1 //===- lib/MC/ARMELFStreamer.cpp - ELF Object Output for ARM --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file assembles .s files and emits ARM ELF .o object files. Different 10 // from generic ELF streamer in emitting mapping symbols ($a, $t and $d) to 11 // delimit regions of data and code. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMMCTargetDesc.h" 16 #include "ARMUnwindOpAsm.h" 17 #include "Utils/ARMBaseInfo.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/BinaryFormat/ELF.h" 25 #include "llvm/MC/MCAsmBackend.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCAssembler.h" 28 #include "llvm/MC/MCCodeEmitter.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCELFStreamer.h" 31 #include "llvm/MC/MCExpr.h" 32 #include "llvm/MC/MCFixup.h" 33 #include "llvm/MC/MCFragment.h" 34 #include "llvm/MC/MCInst.h" 35 #include "llvm/MC/MCInstPrinter.h" 36 #include "llvm/MC/MCObjectWriter.h" 37 #include "llvm/MC/MCRegisterInfo.h" 38 #include "llvm/MC/MCSection.h" 39 #include "llvm/MC/MCSectionELF.h" 40 #include "llvm/MC/MCStreamer.h" 41 #include "llvm/MC/MCSubtargetInfo.h" 42 #include "llvm/MC/MCSymbol.h" 43 #include "llvm/MC/MCSymbolELF.h" 44 #include "llvm/MC/SectionKind.h" 45 #include "llvm/Support/ARMBuildAttributes.h" 46 #include "llvm/Support/ARMEHABI.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/FormattedStream.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <climits> 54 #include <cstddef> 55 #include <cstdint> 56 #include <string> 57 58 using namespace llvm; 59 60 static std::string GetAEABIUnwindPersonalityName(unsigned Index) { 61 assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && 62 "Invalid personality index"); 63 return (Twine("__aeabi_unwind_cpp_pr") + Twine(Index)).str(); 64 } 65 66 namespace { 67 68 class ARMELFStreamer; 69 70 class ARMTargetAsmStreamer : public ARMTargetStreamer { 71 formatted_raw_ostream &OS; 72 MCInstPrinter &InstPrinter; 73 bool IsVerboseAsm; 74 75 void emitFnStart() override; 76 void emitFnEnd() override; 77 void emitCantUnwind() override; 78 void emitPersonality(const MCSymbol *Personality) override; 79 void emitPersonalityIndex(unsigned Index) override; 80 void emitHandlerData() override; 81 void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override; 82 void emitMovSP(unsigned Reg, int64_t Offset = 0) override; 83 void emitPad(int64_t Offset) override; 84 void emitRegSave(const SmallVectorImpl<unsigned> &RegList, 85 bool isVector) override; 86 void emitUnwindRaw(int64_t Offset, 87 const SmallVectorImpl<uint8_t> &Opcodes) override; 88 89 void switchVendor(StringRef Vendor) override; 90 void emitAttribute(unsigned Attribute, unsigned Value) override; 91 void emitTextAttribute(unsigned Attribute, StringRef String) override; 92 void emitIntTextAttribute(unsigned Attribute, unsigned IntValue, 93 StringRef StringValue) override; 94 void emitArch(ARM::ArchKind Arch) override; 95 void emitArchExtension(uint64_t ArchExt) override; 96 void emitObjectArch(ARM::ArchKind Arch) override; 97 void emitFPU(ARM::FPUKind FPU) override; 98 void emitInst(uint32_t Inst, char Suffix = '\0') override; 99 void finishAttributeSection() override; 100 101 void annotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override; 102 void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override; 103 104 void emitARMWinCFIAllocStack(unsigned Size, bool Wide) override; 105 void emitARMWinCFISaveRegMask(unsigned Mask, bool Wide) override; 106 void emitARMWinCFISaveSP(unsigned Reg) override; 107 void emitARMWinCFISaveFRegs(unsigned First, unsigned Last) override; 108 void emitARMWinCFISaveLR(unsigned Offset) override; 109 void emitARMWinCFIPrologEnd(bool Fragment) override; 110 void emitARMWinCFINop(bool Wide) override; 111 void emitARMWinCFIEpilogStart(unsigned Condition) override; 112 void emitARMWinCFIEpilogEnd() override; 113 void emitARMWinCFICustom(unsigned Opcode) override; 114 115 public: 116 ARMTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS, 117 MCInstPrinter &InstPrinter); 118 }; 119 120 ARMTargetAsmStreamer::ARMTargetAsmStreamer(MCStreamer &S, 121 formatted_raw_ostream &OS, 122 MCInstPrinter &InstPrinter) 123 : ARMTargetStreamer(S), OS(OS), InstPrinter(InstPrinter), 124 IsVerboseAsm(S.isVerboseAsm()) {} 125 126 void ARMTargetAsmStreamer::emitFnStart() { OS << "\t.fnstart\n"; } 127 void ARMTargetAsmStreamer::emitFnEnd() { OS << "\t.fnend\n"; } 128 void ARMTargetAsmStreamer::emitCantUnwind() { OS << "\t.cantunwind\n"; } 129 130 void ARMTargetAsmStreamer::emitPersonality(const MCSymbol *Personality) { 131 OS << "\t.personality " << Personality->getName() << '\n'; 132 } 133 134 void ARMTargetAsmStreamer::emitPersonalityIndex(unsigned Index) { 135 OS << "\t.personalityindex " << Index << '\n'; 136 } 137 138 void ARMTargetAsmStreamer::emitHandlerData() { OS << "\t.handlerdata\n"; } 139 140 void ARMTargetAsmStreamer::emitSetFP(unsigned FpReg, unsigned SpReg, 141 int64_t Offset) { 142 OS << "\t.setfp\t"; 143 InstPrinter.printRegName(OS, FpReg); 144 OS << ", "; 145 InstPrinter.printRegName(OS, SpReg); 146 if (Offset) 147 OS << ", #" << Offset; 148 OS << '\n'; 149 } 150 151 void ARMTargetAsmStreamer::emitMovSP(unsigned Reg, int64_t Offset) { 152 assert((Reg != ARM::SP && Reg != ARM::PC) && 153 "the operand of .movsp cannot be either sp or pc"); 154 155 OS << "\t.movsp\t"; 156 InstPrinter.printRegName(OS, Reg); 157 if (Offset) 158 OS << ", #" << Offset; 159 OS << '\n'; 160 } 161 162 void ARMTargetAsmStreamer::emitPad(int64_t Offset) { 163 OS << "\t.pad\t#" << Offset << '\n'; 164 } 165 166 void ARMTargetAsmStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList, 167 bool isVector) { 168 assert(RegList.size() && "RegList should not be empty"); 169 if (isVector) 170 OS << "\t.vsave\t{"; 171 else 172 OS << "\t.save\t{"; 173 174 InstPrinter.printRegName(OS, RegList[0]); 175 176 for (unsigned i = 1, e = RegList.size(); i != e; ++i) { 177 OS << ", "; 178 InstPrinter.printRegName(OS, RegList[i]); 179 } 180 181 OS << "}\n"; 182 } 183 184 void ARMTargetAsmStreamer::switchVendor(StringRef Vendor) {} 185 186 void ARMTargetAsmStreamer::emitAttribute(unsigned Attribute, unsigned Value) { 187 OS << "\t.eabi_attribute\t" << Attribute << ", " << Twine(Value); 188 if (IsVerboseAsm) { 189 StringRef Name = ELFAttrs::attrTypeAsString( 190 Attribute, ARMBuildAttrs::getARMAttributeTags()); 191 if (!Name.empty()) 192 OS << "\t@ " << Name; 193 } 194 OS << "\n"; 195 } 196 197 void ARMTargetAsmStreamer::emitTextAttribute(unsigned Attribute, 198 StringRef String) { 199 switch (Attribute) { 200 case ARMBuildAttrs::CPU_name: 201 OS << "\t.cpu\t" << String.lower(); 202 break; 203 default: 204 OS << "\t.eabi_attribute\t" << Attribute << ", \""; 205 if (Attribute == ARMBuildAttrs::also_compatible_with) 206 OS.write_escaped(String); 207 else 208 OS << String; 209 OS << "\""; 210 if (IsVerboseAsm) { 211 StringRef Name = ELFAttrs::attrTypeAsString( 212 Attribute, ARMBuildAttrs::getARMAttributeTags()); 213 if (!Name.empty()) 214 OS << "\t@ " << Name; 215 } 216 break; 217 } 218 OS << "\n"; 219 } 220 221 void ARMTargetAsmStreamer::emitIntTextAttribute(unsigned Attribute, 222 unsigned IntValue, 223 StringRef StringValue) { 224 switch (Attribute) { 225 default: llvm_unreachable("unsupported multi-value attribute in asm mode"); 226 case ARMBuildAttrs::compatibility: 227 OS << "\t.eabi_attribute\t" << Attribute << ", " << IntValue; 228 if (!StringValue.empty()) 229 OS << ", \"" << StringValue << "\""; 230 if (IsVerboseAsm) 231 OS << "\t@ " 232 << ELFAttrs::attrTypeAsString(Attribute, 233 ARMBuildAttrs::getARMAttributeTags()); 234 break; 235 } 236 OS << "\n"; 237 } 238 239 void ARMTargetAsmStreamer::emitArch(ARM::ArchKind Arch) { 240 OS << "\t.arch\t" << ARM::getArchName(Arch) << "\n"; 241 } 242 243 void ARMTargetAsmStreamer::emitArchExtension(uint64_t ArchExt) { 244 OS << "\t.arch_extension\t" << ARM::getArchExtName(ArchExt) << "\n"; 245 } 246 247 void ARMTargetAsmStreamer::emitObjectArch(ARM::ArchKind Arch) { 248 OS << "\t.object_arch\t" << ARM::getArchName(Arch) << '\n'; 249 } 250 251 void ARMTargetAsmStreamer::emitFPU(ARM::FPUKind FPU) { 252 OS << "\t.fpu\t" << ARM::getFPUName(FPU) << "\n"; 253 } 254 255 void ARMTargetAsmStreamer::finishAttributeSection() {} 256 257 void ARMTargetAsmStreamer::annotateTLSDescriptorSequence( 258 const MCSymbolRefExpr *S) { 259 OS << "\t.tlsdescseq\t" << S->getSymbol().getName() << "\n"; 260 } 261 262 void ARMTargetAsmStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) { 263 const MCAsmInfo *MAI = Streamer.getContext().getAsmInfo(); 264 265 OS << "\t.thumb_set\t"; 266 Symbol->print(OS, MAI); 267 OS << ", "; 268 Value->print(OS, MAI); 269 OS << '\n'; 270 } 271 272 void ARMTargetAsmStreamer::emitInst(uint32_t Inst, char Suffix) { 273 OS << "\t.inst"; 274 if (Suffix) 275 OS << "." << Suffix; 276 OS << "\t0x" << Twine::utohexstr(Inst) << "\n"; 277 } 278 279 void ARMTargetAsmStreamer::emitUnwindRaw(int64_t Offset, 280 const SmallVectorImpl<uint8_t> &Opcodes) { 281 OS << "\t.unwind_raw " << Offset; 282 for (uint8_t Opcode : Opcodes) 283 OS << ", 0x" << Twine::utohexstr(Opcode); 284 OS << '\n'; 285 } 286 287 void ARMTargetAsmStreamer::emitARMWinCFIAllocStack(unsigned Size, bool Wide) { 288 if (Wide) 289 OS << "\t.seh_stackalloc_w\t" << Size << "\n"; 290 else 291 OS << "\t.seh_stackalloc\t" << Size << "\n"; 292 } 293 294 static void printRegs(formatted_raw_ostream &OS, ListSeparator &LS, int First, 295 int Last) { 296 if (First != Last) 297 OS << LS << "r" << First << "-r" << Last; 298 else 299 OS << LS << "r" << First; 300 } 301 302 void ARMTargetAsmStreamer::emitARMWinCFISaveRegMask(unsigned Mask, bool Wide) { 303 if (Wide) 304 OS << "\t.seh_save_regs_w\t"; 305 else 306 OS << "\t.seh_save_regs\t"; 307 ListSeparator LS; 308 int First = -1; 309 OS << "{"; 310 for (int I = 0; I <= 12; I++) { 311 if (Mask & (1 << I)) { 312 if (First < 0) 313 First = I; 314 } else { 315 if (First >= 0) { 316 printRegs(OS, LS, First, I - 1); 317 First = -1; 318 } 319 } 320 } 321 if (First >= 0) 322 printRegs(OS, LS, First, 12); 323 if (Mask & (1 << 14)) 324 OS << LS << "lr"; 325 OS << "}\n"; 326 } 327 328 void ARMTargetAsmStreamer::emitARMWinCFISaveSP(unsigned Reg) { 329 OS << "\t.seh_save_sp\tr" << Reg << "\n"; 330 } 331 332 void ARMTargetAsmStreamer::emitARMWinCFISaveFRegs(unsigned First, 333 unsigned Last) { 334 if (First != Last) 335 OS << "\t.seh_save_fregs\t{d" << First << "-d" << Last << "}\n"; 336 else 337 OS << "\t.seh_save_fregs\t{d" << First << "}\n"; 338 } 339 340 void ARMTargetAsmStreamer::emitARMWinCFISaveLR(unsigned Offset) { 341 OS << "\t.seh_save_lr\t" << Offset << "\n"; 342 } 343 344 void ARMTargetAsmStreamer::emitARMWinCFIPrologEnd(bool Fragment) { 345 if (Fragment) 346 OS << "\t.seh_endprologue_fragment\n"; 347 else 348 OS << "\t.seh_endprologue\n"; 349 } 350 351 void ARMTargetAsmStreamer::emitARMWinCFINop(bool Wide) { 352 if (Wide) 353 OS << "\t.seh_nop_w\n"; 354 else 355 OS << "\t.seh_nop\n"; 356 } 357 358 void ARMTargetAsmStreamer::emitARMWinCFIEpilogStart(unsigned Condition) { 359 if (Condition == ARMCC::AL) 360 OS << "\t.seh_startepilogue\n"; 361 else 362 OS << "\t.seh_startepilogue_cond\t" 363 << ARMCondCodeToString(static_cast<ARMCC::CondCodes>(Condition)) << "\n"; 364 } 365 366 void ARMTargetAsmStreamer::emitARMWinCFIEpilogEnd() { 367 OS << "\t.seh_endepilogue\n"; 368 } 369 370 void ARMTargetAsmStreamer::emitARMWinCFICustom(unsigned Opcode) { 371 int I; 372 for (I = 3; I > 0; I--) 373 if (Opcode & (0xffu << (8 * I))) 374 break; 375 ListSeparator LS; 376 OS << "\t.seh_custom\t"; 377 for (; I >= 0; I--) 378 OS << LS << ((Opcode >> (8 * I)) & 0xff); 379 OS << "\n"; 380 } 381 382 class ARMTargetELFStreamer : public ARMTargetStreamer { 383 private: 384 StringRef CurrentVendor; 385 ARM::FPUKind FPU = ARM::FK_INVALID; 386 ARM::ArchKind Arch = ARM::ArchKind::INVALID; 387 ARM::ArchKind EmittedArch = ARM::ArchKind::INVALID; 388 389 MCSection *AttributeSection = nullptr; 390 391 void emitArchDefaultAttributes(); 392 void emitFPUDefaultAttributes(); 393 394 ARMELFStreamer &getStreamer(); 395 396 void emitFnStart() override; 397 void emitFnEnd() override; 398 void emitCantUnwind() override; 399 void emitPersonality(const MCSymbol *Personality) override; 400 void emitPersonalityIndex(unsigned Index) override; 401 void emitHandlerData() override; 402 void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override; 403 void emitMovSP(unsigned Reg, int64_t Offset = 0) override; 404 void emitPad(int64_t Offset) override; 405 void emitRegSave(const SmallVectorImpl<unsigned> &RegList, 406 bool isVector) override; 407 void emitUnwindRaw(int64_t Offset, 408 const SmallVectorImpl<uint8_t> &Opcodes) override; 409 410 void switchVendor(StringRef Vendor) override; 411 void emitAttribute(unsigned Attribute, unsigned Value) override; 412 void emitTextAttribute(unsigned Attribute, StringRef String) override; 413 void emitIntTextAttribute(unsigned Attribute, unsigned IntValue, 414 StringRef StringValue) override; 415 void emitArch(ARM::ArchKind Arch) override; 416 void emitObjectArch(ARM::ArchKind Arch) override; 417 void emitFPU(ARM::FPUKind FPU) override; 418 void emitInst(uint32_t Inst, char Suffix = '\0') override; 419 void finishAttributeSection() override; 420 void emitLabel(MCSymbol *Symbol) override; 421 422 void annotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override; 423 void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override; 424 425 // Reset state between object emissions 426 void reset() override; 427 428 void finish() override; 429 430 public: 431 ARMTargetELFStreamer(MCStreamer &S) 432 : ARMTargetStreamer(S), CurrentVendor("aeabi") {} 433 }; 434 435 /// Extend the generic ELFStreamer class so that it can emit mapping symbols at 436 /// the appropriate points in the object files. These symbols are defined in the 437 /// ARM ELF ABI: infocenter.arm.com/help/topic/com.arm.../IHI0044D_aaelf.pdf. 438 /// 439 /// In brief: $a, $t or $d should be emitted at the start of each contiguous 440 /// region of ARM code, Thumb code or data in a section. In practice, this 441 /// emission does not rely on explicit assembler directives but on inherent 442 /// properties of the directives doing the emission (e.g. ".byte" is data, "add 443 /// r0, r0, r0" an instruction). 444 /// 445 /// As a result this system is orthogonal to the DataRegion infrastructure used 446 /// by MachO. Beware! 447 class ARMELFStreamer : public MCELFStreamer { 448 public: 449 friend class ARMTargetELFStreamer; 450 451 ARMELFStreamer(MCContext &Context, std::unique_ptr<MCAsmBackend> TAB, 452 std::unique_ptr<MCObjectWriter> OW, 453 std::unique_ptr<MCCodeEmitter> Emitter, bool IsThumb, 454 bool IsAndroid) 455 : MCELFStreamer(Context, std::move(TAB), std::move(OW), 456 std::move(Emitter)), 457 IsThumb(IsThumb), IsAndroid(IsAndroid) { 458 EHReset(); 459 } 460 461 ~ARMELFStreamer() override = default; 462 463 // ARM exception handling directives 464 void emitFnStart(); 465 void emitFnEnd(); 466 void emitCantUnwind(); 467 void emitPersonality(const MCSymbol *Per); 468 void emitPersonalityIndex(unsigned index); 469 void emitHandlerData(); 470 void emitSetFP(unsigned NewFpReg, unsigned NewSpReg, int64_t Offset = 0); 471 void emitMovSP(unsigned Reg, int64_t Offset = 0); 472 void emitPad(int64_t Offset); 473 void emitRegSave(const SmallVectorImpl<unsigned> &RegList, bool isVector); 474 void emitUnwindRaw(int64_t Offset, const SmallVectorImpl<uint8_t> &Opcodes); 475 void emitFill(const MCExpr &NumBytes, uint64_t FillValue, 476 SMLoc Loc) override { 477 emitDataMappingSymbol(); 478 MCObjectStreamer::emitFill(NumBytes, FillValue, Loc); 479 } 480 481 void changeSection(MCSection *Section, uint32_t Subsection) override { 482 LastMappingSymbols[getCurrentSection().first] = std::move(LastEMSInfo); 483 MCELFStreamer::changeSection(Section, Subsection); 484 auto LastMappingSymbol = LastMappingSymbols.find(Section); 485 if (LastMappingSymbol != LastMappingSymbols.end()) { 486 LastEMSInfo = std::move(LastMappingSymbol->second); 487 return; 488 } 489 LastEMSInfo.reset(new ElfMappingSymbolInfo); 490 } 491 492 /// This function is the one used to emit instruction data into the ELF 493 /// streamer. We override it to add the appropriate mapping symbol if 494 /// necessary. 495 void emitInstruction(const MCInst &Inst, 496 const MCSubtargetInfo &STI) override { 497 if (IsThumb) 498 EmitThumbMappingSymbol(); 499 else 500 EmitARMMappingSymbol(); 501 502 MCELFStreamer::emitInstruction(Inst, STI); 503 } 504 505 void emitInst(uint32_t Inst, char Suffix) { 506 unsigned Size; 507 char Buffer[4]; 508 const bool LittleEndian = getContext().getAsmInfo()->isLittleEndian(); 509 510 switch (Suffix) { 511 case '\0': 512 Size = 4; 513 514 assert(!IsThumb); 515 EmitARMMappingSymbol(); 516 for (unsigned II = 0, IE = Size; II != IE; II++) { 517 const unsigned I = LittleEndian ? (Size - II - 1) : II; 518 Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT); 519 } 520 521 break; 522 case 'n': 523 case 'w': 524 Size = (Suffix == 'n' ? 2 : 4); 525 526 assert(IsThumb); 527 EmitThumbMappingSymbol(); 528 // Thumb wide instructions are emitted as a pair of 16-bit words of the 529 // appropriate endianness. 530 for (unsigned II = 0, IE = Size; II != IE; II = II + 2) { 531 const unsigned I0 = LittleEndian ? II + 0 : II + 1; 532 const unsigned I1 = LittleEndian ? II + 1 : II + 0; 533 Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT); 534 Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT); 535 } 536 537 break; 538 default: 539 llvm_unreachable("Invalid Suffix"); 540 } 541 542 MCELFStreamer::emitBytes(StringRef(Buffer, Size)); 543 } 544 545 /// This is one of the functions used to emit data into an ELF section, so the 546 /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if 547 /// necessary. 548 void emitBytes(StringRef Data) override { 549 emitDataMappingSymbol(); 550 MCELFStreamer::emitBytes(Data); 551 } 552 553 void FlushPendingMappingSymbol() { 554 if (!LastEMSInfo->hasInfo()) 555 return; 556 ElfMappingSymbolInfo *EMS = LastEMSInfo.get(); 557 emitMappingSymbol("$d", *EMS->F, EMS->Offset); 558 EMS->resetInfo(); 559 } 560 561 /// This is one of the functions used to emit data into an ELF section, so the 562 /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if 563 /// necessary. 564 void emitValueImpl(const MCExpr *Value, unsigned Size, SMLoc Loc) override { 565 if (const MCSymbolRefExpr *SRE = dyn_cast_or_null<MCSymbolRefExpr>(Value)) { 566 if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_SBREL && !(Size == 4)) { 567 getContext().reportError(Loc, "relocated expression must be 32-bit"); 568 return; 569 } 570 getOrCreateDataFragment(); 571 } 572 573 emitDataMappingSymbol(); 574 MCELFStreamer::emitValueImpl(Value, Size, Loc); 575 } 576 577 void emitAssemblerFlag(MCAssemblerFlag Flag) override { 578 MCELFStreamer::emitAssemblerFlag(Flag); 579 580 switch (Flag) { 581 case MCAF_SyntaxUnified: 582 return; // no-op here. 583 case MCAF_Code16: 584 IsThumb = true; 585 return; // Change to Thumb mode 586 case MCAF_Code32: 587 IsThumb = false; 588 return; // Change to ARM mode 589 case MCAF_Code64: 590 return; 591 case MCAF_SubsectionsViaSymbols: 592 return; 593 } 594 } 595 596 /// If a label is defined before the .type directive sets the label's type 597 /// then the label can't be recorded as thumb function when the label is 598 /// defined. We override emitSymbolAttribute() which is called as part of the 599 /// parsing of .type so that if the symbol has already been defined we can 600 /// record the label as Thumb. FIXME: there is a corner case where the state 601 /// is changed in between the label definition and the .type directive, this 602 /// is not expected to occur in practice and handling it would require the 603 /// backend to track IsThumb for every label. 604 bool emitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute) override { 605 bool Val = MCELFStreamer::emitSymbolAttribute(Symbol, Attribute); 606 607 if (!IsThumb) 608 return Val; 609 610 unsigned Type = cast<MCSymbolELF>(Symbol)->getType(); 611 if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC) && 612 Symbol->isDefined()) 613 getAssembler().setIsThumbFunc(Symbol); 614 615 return Val; 616 }; 617 618 private: 619 enum ElfMappingSymbol { 620 EMS_None, 621 EMS_ARM, 622 EMS_Thumb, 623 EMS_Data 624 }; 625 626 struct ElfMappingSymbolInfo { 627 void resetInfo() { 628 F = nullptr; 629 Offset = 0; 630 } 631 bool hasInfo() { return F != nullptr; } 632 MCDataFragment *F = nullptr; 633 uint64_t Offset = 0; 634 ElfMappingSymbol State = EMS_None; 635 }; 636 637 void emitDataMappingSymbol() { 638 if (LastEMSInfo->State == EMS_Data) 639 return; 640 else if (LastEMSInfo->State == EMS_None) { 641 // This is a tentative symbol, it won't really be emitted until it's 642 // actually needed. 643 ElfMappingSymbolInfo *EMS = LastEMSInfo.get(); 644 auto *DF = dyn_cast_or_null<MCDataFragment>(getCurrentFragment()); 645 if (!DF) 646 return; 647 EMS->F = DF; 648 EMS->Offset = DF->getContents().size(); 649 LastEMSInfo->State = EMS_Data; 650 return; 651 } 652 EmitMappingSymbol("$d"); 653 LastEMSInfo->State = EMS_Data; 654 } 655 656 void EmitThumbMappingSymbol() { 657 if (LastEMSInfo->State == EMS_Thumb) 658 return; 659 FlushPendingMappingSymbol(); 660 EmitMappingSymbol("$t"); 661 LastEMSInfo->State = EMS_Thumb; 662 } 663 664 void EmitARMMappingSymbol() { 665 if (LastEMSInfo->State == EMS_ARM) 666 return; 667 FlushPendingMappingSymbol(); 668 EmitMappingSymbol("$a"); 669 LastEMSInfo->State = EMS_ARM; 670 } 671 672 void EmitMappingSymbol(StringRef Name) { 673 auto *Symbol = cast<MCSymbolELF>(getContext().createLocalSymbol(Name)); 674 emitLabel(Symbol); 675 676 Symbol->setType(ELF::STT_NOTYPE); 677 Symbol->setBinding(ELF::STB_LOCAL); 678 } 679 680 void emitMappingSymbol(StringRef Name, MCDataFragment &F, uint64_t Offset) { 681 auto *Symbol = cast<MCSymbolELF>(getContext().createLocalSymbol(Name)); 682 emitLabelAtPos(Symbol, SMLoc(), F, Offset); 683 Symbol->setType(ELF::STT_NOTYPE); 684 Symbol->setBinding(ELF::STB_LOCAL); 685 } 686 687 void emitThumbFunc(MCSymbol *Func) override { 688 getAssembler().setIsThumbFunc(Func); 689 emitSymbolAttribute(Func, MCSA_ELF_TypeFunction); 690 } 691 692 // Helper functions for ARM exception handling directives 693 void EHReset(); 694 695 // Reset state between object emissions 696 void reset() override; 697 698 void EmitPersonalityFixup(StringRef Name); 699 void FlushPendingOffset(); 700 void FlushUnwindOpcodes(bool NoHandlerData); 701 702 void SwitchToEHSection(StringRef Prefix, unsigned Type, unsigned Flags, 703 SectionKind Kind, const MCSymbol &Fn); 704 void SwitchToExTabSection(const MCSymbol &FnStart); 705 void SwitchToExIdxSection(const MCSymbol &FnStart); 706 707 void EmitFixup(const MCExpr *Expr, MCFixupKind Kind); 708 709 bool IsThumb; 710 bool IsAndroid; 711 712 DenseMap<const MCSection *, std::unique_ptr<ElfMappingSymbolInfo>> 713 LastMappingSymbols; 714 715 std::unique_ptr<ElfMappingSymbolInfo> LastEMSInfo; 716 717 // ARM Exception Handling Frame Information 718 MCSymbol *ExTab; 719 MCSymbol *FnStart; 720 const MCSymbol *Personality; 721 unsigned PersonalityIndex; 722 unsigned FPReg; // Frame pointer register 723 int64_t FPOffset; // Offset: (final frame pointer) - (initial $sp) 724 int64_t SPOffset; // Offset: (final $sp) - (initial $sp) 725 int64_t PendingOffset; // Offset: (final $sp) - (emitted $sp) 726 bool UsedFP; 727 bool CantUnwind; 728 SmallVector<uint8_t, 64> Opcodes; 729 UnwindOpcodeAssembler UnwindOpAsm; 730 }; 731 732 } // end anonymous namespace 733 734 ARMELFStreamer &ARMTargetELFStreamer::getStreamer() { 735 return static_cast<ARMELFStreamer &>(Streamer); 736 } 737 738 void ARMTargetELFStreamer::emitFnStart() { getStreamer().emitFnStart(); } 739 void ARMTargetELFStreamer::emitFnEnd() { getStreamer().emitFnEnd(); } 740 void ARMTargetELFStreamer::emitCantUnwind() { getStreamer().emitCantUnwind(); } 741 742 void ARMTargetELFStreamer::emitPersonality(const MCSymbol *Personality) { 743 getStreamer().emitPersonality(Personality); 744 } 745 746 void ARMTargetELFStreamer::emitPersonalityIndex(unsigned Index) { 747 getStreamer().emitPersonalityIndex(Index); 748 } 749 750 void ARMTargetELFStreamer::emitHandlerData() { 751 getStreamer().emitHandlerData(); 752 } 753 754 void ARMTargetELFStreamer::emitSetFP(unsigned FpReg, unsigned SpReg, 755 int64_t Offset) { 756 getStreamer().emitSetFP(FpReg, SpReg, Offset); 757 } 758 759 void ARMTargetELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) { 760 getStreamer().emitMovSP(Reg, Offset); 761 } 762 763 void ARMTargetELFStreamer::emitPad(int64_t Offset) { 764 getStreamer().emitPad(Offset); 765 } 766 767 void ARMTargetELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList, 768 bool isVector) { 769 getStreamer().emitRegSave(RegList, isVector); 770 } 771 772 void ARMTargetELFStreamer::emitUnwindRaw(int64_t Offset, 773 const SmallVectorImpl<uint8_t> &Opcodes) { 774 getStreamer().emitUnwindRaw(Offset, Opcodes); 775 } 776 777 void ARMTargetELFStreamer::switchVendor(StringRef Vendor) { 778 assert(!Vendor.empty() && "Vendor cannot be empty."); 779 780 if (CurrentVendor == Vendor) 781 return; 782 783 if (!CurrentVendor.empty()) 784 finishAttributeSection(); 785 786 assert(getStreamer().Contents.empty() && 787 ".ARM.attributes should be flushed before changing vendor"); 788 CurrentVendor = Vendor; 789 790 } 791 792 void ARMTargetELFStreamer::emitAttribute(unsigned Attribute, unsigned Value) { 793 getStreamer().setAttributeItem(Attribute, Value, 794 /* OverwriteExisting= */ true); 795 } 796 797 void ARMTargetELFStreamer::emitTextAttribute(unsigned Attribute, 798 StringRef Value) { 799 getStreamer().setAttributeItem(Attribute, Value, 800 /* OverwriteExisting= */ true); 801 } 802 803 void ARMTargetELFStreamer::emitIntTextAttribute(unsigned Attribute, 804 unsigned IntValue, 805 StringRef StringValue) { 806 getStreamer().setAttributeItems(Attribute, IntValue, StringValue, 807 /* OverwriteExisting= */ true); 808 } 809 810 void ARMTargetELFStreamer::emitArch(ARM::ArchKind Value) { 811 Arch = Value; 812 } 813 814 void ARMTargetELFStreamer::emitObjectArch(ARM::ArchKind Value) { 815 EmittedArch = Value; 816 } 817 818 void ARMTargetELFStreamer::emitArchDefaultAttributes() { 819 using namespace ARMBuildAttrs; 820 ARMELFStreamer &S = getStreamer(); 821 822 S.setAttributeItem(CPU_name, ARM::getCPUAttr(Arch), false); 823 824 if (EmittedArch == ARM::ArchKind::INVALID) 825 S.setAttributeItem(CPU_arch, ARM::getArchAttr(Arch), false); 826 else 827 S.setAttributeItem(CPU_arch, ARM::getArchAttr(EmittedArch), false); 828 829 switch (Arch) { 830 case ARM::ArchKind::ARMV4: 831 S.setAttributeItem(ARM_ISA_use, Allowed, false); 832 break; 833 834 case ARM::ArchKind::ARMV4T: 835 case ARM::ArchKind::ARMV5T: 836 case ARM::ArchKind::XSCALE: 837 case ARM::ArchKind::ARMV5TE: 838 case ARM::ArchKind::ARMV6: 839 S.setAttributeItem(ARM_ISA_use, Allowed, false); 840 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 841 break; 842 843 case ARM::ArchKind::ARMV6T2: 844 S.setAttributeItem(ARM_ISA_use, Allowed, false); 845 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 846 break; 847 848 case ARM::ArchKind::ARMV6K: 849 case ARM::ArchKind::ARMV6KZ: 850 S.setAttributeItem(ARM_ISA_use, Allowed, false); 851 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 852 S.setAttributeItem(Virtualization_use, AllowTZ, false); 853 break; 854 855 case ARM::ArchKind::ARMV6M: 856 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 857 break; 858 859 case ARM::ArchKind::ARMV7A: 860 S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false); 861 S.setAttributeItem(ARM_ISA_use, Allowed, false); 862 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 863 break; 864 865 case ARM::ArchKind::ARMV7R: 866 S.setAttributeItem(CPU_arch_profile, RealTimeProfile, false); 867 S.setAttributeItem(ARM_ISA_use, Allowed, false); 868 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 869 break; 870 871 case ARM::ArchKind::ARMV7EM: 872 case ARM::ArchKind::ARMV7M: 873 S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false); 874 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 875 break; 876 877 case ARM::ArchKind::ARMV8A: 878 case ARM::ArchKind::ARMV8_1A: 879 case ARM::ArchKind::ARMV8_2A: 880 case ARM::ArchKind::ARMV8_3A: 881 case ARM::ArchKind::ARMV8_4A: 882 case ARM::ArchKind::ARMV8_5A: 883 case ARM::ArchKind::ARMV8_6A: 884 case ARM::ArchKind::ARMV8_7A: 885 case ARM::ArchKind::ARMV8_8A: 886 case ARM::ArchKind::ARMV8_9A: 887 case ARM::ArchKind::ARMV9A: 888 case ARM::ArchKind::ARMV9_1A: 889 case ARM::ArchKind::ARMV9_2A: 890 case ARM::ArchKind::ARMV9_3A: 891 case ARM::ArchKind::ARMV9_4A: 892 case ARM::ArchKind::ARMV9_5A: 893 S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false); 894 S.setAttributeItem(ARM_ISA_use, Allowed, false); 895 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 896 S.setAttributeItem(MPextension_use, Allowed, false); 897 S.setAttributeItem(Virtualization_use, AllowTZVirtualization, false); 898 break; 899 900 case ARM::ArchKind::ARMV8MBaseline: 901 case ARM::ArchKind::ARMV8MMainline: 902 S.setAttributeItem(THUMB_ISA_use, AllowThumbDerived, false); 903 S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false); 904 break; 905 906 case ARM::ArchKind::IWMMXT: 907 S.setAttributeItem(ARM_ISA_use, Allowed, false); 908 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 909 S.setAttributeItem(WMMX_arch, AllowWMMXv1, false); 910 break; 911 912 case ARM::ArchKind::IWMMXT2: 913 S.setAttributeItem(ARM_ISA_use, Allowed, false); 914 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 915 S.setAttributeItem(WMMX_arch, AllowWMMXv2, false); 916 break; 917 918 default: 919 report_fatal_error("Unknown Arch: " + Twine(ARM::getArchName(Arch))); 920 break; 921 } 922 } 923 924 void ARMTargetELFStreamer::emitFPU(ARM::FPUKind Value) { FPU = Value; } 925 926 void ARMTargetELFStreamer::emitFPUDefaultAttributes() { 927 ARMELFStreamer &S = getStreamer(); 928 929 switch (FPU) { 930 case ARM::FK_VFP: 931 case ARM::FK_VFPV2: 932 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv2, 933 /* OverwriteExisting= */ false); 934 break; 935 936 case ARM::FK_VFPV3: 937 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 938 /* OverwriteExisting= */ false); 939 break; 940 941 case ARM::FK_VFPV3_FP16: 942 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 943 /* OverwriteExisting= */ false); 944 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 945 /* OverwriteExisting= */ false); 946 break; 947 948 case ARM::FK_VFPV3_D16: 949 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 950 /* OverwriteExisting= */ false); 951 break; 952 953 case ARM::FK_VFPV3_D16_FP16: 954 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 955 /* OverwriteExisting= */ false); 956 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 957 /* OverwriteExisting= */ false); 958 break; 959 960 case ARM::FK_VFPV3XD: 961 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 962 /* OverwriteExisting= */ false); 963 break; 964 case ARM::FK_VFPV3XD_FP16: 965 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 966 /* OverwriteExisting= */ false); 967 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 968 /* OverwriteExisting= */ false); 969 break; 970 971 case ARM::FK_VFPV4: 972 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A, 973 /* OverwriteExisting= */ false); 974 break; 975 976 // ABI_HardFP_use is handled in ARMAsmPrinter, so _SP_D16 is treated the same 977 // as _D16 here. 978 case ARM::FK_FPV4_SP_D16: 979 case ARM::FK_VFPV4_D16: 980 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4B, 981 /* OverwriteExisting= */ false); 982 break; 983 984 case ARM::FK_FP_ARMV8: 985 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A, 986 /* OverwriteExisting= */ false); 987 break; 988 989 // FPV5_D16 is identical to FP_ARMV8 except for the number of D registers, so 990 // uses the FP_ARMV8_D16 build attribute. 991 case ARM::FK_FPV5_SP_D16: 992 case ARM::FK_FPV5_D16: 993 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8B, 994 /* OverwriteExisting= */ false); 995 break; 996 997 case ARM::FK_NEON: 998 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 999 /* OverwriteExisting= */ false); 1000 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 1001 ARMBuildAttrs::AllowNeon, 1002 /* OverwriteExisting= */ false); 1003 break; 1004 1005 case ARM::FK_NEON_FP16: 1006 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 1007 /* OverwriteExisting= */ false); 1008 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 1009 ARMBuildAttrs::AllowNeon, 1010 /* OverwriteExisting= */ false); 1011 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 1012 /* OverwriteExisting= */ false); 1013 break; 1014 1015 case ARM::FK_NEON_VFPV4: 1016 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A, 1017 /* OverwriteExisting= */ false); 1018 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 1019 ARMBuildAttrs::AllowNeon2, 1020 /* OverwriteExisting= */ false); 1021 break; 1022 1023 case ARM::FK_NEON_FP_ARMV8: 1024 case ARM::FK_CRYPTO_NEON_FP_ARMV8: 1025 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A, 1026 /* OverwriteExisting= */ false); 1027 // 'Advanced_SIMD_arch' must be emitted not here, but within 1028 // ARMAsmPrinter::emitAttributes(), depending on hasV8Ops() and hasV8_1a() 1029 break; 1030 1031 case ARM::FK_SOFTVFP: 1032 case ARM::FK_NONE: 1033 break; 1034 1035 default: 1036 report_fatal_error("Unknown FPU: " + Twine(FPU)); 1037 break; 1038 } 1039 } 1040 1041 void ARMTargetELFStreamer::finishAttributeSection() { 1042 ARMELFStreamer &S = getStreamer(); 1043 1044 if (FPU != ARM::FK_INVALID) 1045 emitFPUDefaultAttributes(); 1046 1047 if (Arch != ARM::ArchKind::INVALID) 1048 emitArchDefaultAttributes(); 1049 1050 if (S.Contents.empty()) 1051 return; 1052 1053 auto LessTag = [](const MCELFStreamer::AttributeItem &LHS, 1054 const MCELFStreamer::AttributeItem &RHS) -> bool { 1055 // The conformance tag must be emitted first when serialised into an 1056 // object file. Specifically, the addenda to the ARM ABI states that 1057 // (2.3.7.4): 1058 // 1059 // "To simplify recognition by consumers in the common case of claiming 1060 // conformity for the whole file, this tag should be emitted first in a 1061 // file-scope sub-subsection of the first public subsection of the 1062 // attributes section." 1063 // 1064 // So it is special-cased in this comparison predicate when the 1065 // attributes are sorted in finishAttributeSection(). 1066 return (RHS.Tag != ARMBuildAttrs::conformance) && 1067 ((LHS.Tag == ARMBuildAttrs::conformance) || (LHS.Tag < RHS.Tag)); 1068 }; 1069 llvm::sort(S.Contents, LessTag); 1070 1071 S.emitAttributesSection(CurrentVendor, ".ARM.attributes", 1072 ELF::SHT_ARM_ATTRIBUTES, AttributeSection); 1073 1074 FPU = ARM::FK_INVALID; 1075 } 1076 1077 void ARMTargetELFStreamer::emitLabel(MCSymbol *Symbol) { 1078 ARMELFStreamer &Streamer = getStreamer(); 1079 if (!Streamer.IsThumb) 1080 return; 1081 1082 Streamer.getAssembler().registerSymbol(*Symbol); 1083 unsigned Type = cast<MCSymbolELF>(Symbol)->getType(); 1084 if (Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC) 1085 Streamer.emitThumbFunc(Symbol); 1086 } 1087 1088 void ARMTargetELFStreamer::annotateTLSDescriptorSequence( 1089 const MCSymbolRefExpr *S) { 1090 getStreamer().EmitFixup(S, FK_Data_4); 1091 } 1092 1093 void ARMTargetELFStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) { 1094 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Value)) { 1095 const MCSymbol &Sym = SRE->getSymbol(); 1096 if (!Sym.isDefined()) { 1097 getStreamer().emitAssignment(Symbol, Value); 1098 return; 1099 } 1100 } 1101 1102 getStreamer().emitThumbFunc(Symbol); 1103 getStreamer().emitAssignment(Symbol, Value); 1104 } 1105 1106 void ARMTargetELFStreamer::emitInst(uint32_t Inst, char Suffix) { 1107 getStreamer().emitInst(Inst, Suffix); 1108 } 1109 1110 void ARMTargetELFStreamer::reset() { AttributeSection = nullptr; } 1111 1112 void ARMTargetELFStreamer::finish() { 1113 ARMTargetStreamer::finish(); 1114 finishAttributeSection(); 1115 } 1116 1117 void ARMELFStreamer::reset() { 1118 MCTargetStreamer &TS = *getTargetStreamer(); 1119 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1120 ATS.reset(); 1121 MCELFStreamer::reset(); 1122 LastMappingSymbols.clear(); 1123 LastEMSInfo.reset(); 1124 // MCELFStreamer clear's the assembler's e_flags. However, for 1125 // arm we manually set the ABI version on streamer creation, so 1126 // do the same here 1127 getWriter().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5); 1128 } 1129 1130 inline void ARMELFStreamer::SwitchToEHSection(StringRef Prefix, 1131 unsigned Type, 1132 unsigned Flags, 1133 SectionKind Kind, 1134 const MCSymbol &Fn) { 1135 const MCSectionELF &FnSection = 1136 static_cast<const MCSectionELF &>(Fn.getSection()); 1137 1138 // Create the name for new section 1139 StringRef FnSecName(FnSection.getName()); 1140 SmallString<128> EHSecName(Prefix); 1141 if (FnSecName != ".text") { 1142 EHSecName += FnSecName; 1143 } 1144 1145 // Get .ARM.extab or .ARM.exidx section 1146 const MCSymbolELF *Group = FnSection.getGroup(); 1147 if (Group) 1148 Flags |= ELF::SHF_GROUP; 1149 MCSectionELF *EHSection = getContext().getELFSection( 1150 EHSecName, Type, Flags, 0, Group, /*IsComdat=*/true, 1151 FnSection.getUniqueID(), 1152 static_cast<const MCSymbolELF *>(FnSection.getBeginSymbol())); 1153 1154 assert(EHSection && "Failed to get the required EH section"); 1155 1156 // Switch to .ARM.extab or .ARM.exidx section 1157 switchSection(EHSection); 1158 emitValueToAlignment(Align(4), 0, 1, 0); 1159 } 1160 1161 inline void ARMELFStreamer::SwitchToExTabSection(const MCSymbol &FnStart) { 1162 SwitchToEHSection(".ARM.extab", ELF::SHT_PROGBITS, ELF::SHF_ALLOC, 1163 SectionKind::getData(), FnStart); 1164 } 1165 1166 inline void ARMELFStreamer::SwitchToExIdxSection(const MCSymbol &FnStart) { 1167 SwitchToEHSection(".ARM.exidx", ELF::SHT_ARM_EXIDX, 1168 ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER, 1169 SectionKind::getData(), FnStart); 1170 } 1171 1172 void ARMELFStreamer::EmitFixup(const MCExpr *Expr, MCFixupKind Kind) { 1173 MCDataFragment *Frag = getOrCreateDataFragment(); 1174 Frag->getFixups().push_back(MCFixup::create(Frag->getContents().size(), Expr, 1175 Kind)); 1176 } 1177 1178 void ARMELFStreamer::EHReset() { 1179 ExTab = nullptr; 1180 FnStart = nullptr; 1181 Personality = nullptr; 1182 PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX; 1183 FPReg = ARM::SP; 1184 FPOffset = 0; 1185 SPOffset = 0; 1186 PendingOffset = 0; 1187 UsedFP = false; 1188 CantUnwind = false; 1189 1190 Opcodes.clear(); 1191 UnwindOpAsm.Reset(); 1192 } 1193 1194 void ARMELFStreamer::emitFnStart() { 1195 assert(FnStart == nullptr); 1196 FnStart = getContext().createTempSymbol(); 1197 emitLabel(FnStart); 1198 } 1199 1200 void ARMELFStreamer::emitFnEnd() { 1201 assert(FnStart && ".fnstart must precedes .fnend"); 1202 1203 // Emit unwind opcodes if there is no .handlerdata directive 1204 if (!ExTab && !CantUnwind) 1205 FlushUnwindOpcodes(true); 1206 1207 // Emit the exception index table entry 1208 SwitchToExIdxSection(*FnStart); 1209 1210 // The EHABI requires a dependency preserving R_ARM_NONE relocation to the 1211 // personality routine to protect it from an arbitrary platform's static 1212 // linker garbage collection. We disable this for Android where the unwinder 1213 // is either dynamically linked or directly references the personality 1214 // routine. 1215 if (PersonalityIndex < ARM::EHABI::NUM_PERSONALITY_INDEX && !IsAndroid) 1216 EmitPersonalityFixup(GetAEABIUnwindPersonalityName(PersonalityIndex)); 1217 1218 const MCSymbolRefExpr *FnStartRef = 1219 MCSymbolRefExpr::create(FnStart, 1220 MCSymbolRefExpr::VK_ARM_PREL31, 1221 getContext()); 1222 1223 emitValue(FnStartRef, 4); 1224 1225 if (CantUnwind) { 1226 emitInt32(ARM::EHABI::EXIDX_CANTUNWIND); 1227 } else if (ExTab) { 1228 // Emit a reference to the unwind opcodes in the ".ARM.extab" section. 1229 const MCSymbolRefExpr *ExTabEntryRef = 1230 MCSymbolRefExpr::create(ExTab, 1231 MCSymbolRefExpr::VK_ARM_PREL31, 1232 getContext()); 1233 emitValue(ExTabEntryRef, 4); 1234 } else { 1235 // For the __aeabi_unwind_cpp_pr0, we have to emit the unwind opcodes in 1236 // the second word of exception index table entry. The size of the unwind 1237 // opcodes should always be 4 bytes. 1238 assert(PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0 && 1239 "Compact model must use __aeabi_unwind_cpp_pr0 as personality"); 1240 assert(Opcodes.size() == 4u && 1241 "Unwind opcode size for __aeabi_unwind_cpp_pr0 must be equal to 4"); 1242 uint64_t Intval = Opcodes[0] | 1243 Opcodes[1] << 8 | 1244 Opcodes[2] << 16 | 1245 Opcodes[3] << 24; 1246 emitIntValue(Intval, Opcodes.size()); 1247 } 1248 1249 // Switch to the section containing FnStart 1250 switchSection(&FnStart->getSection()); 1251 1252 // Clean exception handling frame information 1253 EHReset(); 1254 } 1255 1256 void ARMELFStreamer::emitCantUnwind() { CantUnwind = true; } 1257 1258 // Add the R_ARM_NONE fixup at the same position 1259 void ARMELFStreamer::EmitPersonalityFixup(StringRef Name) { 1260 const MCSymbol *PersonalitySym = getContext().getOrCreateSymbol(Name); 1261 1262 const MCSymbolRefExpr *PersonalityRef = MCSymbolRefExpr::create( 1263 PersonalitySym, MCSymbolRefExpr::VK_ARM_NONE, getContext()); 1264 1265 visitUsedExpr(*PersonalityRef); 1266 MCDataFragment *DF = getOrCreateDataFragment(); 1267 DF->getFixups().push_back(MCFixup::create(DF->getContents().size(), 1268 PersonalityRef, 1269 MCFixup::getKindForSize(4, false))); 1270 } 1271 1272 void ARMELFStreamer::FlushPendingOffset() { 1273 if (PendingOffset != 0) { 1274 UnwindOpAsm.EmitSPOffset(-PendingOffset); 1275 PendingOffset = 0; 1276 } 1277 } 1278 1279 void ARMELFStreamer::FlushUnwindOpcodes(bool NoHandlerData) { 1280 // Emit the unwind opcode to restore $sp. 1281 if (UsedFP) { 1282 const MCRegisterInfo *MRI = getContext().getRegisterInfo(); 1283 int64_t LastRegSaveSPOffset = SPOffset - PendingOffset; 1284 UnwindOpAsm.EmitSPOffset(LastRegSaveSPOffset - FPOffset); 1285 UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg)); 1286 } else { 1287 FlushPendingOffset(); 1288 } 1289 1290 // Finalize the unwind opcode sequence 1291 UnwindOpAsm.Finalize(PersonalityIndex, Opcodes); 1292 1293 // For compact model 0, we have to emit the unwind opcodes in the .ARM.exidx 1294 // section. Thus, we don't have to create an entry in the .ARM.extab 1295 // section. 1296 if (NoHandlerData && PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0) 1297 return; 1298 1299 // Switch to .ARM.extab section. 1300 SwitchToExTabSection(*FnStart); 1301 1302 // Create .ARM.extab label for offset in .ARM.exidx 1303 assert(!ExTab); 1304 ExTab = getContext().createTempSymbol(); 1305 emitLabel(ExTab); 1306 1307 // Emit personality 1308 if (Personality) { 1309 const MCSymbolRefExpr *PersonalityRef = 1310 MCSymbolRefExpr::create(Personality, 1311 MCSymbolRefExpr::VK_ARM_PREL31, 1312 getContext()); 1313 1314 emitValue(PersonalityRef, 4); 1315 } 1316 1317 // Emit unwind opcodes 1318 assert((Opcodes.size() % 4) == 0 && 1319 "Unwind opcode size for __aeabi_cpp_unwind_pr0 must be multiple of 4"); 1320 for (unsigned I = 0; I != Opcodes.size(); I += 4) { 1321 uint64_t Intval = Opcodes[I] | 1322 Opcodes[I + 1] << 8 | 1323 Opcodes[I + 2] << 16 | 1324 Opcodes[I + 3] << 24; 1325 emitInt32(Intval); 1326 } 1327 1328 // According to ARM EHABI section 9.2, if the __aeabi_unwind_cpp_pr1() or 1329 // __aeabi_unwind_cpp_pr2() is used, then the handler data must be emitted 1330 // after the unwind opcodes. The handler data consists of several 32-bit 1331 // words, and should be terminated by zero. 1332 // 1333 // In case that the .handlerdata directive is not specified by the 1334 // programmer, we should emit zero to terminate the handler data. 1335 if (NoHandlerData && !Personality) 1336 emitInt32(0); 1337 } 1338 1339 void ARMELFStreamer::emitHandlerData() { FlushUnwindOpcodes(false); } 1340 1341 void ARMELFStreamer::emitPersonality(const MCSymbol *Per) { 1342 Personality = Per; 1343 UnwindOpAsm.setPersonality(Per); 1344 } 1345 1346 void ARMELFStreamer::emitPersonalityIndex(unsigned Index) { 1347 assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && "invalid index"); 1348 PersonalityIndex = Index; 1349 } 1350 1351 void ARMELFStreamer::emitSetFP(unsigned NewFPReg, unsigned NewSPReg, 1352 int64_t Offset) { 1353 assert((NewSPReg == ARM::SP || NewSPReg == FPReg) && 1354 "the operand of .setfp directive should be either $sp or $fp"); 1355 1356 UsedFP = true; 1357 FPReg = NewFPReg; 1358 1359 if (NewSPReg == ARM::SP) 1360 FPOffset = SPOffset + Offset; 1361 else 1362 FPOffset += Offset; 1363 } 1364 1365 void ARMELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) { 1366 assert((Reg != ARM::SP && Reg != ARM::PC) && 1367 "the operand of .movsp cannot be either sp or pc"); 1368 assert(FPReg == ARM::SP && "current FP must be SP"); 1369 1370 FlushPendingOffset(); 1371 1372 FPReg = Reg; 1373 FPOffset = SPOffset + Offset; 1374 1375 const MCRegisterInfo *MRI = getContext().getRegisterInfo(); 1376 UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg)); 1377 } 1378 1379 void ARMELFStreamer::emitPad(int64_t Offset) { 1380 // Track the change of the $sp offset 1381 SPOffset -= Offset; 1382 1383 // To squash multiple .pad directives, we should delay the unwind opcode 1384 // until the .save, .vsave, .handlerdata, or .fnend directives. 1385 PendingOffset -= Offset; 1386 } 1387 1388 static std::pair<unsigned, unsigned> 1389 collectHWRegs(const MCRegisterInfo &MRI, unsigned Idx, 1390 const SmallVectorImpl<unsigned> &RegList, bool IsVector, 1391 uint32_t &Mask_) { 1392 uint32_t Mask = 0; 1393 unsigned Count = 0; 1394 while (Idx > 0) { 1395 unsigned Reg = RegList[Idx - 1]; 1396 if (Reg == ARM::RA_AUTH_CODE) 1397 break; 1398 Reg = MRI.getEncodingValue(Reg); 1399 assert(Reg < (IsVector ? 32U : 16U) && "Register out of range"); 1400 unsigned Bit = (1u << Reg); 1401 if ((Mask & Bit) == 0) { 1402 Mask |= Bit; 1403 ++Count; 1404 } 1405 --Idx; 1406 } 1407 1408 Mask_ = Mask; 1409 return {Idx, Count}; 1410 } 1411 1412 void ARMELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList, 1413 bool IsVector) { 1414 uint32_t Mask; 1415 unsigned Idx, Count; 1416 const MCRegisterInfo &MRI = *getContext().getRegisterInfo(); 1417 1418 // Collect the registers in the register list. Issue unwinding instructions in 1419 // three parts: ordinary hardware registers, return address authentication 1420 // code pseudo register, the rest of the registers. The RA PAC is kept in an 1421 // architectural register (usually r12), but we treat it as a special case in 1422 // order to distinguish between that register containing RA PAC or a general 1423 // value. 1424 Idx = RegList.size(); 1425 while (Idx > 0) { 1426 std::tie(Idx, Count) = collectHWRegs(MRI, Idx, RegList, IsVector, Mask); 1427 if (Count) { 1428 // Track the change the $sp offset: For the .save directive, the 1429 // corresponding push instruction will decrease the $sp by (4 * Count). 1430 // For the .vsave directive, the corresponding vpush instruction will 1431 // decrease $sp by (8 * Count). 1432 SPOffset -= Count * (IsVector ? 8 : 4); 1433 1434 // Emit the opcode 1435 FlushPendingOffset(); 1436 if (IsVector) 1437 UnwindOpAsm.EmitVFPRegSave(Mask); 1438 else 1439 UnwindOpAsm.EmitRegSave(Mask); 1440 } else if (Idx > 0 && RegList[Idx - 1] == ARM::RA_AUTH_CODE) { 1441 --Idx; 1442 SPOffset -= 4; 1443 FlushPendingOffset(); 1444 UnwindOpAsm.EmitRegSave(0); 1445 } 1446 } 1447 } 1448 1449 void ARMELFStreamer::emitUnwindRaw(int64_t Offset, 1450 const SmallVectorImpl<uint8_t> &Opcodes) { 1451 FlushPendingOffset(); 1452 SPOffset = SPOffset - Offset; 1453 UnwindOpAsm.EmitRaw(Opcodes); 1454 } 1455 1456 namespace llvm { 1457 1458 MCTargetStreamer *createARMTargetAsmStreamer(MCStreamer &S, 1459 formatted_raw_ostream &OS, 1460 MCInstPrinter *InstPrint) { 1461 return new ARMTargetAsmStreamer(S, OS, *InstPrint); 1462 } 1463 1464 MCTargetStreamer *createARMNullTargetStreamer(MCStreamer &S) { 1465 return new ARMTargetStreamer(S); 1466 } 1467 1468 MCTargetStreamer *createARMObjectTargetELFStreamer(MCStreamer &S) { 1469 return new ARMTargetELFStreamer(S); 1470 } 1471 1472 MCELFStreamer *createARMELFStreamer(MCContext &Context, 1473 std::unique_ptr<MCAsmBackend> TAB, 1474 std::unique_ptr<MCObjectWriter> OW, 1475 std::unique_ptr<MCCodeEmitter> Emitter, 1476 bool IsThumb, bool IsAndroid) { 1477 ARMELFStreamer *S = 1478 new ARMELFStreamer(Context, std::move(TAB), std::move(OW), 1479 std::move(Emitter), IsThumb, IsAndroid); 1480 // FIXME: This should eventually end up somewhere else where more 1481 // intelligent flag decisions can be made. For now we are just maintaining 1482 // the status quo for ARM and setting EF_ARM_EABI_VER5 as the default. 1483 S->getWriter().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5); 1484 1485 return S; 1486 } 1487 1488 } // end namespace llvm 1489