1 //===- lib/MC/ARMELFStreamer.cpp - ELF Object Output for ARM --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file assembles .s files and emits ARM ELF .o object files. Different 10 // from generic ELF streamer in emitting mapping symbols ($a, $t and $d) to 11 // delimit regions of data and code. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMRegisterInfo.h" 16 #include "ARMUnwindOpAsm.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/BinaryFormat/ELF.h" 24 #include "llvm/MC/MCAsmBackend.h" 25 #include "llvm/MC/MCAsmInfo.h" 26 #include "llvm/MC/MCAssembler.h" 27 #include "llvm/MC/MCCodeEmitter.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCELFStreamer.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCFixup.h" 32 #include "llvm/MC/MCFragment.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/MC/MCInstPrinter.h" 35 #include "llvm/MC/MCObjectWriter.h" 36 #include "llvm/MC/MCRegisterInfo.h" 37 #include "llvm/MC/MCSection.h" 38 #include "llvm/MC/MCSectionELF.h" 39 #include "llvm/MC/MCStreamer.h" 40 #include "llvm/MC/MCSubtargetInfo.h" 41 #include "llvm/MC/MCSymbol.h" 42 #include "llvm/MC/MCSymbolELF.h" 43 #include "llvm/MC/SectionKind.h" 44 #include "llvm/Support/ARMBuildAttributes.h" 45 #include "llvm/Support/ARMEHABI.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/FormattedStream.h" 49 #include "llvm/Support/TargetParser.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <climits> 54 #include <cstddef> 55 #include <cstdint> 56 #include <string> 57 58 using namespace llvm; 59 60 static std::string GetAEABIUnwindPersonalityName(unsigned Index) { 61 assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && 62 "Invalid personality index"); 63 return (Twine("__aeabi_unwind_cpp_pr") + Twine(Index)).str(); 64 } 65 66 namespace { 67 68 class ARMELFStreamer; 69 70 class ARMTargetAsmStreamer : public ARMTargetStreamer { 71 formatted_raw_ostream &OS; 72 MCInstPrinter &InstPrinter; 73 bool IsVerboseAsm; 74 75 void emitFnStart() override; 76 void emitFnEnd() override; 77 void emitCantUnwind() override; 78 void emitPersonality(const MCSymbol *Personality) override; 79 void emitPersonalityIndex(unsigned Index) override; 80 void emitHandlerData() override; 81 void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override; 82 void emitMovSP(unsigned Reg, int64_t Offset = 0) override; 83 void emitPad(int64_t Offset) override; 84 void emitRegSave(const SmallVectorImpl<unsigned> &RegList, 85 bool isVector) override; 86 void emitUnwindRaw(int64_t Offset, 87 const SmallVectorImpl<uint8_t> &Opcodes) override; 88 89 void switchVendor(StringRef Vendor) override; 90 void emitAttribute(unsigned Attribute, unsigned Value) override; 91 void emitTextAttribute(unsigned Attribute, StringRef String) override; 92 void emitIntTextAttribute(unsigned Attribute, unsigned IntValue, 93 StringRef StringValue) override; 94 void emitArch(ARM::ArchKind Arch) override; 95 void emitArchExtension(uint64_t ArchExt) override; 96 void emitObjectArch(ARM::ArchKind Arch) override; 97 void emitFPU(unsigned FPU) override; 98 void emitInst(uint32_t Inst, char Suffix = '\0') override; 99 void finishAttributeSection() override; 100 101 void AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override; 102 void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override; 103 104 public: 105 ARMTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS, 106 MCInstPrinter &InstPrinter, bool VerboseAsm); 107 }; 108 109 ARMTargetAsmStreamer::ARMTargetAsmStreamer(MCStreamer &S, 110 formatted_raw_ostream &OS, 111 MCInstPrinter &InstPrinter, 112 bool VerboseAsm) 113 : ARMTargetStreamer(S), OS(OS), InstPrinter(InstPrinter), 114 IsVerboseAsm(VerboseAsm) {} 115 116 void ARMTargetAsmStreamer::emitFnStart() { OS << "\t.fnstart\n"; } 117 void ARMTargetAsmStreamer::emitFnEnd() { OS << "\t.fnend\n"; } 118 void ARMTargetAsmStreamer::emitCantUnwind() { OS << "\t.cantunwind\n"; } 119 120 void ARMTargetAsmStreamer::emitPersonality(const MCSymbol *Personality) { 121 OS << "\t.personality " << Personality->getName() << '\n'; 122 } 123 124 void ARMTargetAsmStreamer::emitPersonalityIndex(unsigned Index) { 125 OS << "\t.personalityindex " << Index << '\n'; 126 } 127 128 void ARMTargetAsmStreamer::emitHandlerData() { OS << "\t.handlerdata\n"; } 129 130 void ARMTargetAsmStreamer::emitSetFP(unsigned FpReg, unsigned SpReg, 131 int64_t Offset) { 132 OS << "\t.setfp\t"; 133 InstPrinter.printRegName(OS, FpReg); 134 OS << ", "; 135 InstPrinter.printRegName(OS, SpReg); 136 if (Offset) 137 OS << ", #" << Offset; 138 OS << '\n'; 139 } 140 141 void ARMTargetAsmStreamer::emitMovSP(unsigned Reg, int64_t Offset) { 142 assert((Reg != ARM::SP && Reg != ARM::PC) && 143 "the operand of .movsp cannot be either sp or pc"); 144 145 OS << "\t.movsp\t"; 146 InstPrinter.printRegName(OS, Reg); 147 if (Offset) 148 OS << ", #" << Offset; 149 OS << '\n'; 150 } 151 152 void ARMTargetAsmStreamer::emitPad(int64_t Offset) { 153 OS << "\t.pad\t#" << Offset << '\n'; 154 } 155 156 void ARMTargetAsmStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList, 157 bool isVector) { 158 assert(RegList.size() && "RegList should not be empty"); 159 if (isVector) 160 OS << "\t.vsave\t{"; 161 else 162 OS << "\t.save\t{"; 163 164 InstPrinter.printRegName(OS, RegList[0]); 165 166 for (unsigned i = 1, e = RegList.size(); i != e; ++i) { 167 OS << ", "; 168 InstPrinter.printRegName(OS, RegList[i]); 169 } 170 171 OS << "}\n"; 172 } 173 174 void ARMTargetAsmStreamer::switchVendor(StringRef Vendor) {} 175 176 void ARMTargetAsmStreamer::emitAttribute(unsigned Attribute, unsigned Value) { 177 OS << "\t.eabi_attribute\t" << Attribute << ", " << Twine(Value); 178 if (IsVerboseAsm) { 179 StringRef Name = ELFAttrs::attrTypeAsString( 180 Attribute, ARMBuildAttrs::getARMAttributeTags()); 181 if (!Name.empty()) 182 OS << "\t@ " << Name; 183 } 184 OS << "\n"; 185 } 186 187 void ARMTargetAsmStreamer::emitTextAttribute(unsigned Attribute, 188 StringRef String) { 189 switch (Attribute) { 190 case ARMBuildAttrs::CPU_name: 191 OS << "\t.cpu\t" << String.lower(); 192 break; 193 default: 194 OS << "\t.eabi_attribute\t" << Attribute << ", \"" << String << "\""; 195 if (IsVerboseAsm) { 196 StringRef Name = ELFAttrs::attrTypeAsString( 197 Attribute, ARMBuildAttrs::getARMAttributeTags()); 198 if (!Name.empty()) 199 OS << "\t@ " << Name; 200 } 201 break; 202 } 203 OS << "\n"; 204 } 205 206 void ARMTargetAsmStreamer::emitIntTextAttribute(unsigned Attribute, 207 unsigned IntValue, 208 StringRef StringValue) { 209 switch (Attribute) { 210 default: llvm_unreachable("unsupported multi-value attribute in asm mode"); 211 case ARMBuildAttrs::compatibility: 212 OS << "\t.eabi_attribute\t" << Attribute << ", " << IntValue; 213 if (!StringValue.empty()) 214 OS << ", \"" << StringValue << "\""; 215 if (IsVerboseAsm) 216 OS << "\t@ " 217 << ELFAttrs::attrTypeAsString(Attribute, 218 ARMBuildAttrs::getARMAttributeTags()); 219 break; 220 } 221 OS << "\n"; 222 } 223 224 void ARMTargetAsmStreamer::emitArch(ARM::ArchKind Arch) { 225 OS << "\t.arch\t" << ARM::getArchName(Arch) << "\n"; 226 } 227 228 void ARMTargetAsmStreamer::emitArchExtension(uint64_t ArchExt) { 229 OS << "\t.arch_extension\t" << ARM::getArchExtName(ArchExt) << "\n"; 230 } 231 232 void ARMTargetAsmStreamer::emitObjectArch(ARM::ArchKind Arch) { 233 OS << "\t.object_arch\t" << ARM::getArchName(Arch) << '\n'; 234 } 235 236 void ARMTargetAsmStreamer::emitFPU(unsigned FPU) { 237 OS << "\t.fpu\t" << ARM::getFPUName(FPU) << "\n"; 238 } 239 240 void ARMTargetAsmStreamer::finishAttributeSection() {} 241 242 void 243 ARMTargetAsmStreamer::AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *S) { 244 OS << "\t.tlsdescseq\t" << S->getSymbol().getName() << "\n"; 245 } 246 247 void ARMTargetAsmStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) { 248 const MCAsmInfo *MAI = Streamer.getContext().getAsmInfo(); 249 250 OS << "\t.thumb_set\t"; 251 Symbol->print(OS, MAI); 252 OS << ", "; 253 Value->print(OS, MAI); 254 OS << '\n'; 255 } 256 257 void ARMTargetAsmStreamer::emitInst(uint32_t Inst, char Suffix) { 258 OS << "\t.inst"; 259 if (Suffix) 260 OS << "." << Suffix; 261 OS << "\t0x" << Twine::utohexstr(Inst) << "\n"; 262 } 263 264 void ARMTargetAsmStreamer::emitUnwindRaw(int64_t Offset, 265 const SmallVectorImpl<uint8_t> &Opcodes) { 266 OS << "\t.unwind_raw " << Offset; 267 for (SmallVectorImpl<uint8_t>::const_iterator OCI = Opcodes.begin(), 268 OCE = Opcodes.end(); 269 OCI != OCE; ++OCI) 270 OS << ", 0x" << Twine::utohexstr(*OCI); 271 OS << '\n'; 272 } 273 274 class ARMTargetELFStreamer : public ARMTargetStreamer { 275 private: 276 StringRef CurrentVendor; 277 unsigned FPU = ARM::FK_INVALID; 278 ARM::ArchKind Arch = ARM::ArchKind::INVALID; 279 ARM::ArchKind EmittedArch = ARM::ArchKind::INVALID; 280 281 MCSection *AttributeSection = nullptr; 282 283 void emitArchDefaultAttributes(); 284 void emitFPUDefaultAttributes(); 285 286 ARMELFStreamer &getStreamer(); 287 288 void emitFnStart() override; 289 void emitFnEnd() override; 290 void emitCantUnwind() override; 291 void emitPersonality(const MCSymbol *Personality) override; 292 void emitPersonalityIndex(unsigned Index) override; 293 void emitHandlerData() override; 294 void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override; 295 void emitMovSP(unsigned Reg, int64_t Offset = 0) override; 296 void emitPad(int64_t Offset) override; 297 void emitRegSave(const SmallVectorImpl<unsigned> &RegList, 298 bool isVector) override; 299 void emitUnwindRaw(int64_t Offset, 300 const SmallVectorImpl<uint8_t> &Opcodes) override; 301 302 void switchVendor(StringRef Vendor) override; 303 void emitAttribute(unsigned Attribute, unsigned Value) override; 304 void emitTextAttribute(unsigned Attribute, StringRef String) override; 305 void emitIntTextAttribute(unsigned Attribute, unsigned IntValue, 306 StringRef StringValue) override; 307 void emitArch(ARM::ArchKind Arch) override; 308 void emitObjectArch(ARM::ArchKind Arch) override; 309 void emitFPU(unsigned FPU) override; 310 void emitInst(uint32_t Inst, char Suffix = '\0') override; 311 void finishAttributeSection() override; 312 void emitLabel(MCSymbol *Symbol) override; 313 314 void AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override; 315 void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override; 316 317 // Reset state between object emissions 318 void reset() override; 319 320 public: 321 ARMTargetELFStreamer(MCStreamer &S) 322 : ARMTargetStreamer(S), CurrentVendor("aeabi") {} 323 }; 324 325 /// Extend the generic ELFStreamer class so that it can emit mapping symbols at 326 /// the appropriate points in the object files. These symbols are defined in the 327 /// ARM ELF ABI: infocenter.arm.com/help/topic/com.arm.../IHI0044D_aaelf.pdf. 328 /// 329 /// In brief: $a, $t or $d should be emitted at the start of each contiguous 330 /// region of ARM code, Thumb code or data in a section. In practice, this 331 /// emission does not rely on explicit assembler directives but on inherent 332 /// properties of the directives doing the emission (e.g. ".byte" is data, "add 333 /// r0, r0, r0" an instruction). 334 /// 335 /// As a result this system is orthogonal to the DataRegion infrastructure used 336 /// by MachO. Beware! 337 class ARMELFStreamer : public MCELFStreamer { 338 public: 339 friend class ARMTargetELFStreamer; 340 341 ARMELFStreamer(MCContext &Context, std::unique_ptr<MCAsmBackend> TAB, 342 std::unique_ptr<MCObjectWriter> OW, 343 std::unique_ptr<MCCodeEmitter> Emitter, bool IsThumb, 344 bool IsAndroid) 345 : MCELFStreamer(Context, std::move(TAB), std::move(OW), 346 std::move(Emitter)), 347 IsThumb(IsThumb), IsAndroid(IsAndroid) { 348 EHReset(); 349 } 350 351 ~ARMELFStreamer() override = default; 352 353 void finishImpl() override; 354 355 // ARM exception handling directives 356 void emitFnStart(); 357 void emitFnEnd(); 358 void emitCantUnwind(); 359 void emitPersonality(const MCSymbol *Per); 360 void emitPersonalityIndex(unsigned index); 361 void emitHandlerData(); 362 void emitSetFP(unsigned NewFpReg, unsigned NewSpReg, int64_t Offset = 0); 363 void emitMovSP(unsigned Reg, int64_t Offset = 0); 364 void emitPad(int64_t Offset); 365 void emitRegSave(const SmallVectorImpl<unsigned> &RegList, bool isVector); 366 void emitUnwindRaw(int64_t Offset, const SmallVectorImpl<uint8_t> &Opcodes); 367 void emitFill(const MCExpr &NumBytes, uint64_t FillValue, 368 SMLoc Loc) override { 369 emitDataMappingSymbol(); 370 MCObjectStreamer::emitFill(NumBytes, FillValue, Loc); 371 } 372 373 void changeSection(MCSection *Section, const MCExpr *Subsection) override { 374 LastMappingSymbols[getCurrentSection().first] = std::move(LastEMSInfo); 375 MCELFStreamer::changeSection(Section, Subsection); 376 auto LastMappingSymbol = LastMappingSymbols.find(Section); 377 if (LastMappingSymbol != LastMappingSymbols.end()) { 378 LastEMSInfo = std::move(LastMappingSymbol->second); 379 return; 380 } 381 LastEMSInfo.reset(new ElfMappingSymbolInfo(SMLoc(), nullptr, 0)); 382 } 383 384 /// This function is the one used to emit instruction data into the ELF 385 /// streamer. We override it to add the appropriate mapping symbol if 386 /// necessary. 387 void emitInstruction(const MCInst &Inst, 388 const MCSubtargetInfo &STI) override { 389 if (IsThumb) 390 EmitThumbMappingSymbol(); 391 else 392 EmitARMMappingSymbol(); 393 394 MCELFStreamer::emitInstruction(Inst, STI); 395 } 396 397 void emitInst(uint32_t Inst, char Suffix) { 398 unsigned Size; 399 char Buffer[4]; 400 const bool LittleEndian = getContext().getAsmInfo()->isLittleEndian(); 401 402 switch (Suffix) { 403 case '\0': 404 Size = 4; 405 406 assert(!IsThumb); 407 EmitARMMappingSymbol(); 408 for (unsigned II = 0, IE = Size; II != IE; II++) { 409 const unsigned I = LittleEndian ? (Size - II - 1) : II; 410 Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT); 411 } 412 413 break; 414 case 'n': 415 case 'w': 416 Size = (Suffix == 'n' ? 2 : 4); 417 418 assert(IsThumb); 419 EmitThumbMappingSymbol(); 420 // Thumb wide instructions are emitted as a pair of 16-bit words of the 421 // appropriate endianness. 422 for (unsigned II = 0, IE = Size; II != IE; II = II + 2) { 423 const unsigned I0 = LittleEndian ? II + 0 : II + 1; 424 const unsigned I1 = LittleEndian ? II + 1 : II + 0; 425 Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT); 426 Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT); 427 } 428 429 break; 430 default: 431 llvm_unreachable("Invalid Suffix"); 432 } 433 434 MCELFStreamer::emitBytes(StringRef(Buffer, Size)); 435 } 436 437 /// This is one of the functions used to emit data into an ELF section, so the 438 /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if 439 /// necessary. 440 void emitBytes(StringRef Data) override { 441 emitDataMappingSymbol(); 442 MCELFStreamer::emitBytes(Data); 443 } 444 445 void FlushPendingMappingSymbol() { 446 if (!LastEMSInfo->hasInfo()) 447 return; 448 ElfMappingSymbolInfo *EMS = LastEMSInfo.get(); 449 EmitMappingSymbol("$d", EMS->Loc, EMS->F, EMS->Offset); 450 EMS->resetInfo(); 451 } 452 453 /// This is one of the functions used to emit data into an ELF section, so the 454 /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if 455 /// necessary. 456 void emitValueImpl(const MCExpr *Value, unsigned Size, SMLoc Loc) override { 457 if (const MCSymbolRefExpr *SRE = dyn_cast_or_null<MCSymbolRefExpr>(Value)) { 458 if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_SBREL && !(Size == 4)) { 459 getContext().reportError(Loc, "relocated expression must be 32-bit"); 460 return; 461 } 462 getOrCreateDataFragment(); 463 } 464 465 emitDataMappingSymbol(); 466 MCELFStreamer::emitValueImpl(Value, Size, Loc); 467 } 468 469 void emitAssemblerFlag(MCAssemblerFlag Flag) override { 470 MCELFStreamer::emitAssemblerFlag(Flag); 471 472 switch (Flag) { 473 case MCAF_SyntaxUnified: 474 return; // no-op here. 475 case MCAF_Code16: 476 IsThumb = true; 477 return; // Change to Thumb mode 478 case MCAF_Code32: 479 IsThumb = false; 480 return; // Change to ARM mode 481 case MCAF_Code64: 482 return; 483 case MCAF_SubsectionsViaSymbols: 484 return; 485 } 486 } 487 488 /// If a label is defined before the .type directive sets the label's type 489 /// then the label can't be recorded as thumb function when the label is 490 /// defined. We override emitSymbolAttribute() which is called as part of the 491 /// parsing of .type so that if the symbol has already been defined we can 492 /// record the label as Thumb. FIXME: there is a corner case where the state 493 /// is changed in between the label definition and the .type directive, this 494 /// is not expected to occur in practice and handling it would require the 495 /// backend to track IsThumb for every label. 496 bool emitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute) override { 497 bool Val = MCELFStreamer::emitSymbolAttribute(Symbol, Attribute); 498 499 if (!IsThumb) 500 return Val; 501 502 unsigned Type = cast<MCSymbolELF>(Symbol)->getType(); 503 if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC) && 504 Symbol->isDefined()) 505 getAssembler().setIsThumbFunc(Symbol); 506 507 return Val; 508 }; 509 510 private: 511 enum ElfMappingSymbol { 512 EMS_None, 513 EMS_ARM, 514 EMS_Thumb, 515 EMS_Data 516 }; 517 518 struct ElfMappingSymbolInfo { 519 explicit ElfMappingSymbolInfo(SMLoc Loc, MCFragment *F, uint64_t O) 520 : Loc(Loc), F(F), Offset(O), State(EMS_None) {} 521 void resetInfo() { 522 F = nullptr; 523 Offset = 0; 524 } 525 bool hasInfo() { return F != nullptr; } 526 SMLoc Loc; 527 MCFragment *F; 528 uint64_t Offset; 529 ElfMappingSymbol State; 530 }; 531 532 void emitDataMappingSymbol() { 533 if (LastEMSInfo->State == EMS_Data) 534 return; 535 else if (LastEMSInfo->State == EMS_None) { 536 // This is a tentative symbol, it won't really be emitted until it's 537 // actually needed. 538 ElfMappingSymbolInfo *EMS = LastEMSInfo.get(); 539 auto *DF = dyn_cast_or_null<MCDataFragment>(getCurrentFragment()); 540 if (!DF) 541 return; 542 EMS->Loc = SMLoc(); 543 EMS->F = getCurrentFragment(); 544 EMS->Offset = DF->getContents().size(); 545 LastEMSInfo->State = EMS_Data; 546 return; 547 } 548 EmitMappingSymbol("$d"); 549 LastEMSInfo->State = EMS_Data; 550 } 551 552 void EmitThumbMappingSymbol() { 553 if (LastEMSInfo->State == EMS_Thumb) 554 return; 555 FlushPendingMappingSymbol(); 556 EmitMappingSymbol("$t"); 557 LastEMSInfo->State = EMS_Thumb; 558 } 559 560 void EmitARMMappingSymbol() { 561 if (LastEMSInfo->State == EMS_ARM) 562 return; 563 FlushPendingMappingSymbol(); 564 EmitMappingSymbol("$a"); 565 LastEMSInfo->State = EMS_ARM; 566 } 567 568 void EmitMappingSymbol(StringRef Name) { 569 auto *Symbol = cast<MCSymbolELF>(getContext().getOrCreateSymbol( 570 Name + "." + Twine(MappingSymbolCounter++))); 571 emitLabel(Symbol); 572 573 Symbol->setType(ELF::STT_NOTYPE); 574 Symbol->setBinding(ELF::STB_LOCAL); 575 } 576 577 void EmitMappingSymbol(StringRef Name, SMLoc Loc, MCFragment *F, 578 uint64_t Offset) { 579 auto *Symbol = cast<MCSymbolELF>(getContext().getOrCreateSymbol( 580 Name + "." + Twine(MappingSymbolCounter++))); 581 emitLabelAtPos(Symbol, Loc, F, Offset); 582 Symbol->setType(ELF::STT_NOTYPE); 583 Symbol->setBinding(ELF::STB_LOCAL); 584 } 585 586 void emitThumbFunc(MCSymbol *Func) override { 587 getAssembler().setIsThumbFunc(Func); 588 emitSymbolAttribute(Func, MCSA_ELF_TypeFunction); 589 } 590 591 // Helper functions for ARM exception handling directives 592 void EHReset(); 593 594 // Reset state between object emissions 595 void reset() override; 596 597 void EmitPersonalityFixup(StringRef Name); 598 void FlushPendingOffset(); 599 void FlushUnwindOpcodes(bool NoHandlerData); 600 601 void SwitchToEHSection(StringRef Prefix, unsigned Type, unsigned Flags, 602 SectionKind Kind, const MCSymbol &Fn); 603 void SwitchToExTabSection(const MCSymbol &FnStart); 604 void SwitchToExIdxSection(const MCSymbol &FnStart); 605 606 void EmitFixup(const MCExpr *Expr, MCFixupKind Kind); 607 608 bool IsThumb; 609 bool IsAndroid; 610 int64_t MappingSymbolCounter = 0; 611 612 DenseMap<const MCSection *, std::unique_ptr<ElfMappingSymbolInfo>> 613 LastMappingSymbols; 614 615 std::unique_ptr<ElfMappingSymbolInfo> LastEMSInfo; 616 617 // ARM Exception Handling Frame Information 618 MCSymbol *ExTab; 619 MCSymbol *FnStart; 620 const MCSymbol *Personality; 621 unsigned PersonalityIndex; 622 unsigned FPReg; // Frame pointer register 623 int64_t FPOffset; // Offset: (final frame pointer) - (initial $sp) 624 int64_t SPOffset; // Offset: (final $sp) - (initial $sp) 625 int64_t PendingOffset; // Offset: (final $sp) - (emitted $sp) 626 bool UsedFP; 627 bool CantUnwind; 628 SmallVector<uint8_t, 64> Opcodes; 629 UnwindOpcodeAssembler UnwindOpAsm; 630 }; 631 632 } // end anonymous namespace 633 634 ARMELFStreamer &ARMTargetELFStreamer::getStreamer() { 635 return static_cast<ARMELFStreamer &>(Streamer); 636 } 637 638 void ARMTargetELFStreamer::emitFnStart() { getStreamer().emitFnStart(); } 639 void ARMTargetELFStreamer::emitFnEnd() { getStreamer().emitFnEnd(); } 640 void ARMTargetELFStreamer::emitCantUnwind() { getStreamer().emitCantUnwind(); } 641 642 void ARMTargetELFStreamer::emitPersonality(const MCSymbol *Personality) { 643 getStreamer().emitPersonality(Personality); 644 } 645 646 void ARMTargetELFStreamer::emitPersonalityIndex(unsigned Index) { 647 getStreamer().emitPersonalityIndex(Index); 648 } 649 650 void ARMTargetELFStreamer::emitHandlerData() { 651 getStreamer().emitHandlerData(); 652 } 653 654 void ARMTargetELFStreamer::emitSetFP(unsigned FpReg, unsigned SpReg, 655 int64_t Offset) { 656 getStreamer().emitSetFP(FpReg, SpReg, Offset); 657 } 658 659 void ARMTargetELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) { 660 getStreamer().emitMovSP(Reg, Offset); 661 } 662 663 void ARMTargetELFStreamer::emitPad(int64_t Offset) { 664 getStreamer().emitPad(Offset); 665 } 666 667 void ARMTargetELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList, 668 bool isVector) { 669 getStreamer().emitRegSave(RegList, isVector); 670 } 671 672 void ARMTargetELFStreamer::emitUnwindRaw(int64_t Offset, 673 const SmallVectorImpl<uint8_t> &Opcodes) { 674 getStreamer().emitUnwindRaw(Offset, Opcodes); 675 } 676 677 void ARMTargetELFStreamer::switchVendor(StringRef Vendor) { 678 assert(!Vendor.empty() && "Vendor cannot be empty."); 679 680 if (CurrentVendor == Vendor) 681 return; 682 683 if (!CurrentVendor.empty()) 684 finishAttributeSection(); 685 686 assert(getStreamer().Contents.empty() && 687 ".ARM.attributes should be flushed before changing vendor"); 688 CurrentVendor = Vendor; 689 690 } 691 692 void ARMTargetELFStreamer::emitAttribute(unsigned Attribute, unsigned Value) { 693 getStreamer().setAttributeItem(Attribute, Value, 694 /* OverwriteExisting= */ true); 695 } 696 697 void ARMTargetELFStreamer::emitTextAttribute(unsigned Attribute, 698 StringRef Value) { 699 getStreamer().setAttributeItem(Attribute, Value, 700 /* OverwriteExisting= */ true); 701 } 702 703 void ARMTargetELFStreamer::emitIntTextAttribute(unsigned Attribute, 704 unsigned IntValue, 705 StringRef StringValue) { 706 getStreamer().setAttributeItems(Attribute, IntValue, StringValue, 707 /* OverwriteExisting= */ true); 708 } 709 710 void ARMTargetELFStreamer::emitArch(ARM::ArchKind Value) { 711 Arch = Value; 712 } 713 714 void ARMTargetELFStreamer::emitObjectArch(ARM::ArchKind Value) { 715 EmittedArch = Value; 716 } 717 718 void ARMTargetELFStreamer::emitArchDefaultAttributes() { 719 using namespace ARMBuildAttrs; 720 ARMELFStreamer &S = getStreamer(); 721 722 S.setAttributeItem(CPU_name, ARM::getCPUAttr(Arch), false); 723 724 if (EmittedArch == ARM::ArchKind::INVALID) 725 S.setAttributeItem(CPU_arch, ARM::getArchAttr(Arch), false); 726 else 727 S.setAttributeItem(CPU_arch, ARM::getArchAttr(EmittedArch), false); 728 729 switch (Arch) { 730 case ARM::ArchKind::ARMV2: 731 case ARM::ArchKind::ARMV2A: 732 case ARM::ArchKind::ARMV3: 733 case ARM::ArchKind::ARMV3M: 734 case ARM::ArchKind::ARMV4: 735 S.setAttributeItem(ARM_ISA_use, Allowed, false); 736 break; 737 738 case ARM::ArchKind::ARMV4T: 739 case ARM::ArchKind::ARMV5T: 740 case ARM::ArchKind::XSCALE: 741 case ARM::ArchKind::ARMV5TE: 742 case ARM::ArchKind::ARMV6: 743 S.setAttributeItem(ARM_ISA_use, Allowed, false); 744 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 745 break; 746 747 case ARM::ArchKind::ARMV6T2: 748 S.setAttributeItem(ARM_ISA_use, Allowed, false); 749 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 750 break; 751 752 case ARM::ArchKind::ARMV6K: 753 case ARM::ArchKind::ARMV6KZ: 754 S.setAttributeItem(ARM_ISA_use, Allowed, false); 755 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 756 S.setAttributeItem(Virtualization_use, AllowTZ, false); 757 break; 758 759 case ARM::ArchKind::ARMV6M: 760 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 761 break; 762 763 case ARM::ArchKind::ARMV7A: 764 S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false); 765 S.setAttributeItem(ARM_ISA_use, Allowed, false); 766 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 767 break; 768 769 case ARM::ArchKind::ARMV7R: 770 S.setAttributeItem(CPU_arch_profile, RealTimeProfile, false); 771 S.setAttributeItem(ARM_ISA_use, Allowed, false); 772 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 773 break; 774 775 case ARM::ArchKind::ARMV7EM: 776 case ARM::ArchKind::ARMV7M: 777 S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false); 778 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 779 break; 780 781 case ARM::ArchKind::ARMV8A: 782 case ARM::ArchKind::ARMV8_1A: 783 case ARM::ArchKind::ARMV8_2A: 784 case ARM::ArchKind::ARMV8_3A: 785 case ARM::ArchKind::ARMV8_4A: 786 case ARM::ArchKind::ARMV8_5A: 787 case ARM::ArchKind::ARMV8_6A: 788 S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false); 789 S.setAttributeItem(ARM_ISA_use, Allowed, false); 790 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 791 S.setAttributeItem(MPextension_use, Allowed, false); 792 S.setAttributeItem(Virtualization_use, AllowTZVirtualization, false); 793 break; 794 795 case ARM::ArchKind::ARMV8MBaseline: 796 case ARM::ArchKind::ARMV8MMainline: 797 S.setAttributeItem(THUMB_ISA_use, AllowThumbDerived, false); 798 S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false); 799 break; 800 801 case ARM::ArchKind::IWMMXT: 802 S.setAttributeItem(ARM_ISA_use, Allowed, false); 803 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 804 S.setAttributeItem(WMMX_arch, AllowWMMXv1, false); 805 break; 806 807 case ARM::ArchKind::IWMMXT2: 808 S.setAttributeItem(ARM_ISA_use, Allowed, false); 809 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 810 S.setAttributeItem(WMMX_arch, AllowWMMXv2, false); 811 break; 812 813 default: 814 report_fatal_error("Unknown Arch: " + Twine(ARM::getArchName(Arch))); 815 break; 816 } 817 } 818 819 void ARMTargetELFStreamer::emitFPU(unsigned Value) { 820 FPU = Value; 821 } 822 823 void ARMTargetELFStreamer::emitFPUDefaultAttributes() { 824 ARMELFStreamer &S = getStreamer(); 825 826 switch (FPU) { 827 case ARM::FK_VFP: 828 case ARM::FK_VFPV2: 829 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv2, 830 /* OverwriteExisting= */ false); 831 break; 832 833 case ARM::FK_VFPV3: 834 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 835 /* OverwriteExisting= */ false); 836 break; 837 838 case ARM::FK_VFPV3_FP16: 839 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 840 /* OverwriteExisting= */ false); 841 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 842 /* OverwriteExisting= */ false); 843 break; 844 845 case ARM::FK_VFPV3_D16: 846 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 847 /* OverwriteExisting= */ false); 848 break; 849 850 case ARM::FK_VFPV3_D16_FP16: 851 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 852 /* OverwriteExisting= */ false); 853 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 854 /* OverwriteExisting= */ false); 855 break; 856 857 case ARM::FK_VFPV3XD: 858 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 859 /* OverwriteExisting= */ false); 860 break; 861 case ARM::FK_VFPV3XD_FP16: 862 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 863 /* OverwriteExisting= */ false); 864 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 865 /* OverwriteExisting= */ false); 866 break; 867 868 case ARM::FK_VFPV4: 869 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A, 870 /* OverwriteExisting= */ false); 871 break; 872 873 // ABI_HardFP_use is handled in ARMAsmPrinter, so _SP_D16 is treated the same 874 // as _D16 here. 875 case ARM::FK_FPV4_SP_D16: 876 case ARM::FK_VFPV4_D16: 877 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4B, 878 /* OverwriteExisting= */ false); 879 break; 880 881 case ARM::FK_FP_ARMV8: 882 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A, 883 /* OverwriteExisting= */ false); 884 break; 885 886 // FPV5_D16 is identical to FP_ARMV8 except for the number of D registers, so 887 // uses the FP_ARMV8_D16 build attribute. 888 case ARM::FK_FPV5_SP_D16: 889 case ARM::FK_FPV5_D16: 890 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8B, 891 /* OverwriteExisting= */ false); 892 break; 893 894 case ARM::FK_NEON: 895 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 896 /* OverwriteExisting= */ false); 897 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 898 ARMBuildAttrs::AllowNeon, 899 /* OverwriteExisting= */ false); 900 break; 901 902 case ARM::FK_NEON_FP16: 903 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 904 /* OverwriteExisting= */ false); 905 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 906 ARMBuildAttrs::AllowNeon, 907 /* OverwriteExisting= */ false); 908 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 909 /* OverwriteExisting= */ false); 910 break; 911 912 case ARM::FK_NEON_VFPV4: 913 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A, 914 /* OverwriteExisting= */ false); 915 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 916 ARMBuildAttrs::AllowNeon2, 917 /* OverwriteExisting= */ false); 918 break; 919 920 case ARM::FK_NEON_FP_ARMV8: 921 case ARM::FK_CRYPTO_NEON_FP_ARMV8: 922 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A, 923 /* OverwriteExisting= */ false); 924 // 'Advanced_SIMD_arch' must be emitted not here, but within 925 // ARMAsmPrinter::emitAttributes(), depending on hasV8Ops() and hasV8_1a() 926 break; 927 928 case ARM::FK_SOFTVFP: 929 case ARM::FK_NONE: 930 break; 931 932 default: 933 report_fatal_error("Unknown FPU: " + Twine(FPU)); 934 break; 935 } 936 } 937 938 void ARMTargetELFStreamer::finishAttributeSection() { 939 ARMELFStreamer &S = getStreamer(); 940 941 if (FPU != ARM::FK_INVALID) 942 emitFPUDefaultAttributes(); 943 944 if (Arch != ARM::ArchKind::INVALID) 945 emitArchDefaultAttributes(); 946 947 if (S.Contents.empty()) 948 return; 949 950 auto LessTag = [](const MCELFStreamer::AttributeItem &LHS, 951 const MCELFStreamer::AttributeItem &RHS) -> bool { 952 // The conformance tag must be emitted first when serialised into an 953 // object file. Specifically, the addenda to the ARM ABI states that 954 // (2.3.7.4): 955 // 956 // "To simplify recognition by consumers in the common case of claiming 957 // conformity for the whole file, this tag should be emitted first in a 958 // file-scope sub-subsection of the first public subsection of the 959 // attributes section." 960 // 961 // So it is special-cased in this comparison predicate when the 962 // attributes are sorted in finishAttributeSection(). 963 return (RHS.Tag != ARMBuildAttrs::conformance) && 964 ((LHS.Tag == ARMBuildAttrs::conformance) || (LHS.Tag < RHS.Tag)); 965 }; 966 llvm::sort(S.Contents, LessTag); 967 968 S.emitAttributesSection(CurrentVendor, ".ARM.attributes", 969 ELF::SHT_ARM_ATTRIBUTES, AttributeSection); 970 971 FPU = ARM::FK_INVALID; 972 } 973 974 void ARMTargetELFStreamer::emitLabel(MCSymbol *Symbol) { 975 ARMELFStreamer &Streamer = getStreamer(); 976 if (!Streamer.IsThumb) 977 return; 978 979 Streamer.getAssembler().registerSymbol(*Symbol); 980 unsigned Type = cast<MCSymbolELF>(Symbol)->getType(); 981 if (Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC) 982 Streamer.emitThumbFunc(Symbol); 983 } 984 985 void 986 ARMTargetELFStreamer::AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *S) { 987 getStreamer().EmitFixup(S, FK_Data_4); 988 } 989 990 void ARMTargetELFStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) { 991 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Value)) { 992 const MCSymbol &Sym = SRE->getSymbol(); 993 if (!Sym.isDefined()) { 994 getStreamer().emitAssignment(Symbol, Value); 995 return; 996 } 997 } 998 999 getStreamer().emitThumbFunc(Symbol); 1000 getStreamer().emitAssignment(Symbol, Value); 1001 } 1002 1003 void ARMTargetELFStreamer::emitInst(uint32_t Inst, char Suffix) { 1004 getStreamer().emitInst(Inst, Suffix); 1005 } 1006 1007 void ARMTargetELFStreamer::reset() { AttributeSection = nullptr; } 1008 1009 void ARMELFStreamer::finishImpl() { 1010 MCTargetStreamer &TS = *getTargetStreamer(); 1011 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1012 ATS.finishAttributeSection(); 1013 1014 MCELFStreamer::finishImpl(); 1015 } 1016 1017 void ARMELFStreamer::reset() { 1018 MCTargetStreamer &TS = *getTargetStreamer(); 1019 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1020 ATS.reset(); 1021 MappingSymbolCounter = 0; 1022 MCELFStreamer::reset(); 1023 LastMappingSymbols.clear(); 1024 LastEMSInfo.reset(); 1025 // MCELFStreamer clear's the assembler's e_flags. However, for 1026 // arm we manually set the ABI version on streamer creation, so 1027 // do the same here 1028 getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5); 1029 } 1030 1031 inline void ARMELFStreamer::SwitchToEHSection(StringRef Prefix, 1032 unsigned Type, 1033 unsigned Flags, 1034 SectionKind Kind, 1035 const MCSymbol &Fn) { 1036 const MCSectionELF &FnSection = 1037 static_cast<const MCSectionELF &>(Fn.getSection()); 1038 1039 // Create the name for new section 1040 StringRef FnSecName(FnSection.getName()); 1041 SmallString<128> EHSecName(Prefix); 1042 if (FnSecName != ".text") { 1043 EHSecName += FnSecName; 1044 } 1045 1046 // Get .ARM.extab or .ARM.exidx section 1047 const MCSymbolELF *Group = FnSection.getGroup(); 1048 if (Group) 1049 Flags |= ELF::SHF_GROUP; 1050 MCSectionELF *EHSection = getContext().getELFSection( 1051 EHSecName, Type, Flags, 0, Group, /*IsComdat=*/true, 1052 FnSection.getUniqueID(), 1053 static_cast<const MCSymbolELF *>(FnSection.getBeginSymbol())); 1054 1055 assert(EHSection && "Failed to get the required EH section"); 1056 1057 // Switch to .ARM.extab or .ARM.exidx section 1058 SwitchSection(EHSection); 1059 emitCodeAlignment(4); 1060 } 1061 1062 inline void ARMELFStreamer::SwitchToExTabSection(const MCSymbol &FnStart) { 1063 SwitchToEHSection(".ARM.extab", ELF::SHT_PROGBITS, ELF::SHF_ALLOC, 1064 SectionKind::getData(), FnStart); 1065 } 1066 1067 inline void ARMELFStreamer::SwitchToExIdxSection(const MCSymbol &FnStart) { 1068 SwitchToEHSection(".ARM.exidx", ELF::SHT_ARM_EXIDX, 1069 ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER, 1070 SectionKind::getData(), FnStart); 1071 } 1072 1073 void ARMELFStreamer::EmitFixup(const MCExpr *Expr, MCFixupKind Kind) { 1074 MCDataFragment *Frag = getOrCreateDataFragment(); 1075 Frag->getFixups().push_back(MCFixup::create(Frag->getContents().size(), Expr, 1076 Kind)); 1077 } 1078 1079 void ARMELFStreamer::EHReset() { 1080 ExTab = nullptr; 1081 FnStart = nullptr; 1082 Personality = nullptr; 1083 PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX; 1084 FPReg = ARM::SP; 1085 FPOffset = 0; 1086 SPOffset = 0; 1087 PendingOffset = 0; 1088 UsedFP = false; 1089 CantUnwind = false; 1090 1091 Opcodes.clear(); 1092 UnwindOpAsm.Reset(); 1093 } 1094 1095 void ARMELFStreamer::emitFnStart() { 1096 assert(FnStart == nullptr); 1097 FnStart = getContext().createTempSymbol(); 1098 emitLabel(FnStart); 1099 } 1100 1101 void ARMELFStreamer::emitFnEnd() { 1102 assert(FnStart && ".fnstart must precedes .fnend"); 1103 1104 // Emit unwind opcodes if there is no .handlerdata directive 1105 if (!ExTab && !CantUnwind) 1106 FlushUnwindOpcodes(true); 1107 1108 // Emit the exception index table entry 1109 SwitchToExIdxSection(*FnStart); 1110 1111 // The EHABI requires a dependency preserving R_ARM_NONE relocation to the 1112 // personality routine to protect it from an arbitrary platform's static 1113 // linker garbage collection. We disable this for Android where the unwinder 1114 // is either dynamically linked or directly references the personality 1115 // routine. 1116 if (PersonalityIndex < ARM::EHABI::NUM_PERSONALITY_INDEX && !IsAndroid) 1117 EmitPersonalityFixup(GetAEABIUnwindPersonalityName(PersonalityIndex)); 1118 1119 const MCSymbolRefExpr *FnStartRef = 1120 MCSymbolRefExpr::create(FnStart, 1121 MCSymbolRefExpr::VK_ARM_PREL31, 1122 getContext()); 1123 1124 emitValue(FnStartRef, 4); 1125 1126 if (CantUnwind) { 1127 emitInt32(ARM::EHABI::EXIDX_CANTUNWIND); 1128 } else if (ExTab) { 1129 // Emit a reference to the unwind opcodes in the ".ARM.extab" section. 1130 const MCSymbolRefExpr *ExTabEntryRef = 1131 MCSymbolRefExpr::create(ExTab, 1132 MCSymbolRefExpr::VK_ARM_PREL31, 1133 getContext()); 1134 emitValue(ExTabEntryRef, 4); 1135 } else { 1136 // For the __aeabi_unwind_cpp_pr0, we have to emit the unwind opcodes in 1137 // the second word of exception index table entry. The size of the unwind 1138 // opcodes should always be 4 bytes. 1139 assert(PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0 && 1140 "Compact model must use __aeabi_unwind_cpp_pr0 as personality"); 1141 assert(Opcodes.size() == 4u && 1142 "Unwind opcode size for __aeabi_unwind_cpp_pr0 must be equal to 4"); 1143 uint64_t Intval = Opcodes[0] | 1144 Opcodes[1] << 8 | 1145 Opcodes[2] << 16 | 1146 Opcodes[3] << 24; 1147 emitIntValue(Intval, Opcodes.size()); 1148 } 1149 1150 // Switch to the section containing FnStart 1151 SwitchSection(&FnStart->getSection()); 1152 1153 // Clean exception handling frame information 1154 EHReset(); 1155 } 1156 1157 void ARMELFStreamer::emitCantUnwind() { CantUnwind = true; } 1158 1159 // Add the R_ARM_NONE fixup at the same position 1160 void ARMELFStreamer::EmitPersonalityFixup(StringRef Name) { 1161 const MCSymbol *PersonalitySym = getContext().getOrCreateSymbol(Name); 1162 1163 const MCSymbolRefExpr *PersonalityRef = MCSymbolRefExpr::create( 1164 PersonalitySym, MCSymbolRefExpr::VK_ARM_NONE, getContext()); 1165 1166 visitUsedExpr(*PersonalityRef); 1167 MCDataFragment *DF = getOrCreateDataFragment(); 1168 DF->getFixups().push_back(MCFixup::create(DF->getContents().size(), 1169 PersonalityRef, 1170 MCFixup::getKindForSize(4, false))); 1171 } 1172 1173 void ARMELFStreamer::FlushPendingOffset() { 1174 if (PendingOffset != 0) { 1175 UnwindOpAsm.EmitSPOffset(-PendingOffset); 1176 PendingOffset = 0; 1177 } 1178 } 1179 1180 void ARMELFStreamer::FlushUnwindOpcodes(bool NoHandlerData) { 1181 // Emit the unwind opcode to restore $sp. 1182 if (UsedFP) { 1183 const MCRegisterInfo *MRI = getContext().getRegisterInfo(); 1184 int64_t LastRegSaveSPOffset = SPOffset - PendingOffset; 1185 UnwindOpAsm.EmitSPOffset(LastRegSaveSPOffset - FPOffset); 1186 UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg)); 1187 } else { 1188 FlushPendingOffset(); 1189 } 1190 1191 // Finalize the unwind opcode sequence 1192 UnwindOpAsm.Finalize(PersonalityIndex, Opcodes); 1193 1194 // For compact model 0, we have to emit the unwind opcodes in the .ARM.exidx 1195 // section. Thus, we don't have to create an entry in the .ARM.extab 1196 // section. 1197 if (NoHandlerData && PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0) 1198 return; 1199 1200 // Switch to .ARM.extab section. 1201 SwitchToExTabSection(*FnStart); 1202 1203 // Create .ARM.extab label for offset in .ARM.exidx 1204 assert(!ExTab); 1205 ExTab = getContext().createTempSymbol(); 1206 emitLabel(ExTab); 1207 1208 // Emit personality 1209 if (Personality) { 1210 const MCSymbolRefExpr *PersonalityRef = 1211 MCSymbolRefExpr::create(Personality, 1212 MCSymbolRefExpr::VK_ARM_PREL31, 1213 getContext()); 1214 1215 emitValue(PersonalityRef, 4); 1216 } 1217 1218 // Emit unwind opcodes 1219 assert((Opcodes.size() % 4) == 0 && 1220 "Unwind opcode size for __aeabi_cpp_unwind_pr0 must be multiple of 4"); 1221 for (unsigned I = 0; I != Opcodes.size(); I += 4) { 1222 uint64_t Intval = Opcodes[I] | 1223 Opcodes[I + 1] << 8 | 1224 Opcodes[I + 2] << 16 | 1225 Opcodes[I + 3] << 24; 1226 emitInt32(Intval); 1227 } 1228 1229 // According to ARM EHABI section 9.2, if the __aeabi_unwind_cpp_pr1() or 1230 // __aeabi_unwind_cpp_pr2() is used, then the handler data must be emitted 1231 // after the unwind opcodes. The handler data consists of several 32-bit 1232 // words, and should be terminated by zero. 1233 // 1234 // In case that the .handlerdata directive is not specified by the 1235 // programmer, we should emit zero to terminate the handler data. 1236 if (NoHandlerData && !Personality) 1237 emitInt32(0); 1238 } 1239 1240 void ARMELFStreamer::emitHandlerData() { FlushUnwindOpcodes(false); } 1241 1242 void ARMELFStreamer::emitPersonality(const MCSymbol *Per) { 1243 Personality = Per; 1244 UnwindOpAsm.setPersonality(Per); 1245 } 1246 1247 void ARMELFStreamer::emitPersonalityIndex(unsigned Index) { 1248 assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && "invalid index"); 1249 PersonalityIndex = Index; 1250 } 1251 1252 void ARMELFStreamer::emitSetFP(unsigned NewFPReg, unsigned NewSPReg, 1253 int64_t Offset) { 1254 assert((NewSPReg == ARM::SP || NewSPReg == FPReg) && 1255 "the operand of .setfp directive should be either $sp or $fp"); 1256 1257 UsedFP = true; 1258 FPReg = NewFPReg; 1259 1260 if (NewSPReg == ARM::SP) 1261 FPOffset = SPOffset + Offset; 1262 else 1263 FPOffset += Offset; 1264 } 1265 1266 void ARMELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) { 1267 assert((Reg != ARM::SP && Reg != ARM::PC) && 1268 "the operand of .movsp cannot be either sp or pc"); 1269 assert(FPReg == ARM::SP && "current FP must be SP"); 1270 1271 FlushPendingOffset(); 1272 1273 FPReg = Reg; 1274 FPOffset = SPOffset + Offset; 1275 1276 const MCRegisterInfo *MRI = getContext().getRegisterInfo(); 1277 UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg)); 1278 } 1279 1280 void ARMELFStreamer::emitPad(int64_t Offset) { 1281 // Track the change of the $sp offset 1282 SPOffset -= Offset; 1283 1284 // To squash multiple .pad directives, we should delay the unwind opcode 1285 // until the .save, .vsave, .handlerdata, or .fnend directives. 1286 PendingOffset -= Offset; 1287 } 1288 1289 void ARMELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList, 1290 bool IsVector) { 1291 // Collect the registers in the register list 1292 unsigned Count = 0; 1293 uint32_t Mask = 0; 1294 const MCRegisterInfo *MRI = getContext().getRegisterInfo(); 1295 for (size_t i = 0; i < RegList.size(); ++i) { 1296 unsigned Reg = MRI->getEncodingValue(RegList[i]); 1297 assert(Reg < (IsVector ? 32U : 16U) && "Register out of range"); 1298 unsigned Bit = (1u << Reg); 1299 if ((Mask & Bit) == 0) { 1300 Mask |= Bit; 1301 ++Count; 1302 } 1303 } 1304 1305 // Track the change the $sp offset: For the .save directive, the 1306 // corresponding push instruction will decrease the $sp by (4 * Count). 1307 // For the .vsave directive, the corresponding vpush instruction will 1308 // decrease $sp by (8 * Count). 1309 SPOffset -= Count * (IsVector ? 8 : 4); 1310 1311 // Emit the opcode 1312 FlushPendingOffset(); 1313 if (IsVector) 1314 UnwindOpAsm.EmitVFPRegSave(Mask); 1315 else 1316 UnwindOpAsm.EmitRegSave(Mask); 1317 } 1318 1319 void ARMELFStreamer::emitUnwindRaw(int64_t Offset, 1320 const SmallVectorImpl<uint8_t> &Opcodes) { 1321 FlushPendingOffset(); 1322 SPOffset = SPOffset - Offset; 1323 UnwindOpAsm.EmitRaw(Opcodes); 1324 } 1325 1326 namespace llvm { 1327 1328 MCTargetStreamer *createARMTargetAsmStreamer(MCStreamer &S, 1329 formatted_raw_ostream &OS, 1330 MCInstPrinter *InstPrint, 1331 bool isVerboseAsm) { 1332 return new ARMTargetAsmStreamer(S, OS, *InstPrint, isVerboseAsm); 1333 } 1334 1335 MCTargetStreamer *createARMNullTargetStreamer(MCStreamer &S) { 1336 return new ARMTargetStreamer(S); 1337 } 1338 1339 MCTargetStreamer *createARMObjectTargetStreamer(MCStreamer &S, 1340 const MCSubtargetInfo &STI) { 1341 const Triple &TT = STI.getTargetTriple(); 1342 if (TT.isOSBinFormatELF()) 1343 return new ARMTargetELFStreamer(S); 1344 return new ARMTargetStreamer(S); 1345 } 1346 1347 MCELFStreamer *createARMELFStreamer(MCContext &Context, 1348 std::unique_ptr<MCAsmBackend> TAB, 1349 std::unique_ptr<MCObjectWriter> OW, 1350 std::unique_ptr<MCCodeEmitter> Emitter, 1351 bool RelaxAll, bool IsThumb, 1352 bool IsAndroid) { 1353 ARMELFStreamer *S = 1354 new ARMELFStreamer(Context, std::move(TAB), std::move(OW), 1355 std::move(Emitter), IsThumb, IsAndroid); 1356 // FIXME: This should eventually end up somewhere else where more 1357 // intelligent flag decisions can be made. For now we are just maintaining 1358 // the status quo for ARM and setting EF_ARM_EABI_VER5 as the default. 1359 S->getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5); 1360 1361 if (RelaxAll) 1362 S->getAssembler().setRelaxAll(true); 1363 return S; 1364 } 1365 1366 } // end namespace llvm 1367