1 //===- lib/MC/ARMELFStreamer.cpp - ELF Object Output for ARM --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file assembles .s files and emits ARM ELF .o object files. Different 10 // from generic ELF streamer in emitting mapping symbols ($a, $t and $d) to 11 // delimit regions of data and code. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMRegisterInfo.h" 16 #include "ARMUnwindOpAsm.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/BinaryFormat/ELF.h" 24 #include "llvm/MC/MCAsmBackend.h" 25 #include "llvm/MC/MCAsmInfo.h" 26 #include "llvm/MC/MCAssembler.h" 27 #include "llvm/MC/MCCodeEmitter.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCELFStreamer.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCFixup.h" 32 #include "llvm/MC/MCFragment.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/MC/MCInstPrinter.h" 35 #include "llvm/MC/MCObjectWriter.h" 36 #include "llvm/MC/MCRegisterInfo.h" 37 #include "llvm/MC/MCSection.h" 38 #include "llvm/MC/MCSectionELF.h" 39 #include "llvm/MC/MCStreamer.h" 40 #include "llvm/MC/MCSubtargetInfo.h" 41 #include "llvm/MC/MCSymbol.h" 42 #include "llvm/MC/MCSymbolELF.h" 43 #include "llvm/MC/SectionKind.h" 44 #include "llvm/Support/ARMBuildAttributes.h" 45 #include "llvm/Support/ARMEHABI.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/FormattedStream.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <climits> 53 #include <cstddef> 54 #include <cstdint> 55 #include <string> 56 57 using namespace llvm; 58 59 static std::string GetAEABIUnwindPersonalityName(unsigned Index) { 60 assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && 61 "Invalid personality index"); 62 return (Twine("__aeabi_unwind_cpp_pr") + Twine(Index)).str(); 63 } 64 65 namespace { 66 67 class ARMELFStreamer; 68 69 class ARMTargetAsmStreamer : public ARMTargetStreamer { 70 formatted_raw_ostream &OS; 71 MCInstPrinter &InstPrinter; 72 bool IsVerboseAsm; 73 74 void emitFnStart() override; 75 void emitFnEnd() override; 76 void emitCantUnwind() override; 77 void emitPersonality(const MCSymbol *Personality) override; 78 void emitPersonalityIndex(unsigned Index) override; 79 void emitHandlerData() override; 80 void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override; 81 void emitMovSP(unsigned Reg, int64_t Offset = 0) override; 82 void emitPad(int64_t Offset) override; 83 void emitRegSave(const SmallVectorImpl<unsigned> &RegList, 84 bool isVector) override; 85 void emitUnwindRaw(int64_t Offset, 86 const SmallVectorImpl<uint8_t> &Opcodes) override; 87 88 void switchVendor(StringRef Vendor) override; 89 void emitAttribute(unsigned Attribute, unsigned Value) override; 90 void emitTextAttribute(unsigned Attribute, StringRef String) override; 91 void emitIntTextAttribute(unsigned Attribute, unsigned IntValue, 92 StringRef StringValue) override; 93 void emitArch(ARM::ArchKind Arch) override; 94 void emitArchExtension(uint64_t ArchExt) override; 95 void emitObjectArch(ARM::ArchKind Arch) override; 96 void emitFPU(ARM::FPUKind FPU) override; 97 void emitInst(uint32_t Inst, char Suffix = '\0') override; 98 void finishAttributeSection() override; 99 100 void annotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override; 101 void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override; 102 103 void emitARMWinCFIAllocStack(unsigned Size, bool Wide) override; 104 void emitARMWinCFISaveRegMask(unsigned Mask, bool Wide) override; 105 void emitARMWinCFISaveSP(unsigned Reg) override; 106 void emitARMWinCFISaveFRegs(unsigned First, unsigned Last) override; 107 void emitARMWinCFISaveLR(unsigned Offset) override; 108 void emitARMWinCFIPrologEnd(bool Fragment) override; 109 void emitARMWinCFINop(bool Wide) override; 110 void emitARMWinCFIEpilogStart(unsigned Condition) override; 111 void emitARMWinCFIEpilogEnd() override; 112 void emitARMWinCFICustom(unsigned Opcode) override; 113 114 public: 115 ARMTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS, 116 MCInstPrinter &InstPrinter, bool VerboseAsm); 117 }; 118 119 ARMTargetAsmStreamer::ARMTargetAsmStreamer(MCStreamer &S, 120 formatted_raw_ostream &OS, 121 MCInstPrinter &InstPrinter, 122 bool VerboseAsm) 123 : ARMTargetStreamer(S), OS(OS), InstPrinter(InstPrinter), 124 IsVerboseAsm(VerboseAsm) {} 125 126 void ARMTargetAsmStreamer::emitFnStart() { OS << "\t.fnstart\n"; } 127 void ARMTargetAsmStreamer::emitFnEnd() { OS << "\t.fnend\n"; } 128 void ARMTargetAsmStreamer::emitCantUnwind() { OS << "\t.cantunwind\n"; } 129 130 void ARMTargetAsmStreamer::emitPersonality(const MCSymbol *Personality) { 131 OS << "\t.personality " << Personality->getName() << '\n'; 132 } 133 134 void ARMTargetAsmStreamer::emitPersonalityIndex(unsigned Index) { 135 OS << "\t.personalityindex " << Index << '\n'; 136 } 137 138 void ARMTargetAsmStreamer::emitHandlerData() { OS << "\t.handlerdata\n"; } 139 140 void ARMTargetAsmStreamer::emitSetFP(unsigned FpReg, unsigned SpReg, 141 int64_t Offset) { 142 OS << "\t.setfp\t"; 143 InstPrinter.printRegName(OS, FpReg); 144 OS << ", "; 145 InstPrinter.printRegName(OS, SpReg); 146 if (Offset) 147 OS << ", #" << Offset; 148 OS << '\n'; 149 } 150 151 void ARMTargetAsmStreamer::emitMovSP(unsigned Reg, int64_t Offset) { 152 assert((Reg != ARM::SP && Reg != ARM::PC) && 153 "the operand of .movsp cannot be either sp or pc"); 154 155 OS << "\t.movsp\t"; 156 InstPrinter.printRegName(OS, Reg); 157 if (Offset) 158 OS << ", #" << Offset; 159 OS << '\n'; 160 } 161 162 void ARMTargetAsmStreamer::emitPad(int64_t Offset) { 163 OS << "\t.pad\t#" << Offset << '\n'; 164 } 165 166 void ARMTargetAsmStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList, 167 bool isVector) { 168 assert(RegList.size() && "RegList should not be empty"); 169 if (isVector) 170 OS << "\t.vsave\t{"; 171 else 172 OS << "\t.save\t{"; 173 174 InstPrinter.printRegName(OS, RegList[0]); 175 176 for (unsigned i = 1, e = RegList.size(); i != e; ++i) { 177 OS << ", "; 178 InstPrinter.printRegName(OS, RegList[i]); 179 } 180 181 OS << "}\n"; 182 } 183 184 void ARMTargetAsmStreamer::switchVendor(StringRef Vendor) {} 185 186 void ARMTargetAsmStreamer::emitAttribute(unsigned Attribute, unsigned Value) { 187 OS << "\t.eabi_attribute\t" << Attribute << ", " << Twine(Value); 188 if (IsVerboseAsm) { 189 StringRef Name = ELFAttrs::attrTypeAsString( 190 Attribute, ARMBuildAttrs::getARMAttributeTags()); 191 if (!Name.empty()) 192 OS << "\t@ " << Name; 193 } 194 OS << "\n"; 195 } 196 197 void ARMTargetAsmStreamer::emitTextAttribute(unsigned Attribute, 198 StringRef String) { 199 switch (Attribute) { 200 case ARMBuildAttrs::CPU_name: 201 OS << "\t.cpu\t" << String.lower(); 202 break; 203 default: 204 OS << "\t.eabi_attribute\t" << Attribute << ", \""; 205 if (Attribute == ARMBuildAttrs::also_compatible_with) 206 OS.write_escaped(String); 207 else 208 OS << String; 209 OS << "\""; 210 if (IsVerboseAsm) { 211 StringRef Name = ELFAttrs::attrTypeAsString( 212 Attribute, ARMBuildAttrs::getARMAttributeTags()); 213 if (!Name.empty()) 214 OS << "\t@ " << Name; 215 } 216 break; 217 } 218 OS << "\n"; 219 } 220 221 void ARMTargetAsmStreamer::emitIntTextAttribute(unsigned Attribute, 222 unsigned IntValue, 223 StringRef StringValue) { 224 switch (Attribute) { 225 default: llvm_unreachable("unsupported multi-value attribute in asm mode"); 226 case ARMBuildAttrs::compatibility: 227 OS << "\t.eabi_attribute\t" << Attribute << ", " << IntValue; 228 if (!StringValue.empty()) 229 OS << ", \"" << StringValue << "\""; 230 if (IsVerboseAsm) 231 OS << "\t@ " 232 << ELFAttrs::attrTypeAsString(Attribute, 233 ARMBuildAttrs::getARMAttributeTags()); 234 break; 235 } 236 OS << "\n"; 237 } 238 239 void ARMTargetAsmStreamer::emitArch(ARM::ArchKind Arch) { 240 OS << "\t.arch\t" << ARM::getArchName(Arch) << "\n"; 241 } 242 243 void ARMTargetAsmStreamer::emitArchExtension(uint64_t ArchExt) { 244 OS << "\t.arch_extension\t" << ARM::getArchExtName(ArchExt) << "\n"; 245 } 246 247 void ARMTargetAsmStreamer::emitObjectArch(ARM::ArchKind Arch) { 248 OS << "\t.object_arch\t" << ARM::getArchName(Arch) << '\n'; 249 } 250 251 void ARMTargetAsmStreamer::emitFPU(ARM::FPUKind FPU) { 252 OS << "\t.fpu\t" << ARM::getFPUName(FPU) << "\n"; 253 } 254 255 void ARMTargetAsmStreamer::finishAttributeSection() {} 256 257 void ARMTargetAsmStreamer::annotateTLSDescriptorSequence( 258 const MCSymbolRefExpr *S) { 259 OS << "\t.tlsdescseq\t" << S->getSymbol().getName() << "\n"; 260 } 261 262 void ARMTargetAsmStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) { 263 const MCAsmInfo *MAI = Streamer.getContext().getAsmInfo(); 264 265 OS << "\t.thumb_set\t"; 266 Symbol->print(OS, MAI); 267 OS << ", "; 268 Value->print(OS, MAI); 269 OS << '\n'; 270 } 271 272 void ARMTargetAsmStreamer::emitInst(uint32_t Inst, char Suffix) { 273 OS << "\t.inst"; 274 if (Suffix) 275 OS << "." << Suffix; 276 OS << "\t0x" << Twine::utohexstr(Inst) << "\n"; 277 } 278 279 void ARMTargetAsmStreamer::emitUnwindRaw(int64_t Offset, 280 const SmallVectorImpl<uint8_t> &Opcodes) { 281 OS << "\t.unwind_raw " << Offset; 282 for (uint8_t Opcode : Opcodes) 283 OS << ", 0x" << Twine::utohexstr(Opcode); 284 OS << '\n'; 285 } 286 287 void ARMTargetAsmStreamer::emitARMWinCFIAllocStack(unsigned Size, bool Wide) { 288 if (Wide) 289 OS << "\t.seh_stackalloc_w\t" << Size << "\n"; 290 else 291 OS << "\t.seh_stackalloc\t" << Size << "\n"; 292 } 293 294 static void printRegs(formatted_raw_ostream &OS, ListSeparator &LS, int First, 295 int Last) { 296 if (First != Last) 297 OS << LS << "r" << First << "-r" << Last; 298 else 299 OS << LS << "r" << First; 300 } 301 302 void ARMTargetAsmStreamer::emitARMWinCFISaveRegMask(unsigned Mask, bool Wide) { 303 if (Wide) 304 OS << "\t.seh_save_regs_w\t"; 305 else 306 OS << "\t.seh_save_regs\t"; 307 ListSeparator LS; 308 int First = -1; 309 OS << "{"; 310 for (int I = 0; I <= 12; I++) { 311 if (Mask & (1 << I)) { 312 if (First < 0) 313 First = I; 314 } else { 315 if (First >= 0) { 316 printRegs(OS, LS, First, I - 1); 317 First = -1; 318 } 319 } 320 } 321 if (First >= 0) 322 printRegs(OS, LS, First, 12); 323 if (Mask & (1 << 14)) 324 OS << LS << "lr"; 325 OS << "}\n"; 326 } 327 328 void ARMTargetAsmStreamer::emitARMWinCFISaveSP(unsigned Reg) { 329 OS << "\t.seh_save_sp\tr" << Reg << "\n"; 330 } 331 332 void ARMTargetAsmStreamer::emitARMWinCFISaveFRegs(unsigned First, 333 unsigned Last) { 334 if (First != Last) 335 OS << "\t.seh_save_fregs\t{d" << First << "-d" << Last << "}\n"; 336 else 337 OS << "\t.seh_save_fregs\t{d" << First << "}\n"; 338 } 339 340 void ARMTargetAsmStreamer::emitARMWinCFISaveLR(unsigned Offset) { 341 OS << "\t.seh_save_lr\t" << Offset << "\n"; 342 } 343 344 void ARMTargetAsmStreamer::emitARMWinCFIPrologEnd(bool Fragment) { 345 if (Fragment) 346 OS << "\t.seh_endprologue_fragment\n"; 347 else 348 OS << "\t.seh_endprologue\n"; 349 } 350 351 void ARMTargetAsmStreamer::emitARMWinCFINop(bool Wide) { 352 if (Wide) 353 OS << "\t.seh_nop_w\n"; 354 else 355 OS << "\t.seh_nop\n"; 356 } 357 358 void ARMTargetAsmStreamer::emitARMWinCFIEpilogStart(unsigned Condition) { 359 if (Condition == ARMCC::AL) 360 OS << "\t.seh_startepilogue\n"; 361 else 362 OS << "\t.seh_startepilogue_cond\t" 363 << ARMCondCodeToString(static_cast<ARMCC::CondCodes>(Condition)) << "\n"; 364 } 365 366 void ARMTargetAsmStreamer::emitARMWinCFIEpilogEnd() { 367 OS << "\t.seh_endepilogue\n"; 368 } 369 370 void ARMTargetAsmStreamer::emitARMWinCFICustom(unsigned Opcode) { 371 int I; 372 for (I = 3; I > 0; I--) 373 if (Opcode & (0xffu << (8 * I))) 374 break; 375 ListSeparator LS; 376 OS << "\t.seh_custom\t"; 377 for (; I >= 0; I--) 378 OS << LS << ((Opcode >> (8 * I)) & 0xff); 379 OS << "\n"; 380 } 381 382 class ARMTargetELFStreamer : public ARMTargetStreamer { 383 private: 384 StringRef CurrentVendor; 385 ARM::FPUKind FPU = ARM::FK_INVALID; 386 ARM::ArchKind Arch = ARM::ArchKind::INVALID; 387 ARM::ArchKind EmittedArch = ARM::ArchKind::INVALID; 388 389 MCSection *AttributeSection = nullptr; 390 391 void emitArchDefaultAttributes(); 392 void emitFPUDefaultAttributes(); 393 394 ARMELFStreamer &getStreamer(); 395 396 void emitFnStart() override; 397 void emitFnEnd() override; 398 void emitCantUnwind() override; 399 void emitPersonality(const MCSymbol *Personality) override; 400 void emitPersonalityIndex(unsigned Index) override; 401 void emitHandlerData() override; 402 void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override; 403 void emitMovSP(unsigned Reg, int64_t Offset = 0) override; 404 void emitPad(int64_t Offset) override; 405 void emitRegSave(const SmallVectorImpl<unsigned> &RegList, 406 bool isVector) override; 407 void emitUnwindRaw(int64_t Offset, 408 const SmallVectorImpl<uint8_t> &Opcodes) override; 409 410 void switchVendor(StringRef Vendor) override; 411 void emitAttribute(unsigned Attribute, unsigned Value) override; 412 void emitTextAttribute(unsigned Attribute, StringRef String) override; 413 void emitIntTextAttribute(unsigned Attribute, unsigned IntValue, 414 StringRef StringValue) override; 415 void emitArch(ARM::ArchKind Arch) override; 416 void emitObjectArch(ARM::ArchKind Arch) override; 417 void emitFPU(ARM::FPUKind FPU) override; 418 void emitInst(uint32_t Inst, char Suffix = '\0') override; 419 void finishAttributeSection() override; 420 void emitLabel(MCSymbol *Symbol) override; 421 422 void annotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override; 423 void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override; 424 425 // Reset state between object emissions 426 void reset() override; 427 428 public: 429 ARMTargetELFStreamer(MCStreamer &S) 430 : ARMTargetStreamer(S), CurrentVendor("aeabi") {} 431 }; 432 433 /// Extend the generic ELFStreamer class so that it can emit mapping symbols at 434 /// the appropriate points in the object files. These symbols are defined in the 435 /// ARM ELF ABI: infocenter.arm.com/help/topic/com.arm.../IHI0044D_aaelf.pdf. 436 /// 437 /// In brief: $a, $t or $d should be emitted at the start of each contiguous 438 /// region of ARM code, Thumb code or data in a section. In practice, this 439 /// emission does not rely on explicit assembler directives but on inherent 440 /// properties of the directives doing the emission (e.g. ".byte" is data, "add 441 /// r0, r0, r0" an instruction). 442 /// 443 /// As a result this system is orthogonal to the DataRegion infrastructure used 444 /// by MachO. Beware! 445 class ARMELFStreamer : public MCELFStreamer { 446 public: 447 friend class ARMTargetELFStreamer; 448 449 ARMELFStreamer(MCContext &Context, std::unique_ptr<MCAsmBackend> TAB, 450 std::unique_ptr<MCObjectWriter> OW, 451 std::unique_ptr<MCCodeEmitter> Emitter, bool IsThumb, 452 bool IsAndroid) 453 : MCELFStreamer(Context, std::move(TAB), std::move(OW), 454 std::move(Emitter)), 455 IsThumb(IsThumb), IsAndroid(IsAndroid) { 456 EHReset(); 457 } 458 459 ~ARMELFStreamer() override = default; 460 461 void finishImpl() override; 462 463 // ARM exception handling directives 464 void emitFnStart(); 465 void emitFnEnd(); 466 void emitCantUnwind(); 467 void emitPersonality(const MCSymbol *Per); 468 void emitPersonalityIndex(unsigned index); 469 void emitHandlerData(); 470 void emitSetFP(unsigned NewFpReg, unsigned NewSpReg, int64_t Offset = 0); 471 void emitMovSP(unsigned Reg, int64_t Offset = 0); 472 void emitPad(int64_t Offset); 473 void emitRegSave(const SmallVectorImpl<unsigned> &RegList, bool isVector); 474 void emitUnwindRaw(int64_t Offset, const SmallVectorImpl<uint8_t> &Opcodes); 475 void emitFill(const MCExpr &NumBytes, uint64_t FillValue, 476 SMLoc Loc) override { 477 emitDataMappingSymbol(); 478 MCObjectStreamer::emitFill(NumBytes, FillValue, Loc); 479 } 480 481 void changeSection(MCSection *Section, const MCExpr *Subsection) override { 482 LastMappingSymbols[getCurrentSection().first] = std::move(LastEMSInfo); 483 MCELFStreamer::changeSection(Section, Subsection); 484 auto LastMappingSymbol = LastMappingSymbols.find(Section); 485 if (LastMappingSymbol != LastMappingSymbols.end()) { 486 LastEMSInfo = std::move(LastMappingSymbol->second); 487 return; 488 } 489 LastEMSInfo.reset(new ElfMappingSymbolInfo(SMLoc(), nullptr, 0)); 490 } 491 492 /// This function is the one used to emit instruction data into the ELF 493 /// streamer. We override it to add the appropriate mapping symbol if 494 /// necessary. 495 void emitInstruction(const MCInst &Inst, 496 const MCSubtargetInfo &STI) override { 497 if (IsThumb) 498 EmitThumbMappingSymbol(); 499 else 500 EmitARMMappingSymbol(); 501 502 MCELFStreamer::emitInstruction(Inst, STI); 503 } 504 505 void emitInst(uint32_t Inst, char Suffix) { 506 unsigned Size; 507 char Buffer[4]; 508 const bool LittleEndian = getContext().getAsmInfo()->isLittleEndian(); 509 510 switch (Suffix) { 511 case '\0': 512 Size = 4; 513 514 assert(!IsThumb); 515 EmitARMMappingSymbol(); 516 for (unsigned II = 0, IE = Size; II != IE; II++) { 517 const unsigned I = LittleEndian ? (Size - II - 1) : II; 518 Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT); 519 } 520 521 break; 522 case 'n': 523 case 'w': 524 Size = (Suffix == 'n' ? 2 : 4); 525 526 assert(IsThumb); 527 EmitThumbMappingSymbol(); 528 // Thumb wide instructions are emitted as a pair of 16-bit words of the 529 // appropriate endianness. 530 for (unsigned II = 0, IE = Size; II != IE; II = II + 2) { 531 const unsigned I0 = LittleEndian ? II + 0 : II + 1; 532 const unsigned I1 = LittleEndian ? II + 1 : II + 0; 533 Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT); 534 Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT); 535 } 536 537 break; 538 default: 539 llvm_unreachable("Invalid Suffix"); 540 } 541 542 MCELFStreamer::emitBytes(StringRef(Buffer, Size)); 543 } 544 545 /// This is one of the functions used to emit data into an ELF section, so the 546 /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if 547 /// necessary. 548 void emitBytes(StringRef Data) override { 549 emitDataMappingSymbol(); 550 MCELFStreamer::emitBytes(Data); 551 } 552 553 void FlushPendingMappingSymbol() { 554 if (!LastEMSInfo->hasInfo()) 555 return; 556 ElfMappingSymbolInfo *EMS = LastEMSInfo.get(); 557 EmitMappingSymbol("$d", EMS->Loc, EMS->F, EMS->Offset); 558 EMS->resetInfo(); 559 } 560 561 /// This is one of the functions used to emit data into an ELF section, so the 562 /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if 563 /// necessary. 564 void emitValueImpl(const MCExpr *Value, unsigned Size, SMLoc Loc) override { 565 if (const MCSymbolRefExpr *SRE = dyn_cast_or_null<MCSymbolRefExpr>(Value)) { 566 if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_SBREL && !(Size == 4)) { 567 getContext().reportError(Loc, "relocated expression must be 32-bit"); 568 return; 569 } 570 getOrCreateDataFragment(); 571 } 572 573 emitDataMappingSymbol(); 574 MCELFStreamer::emitValueImpl(Value, Size, Loc); 575 } 576 577 void emitAssemblerFlag(MCAssemblerFlag Flag) override { 578 MCELFStreamer::emitAssemblerFlag(Flag); 579 580 switch (Flag) { 581 case MCAF_SyntaxUnified: 582 return; // no-op here. 583 case MCAF_Code16: 584 IsThumb = true; 585 return; // Change to Thumb mode 586 case MCAF_Code32: 587 IsThumb = false; 588 return; // Change to ARM mode 589 case MCAF_Code64: 590 return; 591 case MCAF_SubsectionsViaSymbols: 592 return; 593 } 594 } 595 596 /// If a label is defined before the .type directive sets the label's type 597 /// then the label can't be recorded as thumb function when the label is 598 /// defined. We override emitSymbolAttribute() which is called as part of the 599 /// parsing of .type so that if the symbol has already been defined we can 600 /// record the label as Thumb. FIXME: there is a corner case where the state 601 /// is changed in between the label definition and the .type directive, this 602 /// is not expected to occur in practice and handling it would require the 603 /// backend to track IsThumb for every label. 604 bool emitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute) override { 605 bool Val = MCELFStreamer::emitSymbolAttribute(Symbol, Attribute); 606 607 if (!IsThumb) 608 return Val; 609 610 unsigned Type = cast<MCSymbolELF>(Symbol)->getType(); 611 if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC) && 612 Symbol->isDefined()) 613 getAssembler().setIsThumbFunc(Symbol); 614 615 return Val; 616 }; 617 618 private: 619 enum ElfMappingSymbol { 620 EMS_None, 621 EMS_ARM, 622 EMS_Thumb, 623 EMS_Data 624 }; 625 626 struct ElfMappingSymbolInfo { 627 explicit ElfMappingSymbolInfo(SMLoc Loc, MCFragment *F, uint64_t O) 628 : Loc(Loc), F(F), Offset(O), State(EMS_None) {} 629 void resetInfo() { 630 F = nullptr; 631 Offset = 0; 632 } 633 bool hasInfo() { return F != nullptr; } 634 SMLoc Loc; 635 MCFragment *F; 636 uint64_t Offset; 637 ElfMappingSymbol State; 638 }; 639 640 void emitDataMappingSymbol() { 641 if (LastEMSInfo->State == EMS_Data) 642 return; 643 else if (LastEMSInfo->State == EMS_None) { 644 // This is a tentative symbol, it won't really be emitted until it's 645 // actually needed. 646 ElfMappingSymbolInfo *EMS = LastEMSInfo.get(); 647 auto *DF = dyn_cast_or_null<MCDataFragment>(getCurrentFragment()); 648 if (!DF) 649 return; 650 EMS->Loc = SMLoc(); 651 EMS->F = getCurrentFragment(); 652 EMS->Offset = DF->getContents().size(); 653 LastEMSInfo->State = EMS_Data; 654 return; 655 } 656 EmitMappingSymbol("$d"); 657 LastEMSInfo->State = EMS_Data; 658 } 659 660 void EmitThumbMappingSymbol() { 661 if (LastEMSInfo->State == EMS_Thumb) 662 return; 663 FlushPendingMappingSymbol(); 664 EmitMappingSymbol("$t"); 665 LastEMSInfo->State = EMS_Thumb; 666 } 667 668 void EmitARMMappingSymbol() { 669 if (LastEMSInfo->State == EMS_ARM) 670 return; 671 FlushPendingMappingSymbol(); 672 EmitMappingSymbol("$a"); 673 LastEMSInfo->State = EMS_ARM; 674 } 675 676 void EmitMappingSymbol(StringRef Name) { 677 auto *Symbol = cast<MCSymbolELF>(getContext().getOrCreateSymbol( 678 Name + "." + Twine(MappingSymbolCounter++))); 679 emitLabel(Symbol); 680 681 Symbol->setType(ELF::STT_NOTYPE); 682 Symbol->setBinding(ELF::STB_LOCAL); 683 } 684 685 void EmitMappingSymbol(StringRef Name, SMLoc Loc, MCFragment *F, 686 uint64_t Offset) { 687 auto *Symbol = cast<MCSymbolELF>(getContext().getOrCreateSymbol( 688 Name + "." + Twine(MappingSymbolCounter++))); 689 emitLabelAtPos(Symbol, Loc, F, Offset); 690 Symbol->setType(ELF::STT_NOTYPE); 691 Symbol->setBinding(ELF::STB_LOCAL); 692 } 693 694 void emitThumbFunc(MCSymbol *Func) override { 695 getAssembler().setIsThumbFunc(Func); 696 emitSymbolAttribute(Func, MCSA_ELF_TypeFunction); 697 } 698 699 // Helper functions for ARM exception handling directives 700 void EHReset(); 701 702 // Reset state between object emissions 703 void reset() override; 704 705 void EmitPersonalityFixup(StringRef Name); 706 void FlushPendingOffset(); 707 void FlushUnwindOpcodes(bool NoHandlerData); 708 709 void SwitchToEHSection(StringRef Prefix, unsigned Type, unsigned Flags, 710 SectionKind Kind, const MCSymbol &Fn); 711 void SwitchToExTabSection(const MCSymbol &FnStart); 712 void SwitchToExIdxSection(const MCSymbol &FnStart); 713 714 void EmitFixup(const MCExpr *Expr, MCFixupKind Kind); 715 716 bool IsThumb; 717 bool IsAndroid; 718 int64_t MappingSymbolCounter = 0; 719 720 DenseMap<const MCSection *, std::unique_ptr<ElfMappingSymbolInfo>> 721 LastMappingSymbols; 722 723 std::unique_ptr<ElfMappingSymbolInfo> LastEMSInfo; 724 725 // ARM Exception Handling Frame Information 726 MCSymbol *ExTab; 727 MCSymbol *FnStart; 728 const MCSymbol *Personality; 729 unsigned PersonalityIndex; 730 unsigned FPReg; // Frame pointer register 731 int64_t FPOffset; // Offset: (final frame pointer) - (initial $sp) 732 int64_t SPOffset; // Offset: (final $sp) - (initial $sp) 733 int64_t PendingOffset; // Offset: (final $sp) - (emitted $sp) 734 bool UsedFP; 735 bool CantUnwind; 736 SmallVector<uint8_t, 64> Opcodes; 737 UnwindOpcodeAssembler UnwindOpAsm; 738 }; 739 740 } // end anonymous namespace 741 742 ARMELFStreamer &ARMTargetELFStreamer::getStreamer() { 743 return static_cast<ARMELFStreamer &>(Streamer); 744 } 745 746 void ARMTargetELFStreamer::emitFnStart() { getStreamer().emitFnStart(); } 747 void ARMTargetELFStreamer::emitFnEnd() { getStreamer().emitFnEnd(); } 748 void ARMTargetELFStreamer::emitCantUnwind() { getStreamer().emitCantUnwind(); } 749 750 void ARMTargetELFStreamer::emitPersonality(const MCSymbol *Personality) { 751 getStreamer().emitPersonality(Personality); 752 } 753 754 void ARMTargetELFStreamer::emitPersonalityIndex(unsigned Index) { 755 getStreamer().emitPersonalityIndex(Index); 756 } 757 758 void ARMTargetELFStreamer::emitHandlerData() { 759 getStreamer().emitHandlerData(); 760 } 761 762 void ARMTargetELFStreamer::emitSetFP(unsigned FpReg, unsigned SpReg, 763 int64_t Offset) { 764 getStreamer().emitSetFP(FpReg, SpReg, Offset); 765 } 766 767 void ARMTargetELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) { 768 getStreamer().emitMovSP(Reg, Offset); 769 } 770 771 void ARMTargetELFStreamer::emitPad(int64_t Offset) { 772 getStreamer().emitPad(Offset); 773 } 774 775 void ARMTargetELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList, 776 bool isVector) { 777 getStreamer().emitRegSave(RegList, isVector); 778 } 779 780 void ARMTargetELFStreamer::emitUnwindRaw(int64_t Offset, 781 const SmallVectorImpl<uint8_t> &Opcodes) { 782 getStreamer().emitUnwindRaw(Offset, Opcodes); 783 } 784 785 void ARMTargetELFStreamer::switchVendor(StringRef Vendor) { 786 assert(!Vendor.empty() && "Vendor cannot be empty."); 787 788 if (CurrentVendor == Vendor) 789 return; 790 791 if (!CurrentVendor.empty()) 792 finishAttributeSection(); 793 794 assert(getStreamer().Contents.empty() && 795 ".ARM.attributes should be flushed before changing vendor"); 796 CurrentVendor = Vendor; 797 798 } 799 800 void ARMTargetELFStreamer::emitAttribute(unsigned Attribute, unsigned Value) { 801 getStreamer().setAttributeItem(Attribute, Value, 802 /* OverwriteExisting= */ true); 803 } 804 805 void ARMTargetELFStreamer::emitTextAttribute(unsigned Attribute, 806 StringRef Value) { 807 getStreamer().setAttributeItem(Attribute, Value, 808 /* OverwriteExisting= */ true); 809 } 810 811 void ARMTargetELFStreamer::emitIntTextAttribute(unsigned Attribute, 812 unsigned IntValue, 813 StringRef StringValue) { 814 getStreamer().setAttributeItems(Attribute, IntValue, StringValue, 815 /* OverwriteExisting= */ true); 816 } 817 818 void ARMTargetELFStreamer::emitArch(ARM::ArchKind Value) { 819 Arch = Value; 820 } 821 822 void ARMTargetELFStreamer::emitObjectArch(ARM::ArchKind Value) { 823 EmittedArch = Value; 824 } 825 826 void ARMTargetELFStreamer::emitArchDefaultAttributes() { 827 using namespace ARMBuildAttrs; 828 ARMELFStreamer &S = getStreamer(); 829 830 S.setAttributeItem(CPU_name, ARM::getCPUAttr(Arch), false); 831 832 if (EmittedArch == ARM::ArchKind::INVALID) 833 S.setAttributeItem(CPU_arch, ARM::getArchAttr(Arch), false); 834 else 835 S.setAttributeItem(CPU_arch, ARM::getArchAttr(EmittedArch), false); 836 837 switch (Arch) { 838 case ARM::ArchKind::ARMV4: 839 S.setAttributeItem(ARM_ISA_use, Allowed, false); 840 break; 841 842 case ARM::ArchKind::ARMV4T: 843 case ARM::ArchKind::ARMV5T: 844 case ARM::ArchKind::XSCALE: 845 case ARM::ArchKind::ARMV5TE: 846 case ARM::ArchKind::ARMV6: 847 S.setAttributeItem(ARM_ISA_use, Allowed, false); 848 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 849 break; 850 851 case ARM::ArchKind::ARMV6T2: 852 S.setAttributeItem(ARM_ISA_use, Allowed, false); 853 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 854 break; 855 856 case ARM::ArchKind::ARMV6K: 857 case ARM::ArchKind::ARMV6KZ: 858 S.setAttributeItem(ARM_ISA_use, Allowed, false); 859 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 860 S.setAttributeItem(Virtualization_use, AllowTZ, false); 861 break; 862 863 case ARM::ArchKind::ARMV6M: 864 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 865 break; 866 867 case ARM::ArchKind::ARMV7A: 868 S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false); 869 S.setAttributeItem(ARM_ISA_use, Allowed, false); 870 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 871 break; 872 873 case ARM::ArchKind::ARMV7R: 874 S.setAttributeItem(CPU_arch_profile, RealTimeProfile, false); 875 S.setAttributeItem(ARM_ISA_use, Allowed, false); 876 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 877 break; 878 879 case ARM::ArchKind::ARMV7EM: 880 case ARM::ArchKind::ARMV7M: 881 S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false); 882 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 883 break; 884 885 case ARM::ArchKind::ARMV8A: 886 case ARM::ArchKind::ARMV8_1A: 887 case ARM::ArchKind::ARMV8_2A: 888 case ARM::ArchKind::ARMV8_3A: 889 case ARM::ArchKind::ARMV8_4A: 890 case ARM::ArchKind::ARMV8_5A: 891 case ARM::ArchKind::ARMV8_6A: 892 case ARM::ArchKind::ARMV8_7A: 893 case ARM::ArchKind::ARMV8_8A: 894 case ARM::ArchKind::ARMV8_9A: 895 case ARM::ArchKind::ARMV9A: 896 case ARM::ArchKind::ARMV9_1A: 897 case ARM::ArchKind::ARMV9_2A: 898 case ARM::ArchKind::ARMV9_3A: 899 case ARM::ArchKind::ARMV9_4A: 900 S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false); 901 S.setAttributeItem(ARM_ISA_use, Allowed, false); 902 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 903 S.setAttributeItem(MPextension_use, Allowed, false); 904 S.setAttributeItem(Virtualization_use, AllowTZVirtualization, false); 905 break; 906 907 case ARM::ArchKind::ARMV8MBaseline: 908 case ARM::ArchKind::ARMV8MMainline: 909 S.setAttributeItem(THUMB_ISA_use, AllowThumbDerived, false); 910 S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false); 911 break; 912 913 case ARM::ArchKind::IWMMXT: 914 S.setAttributeItem(ARM_ISA_use, Allowed, false); 915 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 916 S.setAttributeItem(WMMX_arch, AllowWMMXv1, false); 917 break; 918 919 case ARM::ArchKind::IWMMXT2: 920 S.setAttributeItem(ARM_ISA_use, Allowed, false); 921 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 922 S.setAttributeItem(WMMX_arch, AllowWMMXv2, false); 923 break; 924 925 default: 926 report_fatal_error("Unknown Arch: " + Twine(ARM::getArchName(Arch))); 927 break; 928 } 929 } 930 931 void ARMTargetELFStreamer::emitFPU(ARM::FPUKind Value) { FPU = Value; } 932 933 void ARMTargetELFStreamer::emitFPUDefaultAttributes() { 934 ARMELFStreamer &S = getStreamer(); 935 936 switch (FPU) { 937 case ARM::FK_VFP: 938 case ARM::FK_VFPV2: 939 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv2, 940 /* OverwriteExisting= */ false); 941 break; 942 943 case ARM::FK_VFPV3: 944 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 945 /* OverwriteExisting= */ false); 946 break; 947 948 case ARM::FK_VFPV3_FP16: 949 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 950 /* OverwriteExisting= */ false); 951 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 952 /* OverwriteExisting= */ false); 953 break; 954 955 case ARM::FK_VFPV3_D16: 956 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 957 /* OverwriteExisting= */ false); 958 break; 959 960 case ARM::FK_VFPV3_D16_FP16: 961 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 962 /* OverwriteExisting= */ false); 963 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 964 /* OverwriteExisting= */ false); 965 break; 966 967 case ARM::FK_VFPV3XD: 968 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 969 /* OverwriteExisting= */ false); 970 break; 971 case ARM::FK_VFPV3XD_FP16: 972 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 973 /* OverwriteExisting= */ false); 974 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 975 /* OverwriteExisting= */ false); 976 break; 977 978 case ARM::FK_VFPV4: 979 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A, 980 /* OverwriteExisting= */ false); 981 break; 982 983 // ABI_HardFP_use is handled in ARMAsmPrinter, so _SP_D16 is treated the same 984 // as _D16 here. 985 case ARM::FK_FPV4_SP_D16: 986 case ARM::FK_VFPV4_D16: 987 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4B, 988 /* OverwriteExisting= */ false); 989 break; 990 991 case ARM::FK_FP_ARMV8: 992 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A, 993 /* OverwriteExisting= */ false); 994 break; 995 996 // FPV5_D16 is identical to FP_ARMV8 except for the number of D registers, so 997 // uses the FP_ARMV8_D16 build attribute. 998 case ARM::FK_FPV5_SP_D16: 999 case ARM::FK_FPV5_D16: 1000 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8B, 1001 /* OverwriteExisting= */ false); 1002 break; 1003 1004 case ARM::FK_NEON: 1005 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 1006 /* OverwriteExisting= */ false); 1007 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 1008 ARMBuildAttrs::AllowNeon, 1009 /* OverwriteExisting= */ false); 1010 break; 1011 1012 case ARM::FK_NEON_FP16: 1013 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 1014 /* OverwriteExisting= */ false); 1015 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 1016 ARMBuildAttrs::AllowNeon, 1017 /* OverwriteExisting= */ false); 1018 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 1019 /* OverwriteExisting= */ false); 1020 break; 1021 1022 case ARM::FK_NEON_VFPV4: 1023 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A, 1024 /* OverwriteExisting= */ false); 1025 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 1026 ARMBuildAttrs::AllowNeon2, 1027 /* OverwriteExisting= */ false); 1028 break; 1029 1030 case ARM::FK_NEON_FP_ARMV8: 1031 case ARM::FK_CRYPTO_NEON_FP_ARMV8: 1032 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A, 1033 /* OverwriteExisting= */ false); 1034 // 'Advanced_SIMD_arch' must be emitted not here, but within 1035 // ARMAsmPrinter::emitAttributes(), depending on hasV8Ops() and hasV8_1a() 1036 break; 1037 1038 case ARM::FK_SOFTVFP: 1039 case ARM::FK_NONE: 1040 break; 1041 1042 default: 1043 report_fatal_error("Unknown FPU: " + Twine(FPU)); 1044 break; 1045 } 1046 } 1047 1048 void ARMTargetELFStreamer::finishAttributeSection() { 1049 ARMELFStreamer &S = getStreamer(); 1050 1051 if (FPU != ARM::FK_INVALID) 1052 emitFPUDefaultAttributes(); 1053 1054 if (Arch != ARM::ArchKind::INVALID) 1055 emitArchDefaultAttributes(); 1056 1057 if (S.Contents.empty()) 1058 return; 1059 1060 auto LessTag = [](const MCELFStreamer::AttributeItem &LHS, 1061 const MCELFStreamer::AttributeItem &RHS) -> bool { 1062 // The conformance tag must be emitted first when serialised into an 1063 // object file. Specifically, the addenda to the ARM ABI states that 1064 // (2.3.7.4): 1065 // 1066 // "To simplify recognition by consumers in the common case of claiming 1067 // conformity for the whole file, this tag should be emitted first in a 1068 // file-scope sub-subsection of the first public subsection of the 1069 // attributes section." 1070 // 1071 // So it is special-cased in this comparison predicate when the 1072 // attributes are sorted in finishAttributeSection(). 1073 return (RHS.Tag != ARMBuildAttrs::conformance) && 1074 ((LHS.Tag == ARMBuildAttrs::conformance) || (LHS.Tag < RHS.Tag)); 1075 }; 1076 llvm::sort(S.Contents, LessTag); 1077 1078 S.emitAttributesSection(CurrentVendor, ".ARM.attributes", 1079 ELF::SHT_ARM_ATTRIBUTES, AttributeSection); 1080 1081 FPU = ARM::FK_INVALID; 1082 } 1083 1084 void ARMTargetELFStreamer::emitLabel(MCSymbol *Symbol) { 1085 ARMELFStreamer &Streamer = getStreamer(); 1086 if (!Streamer.IsThumb) 1087 return; 1088 1089 Streamer.getAssembler().registerSymbol(*Symbol); 1090 unsigned Type = cast<MCSymbolELF>(Symbol)->getType(); 1091 if (Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC) 1092 Streamer.emitThumbFunc(Symbol); 1093 } 1094 1095 void ARMTargetELFStreamer::annotateTLSDescriptorSequence( 1096 const MCSymbolRefExpr *S) { 1097 getStreamer().EmitFixup(S, FK_Data_4); 1098 } 1099 1100 void ARMTargetELFStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) { 1101 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Value)) { 1102 const MCSymbol &Sym = SRE->getSymbol(); 1103 if (!Sym.isDefined()) { 1104 getStreamer().emitAssignment(Symbol, Value); 1105 return; 1106 } 1107 } 1108 1109 getStreamer().emitThumbFunc(Symbol); 1110 getStreamer().emitAssignment(Symbol, Value); 1111 } 1112 1113 void ARMTargetELFStreamer::emitInst(uint32_t Inst, char Suffix) { 1114 getStreamer().emitInst(Inst, Suffix); 1115 } 1116 1117 void ARMTargetELFStreamer::reset() { AttributeSection = nullptr; } 1118 1119 void ARMELFStreamer::finishImpl() { 1120 MCTargetStreamer &TS = *getTargetStreamer(); 1121 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1122 ATS.finishAttributeSection(); 1123 1124 MCELFStreamer::finishImpl(); 1125 } 1126 1127 void ARMELFStreamer::reset() { 1128 MCTargetStreamer &TS = *getTargetStreamer(); 1129 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1130 ATS.reset(); 1131 MappingSymbolCounter = 0; 1132 MCELFStreamer::reset(); 1133 LastMappingSymbols.clear(); 1134 LastEMSInfo.reset(); 1135 // MCELFStreamer clear's the assembler's e_flags. However, for 1136 // arm we manually set the ABI version on streamer creation, so 1137 // do the same here 1138 getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5); 1139 } 1140 1141 inline void ARMELFStreamer::SwitchToEHSection(StringRef Prefix, 1142 unsigned Type, 1143 unsigned Flags, 1144 SectionKind Kind, 1145 const MCSymbol &Fn) { 1146 const MCSectionELF &FnSection = 1147 static_cast<const MCSectionELF &>(Fn.getSection()); 1148 1149 // Create the name for new section 1150 StringRef FnSecName(FnSection.getName()); 1151 SmallString<128> EHSecName(Prefix); 1152 if (FnSecName != ".text") { 1153 EHSecName += FnSecName; 1154 } 1155 1156 // Get .ARM.extab or .ARM.exidx section 1157 const MCSymbolELF *Group = FnSection.getGroup(); 1158 if (Group) 1159 Flags |= ELF::SHF_GROUP; 1160 MCSectionELF *EHSection = getContext().getELFSection( 1161 EHSecName, Type, Flags, 0, Group, /*IsComdat=*/true, 1162 FnSection.getUniqueID(), 1163 static_cast<const MCSymbolELF *>(FnSection.getBeginSymbol())); 1164 1165 assert(EHSection && "Failed to get the required EH section"); 1166 1167 // Switch to .ARM.extab or .ARM.exidx section 1168 switchSection(EHSection); 1169 emitValueToAlignment(Align(4), 0, 1, 0); 1170 } 1171 1172 inline void ARMELFStreamer::SwitchToExTabSection(const MCSymbol &FnStart) { 1173 SwitchToEHSection(".ARM.extab", ELF::SHT_PROGBITS, ELF::SHF_ALLOC, 1174 SectionKind::getData(), FnStart); 1175 } 1176 1177 inline void ARMELFStreamer::SwitchToExIdxSection(const MCSymbol &FnStart) { 1178 SwitchToEHSection(".ARM.exidx", ELF::SHT_ARM_EXIDX, 1179 ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER, 1180 SectionKind::getData(), FnStart); 1181 } 1182 1183 void ARMELFStreamer::EmitFixup(const MCExpr *Expr, MCFixupKind Kind) { 1184 MCDataFragment *Frag = getOrCreateDataFragment(); 1185 Frag->getFixups().push_back(MCFixup::create(Frag->getContents().size(), Expr, 1186 Kind)); 1187 } 1188 1189 void ARMELFStreamer::EHReset() { 1190 ExTab = nullptr; 1191 FnStart = nullptr; 1192 Personality = nullptr; 1193 PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX; 1194 FPReg = ARM::SP; 1195 FPOffset = 0; 1196 SPOffset = 0; 1197 PendingOffset = 0; 1198 UsedFP = false; 1199 CantUnwind = false; 1200 1201 Opcodes.clear(); 1202 UnwindOpAsm.Reset(); 1203 } 1204 1205 void ARMELFStreamer::emitFnStart() { 1206 assert(FnStart == nullptr); 1207 FnStart = getContext().createTempSymbol(); 1208 emitLabel(FnStart); 1209 } 1210 1211 void ARMELFStreamer::emitFnEnd() { 1212 assert(FnStart && ".fnstart must precedes .fnend"); 1213 1214 // Emit unwind opcodes if there is no .handlerdata directive 1215 if (!ExTab && !CantUnwind) 1216 FlushUnwindOpcodes(true); 1217 1218 // Emit the exception index table entry 1219 SwitchToExIdxSection(*FnStart); 1220 1221 // The EHABI requires a dependency preserving R_ARM_NONE relocation to the 1222 // personality routine to protect it from an arbitrary platform's static 1223 // linker garbage collection. We disable this for Android where the unwinder 1224 // is either dynamically linked or directly references the personality 1225 // routine. 1226 if (PersonalityIndex < ARM::EHABI::NUM_PERSONALITY_INDEX && !IsAndroid) 1227 EmitPersonalityFixup(GetAEABIUnwindPersonalityName(PersonalityIndex)); 1228 1229 const MCSymbolRefExpr *FnStartRef = 1230 MCSymbolRefExpr::create(FnStart, 1231 MCSymbolRefExpr::VK_ARM_PREL31, 1232 getContext()); 1233 1234 emitValue(FnStartRef, 4); 1235 1236 if (CantUnwind) { 1237 emitInt32(ARM::EHABI::EXIDX_CANTUNWIND); 1238 } else if (ExTab) { 1239 // Emit a reference to the unwind opcodes in the ".ARM.extab" section. 1240 const MCSymbolRefExpr *ExTabEntryRef = 1241 MCSymbolRefExpr::create(ExTab, 1242 MCSymbolRefExpr::VK_ARM_PREL31, 1243 getContext()); 1244 emitValue(ExTabEntryRef, 4); 1245 } else { 1246 // For the __aeabi_unwind_cpp_pr0, we have to emit the unwind opcodes in 1247 // the second word of exception index table entry. The size of the unwind 1248 // opcodes should always be 4 bytes. 1249 assert(PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0 && 1250 "Compact model must use __aeabi_unwind_cpp_pr0 as personality"); 1251 assert(Opcodes.size() == 4u && 1252 "Unwind opcode size for __aeabi_unwind_cpp_pr0 must be equal to 4"); 1253 uint64_t Intval = Opcodes[0] | 1254 Opcodes[1] << 8 | 1255 Opcodes[2] << 16 | 1256 Opcodes[3] << 24; 1257 emitIntValue(Intval, Opcodes.size()); 1258 } 1259 1260 // Switch to the section containing FnStart 1261 switchSection(&FnStart->getSection()); 1262 1263 // Clean exception handling frame information 1264 EHReset(); 1265 } 1266 1267 void ARMELFStreamer::emitCantUnwind() { CantUnwind = true; } 1268 1269 // Add the R_ARM_NONE fixup at the same position 1270 void ARMELFStreamer::EmitPersonalityFixup(StringRef Name) { 1271 const MCSymbol *PersonalitySym = getContext().getOrCreateSymbol(Name); 1272 1273 const MCSymbolRefExpr *PersonalityRef = MCSymbolRefExpr::create( 1274 PersonalitySym, MCSymbolRefExpr::VK_ARM_NONE, getContext()); 1275 1276 visitUsedExpr(*PersonalityRef); 1277 MCDataFragment *DF = getOrCreateDataFragment(); 1278 DF->getFixups().push_back(MCFixup::create(DF->getContents().size(), 1279 PersonalityRef, 1280 MCFixup::getKindForSize(4, false))); 1281 } 1282 1283 void ARMELFStreamer::FlushPendingOffset() { 1284 if (PendingOffset != 0) { 1285 UnwindOpAsm.EmitSPOffset(-PendingOffset); 1286 PendingOffset = 0; 1287 } 1288 } 1289 1290 void ARMELFStreamer::FlushUnwindOpcodes(bool NoHandlerData) { 1291 // Emit the unwind opcode to restore $sp. 1292 if (UsedFP) { 1293 const MCRegisterInfo *MRI = getContext().getRegisterInfo(); 1294 int64_t LastRegSaveSPOffset = SPOffset - PendingOffset; 1295 UnwindOpAsm.EmitSPOffset(LastRegSaveSPOffset - FPOffset); 1296 UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg)); 1297 } else { 1298 FlushPendingOffset(); 1299 } 1300 1301 // Finalize the unwind opcode sequence 1302 UnwindOpAsm.Finalize(PersonalityIndex, Opcodes); 1303 1304 // For compact model 0, we have to emit the unwind opcodes in the .ARM.exidx 1305 // section. Thus, we don't have to create an entry in the .ARM.extab 1306 // section. 1307 if (NoHandlerData && PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0) 1308 return; 1309 1310 // Switch to .ARM.extab section. 1311 SwitchToExTabSection(*FnStart); 1312 1313 // Create .ARM.extab label for offset in .ARM.exidx 1314 assert(!ExTab); 1315 ExTab = getContext().createTempSymbol(); 1316 emitLabel(ExTab); 1317 1318 // Emit personality 1319 if (Personality) { 1320 const MCSymbolRefExpr *PersonalityRef = 1321 MCSymbolRefExpr::create(Personality, 1322 MCSymbolRefExpr::VK_ARM_PREL31, 1323 getContext()); 1324 1325 emitValue(PersonalityRef, 4); 1326 } 1327 1328 // Emit unwind opcodes 1329 assert((Opcodes.size() % 4) == 0 && 1330 "Unwind opcode size for __aeabi_cpp_unwind_pr0 must be multiple of 4"); 1331 for (unsigned I = 0; I != Opcodes.size(); I += 4) { 1332 uint64_t Intval = Opcodes[I] | 1333 Opcodes[I + 1] << 8 | 1334 Opcodes[I + 2] << 16 | 1335 Opcodes[I + 3] << 24; 1336 emitInt32(Intval); 1337 } 1338 1339 // According to ARM EHABI section 9.2, if the __aeabi_unwind_cpp_pr1() or 1340 // __aeabi_unwind_cpp_pr2() is used, then the handler data must be emitted 1341 // after the unwind opcodes. The handler data consists of several 32-bit 1342 // words, and should be terminated by zero. 1343 // 1344 // In case that the .handlerdata directive is not specified by the 1345 // programmer, we should emit zero to terminate the handler data. 1346 if (NoHandlerData && !Personality) 1347 emitInt32(0); 1348 } 1349 1350 void ARMELFStreamer::emitHandlerData() { FlushUnwindOpcodes(false); } 1351 1352 void ARMELFStreamer::emitPersonality(const MCSymbol *Per) { 1353 Personality = Per; 1354 UnwindOpAsm.setPersonality(Per); 1355 } 1356 1357 void ARMELFStreamer::emitPersonalityIndex(unsigned Index) { 1358 assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && "invalid index"); 1359 PersonalityIndex = Index; 1360 } 1361 1362 void ARMELFStreamer::emitSetFP(unsigned NewFPReg, unsigned NewSPReg, 1363 int64_t Offset) { 1364 assert((NewSPReg == ARM::SP || NewSPReg == FPReg) && 1365 "the operand of .setfp directive should be either $sp or $fp"); 1366 1367 UsedFP = true; 1368 FPReg = NewFPReg; 1369 1370 if (NewSPReg == ARM::SP) 1371 FPOffset = SPOffset + Offset; 1372 else 1373 FPOffset += Offset; 1374 } 1375 1376 void ARMELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) { 1377 assert((Reg != ARM::SP && Reg != ARM::PC) && 1378 "the operand of .movsp cannot be either sp or pc"); 1379 assert(FPReg == ARM::SP && "current FP must be SP"); 1380 1381 FlushPendingOffset(); 1382 1383 FPReg = Reg; 1384 FPOffset = SPOffset + Offset; 1385 1386 const MCRegisterInfo *MRI = getContext().getRegisterInfo(); 1387 UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg)); 1388 } 1389 1390 void ARMELFStreamer::emitPad(int64_t Offset) { 1391 // Track the change of the $sp offset 1392 SPOffset -= Offset; 1393 1394 // To squash multiple .pad directives, we should delay the unwind opcode 1395 // until the .save, .vsave, .handlerdata, or .fnend directives. 1396 PendingOffset -= Offset; 1397 } 1398 1399 static std::pair<unsigned, unsigned> 1400 collectHWRegs(const MCRegisterInfo &MRI, unsigned Idx, 1401 const SmallVectorImpl<unsigned> &RegList, bool IsVector, 1402 uint32_t &Mask_) { 1403 uint32_t Mask = 0; 1404 unsigned Count = 0; 1405 while (Idx > 0) { 1406 unsigned Reg = RegList[Idx - 1]; 1407 if (Reg == ARM::RA_AUTH_CODE) 1408 break; 1409 Reg = MRI.getEncodingValue(Reg); 1410 assert(Reg < (IsVector ? 32U : 16U) && "Register out of range"); 1411 unsigned Bit = (1u << Reg); 1412 if ((Mask & Bit) == 0) { 1413 Mask |= Bit; 1414 ++Count; 1415 } 1416 --Idx; 1417 } 1418 1419 Mask_ = Mask; 1420 return {Idx, Count}; 1421 } 1422 1423 void ARMELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList, 1424 bool IsVector) { 1425 uint32_t Mask; 1426 unsigned Idx, Count; 1427 const MCRegisterInfo &MRI = *getContext().getRegisterInfo(); 1428 1429 // Collect the registers in the register list. Issue unwinding instructions in 1430 // three parts: ordinary hardware registers, return address authentication 1431 // code pseudo register, the rest of the registers. The RA PAC is kept in an 1432 // architectural register (usually r12), but we treat it as a special case in 1433 // order to distinguish between that register containing RA PAC or a general 1434 // value. 1435 Idx = RegList.size(); 1436 while (Idx > 0) { 1437 std::tie(Idx, Count) = collectHWRegs(MRI, Idx, RegList, IsVector, Mask); 1438 if (Count) { 1439 // Track the change the $sp offset: For the .save directive, the 1440 // corresponding push instruction will decrease the $sp by (4 * Count). 1441 // For the .vsave directive, the corresponding vpush instruction will 1442 // decrease $sp by (8 * Count). 1443 SPOffset -= Count * (IsVector ? 8 : 4); 1444 1445 // Emit the opcode 1446 FlushPendingOffset(); 1447 if (IsVector) 1448 UnwindOpAsm.EmitVFPRegSave(Mask); 1449 else 1450 UnwindOpAsm.EmitRegSave(Mask); 1451 } else if (Idx > 0 && RegList[Idx - 1] == ARM::RA_AUTH_CODE) { 1452 --Idx; 1453 SPOffset -= 4; 1454 FlushPendingOffset(); 1455 UnwindOpAsm.EmitRegSave(0); 1456 } 1457 } 1458 } 1459 1460 void ARMELFStreamer::emitUnwindRaw(int64_t Offset, 1461 const SmallVectorImpl<uint8_t> &Opcodes) { 1462 FlushPendingOffset(); 1463 SPOffset = SPOffset - Offset; 1464 UnwindOpAsm.EmitRaw(Opcodes); 1465 } 1466 1467 namespace llvm { 1468 1469 MCTargetStreamer *createARMTargetAsmStreamer(MCStreamer &S, 1470 formatted_raw_ostream &OS, 1471 MCInstPrinter *InstPrint, 1472 bool isVerboseAsm) { 1473 return new ARMTargetAsmStreamer(S, OS, *InstPrint, isVerboseAsm); 1474 } 1475 1476 MCTargetStreamer *createARMNullTargetStreamer(MCStreamer &S) { 1477 return new ARMTargetStreamer(S); 1478 } 1479 1480 MCTargetStreamer *createARMObjectTargetELFStreamer(MCStreamer &S) { 1481 return new ARMTargetELFStreamer(S); 1482 } 1483 1484 MCELFStreamer *createARMELFStreamer(MCContext &Context, 1485 std::unique_ptr<MCAsmBackend> TAB, 1486 std::unique_ptr<MCObjectWriter> OW, 1487 std::unique_ptr<MCCodeEmitter> Emitter, 1488 bool RelaxAll, bool IsThumb, 1489 bool IsAndroid) { 1490 ARMELFStreamer *S = 1491 new ARMELFStreamer(Context, std::move(TAB), std::move(OW), 1492 std::move(Emitter), IsThumb, IsAndroid); 1493 // FIXME: This should eventually end up somewhere else where more 1494 // intelligent flag decisions can be made. For now we are just maintaining 1495 // the status quo for ARM and setting EF_ARM_EABI_VER5 as the default. 1496 S->getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5); 1497 1498 if (RelaxAll) 1499 S->getAssembler().setRelaxAll(true); 1500 return S; 1501 } 1502 1503 } // end namespace llvm 1504