xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp (revision 0e8011faf58b743cc652e3b2ad0f7671227610df)
1 //===- lib/MC/ARMELFStreamer.cpp - ELF Object Output for ARM --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file assembles .s files and emits ARM ELF .o object files. Different
10 // from generic ELF streamer in emitting mapping symbols ($a, $t and $d) to
11 // delimit regions of data and code.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARMMCTargetDesc.h"
16 #include "ARMUnwindOpAsm.h"
17 #include "Utils/ARMBaseInfo.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/BinaryFormat/ELF.h"
25 #include "llvm/MC/MCAsmBackend.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCAssembler.h"
28 #include "llvm/MC/MCCodeEmitter.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCELFStreamer.h"
31 #include "llvm/MC/MCExpr.h"
32 #include "llvm/MC/MCFixup.h"
33 #include "llvm/MC/MCFragment.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/MC/MCInstPrinter.h"
36 #include "llvm/MC/MCObjectWriter.h"
37 #include "llvm/MC/MCRegisterInfo.h"
38 #include "llvm/MC/MCSection.h"
39 #include "llvm/MC/MCSectionELF.h"
40 #include "llvm/MC/MCStreamer.h"
41 #include "llvm/MC/MCSubtargetInfo.h"
42 #include "llvm/MC/MCSymbol.h"
43 #include "llvm/MC/MCSymbolELF.h"
44 #include "llvm/MC/SectionKind.h"
45 #include "llvm/Support/ARMBuildAttributes.h"
46 #include "llvm/Support/ARMEHABI.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/FormattedStream.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <climits>
54 #include <cstddef>
55 #include <cstdint>
56 #include <string>
57 
58 using namespace llvm;
59 
60 static std::string GetAEABIUnwindPersonalityName(unsigned Index) {
61   assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX &&
62          "Invalid personality index");
63   return (Twine("__aeabi_unwind_cpp_pr") + Twine(Index)).str();
64 }
65 
66 namespace {
67 
68 class ARMELFStreamer;
69 
70 class ARMTargetAsmStreamer : public ARMTargetStreamer {
71   formatted_raw_ostream &OS;
72   MCInstPrinter &InstPrinter;
73   bool IsVerboseAsm;
74 
75   void emitFnStart() override;
76   void emitFnEnd() override;
77   void emitCantUnwind() override;
78   void emitPersonality(const MCSymbol *Personality) override;
79   void emitPersonalityIndex(unsigned Index) override;
80   void emitHandlerData() override;
81   void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override;
82   void emitMovSP(unsigned Reg, int64_t Offset = 0) override;
83   void emitPad(int64_t Offset) override;
84   void emitRegSave(const SmallVectorImpl<unsigned> &RegList,
85                    bool isVector) override;
86   void emitUnwindRaw(int64_t Offset,
87                      const SmallVectorImpl<uint8_t> &Opcodes) override;
88 
89   void switchVendor(StringRef Vendor) override;
90   void emitAttribute(unsigned Attribute, unsigned Value) override;
91   void emitTextAttribute(unsigned Attribute, StringRef String) override;
92   void emitIntTextAttribute(unsigned Attribute, unsigned IntValue,
93                             StringRef StringValue) override;
94   void emitArch(ARM::ArchKind Arch) override;
95   void emitArchExtension(uint64_t ArchExt) override;
96   void emitObjectArch(ARM::ArchKind Arch) override;
97   void emitFPU(ARM::FPUKind FPU) override;
98   void emitInst(uint32_t Inst, char Suffix = '\0') override;
99   void finishAttributeSection() override;
100 
101   void annotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override;
102   void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override;
103 
104   void emitARMWinCFIAllocStack(unsigned Size, bool Wide) override;
105   void emitARMWinCFISaveRegMask(unsigned Mask, bool Wide) override;
106   void emitARMWinCFISaveSP(unsigned Reg) override;
107   void emitARMWinCFISaveFRegs(unsigned First, unsigned Last) override;
108   void emitARMWinCFISaveLR(unsigned Offset) override;
109   void emitARMWinCFIPrologEnd(bool Fragment) override;
110   void emitARMWinCFINop(bool Wide) override;
111   void emitARMWinCFIEpilogStart(unsigned Condition) override;
112   void emitARMWinCFIEpilogEnd() override;
113   void emitARMWinCFICustom(unsigned Opcode) override;
114 
115 public:
116   ARMTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS,
117                        MCInstPrinter &InstPrinter);
118 };
119 
120 ARMTargetAsmStreamer::ARMTargetAsmStreamer(MCStreamer &S,
121                                            formatted_raw_ostream &OS,
122                                            MCInstPrinter &InstPrinter)
123     : ARMTargetStreamer(S), OS(OS), InstPrinter(InstPrinter),
124       IsVerboseAsm(S.isVerboseAsm()) {}
125 
126 void ARMTargetAsmStreamer::emitFnStart() { OS << "\t.fnstart\n"; }
127 void ARMTargetAsmStreamer::emitFnEnd() { OS << "\t.fnend\n"; }
128 void ARMTargetAsmStreamer::emitCantUnwind() { OS << "\t.cantunwind\n"; }
129 
130 void ARMTargetAsmStreamer::emitPersonality(const MCSymbol *Personality) {
131   OS << "\t.personality " << Personality->getName() << '\n';
132 }
133 
134 void ARMTargetAsmStreamer::emitPersonalityIndex(unsigned Index) {
135   OS << "\t.personalityindex " << Index << '\n';
136 }
137 
138 void ARMTargetAsmStreamer::emitHandlerData() { OS << "\t.handlerdata\n"; }
139 
140 void ARMTargetAsmStreamer::emitSetFP(unsigned FpReg, unsigned SpReg,
141                                      int64_t Offset) {
142   OS << "\t.setfp\t";
143   InstPrinter.printRegName(OS, FpReg);
144   OS << ", ";
145   InstPrinter.printRegName(OS, SpReg);
146   if (Offset)
147     OS << ", #" << Offset;
148   OS << '\n';
149 }
150 
151 void ARMTargetAsmStreamer::emitMovSP(unsigned Reg, int64_t Offset) {
152   assert((Reg != ARM::SP && Reg != ARM::PC) &&
153          "the operand of .movsp cannot be either sp or pc");
154 
155   OS << "\t.movsp\t";
156   InstPrinter.printRegName(OS, Reg);
157   if (Offset)
158     OS << ", #" << Offset;
159   OS << '\n';
160 }
161 
162 void ARMTargetAsmStreamer::emitPad(int64_t Offset) {
163   OS << "\t.pad\t#" << Offset << '\n';
164 }
165 
166 void ARMTargetAsmStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
167                                        bool isVector) {
168   assert(RegList.size() && "RegList should not be empty");
169   if (isVector)
170     OS << "\t.vsave\t{";
171   else
172     OS << "\t.save\t{";
173 
174   InstPrinter.printRegName(OS, RegList[0]);
175 
176   for (unsigned i = 1, e = RegList.size(); i != e; ++i) {
177     OS << ", ";
178     InstPrinter.printRegName(OS, RegList[i]);
179   }
180 
181   OS << "}\n";
182 }
183 
184 void ARMTargetAsmStreamer::switchVendor(StringRef Vendor) {}
185 
186 void ARMTargetAsmStreamer::emitAttribute(unsigned Attribute, unsigned Value) {
187   OS << "\t.eabi_attribute\t" << Attribute << ", " << Twine(Value);
188   if (IsVerboseAsm) {
189     StringRef Name = ELFAttrs::attrTypeAsString(
190         Attribute, ARMBuildAttrs::getARMAttributeTags());
191     if (!Name.empty())
192       OS << "\t@ " << Name;
193   }
194   OS << "\n";
195 }
196 
197 void ARMTargetAsmStreamer::emitTextAttribute(unsigned Attribute,
198                                              StringRef String) {
199   switch (Attribute) {
200   case ARMBuildAttrs::CPU_name:
201     OS << "\t.cpu\t" << String.lower();
202     break;
203   default:
204     OS << "\t.eabi_attribute\t" << Attribute << ", \"";
205     if (Attribute == ARMBuildAttrs::also_compatible_with)
206       OS.write_escaped(String);
207     else
208       OS << String;
209     OS << "\"";
210     if (IsVerboseAsm) {
211       StringRef Name = ELFAttrs::attrTypeAsString(
212           Attribute, ARMBuildAttrs::getARMAttributeTags());
213       if (!Name.empty())
214         OS << "\t@ " << Name;
215     }
216     break;
217   }
218   OS << "\n";
219 }
220 
221 void ARMTargetAsmStreamer::emitIntTextAttribute(unsigned Attribute,
222                                                 unsigned IntValue,
223                                                 StringRef StringValue) {
224   switch (Attribute) {
225   default: llvm_unreachable("unsupported multi-value attribute in asm mode");
226   case ARMBuildAttrs::compatibility:
227     OS << "\t.eabi_attribute\t" << Attribute << ", " << IntValue;
228     if (!StringValue.empty())
229       OS << ", \"" << StringValue << "\"";
230     if (IsVerboseAsm)
231       OS << "\t@ "
232          << ELFAttrs::attrTypeAsString(Attribute,
233                                        ARMBuildAttrs::getARMAttributeTags());
234     break;
235   }
236   OS << "\n";
237 }
238 
239 void ARMTargetAsmStreamer::emitArch(ARM::ArchKind Arch) {
240   OS << "\t.arch\t" << ARM::getArchName(Arch) << "\n";
241 }
242 
243 void ARMTargetAsmStreamer::emitArchExtension(uint64_t ArchExt) {
244   OS << "\t.arch_extension\t" << ARM::getArchExtName(ArchExt) << "\n";
245 }
246 
247 void ARMTargetAsmStreamer::emitObjectArch(ARM::ArchKind Arch) {
248   OS << "\t.object_arch\t" << ARM::getArchName(Arch) << '\n';
249 }
250 
251 void ARMTargetAsmStreamer::emitFPU(ARM::FPUKind FPU) {
252   OS << "\t.fpu\t" << ARM::getFPUName(FPU) << "\n";
253 }
254 
255 void ARMTargetAsmStreamer::finishAttributeSection() {}
256 
257 void ARMTargetAsmStreamer::annotateTLSDescriptorSequence(
258     const MCSymbolRefExpr *S) {
259   OS << "\t.tlsdescseq\t" << S->getSymbol().getName() << "\n";
260 }
261 
262 void ARMTargetAsmStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) {
263   const MCAsmInfo *MAI = Streamer.getContext().getAsmInfo();
264 
265   OS << "\t.thumb_set\t";
266   Symbol->print(OS, MAI);
267   OS << ", ";
268   Value->print(OS, MAI);
269   OS << '\n';
270 }
271 
272 void ARMTargetAsmStreamer::emitInst(uint32_t Inst, char Suffix) {
273   OS << "\t.inst";
274   if (Suffix)
275     OS << "." << Suffix;
276   OS << "\t0x" << Twine::utohexstr(Inst) << "\n";
277 }
278 
279 void ARMTargetAsmStreamer::emitUnwindRaw(int64_t Offset,
280                                       const SmallVectorImpl<uint8_t> &Opcodes) {
281   OS << "\t.unwind_raw " << Offset;
282   for (uint8_t Opcode : Opcodes)
283     OS << ", 0x" << Twine::utohexstr(Opcode);
284   OS << '\n';
285 }
286 
287 void ARMTargetAsmStreamer::emitARMWinCFIAllocStack(unsigned Size, bool Wide) {
288   if (Wide)
289     OS << "\t.seh_stackalloc_w\t" << Size << "\n";
290   else
291     OS << "\t.seh_stackalloc\t" << Size << "\n";
292 }
293 
294 static void printRegs(formatted_raw_ostream &OS, ListSeparator &LS, int First,
295                       int Last) {
296   if (First != Last)
297     OS << LS << "r" << First << "-r" << Last;
298   else
299     OS << LS << "r" << First;
300 }
301 
302 void ARMTargetAsmStreamer::emitARMWinCFISaveRegMask(unsigned Mask, bool Wide) {
303   if (Wide)
304     OS << "\t.seh_save_regs_w\t";
305   else
306     OS << "\t.seh_save_regs\t";
307   ListSeparator LS;
308   int First = -1;
309   OS << "{";
310   for (int I = 0; I <= 12; I++) {
311     if (Mask & (1 << I)) {
312       if (First < 0)
313         First = I;
314     } else {
315       if (First >= 0) {
316         printRegs(OS, LS, First, I - 1);
317         First = -1;
318       }
319     }
320   }
321   if (First >= 0)
322     printRegs(OS, LS, First, 12);
323   if (Mask & (1 << 14))
324     OS << LS << "lr";
325   OS << "}\n";
326 }
327 
328 void ARMTargetAsmStreamer::emitARMWinCFISaveSP(unsigned Reg) {
329   OS << "\t.seh_save_sp\tr" << Reg << "\n";
330 }
331 
332 void ARMTargetAsmStreamer::emitARMWinCFISaveFRegs(unsigned First,
333                                                   unsigned Last) {
334   if (First != Last)
335     OS << "\t.seh_save_fregs\t{d" << First << "-d" << Last << "}\n";
336   else
337     OS << "\t.seh_save_fregs\t{d" << First << "}\n";
338 }
339 
340 void ARMTargetAsmStreamer::emitARMWinCFISaveLR(unsigned Offset) {
341   OS << "\t.seh_save_lr\t" << Offset << "\n";
342 }
343 
344 void ARMTargetAsmStreamer::emitARMWinCFIPrologEnd(bool Fragment) {
345   if (Fragment)
346     OS << "\t.seh_endprologue_fragment\n";
347   else
348     OS << "\t.seh_endprologue\n";
349 }
350 
351 void ARMTargetAsmStreamer::emitARMWinCFINop(bool Wide) {
352   if (Wide)
353     OS << "\t.seh_nop_w\n";
354   else
355     OS << "\t.seh_nop\n";
356 }
357 
358 void ARMTargetAsmStreamer::emitARMWinCFIEpilogStart(unsigned Condition) {
359   if (Condition == ARMCC::AL)
360     OS << "\t.seh_startepilogue\n";
361   else
362     OS << "\t.seh_startepilogue_cond\t"
363        << ARMCondCodeToString(static_cast<ARMCC::CondCodes>(Condition)) << "\n";
364 }
365 
366 void ARMTargetAsmStreamer::emitARMWinCFIEpilogEnd() {
367   OS << "\t.seh_endepilogue\n";
368 }
369 
370 void ARMTargetAsmStreamer::emitARMWinCFICustom(unsigned Opcode) {
371   int I;
372   for (I = 3; I > 0; I--)
373     if (Opcode & (0xffu << (8 * I)))
374       break;
375   ListSeparator LS;
376   OS << "\t.seh_custom\t";
377   for (; I >= 0; I--)
378     OS << LS << ((Opcode >> (8 * I)) & 0xff);
379   OS << "\n";
380 }
381 
382 class ARMTargetELFStreamer : public ARMTargetStreamer {
383 private:
384   StringRef CurrentVendor;
385   ARM::FPUKind FPU = ARM::FK_INVALID;
386   ARM::ArchKind Arch = ARM::ArchKind::INVALID;
387   ARM::ArchKind EmittedArch = ARM::ArchKind::INVALID;
388 
389   MCSection *AttributeSection = nullptr;
390 
391   void emitArchDefaultAttributes();
392   void emitFPUDefaultAttributes();
393 
394   ARMELFStreamer &getStreamer();
395 
396   void emitFnStart() override;
397   void emitFnEnd() override;
398   void emitCantUnwind() override;
399   void emitPersonality(const MCSymbol *Personality) override;
400   void emitPersonalityIndex(unsigned Index) override;
401   void emitHandlerData() override;
402   void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override;
403   void emitMovSP(unsigned Reg, int64_t Offset = 0) override;
404   void emitPad(int64_t Offset) override;
405   void emitRegSave(const SmallVectorImpl<unsigned> &RegList,
406                    bool isVector) override;
407   void emitUnwindRaw(int64_t Offset,
408                      const SmallVectorImpl<uint8_t> &Opcodes) override;
409 
410   void switchVendor(StringRef Vendor) override;
411   void emitAttribute(unsigned Attribute, unsigned Value) override;
412   void emitTextAttribute(unsigned Attribute, StringRef String) override;
413   void emitIntTextAttribute(unsigned Attribute, unsigned IntValue,
414                             StringRef StringValue) override;
415   void emitArch(ARM::ArchKind Arch) override;
416   void emitObjectArch(ARM::ArchKind Arch) override;
417   void emitFPU(ARM::FPUKind FPU) override;
418   void emitInst(uint32_t Inst, char Suffix = '\0') override;
419   void finishAttributeSection() override;
420   void emitLabel(MCSymbol *Symbol) override;
421 
422   void annotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override;
423   void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override;
424 
425   // Reset state between object emissions
426   void reset() override;
427 
428   void finish() override;
429 
430 public:
431   ARMTargetELFStreamer(MCStreamer &S)
432     : ARMTargetStreamer(S), CurrentVendor("aeabi") {}
433 };
434 
435 /// Extend the generic ELFStreamer class so that it can emit mapping symbols at
436 /// the appropriate points in the object files. These symbols are defined in the
437 /// ARM ELF ABI: infocenter.arm.com/help/topic/com.arm.../IHI0044D_aaelf.pdf.
438 ///
439 /// In brief: $a, $t or $d should be emitted at the start of each contiguous
440 /// region of ARM code, Thumb code or data in a section. In practice, this
441 /// emission does not rely on explicit assembler directives but on inherent
442 /// properties of the directives doing the emission (e.g. ".byte" is data, "add
443 /// r0, r0, r0" an instruction).
444 ///
445 /// As a result this system is orthogonal to the DataRegion infrastructure used
446 /// by MachO. Beware!
447 class ARMELFStreamer : public MCELFStreamer {
448 public:
449   friend class ARMTargetELFStreamer;
450 
451   ARMELFStreamer(MCContext &Context, std::unique_ptr<MCAsmBackend> TAB,
452                  std::unique_ptr<MCObjectWriter> OW,
453                  std::unique_ptr<MCCodeEmitter> Emitter, bool IsThumb,
454                  bool IsAndroid)
455       : MCELFStreamer(Context, std::move(TAB), std::move(OW),
456                       std::move(Emitter)),
457         IsThumb(IsThumb), IsAndroid(IsAndroid) {
458     EHReset();
459   }
460 
461   ~ARMELFStreamer() override = default;
462 
463   // ARM exception handling directives
464   void emitFnStart();
465   void emitFnEnd();
466   void emitCantUnwind();
467   void emitPersonality(const MCSymbol *Per);
468   void emitPersonalityIndex(unsigned index);
469   void emitHandlerData();
470   void emitSetFP(unsigned NewFpReg, unsigned NewSpReg, int64_t Offset = 0);
471   void emitMovSP(unsigned Reg, int64_t Offset = 0);
472   void emitPad(int64_t Offset);
473   void emitRegSave(const SmallVectorImpl<unsigned> &RegList, bool isVector);
474   void emitUnwindRaw(int64_t Offset, const SmallVectorImpl<uint8_t> &Opcodes);
475   void emitFill(const MCExpr &NumBytes, uint64_t FillValue,
476                 SMLoc Loc) override {
477     emitDataMappingSymbol();
478     MCObjectStreamer::emitFill(NumBytes, FillValue, Loc);
479   }
480 
481   void changeSection(MCSection *Section, uint32_t Subsection) override {
482     LastMappingSymbols[getCurrentSection().first] = std::move(LastEMSInfo);
483     MCELFStreamer::changeSection(Section, Subsection);
484     auto LastMappingSymbol = LastMappingSymbols.find(Section);
485     if (LastMappingSymbol != LastMappingSymbols.end()) {
486       LastEMSInfo = std::move(LastMappingSymbol->second);
487       return;
488     }
489     LastEMSInfo.reset(new ElfMappingSymbolInfo);
490   }
491 
492   /// This function is the one used to emit instruction data into the ELF
493   /// streamer. We override it to add the appropriate mapping symbol if
494   /// necessary.
495   void emitInstruction(const MCInst &Inst,
496                        const MCSubtargetInfo &STI) override {
497     if (IsThumb)
498       EmitThumbMappingSymbol();
499     else
500       EmitARMMappingSymbol();
501 
502     MCELFStreamer::emitInstruction(Inst, STI);
503   }
504 
505   void emitInst(uint32_t Inst, char Suffix) {
506     unsigned Size;
507     char Buffer[4];
508     const bool LittleEndian = getContext().getAsmInfo()->isLittleEndian();
509 
510     switch (Suffix) {
511     case '\0':
512       Size = 4;
513 
514       assert(!IsThumb);
515       EmitARMMappingSymbol();
516       for (unsigned II = 0, IE = Size; II != IE; II++) {
517         const unsigned I = LittleEndian ? (Size - II - 1) : II;
518         Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT);
519       }
520 
521       break;
522     case 'n':
523     case 'w':
524       Size = (Suffix == 'n' ? 2 : 4);
525 
526       assert(IsThumb);
527       EmitThumbMappingSymbol();
528       // Thumb wide instructions are emitted as a pair of 16-bit words of the
529       // appropriate endianness.
530       for (unsigned II = 0, IE = Size; II != IE; II = II + 2) {
531         const unsigned I0 = LittleEndian ? II + 0 : II + 1;
532         const unsigned I1 = LittleEndian ? II + 1 : II + 0;
533         Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT);
534         Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT);
535       }
536 
537       break;
538     default:
539       llvm_unreachable("Invalid Suffix");
540     }
541 
542     MCELFStreamer::emitBytes(StringRef(Buffer, Size));
543   }
544 
545   /// This is one of the functions used to emit data into an ELF section, so the
546   /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if
547   /// necessary.
548   void emitBytes(StringRef Data) override {
549     emitDataMappingSymbol();
550     MCELFStreamer::emitBytes(Data);
551   }
552 
553   void FlushPendingMappingSymbol() {
554     if (!LastEMSInfo->hasInfo())
555       return;
556     ElfMappingSymbolInfo *EMS = LastEMSInfo.get();
557     emitMappingSymbol("$d", *EMS->F, EMS->Offset);
558     EMS->resetInfo();
559   }
560 
561   /// This is one of the functions used to emit data into an ELF section, so the
562   /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if
563   /// necessary.
564   void emitValueImpl(const MCExpr *Value, unsigned Size, SMLoc Loc) override {
565     if (const MCSymbolRefExpr *SRE = dyn_cast_or_null<MCSymbolRefExpr>(Value)) {
566       if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_SBREL && !(Size == 4)) {
567         getContext().reportError(Loc, "relocated expression must be 32-bit");
568         return;
569       }
570       getOrCreateDataFragment();
571     }
572 
573     emitDataMappingSymbol();
574     MCELFStreamer::emitValueImpl(Value, Size, Loc);
575   }
576 
577   void emitAssemblerFlag(MCAssemblerFlag Flag) override {
578     MCELFStreamer::emitAssemblerFlag(Flag);
579 
580     switch (Flag) {
581     case MCAF_SyntaxUnified:
582       return; // no-op here.
583     case MCAF_Code16:
584       IsThumb = true;
585       return; // Change to Thumb mode
586     case MCAF_Code32:
587       IsThumb = false;
588       return; // Change to ARM mode
589     case MCAF_Code64:
590       return;
591     case MCAF_SubsectionsViaSymbols:
592       return;
593     }
594   }
595 
596   /// If a label is defined before the .type directive sets the label's type
597   /// then the label can't be recorded as thumb function when the label is
598   /// defined. We override emitSymbolAttribute() which is called as part of the
599   /// parsing of .type so that if the symbol has already been defined we can
600   /// record the label as Thumb. FIXME: there is a corner case where the state
601   /// is changed in between the label definition and the .type directive, this
602   /// is not expected to occur in practice and handling it would require the
603   /// backend to track IsThumb for every label.
604   bool emitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute) override {
605     bool Val = MCELFStreamer::emitSymbolAttribute(Symbol, Attribute);
606 
607     if (!IsThumb)
608       return Val;
609 
610     unsigned Type = cast<MCSymbolELF>(Symbol)->getType();
611     if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC) &&
612         Symbol->isDefined())
613       getAssembler().setIsThumbFunc(Symbol);
614 
615     return Val;
616   };
617 
618 private:
619   enum ElfMappingSymbol {
620     EMS_None,
621     EMS_ARM,
622     EMS_Thumb,
623     EMS_Data
624   };
625 
626   struct ElfMappingSymbolInfo {
627     void resetInfo() {
628       F = nullptr;
629       Offset = 0;
630     }
631     bool hasInfo() { return F != nullptr; }
632     MCDataFragment *F = nullptr;
633     uint64_t Offset = 0;
634     ElfMappingSymbol State = EMS_None;
635   };
636 
637   void emitDataMappingSymbol() {
638     if (LastEMSInfo->State == EMS_Data)
639       return;
640     else if (LastEMSInfo->State == EMS_None) {
641       // This is a tentative symbol, it won't really be emitted until it's
642       // actually needed.
643       ElfMappingSymbolInfo *EMS = LastEMSInfo.get();
644       auto *DF = dyn_cast_or_null<MCDataFragment>(getCurrentFragment());
645       if (!DF)
646         return;
647       EMS->F = DF;
648       EMS->Offset = DF->getContents().size();
649       LastEMSInfo->State = EMS_Data;
650       return;
651     }
652     EmitMappingSymbol("$d");
653     LastEMSInfo->State = EMS_Data;
654   }
655 
656   void EmitThumbMappingSymbol() {
657     if (LastEMSInfo->State == EMS_Thumb)
658       return;
659     FlushPendingMappingSymbol();
660     EmitMappingSymbol("$t");
661     LastEMSInfo->State = EMS_Thumb;
662   }
663 
664   void EmitARMMappingSymbol() {
665     if (LastEMSInfo->State == EMS_ARM)
666       return;
667     FlushPendingMappingSymbol();
668     EmitMappingSymbol("$a");
669     LastEMSInfo->State = EMS_ARM;
670   }
671 
672   void EmitMappingSymbol(StringRef Name) {
673     auto *Symbol = cast<MCSymbolELF>(getContext().createLocalSymbol(Name));
674     emitLabel(Symbol);
675 
676     Symbol->setType(ELF::STT_NOTYPE);
677     Symbol->setBinding(ELF::STB_LOCAL);
678   }
679 
680   void emitMappingSymbol(StringRef Name, MCDataFragment &F, uint64_t Offset) {
681     auto *Symbol = cast<MCSymbolELF>(getContext().createLocalSymbol(Name));
682     emitLabelAtPos(Symbol, SMLoc(), F, Offset);
683     Symbol->setType(ELF::STT_NOTYPE);
684     Symbol->setBinding(ELF::STB_LOCAL);
685   }
686 
687   void emitThumbFunc(MCSymbol *Func) override {
688     getAssembler().setIsThumbFunc(Func);
689     emitSymbolAttribute(Func, MCSA_ELF_TypeFunction);
690   }
691 
692   // Helper functions for ARM exception handling directives
693   void EHReset();
694 
695   // Reset state between object emissions
696   void reset() override;
697 
698   void EmitPersonalityFixup(StringRef Name);
699   void FlushPendingOffset();
700   void FlushUnwindOpcodes(bool NoHandlerData);
701 
702   void SwitchToEHSection(StringRef Prefix, unsigned Type, unsigned Flags,
703                          SectionKind Kind, const MCSymbol &Fn);
704   void SwitchToExTabSection(const MCSymbol &FnStart);
705   void SwitchToExIdxSection(const MCSymbol &FnStart);
706 
707   void EmitFixup(const MCExpr *Expr, MCFixupKind Kind);
708 
709   bool IsThumb;
710   bool IsAndroid;
711 
712   DenseMap<const MCSection *, std::unique_ptr<ElfMappingSymbolInfo>>
713       LastMappingSymbols;
714 
715   std::unique_ptr<ElfMappingSymbolInfo> LastEMSInfo;
716 
717   // ARM Exception Handling Frame Information
718   MCSymbol *ExTab;
719   MCSymbol *FnStart;
720   const MCSymbol *Personality;
721   unsigned PersonalityIndex;
722   unsigned FPReg; // Frame pointer register
723   int64_t FPOffset; // Offset: (final frame pointer) - (initial $sp)
724   int64_t SPOffset; // Offset: (final $sp) - (initial $sp)
725   int64_t PendingOffset; // Offset: (final $sp) - (emitted $sp)
726   bool UsedFP;
727   bool CantUnwind;
728   SmallVector<uint8_t, 64> Opcodes;
729   UnwindOpcodeAssembler UnwindOpAsm;
730 };
731 
732 } // end anonymous namespace
733 
734 ARMELFStreamer &ARMTargetELFStreamer::getStreamer() {
735   return static_cast<ARMELFStreamer &>(Streamer);
736 }
737 
738 void ARMTargetELFStreamer::emitFnStart() { getStreamer().emitFnStart(); }
739 void ARMTargetELFStreamer::emitFnEnd() { getStreamer().emitFnEnd(); }
740 void ARMTargetELFStreamer::emitCantUnwind() { getStreamer().emitCantUnwind(); }
741 
742 void ARMTargetELFStreamer::emitPersonality(const MCSymbol *Personality) {
743   getStreamer().emitPersonality(Personality);
744 }
745 
746 void ARMTargetELFStreamer::emitPersonalityIndex(unsigned Index) {
747   getStreamer().emitPersonalityIndex(Index);
748 }
749 
750 void ARMTargetELFStreamer::emitHandlerData() {
751   getStreamer().emitHandlerData();
752 }
753 
754 void ARMTargetELFStreamer::emitSetFP(unsigned FpReg, unsigned SpReg,
755                                      int64_t Offset) {
756   getStreamer().emitSetFP(FpReg, SpReg, Offset);
757 }
758 
759 void ARMTargetELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) {
760   getStreamer().emitMovSP(Reg, Offset);
761 }
762 
763 void ARMTargetELFStreamer::emitPad(int64_t Offset) {
764   getStreamer().emitPad(Offset);
765 }
766 
767 void ARMTargetELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
768                                        bool isVector) {
769   getStreamer().emitRegSave(RegList, isVector);
770 }
771 
772 void ARMTargetELFStreamer::emitUnwindRaw(int64_t Offset,
773                                       const SmallVectorImpl<uint8_t> &Opcodes) {
774   getStreamer().emitUnwindRaw(Offset, Opcodes);
775 }
776 
777 void ARMTargetELFStreamer::switchVendor(StringRef Vendor) {
778   assert(!Vendor.empty() && "Vendor cannot be empty.");
779 
780   if (CurrentVendor == Vendor)
781     return;
782 
783   if (!CurrentVendor.empty())
784     finishAttributeSection();
785 
786   assert(getStreamer().Contents.empty() &&
787          ".ARM.attributes should be flushed before changing vendor");
788   CurrentVendor = Vendor;
789 
790 }
791 
792 void ARMTargetELFStreamer::emitAttribute(unsigned Attribute, unsigned Value) {
793   getStreamer().setAttributeItem(Attribute, Value,
794                                  /* OverwriteExisting= */ true);
795 }
796 
797 void ARMTargetELFStreamer::emitTextAttribute(unsigned Attribute,
798                                              StringRef Value) {
799   getStreamer().setAttributeItem(Attribute, Value,
800                                  /* OverwriteExisting= */ true);
801 }
802 
803 void ARMTargetELFStreamer::emitIntTextAttribute(unsigned Attribute,
804                                                 unsigned IntValue,
805                                                 StringRef StringValue) {
806   getStreamer().setAttributeItems(Attribute, IntValue, StringValue,
807                                   /* OverwriteExisting= */ true);
808 }
809 
810 void ARMTargetELFStreamer::emitArch(ARM::ArchKind Value) {
811   Arch = Value;
812 }
813 
814 void ARMTargetELFStreamer::emitObjectArch(ARM::ArchKind Value) {
815   EmittedArch = Value;
816 }
817 
818 void ARMTargetELFStreamer::emitArchDefaultAttributes() {
819   using namespace ARMBuildAttrs;
820   ARMELFStreamer &S = getStreamer();
821 
822   S.setAttributeItem(CPU_name, ARM::getCPUAttr(Arch), false);
823 
824   if (EmittedArch == ARM::ArchKind::INVALID)
825     S.setAttributeItem(CPU_arch, ARM::getArchAttr(Arch), false);
826   else
827     S.setAttributeItem(CPU_arch, ARM::getArchAttr(EmittedArch), false);
828 
829   switch (Arch) {
830   case ARM::ArchKind::ARMV4:
831     S.setAttributeItem(ARM_ISA_use, Allowed, false);
832     break;
833 
834   case ARM::ArchKind::ARMV4T:
835   case ARM::ArchKind::ARMV5T:
836   case ARM::ArchKind::XSCALE:
837   case ARM::ArchKind::ARMV5TE:
838   case ARM::ArchKind::ARMV6:
839     S.setAttributeItem(ARM_ISA_use, Allowed, false);
840     S.setAttributeItem(THUMB_ISA_use, Allowed, false);
841     break;
842 
843   case ARM::ArchKind::ARMV6T2:
844     S.setAttributeItem(ARM_ISA_use, Allowed, false);
845     S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
846     break;
847 
848   case ARM::ArchKind::ARMV6K:
849   case ARM::ArchKind::ARMV6KZ:
850     S.setAttributeItem(ARM_ISA_use, Allowed, false);
851     S.setAttributeItem(THUMB_ISA_use, Allowed, false);
852     S.setAttributeItem(Virtualization_use, AllowTZ, false);
853     break;
854 
855   case ARM::ArchKind::ARMV6M:
856     S.setAttributeItem(THUMB_ISA_use, Allowed, false);
857     break;
858 
859   case ARM::ArchKind::ARMV7A:
860     S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false);
861     S.setAttributeItem(ARM_ISA_use, Allowed, false);
862     S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
863     break;
864 
865   case ARM::ArchKind::ARMV7R:
866     S.setAttributeItem(CPU_arch_profile, RealTimeProfile, false);
867     S.setAttributeItem(ARM_ISA_use, Allowed, false);
868     S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
869     break;
870 
871   case ARM::ArchKind::ARMV7EM:
872   case ARM::ArchKind::ARMV7M:
873     S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false);
874     S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
875     break;
876 
877   case ARM::ArchKind::ARMV8A:
878   case ARM::ArchKind::ARMV8_1A:
879   case ARM::ArchKind::ARMV8_2A:
880   case ARM::ArchKind::ARMV8_3A:
881   case ARM::ArchKind::ARMV8_4A:
882   case ARM::ArchKind::ARMV8_5A:
883   case ARM::ArchKind::ARMV8_6A:
884   case ARM::ArchKind::ARMV8_7A:
885   case ARM::ArchKind::ARMV8_8A:
886   case ARM::ArchKind::ARMV8_9A:
887   case ARM::ArchKind::ARMV9A:
888   case ARM::ArchKind::ARMV9_1A:
889   case ARM::ArchKind::ARMV9_2A:
890   case ARM::ArchKind::ARMV9_3A:
891   case ARM::ArchKind::ARMV9_4A:
892   case ARM::ArchKind::ARMV9_5A:
893     S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false);
894     S.setAttributeItem(ARM_ISA_use, Allowed, false);
895     S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
896     S.setAttributeItem(MPextension_use, Allowed, false);
897     S.setAttributeItem(Virtualization_use, AllowTZVirtualization, false);
898     break;
899 
900   case ARM::ArchKind::ARMV8MBaseline:
901   case ARM::ArchKind::ARMV8MMainline:
902     S.setAttributeItem(THUMB_ISA_use, AllowThumbDerived, false);
903     S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false);
904     break;
905 
906   case ARM::ArchKind::IWMMXT:
907     S.setAttributeItem(ARM_ISA_use, Allowed, false);
908     S.setAttributeItem(THUMB_ISA_use, Allowed, false);
909     S.setAttributeItem(WMMX_arch, AllowWMMXv1, false);
910     break;
911 
912   case ARM::ArchKind::IWMMXT2:
913     S.setAttributeItem(ARM_ISA_use, Allowed, false);
914     S.setAttributeItem(THUMB_ISA_use, Allowed, false);
915     S.setAttributeItem(WMMX_arch, AllowWMMXv2, false);
916     break;
917 
918   default:
919     report_fatal_error("Unknown Arch: " + Twine(ARM::getArchName(Arch)));
920     break;
921   }
922 }
923 
924 void ARMTargetELFStreamer::emitFPU(ARM::FPUKind Value) { FPU = Value; }
925 
926 void ARMTargetELFStreamer::emitFPUDefaultAttributes() {
927   ARMELFStreamer &S = getStreamer();
928 
929   switch (FPU) {
930   case ARM::FK_VFP:
931   case ARM::FK_VFPV2:
932     S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv2,
933                        /* OverwriteExisting= */ false);
934     break;
935 
936   case ARM::FK_VFPV3:
937     S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A,
938                        /* OverwriteExisting= */ false);
939     break;
940 
941   case ARM::FK_VFPV3_FP16:
942     S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A,
943                        /* OverwriteExisting= */ false);
944     S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP,
945                        /* OverwriteExisting= */ false);
946     break;
947 
948   case ARM::FK_VFPV3_D16:
949     S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B,
950                        /* OverwriteExisting= */ false);
951     break;
952 
953   case ARM::FK_VFPV3_D16_FP16:
954     S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B,
955                        /* OverwriteExisting= */ false);
956     S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP,
957                        /* OverwriteExisting= */ false);
958     break;
959 
960   case ARM::FK_VFPV3XD:
961     S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B,
962                        /* OverwriteExisting= */ false);
963     break;
964   case ARM::FK_VFPV3XD_FP16:
965     S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B,
966                        /* OverwriteExisting= */ false);
967     S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP,
968                        /* OverwriteExisting= */ false);
969     break;
970 
971   case ARM::FK_VFPV4:
972     S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A,
973                        /* OverwriteExisting= */ false);
974     break;
975 
976   // ABI_HardFP_use is handled in ARMAsmPrinter, so _SP_D16 is treated the same
977   // as _D16 here.
978   case ARM::FK_FPV4_SP_D16:
979   case ARM::FK_VFPV4_D16:
980     S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4B,
981                        /* OverwriteExisting= */ false);
982     break;
983 
984   case ARM::FK_FP_ARMV8:
985     S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A,
986                        /* OverwriteExisting= */ false);
987     break;
988 
989   // FPV5_D16 is identical to FP_ARMV8 except for the number of D registers, so
990   // uses the FP_ARMV8_D16 build attribute.
991   case ARM::FK_FPV5_SP_D16:
992   case ARM::FK_FPV5_D16:
993     S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8B,
994                        /* OverwriteExisting= */ false);
995     break;
996 
997   case ARM::FK_NEON:
998     S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A,
999                        /* OverwriteExisting= */ false);
1000     S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch,
1001                        ARMBuildAttrs::AllowNeon,
1002                        /* OverwriteExisting= */ false);
1003     break;
1004 
1005   case ARM::FK_NEON_FP16:
1006     S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A,
1007                        /* OverwriteExisting= */ false);
1008     S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch,
1009                        ARMBuildAttrs::AllowNeon,
1010                        /* OverwriteExisting= */ false);
1011     S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP,
1012                        /* OverwriteExisting= */ false);
1013     break;
1014 
1015   case ARM::FK_NEON_VFPV4:
1016     S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A,
1017                        /* OverwriteExisting= */ false);
1018     S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch,
1019                        ARMBuildAttrs::AllowNeon2,
1020                        /* OverwriteExisting= */ false);
1021     break;
1022 
1023   case ARM::FK_NEON_FP_ARMV8:
1024   case ARM::FK_CRYPTO_NEON_FP_ARMV8:
1025     S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A,
1026                        /* OverwriteExisting= */ false);
1027     // 'Advanced_SIMD_arch' must be emitted not here, but within
1028     // ARMAsmPrinter::emitAttributes(), depending on hasV8Ops() and hasV8_1a()
1029     break;
1030 
1031   case ARM::FK_SOFTVFP:
1032   case ARM::FK_NONE:
1033     break;
1034 
1035   default:
1036     report_fatal_error("Unknown FPU: " + Twine(FPU));
1037     break;
1038   }
1039 }
1040 
1041 void ARMTargetELFStreamer::finishAttributeSection() {
1042   ARMELFStreamer &S = getStreamer();
1043 
1044   if (FPU != ARM::FK_INVALID)
1045     emitFPUDefaultAttributes();
1046 
1047   if (Arch != ARM::ArchKind::INVALID)
1048     emitArchDefaultAttributes();
1049 
1050   if (S.Contents.empty())
1051     return;
1052 
1053   auto LessTag = [](const MCELFStreamer::AttributeItem &LHS,
1054                     const MCELFStreamer::AttributeItem &RHS) -> bool {
1055     // The conformance tag must be emitted first when serialised into an
1056     // object file. Specifically, the addenda to the ARM ABI states that
1057     // (2.3.7.4):
1058     //
1059     // "To simplify recognition by consumers in the common case of claiming
1060     // conformity for the whole file, this tag should be emitted first in a
1061     // file-scope sub-subsection of the first public subsection of the
1062     // attributes section."
1063     //
1064     // So it is special-cased in this comparison predicate when the
1065     // attributes are sorted in finishAttributeSection().
1066     return (RHS.Tag != ARMBuildAttrs::conformance) &&
1067            ((LHS.Tag == ARMBuildAttrs::conformance) || (LHS.Tag < RHS.Tag));
1068   };
1069   llvm::sort(S.Contents, LessTag);
1070 
1071   S.emitAttributesSection(CurrentVendor, ".ARM.attributes",
1072                           ELF::SHT_ARM_ATTRIBUTES, AttributeSection);
1073 
1074   FPU = ARM::FK_INVALID;
1075 }
1076 
1077 void ARMTargetELFStreamer::emitLabel(MCSymbol *Symbol) {
1078   ARMELFStreamer &Streamer = getStreamer();
1079   if (!Streamer.IsThumb)
1080     return;
1081 
1082   Streamer.getAssembler().registerSymbol(*Symbol);
1083   unsigned Type = cast<MCSymbolELF>(Symbol)->getType();
1084   if (Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)
1085     Streamer.emitThumbFunc(Symbol);
1086 }
1087 
1088 void ARMTargetELFStreamer::annotateTLSDescriptorSequence(
1089     const MCSymbolRefExpr *S) {
1090   getStreamer().EmitFixup(S, FK_Data_4);
1091 }
1092 
1093 void ARMTargetELFStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) {
1094   if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Value)) {
1095     const MCSymbol &Sym = SRE->getSymbol();
1096     if (!Sym.isDefined()) {
1097       getStreamer().emitAssignment(Symbol, Value);
1098       return;
1099     }
1100   }
1101 
1102   getStreamer().emitThumbFunc(Symbol);
1103   getStreamer().emitAssignment(Symbol, Value);
1104 }
1105 
1106 void ARMTargetELFStreamer::emitInst(uint32_t Inst, char Suffix) {
1107   getStreamer().emitInst(Inst, Suffix);
1108 }
1109 
1110 void ARMTargetELFStreamer::reset() { AttributeSection = nullptr; }
1111 
1112 void ARMTargetELFStreamer::finish() {
1113   ARMTargetStreamer::finish();
1114   finishAttributeSection();
1115 }
1116 
1117 void ARMELFStreamer::reset() {
1118   MCTargetStreamer &TS = *getTargetStreamer();
1119   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1120   ATS.reset();
1121   MCELFStreamer::reset();
1122   LastMappingSymbols.clear();
1123   LastEMSInfo.reset();
1124   // MCELFStreamer clear's the assembler's e_flags. However, for
1125   // arm we manually set the ABI version on streamer creation, so
1126   // do the same here
1127   getWriter().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5);
1128 }
1129 
1130 inline void ARMELFStreamer::SwitchToEHSection(StringRef Prefix,
1131                                               unsigned Type,
1132                                               unsigned Flags,
1133                                               SectionKind Kind,
1134                                               const MCSymbol &Fn) {
1135   const MCSectionELF &FnSection =
1136     static_cast<const MCSectionELF &>(Fn.getSection());
1137 
1138   // Create the name for new section
1139   StringRef FnSecName(FnSection.getName());
1140   SmallString<128> EHSecName(Prefix);
1141   if (FnSecName != ".text") {
1142     EHSecName += FnSecName;
1143   }
1144 
1145   // Get .ARM.extab or .ARM.exidx section
1146   const MCSymbolELF *Group = FnSection.getGroup();
1147   if (Group)
1148     Flags |= ELF::SHF_GROUP;
1149   MCSectionELF *EHSection = getContext().getELFSection(
1150       EHSecName, Type, Flags, 0, Group, /*IsComdat=*/true,
1151       FnSection.getUniqueID(),
1152       static_cast<const MCSymbolELF *>(FnSection.getBeginSymbol()));
1153 
1154   assert(EHSection && "Failed to get the required EH section");
1155 
1156   // Switch to .ARM.extab or .ARM.exidx section
1157   switchSection(EHSection);
1158   emitValueToAlignment(Align(4), 0, 1, 0);
1159 }
1160 
1161 inline void ARMELFStreamer::SwitchToExTabSection(const MCSymbol &FnStart) {
1162   SwitchToEHSection(".ARM.extab", ELF::SHT_PROGBITS, ELF::SHF_ALLOC,
1163                     SectionKind::getData(), FnStart);
1164 }
1165 
1166 inline void ARMELFStreamer::SwitchToExIdxSection(const MCSymbol &FnStart) {
1167   SwitchToEHSection(".ARM.exidx", ELF::SHT_ARM_EXIDX,
1168                     ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER,
1169                     SectionKind::getData(), FnStart);
1170 }
1171 
1172 void ARMELFStreamer::EmitFixup(const MCExpr *Expr, MCFixupKind Kind) {
1173   MCDataFragment *Frag = getOrCreateDataFragment();
1174   Frag->getFixups().push_back(MCFixup::create(Frag->getContents().size(), Expr,
1175                                               Kind));
1176 }
1177 
1178 void ARMELFStreamer::EHReset() {
1179   ExTab = nullptr;
1180   FnStart = nullptr;
1181   Personality = nullptr;
1182   PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX;
1183   FPReg = ARM::SP;
1184   FPOffset = 0;
1185   SPOffset = 0;
1186   PendingOffset = 0;
1187   UsedFP = false;
1188   CantUnwind = false;
1189 
1190   Opcodes.clear();
1191   UnwindOpAsm.Reset();
1192 }
1193 
1194 void ARMELFStreamer::emitFnStart() {
1195   assert(FnStart == nullptr);
1196   FnStart = getContext().createTempSymbol();
1197   emitLabel(FnStart);
1198 }
1199 
1200 void ARMELFStreamer::emitFnEnd() {
1201   assert(FnStart && ".fnstart must precedes .fnend");
1202 
1203   // Emit unwind opcodes if there is no .handlerdata directive
1204   if (!ExTab && !CantUnwind)
1205     FlushUnwindOpcodes(true);
1206 
1207   // Emit the exception index table entry
1208   SwitchToExIdxSection(*FnStart);
1209 
1210   // The EHABI requires a dependency preserving R_ARM_NONE relocation to the
1211   // personality routine to protect it from an arbitrary platform's static
1212   // linker garbage collection. We disable this for Android where the unwinder
1213   // is either dynamically linked or directly references the personality
1214   // routine.
1215   if (PersonalityIndex < ARM::EHABI::NUM_PERSONALITY_INDEX && !IsAndroid)
1216     EmitPersonalityFixup(GetAEABIUnwindPersonalityName(PersonalityIndex));
1217 
1218   const MCSymbolRefExpr *FnStartRef =
1219     MCSymbolRefExpr::create(FnStart,
1220                             MCSymbolRefExpr::VK_ARM_PREL31,
1221                             getContext());
1222 
1223   emitValue(FnStartRef, 4);
1224 
1225   if (CantUnwind) {
1226     emitInt32(ARM::EHABI::EXIDX_CANTUNWIND);
1227   } else if (ExTab) {
1228     // Emit a reference to the unwind opcodes in the ".ARM.extab" section.
1229     const MCSymbolRefExpr *ExTabEntryRef =
1230       MCSymbolRefExpr::create(ExTab,
1231                               MCSymbolRefExpr::VK_ARM_PREL31,
1232                               getContext());
1233     emitValue(ExTabEntryRef, 4);
1234   } else {
1235     // For the __aeabi_unwind_cpp_pr0, we have to emit the unwind opcodes in
1236     // the second word of exception index table entry.  The size of the unwind
1237     // opcodes should always be 4 bytes.
1238     assert(PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0 &&
1239            "Compact model must use __aeabi_unwind_cpp_pr0 as personality");
1240     assert(Opcodes.size() == 4u &&
1241            "Unwind opcode size for __aeabi_unwind_cpp_pr0 must be equal to 4");
1242     uint64_t Intval = Opcodes[0] |
1243                       Opcodes[1] << 8 |
1244                       Opcodes[2] << 16 |
1245                       Opcodes[3] << 24;
1246     emitIntValue(Intval, Opcodes.size());
1247   }
1248 
1249   // Switch to the section containing FnStart
1250   switchSection(&FnStart->getSection());
1251 
1252   // Clean exception handling frame information
1253   EHReset();
1254 }
1255 
1256 void ARMELFStreamer::emitCantUnwind() { CantUnwind = true; }
1257 
1258 // Add the R_ARM_NONE fixup at the same position
1259 void ARMELFStreamer::EmitPersonalityFixup(StringRef Name) {
1260   const MCSymbol *PersonalitySym = getContext().getOrCreateSymbol(Name);
1261 
1262   const MCSymbolRefExpr *PersonalityRef = MCSymbolRefExpr::create(
1263       PersonalitySym, MCSymbolRefExpr::VK_ARM_NONE, getContext());
1264 
1265   visitUsedExpr(*PersonalityRef);
1266   MCDataFragment *DF = getOrCreateDataFragment();
1267   DF->getFixups().push_back(MCFixup::create(DF->getContents().size(),
1268                                             PersonalityRef,
1269                                             MCFixup::getKindForSize(4, false)));
1270 }
1271 
1272 void ARMELFStreamer::FlushPendingOffset() {
1273   if (PendingOffset != 0) {
1274     UnwindOpAsm.EmitSPOffset(-PendingOffset);
1275     PendingOffset = 0;
1276   }
1277 }
1278 
1279 void ARMELFStreamer::FlushUnwindOpcodes(bool NoHandlerData) {
1280   // Emit the unwind opcode to restore $sp.
1281   if (UsedFP) {
1282     const MCRegisterInfo *MRI = getContext().getRegisterInfo();
1283     int64_t LastRegSaveSPOffset = SPOffset - PendingOffset;
1284     UnwindOpAsm.EmitSPOffset(LastRegSaveSPOffset - FPOffset);
1285     UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg));
1286   } else {
1287     FlushPendingOffset();
1288   }
1289 
1290   // Finalize the unwind opcode sequence
1291   UnwindOpAsm.Finalize(PersonalityIndex, Opcodes);
1292 
1293   // For compact model 0, we have to emit the unwind opcodes in the .ARM.exidx
1294   // section.  Thus, we don't have to create an entry in the .ARM.extab
1295   // section.
1296   if (NoHandlerData && PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0)
1297     return;
1298 
1299   // Switch to .ARM.extab section.
1300   SwitchToExTabSection(*FnStart);
1301 
1302   // Create .ARM.extab label for offset in .ARM.exidx
1303   assert(!ExTab);
1304   ExTab = getContext().createTempSymbol();
1305   emitLabel(ExTab);
1306 
1307   // Emit personality
1308   if (Personality) {
1309     const MCSymbolRefExpr *PersonalityRef =
1310       MCSymbolRefExpr::create(Personality,
1311                               MCSymbolRefExpr::VK_ARM_PREL31,
1312                               getContext());
1313 
1314     emitValue(PersonalityRef, 4);
1315   }
1316 
1317   // Emit unwind opcodes
1318   assert((Opcodes.size() % 4) == 0 &&
1319          "Unwind opcode size for __aeabi_cpp_unwind_pr0 must be multiple of 4");
1320   for (unsigned I = 0; I != Opcodes.size(); I += 4) {
1321     uint64_t Intval = Opcodes[I] |
1322                       Opcodes[I + 1] << 8 |
1323                       Opcodes[I + 2] << 16 |
1324                       Opcodes[I + 3] << 24;
1325     emitInt32(Intval);
1326   }
1327 
1328   // According to ARM EHABI section 9.2, if the __aeabi_unwind_cpp_pr1() or
1329   // __aeabi_unwind_cpp_pr2() is used, then the handler data must be emitted
1330   // after the unwind opcodes.  The handler data consists of several 32-bit
1331   // words, and should be terminated by zero.
1332   //
1333   // In case that the .handlerdata directive is not specified by the
1334   // programmer, we should emit zero to terminate the handler data.
1335   if (NoHandlerData && !Personality)
1336     emitInt32(0);
1337 }
1338 
1339 void ARMELFStreamer::emitHandlerData() { FlushUnwindOpcodes(false); }
1340 
1341 void ARMELFStreamer::emitPersonality(const MCSymbol *Per) {
1342   Personality = Per;
1343   UnwindOpAsm.setPersonality(Per);
1344 }
1345 
1346 void ARMELFStreamer::emitPersonalityIndex(unsigned Index) {
1347   assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && "invalid index");
1348   PersonalityIndex = Index;
1349 }
1350 
1351 void ARMELFStreamer::emitSetFP(unsigned NewFPReg, unsigned NewSPReg,
1352                                int64_t Offset) {
1353   assert((NewSPReg == ARM::SP || NewSPReg == FPReg) &&
1354          "the operand of .setfp directive should be either $sp or $fp");
1355 
1356   UsedFP = true;
1357   FPReg = NewFPReg;
1358 
1359   if (NewSPReg == ARM::SP)
1360     FPOffset = SPOffset + Offset;
1361   else
1362     FPOffset += Offset;
1363 }
1364 
1365 void ARMELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) {
1366   assert((Reg != ARM::SP && Reg != ARM::PC) &&
1367          "the operand of .movsp cannot be either sp or pc");
1368   assert(FPReg == ARM::SP && "current FP must be SP");
1369 
1370   FlushPendingOffset();
1371 
1372   FPReg = Reg;
1373   FPOffset = SPOffset + Offset;
1374 
1375   const MCRegisterInfo *MRI = getContext().getRegisterInfo();
1376   UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg));
1377 }
1378 
1379 void ARMELFStreamer::emitPad(int64_t Offset) {
1380   // Track the change of the $sp offset
1381   SPOffset -= Offset;
1382 
1383   // To squash multiple .pad directives, we should delay the unwind opcode
1384   // until the .save, .vsave, .handlerdata, or .fnend directives.
1385   PendingOffset -= Offset;
1386 }
1387 
1388 static std::pair<unsigned, unsigned>
1389 collectHWRegs(const MCRegisterInfo &MRI, unsigned Idx,
1390               const SmallVectorImpl<unsigned> &RegList, bool IsVector,
1391               uint32_t &Mask_) {
1392   uint32_t Mask = 0;
1393   unsigned Count = 0;
1394   while (Idx > 0) {
1395     unsigned Reg = RegList[Idx - 1];
1396     if (Reg == ARM::RA_AUTH_CODE)
1397       break;
1398     Reg = MRI.getEncodingValue(Reg);
1399     assert(Reg < (IsVector ? 32U : 16U) && "Register out of range");
1400     unsigned Bit = (1u << Reg);
1401     if ((Mask & Bit) == 0) {
1402       Mask |= Bit;
1403       ++Count;
1404     }
1405     --Idx;
1406   }
1407 
1408   Mask_ = Mask;
1409   return {Idx, Count};
1410 }
1411 
1412 void ARMELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
1413                                  bool IsVector) {
1414   uint32_t Mask;
1415   unsigned Idx, Count;
1416   const MCRegisterInfo &MRI = *getContext().getRegisterInfo();
1417 
1418   // Collect the registers in the register list. Issue unwinding instructions in
1419   // three parts: ordinary hardware registers, return address authentication
1420   // code pseudo register, the rest of the registers. The RA PAC is kept in an
1421   // architectural register (usually r12), but we treat it as a special case in
1422   // order to distinguish between that register containing RA PAC or a general
1423   // value.
1424   Idx = RegList.size();
1425   while (Idx > 0) {
1426     std::tie(Idx, Count) = collectHWRegs(MRI, Idx, RegList, IsVector, Mask);
1427     if (Count) {
1428       // Track the change the $sp offset: For the .save directive, the
1429       // corresponding push instruction will decrease the $sp by (4 * Count).
1430       // For the .vsave directive, the corresponding vpush instruction will
1431       // decrease $sp by (8 * Count).
1432       SPOffset -= Count * (IsVector ? 8 : 4);
1433 
1434       // Emit the opcode
1435       FlushPendingOffset();
1436       if (IsVector)
1437         UnwindOpAsm.EmitVFPRegSave(Mask);
1438       else
1439         UnwindOpAsm.EmitRegSave(Mask);
1440     } else if (Idx > 0 && RegList[Idx - 1] == ARM::RA_AUTH_CODE) {
1441       --Idx;
1442       SPOffset -= 4;
1443       FlushPendingOffset();
1444       UnwindOpAsm.EmitRegSave(0);
1445     }
1446   }
1447 }
1448 
1449 void ARMELFStreamer::emitUnwindRaw(int64_t Offset,
1450                                    const SmallVectorImpl<uint8_t> &Opcodes) {
1451   FlushPendingOffset();
1452   SPOffset = SPOffset - Offset;
1453   UnwindOpAsm.EmitRaw(Opcodes);
1454 }
1455 
1456 namespace llvm {
1457 
1458 MCTargetStreamer *createARMTargetAsmStreamer(MCStreamer &S,
1459                                              formatted_raw_ostream &OS,
1460                                              MCInstPrinter *InstPrint) {
1461   return new ARMTargetAsmStreamer(S, OS, *InstPrint);
1462 }
1463 
1464 MCTargetStreamer *createARMNullTargetStreamer(MCStreamer &S) {
1465   return new ARMTargetStreamer(S);
1466 }
1467 
1468 MCTargetStreamer *createARMObjectTargetELFStreamer(MCStreamer &S) {
1469   return new ARMTargetELFStreamer(S);
1470 }
1471 
1472 MCELFStreamer *createARMELFStreamer(MCContext &Context,
1473                                     std::unique_ptr<MCAsmBackend> TAB,
1474                                     std::unique_ptr<MCObjectWriter> OW,
1475                                     std::unique_ptr<MCCodeEmitter> Emitter,
1476                                     bool IsThumb, bool IsAndroid) {
1477   ARMELFStreamer *S =
1478       new ARMELFStreamer(Context, std::move(TAB), std::move(OW),
1479                          std::move(Emitter), IsThumb, IsAndroid);
1480   // FIXME: This should eventually end up somewhere else where more
1481   // intelligent flag decisions can be made. For now we are just maintaining
1482   // the status quo for ARM and setting EF_ARM_EABI_VER5 as the default.
1483   S->getWriter().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5);
1484 
1485   return S;
1486 }
1487 
1488 } // end namespace llvm
1489