1 //===- lib/MC/ARMELFStreamer.cpp - ELF Object Output for ARM --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file assembles .s files and emits ARM ELF .o object files. Different 10 // from generic ELF streamer in emitting mapping symbols ($a, $t and $d) to 11 // delimit regions of data and code. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMRegisterInfo.h" 16 #include "ARMUnwindOpAsm.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/BinaryFormat/ELF.h" 24 #include "llvm/MC/MCAsmBackend.h" 25 #include "llvm/MC/MCAsmInfo.h" 26 #include "llvm/MC/MCAssembler.h" 27 #include "llvm/MC/MCCodeEmitter.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCELFStreamer.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCFixup.h" 32 #include "llvm/MC/MCFragment.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/MC/MCInstPrinter.h" 35 #include "llvm/MC/MCObjectWriter.h" 36 #include "llvm/MC/MCRegisterInfo.h" 37 #include "llvm/MC/MCSection.h" 38 #include "llvm/MC/MCSectionELF.h" 39 #include "llvm/MC/MCStreamer.h" 40 #include "llvm/MC/MCSubtargetInfo.h" 41 #include "llvm/MC/MCSymbol.h" 42 #include "llvm/MC/MCSymbolELF.h" 43 #include "llvm/MC/SectionKind.h" 44 #include "llvm/Support/ARMBuildAttributes.h" 45 #include "llvm/Support/ARMEHABI.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/FormattedStream.h" 49 #include "llvm/Support/TargetParser.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <climits> 54 #include <cstddef> 55 #include <cstdint> 56 #include <string> 57 58 using namespace llvm; 59 60 static std::string GetAEABIUnwindPersonalityName(unsigned Index) { 61 assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && 62 "Invalid personality index"); 63 return (Twine("__aeabi_unwind_cpp_pr") + Twine(Index)).str(); 64 } 65 66 namespace { 67 68 class ARMELFStreamer; 69 70 class ARMTargetAsmStreamer : public ARMTargetStreamer { 71 formatted_raw_ostream &OS; 72 MCInstPrinter &InstPrinter; 73 bool IsVerboseAsm; 74 75 void emitFnStart() override; 76 void emitFnEnd() override; 77 void emitCantUnwind() override; 78 void emitPersonality(const MCSymbol *Personality) override; 79 void emitPersonalityIndex(unsigned Index) override; 80 void emitHandlerData() override; 81 void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override; 82 void emitMovSP(unsigned Reg, int64_t Offset = 0) override; 83 void emitPad(int64_t Offset) override; 84 void emitRegSave(const SmallVectorImpl<unsigned> &RegList, 85 bool isVector) override; 86 void emitUnwindRaw(int64_t Offset, 87 const SmallVectorImpl<uint8_t> &Opcodes) override; 88 89 void switchVendor(StringRef Vendor) override; 90 void emitAttribute(unsigned Attribute, unsigned Value) override; 91 void emitTextAttribute(unsigned Attribute, StringRef String) override; 92 void emitIntTextAttribute(unsigned Attribute, unsigned IntValue, 93 StringRef StringValue) override; 94 void emitArch(ARM::ArchKind Arch) override; 95 void emitArchExtension(uint64_t ArchExt) override; 96 void emitObjectArch(ARM::ArchKind Arch) override; 97 void emitFPU(unsigned FPU) override; 98 void emitInst(uint32_t Inst, char Suffix = '\0') override; 99 void finishAttributeSection() override; 100 101 void annotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override; 102 void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override; 103 104 void emitARMWinCFIAllocStack(unsigned Size, bool Wide) override; 105 void emitARMWinCFISaveRegMask(unsigned Mask, bool Wide) override; 106 void emitARMWinCFISaveSP(unsigned Reg) override; 107 void emitARMWinCFISaveFRegs(unsigned First, unsigned Last) override; 108 void emitARMWinCFISaveLR(unsigned Offset) override; 109 void emitARMWinCFIPrologEnd(bool Fragment) override; 110 void emitARMWinCFINop(bool Wide) override; 111 void emitARMWinCFIEpilogStart(unsigned Condition) override; 112 void emitARMWinCFIEpilogEnd() override; 113 void emitARMWinCFICustom(unsigned Opcode) override; 114 115 public: 116 ARMTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS, 117 MCInstPrinter &InstPrinter, bool VerboseAsm); 118 }; 119 120 ARMTargetAsmStreamer::ARMTargetAsmStreamer(MCStreamer &S, 121 formatted_raw_ostream &OS, 122 MCInstPrinter &InstPrinter, 123 bool VerboseAsm) 124 : ARMTargetStreamer(S), OS(OS), InstPrinter(InstPrinter), 125 IsVerboseAsm(VerboseAsm) {} 126 127 void ARMTargetAsmStreamer::emitFnStart() { OS << "\t.fnstart\n"; } 128 void ARMTargetAsmStreamer::emitFnEnd() { OS << "\t.fnend\n"; } 129 void ARMTargetAsmStreamer::emitCantUnwind() { OS << "\t.cantunwind\n"; } 130 131 void ARMTargetAsmStreamer::emitPersonality(const MCSymbol *Personality) { 132 OS << "\t.personality " << Personality->getName() << '\n'; 133 } 134 135 void ARMTargetAsmStreamer::emitPersonalityIndex(unsigned Index) { 136 OS << "\t.personalityindex " << Index << '\n'; 137 } 138 139 void ARMTargetAsmStreamer::emitHandlerData() { OS << "\t.handlerdata\n"; } 140 141 void ARMTargetAsmStreamer::emitSetFP(unsigned FpReg, unsigned SpReg, 142 int64_t Offset) { 143 OS << "\t.setfp\t"; 144 InstPrinter.printRegName(OS, FpReg); 145 OS << ", "; 146 InstPrinter.printRegName(OS, SpReg); 147 if (Offset) 148 OS << ", #" << Offset; 149 OS << '\n'; 150 } 151 152 void ARMTargetAsmStreamer::emitMovSP(unsigned Reg, int64_t Offset) { 153 assert((Reg != ARM::SP && Reg != ARM::PC) && 154 "the operand of .movsp cannot be either sp or pc"); 155 156 OS << "\t.movsp\t"; 157 InstPrinter.printRegName(OS, Reg); 158 if (Offset) 159 OS << ", #" << Offset; 160 OS << '\n'; 161 } 162 163 void ARMTargetAsmStreamer::emitPad(int64_t Offset) { 164 OS << "\t.pad\t#" << Offset << '\n'; 165 } 166 167 void ARMTargetAsmStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList, 168 bool isVector) { 169 assert(RegList.size() && "RegList should not be empty"); 170 if (isVector) 171 OS << "\t.vsave\t{"; 172 else 173 OS << "\t.save\t{"; 174 175 InstPrinter.printRegName(OS, RegList[0]); 176 177 for (unsigned i = 1, e = RegList.size(); i != e; ++i) { 178 OS << ", "; 179 InstPrinter.printRegName(OS, RegList[i]); 180 } 181 182 OS << "}\n"; 183 } 184 185 void ARMTargetAsmStreamer::switchVendor(StringRef Vendor) {} 186 187 void ARMTargetAsmStreamer::emitAttribute(unsigned Attribute, unsigned Value) { 188 OS << "\t.eabi_attribute\t" << Attribute << ", " << Twine(Value); 189 if (IsVerboseAsm) { 190 StringRef Name = ELFAttrs::attrTypeAsString( 191 Attribute, ARMBuildAttrs::getARMAttributeTags()); 192 if (!Name.empty()) 193 OS << "\t@ " << Name; 194 } 195 OS << "\n"; 196 } 197 198 void ARMTargetAsmStreamer::emitTextAttribute(unsigned Attribute, 199 StringRef String) { 200 switch (Attribute) { 201 case ARMBuildAttrs::CPU_name: 202 OS << "\t.cpu\t" << String.lower(); 203 break; 204 default: 205 OS << "\t.eabi_attribute\t" << Attribute << ", \""; 206 if (Attribute == ARMBuildAttrs::also_compatible_with) 207 OS.write_escaped(String); 208 else 209 OS << String; 210 OS << "\""; 211 if (IsVerboseAsm) { 212 StringRef Name = ELFAttrs::attrTypeAsString( 213 Attribute, ARMBuildAttrs::getARMAttributeTags()); 214 if (!Name.empty()) 215 OS << "\t@ " << Name; 216 } 217 break; 218 } 219 OS << "\n"; 220 } 221 222 void ARMTargetAsmStreamer::emitIntTextAttribute(unsigned Attribute, 223 unsigned IntValue, 224 StringRef StringValue) { 225 switch (Attribute) { 226 default: llvm_unreachable("unsupported multi-value attribute in asm mode"); 227 case ARMBuildAttrs::compatibility: 228 OS << "\t.eabi_attribute\t" << Attribute << ", " << IntValue; 229 if (!StringValue.empty()) 230 OS << ", \"" << StringValue << "\""; 231 if (IsVerboseAsm) 232 OS << "\t@ " 233 << ELFAttrs::attrTypeAsString(Attribute, 234 ARMBuildAttrs::getARMAttributeTags()); 235 break; 236 } 237 OS << "\n"; 238 } 239 240 void ARMTargetAsmStreamer::emitArch(ARM::ArchKind Arch) { 241 OS << "\t.arch\t" << ARM::getArchName(Arch) << "\n"; 242 } 243 244 void ARMTargetAsmStreamer::emitArchExtension(uint64_t ArchExt) { 245 OS << "\t.arch_extension\t" << ARM::getArchExtName(ArchExt) << "\n"; 246 } 247 248 void ARMTargetAsmStreamer::emitObjectArch(ARM::ArchKind Arch) { 249 OS << "\t.object_arch\t" << ARM::getArchName(Arch) << '\n'; 250 } 251 252 void ARMTargetAsmStreamer::emitFPU(unsigned FPU) { 253 OS << "\t.fpu\t" << ARM::getFPUName(FPU) << "\n"; 254 } 255 256 void ARMTargetAsmStreamer::finishAttributeSection() {} 257 258 void ARMTargetAsmStreamer::annotateTLSDescriptorSequence( 259 const MCSymbolRefExpr *S) { 260 OS << "\t.tlsdescseq\t" << S->getSymbol().getName() << "\n"; 261 } 262 263 void ARMTargetAsmStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) { 264 const MCAsmInfo *MAI = Streamer.getContext().getAsmInfo(); 265 266 OS << "\t.thumb_set\t"; 267 Symbol->print(OS, MAI); 268 OS << ", "; 269 Value->print(OS, MAI); 270 OS << '\n'; 271 } 272 273 void ARMTargetAsmStreamer::emitInst(uint32_t Inst, char Suffix) { 274 OS << "\t.inst"; 275 if (Suffix) 276 OS << "." << Suffix; 277 OS << "\t0x" << Twine::utohexstr(Inst) << "\n"; 278 } 279 280 void ARMTargetAsmStreamer::emitUnwindRaw(int64_t Offset, 281 const SmallVectorImpl<uint8_t> &Opcodes) { 282 OS << "\t.unwind_raw " << Offset; 283 for (uint8_t Opcode : Opcodes) 284 OS << ", 0x" << Twine::utohexstr(Opcode); 285 OS << '\n'; 286 } 287 288 void ARMTargetAsmStreamer::emitARMWinCFIAllocStack(unsigned Size, bool Wide) { 289 if (Wide) 290 OS << "\t.seh_stackalloc_w\t" << Size << "\n"; 291 else 292 OS << "\t.seh_stackalloc\t" << Size << "\n"; 293 } 294 295 static void printRegs(formatted_raw_ostream &OS, ListSeparator &LS, int First, 296 int Last) { 297 if (First != Last) 298 OS << LS << "r" << First << "-r" << Last; 299 else 300 OS << LS << "r" << First; 301 } 302 303 void ARMTargetAsmStreamer::emitARMWinCFISaveRegMask(unsigned Mask, bool Wide) { 304 if (Wide) 305 OS << "\t.seh_save_regs_w\t"; 306 else 307 OS << "\t.seh_save_regs\t"; 308 ListSeparator LS; 309 int First = -1; 310 OS << "{"; 311 for (int I = 0; I <= 12; I++) { 312 if (Mask & (1 << I)) { 313 if (First < 0) 314 First = I; 315 } else { 316 if (First >= 0) { 317 printRegs(OS, LS, First, I - 1); 318 First = -1; 319 } 320 } 321 } 322 if (First >= 0) 323 printRegs(OS, LS, First, 12); 324 if (Mask & (1 << 14)) 325 OS << LS << "lr"; 326 OS << "}\n"; 327 } 328 329 void ARMTargetAsmStreamer::emitARMWinCFISaveSP(unsigned Reg) { 330 OS << "\t.seh_save_sp\tr" << Reg << "\n"; 331 } 332 333 void ARMTargetAsmStreamer::emitARMWinCFISaveFRegs(unsigned First, 334 unsigned Last) { 335 if (First != Last) 336 OS << "\t.seh_save_fregs\t{d" << First << "-d" << Last << "}\n"; 337 else 338 OS << "\t.seh_save_fregs\t{d" << First << "}\n"; 339 } 340 341 void ARMTargetAsmStreamer::emitARMWinCFISaveLR(unsigned Offset) { 342 OS << "\t.seh_save_lr\t" << Offset << "\n"; 343 } 344 345 void ARMTargetAsmStreamer::emitARMWinCFIPrologEnd(bool Fragment) { 346 if (Fragment) 347 OS << "\t.seh_endprologue_fragment\n"; 348 else 349 OS << "\t.seh_endprologue\n"; 350 } 351 352 void ARMTargetAsmStreamer::emitARMWinCFINop(bool Wide) { 353 if (Wide) 354 OS << "\t.seh_nop_w\n"; 355 else 356 OS << "\t.seh_nop\n"; 357 } 358 359 void ARMTargetAsmStreamer::emitARMWinCFIEpilogStart(unsigned Condition) { 360 if (Condition == ARMCC::AL) 361 OS << "\t.seh_startepilogue\n"; 362 else 363 OS << "\t.seh_startepilogue_cond\t" 364 << ARMCondCodeToString(static_cast<ARMCC::CondCodes>(Condition)) << "\n"; 365 } 366 367 void ARMTargetAsmStreamer::emitARMWinCFIEpilogEnd() { 368 OS << "\t.seh_endepilogue\n"; 369 } 370 371 void ARMTargetAsmStreamer::emitARMWinCFICustom(unsigned Opcode) { 372 int I; 373 for (I = 3; I > 0; I--) 374 if (Opcode & (0xffu << (8 * I))) 375 break; 376 ListSeparator LS; 377 OS << "\t.seh_custom\t"; 378 for (; I >= 0; I--) 379 OS << LS << ((Opcode >> (8 * I)) & 0xff); 380 OS << "\n"; 381 } 382 383 class ARMTargetELFStreamer : public ARMTargetStreamer { 384 private: 385 StringRef CurrentVendor; 386 unsigned FPU = ARM::FK_INVALID; 387 ARM::ArchKind Arch = ARM::ArchKind::INVALID; 388 ARM::ArchKind EmittedArch = ARM::ArchKind::INVALID; 389 390 MCSection *AttributeSection = nullptr; 391 392 void emitArchDefaultAttributes(); 393 void emitFPUDefaultAttributes(); 394 395 ARMELFStreamer &getStreamer(); 396 397 void emitFnStart() override; 398 void emitFnEnd() override; 399 void emitCantUnwind() override; 400 void emitPersonality(const MCSymbol *Personality) override; 401 void emitPersonalityIndex(unsigned Index) override; 402 void emitHandlerData() override; 403 void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override; 404 void emitMovSP(unsigned Reg, int64_t Offset = 0) override; 405 void emitPad(int64_t Offset) override; 406 void emitRegSave(const SmallVectorImpl<unsigned> &RegList, 407 bool isVector) override; 408 void emitUnwindRaw(int64_t Offset, 409 const SmallVectorImpl<uint8_t> &Opcodes) override; 410 411 void switchVendor(StringRef Vendor) override; 412 void emitAttribute(unsigned Attribute, unsigned Value) override; 413 void emitTextAttribute(unsigned Attribute, StringRef String) override; 414 void emitIntTextAttribute(unsigned Attribute, unsigned IntValue, 415 StringRef StringValue) override; 416 void emitArch(ARM::ArchKind Arch) override; 417 void emitObjectArch(ARM::ArchKind Arch) override; 418 void emitFPU(unsigned FPU) override; 419 void emitInst(uint32_t Inst, char Suffix = '\0') override; 420 void finishAttributeSection() override; 421 void emitLabel(MCSymbol *Symbol) override; 422 423 void annotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override; 424 void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override; 425 426 // Reset state between object emissions 427 void reset() override; 428 429 public: 430 ARMTargetELFStreamer(MCStreamer &S) 431 : ARMTargetStreamer(S), CurrentVendor("aeabi") {} 432 }; 433 434 /// Extend the generic ELFStreamer class so that it can emit mapping symbols at 435 /// the appropriate points in the object files. These symbols are defined in the 436 /// ARM ELF ABI: infocenter.arm.com/help/topic/com.arm.../IHI0044D_aaelf.pdf. 437 /// 438 /// In brief: $a, $t or $d should be emitted at the start of each contiguous 439 /// region of ARM code, Thumb code or data in a section. In practice, this 440 /// emission does not rely on explicit assembler directives but on inherent 441 /// properties of the directives doing the emission (e.g. ".byte" is data, "add 442 /// r0, r0, r0" an instruction). 443 /// 444 /// As a result this system is orthogonal to the DataRegion infrastructure used 445 /// by MachO. Beware! 446 class ARMELFStreamer : public MCELFStreamer { 447 public: 448 friend class ARMTargetELFStreamer; 449 450 ARMELFStreamer(MCContext &Context, std::unique_ptr<MCAsmBackend> TAB, 451 std::unique_ptr<MCObjectWriter> OW, 452 std::unique_ptr<MCCodeEmitter> Emitter, bool IsThumb, 453 bool IsAndroid) 454 : MCELFStreamer(Context, std::move(TAB), std::move(OW), 455 std::move(Emitter)), 456 IsThumb(IsThumb), IsAndroid(IsAndroid) { 457 EHReset(); 458 } 459 460 ~ARMELFStreamer() override = default; 461 462 void finishImpl() override; 463 464 // ARM exception handling directives 465 void emitFnStart(); 466 void emitFnEnd(); 467 void emitCantUnwind(); 468 void emitPersonality(const MCSymbol *Per); 469 void emitPersonalityIndex(unsigned index); 470 void emitHandlerData(); 471 void emitSetFP(unsigned NewFpReg, unsigned NewSpReg, int64_t Offset = 0); 472 void emitMovSP(unsigned Reg, int64_t Offset = 0); 473 void emitPad(int64_t Offset); 474 void emitRegSave(const SmallVectorImpl<unsigned> &RegList, bool isVector); 475 void emitUnwindRaw(int64_t Offset, const SmallVectorImpl<uint8_t> &Opcodes); 476 void emitFill(const MCExpr &NumBytes, uint64_t FillValue, 477 SMLoc Loc) override { 478 emitDataMappingSymbol(); 479 MCObjectStreamer::emitFill(NumBytes, FillValue, Loc); 480 } 481 482 void changeSection(MCSection *Section, const MCExpr *Subsection) override { 483 LastMappingSymbols[getCurrentSection().first] = std::move(LastEMSInfo); 484 MCELFStreamer::changeSection(Section, Subsection); 485 auto LastMappingSymbol = LastMappingSymbols.find(Section); 486 if (LastMappingSymbol != LastMappingSymbols.end()) { 487 LastEMSInfo = std::move(LastMappingSymbol->second); 488 return; 489 } 490 LastEMSInfo.reset(new ElfMappingSymbolInfo(SMLoc(), nullptr, 0)); 491 } 492 493 /// This function is the one used to emit instruction data into the ELF 494 /// streamer. We override it to add the appropriate mapping symbol if 495 /// necessary. 496 void emitInstruction(const MCInst &Inst, 497 const MCSubtargetInfo &STI) override { 498 if (IsThumb) 499 EmitThumbMappingSymbol(); 500 else 501 EmitARMMappingSymbol(); 502 503 MCELFStreamer::emitInstruction(Inst, STI); 504 } 505 506 void emitInst(uint32_t Inst, char Suffix) { 507 unsigned Size; 508 char Buffer[4]; 509 const bool LittleEndian = getContext().getAsmInfo()->isLittleEndian(); 510 511 switch (Suffix) { 512 case '\0': 513 Size = 4; 514 515 assert(!IsThumb); 516 EmitARMMappingSymbol(); 517 for (unsigned II = 0, IE = Size; II != IE; II++) { 518 const unsigned I = LittleEndian ? (Size - II - 1) : II; 519 Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT); 520 } 521 522 break; 523 case 'n': 524 case 'w': 525 Size = (Suffix == 'n' ? 2 : 4); 526 527 assert(IsThumb); 528 EmitThumbMappingSymbol(); 529 // Thumb wide instructions are emitted as a pair of 16-bit words of the 530 // appropriate endianness. 531 for (unsigned II = 0, IE = Size; II != IE; II = II + 2) { 532 const unsigned I0 = LittleEndian ? II + 0 : II + 1; 533 const unsigned I1 = LittleEndian ? II + 1 : II + 0; 534 Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT); 535 Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT); 536 } 537 538 break; 539 default: 540 llvm_unreachable("Invalid Suffix"); 541 } 542 543 MCELFStreamer::emitBytes(StringRef(Buffer, Size)); 544 } 545 546 /// This is one of the functions used to emit data into an ELF section, so the 547 /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if 548 /// necessary. 549 void emitBytes(StringRef Data) override { 550 emitDataMappingSymbol(); 551 MCELFStreamer::emitBytes(Data); 552 } 553 554 void FlushPendingMappingSymbol() { 555 if (!LastEMSInfo->hasInfo()) 556 return; 557 ElfMappingSymbolInfo *EMS = LastEMSInfo.get(); 558 EmitMappingSymbol("$d", EMS->Loc, EMS->F, EMS->Offset); 559 EMS->resetInfo(); 560 } 561 562 /// This is one of the functions used to emit data into an ELF section, so the 563 /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if 564 /// necessary. 565 void emitValueImpl(const MCExpr *Value, unsigned Size, SMLoc Loc) override { 566 if (const MCSymbolRefExpr *SRE = dyn_cast_or_null<MCSymbolRefExpr>(Value)) { 567 if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_SBREL && !(Size == 4)) { 568 getContext().reportError(Loc, "relocated expression must be 32-bit"); 569 return; 570 } 571 getOrCreateDataFragment(); 572 } 573 574 emitDataMappingSymbol(); 575 MCELFStreamer::emitValueImpl(Value, Size, Loc); 576 } 577 578 void emitAssemblerFlag(MCAssemblerFlag Flag) override { 579 MCELFStreamer::emitAssemblerFlag(Flag); 580 581 switch (Flag) { 582 case MCAF_SyntaxUnified: 583 return; // no-op here. 584 case MCAF_Code16: 585 IsThumb = true; 586 return; // Change to Thumb mode 587 case MCAF_Code32: 588 IsThumb = false; 589 return; // Change to ARM mode 590 case MCAF_Code64: 591 return; 592 case MCAF_SubsectionsViaSymbols: 593 return; 594 } 595 } 596 597 /// If a label is defined before the .type directive sets the label's type 598 /// then the label can't be recorded as thumb function when the label is 599 /// defined. We override emitSymbolAttribute() which is called as part of the 600 /// parsing of .type so that if the symbol has already been defined we can 601 /// record the label as Thumb. FIXME: there is a corner case where the state 602 /// is changed in between the label definition and the .type directive, this 603 /// is not expected to occur in practice and handling it would require the 604 /// backend to track IsThumb for every label. 605 bool emitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute) override { 606 bool Val = MCELFStreamer::emitSymbolAttribute(Symbol, Attribute); 607 608 if (!IsThumb) 609 return Val; 610 611 unsigned Type = cast<MCSymbolELF>(Symbol)->getType(); 612 if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC) && 613 Symbol->isDefined()) 614 getAssembler().setIsThumbFunc(Symbol); 615 616 return Val; 617 }; 618 619 private: 620 enum ElfMappingSymbol { 621 EMS_None, 622 EMS_ARM, 623 EMS_Thumb, 624 EMS_Data 625 }; 626 627 struct ElfMappingSymbolInfo { 628 explicit ElfMappingSymbolInfo(SMLoc Loc, MCFragment *F, uint64_t O) 629 : Loc(Loc), F(F), Offset(O), State(EMS_None) {} 630 void resetInfo() { 631 F = nullptr; 632 Offset = 0; 633 } 634 bool hasInfo() { return F != nullptr; } 635 SMLoc Loc; 636 MCFragment *F; 637 uint64_t Offset; 638 ElfMappingSymbol State; 639 }; 640 641 void emitDataMappingSymbol() { 642 if (LastEMSInfo->State == EMS_Data) 643 return; 644 else if (LastEMSInfo->State == EMS_None) { 645 // This is a tentative symbol, it won't really be emitted until it's 646 // actually needed. 647 ElfMappingSymbolInfo *EMS = LastEMSInfo.get(); 648 auto *DF = dyn_cast_or_null<MCDataFragment>(getCurrentFragment()); 649 if (!DF) 650 return; 651 EMS->Loc = SMLoc(); 652 EMS->F = getCurrentFragment(); 653 EMS->Offset = DF->getContents().size(); 654 LastEMSInfo->State = EMS_Data; 655 return; 656 } 657 EmitMappingSymbol("$d"); 658 LastEMSInfo->State = EMS_Data; 659 } 660 661 void EmitThumbMappingSymbol() { 662 if (LastEMSInfo->State == EMS_Thumb) 663 return; 664 FlushPendingMappingSymbol(); 665 EmitMappingSymbol("$t"); 666 LastEMSInfo->State = EMS_Thumb; 667 } 668 669 void EmitARMMappingSymbol() { 670 if (LastEMSInfo->State == EMS_ARM) 671 return; 672 FlushPendingMappingSymbol(); 673 EmitMappingSymbol("$a"); 674 LastEMSInfo->State = EMS_ARM; 675 } 676 677 void EmitMappingSymbol(StringRef Name) { 678 auto *Symbol = cast<MCSymbolELF>(getContext().getOrCreateSymbol( 679 Name + "." + Twine(MappingSymbolCounter++))); 680 emitLabel(Symbol); 681 682 Symbol->setType(ELF::STT_NOTYPE); 683 Symbol->setBinding(ELF::STB_LOCAL); 684 } 685 686 void EmitMappingSymbol(StringRef Name, SMLoc Loc, MCFragment *F, 687 uint64_t Offset) { 688 auto *Symbol = cast<MCSymbolELF>(getContext().getOrCreateSymbol( 689 Name + "." + Twine(MappingSymbolCounter++))); 690 emitLabelAtPos(Symbol, Loc, F, Offset); 691 Symbol->setType(ELF::STT_NOTYPE); 692 Symbol->setBinding(ELF::STB_LOCAL); 693 } 694 695 void emitThumbFunc(MCSymbol *Func) override { 696 getAssembler().setIsThumbFunc(Func); 697 emitSymbolAttribute(Func, MCSA_ELF_TypeFunction); 698 } 699 700 // Helper functions for ARM exception handling directives 701 void EHReset(); 702 703 // Reset state between object emissions 704 void reset() override; 705 706 void EmitPersonalityFixup(StringRef Name); 707 void FlushPendingOffset(); 708 void FlushUnwindOpcodes(bool NoHandlerData); 709 710 void SwitchToEHSection(StringRef Prefix, unsigned Type, unsigned Flags, 711 SectionKind Kind, const MCSymbol &Fn); 712 void SwitchToExTabSection(const MCSymbol &FnStart); 713 void SwitchToExIdxSection(const MCSymbol &FnStart); 714 715 void EmitFixup(const MCExpr *Expr, MCFixupKind Kind); 716 717 bool IsThumb; 718 bool IsAndroid; 719 int64_t MappingSymbolCounter = 0; 720 721 DenseMap<const MCSection *, std::unique_ptr<ElfMappingSymbolInfo>> 722 LastMappingSymbols; 723 724 std::unique_ptr<ElfMappingSymbolInfo> LastEMSInfo; 725 726 // ARM Exception Handling Frame Information 727 MCSymbol *ExTab; 728 MCSymbol *FnStart; 729 const MCSymbol *Personality; 730 unsigned PersonalityIndex; 731 unsigned FPReg; // Frame pointer register 732 int64_t FPOffset; // Offset: (final frame pointer) - (initial $sp) 733 int64_t SPOffset; // Offset: (final $sp) - (initial $sp) 734 int64_t PendingOffset; // Offset: (final $sp) - (emitted $sp) 735 bool UsedFP; 736 bool CantUnwind; 737 SmallVector<uint8_t, 64> Opcodes; 738 UnwindOpcodeAssembler UnwindOpAsm; 739 }; 740 741 } // end anonymous namespace 742 743 ARMELFStreamer &ARMTargetELFStreamer::getStreamer() { 744 return static_cast<ARMELFStreamer &>(Streamer); 745 } 746 747 void ARMTargetELFStreamer::emitFnStart() { getStreamer().emitFnStart(); } 748 void ARMTargetELFStreamer::emitFnEnd() { getStreamer().emitFnEnd(); } 749 void ARMTargetELFStreamer::emitCantUnwind() { getStreamer().emitCantUnwind(); } 750 751 void ARMTargetELFStreamer::emitPersonality(const MCSymbol *Personality) { 752 getStreamer().emitPersonality(Personality); 753 } 754 755 void ARMTargetELFStreamer::emitPersonalityIndex(unsigned Index) { 756 getStreamer().emitPersonalityIndex(Index); 757 } 758 759 void ARMTargetELFStreamer::emitHandlerData() { 760 getStreamer().emitHandlerData(); 761 } 762 763 void ARMTargetELFStreamer::emitSetFP(unsigned FpReg, unsigned SpReg, 764 int64_t Offset) { 765 getStreamer().emitSetFP(FpReg, SpReg, Offset); 766 } 767 768 void ARMTargetELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) { 769 getStreamer().emitMovSP(Reg, Offset); 770 } 771 772 void ARMTargetELFStreamer::emitPad(int64_t Offset) { 773 getStreamer().emitPad(Offset); 774 } 775 776 void ARMTargetELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList, 777 bool isVector) { 778 getStreamer().emitRegSave(RegList, isVector); 779 } 780 781 void ARMTargetELFStreamer::emitUnwindRaw(int64_t Offset, 782 const SmallVectorImpl<uint8_t> &Opcodes) { 783 getStreamer().emitUnwindRaw(Offset, Opcodes); 784 } 785 786 void ARMTargetELFStreamer::switchVendor(StringRef Vendor) { 787 assert(!Vendor.empty() && "Vendor cannot be empty."); 788 789 if (CurrentVendor == Vendor) 790 return; 791 792 if (!CurrentVendor.empty()) 793 finishAttributeSection(); 794 795 assert(getStreamer().Contents.empty() && 796 ".ARM.attributes should be flushed before changing vendor"); 797 CurrentVendor = Vendor; 798 799 } 800 801 void ARMTargetELFStreamer::emitAttribute(unsigned Attribute, unsigned Value) { 802 getStreamer().setAttributeItem(Attribute, Value, 803 /* OverwriteExisting= */ true); 804 } 805 806 void ARMTargetELFStreamer::emitTextAttribute(unsigned Attribute, 807 StringRef Value) { 808 getStreamer().setAttributeItem(Attribute, Value, 809 /* OverwriteExisting= */ true); 810 } 811 812 void ARMTargetELFStreamer::emitIntTextAttribute(unsigned Attribute, 813 unsigned IntValue, 814 StringRef StringValue) { 815 getStreamer().setAttributeItems(Attribute, IntValue, StringValue, 816 /* OverwriteExisting= */ true); 817 } 818 819 void ARMTargetELFStreamer::emitArch(ARM::ArchKind Value) { 820 Arch = Value; 821 } 822 823 void ARMTargetELFStreamer::emitObjectArch(ARM::ArchKind Value) { 824 EmittedArch = Value; 825 } 826 827 void ARMTargetELFStreamer::emitArchDefaultAttributes() { 828 using namespace ARMBuildAttrs; 829 ARMELFStreamer &S = getStreamer(); 830 831 S.setAttributeItem(CPU_name, ARM::getCPUAttr(Arch), false); 832 833 if (EmittedArch == ARM::ArchKind::INVALID) 834 S.setAttributeItem(CPU_arch, ARM::getArchAttr(Arch), false); 835 else 836 S.setAttributeItem(CPU_arch, ARM::getArchAttr(EmittedArch), false); 837 838 switch (Arch) { 839 case ARM::ArchKind::ARMV4: 840 S.setAttributeItem(ARM_ISA_use, Allowed, false); 841 break; 842 843 case ARM::ArchKind::ARMV4T: 844 case ARM::ArchKind::ARMV5T: 845 case ARM::ArchKind::XSCALE: 846 case ARM::ArchKind::ARMV5TE: 847 case ARM::ArchKind::ARMV6: 848 S.setAttributeItem(ARM_ISA_use, Allowed, false); 849 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 850 break; 851 852 case ARM::ArchKind::ARMV6T2: 853 S.setAttributeItem(ARM_ISA_use, Allowed, false); 854 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 855 break; 856 857 case ARM::ArchKind::ARMV6K: 858 case ARM::ArchKind::ARMV6KZ: 859 S.setAttributeItem(ARM_ISA_use, Allowed, false); 860 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 861 S.setAttributeItem(Virtualization_use, AllowTZ, false); 862 break; 863 864 case ARM::ArchKind::ARMV6M: 865 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 866 break; 867 868 case ARM::ArchKind::ARMV7A: 869 S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false); 870 S.setAttributeItem(ARM_ISA_use, Allowed, false); 871 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 872 break; 873 874 case ARM::ArchKind::ARMV7R: 875 S.setAttributeItem(CPU_arch_profile, RealTimeProfile, false); 876 S.setAttributeItem(ARM_ISA_use, Allowed, false); 877 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 878 break; 879 880 case ARM::ArchKind::ARMV7EM: 881 case ARM::ArchKind::ARMV7M: 882 S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false); 883 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 884 break; 885 886 case ARM::ArchKind::ARMV8A: 887 case ARM::ArchKind::ARMV8_1A: 888 case ARM::ArchKind::ARMV8_2A: 889 case ARM::ArchKind::ARMV8_3A: 890 case ARM::ArchKind::ARMV8_4A: 891 case ARM::ArchKind::ARMV8_5A: 892 case ARM::ArchKind::ARMV8_6A: 893 case ARM::ArchKind::ARMV8_7A: 894 case ARM::ArchKind::ARMV8_8A: 895 case ARM::ArchKind::ARMV8_9A: 896 case ARM::ArchKind::ARMV9A: 897 case ARM::ArchKind::ARMV9_1A: 898 case ARM::ArchKind::ARMV9_2A: 899 case ARM::ArchKind::ARMV9_3A: 900 case ARM::ArchKind::ARMV9_4A: 901 S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false); 902 S.setAttributeItem(ARM_ISA_use, Allowed, false); 903 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 904 S.setAttributeItem(MPextension_use, Allowed, false); 905 S.setAttributeItem(Virtualization_use, AllowTZVirtualization, false); 906 break; 907 908 case ARM::ArchKind::ARMV8MBaseline: 909 case ARM::ArchKind::ARMV8MMainline: 910 S.setAttributeItem(THUMB_ISA_use, AllowThumbDerived, false); 911 S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false); 912 break; 913 914 case ARM::ArchKind::IWMMXT: 915 S.setAttributeItem(ARM_ISA_use, Allowed, false); 916 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 917 S.setAttributeItem(WMMX_arch, AllowWMMXv1, false); 918 break; 919 920 case ARM::ArchKind::IWMMXT2: 921 S.setAttributeItem(ARM_ISA_use, Allowed, false); 922 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 923 S.setAttributeItem(WMMX_arch, AllowWMMXv2, false); 924 break; 925 926 default: 927 report_fatal_error("Unknown Arch: " + Twine(ARM::getArchName(Arch))); 928 break; 929 } 930 } 931 932 void ARMTargetELFStreamer::emitFPU(unsigned Value) { 933 FPU = Value; 934 } 935 936 void ARMTargetELFStreamer::emitFPUDefaultAttributes() { 937 ARMELFStreamer &S = getStreamer(); 938 939 switch (FPU) { 940 case ARM::FK_VFP: 941 case ARM::FK_VFPV2: 942 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv2, 943 /* OverwriteExisting= */ false); 944 break; 945 946 case ARM::FK_VFPV3: 947 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 948 /* OverwriteExisting= */ false); 949 break; 950 951 case ARM::FK_VFPV3_FP16: 952 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 953 /* OverwriteExisting= */ false); 954 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 955 /* OverwriteExisting= */ false); 956 break; 957 958 case ARM::FK_VFPV3_D16: 959 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 960 /* OverwriteExisting= */ false); 961 break; 962 963 case ARM::FK_VFPV3_D16_FP16: 964 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 965 /* OverwriteExisting= */ false); 966 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 967 /* OverwriteExisting= */ false); 968 break; 969 970 case ARM::FK_VFPV3XD: 971 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 972 /* OverwriteExisting= */ false); 973 break; 974 case ARM::FK_VFPV3XD_FP16: 975 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 976 /* OverwriteExisting= */ false); 977 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 978 /* OverwriteExisting= */ false); 979 break; 980 981 case ARM::FK_VFPV4: 982 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A, 983 /* OverwriteExisting= */ false); 984 break; 985 986 // ABI_HardFP_use is handled in ARMAsmPrinter, so _SP_D16 is treated the same 987 // as _D16 here. 988 case ARM::FK_FPV4_SP_D16: 989 case ARM::FK_VFPV4_D16: 990 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4B, 991 /* OverwriteExisting= */ false); 992 break; 993 994 case ARM::FK_FP_ARMV8: 995 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A, 996 /* OverwriteExisting= */ false); 997 break; 998 999 // FPV5_D16 is identical to FP_ARMV8 except for the number of D registers, so 1000 // uses the FP_ARMV8_D16 build attribute. 1001 case ARM::FK_FPV5_SP_D16: 1002 case ARM::FK_FPV5_D16: 1003 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8B, 1004 /* OverwriteExisting= */ false); 1005 break; 1006 1007 case ARM::FK_NEON: 1008 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 1009 /* OverwriteExisting= */ false); 1010 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 1011 ARMBuildAttrs::AllowNeon, 1012 /* OverwriteExisting= */ false); 1013 break; 1014 1015 case ARM::FK_NEON_FP16: 1016 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 1017 /* OverwriteExisting= */ false); 1018 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 1019 ARMBuildAttrs::AllowNeon, 1020 /* OverwriteExisting= */ false); 1021 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 1022 /* OverwriteExisting= */ false); 1023 break; 1024 1025 case ARM::FK_NEON_VFPV4: 1026 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A, 1027 /* OverwriteExisting= */ false); 1028 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 1029 ARMBuildAttrs::AllowNeon2, 1030 /* OverwriteExisting= */ false); 1031 break; 1032 1033 case ARM::FK_NEON_FP_ARMV8: 1034 case ARM::FK_CRYPTO_NEON_FP_ARMV8: 1035 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A, 1036 /* OverwriteExisting= */ false); 1037 // 'Advanced_SIMD_arch' must be emitted not here, but within 1038 // ARMAsmPrinter::emitAttributes(), depending on hasV8Ops() and hasV8_1a() 1039 break; 1040 1041 case ARM::FK_SOFTVFP: 1042 case ARM::FK_NONE: 1043 break; 1044 1045 default: 1046 report_fatal_error("Unknown FPU: " + Twine(FPU)); 1047 break; 1048 } 1049 } 1050 1051 void ARMTargetELFStreamer::finishAttributeSection() { 1052 ARMELFStreamer &S = getStreamer(); 1053 1054 if (FPU != ARM::FK_INVALID) 1055 emitFPUDefaultAttributes(); 1056 1057 if (Arch != ARM::ArchKind::INVALID) 1058 emitArchDefaultAttributes(); 1059 1060 if (S.Contents.empty()) 1061 return; 1062 1063 auto LessTag = [](const MCELFStreamer::AttributeItem &LHS, 1064 const MCELFStreamer::AttributeItem &RHS) -> bool { 1065 // The conformance tag must be emitted first when serialised into an 1066 // object file. Specifically, the addenda to the ARM ABI states that 1067 // (2.3.7.4): 1068 // 1069 // "To simplify recognition by consumers in the common case of claiming 1070 // conformity for the whole file, this tag should be emitted first in a 1071 // file-scope sub-subsection of the first public subsection of the 1072 // attributes section." 1073 // 1074 // So it is special-cased in this comparison predicate when the 1075 // attributes are sorted in finishAttributeSection(). 1076 return (RHS.Tag != ARMBuildAttrs::conformance) && 1077 ((LHS.Tag == ARMBuildAttrs::conformance) || (LHS.Tag < RHS.Tag)); 1078 }; 1079 llvm::sort(S.Contents, LessTag); 1080 1081 S.emitAttributesSection(CurrentVendor, ".ARM.attributes", 1082 ELF::SHT_ARM_ATTRIBUTES, AttributeSection); 1083 1084 FPU = ARM::FK_INVALID; 1085 } 1086 1087 void ARMTargetELFStreamer::emitLabel(MCSymbol *Symbol) { 1088 ARMELFStreamer &Streamer = getStreamer(); 1089 if (!Streamer.IsThumb) 1090 return; 1091 1092 Streamer.getAssembler().registerSymbol(*Symbol); 1093 unsigned Type = cast<MCSymbolELF>(Symbol)->getType(); 1094 if (Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC) 1095 Streamer.emitThumbFunc(Symbol); 1096 } 1097 1098 void ARMTargetELFStreamer::annotateTLSDescriptorSequence( 1099 const MCSymbolRefExpr *S) { 1100 getStreamer().EmitFixup(S, FK_Data_4); 1101 } 1102 1103 void ARMTargetELFStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) { 1104 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Value)) { 1105 const MCSymbol &Sym = SRE->getSymbol(); 1106 if (!Sym.isDefined()) { 1107 getStreamer().emitAssignment(Symbol, Value); 1108 return; 1109 } 1110 } 1111 1112 getStreamer().emitThumbFunc(Symbol); 1113 getStreamer().emitAssignment(Symbol, Value); 1114 } 1115 1116 void ARMTargetELFStreamer::emitInst(uint32_t Inst, char Suffix) { 1117 getStreamer().emitInst(Inst, Suffix); 1118 } 1119 1120 void ARMTargetELFStreamer::reset() { AttributeSection = nullptr; } 1121 1122 void ARMELFStreamer::finishImpl() { 1123 MCTargetStreamer &TS = *getTargetStreamer(); 1124 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1125 ATS.finishAttributeSection(); 1126 1127 MCELFStreamer::finishImpl(); 1128 } 1129 1130 void ARMELFStreamer::reset() { 1131 MCTargetStreamer &TS = *getTargetStreamer(); 1132 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1133 ATS.reset(); 1134 MappingSymbolCounter = 0; 1135 MCELFStreamer::reset(); 1136 LastMappingSymbols.clear(); 1137 LastEMSInfo.reset(); 1138 // MCELFStreamer clear's the assembler's e_flags. However, for 1139 // arm we manually set the ABI version on streamer creation, so 1140 // do the same here 1141 getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5); 1142 } 1143 1144 inline void ARMELFStreamer::SwitchToEHSection(StringRef Prefix, 1145 unsigned Type, 1146 unsigned Flags, 1147 SectionKind Kind, 1148 const MCSymbol &Fn) { 1149 const MCSectionELF &FnSection = 1150 static_cast<const MCSectionELF &>(Fn.getSection()); 1151 1152 // Create the name for new section 1153 StringRef FnSecName(FnSection.getName()); 1154 SmallString<128> EHSecName(Prefix); 1155 if (FnSecName != ".text") { 1156 EHSecName += FnSecName; 1157 } 1158 1159 // Get .ARM.extab or .ARM.exidx section 1160 const MCSymbolELF *Group = FnSection.getGroup(); 1161 if (Group) 1162 Flags |= ELF::SHF_GROUP; 1163 MCSectionELF *EHSection = getContext().getELFSection( 1164 EHSecName, Type, Flags, 0, Group, /*IsComdat=*/true, 1165 FnSection.getUniqueID(), 1166 static_cast<const MCSymbolELF *>(FnSection.getBeginSymbol())); 1167 1168 assert(EHSection && "Failed to get the required EH section"); 1169 1170 // Switch to .ARM.extab or .ARM.exidx section 1171 switchSection(EHSection); 1172 emitValueToAlignment(Align(4), 0, 1, 0); 1173 } 1174 1175 inline void ARMELFStreamer::SwitchToExTabSection(const MCSymbol &FnStart) { 1176 SwitchToEHSection(".ARM.extab", ELF::SHT_PROGBITS, ELF::SHF_ALLOC, 1177 SectionKind::getData(), FnStart); 1178 } 1179 1180 inline void ARMELFStreamer::SwitchToExIdxSection(const MCSymbol &FnStart) { 1181 SwitchToEHSection(".ARM.exidx", ELF::SHT_ARM_EXIDX, 1182 ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER, 1183 SectionKind::getData(), FnStart); 1184 } 1185 1186 void ARMELFStreamer::EmitFixup(const MCExpr *Expr, MCFixupKind Kind) { 1187 MCDataFragment *Frag = getOrCreateDataFragment(); 1188 Frag->getFixups().push_back(MCFixup::create(Frag->getContents().size(), Expr, 1189 Kind)); 1190 } 1191 1192 void ARMELFStreamer::EHReset() { 1193 ExTab = nullptr; 1194 FnStart = nullptr; 1195 Personality = nullptr; 1196 PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX; 1197 FPReg = ARM::SP; 1198 FPOffset = 0; 1199 SPOffset = 0; 1200 PendingOffset = 0; 1201 UsedFP = false; 1202 CantUnwind = false; 1203 1204 Opcodes.clear(); 1205 UnwindOpAsm.Reset(); 1206 } 1207 1208 void ARMELFStreamer::emitFnStart() { 1209 assert(FnStart == nullptr); 1210 FnStart = getContext().createTempSymbol(); 1211 emitLabel(FnStart); 1212 } 1213 1214 void ARMELFStreamer::emitFnEnd() { 1215 assert(FnStart && ".fnstart must precedes .fnend"); 1216 1217 // Emit unwind opcodes if there is no .handlerdata directive 1218 if (!ExTab && !CantUnwind) 1219 FlushUnwindOpcodes(true); 1220 1221 // Emit the exception index table entry 1222 SwitchToExIdxSection(*FnStart); 1223 1224 // The EHABI requires a dependency preserving R_ARM_NONE relocation to the 1225 // personality routine to protect it from an arbitrary platform's static 1226 // linker garbage collection. We disable this for Android where the unwinder 1227 // is either dynamically linked or directly references the personality 1228 // routine. 1229 if (PersonalityIndex < ARM::EHABI::NUM_PERSONALITY_INDEX && !IsAndroid) 1230 EmitPersonalityFixup(GetAEABIUnwindPersonalityName(PersonalityIndex)); 1231 1232 const MCSymbolRefExpr *FnStartRef = 1233 MCSymbolRefExpr::create(FnStart, 1234 MCSymbolRefExpr::VK_ARM_PREL31, 1235 getContext()); 1236 1237 emitValue(FnStartRef, 4); 1238 1239 if (CantUnwind) { 1240 emitInt32(ARM::EHABI::EXIDX_CANTUNWIND); 1241 } else if (ExTab) { 1242 // Emit a reference to the unwind opcodes in the ".ARM.extab" section. 1243 const MCSymbolRefExpr *ExTabEntryRef = 1244 MCSymbolRefExpr::create(ExTab, 1245 MCSymbolRefExpr::VK_ARM_PREL31, 1246 getContext()); 1247 emitValue(ExTabEntryRef, 4); 1248 } else { 1249 // For the __aeabi_unwind_cpp_pr0, we have to emit the unwind opcodes in 1250 // the second word of exception index table entry. The size of the unwind 1251 // opcodes should always be 4 bytes. 1252 assert(PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0 && 1253 "Compact model must use __aeabi_unwind_cpp_pr0 as personality"); 1254 assert(Opcodes.size() == 4u && 1255 "Unwind opcode size for __aeabi_unwind_cpp_pr0 must be equal to 4"); 1256 uint64_t Intval = Opcodes[0] | 1257 Opcodes[1] << 8 | 1258 Opcodes[2] << 16 | 1259 Opcodes[3] << 24; 1260 emitIntValue(Intval, Opcodes.size()); 1261 } 1262 1263 // Switch to the section containing FnStart 1264 switchSection(&FnStart->getSection()); 1265 1266 // Clean exception handling frame information 1267 EHReset(); 1268 } 1269 1270 void ARMELFStreamer::emitCantUnwind() { CantUnwind = true; } 1271 1272 // Add the R_ARM_NONE fixup at the same position 1273 void ARMELFStreamer::EmitPersonalityFixup(StringRef Name) { 1274 const MCSymbol *PersonalitySym = getContext().getOrCreateSymbol(Name); 1275 1276 const MCSymbolRefExpr *PersonalityRef = MCSymbolRefExpr::create( 1277 PersonalitySym, MCSymbolRefExpr::VK_ARM_NONE, getContext()); 1278 1279 visitUsedExpr(*PersonalityRef); 1280 MCDataFragment *DF = getOrCreateDataFragment(); 1281 DF->getFixups().push_back(MCFixup::create(DF->getContents().size(), 1282 PersonalityRef, 1283 MCFixup::getKindForSize(4, false))); 1284 } 1285 1286 void ARMELFStreamer::FlushPendingOffset() { 1287 if (PendingOffset != 0) { 1288 UnwindOpAsm.EmitSPOffset(-PendingOffset); 1289 PendingOffset = 0; 1290 } 1291 } 1292 1293 void ARMELFStreamer::FlushUnwindOpcodes(bool NoHandlerData) { 1294 // Emit the unwind opcode to restore $sp. 1295 if (UsedFP) { 1296 const MCRegisterInfo *MRI = getContext().getRegisterInfo(); 1297 int64_t LastRegSaveSPOffset = SPOffset - PendingOffset; 1298 UnwindOpAsm.EmitSPOffset(LastRegSaveSPOffset - FPOffset); 1299 UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg)); 1300 } else { 1301 FlushPendingOffset(); 1302 } 1303 1304 // Finalize the unwind opcode sequence 1305 UnwindOpAsm.Finalize(PersonalityIndex, Opcodes); 1306 1307 // For compact model 0, we have to emit the unwind opcodes in the .ARM.exidx 1308 // section. Thus, we don't have to create an entry in the .ARM.extab 1309 // section. 1310 if (NoHandlerData && PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0) 1311 return; 1312 1313 // Switch to .ARM.extab section. 1314 SwitchToExTabSection(*FnStart); 1315 1316 // Create .ARM.extab label for offset in .ARM.exidx 1317 assert(!ExTab); 1318 ExTab = getContext().createTempSymbol(); 1319 emitLabel(ExTab); 1320 1321 // Emit personality 1322 if (Personality) { 1323 const MCSymbolRefExpr *PersonalityRef = 1324 MCSymbolRefExpr::create(Personality, 1325 MCSymbolRefExpr::VK_ARM_PREL31, 1326 getContext()); 1327 1328 emitValue(PersonalityRef, 4); 1329 } 1330 1331 // Emit unwind opcodes 1332 assert((Opcodes.size() % 4) == 0 && 1333 "Unwind opcode size for __aeabi_cpp_unwind_pr0 must be multiple of 4"); 1334 for (unsigned I = 0; I != Opcodes.size(); I += 4) { 1335 uint64_t Intval = Opcodes[I] | 1336 Opcodes[I + 1] << 8 | 1337 Opcodes[I + 2] << 16 | 1338 Opcodes[I + 3] << 24; 1339 emitInt32(Intval); 1340 } 1341 1342 // According to ARM EHABI section 9.2, if the __aeabi_unwind_cpp_pr1() or 1343 // __aeabi_unwind_cpp_pr2() is used, then the handler data must be emitted 1344 // after the unwind opcodes. The handler data consists of several 32-bit 1345 // words, and should be terminated by zero. 1346 // 1347 // In case that the .handlerdata directive is not specified by the 1348 // programmer, we should emit zero to terminate the handler data. 1349 if (NoHandlerData && !Personality) 1350 emitInt32(0); 1351 } 1352 1353 void ARMELFStreamer::emitHandlerData() { FlushUnwindOpcodes(false); } 1354 1355 void ARMELFStreamer::emitPersonality(const MCSymbol *Per) { 1356 Personality = Per; 1357 UnwindOpAsm.setPersonality(Per); 1358 } 1359 1360 void ARMELFStreamer::emitPersonalityIndex(unsigned Index) { 1361 assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && "invalid index"); 1362 PersonalityIndex = Index; 1363 } 1364 1365 void ARMELFStreamer::emitSetFP(unsigned NewFPReg, unsigned NewSPReg, 1366 int64_t Offset) { 1367 assert((NewSPReg == ARM::SP || NewSPReg == FPReg) && 1368 "the operand of .setfp directive should be either $sp or $fp"); 1369 1370 UsedFP = true; 1371 FPReg = NewFPReg; 1372 1373 if (NewSPReg == ARM::SP) 1374 FPOffset = SPOffset + Offset; 1375 else 1376 FPOffset += Offset; 1377 } 1378 1379 void ARMELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) { 1380 assert((Reg != ARM::SP && Reg != ARM::PC) && 1381 "the operand of .movsp cannot be either sp or pc"); 1382 assert(FPReg == ARM::SP && "current FP must be SP"); 1383 1384 FlushPendingOffset(); 1385 1386 FPReg = Reg; 1387 FPOffset = SPOffset + Offset; 1388 1389 const MCRegisterInfo *MRI = getContext().getRegisterInfo(); 1390 UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg)); 1391 } 1392 1393 void ARMELFStreamer::emitPad(int64_t Offset) { 1394 // Track the change of the $sp offset 1395 SPOffset -= Offset; 1396 1397 // To squash multiple .pad directives, we should delay the unwind opcode 1398 // until the .save, .vsave, .handlerdata, or .fnend directives. 1399 PendingOffset -= Offset; 1400 } 1401 1402 static std::pair<unsigned, unsigned> 1403 collectHWRegs(const MCRegisterInfo &MRI, unsigned Idx, 1404 const SmallVectorImpl<unsigned> &RegList, bool IsVector, 1405 uint32_t &Mask_) { 1406 uint32_t Mask = 0; 1407 unsigned Count = 0; 1408 while (Idx > 0) { 1409 unsigned Reg = RegList[Idx - 1]; 1410 if (Reg == ARM::RA_AUTH_CODE) 1411 break; 1412 Reg = MRI.getEncodingValue(Reg); 1413 assert(Reg < (IsVector ? 32U : 16U) && "Register out of range"); 1414 unsigned Bit = (1u << Reg); 1415 if ((Mask & Bit) == 0) { 1416 Mask |= Bit; 1417 ++Count; 1418 } 1419 --Idx; 1420 } 1421 1422 Mask_ = Mask; 1423 return {Idx, Count}; 1424 } 1425 1426 void ARMELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList, 1427 bool IsVector) { 1428 uint32_t Mask; 1429 unsigned Idx, Count; 1430 const MCRegisterInfo &MRI = *getContext().getRegisterInfo(); 1431 1432 // Collect the registers in the register list. Issue unwinding instructions in 1433 // three parts: ordinary hardware registers, return address authentication 1434 // code pseudo register, the rest of the registers. The RA PAC is kept in an 1435 // architectural register (usually r12), but we treat it as a special case in 1436 // order to distinguish between that register containing RA PAC or a general 1437 // value. 1438 Idx = RegList.size(); 1439 while (Idx > 0) { 1440 std::tie(Idx, Count) = collectHWRegs(MRI, Idx, RegList, IsVector, Mask); 1441 if (Count) { 1442 // Track the change the $sp offset: For the .save directive, the 1443 // corresponding push instruction will decrease the $sp by (4 * Count). 1444 // For the .vsave directive, the corresponding vpush instruction will 1445 // decrease $sp by (8 * Count). 1446 SPOffset -= Count * (IsVector ? 8 : 4); 1447 1448 // Emit the opcode 1449 FlushPendingOffset(); 1450 if (IsVector) 1451 UnwindOpAsm.EmitVFPRegSave(Mask); 1452 else 1453 UnwindOpAsm.EmitRegSave(Mask); 1454 } else if (Idx > 0 && RegList[Idx - 1] == ARM::RA_AUTH_CODE) { 1455 --Idx; 1456 SPOffset -= 4; 1457 FlushPendingOffset(); 1458 UnwindOpAsm.EmitRegSave(0); 1459 } 1460 } 1461 } 1462 1463 void ARMELFStreamer::emitUnwindRaw(int64_t Offset, 1464 const SmallVectorImpl<uint8_t> &Opcodes) { 1465 FlushPendingOffset(); 1466 SPOffset = SPOffset - Offset; 1467 UnwindOpAsm.EmitRaw(Opcodes); 1468 } 1469 1470 namespace llvm { 1471 1472 MCTargetStreamer *createARMTargetAsmStreamer(MCStreamer &S, 1473 formatted_raw_ostream &OS, 1474 MCInstPrinter *InstPrint, 1475 bool isVerboseAsm) { 1476 return new ARMTargetAsmStreamer(S, OS, *InstPrint, isVerboseAsm); 1477 } 1478 1479 MCTargetStreamer *createARMNullTargetStreamer(MCStreamer &S) { 1480 return new ARMTargetStreamer(S); 1481 } 1482 1483 MCTargetStreamer *createARMObjectTargetELFStreamer(MCStreamer &S) { 1484 return new ARMTargetELFStreamer(S); 1485 } 1486 1487 MCELFStreamer *createARMELFStreamer(MCContext &Context, 1488 std::unique_ptr<MCAsmBackend> TAB, 1489 std::unique_ptr<MCObjectWriter> OW, 1490 std::unique_ptr<MCCodeEmitter> Emitter, 1491 bool RelaxAll, bool IsThumb, 1492 bool IsAndroid) { 1493 ARMELFStreamer *S = 1494 new ARMELFStreamer(Context, std::move(TAB), std::move(OW), 1495 std::move(Emitter), IsThumb, IsAndroid); 1496 // FIXME: This should eventually end up somewhere else where more 1497 // intelligent flag decisions can be made. For now we are just maintaining 1498 // the status quo for ARM and setting EF_ARM_EABI_VER5 as the default. 1499 S->getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5); 1500 1501 if (RelaxAll) 1502 S->getAssembler().setRelaxAll(true); 1503 return S; 1504 } 1505 1506 } // end namespace llvm 1507