xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp (revision 06e20d1babecec1f45ffda513f55a8db5f1c0f56)
1 //===- lib/MC/ARMELFStreamer.cpp - ELF Object Output for ARM --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file assembles .s files and emits ARM ELF .o object files. Different
10 // from generic ELF streamer in emitting mapping symbols ($a, $t and $d) to
11 // delimit regions of data and code.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARMRegisterInfo.h"
16 #include "ARMUnwindOpAsm.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/BinaryFormat/ELF.h"
24 #include "llvm/MC/MCAsmBackend.h"
25 #include "llvm/MC/MCAsmInfo.h"
26 #include "llvm/MC/MCAssembler.h"
27 #include "llvm/MC/MCCodeEmitter.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCELFStreamer.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCFixup.h"
32 #include "llvm/MC/MCFragment.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/MC/MCInstPrinter.h"
35 #include "llvm/MC/MCObjectWriter.h"
36 #include "llvm/MC/MCRegisterInfo.h"
37 #include "llvm/MC/MCSection.h"
38 #include "llvm/MC/MCSectionELF.h"
39 #include "llvm/MC/MCStreamer.h"
40 #include "llvm/MC/MCSubtargetInfo.h"
41 #include "llvm/MC/MCSymbol.h"
42 #include "llvm/MC/MCSymbolELF.h"
43 #include "llvm/MC/SectionKind.h"
44 #include "llvm/Support/ARMBuildAttributes.h"
45 #include "llvm/Support/ARMEHABI.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/FormattedStream.h"
49 #include "llvm/Support/LEB128.h"
50 #include "llvm/Support/TargetParser.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <climits>
55 #include <cstddef>
56 #include <cstdint>
57 #include <string>
58 
59 using namespace llvm;
60 
61 static std::string GetAEABIUnwindPersonalityName(unsigned Index) {
62   assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX &&
63          "Invalid personality index");
64   return (Twine("__aeabi_unwind_cpp_pr") + Twine(Index)).str();
65 }
66 
67 namespace {
68 
69 class ARMELFStreamer;
70 
71 class ARMTargetAsmStreamer : public ARMTargetStreamer {
72   formatted_raw_ostream &OS;
73   MCInstPrinter &InstPrinter;
74   bool IsVerboseAsm;
75 
76   void emitFnStart() override;
77   void emitFnEnd() override;
78   void emitCantUnwind() override;
79   void emitPersonality(const MCSymbol *Personality) override;
80   void emitPersonalityIndex(unsigned Index) override;
81   void emitHandlerData() override;
82   void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override;
83   void emitMovSP(unsigned Reg, int64_t Offset = 0) override;
84   void emitPad(int64_t Offset) override;
85   void emitRegSave(const SmallVectorImpl<unsigned> &RegList,
86                    bool isVector) override;
87   void emitUnwindRaw(int64_t Offset,
88                      const SmallVectorImpl<uint8_t> &Opcodes) override;
89 
90   void switchVendor(StringRef Vendor) override;
91   void emitAttribute(unsigned Attribute, unsigned Value) override;
92   void emitTextAttribute(unsigned Attribute, StringRef String) override;
93   void emitIntTextAttribute(unsigned Attribute, unsigned IntValue,
94                             StringRef StringValue) override;
95   void emitArch(ARM::ArchKind Arch) override;
96   void emitArchExtension(uint64_t ArchExt) override;
97   void emitObjectArch(ARM::ArchKind Arch) override;
98   void emitFPU(unsigned FPU) override;
99   void emitInst(uint32_t Inst, char Suffix = '\0') override;
100   void finishAttributeSection() override;
101 
102   void AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override;
103   void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override;
104 
105 public:
106   ARMTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS,
107                        MCInstPrinter &InstPrinter, bool VerboseAsm);
108 };
109 
110 ARMTargetAsmStreamer::ARMTargetAsmStreamer(MCStreamer &S,
111                                            formatted_raw_ostream &OS,
112                                            MCInstPrinter &InstPrinter,
113                                            bool VerboseAsm)
114     : ARMTargetStreamer(S), OS(OS), InstPrinter(InstPrinter),
115       IsVerboseAsm(VerboseAsm) {}
116 
117 void ARMTargetAsmStreamer::emitFnStart() { OS << "\t.fnstart\n"; }
118 void ARMTargetAsmStreamer::emitFnEnd() { OS << "\t.fnend\n"; }
119 void ARMTargetAsmStreamer::emitCantUnwind() { OS << "\t.cantunwind\n"; }
120 
121 void ARMTargetAsmStreamer::emitPersonality(const MCSymbol *Personality) {
122   OS << "\t.personality " << Personality->getName() << '\n';
123 }
124 
125 void ARMTargetAsmStreamer::emitPersonalityIndex(unsigned Index) {
126   OS << "\t.personalityindex " << Index << '\n';
127 }
128 
129 void ARMTargetAsmStreamer::emitHandlerData() { OS << "\t.handlerdata\n"; }
130 
131 void ARMTargetAsmStreamer::emitSetFP(unsigned FpReg, unsigned SpReg,
132                                      int64_t Offset) {
133   OS << "\t.setfp\t";
134   InstPrinter.printRegName(OS, FpReg);
135   OS << ", ";
136   InstPrinter.printRegName(OS, SpReg);
137   if (Offset)
138     OS << ", #" << Offset;
139   OS << '\n';
140 }
141 
142 void ARMTargetAsmStreamer::emitMovSP(unsigned Reg, int64_t Offset) {
143   assert((Reg != ARM::SP && Reg != ARM::PC) &&
144          "the operand of .movsp cannot be either sp or pc");
145 
146   OS << "\t.movsp\t";
147   InstPrinter.printRegName(OS, Reg);
148   if (Offset)
149     OS << ", #" << Offset;
150   OS << '\n';
151 }
152 
153 void ARMTargetAsmStreamer::emitPad(int64_t Offset) {
154   OS << "\t.pad\t#" << Offset << '\n';
155 }
156 
157 void ARMTargetAsmStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
158                                        bool isVector) {
159   assert(RegList.size() && "RegList should not be empty");
160   if (isVector)
161     OS << "\t.vsave\t{";
162   else
163     OS << "\t.save\t{";
164 
165   InstPrinter.printRegName(OS, RegList[0]);
166 
167   for (unsigned i = 1, e = RegList.size(); i != e; ++i) {
168     OS << ", ";
169     InstPrinter.printRegName(OS, RegList[i]);
170   }
171 
172   OS << "}\n";
173 }
174 
175 void ARMTargetAsmStreamer::switchVendor(StringRef Vendor) {}
176 
177 void ARMTargetAsmStreamer::emitAttribute(unsigned Attribute, unsigned Value) {
178   OS << "\t.eabi_attribute\t" << Attribute << ", " << Twine(Value);
179   if (IsVerboseAsm) {
180     StringRef Name =
181         ELFAttrs::attrTypeAsString(Attribute, ARMBuildAttrs::ARMAttributeTags);
182     if (!Name.empty())
183       OS << "\t@ " << Name;
184   }
185   OS << "\n";
186 }
187 
188 void ARMTargetAsmStreamer::emitTextAttribute(unsigned Attribute,
189                                              StringRef String) {
190   switch (Attribute) {
191   case ARMBuildAttrs::CPU_name:
192     OS << "\t.cpu\t" << String.lower();
193     break;
194   default:
195     OS << "\t.eabi_attribute\t" << Attribute << ", \"" << String << "\"";
196     if (IsVerboseAsm) {
197       StringRef Name = ELFAttrs::attrTypeAsString(
198           Attribute, ARMBuildAttrs::ARMAttributeTags);
199       if (!Name.empty())
200         OS << "\t@ " << Name;
201     }
202     break;
203   }
204   OS << "\n";
205 }
206 
207 void ARMTargetAsmStreamer::emitIntTextAttribute(unsigned Attribute,
208                                                 unsigned IntValue,
209                                                 StringRef StringValue) {
210   switch (Attribute) {
211   default: llvm_unreachable("unsupported multi-value attribute in asm mode");
212   case ARMBuildAttrs::compatibility:
213     OS << "\t.eabi_attribute\t" << Attribute << ", " << IntValue;
214     if (!StringValue.empty())
215       OS << ", \"" << StringValue << "\"";
216     if (IsVerboseAsm)
217       OS << "\t@ "
218          << ELFAttrs::attrTypeAsString(Attribute,
219                                        ARMBuildAttrs::ARMAttributeTags);
220     break;
221   }
222   OS << "\n";
223 }
224 
225 void ARMTargetAsmStreamer::emitArch(ARM::ArchKind Arch) {
226   OS << "\t.arch\t" << ARM::getArchName(Arch) << "\n";
227 }
228 
229 void ARMTargetAsmStreamer::emitArchExtension(uint64_t ArchExt) {
230   OS << "\t.arch_extension\t" << ARM::getArchExtName(ArchExt) << "\n";
231 }
232 
233 void ARMTargetAsmStreamer::emitObjectArch(ARM::ArchKind Arch) {
234   OS << "\t.object_arch\t" << ARM::getArchName(Arch) << '\n';
235 }
236 
237 void ARMTargetAsmStreamer::emitFPU(unsigned FPU) {
238   OS << "\t.fpu\t" << ARM::getFPUName(FPU) << "\n";
239 }
240 
241 void ARMTargetAsmStreamer::finishAttributeSection() {}
242 
243 void
244 ARMTargetAsmStreamer::AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *S) {
245   OS << "\t.tlsdescseq\t" << S->getSymbol().getName() << "\n";
246 }
247 
248 void ARMTargetAsmStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) {
249   const MCAsmInfo *MAI = Streamer.getContext().getAsmInfo();
250 
251   OS << "\t.thumb_set\t";
252   Symbol->print(OS, MAI);
253   OS << ", ";
254   Value->print(OS, MAI);
255   OS << '\n';
256 }
257 
258 void ARMTargetAsmStreamer::emitInst(uint32_t Inst, char Suffix) {
259   OS << "\t.inst";
260   if (Suffix)
261     OS << "." << Suffix;
262   OS << "\t0x" << Twine::utohexstr(Inst) << "\n";
263 }
264 
265 void ARMTargetAsmStreamer::emitUnwindRaw(int64_t Offset,
266                                       const SmallVectorImpl<uint8_t> &Opcodes) {
267   OS << "\t.unwind_raw " << Offset;
268   for (SmallVectorImpl<uint8_t>::const_iterator OCI = Opcodes.begin(),
269                                                 OCE = Opcodes.end();
270        OCI != OCE; ++OCI)
271     OS << ", 0x" << Twine::utohexstr(*OCI);
272   OS << '\n';
273 }
274 
275 class ARMTargetELFStreamer : public ARMTargetStreamer {
276 private:
277   // This structure holds all attributes, accounting for
278   // their string/numeric value, so we can later emit them
279   // in declaration order, keeping all in the same vector
280   struct AttributeItem {
281     enum {
282       HiddenAttribute = 0,
283       NumericAttribute,
284       TextAttribute,
285       NumericAndTextAttributes
286     } Type;
287     unsigned Tag;
288     unsigned IntValue;
289     std::string StringValue;
290 
291     static bool LessTag(const AttributeItem &LHS, const AttributeItem &RHS) {
292       // The conformance tag must be emitted first when serialised
293       // into an object file. Specifically, the addenda to the ARM ABI
294       // states that (2.3.7.4):
295       //
296       // "To simplify recognition by consumers in the common case of
297       // claiming conformity for the whole file, this tag should be
298       // emitted first in a file-scope sub-subsection of the first
299       // public subsection of the attributes section."
300       //
301       // So it is special-cased in this comparison predicate when the
302       // attributes are sorted in finishAttributeSection().
303       return (RHS.Tag != ARMBuildAttrs::conformance) &&
304              ((LHS.Tag == ARMBuildAttrs::conformance) || (LHS.Tag < RHS.Tag));
305     }
306   };
307 
308   StringRef CurrentVendor;
309   unsigned FPU = ARM::FK_INVALID;
310   ARM::ArchKind Arch = ARM::ArchKind::INVALID;
311   ARM::ArchKind EmittedArch = ARM::ArchKind::INVALID;
312   SmallVector<AttributeItem, 64> Contents;
313 
314   MCSection *AttributeSection = nullptr;
315 
316   AttributeItem *getAttributeItem(unsigned Attribute) {
317     for (size_t i = 0; i < Contents.size(); ++i)
318       if (Contents[i].Tag == Attribute)
319         return &Contents[i];
320     return nullptr;
321   }
322 
323   void setAttributeItem(unsigned Attribute, unsigned Value,
324                         bool OverwriteExisting) {
325     // Look for existing attribute item
326     if (AttributeItem *Item = getAttributeItem(Attribute)) {
327       if (!OverwriteExisting)
328         return;
329       Item->Type = AttributeItem::NumericAttribute;
330       Item->IntValue = Value;
331       return;
332     }
333 
334     // Create new attribute item
335     AttributeItem Item = {AttributeItem::NumericAttribute, Attribute, Value,
336                           std::string(StringRef(""))};
337     Contents.push_back(Item);
338   }
339 
340   void setAttributeItem(unsigned Attribute, StringRef Value,
341                         bool OverwriteExisting) {
342     // Look for existing attribute item
343     if (AttributeItem *Item = getAttributeItem(Attribute)) {
344       if (!OverwriteExisting)
345         return;
346       Item->Type = AttributeItem::TextAttribute;
347       Item->StringValue = std::string(Value);
348       return;
349     }
350 
351     // Create new attribute item
352     AttributeItem Item = {AttributeItem::TextAttribute, Attribute, 0,
353                           std::string(Value)};
354     Contents.push_back(Item);
355   }
356 
357   void setAttributeItems(unsigned Attribute, unsigned IntValue,
358                          StringRef StringValue, bool OverwriteExisting) {
359     // Look for existing attribute item
360     if (AttributeItem *Item = getAttributeItem(Attribute)) {
361       if (!OverwriteExisting)
362         return;
363       Item->Type = AttributeItem::NumericAndTextAttributes;
364       Item->IntValue = IntValue;
365       Item->StringValue = std::string(StringValue);
366       return;
367     }
368 
369     // Create new attribute item
370     AttributeItem Item = {AttributeItem::NumericAndTextAttributes, Attribute,
371                           IntValue, std::string(StringValue)};
372     Contents.push_back(Item);
373   }
374 
375   void emitArchDefaultAttributes();
376   void emitFPUDefaultAttributes();
377 
378   ARMELFStreamer &getStreamer();
379 
380   void emitFnStart() override;
381   void emitFnEnd() override;
382   void emitCantUnwind() override;
383   void emitPersonality(const MCSymbol *Personality) override;
384   void emitPersonalityIndex(unsigned Index) override;
385   void emitHandlerData() override;
386   void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override;
387   void emitMovSP(unsigned Reg, int64_t Offset = 0) override;
388   void emitPad(int64_t Offset) override;
389   void emitRegSave(const SmallVectorImpl<unsigned> &RegList,
390                    bool isVector) override;
391   void emitUnwindRaw(int64_t Offset,
392                      const SmallVectorImpl<uint8_t> &Opcodes) override;
393 
394   void switchVendor(StringRef Vendor) override;
395   void emitAttribute(unsigned Attribute, unsigned Value) override;
396   void emitTextAttribute(unsigned Attribute, StringRef String) override;
397   void emitIntTextAttribute(unsigned Attribute, unsigned IntValue,
398                             StringRef StringValue) override;
399   void emitArch(ARM::ArchKind Arch) override;
400   void emitObjectArch(ARM::ArchKind Arch) override;
401   void emitFPU(unsigned FPU) override;
402   void emitInst(uint32_t Inst, char Suffix = '\0') override;
403   void finishAttributeSection() override;
404   void emitLabel(MCSymbol *Symbol) override;
405 
406   void AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override;
407   void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override;
408 
409   size_t calculateContentSize() const;
410 
411   // Reset state between object emissions
412   void reset() override;
413 
414 public:
415   ARMTargetELFStreamer(MCStreamer &S)
416     : ARMTargetStreamer(S), CurrentVendor("aeabi") {}
417 };
418 
419 /// Extend the generic ELFStreamer class so that it can emit mapping symbols at
420 /// the appropriate points in the object files. These symbols are defined in the
421 /// ARM ELF ABI: infocenter.arm.com/help/topic/com.arm.../IHI0044D_aaelf.pdf.
422 ///
423 /// In brief: $a, $t or $d should be emitted at the start of each contiguous
424 /// region of ARM code, Thumb code or data in a section. In practice, this
425 /// emission does not rely on explicit assembler directives but on inherent
426 /// properties of the directives doing the emission (e.g. ".byte" is data, "add
427 /// r0, r0, r0" an instruction).
428 ///
429 /// As a result this system is orthogonal to the DataRegion infrastructure used
430 /// by MachO. Beware!
431 class ARMELFStreamer : public MCELFStreamer {
432 public:
433   friend class ARMTargetELFStreamer;
434 
435   ARMELFStreamer(MCContext &Context, std::unique_ptr<MCAsmBackend> TAB,
436                  std::unique_ptr<MCObjectWriter> OW,
437                  std::unique_ptr<MCCodeEmitter> Emitter, bool IsThumb,
438                  bool IsAndroid)
439       : MCELFStreamer(Context, std::move(TAB), std::move(OW),
440                       std::move(Emitter)),
441         IsThumb(IsThumb), IsAndroid(IsAndroid) {
442     EHReset();
443   }
444 
445   ~ARMELFStreamer() override = default;
446 
447   void finishImpl() override;
448 
449   // ARM exception handling directives
450   void emitFnStart();
451   void emitFnEnd();
452   void emitCantUnwind();
453   void emitPersonality(const MCSymbol *Per);
454   void emitPersonalityIndex(unsigned index);
455   void emitHandlerData();
456   void emitSetFP(unsigned NewFpReg, unsigned NewSpReg, int64_t Offset = 0);
457   void emitMovSP(unsigned Reg, int64_t Offset = 0);
458   void emitPad(int64_t Offset);
459   void emitRegSave(const SmallVectorImpl<unsigned> &RegList, bool isVector);
460   void emitUnwindRaw(int64_t Offset, const SmallVectorImpl<uint8_t> &Opcodes);
461   void emitFill(const MCExpr &NumBytes, uint64_t FillValue,
462                 SMLoc Loc) override {
463     emitDataMappingSymbol();
464     MCObjectStreamer::emitFill(NumBytes, FillValue, Loc);
465   }
466 
467   void changeSection(MCSection *Section, const MCExpr *Subsection) override {
468     LastMappingSymbols[getCurrentSection().first] = std::move(LastEMSInfo);
469     MCELFStreamer::changeSection(Section, Subsection);
470     auto LastMappingSymbol = LastMappingSymbols.find(Section);
471     if (LastMappingSymbol != LastMappingSymbols.end()) {
472       LastEMSInfo = std::move(LastMappingSymbol->second);
473       return;
474     }
475     LastEMSInfo.reset(new ElfMappingSymbolInfo(SMLoc(), nullptr, 0));
476   }
477 
478   /// This function is the one used to emit instruction data into the ELF
479   /// streamer. We override it to add the appropriate mapping symbol if
480   /// necessary.
481   void emitInstruction(const MCInst &Inst,
482                        const MCSubtargetInfo &STI) override {
483     if (IsThumb)
484       EmitThumbMappingSymbol();
485     else
486       EmitARMMappingSymbol();
487 
488     MCELFStreamer::emitInstruction(Inst, STI);
489   }
490 
491   void emitInst(uint32_t Inst, char Suffix) {
492     unsigned Size;
493     char Buffer[4];
494     const bool LittleEndian = getContext().getAsmInfo()->isLittleEndian();
495 
496     switch (Suffix) {
497     case '\0':
498       Size = 4;
499 
500       assert(!IsThumb);
501       EmitARMMappingSymbol();
502       for (unsigned II = 0, IE = Size; II != IE; II++) {
503         const unsigned I = LittleEndian ? (Size - II - 1) : II;
504         Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT);
505       }
506 
507       break;
508     case 'n':
509     case 'w':
510       Size = (Suffix == 'n' ? 2 : 4);
511 
512       assert(IsThumb);
513       EmitThumbMappingSymbol();
514       // Thumb wide instructions are emitted as a pair of 16-bit words of the
515       // appropriate endianness.
516       for (unsigned II = 0, IE = Size; II != IE; II = II + 2) {
517         const unsigned I0 = LittleEndian ? II + 0 : II + 1;
518         const unsigned I1 = LittleEndian ? II + 1 : II + 0;
519         Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT);
520         Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT);
521       }
522 
523       break;
524     default:
525       llvm_unreachable("Invalid Suffix");
526     }
527 
528     MCELFStreamer::emitBytes(StringRef(Buffer, Size));
529   }
530 
531   /// This is one of the functions used to emit data into an ELF section, so the
532   /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if
533   /// necessary.
534   void emitBytes(StringRef Data) override {
535     emitDataMappingSymbol();
536     MCELFStreamer::emitBytes(Data);
537   }
538 
539   void FlushPendingMappingSymbol() {
540     if (!LastEMSInfo->hasInfo())
541       return;
542     ElfMappingSymbolInfo *EMS = LastEMSInfo.get();
543     EmitMappingSymbol("$d", EMS->Loc, EMS->F, EMS->Offset);
544     EMS->resetInfo();
545   }
546 
547   /// This is one of the functions used to emit data into an ELF section, so the
548   /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if
549   /// necessary.
550   void emitValueImpl(const MCExpr *Value, unsigned Size, SMLoc Loc) override {
551     if (const MCSymbolRefExpr *SRE = dyn_cast_or_null<MCSymbolRefExpr>(Value)) {
552       if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_SBREL && !(Size == 4)) {
553         getContext().reportError(Loc, "relocated expression must be 32-bit");
554         return;
555       }
556       getOrCreateDataFragment();
557     }
558 
559     emitDataMappingSymbol();
560     MCELFStreamer::emitValueImpl(Value, Size, Loc);
561   }
562 
563   void emitAssemblerFlag(MCAssemblerFlag Flag) override {
564     MCELFStreamer::emitAssemblerFlag(Flag);
565 
566     switch (Flag) {
567     case MCAF_SyntaxUnified:
568       return; // no-op here.
569     case MCAF_Code16:
570       IsThumb = true;
571       return; // Change to Thumb mode
572     case MCAF_Code32:
573       IsThumb = false;
574       return; // Change to ARM mode
575     case MCAF_Code64:
576       return;
577     case MCAF_SubsectionsViaSymbols:
578       return;
579     }
580   }
581 
582 private:
583   enum ElfMappingSymbol {
584     EMS_None,
585     EMS_ARM,
586     EMS_Thumb,
587     EMS_Data
588   };
589 
590   struct ElfMappingSymbolInfo {
591     explicit ElfMappingSymbolInfo(SMLoc Loc, MCFragment *F, uint64_t O)
592         : Loc(Loc), F(F), Offset(O), State(EMS_None) {}
593     void resetInfo() {
594       F = nullptr;
595       Offset = 0;
596     }
597     bool hasInfo() { return F != nullptr; }
598     SMLoc Loc;
599     MCFragment *F;
600     uint64_t Offset;
601     ElfMappingSymbol State;
602   };
603 
604   void emitDataMappingSymbol() {
605     if (LastEMSInfo->State == EMS_Data)
606       return;
607     else if (LastEMSInfo->State == EMS_None) {
608       // This is a tentative symbol, it won't really be emitted until it's
609       // actually needed.
610       ElfMappingSymbolInfo *EMS = LastEMSInfo.get();
611       auto *DF = dyn_cast_or_null<MCDataFragment>(getCurrentFragment());
612       if (!DF)
613         return;
614       EMS->Loc = SMLoc();
615       EMS->F = getCurrentFragment();
616       EMS->Offset = DF->getContents().size();
617       LastEMSInfo->State = EMS_Data;
618       return;
619     }
620     EmitMappingSymbol("$d");
621     LastEMSInfo->State = EMS_Data;
622   }
623 
624   void EmitThumbMappingSymbol() {
625     if (LastEMSInfo->State == EMS_Thumb)
626       return;
627     FlushPendingMappingSymbol();
628     EmitMappingSymbol("$t");
629     LastEMSInfo->State = EMS_Thumb;
630   }
631 
632   void EmitARMMappingSymbol() {
633     if (LastEMSInfo->State == EMS_ARM)
634       return;
635     FlushPendingMappingSymbol();
636     EmitMappingSymbol("$a");
637     LastEMSInfo->State = EMS_ARM;
638   }
639 
640   void EmitMappingSymbol(StringRef Name) {
641     auto *Symbol = cast<MCSymbolELF>(getContext().getOrCreateSymbol(
642         Name + "." + Twine(MappingSymbolCounter++)));
643     emitLabel(Symbol);
644 
645     Symbol->setType(ELF::STT_NOTYPE);
646     Symbol->setBinding(ELF::STB_LOCAL);
647     Symbol->setExternal(false);
648   }
649 
650   void EmitMappingSymbol(StringRef Name, SMLoc Loc, MCFragment *F,
651                          uint64_t Offset) {
652     auto *Symbol = cast<MCSymbolELF>(getContext().getOrCreateSymbol(
653         Name + "." + Twine(MappingSymbolCounter++)));
654     emitLabelAtPos(Symbol, Loc, F, Offset);
655     Symbol->setType(ELF::STT_NOTYPE);
656     Symbol->setBinding(ELF::STB_LOCAL);
657     Symbol->setExternal(false);
658   }
659 
660   void emitThumbFunc(MCSymbol *Func) override {
661     getAssembler().setIsThumbFunc(Func);
662     emitSymbolAttribute(Func, MCSA_ELF_TypeFunction);
663   }
664 
665   // Helper functions for ARM exception handling directives
666   void EHReset();
667 
668   // Reset state between object emissions
669   void reset() override;
670 
671   void EmitPersonalityFixup(StringRef Name);
672   void FlushPendingOffset();
673   void FlushUnwindOpcodes(bool NoHandlerData);
674 
675   void SwitchToEHSection(StringRef Prefix, unsigned Type, unsigned Flags,
676                          SectionKind Kind, const MCSymbol &Fn);
677   void SwitchToExTabSection(const MCSymbol &FnStart);
678   void SwitchToExIdxSection(const MCSymbol &FnStart);
679 
680   void EmitFixup(const MCExpr *Expr, MCFixupKind Kind);
681 
682   bool IsThumb;
683   bool IsAndroid;
684   int64_t MappingSymbolCounter = 0;
685 
686   DenseMap<const MCSection *, std::unique_ptr<ElfMappingSymbolInfo>>
687       LastMappingSymbols;
688 
689   std::unique_ptr<ElfMappingSymbolInfo> LastEMSInfo;
690 
691   // ARM Exception Handling Frame Information
692   MCSymbol *ExTab;
693   MCSymbol *FnStart;
694   const MCSymbol *Personality;
695   unsigned PersonalityIndex;
696   unsigned FPReg; // Frame pointer register
697   int64_t FPOffset; // Offset: (final frame pointer) - (initial $sp)
698   int64_t SPOffset; // Offset: (final $sp) - (initial $sp)
699   int64_t PendingOffset; // Offset: (final $sp) - (emitted $sp)
700   bool UsedFP;
701   bool CantUnwind;
702   SmallVector<uint8_t, 64> Opcodes;
703   UnwindOpcodeAssembler UnwindOpAsm;
704 };
705 
706 } // end anonymous namespace
707 
708 ARMELFStreamer &ARMTargetELFStreamer::getStreamer() {
709   return static_cast<ARMELFStreamer &>(Streamer);
710 }
711 
712 void ARMTargetELFStreamer::emitFnStart() { getStreamer().emitFnStart(); }
713 void ARMTargetELFStreamer::emitFnEnd() { getStreamer().emitFnEnd(); }
714 void ARMTargetELFStreamer::emitCantUnwind() { getStreamer().emitCantUnwind(); }
715 
716 void ARMTargetELFStreamer::emitPersonality(const MCSymbol *Personality) {
717   getStreamer().emitPersonality(Personality);
718 }
719 
720 void ARMTargetELFStreamer::emitPersonalityIndex(unsigned Index) {
721   getStreamer().emitPersonalityIndex(Index);
722 }
723 
724 void ARMTargetELFStreamer::emitHandlerData() {
725   getStreamer().emitHandlerData();
726 }
727 
728 void ARMTargetELFStreamer::emitSetFP(unsigned FpReg, unsigned SpReg,
729                                      int64_t Offset) {
730   getStreamer().emitSetFP(FpReg, SpReg, Offset);
731 }
732 
733 void ARMTargetELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) {
734   getStreamer().emitMovSP(Reg, Offset);
735 }
736 
737 void ARMTargetELFStreamer::emitPad(int64_t Offset) {
738   getStreamer().emitPad(Offset);
739 }
740 
741 void ARMTargetELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
742                                        bool isVector) {
743   getStreamer().emitRegSave(RegList, isVector);
744 }
745 
746 void ARMTargetELFStreamer::emitUnwindRaw(int64_t Offset,
747                                       const SmallVectorImpl<uint8_t> &Opcodes) {
748   getStreamer().emitUnwindRaw(Offset, Opcodes);
749 }
750 
751 void ARMTargetELFStreamer::switchVendor(StringRef Vendor) {
752   assert(!Vendor.empty() && "Vendor cannot be empty.");
753 
754   if (CurrentVendor == Vendor)
755     return;
756 
757   if (!CurrentVendor.empty())
758     finishAttributeSection();
759 
760   assert(Contents.empty() &&
761          ".ARM.attributes should be flushed before changing vendor");
762   CurrentVendor = Vendor;
763 
764 }
765 
766 void ARMTargetELFStreamer::emitAttribute(unsigned Attribute, unsigned Value) {
767   setAttributeItem(Attribute, Value, /* OverwriteExisting= */ true);
768 }
769 
770 void ARMTargetELFStreamer::emitTextAttribute(unsigned Attribute,
771                                              StringRef Value) {
772   setAttributeItem(Attribute, Value, /* OverwriteExisting= */ true);
773 }
774 
775 void ARMTargetELFStreamer::emitIntTextAttribute(unsigned Attribute,
776                                                 unsigned IntValue,
777                                                 StringRef StringValue) {
778   setAttributeItems(Attribute, IntValue, StringValue,
779                     /* OverwriteExisting= */ true);
780 }
781 
782 void ARMTargetELFStreamer::emitArch(ARM::ArchKind Value) {
783   Arch = Value;
784 }
785 
786 void ARMTargetELFStreamer::emitObjectArch(ARM::ArchKind Value) {
787   EmittedArch = Value;
788 }
789 
790 void ARMTargetELFStreamer::emitArchDefaultAttributes() {
791   using namespace ARMBuildAttrs;
792 
793   setAttributeItem(CPU_name,
794                    ARM::getCPUAttr(Arch),
795                    false);
796 
797   if (EmittedArch == ARM::ArchKind::INVALID)
798     setAttributeItem(CPU_arch,
799                      ARM::getArchAttr(Arch),
800                      false);
801   else
802     setAttributeItem(CPU_arch,
803                      ARM::getArchAttr(EmittedArch),
804                      false);
805 
806   switch (Arch) {
807   case ARM::ArchKind::ARMV2:
808   case ARM::ArchKind::ARMV2A:
809   case ARM::ArchKind::ARMV3:
810   case ARM::ArchKind::ARMV3M:
811   case ARM::ArchKind::ARMV4:
812     setAttributeItem(ARM_ISA_use, Allowed, false);
813     break;
814 
815   case ARM::ArchKind::ARMV4T:
816   case ARM::ArchKind::ARMV5T:
817   case ARM::ArchKind::ARMV5TE:
818   case ARM::ArchKind::ARMV6:
819     setAttributeItem(ARM_ISA_use, Allowed, false);
820     setAttributeItem(THUMB_ISA_use, Allowed, false);
821     break;
822 
823   case ARM::ArchKind::ARMV6T2:
824     setAttributeItem(ARM_ISA_use, Allowed, false);
825     setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
826     break;
827 
828   case ARM::ArchKind::ARMV6K:
829   case ARM::ArchKind::ARMV6KZ:
830     setAttributeItem(ARM_ISA_use, Allowed, false);
831     setAttributeItem(THUMB_ISA_use, Allowed, false);
832     setAttributeItem(Virtualization_use, AllowTZ, false);
833     break;
834 
835   case ARM::ArchKind::ARMV6M:
836     setAttributeItem(THUMB_ISA_use, Allowed, false);
837     break;
838 
839   case ARM::ArchKind::ARMV7A:
840     setAttributeItem(CPU_arch_profile, ApplicationProfile, false);
841     setAttributeItem(ARM_ISA_use, Allowed, false);
842     setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
843     break;
844 
845   case ARM::ArchKind::ARMV7R:
846     setAttributeItem(CPU_arch_profile, RealTimeProfile, false);
847     setAttributeItem(ARM_ISA_use, Allowed, false);
848     setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
849     break;
850 
851   case ARM::ArchKind::ARMV7EM:
852   case ARM::ArchKind::ARMV7M:
853     setAttributeItem(CPU_arch_profile, MicroControllerProfile, false);
854     setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
855     break;
856 
857   case ARM::ArchKind::ARMV8A:
858   case ARM::ArchKind::ARMV8_1A:
859   case ARM::ArchKind::ARMV8_2A:
860   case ARM::ArchKind::ARMV8_3A:
861   case ARM::ArchKind::ARMV8_4A:
862   case ARM::ArchKind::ARMV8_5A:
863   case ARM::ArchKind::ARMV8_6A:
864     setAttributeItem(CPU_arch_profile, ApplicationProfile, false);
865     setAttributeItem(ARM_ISA_use, Allowed, false);
866     setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
867     setAttributeItem(MPextension_use, Allowed, false);
868     setAttributeItem(Virtualization_use, AllowTZVirtualization, false);
869     break;
870 
871   case ARM::ArchKind::ARMV8MBaseline:
872   case ARM::ArchKind::ARMV8MMainline:
873     setAttributeItem(THUMB_ISA_use, AllowThumbDerived, false);
874     setAttributeItem(CPU_arch_profile, MicroControllerProfile, false);
875     break;
876 
877   case ARM::ArchKind::IWMMXT:
878     setAttributeItem(ARM_ISA_use, Allowed, false);
879     setAttributeItem(THUMB_ISA_use, Allowed, false);
880     setAttributeItem(WMMX_arch, AllowWMMXv1, false);
881     break;
882 
883   case ARM::ArchKind::IWMMXT2:
884     setAttributeItem(ARM_ISA_use, Allowed, false);
885     setAttributeItem(THUMB_ISA_use, Allowed, false);
886     setAttributeItem(WMMX_arch, AllowWMMXv2, false);
887     break;
888 
889   default:
890     report_fatal_error("Unknown Arch: " + Twine(ARM::getArchName(Arch)));
891     break;
892   }
893 }
894 
895 void ARMTargetELFStreamer::emitFPU(unsigned Value) {
896   FPU = Value;
897 }
898 
899 void ARMTargetELFStreamer::emitFPUDefaultAttributes() {
900   switch (FPU) {
901   case ARM::FK_VFP:
902   case ARM::FK_VFPV2:
903     setAttributeItem(ARMBuildAttrs::FP_arch,
904                      ARMBuildAttrs::AllowFPv2,
905                      /* OverwriteExisting= */ false);
906     break;
907 
908   case ARM::FK_VFPV3:
909     setAttributeItem(ARMBuildAttrs::FP_arch,
910                      ARMBuildAttrs::AllowFPv3A,
911                      /* OverwriteExisting= */ false);
912     break;
913 
914   case ARM::FK_VFPV3_FP16:
915     setAttributeItem(ARMBuildAttrs::FP_arch,
916                      ARMBuildAttrs::AllowFPv3A,
917                      /* OverwriteExisting= */ false);
918     setAttributeItem(ARMBuildAttrs::FP_HP_extension,
919                      ARMBuildAttrs::AllowHPFP,
920                      /* OverwriteExisting= */ false);
921     break;
922 
923   case ARM::FK_VFPV3_D16:
924     setAttributeItem(ARMBuildAttrs::FP_arch,
925                      ARMBuildAttrs::AllowFPv3B,
926                      /* OverwriteExisting= */ false);
927     break;
928 
929   case ARM::FK_VFPV3_D16_FP16:
930     setAttributeItem(ARMBuildAttrs::FP_arch,
931                      ARMBuildAttrs::AllowFPv3B,
932                      /* OverwriteExisting= */ false);
933     setAttributeItem(ARMBuildAttrs::FP_HP_extension,
934                      ARMBuildAttrs::AllowHPFP,
935                      /* OverwriteExisting= */ false);
936     break;
937 
938   case ARM::FK_VFPV3XD:
939     setAttributeItem(ARMBuildAttrs::FP_arch,
940                      ARMBuildAttrs::AllowFPv3B,
941                      /* OverwriteExisting= */ false);
942     break;
943   case ARM::FK_VFPV3XD_FP16:
944     setAttributeItem(ARMBuildAttrs::FP_arch,
945                      ARMBuildAttrs::AllowFPv3B,
946                      /* OverwriteExisting= */ false);
947     setAttributeItem(ARMBuildAttrs::FP_HP_extension,
948                      ARMBuildAttrs::AllowHPFP,
949                      /* OverwriteExisting= */ false);
950     break;
951 
952   case ARM::FK_VFPV4:
953     setAttributeItem(ARMBuildAttrs::FP_arch,
954                      ARMBuildAttrs::AllowFPv4A,
955                      /* OverwriteExisting= */ false);
956     break;
957 
958   // ABI_HardFP_use is handled in ARMAsmPrinter, so _SP_D16 is treated the same
959   // as _D16 here.
960   case ARM::FK_FPV4_SP_D16:
961   case ARM::FK_VFPV4_D16:
962     setAttributeItem(ARMBuildAttrs::FP_arch,
963                      ARMBuildAttrs::AllowFPv4B,
964                      /* OverwriteExisting= */ false);
965     break;
966 
967   case ARM::FK_FP_ARMV8:
968     setAttributeItem(ARMBuildAttrs::FP_arch,
969                      ARMBuildAttrs::AllowFPARMv8A,
970                      /* OverwriteExisting= */ false);
971     break;
972 
973   // FPV5_D16 is identical to FP_ARMV8 except for the number of D registers, so
974   // uses the FP_ARMV8_D16 build attribute.
975   case ARM::FK_FPV5_SP_D16:
976   case ARM::FK_FPV5_D16:
977     setAttributeItem(ARMBuildAttrs::FP_arch,
978                      ARMBuildAttrs::AllowFPARMv8B,
979                      /* OverwriteExisting= */ false);
980     break;
981 
982   case ARM::FK_NEON:
983     setAttributeItem(ARMBuildAttrs::FP_arch,
984                      ARMBuildAttrs::AllowFPv3A,
985                      /* OverwriteExisting= */ false);
986     setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch,
987                      ARMBuildAttrs::AllowNeon,
988                      /* OverwriteExisting= */ false);
989     break;
990 
991   case ARM::FK_NEON_FP16:
992     setAttributeItem(ARMBuildAttrs::FP_arch,
993                      ARMBuildAttrs::AllowFPv3A,
994                      /* OverwriteExisting= */ false);
995     setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch,
996                      ARMBuildAttrs::AllowNeon,
997                      /* OverwriteExisting= */ false);
998     setAttributeItem(ARMBuildAttrs::FP_HP_extension,
999                      ARMBuildAttrs::AllowHPFP,
1000                      /* OverwriteExisting= */ false);
1001     break;
1002 
1003   case ARM::FK_NEON_VFPV4:
1004     setAttributeItem(ARMBuildAttrs::FP_arch,
1005                      ARMBuildAttrs::AllowFPv4A,
1006                      /* OverwriteExisting= */ false);
1007     setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch,
1008                      ARMBuildAttrs::AllowNeon2,
1009                      /* OverwriteExisting= */ false);
1010     break;
1011 
1012   case ARM::FK_NEON_FP_ARMV8:
1013   case ARM::FK_CRYPTO_NEON_FP_ARMV8:
1014     setAttributeItem(ARMBuildAttrs::FP_arch,
1015                      ARMBuildAttrs::AllowFPARMv8A,
1016                      /* OverwriteExisting= */ false);
1017     // 'Advanced_SIMD_arch' must be emitted not here, but within
1018     // ARMAsmPrinter::emitAttributes(), depending on hasV8Ops() and hasV8_1a()
1019     break;
1020 
1021   case ARM::FK_SOFTVFP:
1022   case ARM::FK_NONE:
1023     break;
1024 
1025   default:
1026     report_fatal_error("Unknown FPU: " + Twine(FPU));
1027     break;
1028   }
1029 }
1030 
1031 size_t ARMTargetELFStreamer::calculateContentSize() const {
1032   size_t Result = 0;
1033   for (size_t i = 0; i < Contents.size(); ++i) {
1034     AttributeItem item = Contents[i];
1035     switch (item.Type) {
1036     case AttributeItem::HiddenAttribute:
1037       break;
1038     case AttributeItem::NumericAttribute:
1039       Result += getULEB128Size(item.Tag);
1040       Result += getULEB128Size(item.IntValue);
1041       break;
1042     case AttributeItem::TextAttribute:
1043       Result += getULEB128Size(item.Tag);
1044       Result += item.StringValue.size() + 1; // string + '\0'
1045       break;
1046     case AttributeItem::NumericAndTextAttributes:
1047       Result += getULEB128Size(item.Tag);
1048       Result += getULEB128Size(item.IntValue);
1049       Result += item.StringValue.size() + 1; // string + '\0';
1050       break;
1051     }
1052   }
1053   return Result;
1054 }
1055 
1056 void ARMTargetELFStreamer::finishAttributeSection() {
1057   // <format-version>
1058   // [ <section-length> "vendor-name"
1059   // [ <file-tag> <size> <attribute>*
1060   //   | <section-tag> <size> <section-number>* 0 <attribute>*
1061   //   | <symbol-tag> <size> <symbol-number>* 0 <attribute>*
1062   //   ]+
1063   // ]*
1064 
1065   if (FPU != ARM::FK_INVALID)
1066     emitFPUDefaultAttributes();
1067 
1068   if (Arch != ARM::ArchKind::INVALID)
1069     emitArchDefaultAttributes();
1070 
1071   if (Contents.empty())
1072     return;
1073 
1074   llvm::sort(Contents, AttributeItem::LessTag);
1075 
1076   ARMELFStreamer &Streamer = getStreamer();
1077 
1078   // Switch to .ARM.attributes section
1079   if (AttributeSection) {
1080     Streamer.SwitchSection(AttributeSection);
1081   } else {
1082     AttributeSection = Streamer.getContext().getELFSection(
1083         ".ARM.attributes", ELF::SHT_ARM_ATTRIBUTES, 0);
1084     Streamer.SwitchSection(AttributeSection);
1085 
1086     // Format version
1087     Streamer.emitInt8(0x41);
1088   }
1089 
1090   // Vendor size + Vendor name + '\0'
1091   const size_t VendorHeaderSize = 4 + CurrentVendor.size() + 1;
1092 
1093   // Tag + Tag Size
1094   const size_t TagHeaderSize = 1 + 4;
1095 
1096   const size_t ContentsSize = calculateContentSize();
1097 
1098   Streamer.emitInt32(VendorHeaderSize + TagHeaderSize + ContentsSize);
1099   Streamer.emitBytes(CurrentVendor);
1100   Streamer.emitInt8(0); // '\0'
1101 
1102   Streamer.emitInt8(ARMBuildAttrs::File);
1103   Streamer.emitInt32(TagHeaderSize + ContentsSize);
1104 
1105   // Size should have been accounted for already, now
1106   // emit each field as its type (ULEB or String)
1107   for (size_t i = 0; i < Contents.size(); ++i) {
1108     AttributeItem item = Contents[i];
1109     Streamer.emitULEB128IntValue(item.Tag);
1110     switch (item.Type) {
1111     default: llvm_unreachable("Invalid attribute type");
1112     case AttributeItem::NumericAttribute:
1113       Streamer.emitULEB128IntValue(item.IntValue);
1114       break;
1115     case AttributeItem::TextAttribute:
1116       Streamer.emitBytes(item.StringValue);
1117       Streamer.emitInt8(0); // '\0'
1118       break;
1119     case AttributeItem::NumericAndTextAttributes:
1120       Streamer.emitULEB128IntValue(item.IntValue);
1121       Streamer.emitBytes(item.StringValue);
1122       Streamer.emitInt8(0); // '\0'
1123       break;
1124     }
1125   }
1126 
1127   Contents.clear();
1128   FPU = ARM::FK_INVALID;
1129 }
1130 
1131 void ARMTargetELFStreamer::emitLabel(MCSymbol *Symbol) {
1132   ARMELFStreamer &Streamer = getStreamer();
1133   if (!Streamer.IsThumb)
1134     return;
1135 
1136   Streamer.getAssembler().registerSymbol(*Symbol);
1137   unsigned Type = cast<MCSymbolELF>(Symbol)->getType();
1138   if (Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)
1139     Streamer.emitThumbFunc(Symbol);
1140 }
1141 
1142 void
1143 ARMTargetELFStreamer::AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *S) {
1144   getStreamer().EmitFixup(S, FK_Data_4);
1145 }
1146 
1147 void ARMTargetELFStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) {
1148   if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Value)) {
1149     const MCSymbol &Sym = SRE->getSymbol();
1150     if (!Sym.isDefined()) {
1151       getStreamer().emitAssignment(Symbol, Value);
1152       return;
1153     }
1154   }
1155 
1156   getStreamer().emitThumbFunc(Symbol);
1157   getStreamer().emitAssignment(Symbol, Value);
1158 }
1159 
1160 void ARMTargetELFStreamer::emitInst(uint32_t Inst, char Suffix) {
1161   getStreamer().emitInst(Inst, Suffix);
1162 }
1163 
1164 void ARMTargetELFStreamer::reset() { AttributeSection = nullptr; }
1165 
1166 void ARMELFStreamer::finishImpl() {
1167   MCTargetStreamer &TS = *getTargetStreamer();
1168   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1169   ATS.finishAttributeSection();
1170 
1171   MCELFStreamer::finishImpl();
1172 }
1173 
1174 void ARMELFStreamer::reset() {
1175   MCTargetStreamer &TS = *getTargetStreamer();
1176   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1177   ATS.reset();
1178   MappingSymbolCounter = 0;
1179   MCELFStreamer::reset();
1180   LastMappingSymbols.clear();
1181   LastEMSInfo.reset();
1182   // MCELFStreamer clear's the assembler's e_flags. However, for
1183   // arm we manually set the ABI version on streamer creation, so
1184   // do the same here
1185   getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5);
1186 }
1187 
1188 inline void ARMELFStreamer::SwitchToEHSection(StringRef Prefix,
1189                                               unsigned Type,
1190                                               unsigned Flags,
1191                                               SectionKind Kind,
1192                                               const MCSymbol &Fn) {
1193   const MCSectionELF &FnSection =
1194     static_cast<const MCSectionELF &>(Fn.getSection());
1195 
1196   // Create the name for new section
1197   StringRef FnSecName(FnSection.getName());
1198   SmallString<128> EHSecName(Prefix);
1199   if (FnSecName != ".text") {
1200     EHSecName += FnSecName;
1201   }
1202 
1203   // Get .ARM.extab or .ARM.exidx section
1204   const MCSymbolELF *Group = FnSection.getGroup();
1205   if (Group)
1206     Flags |= ELF::SHF_GROUP;
1207   MCSectionELF *EHSection = getContext().getELFSection(
1208       EHSecName, Type, Flags, 0, Group, FnSection.getUniqueID(),
1209       static_cast<const MCSymbolELF *>(FnSection.getBeginSymbol()));
1210 
1211   assert(EHSection && "Failed to get the required EH section");
1212 
1213   // Switch to .ARM.extab or .ARM.exidx section
1214   SwitchSection(EHSection);
1215   emitCodeAlignment(4);
1216 }
1217 
1218 inline void ARMELFStreamer::SwitchToExTabSection(const MCSymbol &FnStart) {
1219   SwitchToEHSection(".ARM.extab", ELF::SHT_PROGBITS, ELF::SHF_ALLOC,
1220                     SectionKind::getData(), FnStart);
1221 }
1222 
1223 inline void ARMELFStreamer::SwitchToExIdxSection(const MCSymbol &FnStart) {
1224   SwitchToEHSection(".ARM.exidx", ELF::SHT_ARM_EXIDX,
1225                     ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER,
1226                     SectionKind::getData(), FnStart);
1227 }
1228 
1229 void ARMELFStreamer::EmitFixup(const MCExpr *Expr, MCFixupKind Kind) {
1230   MCDataFragment *Frag = getOrCreateDataFragment();
1231   Frag->getFixups().push_back(MCFixup::create(Frag->getContents().size(), Expr,
1232                                               Kind));
1233 }
1234 
1235 void ARMELFStreamer::EHReset() {
1236   ExTab = nullptr;
1237   FnStart = nullptr;
1238   Personality = nullptr;
1239   PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX;
1240   FPReg = ARM::SP;
1241   FPOffset = 0;
1242   SPOffset = 0;
1243   PendingOffset = 0;
1244   UsedFP = false;
1245   CantUnwind = false;
1246 
1247   Opcodes.clear();
1248   UnwindOpAsm.Reset();
1249 }
1250 
1251 void ARMELFStreamer::emitFnStart() {
1252   assert(FnStart == nullptr);
1253   FnStart = getContext().createTempSymbol();
1254   emitLabel(FnStart);
1255 }
1256 
1257 void ARMELFStreamer::emitFnEnd() {
1258   assert(FnStart && ".fnstart must precedes .fnend");
1259 
1260   // Emit unwind opcodes if there is no .handlerdata directive
1261   if (!ExTab && !CantUnwind)
1262     FlushUnwindOpcodes(true);
1263 
1264   // Emit the exception index table entry
1265   SwitchToExIdxSection(*FnStart);
1266 
1267   // The EHABI requires a dependency preserving R_ARM_NONE relocation to the
1268   // personality routine to protect it from an arbitrary platform's static
1269   // linker garbage collection. We disable this for Android where the unwinder
1270   // is either dynamically linked or directly references the personality
1271   // routine.
1272   if (PersonalityIndex < ARM::EHABI::NUM_PERSONALITY_INDEX && !IsAndroid)
1273     EmitPersonalityFixup(GetAEABIUnwindPersonalityName(PersonalityIndex));
1274 
1275   const MCSymbolRefExpr *FnStartRef =
1276     MCSymbolRefExpr::create(FnStart,
1277                             MCSymbolRefExpr::VK_ARM_PREL31,
1278                             getContext());
1279 
1280   emitValue(FnStartRef, 4);
1281 
1282   if (CantUnwind) {
1283     emitInt32(ARM::EHABI::EXIDX_CANTUNWIND);
1284   } else if (ExTab) {
1285     // Emit a reference to the unwind opcodes in the ".ARM.extab" section.
1286     const MCSymbolRefExpr *ExTabEntryRef =
1287       MCSymbolRefExpr::create(ExTab,
1288                               MCSymbolRefExpr::VK_ARM_PREL31,
1289                               getContext());
1290     emitValue(ExTabEntryRef, 4);
1291   } else {
1292     // For the __aeabi_unwind_cpp_pr0, we have to emit the unwind opcodes in
1293     // the second word of exception index table entry.  The size of the unwind
1294     // opcodes should always be 4 bytes.
1295     assert(PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0 &&
1296            "Compact model must use __aeabi_unwind_cpp_pr0 as personality");
1297     assert(Opcodes.size() == 4u &&
1298            "Unwind opcode size for __aeabi_unwind_cpp_pr0 must be equal to 4");
1299     uint64_t Intval = Opcodes[0] |
1300                       Opcodes[1] << 8 |
1301                       Opcodes[2] << 16 |
1302                       Opcodes[3] << 24;
1303     emitIntValue(Intval, Opcodes.size());
1304   }
1305 
1306   // Switch to the section containing FnStart
1307   SwitchSection(&FnStart->getSection());
1308 
1309   // Clean exception handling frame information
1310   EHReset();
1311 }
1312 
1313 void ARMELFStreamer::emitCantUnwind() { CantUnwind = true; }
1314 
1315 // Add the R_ARM_NONE fixup at the same position
1316 void ARMELFStreamer::EmitPersonalityFixup(StringRef Name) {
1317   const MCSymbol *PersonalitySym = getContext().getOrCreateSymbol(Name);
1318 
1319   const MCSymbolRefExpr *PersonalityRef = MCSymbolRefExpr::create(
1320       PersonalitySym, MCSymbolRefExpr::VK_ARM_NONE, getContext());
1321 
1322   visitUsedExpr(*PersonalityRef);
1323   MCDataFragment *DF = getOrCreateDataFragment();
1324   DF->getFixups().push_back(MCFixup::create(DF->getContents().size(),
1325                                             PersonalityRef,
1326                                             MCFixup::getKindForSize(4, false)));
1327 }
1328 
1329 void ARMELFStreamer::FlushPendingOffset() {
1330   if (PendingOffset != 0) {
1331     UnwindOpAsm.EmitSPOffset(-PendingOffset);
1332     PendingOffset = 0;
1333   }
1334 }
1335 
1336 void ARMELFStreamer::FlushUnwindOpcodes(bool NoHandlerData) {
1337   // Emit the unwind opcode to restore $sp.
1338   if (UsedFP) {
1339     const MCRegisterInfo *MRI = getContext().getRegisterInfo();
1340     int64_t LastRegSaveSPOffset = SPOffset - PendingOffset;
1341     UnwindOpAsm.EmitSPOffset(LastRegSaveSPOffset - FPOffset);
1342     UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg));
1343   } else {
1344     FlushPendingOffset();
1345   }
1346 
1347   // Finalize the unwind opcode sequence
1348   UnwindOpAsm.Finalize(PersonalityIndex, Opcodes);
1349 
1350   // For compact model 0, we have to emit the unwind opcodes in the .ARM.exidx
1351   // section.  Thus, we don't have to create an entry in the .ARM.extab
1352   // section.
1353   if (NoHandlerData && PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0)
1354     return;
1355 
1356   // Switch to .ARM.extab section.
1357   SwitchToExTabSection(*FnStart);
1358 
1359   // Create .ARM.extab label for offset in .ARM.exidx
1360   assert(!ExTab);
1361   ExTab = getContext().createTempSymbol();
1362   emitLabel(ExTab);
1363 
1364   // Emit personality
1365   if (Personality) {
1366     const MCSymbolRefExpr *PersonalityRef =
1367       MCSymbolRefExpr::create(Personality,
1368                               MCSymbolRefExpr::VK_ARM_PREL31,
1369                               getContext());
1370 
1371     emitValue(PersonalityRef, 4);
1372   }
1373 
1374   // Emit unwind opcodes
1375   assert((Opcodes.size() % 4) == 0 &&
1376          "Unwind opcode size for __aeabi_cpp_unwind_pr0 must be multiple of 4");
1377   for (unsigned I = 0; I != Opcodes.size(); I += 4) {
1378     uint64_t Intval = Opcodes[I] |
1379                       Opcodes[I + 1] << 8 |
1380                       Opcodes[I + 2] << 16 |
1381                       Opcodes[I + 3] << 24;
1382     emitInt32(Intval);
1383   }
1384 
1385   // According to ARM EHABI section 9.2, if the __aeabi_unwind_cpp_pr1() or
1386   // __aeabi_unwind_cpp_pr2() is used, then the handler data must be emitted
1387   // after the unwind opcodes.  The handler data consists of several 32-bit
1388   // words, and should be terminated by zero.
1389   //
1390   // In case that the .handlerdata directive is not specified by the
1391   // programmer, we should emit zero to terminate the handler data.
1392   if (NoHandlerData && !Personality)
1393     emitInt32(0);
1394 }
1395 
1396 void ARMELFStreamer::emitHandlerData() { FlushUnwindOpcodes(false); }
1397 
1398 void ARMELFStreamer::emitPersonality(const MCSymbol *Per) {
1399   Personality = Per;
1400   UnwindOpAsm.setPersonality(Per);
1401 }
1402 
1403 void ARMELFStreamer::emitPersonalityIndex(unsigned Index) {
1404   assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && "invalid index");
1405   PersonalityIndex = Index;
1406 }
1407 
1408 void ARMELFStreamer::emitSetFP(unsigned NewFPReg, unsigned NewSPReg,
1409                                int64_t Offset) {
1410   assert((NewSPReg == ARM::SP || NewSPReg == FPReg) &&
1411          "the operand of .setfp directive should be either $sp or $fp");
1412 
1413   UsedFP = true;
1414   FPReg = NewFPReg;
1415 
1416   if (NewSPReg == ARM::SP)
1417     FPOffset = SPOffset + Offset;
1418   else
1419     FPOffset += Offset;
1420 }
1421 
1422 void ARMELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) {
1423   assert((Reg != ARM::SP && Reg != ARM::PC) &&
1424          "the operand of .movsp cannot be either sp or pc");
1425   assert(FPReg == ARM::SP && "current FP must be SP");
1426 
1427   FlushPendingOffset();
1428 
1429   FPReg = Reg;
1430   FPOffset = SPOffset + Offset;
1431 
1432   const MCRegisterInfo *MRI = getContext().getRegisterInfo();
1433   UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg));
1434 }
1435 
1436 void ARMELFStreamer::emitPad(int64_t Offset) {
1437   // Track the change of the $sp offset
1438   SPOffset -= Offset;
1439 
1440   // To squash multiple .pad directives, we should delay the unwind opcode
1441   // until the .save, .vsave, .handlerdata, or .fnend directives.
1442   PendingOffset -= Offset;
1443 }
1444 
1445 void ARMELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
1446                                  bool IsVector) {
1447   // Collect the registers in the register list
1448   unsigned Count = 0;
1449   uint32_t Mask = 0;
1450   const MCRegisterInfo *MRI = getContext().getRegisterInfo();
1451   for (size_t i = 0; i < RegList.size(); ++i) {
1452     unsigned Reg = MRI->getEncodingValue(RegList[i]);
1453     assert(Reg < (IsVector ? 32U : 16U) && "Register out of range");
1454     unsigned Bit = (1u << Reg);
1455     if ((Mask & Bit) == 0) {
1456       Mask |= Bit;
1457       ++Count;
1458     }
1459   }
1460 
1461   // Track the change the $sp offset: For the .save directive, the
1462   // corresponding push instruction will decrease the $sp by (4 * Count).
1463   // For the .vsave directive, the corresponding vpush instruction will
1464   // decrease $sp by (8 * Count).
1465   SPOffset -= Count * (IsVector ? 8 : 4);
1466 
1467   // Emit the opcode
1468   FlushPendingOffset();
1469   if (IsVector)
1470     UnwindOpAsm.EmitVFPRegSave(Mask);
1471   else
1472     UnwindOpAsm.EmitRegSave(Mask);
1473 }
1474 
1475 void ARMELFStreamer::emitUnwindRaw(int64_t Offset,
1476                                    const SmallVectorImpl<uint8_t> &Opcodes) {
1477   FlushPendingOffset();
1478   SPOffset = SPOffset - Offset;
1479   UnwindOpAsm.EmitRaw(Opcodes);
1480 }
1481 
1482 namespace llvm {
1483 
1484 MCTargetStreamer *createARMTargetAsmStreamer(MCStreamer &S,
1485                                              formatted_raw_ostream &OS,
1486                                              MCInstPrinter *InstPrint,
1487                                              bool isVerboseAsm) {
1488   return new ARMTargetAsmStreamer(S, OS, *InstPrint, isVerboseAsm);
1489 }
1490 
1491 MCTargetStreamer *createARMNullTargetStreamer(MCStreamer &S) {
1492   return new ARMTargetStreamer(S);
1493 }
1494 
1495 MCTargetStreamer *createARMObjectTargetStreamer(MCStreamer &S,
1496                                                 const MCSubtargetInfo &STI) {
1497   const Triple &TT = STI.getTargetTriple();
1498   if (TT.isOSBinFormatELF())
1499     return new ARMTargetELFStreamer(S);
1500   return new ARMTargetStreamer(S);
1501 }
1502 
1503 MCELFStreamer *createARMELFStreamer(MCContext &Context,
1504                                     std::unique_ptr<MCAsmBackend> TAB,
1505                                     std::unique_ptr<MCObjectWriter> OW,
1506                                     std::unique_ptr<MCCodeEmitter> Emitter,
1507                                     bool RelaxAll, bool IsThumb,
1508                                     bool IsAndroid) {
1509   ARMELFStreamer *S =
1510       new ARMELFStreamer(Context, std::move(TAB), std::move(OW),
1511                          std::move(Emitter), IsThumb, IsAndroid);
1512   // FIXME: This should eventually end up somewhere else where more
1513   // intelligent flag decisions can be made. For now we are just maintaining
1514   // the status quo for ARM and setting EF_ARM_EABI_VER5 as the default.
1515   S->getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5);
1516 
1517   if (RelaxAll)
1518     S->getAssembler().setRelaxAll(true);
1519   return S;
1520 }
1521 
1522 } // end namespace llvm
1523