1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MCTargetDesc/ARMAsmBackend.h" 10 #include "MCTargetDesc/ARMAddressingModes.h" 11 #include "MCTargetDesc/ARMAsmBackendDarwin.h" 12 #include "MCTargetDesc/ARMAsmBackendELF.h" 13 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h" 14 #include "MCTargetDesc/ARMFixupKinds.h" 15 #include "MCTargetDesc/ARMMCTargetDesc.h" 16 #include "llvm/ADT/StringSwitch.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/BinaryFormat/MachO.h" 19 #include "llvm/MC/MCAsmBackend.h" 20 #include "llvm/MC/MCAssembler.h" 21 #include "llvm/MC/MCContext.h" 22 #include "llvm/MC/MCDirectives.h" 23 #include "llvm/MC/MCELFObjectWriter.h" 24 #include "llvm/MC/MCExpr.h" 25 #include "llvm/MC/MCFixupKindInfo.h" 26 #include "llvm/MC/MCObjectWriter.h" 27 #include "llvm/MC/MCRegisterInfo.h" 28 #include "llvm/MC/MCSectionELF.h" 29 #include "llvm/MC/MCSectionMachO.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include "llvm/MC/MCValue.h" 32 #include "llvm/MC/MCAsmLayout.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/EndianStream.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/Format.h" 37 #include "llvm/Support/TargetParser.h" 38 #include "llvm/Support/raw_ostream.h" 39 using namespace llvm; 40 41 namespace { 42 class ARMELFObjectWriter : public MCELFObjectTargetWriter { 43 public: 44 ARMELFObjectWriter(uint8_t OSABI) 45 : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM, 46 /*HasRelocationAddend*/ false) {} 47 }; 48 } // end anonymous namespace 49 50 Optional<MCFixupKind> ARMAsmBackend::getFixupKind(StringRef Name) const { 51 if (STI.getTargetTriple().isOSBinFormatELF() && Name == "R_ARM_NONE") 52 return FK_NONE; 53 54 return MCAsmBackend::getFixupKind(Name); 55 } 56 57 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const { 58 const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = { 59 // This table *must* be in the order that the fixup_* kinds are defined in 60 // ARMFixupKinds.h. 61 // 62 // Name Offset (bits) Size (bits) Flags 63 {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 64 {"fixup_t2_ldst_pcrel_12", 0, 32, 65 MCFixupKindInfo::FKF_IsPCRel | 66 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 67 {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 68 {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 69 {"fixup_t2_pcrel_10", 0, 32, 70 MCFixupKindInfo::FKF_IsPCRel | 71 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 72 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 73 {"fixup_t2_pcrel_9", 0, 32, 74 MCFixupKindInfo::FKF_IsPCRel | 75 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 76 {"fixup_thumb_adr_pcrel_10", 0, 8, 77 MCFixupKindInfo::FKF_IsPCRel | 78 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 79 {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 80 {"fixup_t2_adr_pcrel_12", 0, 32, 81 MCFixupKindInfo::FKF_IsPCRel | 82 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 83 {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 84 {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 85 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 86 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 87 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 88 {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 89 {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 90 {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 91 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 92 {"fixup_arm_thumb_blx", 0, 32, 93 MCFixupKindInfo::FKF_IsPCRel | 94 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 95 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 96 {"fixup_arm_thumb_cp", 0, 8, 97 MCFixupKindInfo::FKF_IsPCRel | 98 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 99 {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel}, 100 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 101 // - 19. 102 {"fixup_arm_movt_hi16", 0, 20, 0}, 103 {"fixup_arm_movw_lo16", 0, 20, 0}, 104 {"fixup_t2_movt_hi16", 0, 20, 0}, 105 {"fixup_t2_movw_lo16", 0, 20, 0}, 106 {"fixup_arm_mod_imm", 0, 12, 0}, 107 {"fixup_t2_so_imm", 0, 26, 0}, 108 {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 109 {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 110 {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 111 {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 112 {"fixup_bfcsel_else_target", 0, 32, 0}, 113 {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 114 {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel} 115 }; 116 const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = { 117 // This table *must* be in the order that the fixup_* kinds are defined in 118 // ARMFixupKinds.h. 119 // 120 // Name Offset (bits) Size (bits) Flags 121 {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 122 {"fixup_t2_ldst_pcrel_12", 0, 32, 123 MCFixupKindInfo::FKF_IsPCRel | 124 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 125 {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 126 {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 127 {"fixup_t2_pcrel_10", 0, 32, 128 MCFixupKindInfo::FKF_IsPCRel | 129 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 130 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 131 {"fixup_t2_pcrel_9", 0, 32, 132 MCFixupKindInfo::FKF_IsPCRel | 133 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 134 {"fixup_thumb_adr_pcrel_10", 8, 8, 135 MCFixupKindInfo::FKF_IsPCRel | 136 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 137 {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 138 {"fixup_t2_adr_pcrel_12", 0, 32, 139 MCFixupKindInfo::FKF_IsPCRel | 140 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 141 {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 142 {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 143 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 144 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 145 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 146 {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 147 {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 148 {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 149 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 150 {"fixup_arm_thumb_blx", 0, 32, 151 MCFixupKindInfo::FKF_IsPCRel | 152 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 153 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 154 {"fixup_arm_thumb_cp", 8, 8, 155 MCFixupKindInfo::FKF_IsPCRel | 156 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 157 {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel}, 158 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 159 // - 19. 160 {"fixup_arm_movt_hi16", 12, 20, 0}, 161 {"fixup_arm_movw_lo16", 12, 20, 0}, 162 {"fixup_t2_movt_hi16", 12, 20, 0}, 163 {"fixup_t2_movw_lo16", 12, 20, 0}, 164 {"fixup_arm_mod_imm", 20, 12, 0}, 165 {"fixup_t2_so_imm", 26, 6, 0}, 166 {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 167 {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 168 {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 169 {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 170 {"fixup_bfcsel_else_target", 0, 32, 0}, 171 {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 172 {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel} 173 }; 174 175 if (Kind < FirstTargetFixupKind) 176 return MCAsmBackend::getFixupKindInfo(Kind); 177 178 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && 179 "Invalid kind!"); 180 return (Endian == support::little ? InfosLE 181 : InfosBE)[Kind - FirstTargetFixupKind]; 182 } 183 184 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) { 185 switch (Flag) { 186 default: 187 break; 188 case MCAF_Code16: 189 setIsThumb(true); 190 break; 191 case MCAF_Code32: 192 setIsThumb(false); 193 break; 194 } 195 } 196 197 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op, 198 const MCSubtargetInfo &STI) const { 199 bool HasThumb2 = STI.getFeatureBits()[ARM::FeatureThumb2]; 200 bool HasV8MBaselineOps = STI.getFeatureBits()[ARM::HasV8MBaselineOps]; 201 202 switch (Op) { 203 default: 204 return Op; 205 case ARM::tBcc: 206 return HasThumb2 ? (unsigned)ARM::t2Bcc : Op; 207 case ARM::tLDRpci: 208 return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op; 209 case ARM::tADR: 210 return HasThumb2 ? (unsigned)ARM::t2ADR : Op; 211 case ARM::tB: 212 return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op; 213 case ARM::tCBZ: 214 return ARM::tHINT; 215 case ARM::tCBNZ: 216 return ARM::tHINT; 217 } 218 } 219 220 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst, 221 const MCSubtargetInfo &STI) const { 222 if (getRelaxedOpcode(Inst.getOpcode(), STI) != Inst.getOpcode()) 223 return true; 224 return false; 225 } 226 227 static const char *checkPCRelOffset(uint64_t Value, int64_t Min, int64_t Max) { 228 int64_t Offset = int64_t(Value) - 4; 229 if (Offset < Min || Offset > Max) 230 return "out of range pc-relative fixup value"; 231 return nullptr; 232 } 233 234 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup, 235 uint64_t Value) const { 236 switch ((unsigned)Fixup.getKind()) { 237 case ARM::fixup_arm_thumb_br: { 238 // Relaxing tB to t2B. tB has a signed 12-bit displacement with the 239 // low bit being an implied zero. There's an implied +4 offset for the 240 // branch, so we adjust the other way here to determine what's 241 // encodable. 242 // 243 // Relax if the value is too big for a (signed) i8. 244 int64_t Offset = int64_t(Value) - 4; 245 if (Offset > 2046 || Offset < -2048) 246 return "out of range pc-relative fixup value"; 247 break; 248 } 249 case ARM::fixup_arm_thumb_bcc: { 250 // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the 251 // low bit being an implied zero. There's an implied +4 offset for the 252 // branch, so we adjust the other way here to determine what's 253 // encodable. 254 // 255 // Relax if the value is too big for a (signed) i8. 256 int64_t Offset = int64_t(Value) - 4; 257 if (Offset > 254 || Offset < -256) 258 return "out of range pc-relative fixup value"; 259 break; 260 } 261 case ARM::fixup_thumb_adr_pcrel_10: 262 case ARM::fixup_arm_thumb_cp: { 263 // If the immediate is negative, greater than 1020, or not a multiple 264 // of four, the wide version of the instruction must be used. 265 int64_t Offset = int64_t(Value) - 4; 266 if (Offset & 3) 267 return "misaligned pc-relative fixup value"; 268 else if (Offset > 1020 || Offset < 0) 269 return "out of range pc-relative fixup value"; 270 break; 271 } 272 case ARM::fixup_arm_thumb_cb: { 273 // If we have a Thumb CBZ or CBNZ instruction and its target is the next 274 // instruction it is actually out of range for the instruction. 275 // It will be changed to a NOP. 276 int64_t Offset = (Value & ~1); 277 if (Offset == 2) 278 return "will be converted to nop"; 279 break; 280 } 281 case ARM::fixup_bf_branch: 282 return checkPCRelOffset(Value, 0, 30); 283 case ARM::fixup_bf_target: 284 return checkPCRelOffset(Value, -0x10000, +0xfffe); 285 case ARM::fixup_bfl_target: 286 return checkPCRelOffset(Value, -0x40000, +0x3fffe); 287 case ARM::fixup_bfc_target: 288 return checkPCRelOffset(Value, -0x1000, +0xffe); 289 case ARM::fixup_wls: 290 return checkPCRelOffset(Value, 0, +0xffe); 291 case ARM::fixup_le: 292 // The offset field in the LE and LETP instructions is an 11-bit 293 // value shifted left by 2 (i.e. 0,2,4,...,4094), and it is 294 // interpreted as a negative offset from the value read from pc, 295 // i.e. from instruction_address+4. 296 // 297 // So an LE instruction can in principle address the instruction 298 // immediately after itself, or (not very usefully) the address 299 // half way through the 4-byte LE. 300 return checkPCRelOffset(Value, -0xffe, 0); 301 case ARM::fixup_bfcsel_else_target: { 302 if (Value != 2 && Value != 4) 303 return "out of range label-relative fixup value"; 304 break; 305 } 306 307 default: 308 llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!"); 309 } 310 return nullptr; 311 } 312 313 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value, 314 const MCRelaxableFragment *DF, 315 const MCAsmLayout &Layout) const { 316 return reasonForFixupRelaxation(Fixup, Value); 317 } 318 319 void ARMAsmBackend::relaxInstruction(const MCInst &Inst, 320 const MCSubtargetInfo &STI, 321 MCInst &Res) const { 322 unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode(), STI); 323 324 // Sanity check w/ diagnostic if we get here w/ a bogus instruction. 325 if (RelaxedOp == Inst.getOpcode()) { 326 SmallString<256> Tmp; 327 raw_svector_ostream OS(Tmp); 328 Inst.dump_pretty(OS); 329 OS << "\n"; 330 report_fatal_error("unexpected instruction to relax: " + OS.str()); 331 } 332 333 // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we 334 // have to change the operands too. 335 if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) && 336 RelaxedOp == ARM::tHINT) { 337 Res.setOpcode(RelaxedOp); 338 Res.addOperand(MCOperand::createImm(0)); 339 Res.addOperand(MCOperand::createImm(14)); 340 Res.addOperand(MCOperand::createReg(0)); 341 return; 342 } 343 344 // The rest of instructions we're relaxing have the same operands. 345 // We just need to update to the proper opcode. 346 Res = Inst; 347 Res.setOpcode(RelaxedOp); 348 } 349 350 bool ARMAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const { 351 const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8 352 const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP 353 const uint32_t ARMv4_NopEncoding = 0xe1a00000; // using MOV r0,r0 354 const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP 355 if (isThumb()) { 356 const uint16_t nopEncoding = 357 hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding; 358 uint64_t NumNops = Count / 2; 359 for (uint64_t i = 0; i != NumNops; ++i) 360 support::endian::write(OS, nopEncoding, Endian); 361 if (Count & 1) 362 OS << '\0'; 363 return true; 364 } 365 // ARM mode 366 const uint32_t nopEncoding = 367 hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding; 368 uint64_t NumNops = Count / 4; 369 for (uint64_t i = 0; i != NumNops; ++i) 370 support::endian::write(OS, nopEncoding, Endian); 371 // FIXME: should this function return false when unable to write exactly 372 // 'Count' bytes with NOP encodings? 373 switch (Count % 4) { 374 default: 375 break; // No leftover bytes to write 376 case 1: 377 OS << '\0'; 378 break; 379 case 2: 380 OS.write("\0\0", 2); 381 break; 382 case 3: 383 OS.write("\0\0\xa0", 3); 384 break; 385 } 386 387 return true; 388 } 389 390 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) { 391 if (IsLittleEndian) { 392 // Note that the halfwords are stored high first and low second in thumb; 393 // so we need to swap the fixup value here to map properly. 394 uint32_t Swapped = (Value & 0xFFFF0000) >> 16; 395 Swapped |= (Value & 0x0000FFFF) << 16; 396 return Swapped; 397 } else 398 return Value; 399 } 400 401 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf, 402 bool IsLittleEndian) { 403 uint32_t Value; 404 405 if (IsLittleEndian) { 406 Value = (SecondHalf & 0xFFFF) << 16; 407 Value |= (FirstHalf & 0xFFFF); 408 } else { 409 Value = (SecondHalf & 0xFFFF); 410 Value |= (FirstHalf & 0xFFFF) << 16; 411 } 412 413 return Value; 414 } 415 416 unsigned ARMAsmBackend::adjustFixupValue(const MCAssembler &Asm, 417 const MCFixup &Fixup, 418 const MCValue &Target, uint64_t Value, 419 bool IsResolved, MCContext &Ctx, 420 const MCSubtargetInfo* STI) const { 421 unsigned Kind = Fixup.getKind(); 422 423 // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT 424 // and .word relocations they put the Thumb bit into the addend if possible. 425 // Other relocation types don't want this bit though (branches couldn't encode 426 // it if it *was* present, and no other relocations exist) and it can 427 // interfere with checking valid expressions. 428 if (const MCSymbolRefExpr *A = Target.getSymA()) { 429 if (A->hasSubsectionsViaSymbols() && Asm.isThumbFunc(&A->getSymbol()) && 430 A->getSymbol().isExternal() && 431 (Kind == FK_Data_4 || Kind == ARM::fixup_arm_movw_lo16 || 432 Kind == ARM::fixup_arm_movt_hi16 || Kind == ARM::fixup_t2_movw_lo16 || 433 Kind == ARM::fixup_t2_movt_hi16)) 434 Value |= 1; 435 } 436 437 switch (Kind) { 438 default: 439 Ctx.reportError(Fixup.getLoc(), "bad relocation fixup type"); 440 return 0; 441 case FK_NONE: 442 case FK_Data_1: 443 case FK_Data_2: 444 case FK_Data_4: 445 return Value; 446 case FK_SecRel_2: 447 return Value; 448 case FK_SecRel_4: 449 return Value; 450 case ARM::fixup_arm_movt_hi16: 451 assert(STI != nullptr); 452 if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF()) 453 Value >>= 16; 454 LLVM_FALLTHROUGH; 455 case ARM::fixup_arm_movw_lo16: { 456 unsigned Hi4 = (Value & 0xF000) >> 12; 457 unsigned Lo12 = Value & 0x0FFF; 458 // inst{19-16} = Hi4; 459 // inst{11-0} = Lo12; 460 Value = (Hi4 << 16) | (Lo12); 461 return Value; 462 } 463 case ARM::fixup_t2_movt_hi16: 464 assert(STI != nullptr); 465 if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF()) 466 Value >>= 16; 467 LLVM_FALLTHROUGH; 468 case ARM::fixup_t2_movw_lo16: { 469 unsigned Hi4 = (Value & 0xF000) >> 12; 470 unsigned i = (Value & 0x800) >> 11; 471 unsigned Mid3 = (Value & 0x700) >> 8; 472 unsigned Lo8 = Value & 0x0FF; 473 // inst{19-16} = Hi4; 474 // inst{26} = i; 475 // inst{14-12} = Mid3; 476 // inst{7-0} = Lo8; 477 Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8); 478 return swapHalfWords(Value, Endian == support::little); 479 } 480 case ARM::fixup_arm_ldst_pcrel_12: 481 // ARM PC-relative values are offset by 8. 482 Value -= 4; 483 LLVM_FALLTHROUGH; 484 case ARM::fixup_t2_ldst_pcrel_12: { 485 // Offset by 4, adjusted by two due to the half-word ordering of thumb. 486 Value -= 4; 487 bool isAdd = true; 488 if ((int64_t)Value < 0) { 489 Value = -Value; 490 isAdd = false; 491 } 492 if (Value >= 4096) { 493 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 494 return 0; 495 } 496 Value |= isAdd << 23; 497 498 // Same addressing mode as fixup_arm_pcrel_10, 499 // but with 16-bit halfwords swapped. 500 if (Kind == ARM::fixup_t2_ldst_pcrel_12) 501 return swapHalfWords(Value, Endian == support::little); 502 503 return Value; 504 } 505 case ARM::fixup_arm_adr_pcrel_12: { 506 // ARM PC-relative values are offset by 8. 507 Value -= 8; 508 unsigned opc = 4; // bits {24-21}. Default to add: 0b0100 509 if ((int64_t)Value < 0) { 510 Value = -Value; 511 opc = 2; // 0b0010 512 } 513 if (ARM_AM::getSOImmVal(Value) == -1) { 514 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 515 return 0; 516 } 517 // Encode the immediate and shift the opcode into place. 518 return ARM_AM::getSOImmVal(Value) | (opc << 21); 519 } 520 521 case ARM::fixup_t2_adr_pcrel_12: { 522 Value -= 4; 523 unsigned opc = 0; 524 if ((int64_t)Value < 0) { 525 Value = -Value; 526 opc = 5; 527 } 528 529 uint32_t out = (opc << 21); 530 out |= (Value & 0x800) << 15; 531 out |= (Value & 0x700) << 4; 532 out |= (Value & 0x0FF); 533 534 return swapHalfWords(out, Endian == support::little); 535 } 536 537 case ARM::fixup_arm_condbranch: 538 case ARM::fixup_arm_uncondbranch: 539 case ARM::fixup_arm_uncondbl: 540 case ARM::fixup_arm_condbl: 541 case ARM::fixup_arm_blx: 542 // These values don't encode the low two bits since they're always zero. 543 // Offset by 8 just as above. 544 if (const MCSymbolRefExpr *SRE = 545 dyn_cast<MCSymbolRefExpr>(Fixup.getValue())) 546 if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL) 547 return 0; 548 return 0xffffff & ((Value - 8) >> 2); 549 case ARM::fixup_t2_uncondbranch: { 550 Value = Value - 4; 551 if (!isInt<25>(Value)) { 552 Ctx.reportError(Fixup.getLoc(), "Relocation out of range"); 553 return 0; 554 } 555 556 Value >>= 1; // Low bit is not encoded. 557 558 uint32_t out = 0; 559 bool I = Value & 0x800000; 560 bool J1 = Value & 0x400000; 561 bool J2 = Value & 0x200000; 562 J1 ^= I; 563 J2 ^= I; 564 565 out |= I << 26; // S bit 566 out |= !J1 << 13; // J1 bit 567 out |= !J2 << 11; // J2 bit 568 out |= (Value & 0x1FF800) << 5; // imm6 field 569 out |= (Value & 0x0007FF); // imm11 field 570 571 return swapHalfWords(out, Endian == support::little); 572 } 573 case ARM::fixup_t2_condbranch: { 574 Value = Value - 4; 575 if (!isInt<21>(Value)) { 576 Ctx.reportError(Fixup.getLoc(), "Relocation out of range"); 577 return 0; 578 } 579 580 Value >>= 1; // Low bit is not encoded. 581 582 uint64_t out = 0; 583 out |= (Value & 0x80000) << 7; // S bit 584 out |= (Value & 0x40000) >> 7; // J2 bit 585 out |= (Value & 0x20000) >> 4; // J1 bit 586 out |= (Value & 0x1F800) << 5; // imm6 field 587 out |= (Value & 0x007FF); // imm11 field 588 589 return swapHalfWords(out, Endian == support::little); 590 } 591 case ARM::fixup_arm_thumb_bl: { 592 if (!isInt<25>(Value - 4) || 593 (!STI->getFeatureBits()[ARM::FeatureThumb2] && 594 !STI->getFeatureBits()[ARM::HasV8MBaselineOps] && 595 !STI->getFeatureBits()[ARM::HasV6MOps] && 596 !isInt<23>(Value - 4))) { 597 Ctx.reportError(Fixup.getLoc(), "Relocation out of range"); 598 return 0; 599 } 600 601 // The value doesn't encode the low bit (always zero) and is offset by 602 // four. The 32-bit immediate value is encoded as 603 // imm32 = SignExtend(S:I1:I2:imm10:imm11:0) 604 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S). 605 // The value is encoded into disjoint bit positions in the destination 606 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit, 607 // J = either J1 or J2 bit 608 // 609 // BL: xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII 610 // 611 // Note that the halfwords are stored high first, low second; so we need 612 // to transpose the fixup value here to map properly. 613 uint32_t offset = (Value - 4) >> 1; 614 uint32_t signBit = (offset & 0x800000) >> 23; 615 uint32_t I1Bit = (offset & 0x400000) >> 22; 616 uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit; 617 uint32_t I2Bit = (offset & 0x200000) >> 21; 618 uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit; 619 uint32_t imm10Bits = (offset & 0x1FF800) >> 11; 620 uint32_t imm11Bits = (offset & 0x000007FF); 621 622 uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits); 623 uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) | 624 (uint16_t)imm11Bits); 625 return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little); 626 } 627 case ARM::fixup_arm_thumb_blx: { 628 // The value doesn't encode the low two bits (always zero) and is offset by 629 // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as 630 // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00) 631 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S). 632 // The value is encoded into disjoint bit positions in the destination 633 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit, 634 // J = either J1 or J2 bit, 0 = zero. 635 // 636 // BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0 637 // 638 // Note that the halfwords are stored high first, low second; so we need 639 // to transpose the fixup value here to map properly. 640 if (Value % 4 != 0) { 641 Ctx.reportError(Fixup.getLoc(), "misaligned ARM call destination"); 642 return 0; 643 } 644 645 uint32_t offset = (Value - 4) >> 2; 646 if (const MCSymbolRefExpr *SRE = 647 dyn_cast<MCSymbolRefExpr>(Fixup.getValue())) 648 if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL) 649 offset = 0; 650 uint32_t signBit = (offset & 0x400000) >> 22; 651 uint32_t I1Bit = (offset & 0x200000) >> 21; 652 uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit; 653 uint32_t I2Bit = (offset & 0x100000) >> 20; 654 uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit; 655 uint32_t imm10HBits = (offset & 0xFFC00) >> 10; 656 uint32_t imm10LBits = (offset & 0x3FF); 657 658 uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits); 659 uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) | 660 ((uint16_t)imm10LBits) << 1); 661 return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little); 662 } 663 case ARM::fixup_thumb_adr_pcrel_10: 664 case ARM::fixup_arm_thumb_cp: 665 // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we 666 // could have an error on our hands. 667 assert(STI != nullptr); 668 if (!STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) { 669 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 670 if (FixupDiagnostic) { 671 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 672 return 0; 673 } 674 } 675 // Offset by 4, and don't encode the low two bits. 676 return ((Value - 4) >> 2) & 0xff; 677 case ARM::fixup_arm_thumb_cb: { 678 // CB instructions can only branch to offsets in [4, 126] in multiples of 2 679 // so ensure that the raw value LSB is zero and it lies in [2, 130]. 680 // An offset of 2 will be relaxed to a NOP. 681 if ((int64_t)Value < 2 || Value > 0x82 || Value & 1) { 682 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 683 return 0; 684 } 685 // Offset by 4 and don't encode the lower bit, which is always 0. 686 // FIXME: diagnose if no Thumb2 687 uint32_t Binary = (Value - 4) >> 1; 688 return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3); 689 } 690 case ARM::fixup_arm_thumb_br: 691 // Offset by 4 and don't encode the lower bit, which is always 0. 692 assert(STI != nullptr); 693 if (!STI->getFeatureBits()[ARM::FeatureThumb2] && 694 !STI->getFeatureBits()[ARM::HasV8MBaselineOps]) { 695 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 696 if (FixupDiagnostic) { 697 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 698 return 0; 699 } 700 } 701 return ((Value - 4) >> 1) & 0x7ff; 702 case ARM::fixup_arm_thumb_bcc: 703 // Offset by 4 and don't encode the lower bit, which is always 0. 704 assert(STI != nullptr); 705 if (!STI->getFeatureBits()[ARM::FeatureThumb2]) { 706 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 707 if (FixupDiagnostic) { 708 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 709 return 0; 710 } 711 } 712 return ((Value - 4) >> 1) & 0xff; 713 case ARM::fixup_arm_pcrel_10_unscaled: { 714 Value = Value - 8; // ARM fixups offset by an additional word and don't 715 // need to adjust for the half-word ordering. 716 bool isAdd = true; 717 if ((int64_t)Value < 0) { 718 Value = -Value; 719 isAdd = false; 720 } 721 // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8]. 722 if (Value >= 256) { 723 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 724 return 0; 725 } 726 Value = (Value & 0xf) | ((Value & 0xf0) << 4); 727 return Value | (isAdd << 23); 728 } 729 case ARM::fixup_arm_pcrel_10: 730 Value = Value - 4; // ARM fixups offset by an additional word and don't 731 // need to adjust for the half-word ordering. 732 LLVM_FALLTHROUGH; 733 case ARM::fixup_t2_pcrel_10: { 734 // Offset by 4, adjusted by two due to the half-word ordering of thumb. 735 Value = Value - 4; 736 bool isAdd = true; 737 if ((int64_t)Value < 0) { 738 Value = -Value; 739 isAdd = false; 740 } 741 // These values don't encode the low two bits since they're always zero. 742 Value >>= 2; 743 if (Value >= 256) { 744 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 745 return 0; 746 } 747 Value |= isAdd << 23; 748 749 // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords 750 // swapped. 751 if (Kind == ARM::fixup_t2_pcrel_10) 752 return swapHalfWords(Value, Endian == support::little); 753 754 return Value; 755 } 756 case ARM::fixup_arm_pcrel_9: 757 Value = Value - 4; // ARM fixups offset by an additional word and don't 758 // need to adjust for the half-word ordering. 759 LLVM_FALLTHROUGH; 760 case ARM::fixup_t2_pcrel_9: { 761 // Offset by 4, adjusted by two due to the half-word ordering of thumb. 762 Value = Value - 4; 763 bool isAdd = true; 764 if ((int64_t)Value < 0) { 765 Value = -Value; 766 isAdd = false; 767 } 768 // These values don't encode the low bit since it's always zero. 769 if (Value & 1) { 770 Ctx.reportError(Fixup.getLoc(), "invalid value for this fixup"); 771 return 0; 772 } 773 Value >>= 1; 774 if (Value >= 256) { 775 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 776 return 0; 777 } 778 Value |= isAdd << 23; 779 780 // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords 781 // swapped. 782 if (Kind == ARM::fixup_t2_pcrel_9) 783 return swapHalfWords(Value, Endian == support::little); 784 785 return Value; 786 } 787 case ARM::fixup_arm_mod_imm: 788 Value = ARM_AM::getSOImmVal(Value); 789 if (Value >> 12) { 790 Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value"); 791 return 0; 792 } 793 return Value; 794 case ARM::fixup_t2_so_imm: { 795 Value = ARM_AM::getT2SOImmVal(Value); 796 if ((int64_t)Value < 0) { 797 Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value"); 798 return 0; 799 } 800 // Value will contain a 12-bit value broken up into a 4-bit shift in bits 801 // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate 802 // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit 803 // 10 of the upper half-word and imm3 is placed at 14:12 of the lower 804 // half-word. 805 uint64_t EncValue = 0; 806 EncValue |= (Value & 0x800) << 15; 807 EncValue |= (Value & 0x700) << 4; 808 EncValue |= (Value & 0xff); 809 return swapHalfWords(EncValue, Endian == support::little); 810 } 811 case ARM::fixup_bf_branch: { 812 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 813 if (FixupDiagnostic) { 814 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 815 return 0; 816 } 817 uint32_t out = (((Value - 4) >> 1) & 0xf) << 23; 818 return swapHalfWords(out, Endian == support::little); 819 } 820 case ARM::fixup_bf_target: 821 case ARM::fixup_bfl_target: 822 case ARM::fixup_bfc_target: { 823 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 824 if (FixupDiagnostic) { 825 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 826 return 0; 827 } 828 uint32_t out = 0; 829 uint32_t HighBitMask = (Kind == ARM::fixup_bf_target ? 0xf800 : 830 Kind == ARM::fixup_bfl_target ? 0x3f800 : 0x800); 831 out |= (((Value - 4) >> 1) & 0x1) << 11; 832 out |= (((Value - 4) >> 1) & 0x7fe); 833 out |= (((Value - 4) >> 1) & HighBitMask) << 5; 834 return swapHalfWords(out, Endian == support::little); 835 } 836 case ARM::fixup_bfcsel_else_target: { 837 // If this is a fixup of a branch future's else target then it should be a 838 // constant MCExpr representing the distance between the branch targetted 839 // and the instruction after that same branch. 840 Value = Target.getConstant(); 841 842 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 843 if (FixupDiagnostic) { 844 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 845 return 0; 846 } 847 uint32_t out = ((Value >> 2) & 1) << 17; 848 return swapHalfWords(out, Endian == support::little); 849 } 850 case ARM::fixup_wls: 851 case ARM::fixup_le: { 852 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 853 if (FixupDiagnostic) { 854 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 855 return 0; 856 } 857 uint64_t real_value = Value - 4; 858 uint32_t out = 0; 859 if (Kind == ARM::fixup_le) 860 real_value = -real_value; 861 out |= ((real_value >> 1) & 0x1) << 11; 862 out |= ((real_value >> 1) & 0x7fe); 863 return swapHalfWords(out, Endian == support::little); 864 } 865 } 866 } 867 868 bool ARMAsmBackend::shouldForceRelocation(const MCAssembler &Asm, 869 const MCFixup &Fixup, 870 const MCValue &Target) { 871 const MCSymbolRefExpr *A = Target.getSymA(); 872 const MCSymbol *Sym = A ? &A->getSymbol() : nullptr; 873 const unsigned FixupKind = Fixup.getKind() ; 874 if (FixupKind == FK_NONE) 875 return true; 876 if (FixupKind == ARM::fixup_arm_thumb_bl) { 877 assert(Sym && "How did we resolve this?"); 878 879 // If the symbol is external the linker will handle it. 880 // FIXME: Should we handle it as an optimization? 881 882 // If the symbol is out of range, produce a relocation and hope the 883 // linker can handle it. GNU AS produces an error in this case. 884 if (Sym->isExternal()) 885 return true; 886 } 887 // Create relocations for unconditional branches to function symbols with 888 // different execution mode in ELF binaries. 889 if (Sym && Sym->isELF()) { 890 unsigned Type = cast<MCSymbolELF>(Sym)->getType(); 891 if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)) { 892 if (Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_uncondbranch)) 893 return true; 894 if (!Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_thumb_br || 895 FixupKind == ARM::fixup_arm_thumb_bl || 896 FixupKind == ARM::fixup_t2_condbranch || 897 FixupKind == ARM::fixup_t2_uncondbranch)) 898 return true; 899 } 900 } 901 // We must always generate a relocation for BL/BLX instructions if we have 902 // a symbol to reference, as the linker relies on knowing the destination 903 // symbol's thumb-ness to get interworking right. 904 if (A && (FixupKind == ARM::fixup_arm_thumb_blx || 905 FixupKind == ARM::fixup_arm_blx || 906 FixupKind == ARM::fixup_arm_uncondbl || 907 FixupKind == ARM::fixup_arm_condbl)) 908 return true; 909 return false; 910 } 911 912 /// getFixupKindNumBytes - The number of bytes the fixup may change. 913 static unsigned getFixupKindNumBytes(unsigned Kind) { 914 switch (Kind) { 915 default: 916 llvm_unreachable("Unknown fixup kind!"); 917 918 case FK_NONE: 919 return 0; 920 921 case FK_Data_1: 922 case ARM::fixup_arm_thumb_bcc: 923 case ARM::fixup_arm_thumb_cp: 924 case ARM::fixup_thumb_adr_pcrel_10: 925 return 1; 926 927 case FK_Data_2: 928 case ARM::fixup_arm_thumb_br: 929 case ARM::fixup_arm_thumb_cb: 930 case ARM::fixup_arm_mod_imm: 931 return 2; 932 933 case ARM::fixup_arm_pcrel_10_unscaled: 934 case ARM::fixup_arm_ldst_pcrel_12: 935 case ARM::fixup_arm_pcrel_10: 936 case ARM::fixup_arm_pcrel_9: 937 case ARM::fixup_arm_adr_pcrel_12: 938 case ARM::fixup_arm_uncondbl: 939 case ARM::fixup_arm_condbl: 940 case ARM::fixup_arm_blx: 941 case ARM::fixup_arm_condbranch: 942 case ARM::fixup_arm_uncondbranch: 943 return 3; 944 945 case FK_Data_4: 946 case ARM::fixup_t2_ldst_pcrel_12: 947 case ARM::fixup_t2_condbranch: 948 case ARM::fixup_t2_uncondbranch: 949 case ARM::fixup_t2_pcrel_10: 950 case ARM::fixup_t2_pcrel_9: 951 case ARM::fixup_t2_adr_pcrel_12: 952 case ARM::fixup_arm_thumb_bl: 953 case ARM::fixup_arm_thumb_blx: 954 case ARM::fixup_arm_movt_hi16: 955 case ARM::fixup_arm_movw_lo16: 956 case ARM::fixup_t2_movt_hi16: 957 case ARM::fixup_t2_movw_lo16: 958 case ARM::fixup_t2_so_imm: 959 case ARM::fixup_bf_branch: 960 case ARM::fixup_bf_target: 961 case ARM::fixup_bfl_target: 962 case ARM::fixup_bfc_target: 963 case ARM::fixup_bfcsel_else_target: 964 case ARM::fixup_wls: 965 case ARM::fixup_le: 966 return 4; 967 968 case FK_SecRel_2: 969 return 2; 970 case FK_SecRel_4: 971 return 4; 972 } 973 } 974 975 /// getFixupKindContainerSizeBytes - The number of bytes of the 976 /// container involved in big endian. 977 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) { 978 switch (Kind) { 979 default: 980 llvm_unreachable("Unknown fixup kind!"); 981 982 case FK_NONE: 983 return 0; 984 985 case FK_Data_1: 986 return 1; 987 case FK_Data_2: 988 return 2; 989 case FK_Data_4: 990 return 4; 991 992 case ARM::fixup_arm_thumb_bcc: 993 case ARM::fixup_arm_thumb_cp: 994 case ARM::fixup_thumb_adr_pcrel_10: 995 case ARM::fixup_arm_thumb_br: 996 case ARM::fixup_arm_thumb_cb: 997 // Instruction size is 2 bytes. 998 return 2; 999 1000 case ARM::fixup_arm_pcrel_10_unscaled: 1001 case ARM::fixup_arm_ldst_pcrel_12: 1002 case ARM::fixup_arm_pcrel_10: 1003 case ARM::fixup_arm_pcrel_9: 1004 case ARM::fixup_arm_adr_pcrel_12: 1005 case ARM::fixup_arm_uncondbl: 1006 case ARM::fixup_arm_condbl: 1007 case ARM::fixup_arm_blx: 1008 case ARM::fixup_arm_condbranch: 1009 case ARM::fixup_arm_uncondbranch: 1010 case ARM::fixup_t2_ldst_pcrel_12: 1011 case ARM::fixup_t2_condbranch: 1012 case ARM::fixup_t2_uncondbranch: 1013 case ARM::fixup_t2_pcrel_10: 1014 case ARM::fixup_t2_adr_pcrel_12: 1015 case ARM::fixup_arm_thumb_bl: 1016 case ARM::fixup_arm_thumb_blx: 1017 case ARM::fixup_arm_movt_hi16: 1018 case ARM::fixup_arm_movw_lo16: 1019 case ARM::fixup_t2_movt_hi16: 1020 case ARM::fixup_t2_movw_lo16: 1021 case ARM::fixup_arm_mod_imm: 1022 case ARM::fixup_t2_so_imm: 1023 case ARM::fixup_bf_branch: 1024 case ARM::fixup_bf_target: 1025 case ARM::fixup_bfl_target: 1026 case ARM::fixup_bfc_target: 1027 case ARM::fixup_bfcsel_else_target: 1028 case ARM::fixup_wls: 1029 case ARM::fixup_le: 1030 // Instruction size is 4 bytes. 1031 return 4; 1032 } 1033 } 1034 1035 void ARMAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, 1036 const MCValue &Target, 1037 MutableArrayRef<char> Data, uint64_t Value, 1038 bool IsResolved, 1039 const MCSubtargetInfo* STI) const { 1040 unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind()); 1041 MCContext &Ctx = Asm.getContext(); 1042 Value = adjustFixupValue(Asm, Fixup, Target, Value, IsResolved, Ctx, STI); 1043 if (!Value) 1044 return; // Doesn't change encoding. 1045 1046 unsigned Offset = Fixup.getOffset(); 1047 assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!"); 1048 1049 // Used to point to big endian bytes. 1050 unsigned FullSizeBytes; 1051 if (Endian == support::big) { 1052 FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind()); 1053 assert((Offset + FullSizeBytes) <= Data.size() && "Invalid fixup size!"); 1054 assert(NumBytes <= FullSizeBytes && "Invalid fixup size!"); 1055 } 1056 1057 // For each byte of the fragment that the fixup touches, mask in the bits from 1058 // the fixup value. The Value has been "split up" into the appropriate 1059 // bitfields above. 1060 for (unsigned i = 0; i != NumBytes; ++i) { 1061 unsigned Idx = Endian == support::little ? i : (FullSizeBytes - 1 - i); 1062 Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff); 1063 } 1064 } 1065 1066 namespace CU { 1067 1068 /// Compact unwind encoding values. 1069 enum CompactUnwindEncodings { 1070 UNWIND_ARM_MODE_MASK = 0x0F000000, 1071 UNWIND_ARM_MODE_FRAME = 0x01000000, 1072 UNWIND_ARM_MODE_FRAME_D = 0x02000000, 1073 UNWIND_ARM_MODE_DWARF = 0x04000000, 1074 1075 UNWIND_ARM_FRAME_STACK_ADJUST_MASK = 0x00C00000, 1076 1077 UNWIND_ARM_FRAME_FIRST_PUSH_R4 = 0x00000001, 1078 UNWIND_ARM_FRAME_FIRST_PUSH_R5 = 0x00000002, 1079 UNWIND_ARM_FRAME_FIRST_PUSH_R6 = 0x00000004, 1080 1081 UNWIND_ARM_FRAME_SECOND_PUSH_R8 = 0x00000008, 1082 UNWIND_ARM_FRAME_SECOND_PUSH_R9 = 0x00000010, 1083 UNWIND_ARM_FRAME_SECOND_PUSH_R10 = 0x00000020, 1084 UNWIND_ARM_FRAME_SECOND_PUSH_R11 = 0x00000040, 1085 UNWIND_ARM_FRAME_SECOND_PUSH_R12 = 0x00000080, 1086 1087 UNWIND_ARM_FRAME_D_REG_COUNT_MASK = 0x00000F00, 1088 1089 UNWIND_ARM_DWARF_SECTION_OFFSET = 0x00FFFFFF 1090 }; 1091 1092 } // end CU namespace 1093 1094 /// Generate compact unwind encoding for the function based on the CFI 1095 /// instructions. If the CFI instructions describe a frame that cannot be 1096 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which 1097 /// tells the runtime to fallback and unwind using dwarf. 1098 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding( 1099 ArrayRef<MCCFIInstruction> Instrs) const { 1100 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n"); 1101 // Only armv7k uses CFI based unwinding. 1102 if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K) 1103 return 0; 1104 // No .cfi directives means no frame. 1105 if (Instrs.empty()) 1106 return 0; 1107 // Start off assuming CFA is at SP+0. 1108 int CFARegister = ARM::SP; 1109 int CFARegisterOffset = 0; 1110 // Mark savable registers as initially unsaved 1111 DenseMap<unsigned, int> RegOffsets; 1112 int FloatRegCount = 0; 1113 // Process each .cfi directive and build up compact unwind info. 1114 for (size_t i = 0, e = Instrs.size(); i != e; ++i) { 1115 int Reg; 1116 const MCCFIInstruction &Inst = Instrs[i]; 1117 switch (Inst.getOperation()) { 1118 case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa 1119 CFARegisterOffset = -Inst.getOffset(); 1120 CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true); 1121 break; 1122 case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset 1123 CFARegisterOffset = -Inst.getOffset(); 1124 break; 1125 case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register 1126 CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true); 1127 break; 1128 case MCCFIInstruction::OpOffset: // DW_CFA_offset 1129 Reg = MRI.getLLVMRegNum(Inst.getRegister(), true); 1130 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 1131 RegOffsets[Reg] = Inst.getOffset(); 1132 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 1133 RegOffsets[Reg] = Inst.getOffset(); 1134 ++FloatRegCount; 1135 } else { 1136 DEBUG_WITH_TYPE("compact-unwind", 1137 llvm::dbgs() << ".cfi_offset on unknown register=" 1138 << Inst.getRegister() << "\n"); 1139 return CU::UNWIND_ARM_MODE_DWARF; 1140 } 1141 break; 1142 case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc 1143 // Ignore 1144 break; 1145 default: 1146 // Directive not convertable to compact unwind, bail out. 1147 DEBUG_WITH_TYPE("compact-unwind", 1148 llvm::dbgs() 1149 << "CFI directive not compatiable with comact " 1150 "unwind encoding, opcode=" << Inst.getOperation() 1151 << "\n"); 1152 return CU::UNWIND_ARM_MODE_DWARF; 1153 break; 1154 } 1155 } 1156 1157 // If no frame set up, return no unwind info. 1158 if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0)) 1159 return 0; 1160 1161 // Verify standard frame (lr/r7) was used. 1162 if (CFARegister != ARM::R7) { 1163 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is " 1164 << CFARegister 1165 << " instead of r7\n"); 1166 return CU::UNWIND_ARM_MODE_DWARF; 1167 } 1168 int StackAdjust = CFARegisterOffset - 8; 1169 if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) { 1170 DEBUG_WITH_TYPE("compact-unwind", 1171 llvm::dbgs() 1172 << "LR not saved as standard frame, StackAdjust=" 1173 << StackAdjust 1174 << ", CFARegisterOffset=" << CFARegisterOffset 1175 << ", lr save at offset=" << RegOffsets[14] << "\n"); 1176 return CU::UNWIND_ARM_MODE_DWARF; 1177 } 1178 if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) { 1179 DEBUG_WITH_TYPE("compact-unwind", 1180 llvm::dbgs() << "r7 not saved as standard frame\n"); 1181 return CU::UNWIND_ARM_MODE_DWARF; 1182 } 1183 uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME; 1184 1185 // If var-args are used, there may be a stack adjust required. 1186 switch (StackAdjust) { 1187 case 0: 1188 break; 1189 case 4: 1190 CompactUnwindEncoding |= 0x00400000; 1191 break; 1192 case 8: 1193 CompactUnwindEncoding |= 0x00800000; 1194 break; 1195 case 12: 1196 CompactUnwindEncoding |= 0x00C00000; 1197 break; 1198 default: 1199 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() 1200 << ".cfi_def_cfa stack adjust (" 1201 << StackAdjust << ") out of range\n"); 1202 return CU::UNWIND_ARM_MODE_DWARF; 1203 } 1204 1205 // If r6 is saved, it must be right below r7. 1206 static struct { 1207 unsigned Reg; 1208 unsigned Encoding; 1209 } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6}, 1210 {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5}, 1211 {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4}, 1212 {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12}, 1213 {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11}, 1214 {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10}, 1215 {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9}, 1216 {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}}; 1217 1218 int CurOffset = -8 - StackAdjust; 1219 for (auto CSReg : GPRCSRegs) { 1220 auto Offset = RegOffsets.find(CSReg.Reg); 1221 if (Offset == RegOffsets.end()) 1222 continue; 1223 1224 int RegOffset = Offset->second; 1225 if (RegOffset != CurOffset - 4) { 1226 DEBUG_WITH_TYPE("compact-unwind", 1227 llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at " 1228 << RegOffset << " but only supported at " 1229 << CurOffset << "\n"); 1230 return CU::UNWIND_ARM_MODE_DWARF; 1231 } 1232 CompactUnwindEncoding |= CSReg.Encoding; 1233 CurOffset -= 4; 1234 } 1235 1236 // If no floats saved, we are done. 1237 if (FloatRegCount == 0) 1238 return CompactUnwindEncoding; 1239 1240 // Switch mode to include D register saving. 1241 CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK; 1242 CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D; 1243 1244 // FIXME: supporting more than 4 saved D-registers compactly would be trivial, 1245 // but needs coordination with the linker and libunwind. 1246 if (FloatRegCount > 4) { 1247 DEBUG_WITH_TYPE("compact-unwind", 1248 llvm::dbgs() << "unsupported number of D registers saved (" 1249 << FloatRegCount << ")\n"); 1250 return CU::UNWIND_ARM_MODE_DWARF; 1251 } 1252 1253 // Floating point registers must either be saved sequentially, or we defer to 1254 // DWARF. No gaps allowed here so check that each saved d-register is 1255 // precisely where it should be. 1256 static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 }; 1257 for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) { 1258 auto Offset = RegOffsets.find(FPRCSRegs[Idx]); 1259 if (Offset == RegOffsets.end()) { 1260 DEBUG_WITH_TYPE("compact-unwind", 1261 llvm::dbgs() << FloatRegCount << " D-regs saved, but " 1262 << MRI.getName(FPRCSRegs[Idx]) 1263 << " not saved\n"); 1264 return CU::UNWIND_ARM_MODE_DWARF; 1265 } else if (Offset->second != CurOffset - 8) { 1266 DEBUG_WITH_TYPE("compact-unwind", 1267 llvm::dbgs() << FloatRegCount << " D-regs saved, but " 1268 << MRI.getName(FPRCSRegs[Idx]) 1269 << " saved at " << Offset->second 1270 << ", expected at " << CurOffset - 8 1271 << "\n"); 1272 return CU::UNWIND_ARM_MODE_DWARF; 1273 } 1274 CurOffset -= 8; 1275 } 1276 1277 return CompactUnwindEncoding | ((FloatRegCount - 1) << 8); 1278 } 1279 1280 static MachO::CPUSubTypeARM getMachOSubTypeFromArch(StringRef Arch) { 1281 ARM::ArchKind AK = ARM::parseArch(Arch); 1282 switch (AK) { 1283 default: 1284 return MachO::CPU_SUBTYPE_ARM_V7; 1285 case ARM::ArchKind::ARMV4T: 1286 return MachO::CPU_SUBTYPE_ARM_V4T; 1287 case ARM::ArchKind::ARMV5T: 1288 case ARM::ArchKind::ARMV5TE: 1289 case ARM::ArchKind::ARMV5TEJ: 1290 return MachO::CPU_SUBTYPE_ARM_V5; 1291 case ARM::ArchKind::ARMV6: 1292 case ARM::ArchKind::ARMV6K: 1293 return MachO::CPU_SUBTYPE_ARM_V6; 1294 case ARM::ArchKind::ARMV7A: 1295 return MachO::CPU_SUBTYPE_ARM_V7; 1296 case ARM::ArchKind::ARMV7S: 1297 return MachO::CPU_SUBTYPE_ARM_V7S; 1298 case ARM::ArchKind::ARMV7K: 1299 return MachO::CPU_SUBTYPE_ARM_V7K; 1300 case ARM::ArchKind::ARMV6M: 1301 return MachO::CPU_SUBTYPE_ARM_V6M; 1302 case ARM::ArchKind::ARMV7M: 1303 return MachO::CPU_SUBTYPE_ARM_V7M; 1304 case ARM::ArchKind::ARMV7EM: 1305 return MachO::CPU_SUBTYPE_ARM_V7EM; 1306 } 1307 } 1308 1309 static MCAsmBackend *createARMAsmBackend(const Target &T, 1310 const MCSubtargetInfo &STI, 1311 const MCRegisterInfo &MRI, 1312 const MCTargetOptions &Options, 1313 support::endianness Endian) { 1314 const Triple &TheTriple = STI.getTargetTriple(); 1315 switch (TheTriple.getObjectFormat()) { 1316 default: 1317 llvm_unreachable("unsupported object format"); 1318 case Triple::MachO: { 1319 MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TheTriple.getArchName()); 1320 return new ARMAsmBackendDarwin(T, STI, MRI, CS); 1321 } 1322 case Triple::COFF: 1323 assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported"); 1324 return new ARMAsmBackendWinCOFF(T, STI); 1325 case Triple::ELF: 1326 assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target"); 1327 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); 1328 return new ARMAsmBackendELF(T, STI, OSABI, Endian); 1329 } 1330 } 1331 1332 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T, 1333 const MCSubtargetInfo &STI, 1334 const MCRegisterInfo &MRI, 1335 const MCTargetOptions &Options) { 1336 return createARMAsmBackend(T, STI, MRI, Options, support::little); 1337 } 1338 1339 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T, 1340 const MCSubtargetInfo &STI, 1341 const MCRegisterInfo &MRI, 1342 const MCTargetOptions &Options) { 1343 return createARMAsmBackend(T, STI, MRI, Options, support::big); 1344 } 1345