1 //===- lib/MC/ARMELFStreamer.cpp - ELF Object Output for ARM --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file assembles .s files and emits ARM ELF .o object files. Different 10 // from generic ELF streamer in emitting mapping symbols ($a, $t and $d) to 11 // delimit regions of data and code. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMRegisterInfo.h" 16 #include "ARMUnwindOpAsm.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/BinaryFormat/ELF.h" 24 #include "llvm/MC/MCAsmBackend.h" 25 #include "llvm/MC/MCAsmInfo.h" 26 #include "llvm/MC/MCAssembler.h" 27 #include "llvm/MC/MCCodeEmitter.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCELFStreamer.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCFixup.h" 32 #include "llvm/MC/MCFragment.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/MC/MCInstPrinter.h" 35 #include "llvm/MC/MCObjectWriter.h" 36 #include "llvm/MC/MCRegisterInfo.h" 37 #include "llvm/MC/MCSection.h" 38 #include "llvm/MC/MCSectionELF.h" 39 #include "llvm/MC/MCStreamer.h" 40 #include "llvm/MC/MCSubtargetInfo.h" 41 #include "llvm/MC/MCSymbol.h" 42 #include "llvm/MC/MCSymbolELF.h" 43 #include "llvm/MC/SectionKind.h" 44 #include "llvm/Support/ARMBuildAttributes.h" 45 #include "llvm/Support/ARMEHABI.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/FormattedStream.h" 49 #include "llvm/Support/TargetParser.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <climits> 54 #include <cstddef> 55 #include <cstdint> 56 #include <string> 57 58 using namespace llvm; 59 60 static std::string GetAEABIUnwindPersonalityName(unsigned Index) { 61 assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && 62 "Invalid personality index"); 63 return (Twine("__aeabi_unwind_cpp_pr") + Twine(Index)).str(); 64 } 65 66 namespace { 67 68 class ARMELFStreamer; 69 70 class ARMTargetAsmStreamer : public ARMTargetStreamer { 71 formatted_raw_ostream &OS; 72 MCInstPrinter &InstPrinter; 73 bool IsVerboseAsm; 74 75 void emitFnStart() override; 76 void emitFnEnd() override; 77 void emitCantUnwind() override; 78 void emitPersonality(const MCSymbol *Personality) override; 79 void emitPersonalityIndex(unsigned Index) override; 80 void emitHandlerData() override; 81 void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override; 82 void emitMovSP(unsigned Reg, int64_t Offset = 0) override; 83 void emitPad(int64_t Offset) override; 84 void emitRegSave(const SmallVectorImpl<unsigned> &RegList, 85 bool isVector) override; 86 void emitUnwindRaw(int64_t Offset, 87 const SmallVectorImpl<uint8_t> &Opcodes) override; 88 89 void switchVendor(StringRef Vendor) override; 90 void emitAttribute(unsigned Attribute, unsigned Value) override; 91 void emitTextAttribute(unsigned Attribute, StringRef String) override; 92 void emitIntTextAttribute(unsigned Attribute, unsigned IntValue, 93 StringRef StringValue) override; 94 void emitArch(ARM::ArchKind Arch) override; 95 void emitArchExtension(uint64_t ArchExt) override; 96 void emitObjectArch(ARM::ArchKind Arch) override; 97 void emitFPU(unsigned FPU) override; 98 void emitInst(uint32_t Inst, char Suffix = '\0') override; 99 void finishAttributeSection() override; 100 101 void annotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override; 102 void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override; 103 104 void emitARMWinCFIAllocStack(unsigned Size, bool Wide) override; 105 void emitARMWinCFISaveRegMask(unsigned Mask, bool Wide) override; 106 void emitARMWinCFISaveSP(unsigned Reg) override; 107 void emitARMWinCFISaveFRegs(unsigned First, unsigned Last) override; 108 void emitARMWinCFISaveLR(unsigned Offset) override; 109 void emitARMWinCFIPrologEnd(bool Fragment) override; 110 void emitARMWinCFINop(bool Wide) override; 111 void emitARMWinCFIEpilogStart(unsigned Condition) override; 112 void emitARMWinCFIEpilogEnd() override; 113 void emitARMWinCFICustom(unsigned Opcode) override; 114 115 public: 116 ARMTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS, 117 MCInstPrinter &InstPrinter, bool VerboseAsm); 118 }; 119 120 ARMTargetAsmStreamer::ARMTargetAsmStreamer(MCStreamer &S, 121 formatted_raw_ostream &OS, 122 MCInstPrinter &InstPrinter, 123 bool VerboseAsm) 124 : ARMTargetStreamer(S), OS(OS), InstPrinter(InstPrinter), 125 IsVerboseAsm(VerboseAsm) {} 126 127 void ARMTargetAsmStreamer::emitFnStart() { OS << "\t.fnstart\n"; } 128 void ARMTargetAsmStreamer::emitFnEnd() { OS << "\t.fnend\n"; } 129 void ARMTargetAsmStreamer::emitCantUnwind() { OS << "\t.cantunwind\n"; } 130 131 void ARMTargetAsmStreamer::emitPersonality(const MCSymbol *Personality) { 132 OS << "\t.personality " << Personality->getName() << '\n'; 133 } 134 135 void ARMTargetAsmStreamer::emitPersonalityIndex(unsigned Index) { 136 OS << "\t.personalityindex " << Index << '\n'; 137 } 138 139 void ARMTargetAsmStreamer::emitHandlerData() { OS << "\t.handlerdata\n"; } 140 141 void ARMTargetAsmStreamer::emitSetFP(unsigned FpReg, unsigned SpReg, 142 int64_t Offset) { 143 OS << "\t.setfp\t"; 144 InstPrinter.printRegName(OS, FpReg); 145 OS << ", "; 146 InstPrinter.printRegName(OS, SpReg); 147 if (Offset) 148 OS << ", #" << Offset; 149 OS << '\n'; 150 } 151 152 void ARMTargetAsmStreamer::emitMovSP(unsigned Reg, int64_t Offset) { 153 assert((Reg != ARM::SP && Reg != ARM::PC) && 154 "the operand of .movsp cannot be either sp or pc"); 155 156 OS << "\t.movsp\t"; 157 InstPrinter.printRegName(OS, Reg); 158 if (Offset) 159 OS << ", #" << Offset; 160 OS << '\n'; 161 } 162 163 void ARMTargetAsmStreamer::emitPad(int64_t Offset) { 164 OS << "\t.pad\t#" << Offset << '\n'; 165 } 166 167 void ARMTargetAsmStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList, 168 bool isVector) { 169 assert(RegList.size() && "RegList should not be empty"); 170 if (isVector) 171 OS << "\t.vsave\t{"; 172 else 173 OS << "\t.save\t{"; 174 175 InstPrinter.printRegName(OS, RegList[0]); 176 177 for (unsigned i = 1, e = RegList.size(); i != e; ++i) { 178 OS << ", "; 179 InstPrinter.printRegName(OS, RegList[i]); 180 } 181 182 OS << "}\n"; 183 } 184 185 void ARMTargetAsmStreamer::switchVendor(StringRef Vendor) {} 186 187 void ARMTargetAsmStreamer::emitAttribute(unsigned Attribute, unsigned Value) { 188 OS << "\t.eabi_attribute\t" << Attribute << ", " << Twine(Value); 189 if (IsVerboseAsm) { 190 StringRef Name = ELFAttrs::attrTypeAsString( 191 Attribute, ARMBuildAttrs::getARMAttributeTags()); 192 if (!Name.empty()) 193 OS << "\t@ " << Name; 194 } 195 OS << "\n"; 196 } 197 198 void ARMTargetAsmStreamer::emitTextAttribute(unsigned Attribute, 199 StringRef String) { 200 switch (Attribute) { 201 case ARMBuildAttrs::CPU_name: 202 OS << "\t.cpu\t" << String.lower(); 203 break; 204 default: 205 OS << "\t.eabi_attribute\t" << Attribute << ", \"" << String << "\""; 206 if (IsVerboseAsm) { 207 StringRef Name = ELFAttrs::attrTypeAsString( 208 Attribute, ARMBuildAttrs::getARMAttributeTags()); 209 if (!Name.empty()) 210 OS << "\t@ " << Name; 211 } 212 break; 213 } 214 OS << "\n"; 215 } 216 217 void ARMTargetAsmStreamer::emitIntTextAttribute(unsigned Attribute, 218 unsigned IntValue, 219 StringRef StringValue) { 220 switch (Attribute) { 221 default: llvm_unreachable("unsupported multi-value attribute in asm mode"); 222 case ARMBuildAttrs::compatibility: 223 OS << "\t.eabi_attribute\t" << Attribute << ", " << IntValue; 224 if (!StringValue.empty()) 225 OS << ", \"" << StringValue << "\""; 226 if (IsVerboseAsm) 227 OS << "\t@ " 228 << ELFAttrs::attrTypeAsString(Attribute, 229 ARMBuildAttrs::getARMAttributeTags()); 230 break; 231 } 232 OS << "\n"; 233 } 234 235 void ARMTargetAsmStreamer::emitArch(ARM::ArchKind Arch) { 236 OS << "\t.arch\t" << ARM::getArchName(Arch) << "\n"; 237 } 238 239 void ARMTargetAsmStreamer::emitArchExtension(uint64_t ArchExt) { 240 OS << "\t.arch_extension\t" << ARM::getArchExtName(ArchExt) << "\n"; 241 } 242 243 void ARMTargetAsmStreamer::emitObjectArch(ARM::ArchKind Arch) { 244 OS << "\t.object_arch\t" << ARM::getArchName(Arch) << '\n'; 245 } 246 247 void ARMTargetAsmStreamer::emitFPU(unsigned FPU) { 248 OS << "\t.fpu\t" << ARM::getFPUName(FPU) << "\n"; 249 } 250 251 void ARMTargetAsmStreamer::finishAttributeSection() {} 252 253 void ARMTargetAsmStreamer::annotateTLSDescriptorSequence( 254 const MCSymbolRefExpr *S) { 255 OS << "\t.tlsdescseq\t" << S->getSymbol().getName() << "\n"; 256 } 257 258 void ARMTargetAsmStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) { 259 const MCAsmInfo *MAI = Streamer.getContext().getAsmInfo(); 260 261 OS << "\t.thumb_set\t"; 262 Symbol->print(OS, MAI); 263 OS << ", "; 264 Value->print(OS, MAI); 265 OS << '\n'; 266 } 267 268 void ARMTargetAsmStreamer::emitInst(uint32_t Inst, char Suffix) { 269 OS << "\t.inst"; 270 if (Suffix) 271 OS << "." << Suffix; 272 OS << "\t0x" << Twine::utohexstr(Inst) << "\n"; 273 } 274 275 void ARMTargetAsmStreamer::emitUnwindRaw(int64_t Offset, 276 const SmallVectorImpl<uint8_t> &Opcodes) { 277 OS << "\t.unwind_raw " << Offset; 278 for (uint8_t Opcode : Opcodes) 279 OS << ", 0x" << Twine::utohexstr(Opcode); 280 OS << '\n'; 281 } 282 283 void ARMTargetAsmStreamer::emitARMWinCFIAllocStack(unsigned Size, bool Wide) { 284 if (Wide) 285 OS << "\t.seh_stackalloc_w\t" << Size << "\n"; 286 else 287 OS << "\t.seh_stackalloc\t" << Size << "\n"; 288 } 289 290 static void printRegs(formatted_raw_ostream &OS, ListSeparator &LS, int First, 291 int Last) { 292 if (First != Last) 293 OS << LS << "r" << First << "-r" << Last; 294 else 295 OS << LS << "r" << First; 296 } 297 298 void ARMTargetAsmStreamer::emitARMWinCFISaveRegMask(unsigned Mask, bool Wide) { 299 if (Wide) 300 OS << "\t.seh_save_regs_w\t"; 301 else 302 OS << "\t.seh_save_regs\t"; 303 ListSeparator LS; 304 int First = -1; 305 OS << "{"; 306 for (int I = 0; I <= 12; I++) { 307 if (Mask & (1 << I)) { 308 if (First < 0) 309 First = I; 310 } else { 311 if (First >= 0) { 312 printRegs(OS, LS, First, I - 1); 313 First = -1; 314 } 315 } 316 } 317 if (First >= 0) 318 printRegs(OS, LS, First, 12); 319 if (Mask & (1 << 14)) 320 OS << LS << "lr"; 321 OS << "}\n"; 322 } 323 324 void ARMTargetAsmStreamer::emitARMWinCFISaveSP(unsigned Reg) { 325 OS << "\t.seh_save_sp\tr" << Reg << "\n"; 326 } 327 328 void ARMTargetAsmStreamer::emitARMWinCFISaveFRegs(unsigned First, 329 unsigned Last) { 330 if (First != Last) 331 OS << "\t.seh_save_fregs\t{d" << First << "-d" << Last << "}\n"; 332 else 333 OS << "\t.seh_save_fregs\t{d" << First << "}\n"; 334 } 335 336 void ARMTargetAsmStreamer::emitARMWinCFISaveLR(unsigned Offset) { 337 OS << "\t.seh_save_lr\t" << Offset << "\n"; 338 } 339 340 void ARMTargetAsmStreamer::emitARMWinCFIPrologEnd(bool Fragment) { 341 if (Fragment) 342 OS << "\t.seh_endprologue_fragment\n"; 343 else 344 OS << "\t.seh_endprologue\n"; 345 } 346 347 void ARMTargetAsmStreamer::emitARMWinCFINop(bool Wide) { 348 if (Wide) 349 OS << "\t.seh_nop_w\n"; 350 else 351 OS << "\t.seh_nop\n"; 352 } 353 354 void ARMTargetAsmStreamer::emitARMWinCFIEpilogStart(unsigned Condition) { 355 if (Condition == ARMCC::AL) 356 OS << "\t.seh_startepilogue\n"; 357 else 358 OS << "\t.seh_startepilogue_cond\t" 359 << ARMCondCodeToString(static_cast<ARMCC::CondCodes>(Condition)) << "\n"; 360 } 361 362 void ARMTargetAsmStreamer::emitARMWinCFIEpilogEnd() { 363 OS << "\t.seh_endepilogue\n"; 364 } 365 366 void ARMTargetAsmStreamer::emitARMWinCFICustom(unsigned Opcode) { 367 int I; 368 for (I = 3; I > 0; I--) 369 if (Opcode & (0xffu << (8 * I))) 370 break; 371 ListSeparator LS; 372 OS << "\t.seh_custom\t"; 373 for (; I >= 0; I--) 374 OS << LS << ((Opcode >> (8 * I)) & 0xff); 375 OS << "\n"; 376 } 377 378 class ARMTargetELFStreamer : public ARMTargetStreamer { 379 private: 380 StringRef CurrentVendor; 381 unsigned FPU = ARM::FK_INVALID; 382 ARM::ArchKind Arch = ARM::ArchKind::INVALID; 383 ARM::ArchKind EmittedArch = ARM::ArchKind::INVALID; 384 385 MCSection *AttributeSection = nullptr; 386 387 void emitArchDefaultAttributes(); 388 void emitFPUDefaultAttributes(); 389 390 ARMELFStreamer &getStreamer(); 391 392 void emitFnStart() override; 393 void emitFnEnd() override; 394 void emitCantUnwind() override; 395 void emitPersonality(const MCSymbol *Personality) override; 396 void emitPersonalityIndex(unsigned Index) override; 397 void emitHandlerData() override; 398 void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override; 399 void emitMovSP(unsigned Reg, int64_t Offset = 0) override; 400 void emitPad(int64_t Offset) override; 401 void emitRegSave(const SmallVectorImpl<unsigned> &RegList, 402 bool isVector) override; 403 void emitUnwindRaw(int64_t Offset, 404 const SmallVectorImpl<uint8_t> &Opcodes) override; 405 406 void switchVendor(StringRef Vendor) override; 407 void emitAttribute(unsigned Attribute, unsigned Value) override; 408 void emitTextAttribute(unsigned Attribute, StringRef String) override; 409 void emitIntTextAttribute(unsigned Attribute, unsigned IntValue, 410 StringRef StringValue) override; 411 void emitArch(ARM::ArchKind Arch) override; 412 void emitObjectArch(ARM::ArchKind Arch) override; 413 void emitFPU(unsigned FPU) override; 414 void emitInst(uint32_t Inst, char Suffix = '\0') override; 415 void finishAttributeSection() override; 416 void emitLabel(MCSymbol *Symbol) override; 417 418 void annotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override; 419 void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override; 420 421 // Reset state between object emissions 422 void reset() override; 423 424 public: 425 ARMTargetELFStreamer(MCStreamer &S) 426 : ARMTargetStreamer(S), CurrentVendor("aeabi") {} 427 }; 428 429 /// Extend the generic ELFStreamer class so that it can emit mapping symbols at 430 /// the appropriate points in the object files. These symbols are defined in the 431 /// ARM ELF ABI: infocenter.arm.com/help/topic/com.arm.../IHI0044D_aaelf.pdf. 432 /// 433 /// In brief: $a, $t or $d should be emitted at the start of each contiguous 434 /// region of ARM code, Thumb code or data in a section. In practice, this 435 /// emission does not rely on explicit assembler directives but on inherent 436 /// properties of the directives doing the emission (e.g. ".byte" is data, "add 437 /// r0, r0, r0" an instruction). 438 /// 439 /// As a result this system is orthogonal to the DataRegion infrastructure used 440 /// by MachO. Beware! 441 class ARMELFStreamer : public MCELFStreamer { 442 public: 443 friend class ARMTargetELFStreamer; 444 445 ARMELFStreamer(MCContext &Context, std::unique_ptr<MCAsmBackend> TAB, 446 std::unique_ptr<MCObjectWriter> OW, 447 std::unique_ptr<MCCodeEmitter> Emitter, bool IsThumb, 448 bool IsAndroid) 449 : MCELFStreamer(Context, std::move(TAB), std::move(OW), 450 std::move(Emitter)), 451 IsThumb(IsThumb), IsAndroid(IsAndroid) { 452 EHReset(); 453 } 454 455 ~ARMELFStreamer() override = default; 456 457 void finishImpl() override; 458 459 // ARM exception handling directives 460 void emitFnStart(); 461 void emitFnEnd(); 462 void emitCantUnwind(); 463 void emitPersonality(const MCSymbol *Per); 464 void emitPersonalityIndex(unsigned index); 465 void emitHandlerData(); 466 void emitSetFP(unsigned NewFpReg, unsigned NewSpReg, int64_t Offset = 0); 467 void emitMovSP(unsigned Reg, int64_t Offset = 0); 468 void emitPad(int64_t Offset); 469 void emitRegSave(const SmallVectorImpl<unsigned> &RegList, bool isVector); 470 void emitUnwindRaw(int64_t Offset, const SmallVectorImpl<uint8_t> &Opcodes); 471 void emitFill(const MCExpr &NumBytes, uint64_t FillValue, 472 SMLoc Loc) override { 473 emitDataMappingSymbol(); 474 MCObjectStreamer::emitFill(NumBytes, FillValue, Loc); 475 } 476 477 void changeSection(MCSection *Section, const MCExpr *Subsection) override { 478 LastMappingSymbols[getCurrentSection().first] = std::move(LastEMSInfo); 479 MCELFStreamer::changeSection(Section, Subsection); 480 auto LastMappingSymbol = LastMappingSymbols.find(Section); 481 if (LastMappingSymbol != LastMappingSymbols.end()) { 482 LastEMSInfo = std::move(LastMappingSymbol->second); 483 return; 484 } 485 LastEMSInfo.reset(new ElfMappingSymbolInfo(SMLoc(), nullptr, 0)); 486 } 487 488 /// This function is the one used to emit instruction data into the ELF 489 /// streamer. We override it to add the appropriate mapping symbol if 490 /// necessary. 491 void emitInstruction(const MCInst &Inst, 492 const MCSubtargetInfo &STI) override { 493 if (IsThumb) 494 EmitThumbMappingSymbol(); 495 else 496 EmitARMMappingSymbol(); 497 498 MCELFStreamer::emitInstruction(Inst, STI); 499 } 500 501 void emitInst(uint32_t Inst, char Suffix) { 502 unsigned Size; 503 char Buffer[4]; 504 const bool LittleEndian = getContext().getAsmInfo()->isLittleEndian(); 505 506 switch (Suffix) { 507 case '\0': 508 Size = 4; 509 510 assert(!IsThumb); 511 EmitARMMappingSymbol(); 512 for (unsigned II = 0, IE = Size; II != IE; II++) { 513 const unsigned I = LittleEndian ? (Size - II - 1) : II; 514 Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT); 515 } 516 517 break; 518 case 'n': 519 case 'w': 520 Size = (Suffix == 'n' ? 2 : 4); 521 522 assert(IsThumb); 523 EmitThumbMappingSymbol(); 524 // Thumb wide instructions are emitted as a pair of 16-bit words of the 525 // appropriate endianness. 526 for (unsigned II = 0, IE = Size; II != IE; II = II + 2) { 527 const unsigned I0 = LittleEndian ? II + 0 : II + 1; 528 const unsigned I1 = LittleEndian ? II + 1 : II + 0; 529 Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT); 530 Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT); 531 } 532 533 break; 534 default: 535 llvm_unreachable("Invalid Suffix"); 536 } 537 538 MCELFStreamer::emitBytes(StringRef(Buffer, Size)); 539 } 540 541 /// This is one of the functions used to emit data into an ELF section, so the 542 /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if 543 /// necessary. 544 void emitBytes(StringRef Data) override { 545 emitDataMappingSymbol(); 546 MCELFStreamer::emitBytes(Data); 547 } 548 549 void FlushPendingMappingSymbol() { 550 if (!LastEMSInfo->hasInfo()) 551 return; 552 ElfMappingSymbolInfo *EMS = LastEMSInfo.get(); 553 EmitMappingSymbol("$d", EMS->Loc, EMS->F, EMS->Offset); 554 EMS->resetInfo(); 555 } 556 557 /// This is one of the functions used to emit data into an ELF section, so the 558 /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if 559 /// necessary. 560 void emitValueImpl(const MCExpr *Value, unsigned Size, SMLoc Loc) override { 561 if (const MCSymbolRefExpr *SRE = dyn_cast_or_null<MCSymbolRefExpr>(Value)) { 562 if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_SBREL && !(Size == 4)) { 563 getContext().reportError(Loc, "relocated expression must be 32-bit"); 564 return; 565 } 566 getOrCreateDataFragment(); 567 } 568 569 emitDataMappingSymbol(); 570 MCELFStreamer::emitValueImpl(Value, Size, Loc); 571 } 572 573 void emitAssemblerFlag(MCAssemblerFlag Flag) override { 574 MCELFStreamer::emitAssemblerFlag(Flag); 575 576 switch (Flag) { 577 case MCAF_SyntaxUnified: 578 return; // no-op here. 579 case MCAF_Code16: 580 IsThumb = true; 581 return; // Change to Thumb mode 582 case MCAF_Code32: 583 IsThumb = false; 584 return; // Change to ARM mode 585 case MCAF_Code64: 586 return; 587 case MCAF_SubsectionsViaSymbols: 588 return; 589 } 590 } 591 592 /// If a label is defined before the .type directive sets the label's type 593 /// then the label can't be recorded as thumb function when the label is 594 /// defined. We override emitSymbolAttribute() which is called as part of the 595 /// parsing of .type so that if the symbol has already been defined we can 596 /// record the label as Thumb. FIXME: there is a corner case where the state 597 /// is changed in between the label definition and the .type directive, this 598 /// is not expected to occur in practice and handling it would require the 599 /// backend to track IsThumb for every label. 600 bool emitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute) override { 601 bool Val = MCELFStreamer::emitSymbolAttribute(Symbol, Attribute); 602 603 if (!IsThumb) 604 return Val; 605 606 unsigned Type = cast<MCSymbolELF>(Symbol)->getType(); 607 if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC) && 608 Symbol->isDefined()) 609 getAssembler().setIsThumbFunc(Symbol); 610 611 return Val; 612 }; 613 614 private: 615 enum ElfMappingSymbol { 616 EMS_None, 617 EMS_ARM, 618 EMS_Thumb, 619 EMS_Data 620 }; 621 622 struct ElfMappingSymbolInfo { 623 explicit ElfMappingSymbolInfo(SMLoc Loc, MCFragment *F, uint64_t O) 624 : Loc(Loc), F(F), Offset(O), State(EMS_None) {} 625 void resetInfo() { 626 F = nullptr; 627 Offset = 0; 628 } 629 bool hasInfo() { return F != nullptr; } 630 SMLoc Loc; 631 MCFragment *F; 632 uint64_t Offset; 633 ElfMappingSymbol State; 634 }; 635 636 void emitDataMappingSymbol() { 637 if (LastEMSInfo->State == EMS_Data) 638 return; 639 else if (LastEMSInfo->State == EMS_None) { 640 // This is a tentative symbol, it won't really be emitted until it's 641 // actually needed. 642 ElfMappingSymbolInfo *EMS = LastEMSInfo.get(); 643 auto *DF = dyn_cast_or_null<MCDataFragment>(getCurrentFragment()); 644 if (!DF) 645 return; 646 EMS->Loc = SMLoc(); 647 EMS->F = getCurrentFragment(); 648 EMS->Offset = DF->getContents().size(); 649 LastEMSInfo->State = EMS_Data; 650 return; 651 } 652 EmitMappingSymbol("$d"); 653 LastEMSInfo->State = EMS_Data; 654 } 655 656 void EmitThumbMappingSymbol() { 657 if (LastEMSInfo->State == EMS_Thumb) 658 return; 659 FlushPendingMappingSymbol(); 660 EmitMappingSymbol("$t"); 661 LastEMSInfo->State = EMS_Thumb; 662 } 663 664 void EmitARMMappingSymbol() { 665 if (LastEMSInfo->State == EMS_ARM) 666 return; 667 FlushPendingMappingSymbol(); 668 EmitMappingSymbol("$a"); 669 LastEMSInfo->State = EMS_ARM; 670 } 671 672 void EmitMappingSymbol(StringRef Name) { 673 auto *Symbol = cast<MCSymbolELF>(getContext().getOrCreateSymbol( 674 Name + "." + Twine(MappingSymbolCounter++))); 675 emitLabel(Symbol); 676 677 Symbol->setType(ELF::STT_NOTYPE); 678 Symbol->setBinding(ELF::STB_LOCAL); 679 } 680 681 void EmitMappingSymbol(StringRef Name, SMLoc Loc, MCFragment *F, 682 uint64_t Offset) { 683 auto *Symbol = cast<MCSymbolELF>(getContext().getOrCreateSymbol( 684 Name + "." + Twine(MappingSymbolCounter++))); 685 emitLabelAtPos(Symbol, Loc, F, Offset); 686 Symbol->setType(ELF::STT_NOTYPE); 687 Symbol->setBinding(ELF::STB_LOCAL); 688 } 689 690 void emitThumbFunc(MCSymbol *Func) override { 691 getAssembler().setIsThumbFunc(Func); 692 emitSymbolAttribute(Func, MCSA_ELF_TypeFunction); 693 } 694 695 // Helper functions for ARM exception handling directives 696 void EHReset(); 697 698 // Reset state between object emissions 699 void reset() override; 700 701 void EmitPersonalityFixup(StringRef Name); 702 void FlushPendingOffset(); 703 void FlushUnwindOpcodes(bool NoHandlerData); 704 705 void SwitchToEHSection(StringRef Prefix, unsigned Type, unsigned Flags, 706 SectionKind Kind, const MCSymbol &Fn); 707 void SwitchToExTabSection(const MCSymbol &FnStart); 708 void SwitchToExIdxSection(const MCSymbol &FnStart); 709 710 void EmitFixup(const MCExpr *Expr, MCFixupKind Kind); 711 712 bool IsThumb; 713 bool IsAndroid; 714 int64_t MappingSymbolCounter = 0; 715 716 DenseMap<const MCSection *, std::unique_ptr<ElfMappingSymbolInfo>> 717 LastMappingSymbols; 718 719 std::unique_ptr<ElfMappingSymbolInfo> LastEMSInfo; 720 721 // ARM Exception Handling Frame Information 722 MCSymbol *ExTab; 723 MCSymbol *FnStart; 724 const MCSymbol *Personality; 725 unsigned PersonalityIndex; 726 unsigned FPReg; // Frame pointer register 727 int64_t FPOffset; // Offset: (final frame pointer) - (initial $sp) 728 int64_t SPOffset; // Offset: (final $sp) - (initial $sp) 729 int64_t PendingOffset; // Offset: (final $sp) - (emitted $sp) 730 bool UsedFP; 731 bool CantUnwind; 732 SmallVector<uint8_t, 64> Opcodes; 733 UnwindOpcodeAssembler UnwindOpAsm; 734 }; 735 736 } // end anonymous namespace 737 738 ARMELFStreamer &ARMTargetELFStreamer::getStreamer() { 739 return static_cast<ARMELFStreamer &>(Streamer); 740 } 741 742 void ARMTargetELFStreamer::emitFnStart() { getStreamer().emitFnStart(); } 743 void ARMTargetELFStreamer::emitFnEnd() { getStreamer().emitFnEnd(); } 744 void ARMTargetELFStreamer::emitCantUnwind() { getStreamer().emitCantUnwind(); } 745 746 void ARMTargetELFStreamer::emitPersonality(const MCSymbol *Personality) { 747 getStreamer().emitPersonality(Personality); 748 } 749 750 void ARMTargetELFStreamer::emitPersonalityIndex(unsigned Index) { 751 getStreamer().emitPersonalityIndex(Index); 752 } 753 754 void ARMTargetELFStreamer::emitHandlerData() { 755 getStreamer().emitHandlerData(); 756 } 757 758 void ARMTargetELFStreamer::emitSetFP(unsigned FpReg, unsigned SpReg, 759 int64_t Offset) { 760 getStreamer().emitSetFP(FpReg, SpReg, Offset); 761 } 762 763 void ARMTargetELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) { 764 getStreamer().emitMovSP(Reg, Offset); 765 } 766 767 void ARMTargetELFStreamer::emitPad(int64_t Offset) { 768 getStreamer().emitPad(Offset); 769 } 770 771 void ARMTargetELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList, 772 bool isVector) { 773 getStreamer().emitRegSave(RegList, isVector); 774 } 775 776 void ARMTargetELFStreamer::emitUnwindRaw(int64_t Offset, 777 const SmallVectorImpl<uint8_t> &Opcodes) { 778 getStreamer().emitUnwindRaw(Offset, Opcodes); 779 } 780 781 void ARMTargetELFStreamer::switchVendor(StringRef Vendor) { 782 assert(!Vendor.empty() && "Vendor cannot be empty."); 783 784 if (CurrentVendor == Vendor) 785 return; 786 787 if (!CurrentVendor.empty()) 788 finishAttributeSection(); 789 790 assert(getStreamer().Contents.empty() && 791 ".ARM.attributes should be flushed before changing vendor"); 792 CurrentVendor = Vendor; 793 794 } 795 796 void ARMTargetELFStreamer::emitAttribute(unsigned Attribute, unsigned Value) { 797 getStreamer().setAttributeItem(Attribute, Value, 798 /* OverwriteExisting= */ true); 799 } 800 801 void ARMTargetELFStreamer::emitTextAttribute(unsigned Attribute, 802 StringRef Value) { 803 getStreamer().setAttributeItem(Attribute, Value, 804 /* OverwriteExisting= */ true); 805 } 806 807 void ARMTargetELFStreamer::emitIntTextAttribute(unsigned Attribute, 808 unsigned IntValue, 809 StringRef StringValue) { 810 getStreamer().setAttributeItems(Attribute, IntValue, StringValue, 811 /* OverwriteExisting= */ true); 812 } 813 814 void ARMTargetELFStreamer::emitArch(ARM::ArchKind Value) { 815 Arch = Value; 816 } 817 818 void ARMTargetELFStreamer::emitObjectArch(ARM::ArchKind Value) { 819 EmittedArch = Value; 820 } 821 822 void ARMTargetELFStreamer::emitArchDefaultAttributes() { 823 using namespace ARMBuildAttrs; 824 ARMELFStreamer &S = getStreamer(); 825 826 S.setAttributeItem(CPU_name, ARM::getCPUAttr(Arch), false); 827 828 if (EmittedArch == ARM::ArchKind::INVALID) 829 S.setAttributeItem(CPU_arch, ARM::getArchAttr(Arch), false); 830 else 831 S.setAttributeItem(CPU_arch, ARM::getArchAttr(EmittedArch), false); 832 833 switch (Arch) { 834 case ARM::ArchKind::ARMV2: 835 case ARM::ArchKind::ARMV2A: 836 case ARM::ArchKind::ARMV3: 837 case ARM::ArchKind::ARMV3M: 838 case ARM::ArchKind::ARMV4: 839 S.setAttributeItem(ARM_ISA_use, Allowed, false); 840 break; 841 842 case ARM::ArchKind::ARMV4T: 843 case ARM::ArchKind::ARMV5T: 844 case ARM::ArchKind::XSCALE: 845 case ARM::ArchKind::ARMV5TE: 846 case ARM::ArchKind::ARMV6: 847 S.setAttributeItem(ARM_ISA_use, Allowed, false); 848 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 849 break; 850 851 case ARM::ArchKind::ARMV6T2: 852 S.setAttributeItem(ARM_ISA_use, Allowed, false); 853 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 854 break; 855 856 case ARM::ArchKind::ARMV6K: 857 case ARM::ArchKind::ARMV6KZ: 858 S.setAttributeItem(ARM_ISA_use, Allowed, false); 859 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 860 S.setAttributeItem(Virtualization_use, AllowTZ, false); 861 break; 862 863 case ARM::ArchKind::ARMV6M: 864 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 865 break; 866 867 case ARM::ArchKind::ARMV7A: 868 S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false); 869 S.setAttributeItem(ARM_ISA_use, Allowed, false); 870 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 871 break; 872 873 case ARM::ArchKind::ARMV7R: 874 S.setAttributeItem(CPU_arch_profile, RealTimeProfile, false); 875 S.setAttributeItem(ARM_ISA_use, Allowed, false); 876 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 877 break; 878 879 case ARM::ArchKind::ARMV7EM: 880 case ARM::ArchKind::ARMV7M: 881 S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false); 882 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 883 break; 884 885 case ARM::ArchKind::ARMV8A: 886 case ARM::ArchKind::ARMV8_1A: 887 case ARM::ArchKind::ARMV8_2A: 888 case ARM::ArchKind::ARMV8_3A: 889 case ARM::ArchKind::ARMV8_4A: 890 case ARM::ArchKind::ARMV8_5A: 891 case ARM::ArchKind::ARMV8_6A: 892 case ARM::ArchKind::ARMV9A: 893 case ARM::ArchKind::ARMV9_1A: 894 case ARM::ArchKind::ARMV9_2A: 895 case ARM::ArchKind::ARMV9_3A: 896 S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false); 897 S.setAttributeItem(ARM_ISA_use, Allowed, false); 898 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 899 S.setAttributeItem(MPextension_use, Allowed, false); 900 S.setAttributeItem(Virtualization_use, AllowTZVirtualization, false); 901 break; 902 903 case ARM::ArchKind::ARMV8MBaseline: 904 case ARM::ArchKind::ARMV8MMainline: 905 S.setAttributeItem(THUMB_ISA_use, AllowThumbDerived, false); 906 S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false); 907 break; 908 909 case ARM::ArchKind::IWMMXT: 910 S.setAttributeItem(ARM_ISA_use, Allowed, false); 911 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 912 S.setAttributeItem(WMMX_arch, AllowWMMXv1, false); 913 break; 914 915 case ARM::ArchKind::IWMMXT2: 916 S.setAttributeItem(ARM_ISA_use, Allowed, false); 917 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 918 S.setAttributeItem(WMMX_arch, AllowWMMXv2, false); 919 break; 920 921 default: 922 report_fatal_error("Unknown Arch: " + Twine(ARM::getArchName(Arch))); 923 break; 924 } 925 } 926 927 void ARMTargetELFStreamer::emitFPU(unsigned Value) { 928 FPU = Value; 929 } 930 931 void ARMTargetELFStreamer::emitFPUDefaultAttributes() { 932 ARMELFStreamer &S = getStreamer(); 933 934 switch (FPU) { 935 case ARM::FK_VFP: 936 case ARM::FK_VFPV2: 937 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv2, 938 /* OverwriteExisting= */ false); 939 break; 940 941 case ARM::FK_VFPV3: 942 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 943 /* OverwriteExisting= */ false); 944 break; 945 946 case ARM::FK_VFPV3_FP16: 947 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 948 /* OverwriteExisting= */ false); 949 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 950 /* OverwriteExisting= */ false); 951 break; 952 953 case ARM::FK_VFPV3_D16: 954 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 955 /* OverwriteExisting= */ false); 956 break; 957 958 case ARM::FK_VFPV3_D16_FP16: 959 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 960 /* OverwriteExisting= */ false); 961 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 962 /* OverwriteExisting= */ false); 963 break; 964 965 case ARM::FK_VFPV3XD: 966 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 967 /* OverwriteExisting= */ false); 968 break; 969 case ARM::FK_VFPV3XD_FP16: 970 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 971 /* OverwriteExisting= */ false); 972 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 973 /* OverwriteExisting= */ false); 974 break; 975 976 case ARM::FK_VFPV4: 977 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A, 978 /* OverwriteExisting= */ false); 979 break; 980 981 // ABI_HardFP_use is handled in ARMAsmPrinter, so _SP_D16 is treated the same 982 // as _D16 here. 983 case ARM::FK_FPV4_SP_D16: 984 case ARM::FK_VFPV4_D16: 985 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4B, 986 /* OverwriteExisting= */ false); 987 break; 988 989 case ARM::FK_FP_ARMV8: 990 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A, 991 /* OverwriteExisting= */ false); 992 break; 993 994 // FPV5_D16 is identical to FP_ARMV8 except for the number of D registers, so 995 // uses the FP_ARMV8_D16 build attribute. 996 case ARM::FK_FPV5_SP_D16: 997 case ARM::FK_FPV5_D16: 998 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8B, 999 /* OverwriteExisting= */ false); 1000 break; 1001 1002 case ARM::FK_NEON: 1003 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 1004 /* OverwriteExisting= */ false); 1005 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 1006 ARMBuildAttrs::AllowNeon, 1007 /* OverwriteExisting= */ false); 1008 break; 1009 1010 case ARM::FK_NEON_FP16: 1011 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 1012 /* OverwriteExisting= */ false); 1013 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 1014 ARMBuildAttrs::AllowNeon, 1015 /* OverwriteExisting= */ false); 1016 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 1017 /* OverwriteExisting= */ false); 1018 break; 1019 1020 case ARM::FK_NEON_VFPV4: 1021 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A, 1022 /* OverwriteExisting= */ false); 1023 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 1024 ARMBuildAttrs::AllowNeon2, 1025 /* OverwriteExisting= */ false); 1026 break; 1027 1028 case ARM::FK_NEON_FP_ARMV8: 1029 case ARM::FK_CRYPTO_NEON_FP_ARMV8: 1030 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A, 1031 /* OverwriteExisting= */ false); 1032 // 'Advanced_SIMD_arch' must be emitted not here, but within 1033 // ARMAsmPrinter::emitAttributes(), depending on hasV8Ops() and hasV8_1a() 1034 break; 1035 1036 case ARM::FK_SOFTVFP: 1037 case ARM::FK_NONE: 1038 break; 1039 1040 default: 1041 report_fatal_error("Unknown FPU: " + Twine(FPU)); 1042 break; 1043 } 1044 } 1045 1046 void ARMTargetELFStreamer::finishAttributeSection() { 1047 ARMELFStreamer &S = getStreamer(); 1048 1049 if (FPU != ARM::FK_INVALID) 1050 emitFPUDefaultAttributes(); 1051 1052 if (Arch != ARM::ArchKind::INVALID) 1053 emitArchDefaultAttributes(); 1054 1055 if (S.Contents.empty()) 1056 return; 1057 1058 auto LessTag = [](const MCELFStreamer::AttributeItem &LHS, 1059 const MCELFStreamer::AttributeItem &RHS) -> bool { 1060 // The conformance tag must be emitted first when serialised into an 1061 // object file. Specifically, the addenda to the ARM ABI states that 1062 // (2.3.7.4): 1063 // 1064 // "To simplify recognition by consumers in the common case of claiming 1065 // conformity for the whole file, this tag should be emitted first in a 1066 // file-scope sub-subsection of the first public subsection of the 1067 // attributes section." 1068 // 1069 // So it is special-cased in this comparison predicate when the 1070 // attributes are sorted in finishAttributeSection(). 1071 return (RHS.Tag != ARMBuildAttrs::conformance) && 1072 ((LHS.Tag == ARMBuildAttrs::conformance) || (LHS.Tag < RHS.Tag)); 1073 }; 1074 llvm::sort(S.Contents, LessTag); 1075 1076 S.emitAttributesSection(CurrentVendor, ".ARM.attributes", 1077 ELF::SHT_ARM_ATTRIBUTES, AttributeSection); 1078 1079 FPU = ARM::FK_INVALID; 1080 } 1081 1082 void ARMTargetELFStreamer::emitLabel(MCSymbol *Symbol) { 1083 ARMELFStreamer &Streamer = getStreamer(); 1084 if (!Streamer.IsThumb) 1085 return; 1086 1087 Streamer.getAssembler().registerSymbol(*Symbol); 1088 unsigned Type = cast<MCSymbolELF>(Symbol)->getType(); 1089 if (Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC) 1090 Streamer.emitThumbFunc(Symbol); 1091 } 1092 1093 void ARMTargetELFStreamer::annotateTLSDescriptorSequence( 1094 const MCSymbolRefExpr *S) { 1095 getStreamer().EmitFixup(S, FK_Data_4); 1096 } 1097 1098 void ARMTargetELFStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) { 1099 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Value)) { 1100 const MCSymbol &Sym = SRE->getSymbol(); 1101 if (!Sym.isDefined()) { 1102 getStreamer().emitAssignment(Symbol, Value); 1103 return; 1104 } 1105 } 1106 1107 getStreamer().emitThumbFunc(Symbol); 1108 getStreamer().emitAssignment(Symbol, Value); 1109 } 1110 1111 void ARMTargetELFStreamer::emitInst(uint32_t Inst, char Suffix) { 1112 getStreamer().emitInst(Inst, Suffix); 1113 } 1114 1115 void ARMTargetELFStreamer::reset() { AttributeSection = nullptr; } 1116 1117 void ARMELFStreamer::finishImpl() { 1118 MCTargetStreamer &TS = *getTargetStreamer(); 1119 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1120 ATS.finishAttributeSection(); 1121 1122 MCELFStreamer::finishImpl(); 1123 } 1124 1125 void ARMELFStreamer::reset() { 1126 MCTargetStreamer &TS = *getTargetStreamer(); 1127 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1128 ATS.reset(); 1129 MappingSymbolCounter = 0; 1130 MCELFStreamer::reset(); 1131 LastMappingSymbols.clear(); 1132 LastEMSInfo.reset(); 1133 // MCELFStreamer clear's the assembler's e_flags. However, for 1134 // arm we manually set the ABI version on streamer creation, so 1135 // do the same here 1136 getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5); 1137 } 1138 1139 inline void ARMELFStreamer::SwitchToEHSection(StringRef Prefix, 1140 unsigned Type, 1141 unsigned Flags, 1142 SectionKind Kind, 1143 const MCSymbol &Fn) { 1144 const MCSectionELF &FnSection = 1145 static_cast<const MCSectionELF &>(Fn.getSection()); 1146 1147 // Create the name for new section 1148 StringRef FnSecName(FnSection.getName()); 1149 SmallString<128> EHSecName(Prefix); 1150 if (FnSecName != ".text") { 1151 EHSecName += FnSecName; 1152 } 1153 1154 // Get .ARM.extab or .ARM.exidx section 1155 const MCSymbolELF *Group = FnSection.getGroup(); 1156 if (Group) 1157 Flags |= ELF::SHF_GROUP; 1158 MCSectionELF *EHSection = getContext().getELFSection( 1159 EHSecName, Type, Flags, 0, Group, /*IsComdat=*/true, 1160 FnSection.getUniqueID(), 1161 static_cast<const MCSymbolELF *>(FnSection.getBeginSymbol())); 1162 1163 assert(EHSection && "Failed to get the required EH section"); 1164 1165 // Switch to .ARM.extab or .ARM.exidx section 1166 switchSection(EHSection); 1167 emitValueToAlignment(4, 0, 1, 0); 1168 } 1169 1170 inline void ARMELFStreamer::SwitchToExTabSection(const MCSymbol &FnStart) { 1171 SwitchToEHSection(".ARM.extab", ELF::SHT_PROGBITS, ELF::SHF_ALLOC, 1172 SectionKind::getData(), FnStart); 1173 } 1174 1175 inline void ARMELFStreamer::SwitchToExIdxSection(const MCSymbol &FnStart) { 1176 SwitchToEHSection(".ARM.exidx", ELF::SHT_ARM_EXIDX, 1177 ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER, 1178 SectionKind::getData(), FnStart); 1179 } 1180 1181 void ARMELFStreamer::EmitFixup(const MCExpr *Expr, MCFixupKind Kind) { 1182 MCDataFragment *Frag = getOrCreateDataFragment(); 1183 Frag->getFixups().push_back(MCFixup::create(Frag->getContents().size(), Expr, 1184 Kind)); 1185 } 1186 1187 void ARMELFStreamer::EHReset() { 1188 ExTab = nullptr; 1189 FnStart = nullptr; 1190 Personality = nullptr; 1191 PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX; 1192 FPReg = ARM::SP; 1193 FPOffset = 0; 1194 SPOffset = 0; 1195 PendingOffset = 0; 1196 UsedFP = false; 1197 CantUnwind = false; 1198 1199 Opcodes.clear(); 1200 UnwindOpAsm.Reset(); 1201 } 1202 1203 void ARMELFStreamer::emitFnStart() { 1204 assert(FnStart == nullptr); 1205 FnStart = getContext().createTempSymbol(); 1206 emitLabel(FnStart); 1207 } 1208 1209 void ARMELFStreamer::emitFnEnd() { 1210 assert(FnStart && ".fnstart must precedes .fnend"); 1211 1212 // Emit unwind opcodes if there is no .handlerdata directive 1213 if (!ExTab && !CantUnwind) 1214 FlushUnwindOpcodes(true); 1215 1216 // Emit the exception index table entry 1217 SwitchToExIdxSection(*FnStart); 1218 1219 // The EHABI requires a dependency preserving R_ARM_NONE relocation to the 1220 // personality routine to protect it from an arbitrary platform's static 1221 // linker garbage collection. We disable this for Android where the unwinder 1222 // is either dynamically linked or directly references the personality 1223 // routine. 1224 if (PersonalityIndex < ARM::EHABI::NUM_PERSONALITY_INDEX && !IsAndroid) 1225 EmitPersonalityFixup(GetAEABIUnwindPersonalityName(PersonalityIndex)); 1226 1227 const MCSymbolRefExpr *FnStartRef = 1228 MCSymbolRefExpr::create(FnStart, 1229 MCSymbolRefExpr::VK_ARM_PREL31, 1230 getContext()); 1231 1232 emitValue(FnStartRef, 4); 1233 1234 if (CantUnwind) { 1235 emitInt32(ARM::EHABI::EXIDX_CANTUNWIND); 1236 } else if (ExTab) { 1237 // Emit a reference to the unwind opcodes in the ".ARM.extab" section. 1238 const MCSymbolRefExpr *ExTabEntryRef = 1239 MCSymbolRefExpr::create(ExTab, 1240 MCSymbolRefExpr::VK_ARM_PREL31, 1241 getContext()); 1242 emitValue(ExTabEntryRef, 4); 1243 } else { 1244 // For the __aeabi_unwind_cpp_pr0, we have to emit the unwind opcodes in 1245 // the second word of exception index table entry. The size of the unwind 1246 // opcodes should always be 4 bytes. 1247 assert(PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0 && 1248 "Compact model must use __aeabi_unwind_cpp_pr0 as personality"); 1249 assert(Opcodes.size() == 4u && 1250 "Unwind opcode size for __aeabi_unwind_cpp_pr0 must be equal to 4"); 1251 uint64_t Intval = Opcodes[0] | 1252 Opcodes[1] << 8 | 1253 Opcodes[2] << 16 | 1254 Opcodes[3] << 24; 1255 emitIntValue(Intval, Opcodes.size()); 1256 } 1257 1258 // Switch to the section containing FnStart 1259 switchSection(&FnStart->getSection()); 1260 1261 // Clean exception handling frame information 1262 EHReset(); 1263 } 1264 1265 void ARMELFStreamer::emitCantUnwind() { CantUnwind = true; } 1266 1267 // Add the R_ARM_NONE fixup at the same position 1268 void ARMELFStreamer::EmitPersonalityFixup(StringRef Name) { 1269 const MCSymbol *PersonalitySym = getContext().getOrCreateSymbol(Name); 1270 1271 const MCSymbolRefExpr *PersonalityRef = MCSymbolRefExpr::create( 1272 PersonalitySym, MCSymbolRefExpr::VK_ARM_NONE, getContext()); 1273 1274 visitUsedExpr(*PersonalityRef); 1275 MCDataFragment *DF = getOrCreateDataFragment(); 1276 DF->getFixups().push_back(MCFixup::create(DF->getContents().size(), 1277 PersonalityRef, 1278 MCFixup::getKindForSize(4, false))); 1279 } 1280 1281 void ARMELFStreamer::FlushPendingOffset() { 1282 if (PendingOffset != 0) { 1283 UnwindOpAsm.EmitSPOffset(-PendingOffset); 1284 PendingOffset = 0; 1285 } 1286 } 1287 1288 void ARMELFStreamer::FlushUnwindOpcodes(bool NoHandlerData) { 1289 // Emit the unwind opcode to restore $sp. 1290 if (UsedFP) { 1291 const MCRegisterInfo *MRI = getContext().getRegisterInfo(); 1292 int64_t LastRegSaveSPOffset = SPOffset - PendingOffset; 1293 UnwindOpAsm.EmitSPOffset(LastRegSaveSPOffset - FPOffset); 1294 UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg)); 1295 } else { 1296 FlushPendingOffset(); 1297 } 1298 1299 // Finalize the unwind opcode sequence 1300 UnwindOpAsm.Finalize(PersonalityIndex, Opcodes); 1301 1302 // For compact model 0, we have to emit the unwind opcodes in the .ARM.exidx 1303 // section. Thus, we don't have to create an entry in the .ARM.extab 1304 // section. 1305 if (NoHandlerData && PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0) 1306 return; 1307 1308 // Switch to .ARM.extab section. 1309 SwitchToExTabSection(*FnStart); 1310 1311 // Create .ARM.extab label for offset in .ARM.exidx 1312 assert(!ExTab); 1313 ExTab = getContext().createTempSymbol(); 1314 emitLabel(ExTab); 1315 1316 // Emit personality 1317 if (Personality) { 1318 const MCSymbolRefExpr *PersonalityRef = 1319 MCSymbolRefExpr::create(Personality, 1320 MCSymbolRefExpr::VK_ARM_PREL31, 1321 getContext()); 1322 1323 emitValue(PersonalityRef, 4); 1324 } 1325 1326 // Emit unwind opcodes 1327 assert((Opcodes.size() % 4) == 0 && 1328 "Unwind opcode size for __aeabi_cpp_unwind_pr0 must be multiple of 4"); 1329 for (unsigned I = 0; I != Opcodes.size(); I += 4) { 1330 uint64_t Intval = Opcodes[I] | 1331 Opcodes[I + 1] << 8 | 1332 Opcodes[I + 2] << 16 | 1333 Opcodes[I + 3] << 24; 1334 emitInt32(Intval); 1335 } 1336 1337 // According to ARM EHABI section 9.2, if the __aeabi_unwind_cpp_pr1() or 1338 // __aeabi_unwind_cpp_pr2() is used, then the handler data must be emitted 1339 // after the unwind opcodes. The handler data consists of several 32-bit 1340 // words, and should be terminated by zero. 1341 // 1342 // In case that the .handlerdata directive is not specified by the 1343 // programmer, we should emit zero to terminate the handler data. 1344 if (NoHandlerData && !Personality) 1345 emitInt32(0); 1346 } 1347 1348 void ARMELFStreamer::emitHandlerData() { FlushUnwindOpcodes(false); } 1349 1350 void ARMELFStreamer::emitPersonality(const MCSymbol *Per) { 1351 Personality = Per; 1352 UnwindOpAsm.setPersonality(Per); 1353 } 1354 1355 void ARMELFStreamer::emitPersonalityIndex(unsigned Index) { 1356 assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && "invalid index"); 1357 PersonalityIndex = Index; 1358 } 1359 1360 void ARMELFStreamer::emitSetFP(unsigned NewFPReg, unsigned NewSPReg, 1361 int64_t Offset) { 1362 assert((NewSPReg == ARM::SP || NewSPReg == FPReg) && 1363 "the operand of .setfp directive should be either $sp or $fp"); 1364 1365 UsedFP = true; 1366 FPReg = NewFPReg; 1367 1368 if (NewSPReg == ARM::SP) 1369 FPOffset = SPOffset + Offset; 1370 else 1371 FPOffset += Offset; 1372 } 1373 1374 void ARMELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) { 1375 assert((Reg != ARM::SP && Reg != ARM::PC) && 1376 "the operand of .movsp cannot be either sp or pc"); 1377 assert(FPReg == ARM::SP && "current FP must be SP"); 1378 1379 FlushPendingOffset(); 1380 1381 FPReg = Reg; 1382 FPOffset = SPOffset + Offset; 1383 1384 const MCRegisterInfo *MRI = getContext().getRegisterInfo(); 1385 UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg)); 1386 } 1387 1388 void ARMELFStreamer::emitPad(int64_t Offset) { 1389 // Track the change of the $sp offset 1390 SPOffset -= Offset; 1391 1392 // To squash multiple .pad directives, we should delay the unwind opcode 1393 // until the .save, .vsave, .handlerdata, or .fnend directives. 1394 PendingOffset -= Offset; 1395 } 1396 1397 static std::pair<unsigned, unsigned> 1398 collectHWRegs(const MCRegisterInfo &MRI, unsigned Idx, 1399 const SmallVectorImpl<unsigned> &RegList, bool IsVector, 1400 uint32_t &Mask_) { 1401 uint32_t Mask = 0; 1402 unsigned Count = 0; 1403 while (Idx > 0) { 1404 unsigned Reg = RegList[Idx - 1]; 1405 if (Reg == ARM::RA_AUTH_CODE) 1406 break; 1407 Reg = MRI.getEncodingValue(Reg); 1408 assert(Reg < (IsVector ? 32U : 16U) && "Register out of range"); 1409 unsigned Bit = (1u << Reg); 1410 if ((Mask & Bit) == 0) { 1411 Mask |= Bit; 1412 ++Count; 1413 } 1414 --Idx; 1415 } 1416 1417 Mask_ = Mask; 1418 return {Idx, Count}; 1419 } 1420 1421 void ARMELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList, 1422 bool IsVector) { 1423 uint32_t Mask; 1424 unsigned Idx, Count; 1425 const MCRegisterInfo &MRI = *getContext().getRegisterInfo(); 1426 1427 // Collect the registers in the register list. Issue unwinding instructions in 1428 // three parts: ordinary hardware registers, return address authentication 1429 // code pseudo register, the rest of the registers. The RA PAC is kept in an 1430 // architectural register (usually r12), but we treat it as a special case in 1431 // order to distinguish between that register containing RA PAC or a general 1432 // value. 1433 Idx = RegList.size(); 1434 while (Idx > 0) { 1435 std::tie(Idx, Count) = collectHWRegs(MRI, Idx, RegList, IsVector, Mask); 1436 if (Count) { 1437 // Track the change the $sp offset: For the .save directive, the 1438 // corresponding push instruction will decrease the $sp by (4 * Count). 1439 // For the .vsave directive, the corresponding vpush instruction will 1440 // decrease $sp by (8 * Count). 1441 SPOffset -= Count * (IsVector ? 8 : 4); 1442 1443 // Emit the opcode 1444 FlushPendingOffset(); 1445 if (IsVector) 1446 UnwindOpAsm.EmitVFPRegSave(Mask); 1447 else 1448 UnwindOpAsm.EmitRegSave(Mask); 1449 } else if (Idx > 0 && RegList[Idx - 1] == ARM::RA_AUTH_CODE) { 1450 --Idx; 1451 SPOffset -= 4; 1452 FlushPendingOffset(); 1453 UnwindOpAsm.EmitRegSave(0); 1454 } 1455 } 1456 } 1457 1458 void ARMELFStreamer::emitUnwindRaw(int64_t Offset, 1459 const SmallVectorImpl<uint8_t> &Opcodes) { 1460 FlushPendingOffset(); 1461 SPOffset = SPOffset - Offset; 1462 UnwindOpAsm.EmitRaw(Opcodes); 1463 } 1464 1465 namespace llvm { 1466 1467 MCTargetStreamer *createARMTargetAsmStreamer(MCStreamer &S, 1468 formatted_raw_ostream &OS, 1469 MCInstPrinter *InstPrint, 1470 bool isVerboseAsm) { 1471 return new ARMTargetAsmStreamer(S, OS, *InstPrint, isVerboseAsm); 1472 } 1473 1474 MCTargetStreamer *createARMNullTargetStreamer(MCStreamer &S) { 1475 return new ARMTargetStreamer(S); 1476 } 1477 1478 MCTargetStreamer *createARMObjectTargetELFStreamer(MCStreamer &S) { 1479 return new ARMTargetELFStreamer(S); 1480 } 1481 1482 MCELFStreamer *createARMELFStreamer(MCContext &Context, 1483 std::unique_ptr<MCAsmBackend> TAB, 1484 std::unique_ptr<MCObjectWriter> OW, 1485 std::unique_ptr<MCCodeEmitter> Emitter, 1486 bool RelaxAll, bool IsThumb, 1487 bool IsAndroid) { 1488 ARMELFStreamer *S = 1489 new ARMELFStreamer(Context, std::move(TAB), std::move(OW), 1490 std::move(Emitter), IsThumb, IsAndroid); 1491 // FIXME: This should eventually end up somewhere else where more 1492 // intelligent flag decisions can be made. For now we are just maintaining 1493 // the status quo for ARM and setting EF_ARM_EABI_VER5 as the default. 1494 S->getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5); 1495 1496 if (RelaxAll) 1497 S->getAssembler().setRelaxAll(true); 1498 return S; 1499 } 1500 1501 } // end namespace llvm 1502