeImmOpValue - Return encoding info for 'reg +/- imm' operand. 588 bool ARMMCCodeEmitter:: 589 EncodeAddrModeOpValues(const MCInst &MI, unsigned OpIdx, unsigned &Reg, 590 unsigned &Imm, SmallVectorImpl<MCFixup> &Fixups, 591 const MCSubtargetInfo &STI) const { 592 const MCOperand &MO = MI.getOperand(OpIdx); 593 const MCOperand &MO1 = MI.getOperand(OpIdx + 1); 594 595 Reg = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); 596 597 int32_t SImm = MO1.getImm(); 598 bool isAdd = true; 599 600 // Special value for #-0 601 if (SImm == INT32_MIN) { 602 SImm = 0; 603 isAdd = false; 604 } 605 606 // Immediate is always encoded as positive. The 'U' bit controls add vs sub. 607 if (SImm < 0) { 608 SImm = -SImm; 609 isAdd = false; 610 } 611 612 Imm = SImm; 613 return isAdd; 614 } 615 616 /// getBranchTargetOpValue - Helper function to get the branch target operand, 617 /// which is either an immediate or requires a fixup. 618 static uint32_t getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx, 619 unsigned FixupKind, 620 SmallVectorImpl<MCFixup> &Fixups, 621 const MCSubtargetInfo &STI) { 622 const MCOperand &MO = MI.getOperand(OpIdx); 623 624 // If the destination is an immediate, we have nothing to do. 625 if (MO.isImm()) return MO.getImm(); 626 assert(MO.isExpr() && "Unexpected branch target type!"); 627 const MCExpr *Expr = MO.getExpr(); 628 MCFixupKind Kind = MCFixupKind(FixupKind); 629 Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc())); 630 631 // All of the information is in the fixup. 632 return 0; 633 } 634 635 // Thumb BL and BLX use a strange offset encoding where bits 22 and 21 are 636 // determined by negating them and XOR'ing them with bit 23. 637 static int32_t encodeThumbBLOffset(int32_t offset) { 638 offset >>= 1; 639 uint32_t S = (offset & 0x800000) >> 23; 640 uint32_t J1 = (offset & 0x400000) >> 22; 641 uint32_t J2 = (offset & 0x200000) >> 21; 642 J1 = (~J1 & 0x1); 643 J2 = (~J2 & 0x1); 644 J1 ^= S; 645 J2 ^= S; 646 647 offset &= ~0x600000; 648 offset |= J1 << 22; 649 offset |= J2 << 21; 650 651 return offset; 652 } 653 654 /// getThumbBLTargetOpValue - Return encoding info for immediate branch target. 655 uint32_t ARMMCCodeEmitter:: 656 getThumbBLTargetOpValue(const MCInst &MI, unsigned OpIdx, 657 SmallVectorImpl<MCFixup> &Fixups, 658 const MCSubtargetInfo &STI) const { 659 const MCOperand MO = MI.getOperand(OpIdx); 660 if (MO.isExpr()) 661 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_bl, 662 Fixups, STI); 663 return encodeThumbBLOffset(MO.getImm()); 664 } 665 666 /// getThumbBLXTargetOpValue - Return encoding info for Thumb immediate 667 /// BLX branch target. 668 uint32_t ARMMCCodeEmitter:: 669 getThumbBLXTargetOpValue(const MCInst &MI, unsigned OpIdx, 670 SmallVectorImpl<MCFixup> &Fixups, 671 const MCSubtargetInfo &STI) const { 672 const MCOperand MO = MI.getOperand(OpIdx); 673 if (MO.isExpr()) 674 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_blx, 675 Fixups, STI); 676 return encodeThumbBLOffset(MO.getImm()); 677 } 678 679 /// getThumbBRTargetOpValue - Return encoding info for Thumb branch target. 680 uint32_t ARMMCCodeEmitter:: 681 getThumbBRTargetOpValue(const MCInst &MI, unsigned OpIdx, 682 SmallVectorImpl<MCFixup> &Fixups, 683 const MCSubtargetInfo &STI) const { 684 const MCOperand MO = MI.getOperand(OpIdx); 685 if (MO.isExpr()) 686 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_br, 687 Fixups, STI); 688 return (MO.getImm() >> 1); 689 } 690 691 /// getThumbBCCTargetOpValue - Return encoding info for Thumb branch target. 692 uint32_t ARMMCCodeEmitter:: 693 getThumbBCCTargetOpValue(const MCInst &MI, unsigned OpIdx, 694 SmallVectorImpl<MCFixup> &Fixups, 695 const MCSubtargetInfo &STI) const { 696 const MCOperand MO = MI.getOperand(OpIdx); 697 if (MO.isExpr()) 698 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_bcc, 699 Fixups, STI); 700 return (MO.getImm() >> 1); 701 } 702 703 /// getThumbCBTargetOpValue - Return encoding info for Thumb branch target. 704 uint32_t ARMMCCodeEmitter:: 705 getThumbCBTargetOpValue(const MCInst &MI, unsigned OpIdx, 706 SmallVectorImpl<MCFixup> &Fixups, 707 const MCSubtargetInfo &STI) const { 708 const MCOperand MO = MI.getOperand(OpIdx); 709 if (MO.isExpr()) 710 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_cb, Fixups, STI); 711 return (MO.getImm() >> 1); 712 } 713 714 /// Return true if this branch has a non-always predication 715 static bool HasConditionalBranch(const MCInst &MI) { 716 int NumOp = MI.getNumOperands(); 717 if (NumOp >= 2) { 718 for (int i = 0; i < NumOp-1; ++i) { 719 const MCOperand &MCOp1 = MI.getOperand(i); 720 const MCOperand &MCOp2 = MI.getOperand(i + 1); 721 if (MCOp1.isImm() && MCOp2.isReg() && 722 (MCOp2.getReg() == 0 || MCOp2.getReg() == ARM::CPSR)) { 723 if (ARMCC::CondCodes(MCOp1.getImm()) != ARMCC::AL) 724 return true; 725 } 726 } 727 } 728 return false; 729 } 730 731 /// getBranchTargetOpValue - Return encoding info for 24-bit immediate branch 732 /// target. 733 uint32_t ARMMCCodeEmitter:: 734 getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx, 735 SmallVectorImpl<MCFixup> &Fixups, 736 const MCSubtargetInfo &STI) const { 737 // FIXME: This really, really shouldn't use TargetMachine. We don't want 738 // coupling between MC and TM anywhere we can help it. 739 if (isThumb2(STI)) 740 return 741 ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_t2_condbranch, Fixups, STI); 742 return getARMBranchTargetOpValue(MI, OpIdx, Fixups, STI); 743 } 744 745 /// getBranchTargetOpValue - Return encoding info for 24-bit immediate branch 746 /// target. 747 uint32_t ARMMCCodeEmitter:: 748 getARMBranchTargetOpValue(const MCInst &MI, unsigned OpIdx, 749 SmallVectorImpl<MCFixup> &Fixups, 750 const MCSubtargetInfo &STI) const { 751 const MCOperand MO = MI.getOperand(OpIdx); 752 if (MO.isExpr()) { 753 if (HasConditionalBranch(MI)) 754 return ::getBranchTargetOpValue(MI, OpIdx, 755 ARM::fixup_arm_condbranch, Fixups, STI); 756 return ::getBranchTargetOpValue(MI, OpIdx, 757 ARM::fixup_arm_uncondbranch, Fixups, STI); 758 } 759 760 return MO.getImm() >> 2; 761 } 762 763 uint32_t ARMMCCodeEmitter:: 764 getARMBLTargetOpValue(const MCInst &MI, unsigned OpIdx, 765 SmallVectorImpl<MCFixup> &Fixups, 766 const MCSubtargetInfo &STI) const { 767 const MCOperand MO = MI.getOperand(OpIdx); 768 if (MO.isExpr()) { 769 if (HasConditionalBranch(MI)) 770 return ::getBranchTargetOpValue(MI, OpIdx, 771 ARM::fixup_arm_condbl, Fixups, STI); 772 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_uncondbl, Fixups, STI); 773 } 774 775 return MO.getImm() >> 2; 776 } 777 778 uint32_t ARMMCCodeEmitter:: 779 getARMBLXTargetOpValue(const MCInst &MI, unsigned OpIdx, 780 SmallVectorImpl<MCFixup> &Fixups, 781 const MCSubtargetInfo &STI) const { 782 const MCOperand MO = MI.getOperand(OpIdx); 783 if (MO.isExpr()) 784 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_blx, Fixups, STI); 785 786 return MO.getImm() >> 1; 787 } 788 789 /// getUnconditionalBranchTargetOpValue - Return encoding info for 24-bit 790 /// immediate branch target. 791 uint32_t ARMMCCodeEmitter::getThumbBranchTargetOpValue( 792 const MCInst &MI, unsigned OpIdx, SmallVectorImpl<MCFixup> &Fixups, 793 const MCSubtargetInfo &STI) const { 794 unsigned Val = 0; 795 const MCOperand MO = MI.getOperand(OpIdx); 796 797 if(MO.isExpr()) 798 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_t2_uncondbranch, Fixups, STI); 799 else 800 Val = MO.getImm() >> 1; 801 802 bool I = (Val & 0x800000); 803 bool J1 = (Val & 0x400000); 804 bool J2 = (Val & 0x200000); 805 if (I ^ J1) 806 Val &= ~0x400000; 807 else 808 Val |= 0x400000; 809 810 if (I ^ J2) 811 Val &= ~0x200000; 812 else 813 Val |= 0x200000; 814 815 return Val; 816 } 817 818 /// getAdrLabelOpValue - Return encoding info for 12-bit shifted-immediate 819 /// ADR label target. 820 uint32_t ARMMCCodeEmitter:: 821 getAdrLabelOpValue(const MCInst &MI, unsigned OpIdx, 822 SmallVectorImpl<MCFixup> &Fixups, 823 const MCSubtargetInfo &STI) const { 824 const MCOperand MO = MI.getOperand(OpIdx); 825 if (MO.isExpr()) 826 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_adr_pcrel_12, 827 Fixups, STI); 828 int64_t offset = MO.getImm(); 829 uint32_t Val = 0x2000; 830 831 int SoImmVal; 832 if (offset == INT32_MIN) { 833 Val = 0x1000; 834 SoImmVal = 0; 835 } else if (offset < 0) { 836 Val = 0x1000; 837 offset *= -1; 838 SoImmVal = ARM_AM::getSOImmVal(offset); 839 if(SoImmVal == -1) { 840 Val = 0x2000; 841 offset *= -1; 842 SoImmVal = ARM_AM::getSOImmVal(offset); 843 } 844 } else { 845 SoImmVal = ARM_AM::getSOImmVal(offset); 846 if(SoImmVal == -1) { 847 Val = 0x1000; 848 offset *= -1; 849 SoImmVal = ARM_AM::getSOImmVal(offset); 850 } 851 } 852 853 assert(SoImmVal != -1 && "Not a valid so_imm value!"); 854 855 Val |= SoImmVal; 856 return Val; 857 } 858 859 /// getT2AdrLabelOpValue - Return encoding info for 12-bit immediate ADR label 860 /// target. 861 uint32_t ARMMCCodeEmitter:: 862 getT2AdrLabelOpValue(const MCInst &MI, unsigned OpIdx, 863 SmallVectorImpl<MCFixup> &Fixups, 864 const MCSubtargetInfo &STI) const { 865 const MCOperand MO = MI.getOperand(OpIdx); 866 if (MO.isExpr()) 867 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_t2_adr_pcrel_12, 868 Fixups, STI); 869 int32_t Val = MO.getImm(); 870 if (Val == INT32_MIN) 871 Val = 0x1000; 872 else if (Val < 0) { 873 Val *= -1; 874 Val |= 0x1000; 875 } 876 return Val; 877 } 878 879 /// getITMaskOpValue - Return the architectural encoding of an IT 880 /// predication mask, given the MCOperand format. 881 uint32_t ARMMCCodeEmitter:: 882 getITMaskOpValue(const MCInst &MI, unsigned OpIdx, 883 SmallVectorImpl<MCFixup> &Fixups, 884 const MCSubtargetInfo &STI) const { 885 const MCOperand MaskMO = MI.getOperand(OpIdx); 886 assert(MaskMO.isImm() && "Unexpected operand type!"); 887 888 unsigned Mask = MaskMO.getImm(); 889 890 // IT masks are encoded as a sequence of replacement low-order bits 891 // for the condition code. So if the low bit of the starting 892 // condition code is 1, then we have to flip all the bits above the 893 // terminating bit (which is the lowest 1 bit). 894 assert(OpIdx > 0 && "IT mask appears first!"); 895 const MCOperand CondMO = MI.getOperand(OpIdx-1); 896 assert(CondMO.isImm() && "Unexpected operand type!"); 897 if (CondMO.getImm() & 1) { 898 unsigned LowBit = Mask & -Mask; 899 unsigned BitsAboveLowBit = 0xF & (-LowBit << 1); 900 Mask ^= BitsAboveLowBit; 901 } 902 903 return Mask; 904 } 905 906 /// getThumbAdrLabelOpValue - Return encoding info for 8-bit immediate ADR label 907 /// target. 908 uint32_t ARMMCCodeEmitter:: 909 getThumbAdrLabelOpValue(const MCInst &MI, unsigned OpIdx, 910 SmallVectorImpl<MCFixup> &Fixups, 911 const MCSubtargetInfo &STI) const { 912 const MCOperand MO = MI.getOperand(OpIdx); 913 if (MO.isExpr()) 914 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_thumb_adr_pcrel_10, 915 Fixups, STI); 916 return MO.getImm(); 917 } 918 919 /// getThumbAddrModeRegRegOpValue - Return encoding info for 'reg + reg' 920 /// operand. 921 uint32_t ARMMCCodeEmitter:: 922 getThumbAddrModeRegRegOpValue(const MCInst &MI, unsigned OpIdx, 923 SmallVectorImpl<MCFixup> &, 924 const MCSubtargetInfo &STI) const { 925 // [Rn, Rm] 926 // {5-3} = Rm 927 // {2-0} = Rn 928 const MCOperand &MO1 = MI.getOperand(OpIdx); 929 const MCOperand &MO2 = MI.getOperand(OpIdx + 1); 930 unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg()); 931 unsigned Rm = CTX.getRegisterInfo()->getEncodingValue(MO2.getReg()); 932 return (Rm << 3) | Rn; 933 } 934 935 /// getMVEShiftImmOpValue - Return encoding info for the 'sz:imm5' 936 /// operand. 937 uint32_t 938 ARMMCCodeEmitter::getMVEShiftImmOpValue(const MCInst &MI, unsigned OpIdx, 939 SmallVectorImpl<MCFixup> &Fixups, 940 const MCSubtargetInfo &STI) const { 941 // {4-0} = szimm5 942 // The value we are trying to encode is an immediate between either the 943 // range of [1-7] or [1-15] depending on whether we are dealing with the 944 // u8/s8 or the u16/s16 variants respectively. 945 // This value is encoded as follows, if ShiftImm is the value within those 946 // ranges then the encoding szimm5 = ShiftImm + size, where size is either 8 947 // or 16. 948 949 unsigned Size, ShiftImm; 950 switch(MI.getOpcode()) { 951 case ARM::MVE_VSHLL_imms16bh: 952 case ARM::MVE_VSHLL_imms16th: 953 case ARM::MVE_VSHLL_immu16bh: 954 case ARM::MVE_VSHLL_immu16th: 955 Size = 16; 956 break; 957 case ARM::MVE_VSHLL_imms8bh: 958 case ARM::MVE_VSHLL_imms8th: 959 case ARM::MVE_VSHLL_immu8bh: 960 case ARM::MVE_VSHLL_immu8th: 961 Size = 8; 962 break; 963 default: 964 llvm_unreachable("Use of operand not supported by this instruction"); 965 } 966 ShiftImm = MI.getOperand(OpIdx).getImm(); 967 return Size + ShiftImm; 968 } 969 970 /// getAddrModeImm12OpValue - Return encoding info for 'reg +/- imm12' operand. 971 uint32_t ARMMCCodeEmitter:: 972 getAddrModeImm12OpValue(const MCInst &MI, unsigned OpIdx, 973 SmallVectorImpl<MCFixup> &Fixups, 974 const MCSubtargetInfo &STI) const { 975 // {17-13} = reg 976 // {12} = (U)nsigned (add == '1', sub == '0') 977 // {11-0} = imm12 978 unsigned Reg, Imm12; 979 bool isAdd = true; 980 // If The first operand isn't a register, we have a label reference. 981 const MCOperand &MO = MI.getOperand(OpIdx); 982 if (!MO.isReg()) { 983 Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC. 984 Imm12 = 0; 985 986 if (MO.isExpr()) { 987 const MCExpr *Expr = MO.getExpr(); 988 isAdd = false ; // 'U' bit is set as part of the fixup. 989 990 MCFixupKind Kind; 991 if (isThumb2(STI)) 992 Kind = MCFixupKind(ARM::fixup_t2_ldst_pcrel_12); 993 else 994 Kind = MCFixupKind(ARM::fixup_arm_ldst_pcrel_12); 995 Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc())); 996 997 ++MCNumCPRelocations; 998 } else { 999 Reg = ARM::PC; 1000 int32_t Offset = MO.getImm(); 1001 if (Offset == INT32_MIN) { 1002 Offset = 0; 1003 isAdd = false; 1004 } else if (Offset < 0) { 1005 Offset *= -1; 1006 isAdd = false; 1007 } 1008 Imm12 = Offset; 1009 } 1010 } else 1011 isAdd = EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm12, Fixups, STI); 1012 1013 uint32_t Binary = Imm12 & 0xfff; 1014 // Immediate is always encoded as positive. The 'U' bit controls add vs sub. 1015 if (isAdd) 1016 Binary |= (1 << 12); 1017 Binary |= (Reg << 13); 1018 return Binary; 1019 } 1020 1021 template<unsigned Bits, unsigned Shift> 1022 uint32_t ARMMCCodeEmitter:: 1023 getT2ScaledImmOpValue(const MCInst &MI, unsigned OpIdx, 1024 SmallVectorImpl<MCFixup> &Fixups, 1025 const MCSubtargetInfo &STI) const { 1026 // FIXME: The immediate operand should have already been encoded like this 1027 // before ever getting here. The encoder method should just need to combine 1028 // the MI operands for the register and the offset into a single 1029 // representation for the complex operand in the .td file. This isn't just 1030 // style, unfortunately. As-is, we can't represent the distinct encoding 1031 // for #-0. 1032 1033 // {Bits} = (U)nsigned (add == '1', sub == '0') 1034 // {(Bits-1)-0} = immediate 1035 int32_t Imm = MI.getOperand(OpIdx).getImm(); 1036 bool isAdd = Imm >= 0; 1037 1038 // Immediate is always encoded as positive. The 'U' bit controls add vs sub. 1039 if (Imm < 0) 1040 Imm = -(uint32_t)Imm; 1041 1042 Imm >>= Shift; 1043 1044 uint32_t Binary = Imm & ((1U << Bits) - 1); 1045 // Immediate is always encoded as positive. The 'U' bit controls add vs sub. 1046 if (isAdd) 1047 Binary |= (1U << Bits); 1048 return Binary; 1049 } 1050 1051 /// getMveAddrModeRQOpValue - Return encoding info for 'reg, vreg' 1052 /// operand. 1053 uint32_t ARMMCCodeEmitter:: 1054 getMveAddrModeRQOpValue(const MCInst &MI, unsigned OpIdx, 1055 SmallVectorImpl<MCFixup> &Fixups, 1056 const MCSubtargetInfo &STI) const { 1057 // {6-3} Rn 1058 // {2-0} Qm 1059 const MCOperand &M0 = MI.getOperand(OpIdx); 1060 const MCOperand &M1 = MI.getOperand(OpIdx + 1); 1061 1062 unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(M0.getReg()); 1063 unsigned Qm = CTX.getRegisterInfo()->getEncodingValue(M1.getReg()); 1064 1065 assert(Qm < 8 && "Qm is supposed to be encodable in 3 bits"); 1066 1067 return (Rn << 3) | Qm; 1068 } 1069 1070 /// getMveAddrModeRQOpValue - Return encoding info for 'reg, vreg' 1071 /// operand. 1072 template<int shift> 1073 uint32_t ARMMCCodeEmitter:: 1074 getMveAddrModeQOpValue(const MCInst &MI, unsigned OpIdx, 1075 SmallVectorImpl<MCFixup> &Fixups, 1076 const MCSubtargetInfo &STI) const { 1077 // {10-8} Qm 1078 // {7-0} Imm 1079 const MCOperand &M0 = MI.getOperand(OpIdx); 1080 const MCOperand &M1 = MI.getOperand(OpIdx + 1); 1081 1082 unsigned Qm = CTX.getRegisterInfo()->getEncodingValue(M0.getReg()); 1083 int32_t Imm = M1.getImm(); 1084 1085 bool isAdd = Imm >= 0; 1086 1087 Imm >>= shift; 1088 1089 if (!isAdd) 1090 Imm = -(uint32_t)Imm; 1091 1092 Imm &= 0x7f; 1093 1094 if (isAdd) 1095 Imm |= 0x80; 1096 1097 assert(Qm < 8 && "Qm is supposed to be encodable in 3 bits"); 1098 1099 return (Qm << 8) | Imm; 1100 } 1101 1102 /// getT2AddrModeImm8s4OpValue - Return encoding info for 1103 /// 'reg +/- imm8<<2' operand. 1104 uint32_t ARMMCCodeEmitter:: 1105 getT2AddrModeImm8s4OpValue(const MCInst &MI, unsigned OpIdx, 1106 SmallVectorImpl<MCFixup> &Fixups, 1107 const MCSubtargetInfo &STI) const { 1108 // {12-9} = reg 1109 // {8} = (U)nsigned (add == '1', sub == '0') 1110 // {7-0} = imm8 1111 unsigned Reg, Imm8; 1112 bool isAdd = true; 1113 // If The first operand isn't a register, we have a label reference. 1114 const MCOperand &MO = MI.getOperand(OpIdx); 1115 if (!MO.isReg()) { 1116 Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC. 1117 Imm8 = 0; 1118 isAdd = false ; // 'U' bit is set as part of the fixup. 1119 1120 assert(MO.isExpr() && "Unexpected machine operand type!"); 1121 const MCExpr *Expr = MO.getExpr(); 1122 MCFixupKind Kind = MCFixupKind(ARM::fixup_t2_pcrel_10); 1123 Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc())); 1124 1125 ++MCNumCPRelocations; 1126 } else 1127 isAdd = EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm8, Fixups, STI); 1128 1129 // FIXME: The immediate operand should have already been encoded like this 1130 // before ever getting here. The encoder method should just need to combine 1131 // the MI operands for the register and the offset into a single 1132 // representation for the complex operand in the .td file. This isn't just 1133 // style, unfortunately. As-is, we can't represent the distinct encoding 1134 // for #-0. 1135 uint32_t Binary = (Imm8 >> 2) & 0xff; 1136 // Immediate is always encoded as positive. The 'U' bit controls add vs sub. 1137 if (isAdd) 1138 Binary |= (1 << 8); 1139 Binary |= (Reg << 9); 1140 return Binary; 1141 } 1142 1143 /// getT2AddrModeImm7s4OpValue - Return encoding info for 1144 /// 'reg +/- imm7<<2' operand. 1145 uint32_t 1146 ARMMCCodeEmitter::getT2AddrModeImm7s4OpValue(const MCInst &MI, unsigned OpIdx, 1147 SmallVectorImpl<MCFixup> &Fixups, 1148 const MCSubtargetInfo &STI) const { 1149 // {11-8} = reg 1150 // {7} = (A)dd (add == '1', sub == '0') 1151 // {6-0} = imm7 1152 unsigned Reg, Imm7; 1153 // If The first operand isn't a register, we have a label reference. 1154 bool isAdd = EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm7, Fixups, STI); 1155 1156 // FIXME: The immediate operand should have already been encoded like this 1157 // before ever getting here. The encoder method should just need to combine 1158 // the MI operands for the register and the offset into a single 1159 // representation for the complex operand in the .td file. This isn't just 1160 // style, unfortunately. As-is, we can't represent the distinct encoding 1161 // for #-0. 1162 uint32_t Binary = (Imm7 >> 2) & 0xff; 1163 // Immediate is always encoded as positive. The 'A' bit controls add vs sub. 1164 if (isAdd) 1165 Binary |= (1 << 7); 1166 Binary |= (Reg << 8); 1167 return Binary; 1168 } 1169 1170 /// getT2AddrModeImm0_1020s4OpValue - Return encoding info for 1171 /// 'reg + imm8<<2' operand. 1172 uint32_t ARMMCCodeEmitter:: 1173 getT2AddrModeImm0_1020s4OpValue(const MCInst &MI, unsigned OpIdx, 1174 SmallVectorImpl<MCFixup> &Fixups, 1175 const MCSubtargetInfo &STI) const { 1176 // {11-8} = reg 1177 // {7-0} = imm8 1178 const MCOperand &MO = MI.getOperand(OpIdx); 1179 const MCOperand &MO1 = MI.getOperand(OpIdx + 1); 1180 unsigned Reg = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); 1181 unsigned Imm8 = MO1.getImm(); 1182 return (Reg << 8) | Imm8; 1183 } 1184 1185 uint32_t 1186 ARMMCCodeEmitter::getHiLo16ImmOpValue(const MCInst &MI, unsigned OpIdx, 1187 SmallVectorImpl<MCFixup> &Fixups, 1188 const MCSubtargetInfo &STI) const { 1189 // {20-16} = imm{15-12} 1190 // {11-0} = imm{11-0} 1191 const MCOperand &MO = MI.getOperand(OpIdx); 1192 if (MO.isImm()) 1193 // Hi / lo 16 bits already extracted during earlier passes. 1194 return static_cast<unsigned>(MO.getImm()); 1195 1196 // Handle :upper16: and :lower16: assembly prefixes. 1197 const MCExpr *E = MO.getExpr(); 1198 MCFixupKind Kind; 1199 if (E->getKind() == MCExpr::Target) { 1200 const ARMMCExpr *ARM16Expr = cast<ARMMCExpr>(E); 1201 E = ARM16Expr->getSubExpr(); 1202 1203 if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(E)) { 1204 const int64_t Value = MCE->getValue(); 1205 if (Value > UINT32_MAX) 1206 report_fatal_error("constant value truncated (limited to 32-bit)"); 1207 1208 switch (ARM16Expr->getKind()) { 1209 case ARMMCExpr::VK_ARM_HI16: 1210 return (int32_t(Value) & 0xffff0000) >> 16; 1211 case ARMMCExpr::VK_ARM_LO16: 1212 return (int32_t(Value) & 0x0000ffff); 1213 default: llvm_unreachable("Unsupported ARMFixup"); 1214 } 1215 } 1216 1217 switch (ARM16Expr->getKind()) { 1218 default: llvm_unreachable("Unsupported ARMFixup"); 1219 case ARMMCExpr::VK_ARM_HI16: 1220 Kind = MCFixupKind(isThumb(STI) ? ARM::fixup_t2_movt_hi16 1221 : ARM::fixup_arm_movt_hi16); 1222 break; 1223 case ARMMCExpr::VK_ARM_LO16: 1224 Kind = MCFixupKind(isThumb(STI) ? ARM::fixup_t2_movw_lo16 1225 : ARM::fixup_arm_movw_lo16); 1226 break; 1227 } 1228 1229 Fixups.push_back(MCFixup::create(0, E, Kind, MI.getLoc())); 1230 return 0; 1231 } 1232 // If the expression doesn't have :upper16: or :lower16: on it, 1233 // it's just a plain immediate expression, previously those evaluated to 1234 // the lower 16 bits of the expression regardless of whether 1235 // we have a movt or a movw, but that led to misleadingly results. 1236 // This is disallowed in the AsmParser in validateInstruction() 1237 // so this should never happen. 1238 llvm_unreachable("expression without :upper16: or :lower16:"); 1239 } 1240 1241 uint32_t ARMMCCodeEmitter:: 1242 getLdStSORegOpValue(const MCInst &MI, unsigned OpIdx, 1243 SmallVectorImpl<MCFixup> &Fixups, 1244 const MCSubtargetInfo &STI) const { 1245 const MCOperand &MO = MI.getOperand(OpIdx); 1246 const MCOperand &MO1 = MI.getOperand(OpIdx+1); 1247 const MCOperand &MO2 = MI.getOperand(OpIdx+2); 1248 unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); 1249 unsigned Rm = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg()); 1250 unsigned ShImm = ARM_AM::getAM2Offset(MO2.getImm()); 1251 bool isAdd = ARM_AM::getAM2Op(MO2.getImm()) == ARM_AM::add; 1252 ARM_AM::ShiftOpc ShOp = ARM_AM::getAM2ShiftOpc(MO2.getImm()); 1253 unsigned SBits = getShiftOp(ShOp); 1254 1255 // While "lsr #32" and "asr #32" exist, they are encoded with a 0 in the shift 1256 // amount. However, it would be an easy mistake to make so check here. 1257 assert((ShImm & ~0x1f) == 0 && "Out of range shift amount"); 1258 1259 // {16-13} = Rn 1260 // {12} = isAdd 1261 // {11-0} = shifter 1262 // {3-0} = Rm 1263 // {4} = 0 1264 // {6-5} = type 1265 // {11-7} = imm 1266 uint32_t Binary = Rm; 1267 Binary |= Rn << 13; 1268 Binary |= SBits << 5; 1269 Binary |= ShImm << 7; 1270 if (isAdd) 1271 Binary |= 1 << 12; 1272 return Binary; 1273 } 1274 1275 uint32_t ARMMCCodeEmitter:: 1276 getAddrMode2OffsetOpValue(const MCInst &MI, unsigned OpIdx, 1277 SmallVectorImpl<MCFixup> &Fixups, 1278 const MCSubtargetInfo &STI) const { 1279 // {13} 1 == imm12, 0 == Rm 1280 // {12} isAdd 1281 // {11-0} imm12/Rm 1282 const MCOperand &MO = MI.getOperand(OpIdx); 1283 const MCOperand &MO1 = MI.getOperand(OpIdx+1); 1284 unsigned Imm = MO1.getImm(); 1285 bool isAdd = ARM_AM::getAM2Op(Imm) == ARM_AM::add; 1286 bool isReg = MO.getReg() != 0; 1287 uint32_t Binary = ARM_AM::getAM2Offset(Imm); 1288 // if reg +/- reg, Rm will be non-zero. Otherwise, we have reg +/- imm12 1289 if (isReg) { 1290 ARM_AM::ShiftOpc ShOp = ARM_AM::getAM2ShiftOpc(Imm); 1291 Binary <<= 7; // Shift amount is bits [11:7] 1292 Binary |= getShiftOp(ShOp) << 5; // Shift type is bits [6:5] 1293 Binary |= CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); // Rm is bits [3:0] 1294 } 1295 return Binary | (isAdd << 12) | (isReg << 13); 1296 } 1297 1298 uint32_t ARMMCCodeEmitter:: 1299 getPostIdxRegOpValue(const MCInst &MI, unsigned OpIdx, 1300 SmallVectorImpl<MCFixup> &Fixups, 1301 const MCSubtargetInfo &STI) const { 1302 // {4} isAdd 1303 // {3-0} Rm 1304 const MCOperand &MO = MI.getOperand(OpIdx); 1305 const MCOperand &MO1 = MI.getOperand(OpIdx+1); 1306 bool isAdd = MO1.getImm() != 0; 1307 return CTX.getRegisterInfo()->getEncodingValue(MO.getReg()) | (isAdd << 4); 1308 } 1309 1310 uint32_t ARMMCCodeEmitter:: 1311 getAddrMode3OffsetOpValue(const MCInst &MI, unsigned OpIdx, 1312 SmallVectorImpl<MCFixup> &Fixups, 1313 const MCSubtargetInfo &STI) const { 1314 // {9} 1 == imm8, 0 == Rm 1315 // {8} isAdd 1316 // {7-4} imm7_4/zero 1317 // {3-0} imm3_0/Rm 1318 const MCOperand &MO = MI.getOperand(OpIdx); 1319 const MCOperand &MO1 = MI.getOperand(OpIdx+1); 1320 unsigned Imm = MO1.getImm(); 1321 bool isAdd = ARM_AM::getAM3Op(Imm) == ARM_AM::add; 1322 bool isImm = MO.getReg() == 0; 1323 uint32_t Imm8 = ARM_AM::getAM3Offset(Imm); 1324 // if reg +/- reg, Rm will be non-zero. Otherwise, we have reg +/- imm8 1325 if (!isImm) 1326 Imm8 = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); 1327 return Imm8 | (isAdd << 8) | (isImm << 9); 1328 } 1329 1330 uint32_t ARMMCCodeEmitter:: 1331 getAddrMode3OpValue(const MCInst &MI, unsigned OpIdx, 1332 SmallVectorImpl<MCFixup> &Fixups, 1333 const MCSubtargetInfo &STI) const { 1334 // {13} 1 == imm8, 0 == Rm 1335 // {12-9} Rn 1336 // {8} isAdd 1337 // {7-4} imm7_4/zero 1338 // {3-0} imm3_0/Rm 1339 const MCOperand &MO = MI.getOperand(OpIdx); 1340 const MCOperand &MO1 = MI.getOperand(OpIdx+1); 1341 const MCOperand &MO2 = MI.getOperand(OpIdx+2); 1342 1343 // If The first operand isn't a register, we have a label reference. 1344 if (!MO.isReg()) { 1345 unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC. 1346 1347 assert(MO.isExpr() && "Unexpected machine operand type!"); 1348 const MCExpr *Expr = MO.getExpr(); 1349 MCFixupKind Kind = MCFixupKind(ARM::fixup_arm_pcrel_10_unscaled); 1350 Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc())); 1351 1352 ++MCNumCPRelocations; 1353 return (Rn << 9) | (1 << 13); 1354 } 1355 unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); 1356 unsigned Imm = MO2.getImm(); 1357 bool isAdd = ARM_AM::getAM3Op(Imm) == ARM_AM::add; 1358 bool isImm = MO1.getReg() == 0; 1359 uint32_t Imm8 = ARM_AM::getAM3Offset(Imm); 1360 // if reg +/- reg, Rm will be non-zero. Otherwise, we have reg +/- imm8 1361 if (!isImm) 1362 Imm8 = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg()); 1363 return (Rn << 9) | Imm8 | (isAdd << 8) | (isImm << 13); 1364 } 1365 1366 /// getAddrModeThumbSPOpValue - Encode the t_addrmode_sp operands. 1367 uint32_t ARMMCCodeEmitter:: 1368 getAddrModeThumbSPOpValue(const MCInst &MI, unsigned OpIdx, 1369 SmallVectorImpl<MCFixup> &Fixups, 1370 const MCSubtargetInfo &STI) const { 1371 // [SP, #imm] 1372 // {7-0} = imm8 1373 const MCOperand &MO1 = MI.getOperand(OpIdx + 1); 1374 assert(MI.getOperand(OpIdx).getReg() == ARM::SP && 1375 "Unexpected base register!"); 1376 1377 // The immediate is already shifted for the implicit zeroes, so no change 1378 // here. 1379 return MO1.getImm() & 0xff; 1380 } 1381 1382 /// getAddrModeISOpValue - Encode the t_addrmode_is# operands. 1383 uint32_t ARMMCCodeEmitter:: 1384 getAddrModeISOpValue(const MCInst &MI, unsigned OpIdx, 1385 SmallVectorImpl<MCFixup> &Fixups, 1386 const MCSubtargetInfo &STI) const { 1387 // [Rn, #imm] 1388 // {7-3} = imm5 1389 // {2-0} = Rn 1390 const MCOperand &MO = MI.getOperand(OpIdx); 1391 const MCOperand &MO1 = MI.getOperand(OpIdx + 1); 1392 unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); 1393 unsigned Imm5 = MO1.getImm(); 1394 return ((Imm5 & 0x1f) << 3) | Rn; 1395 } 1396 1397 /// getAddrModePCOpValue - Return encoding for t_addrmode_pc operands. 1398 uint32_t ARMMCCodeEmitter:: 1399 getAddrModePCOpValue(const MCInst &MI, unsigned OpIdx, 1400 SmallVectorImpl<MCFixup> &Fixups, 1401 const MCSubtargetInfo &STI) const { 1402 const MCOperand MO = MI.getOperand(OpIdx); 1403 if (MO.isExpr()) 1404 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_cp, Fixups, STI); 1405 return (MO.getImm() >> 2); 1406 } 1407 1408 /// getAddrMode5OpValue - Return encoding info for 'reg +/- (imm8 << 2)' operand. 1409 uint32_t ARMMCCodeEmitter:: 1410 getAddrMode5OpValue(const MCInst &MI, unsigned OpIdx, 1411 SmallVectorImpl<MCFixup> &Fixups, 1412 const MCSubtargetInfo &STI) const { 1413 // {12-9} = reg 1414 // {8} = (U)nsigned (add == '1', sub == '0') 1415 // {7-0} = imm8 1416 unsigned Reg, Imm8; 1417 bool isAdd; 1418 // If The first operand isn't a register, we have a label reference. 1419 const MCOperand &MO = MI.getOperand(OpIdx); 1420 if (!MO.isReg()) { 1421 Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC. 1422 Imm8 = 0; 1423 isAdd = false; // 'U' bit is handled as part of the fixup. 1424 1425 assert(MO.isExpr() && "Unexpected machine operand type!"); 1426 const MCExpr *Expr = MO.getExpr(); 1427 MCFixupKind Kind; 1428 if (isThumb2(STI)) 1429 Kind = MCFixupKind(ARM::fixup_t2_pcrel_10); 1430 else 1431 Kind = MCFixupKind(ARM::fixup_arm_pcrel_10); 1432 Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc())); 1433 1434 ++MCNumCPRelocations; 1435 } else { 1436 EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm8, Fixups, STI); 1437 isAdd = ARM_AM::getAM5Op(Imm8) == ARM_AM::add; 1438 } 1439 1440 uint32_t Binary = ARM_AM::getAM5Offset(Imm8); 1441 // Immediate is always encoded as positive. The 'U' bit controls add vs sub. 1442 if (isAdd) 1443 Binary |= (1 << 8); 1444 Binary |= (Reg << 9); 1445 return Binary; 1446 } 1447 1448 /// getAddrMode5FP16OpValue - Return encoding info for 'reg +/- (imm8 << 1)' operand. 1449 uint32_t ARMMCCodeEmitter:: 1450 getAddrMode5FP16OpValue(const MCInst &MI, unsigned OpIdx, 1451 SmallVectorImpl<MCFixup> &Fixups, 1452 const MCSubtargetInfo &STI) const { 1453 // {12-9} = reg 1454 // {8} = (U)nsigned (add == '1', sub == '0') 1455 // {7-0} = imm8 1456 unsigned Reg, Imm8; 1457 bool isAdd; 1458 // If The first operand isn't a register, we have a label reference. 1459 const MCOperand &MO = MI.getOperand(OpIdx); 1460 if (!MO.isReg()) { 1461 Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC. 1462 Imm8 = 0; 1463 isAdd = false; // 'U' bit is handled as part of the fixup. 1464 1465 assert(MO.isExpr() && "Unexpected machine operand type!"); 1466 const MCExpr *Expr = MO.getExpr(); 1467 MCFixupKind Kind; 1468 if (isThumb2(STI)) 1469 Kind = MCFixupKind(ARM::fixup_t2_pcrel_9); 1470 else 1471 Kind = MCFixupKind(ARM::fixup_arm_pcrel_9); 1472 Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc())); 1473 1474 ++MCNumCPRelocations; 1475 } else { 1476 EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm8, Fixups, STI); 1477 isAdd = ARM_AM::getAM5Op(Imm8) == ARM_AM::add; 1478 } 1479 1480 uint32_t Binary = ARM_AM::getAM5Offset(Imm8); 1481 // Immediate is always encoded as positive. The 'U' bit controls add vs sub. 1482 if (isAdd) 1483 Binary |= (1 << 8); 1484 Binary |= (Reg << 9); 1485 return Binary; 1486 } 1487 1488 unsigned ARMMCCodeEmitter:: 1489 getSORegRegOpValue(const MCInst &MI, unsigned OpIdx, 1490 SmallVectorImpl<MCFixup> &Fixups, 1491 const MCSubtargetInfo &STI) const { 1492 // Sub-operands are [reg, reg, imm]. The first register is Rm, the reg to be 1493 // shifted. The second is Rs, the amount to shift by, and the third specifies 1494 // the type of the shift. 1495 // 1496 // {3-0} = Rm. 1497 // {4} = 1 1498 // {6-5} = type 1499 // {11-8} = Rs 1500 // {7} = 0 1501 1502 const MCOperand &MO = MI.getOperand(OpIdx); 1503 const MCOperand &MO1 = MI.getOperand(OpIdx + 1); 1504 const MCOperand &MO2 = MI.getOperand(OpIdx + 2); 1505 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm()); 1506 1507 // Encode Rm. 1508 unsigned Binary = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); 1509 1510 // Encode the shift opcode. 1511 unsigned SBits = 0; 1512 unsigned Rs = MO1.getReg(); 1513 if (Rs) { 1514 // Set shift operand (bit[7:4]). 1515 // LSL - 0001 1516 // LSR - 0011 1517 // ASR - 0101 1518 // ROR - 0111 1519 switch (SOpc) { 1520 default: llvm_unreachable("Unknown shift opc!"); 1521 case ARM_AM::lsl: SBits = 0x1; break; 1522 case ARM_AM::lsr: SBits = 0x3; break; 1523 case ARM_AM::asr: SBits = 0x5; break; 1524 case ARM_AM::ror: SBits = 0x7; break; 1525 } 1526 } 1527 1528 Binary |= SBits << 4; 1529 1530 // Encode the shift operation Rs. 1531 // Encode Rs bit[11:8]. 1532 assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0); 1533 return Binary | (CTX.getRegisterInfo()->getEncodingValue(Rs) << ARMII::RegRsShift); 1534 } 1535 1536 unsigned ARMMCCodeEmitter:: 1537 getSORegImmOpValue(const MCInst &MI, unsigned OpIdx, 1538 SmallVectorImpl<MCFixup> &Fixups, 1539 const MCSubtargetInfo &STI) const { 1540 // Sub-operands are [reg, imm]. The first register is Rm, the reg to be 1541 // shifted. The second is the amount to shift by. 1542 // 1543 // {3-0} = Rm. 1544 // {4} = 0 1545 // {6-5} = type 1546 // {11-7} = imm 1547 1548 const MCOperand &MO = MI.getOperand(OpIdx); 1549 const MCOperand &MO1 = MI.getOperand(OpIdx + 1); 1550 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO1.getImm()); 1551 1552 // Encode Rm. 1553 unsigned Binary = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); 1554 1555 // Encode the shift opcode. 1556 unsigned SBits = 0; 1557 1558 // Set shift operand (bit[6:4]). 1559 // LSL - 000 1560 // LSR - 010 1561 // ASR - 100 1562 // ROR - 110 1563 // RRX - 110 and bit[11:8] clear. 1564 switch (SOpc) { 1565 default: llvm_unreachable("Unknown shift opc!"); 1566 case ARM_AM::lsl: SBits = 0x0; break; 1567 case ARM_AM::lsr: SBits = 0x2; break; 1568 case ARM_AM::asr: SBits = 0x4; break; 1569 case ARM_AM::ror: SBits = 0x6; break; 1570 case ARM_AM::rrx: 1571 Binary |= 0x60; 1572 return Binary; 1573 } 1574 1575 // Encode shift_imm bit[11:7]. 1576 Binary |= SBits << 4; 1577 unsigned Offset = ARM_AM::getSORegOffset(MO1.getImm()); 1578 assert(Offset < 32 && "Offset must be in range 0-31!"); 1579 return Binary | (Offset << 7); 1580 } 1581 1582 1583 unsigned ARMMCCodeEmitter:: 1584 getT2AddrModeSORegOpValue(const MCInst &MI, unsigned OpNum, 1585 SmallVectorImpl<MCFixup> &Fixups, 1586 const MCSubtargetInfo &STI) const { 1587 const MCOperand &MO1 = MI.getOperand(OpNum); 1588 const MCOperand &MO2 = MI.getOperand(OpNum+1); 1589 const MCOperand &MO3 = MI.getOperand(OpNum+2); 1590 1591 // Encoded as [Rn, Rm, imm]. 1592 // FIXME: Needs fixup support. 1593 unsigned Value = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg()); 1594 Value <<= 4; 1595 Value |= CTX.getRegisterInfo()->getEncodingValue(MO2.getReg()); 1596 Value <<= 2; 1597 Value |= MO3.getImm(); 1598 1599 return Value; 1600 } 1601 1602 template<unsigned Bits, unsigned Shift> 1603 unsigned ARMMCCodeEmitter:: 1604 getT2AddrModeImmOpValue(const MCInst &MI, unsigned OpNum, 1605 SmallVectorImpl<MCFixup> &Fixups, 1606 const MCSubtargetInfo &STI) const { 1607 const MCOperand &MO1 = MI.getOperand(OpNum); 1608 const MCOperand &MO2 = MI.getOperand(OpNum+1); 1609 1610 // FIXME: Needs fixup support. 1611 unsigned Value = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg()); 1612 1613 // If the immediate is B bits long, we need B+1 bits in order 1614 // to represent the (inverse of the) sign bit. 1615 Value <<= (Bits + 1); 1616 int32_t tmp = (int32_t)MO2.getImm(); 1617 if (tmp == INT32_MIN) { // represents subtracting zero rather than adding it 1618 tmp = 0; 1619 } else if (tmp < 0) { 1620 tmp = abs(tmp); 1621 } else { 1622 Value |= (1U << Bits); // Set the ADD bit 1623 } 1624 Value |= (tmp >> Shift) & ((1U << Bits) - 1); 1625 return Value; 1626 } 1627 1628 unsigned ARMMCCodeEmitter:: 1629 getT2AddrModeImm8OffsetOpValue(const MCInst &MI, unsigned OpNum, 1630 SmallVectorImpl<MCFixup> &Fixups, 1631 const MCSubtargetInfo &STI) const { 1632 const MCOperand &MO1 = MI.getOperand(OpNum); 1633 1634 // FIXME: Needs fixup support. 1635 unsigned Value = 0; 1636 int32_t tmp = (int32_t)MO1.getImm(); 1637 if (tmp < 0) 1638 tmp = abs(tmp); 1639 else 1640 Value |= 256; // Set the ADD bit 1641 Value |= tmp & 255; 1642 return Value; 1643 } 1644 1645 unsigned ARMMCCodeEmitter:: 1646 getT2SORegOpValue(const MCInst &MI, unsigned OpIdx, 1647 SmallVectorImpl<MCFixup> &Fixups, 1648 const MCSubtargetInfo &STI) const { 1649 // Sub-operands are [reg, imm]. The first register is Rm, the reg to be 1650 // shifted. The second is the amount to shift by. 1651 // 1652 // {3-0} = Rm. 1653 // {4} = 0 1654 // {6-5} = type 1655 // {11-7} = imm 1656 1657 const MCOperand &MO = MI.getOperand(OpIdx); 1658 const MCOperand &MO1 = MI.getOperand(OpIdx + 1); 1659 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO1.getImm()); 1660 1661 // Encode Rm. 1662 unsigned Binary = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); 1663 1664 // Encode the shift opcode. 1665 unsigned SBits = 0; 1666 // Set shift operand (bit[6:4]). 1667 // LSL - 000 1668 // LSR - 010 1669 // ASR - 100 1670 // ROR - 110 1671 switch (SOpc) { 1672 default: llvm_unreachable("Unknown shift opc!"); 1673 case ARM_AM::lsl: SBits = 0x0; break; 1674 case ARM_AM::lsr: SBits = 0x2; break; 1675 case ARM_AM::asr: SBits = 0x4; break; 1676 case ARM_AM::rrx: LLVM_FALLTHROUGH; 1677 case ARM_AM::ror: SBits = 0x6; break; 1678 } 1679 1680 Binary |= SBits << 4; 1681 if (SOpc == ARM_AM::rrx) 1682 return Binary; 1683 1684 // Encode shift_imm bit[11:7]. 1685 return Binary | ARM_AM::getSORegOffset(MO1.getImm()) << 7; 1686 } 1687 1688 unsigned ARMMCCodeEmitter:: 1689 getBitfieldInvertedMaskOpValue(const MCInst &MI, unsigned Op, 1690 SmallVectorImpl<MCFixup> &Fixups, 1691 const MCSubtargetInfo &STI) const { 1692 // 10 bits. lower 5 bits are the lsb of the mask, high five bits are the 1693 // msb of the mask. 1694 const MCOperand &MO = MI.getOperand(Op); 1695 uint32_t v = ~MO.getImm(); 1696 uint32_t lsb = countTrailingZeros(v); 1697 uint32_t msb = (32 - countLeadingZeros (v)) - 1; 1698 assert(v != 0 && lsb < 32 && msb < 32 && "Illegal bitfield mask!"); 1699 return lsb | (msb << 5); 1700 } 1701 1702 unsigned ARMMCCodeEmitter:: 1703 getRegisterListOpValue(const MCInst &MI, unsigned Op, 1704 SmallVectorImpl<MCFixup> &Fixups, 1705 const MCSubtargetInfo &STI) const { 1706 // VLDM/VSTM/VSCCLRM: 1707 // {12-8} = Vd 1708 // {7-0} = Number of registers 1709 // 1710 // LDM/STM: 1711 // {15-0} = Bitfield of GPRs. 1712 unsigned Reg = MI.getOperand(Op).getReg(); 1713 bool SPRRegs = ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg); 1714 bool DPRRegs = ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg); 1715 1716 unsigned Binary = 0; 1717 1718 if (SPRRegs || DPRRegs) { 1719 // VLDM/VSTM/VSCCLRM 1720 unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg); 1721 unsigned NumRegs = (MI.getNumOperands() - Op) & 0xff; 1722 Binary |= (RegNo & 0x1f) << 8; 1723 1724 // Ignore VPR 1725 if (MI.getOpcode() == ARM::VSCCLRMD || MI.getOpcode() == ARM::VSCCLRMS) 1726 --NumRegs; 1727 if (SPRRegs) 1728 Binary |= NumRegs; 1729 else 1730 Binary |= NumRegs * 2; 1731 } else { 1732 const MCRegisterInfo &MRI = *CTX.getRegisterInfo(); 1733 assert(std::is_sorted(MI.begin() + Op, MI.end(), 1734 [&](const MCOperand &LHS, const MCOperand &RHS) { 1735 return MRI.getEncodingValue(LHS.getReg()) < 1736 MRI.getEncodingValue(RHS.getReg()); 1737 })); 1738 for (unsigned I = Op, E = MI.getNumOperands(); I < E; ++I) { 1739 unsigned RegNo = MRI.getEncodingValue(MI.getOperand(I).getReg()); 1740 Binary |= 1 << RegNo; 1741 } 1742 } 1743 1744 return Binary; 1745 } 1746 1747 /// getAddrMode6AddressOpValue - Encode an addrmode6 register number along 1748 /// with the alignment operand. 1749 unsigned ARMMCCodeEmitter:: 1750 getAddrMode6AddressOpValue(const MCInst &MI, unsigned Op, 1751 SmallVectorImpl<MCFixup> &Fixups, 1752 const MCSubtargetInfo &STI) const { 1753 const MCOperand &Reg = MI.getOperand(Op); 1754 const MCOperand &Imm = MI.getOperand(Op + 1); 1755 1756 unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg.getReg()); 1757 unsigned Align = 0; 1758 1759 switch (Imm.getImm()) { 1760 default: break; 1761 case 2: 1762 case 4: 1763 case 8: Align = 0x01; break; 1764 case 16: Align = 0x02; break; 1765 case 32: Align = 0x03; break; 1766 } 1767 1768 return RegNo | (Align << 4); 1769 } 1770 1771 /// getAddrMode6OneLane32AddressOpValue - Encode an addrmode6 register number 1772 /// along with the alignment operand for use in VST1 and VLD1 with size 32. 1773 unsigned ARMMCCodeEmitter:: 1774 getAddrMode6OneLane32AddressOpValue(const MCInst &MI, unsigned Op, 1775 SmallVectorImpl<MCFixup> &Fixups, 1776 const MCSubtargetInfo &STI) const { 1777 const MCOperand &Reg = MI.getOperand(Op); 1778 const MCOperand &Imm = MI.getOperand(Op + 1); 1779 1780 unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg.getReg()); 1781 unsigned Align = 0; 1782 1783 switch (Imm.getImm()) { 1784 default: break; 1785 case 8: 1786 case 16: 1787 case 32: // Default '0' value for invalid alignments of 8, 16, 32 bytes. 1788 case 2: Align = 0x00; break; 1789 case 4: Align = 0x03; break; 1790 } 1791 1792 return RegNo | (Align << 4); 1793 } 1794 1795 1796 /// getAddrMode6DupAddressOpValue - Encode an addrmode6 register number and 1797 /// alignment operand for use in VLD-dup instructions. This is the same as 1798 /// getAddrMode6AddressOpValue except for the alignment encoding, which is 1799 /// different for VLD4-dup. 1800 unsigned ARMMCCodeEmitter:: 1801 getAddrMode6DupAddressOpValue(const MCInst &MI, unsigned Op, 1802 SmallVectorImpl<MCFixup> &Fixups, 1803 const MCSubtargetInfo &STI) const { 1804 const MCOperand &Reg = MI.getOperand(Op); 1805 const MCOperand &Imm = MI.getOperand(Op + 1); 1806 1807 unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg.getReg()); 1808 unsigned Align = 0; 1809 1810 switch (Imm.getImm()) { 1811 default: break; 1812 case 2: 1813 case 4: 1814 case 8: Align = 0x01; break; 1815 case 16: Align = 0x03; break; 1816 } 1817 1818 return RegNo | (Align << 4); 1819 } 1820 1821 unsigned ARMMCCodeEmitter:: 1822 getAddrMode6OffsetOpValue(const MCInst &MI, unsigned Op, 1823 SmallVectorImpl<MCFixup> &Fixups, 1824 const MCSubtargetInfo &STI) const { 1825 const MCOperand &MO = MI.getOperand(Op); 1826 if (MO.getReg() == 0) return 0x0D; 1827 return CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); 1828 } 1829 1830 unsigned ARMMCCodeEmitter:: 1831 getShiftRight8Imm(const MCInst &MI, unsigned Op, 1832 SmallVectorImpl<MCFixup> &Fixups, 1833 const MCSubtargetInfo &STI) const { 1834 return 8 - MI.getOperand(Op).getImm(); 1835 } 1836 1837 unsigned ARMMCCodeEmitter:: 1838 getShiftRight16Imm(const MCInst &MI, unsigned Op, 1839 SmallVectorImpl<MCFixup> &Fixups, 1840 const MCSubtargetInfo &STI) const { 1841 return 16 - MI.getOperand(Op).getImm(); 1842 } 1843 1844 unsigned ARMMCCodeEmitter:: 1845 getShiftRight32Imm(const MCInst &MI, unsigned Op, 1846 SmallVectorImpl<MCFixup> &Fixups, 1847 const MCSubtargetInfo &STI) const { 1848 return 32 - MI.getOperand(Op).getImm(); 1849 } 1850 1851 unsigned ARMMCCodeEmitter:: 1852 getShiftRight64Imm(const MCInst &MI, unsigned Op, 1853 SmallVectorImpl<MCFixup> &Fixups, 1854 const MCSubtargetInfo &STI) const { 1855 return 64 - MI.getOperand(Op).getImm(); 1856 } 1857 1858 void ARMMCCodeEmitter:: 1859 encodeInstruction(const MCInst &MI, raw_ostream &OS, 1860 SmallVectorImpl<MCFixup> &Fixups, 1861 const MCSubtargetInfo &STI) const { 1862 // Pseudo instructions don't get encoded. 1863 const MCInstrDesc &Desc = MCII.get(MI.getOpcode()); 1864 uint64_t TSFlags = Desc.TSFlags; 1865 if ((TSFlags & ARMII::FormMask) == ARMII::Pseudo) 1866 return; 1867 1868 int Size; 1869 if (Desc.getSize() == 2 || Desc.getSize() == 4) 1870 Size = Desc.getSize(); 1871 else 1872 llvm_unreachable("Unexpected instruction size!"); 1873 1874 uint32_t Binary = getBinaryCodeForInstr(MI, Fixups, STI); 1875 // Thumb 32-bit wide instructions need to emit the high order halfword 1876 // first. 1877 if (isThumb(STI) && Size == 4) { 1878 EmitConstant(Binary >> 16, 2, OS); 1879 EmitConstant(Binary & 0xffff, 2, OS); 1880 } else 1881 EmitConstant(Binary, Size, OS); 1882 ++MCNumEmitted; // Keep track of the # of mi's emitted. 1883 } 1884 1885 template <bool isNeg, ARM::Fixups fixup> 1886 uint32_t 1887 ARMMCCodeEmitter::getBFTargetOpValue(const MCInst &MI, unsigned OpIdx, 1888 SmallVectorImpl<MCFixup> &Fixups, 1889 const MCSubtargetInfo &STI) const { 1890 const MCOperand MO = MI.getOperand(OpIdx); 1891 if (MO.isExpr()) 1892 return ::getBranchTargetOpValue(MI, OpIdx, fixup, Fixups, STI); 1893 return isNeg ? -(MO.getImm() >> 1) : (MO.getImm() >> 1); 1894 } 1895 1896 uint32_t 1897 ARMMCCodeEmitter::getBFAfterTargetOpValue(const MCInst &MI, unsigned OpIdx, 1898 SmallVectorImpl<MCFixup> &Fixups, 1899 const MCSubtargetInfo &STI) const { 1900 const MCOperand MO = MI.getOperand(OpIdx); 1901 const MCOperand BranchMO = MI.getOperand(0); 1902 1903 if (MO.isExpr()) { 1904 assert(BranchMO.isExpr()); 1905 const MCExpr *DiffExpr = MCBinaryExpr::createSub( 1906 MO.getExpr(), BranchMO.getExpr(), CTX); 1907 MCFixupKind Kind = MCFixupKind(ARM::fixup_bfcsel_else_target); 1908 Fixups.push_back(llvm::MCFixup::create(0, DiffExpr, Kind, MI.getLoc())); 1909 return 0; 1910 } 1911 1912 assert(MO.isImm() && BranchMO.isImm()); 1913 int Diff = MO.getImm() - BranchMO.getImm(); 1914 assert(Diff == 4 || Diff == 2); 1915 1916 return Diff == 4; 1917 } 1918 1919 uint32_t ARMMCCodeEmitter::getVPTMaskOpValue(const MCInst &MI, unsigned OpIdx, 1920 SmallVectorImpl<MCFixup> &Fixups, 1921 const MCSubtargetInfo &STI)const { 1922 const MCOperand MO = MI.getOperand(OpIdx); 1923 assert(MO.isImm() && "Unexpected operand type!"); 1924 1925 int Value = MO.getImm(); 1926 int Imm = 0; 1927 1928 // VPT Masks are actually encoded as a series of invert/don't invert bits, 1929 // rather than true/false bits. 1930 unsigned PrevBit = 0; 1931 for (int i = 3; i >= 0; --i) { 1932 unsigned Bit = (Value >> i) & 1; 1933 1934 // Check if we are at the end of the mask. 1935 if ((Value & ~(~0U << i)) == 0) { 1936 Imm |= (1 << i); 1937 break; 1938 } 1939 1940 // Convert the bit in the mask based on the previous bit. 1941 if (Bit != PrevBit) 1942 Imm |= (1 << i); 1943 1944 PrevBit = Bit; 1945 } 1946 1947 return Imm; 1948 } 1949 1950 uint32_t ARMMCCodeEmitter::getRestrictedCondCodeOpValue( 1951 const MCInst &MI, unsigned OpIdx, SmallVectorImpl<MCFixup> &Fixups, 1952 const MCSubtargetInfo &STI) const { 1953 1954 const MCOperand MO = MI.getOperand(OpIdx); 1955 assert(MO.isImm() && "Unexpected operand type!"); 1956 1957 switch (MO.getImm()) { 1958 default: 1959 assert(0 && "Unexpected Condition!"); 1960 return 0; 1961 case ARMCC::HS: 1962 case ARMCC::EQ: 1963 return 0; 1964 case ARMCC::HI: 1965 case ARMCC::NE: 1966 return 1; 1967 case ARMCC::GE: 1968 return 4; 1969 case ARMCC::LT: 1970 return 5; 1971 case ARMCC::GT: 1972 return 6; 1973 case ARMCC::LE: 1974 return 7; 1975 } 1976 } 1977 1978 uint32_t ARMMCCodeEmitter:: 1979 getPowerTwoOpValue(const MCInst &MI, unsigned OpIdx, 1980 SmallVectorImpl<MCFixup> &Fixups, 1981 const MCSubtargetInfo &STI) const { 1982 const MCOperand &MO = MI.getOperand(OpIdx); 1983 assert(MO.isImm() && "Unexpected operand type!"); 1984 return countTrailingZeros((uint64_t)MO.getImm()); 1985 } 1986 1987 template <unsigned start> 1988 uint32_t ARMMCCodeEmitter:: 1989 getMVEPairVectorIndexOpValue(const MCInst &MI, unsigned OpIdx, 1990 SmallVectorImpl<MCFixup> &Fixups, 1991 const MCSubtargetInfo &STI) const { 1992 const MCOperand MO = MI.getOperand(OpIdx); 1993 assert(MO.isImm() && "Unexpected operand type!"); 1994 1995 int Value = MO.getImm(); 1996 return Value - start; 1997 } 1998 1999 #include "ARMGenMCCodeEmitter.inc" 2000 2001 MCCodeEmitter *llvm::createARMLEMCCodeEmitter(const MCInstrInfo &MCII, 2002 const MCRegisterInfo &MRI, 2003 MCContext &Ctx) { 2004 return new ARMMCCodeEmitter(MCII, Ctx, true); 2005 } 2006 2007 MCCodeEmitter *llvm::createARMBEMCCodeEmitter(const MCInstrInfo &MCII, 2008 const MCRegisterInfo &MRI, 2009 MCContext &Ctx) { 2010 return new ARMMCCodeEmitter(MCII, Ctx, false); 2011 } 2012