1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MCTargetDesc/ARMAsmBackend.h" 10 #include "MCTargetDesc/ARMAddressingModes.h" 11 #include "MCTargetDesc/ARMAsmBackendDarwin.h" 12 #include "MCTargetDesc/ARMAsmBackendELF.h" 13 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h" 14 #include "MCTargetDesc/ARMFixupKinds.h" 15 #include "MCTargetDesc/ARMMCTargetDesc.h" 16 #include "llvm/ADT/StringSwitch.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/BinaryFormat/MachO.h" 19 #include "llvm/MC/MCAsmBackend.h" 20 #include "llvm/MC/MCAssembler.h" 21 #include "llvm/MC/MCContext.h" 22 #include "llvm/MC/MCDirectives.h" 23 #include "llvm/MC/MCELFObjectWriter.h" 24 #include "llvm/MC/MCExpr.h" 25 #include "llvm/MC/MCFixupKindInfo.h" 26 #include "llvm/MC/MCObjectWriter.h" 27 #include "llvm/MC/MCRegisterInfo.h" 28 #include "llvm/MC/MCSectionELF.h" 29 #include "llvm/MC/MCSectionMachO.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include "llvm/MC/MCValue.h" 32 #include "llvm/MC/MCAsmLayout.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/EndianStream.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/Format.h" 37 #include "llvm/Support/TargetParser.h" 38 #include "llvm/Support/raw_ostream.h" 39 using namespace llvm; 40 41 namespace { 42 class ARMELFObjectWriter : public MCELFObjectTargetWriter { 43 public: 44 ARMELFObjectWriter(uint8_t OSABI) 45 : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM, 46 /*HasRelocationAddend*/ false) {} 47 }; 48 } // end anonymous namespace 49 50 Optional<MCFixupKind> ARMAsmBackend::getFixupKind(StringRef Name) const { 51 if (!STI.getTargetTriple().isOSBinFormatELF()) 52 return None; 53 54 unsigned Type = llvm::StringSwitch<unsigned>(Name) 55 #define ELF_RELOC(X, Y) .Case(#X, Y) 56 #include "llvm/BinaryFormat/ELFRelocs/ARM.def" 57 #undef ELF_RELOC 58 .Case("BFD_RELOC_NONE", ELF::R_ARM_NONE) 59 .Case("BFD_RELOC_8", ELF::R_ARM_ABS8) 60 .Case("BFD_RELOC_16", ELF::R_ARM_ABS16) 61 .Case("BFD_RELOC_32", ELF::R_ARM_ABS32) 62 .Default(-1u); 63 if (Type == -1u) 64 return None; 65 return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type); 66 } 67 68 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const { 69 unsigned IsPCRelConstant = 70 MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_Constant; 71 const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = { 72 // This table *must* be in the order that the fixup_* kinds are defined in 73 // ARMFixupKinds.h. 74 // 75 // Name Offset (bits) Size (bits) Flags 76 {"fixup_arm_ldst_pcrel_12", 0, 32, IsPCRelConstant}, 77 {"fixup_t2_ldst_pcrel_12", 0, 32, 78 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 79 {"fixup_arm_pcrel_10_unscaled", 0, 32, IsPCRelConstant}, 80 {"fixup_arm_pcrel_10", 0, 32, IsPCRelConstant}, 81 {"fixup_t2_pcrel_10", 0, 32, 82 MCFixupKindInfo::FKF_IsPCRel | 83 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 84 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 85 {"fixup_t2_pcrel_9", 0, 32, 86 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 87 {"fixup_arm_ldst_abs_12", 0, 32, 0}, 88 {"fixup_thumb_adr_pcrel_10", 0, 8, 89 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 90 {"fixup_arm_adr_pcrel_12", 0, 32, IsPCRelConstant}, 91 {"fixup_t2_adr_pcrel_12", 0, 32, 92 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 93 {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 94 {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 95 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 96 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 97 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 98 {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 99 {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 100 {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 101 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 102 {"fixup_arm_thumb_blx", 0, 32, 103 MCFixupKindInfo::FKF_IsPCRel | 104 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 105 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 106 {"fixup_arm_thumb_cp", 0, 8, 107 MCFixupKindInfo::FKF_IsPCRel | 108 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 109 {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel}, 110 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 111 // - 19. 112 {"fixup_arm_movt_hi16", 0, 20, 0}, 113 {"fixup_arm_movw_lo16", 0, 20, 0}, 114 {"fixup_t2_movt_hi16", 0, 20, 0}, 115 {"fixup_t2_movw_lo16", 0, 20, 0}, 116 {"fixup_arm_mod_imm", 0, 12, 0}, 117 {"fixup_t2_so_imm", 0, 26, 0}, 118 {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 119 {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 120 {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 121 {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 122 {"fixup_bfcsel_else_target", 0, 32, 0}, 123 {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 124 {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel}}; 125 const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = { 126 // This table *must* be in the order that the fixup_* kinds are defined in 127 // ARMFixupKinds.h. 128 // 129 // Name Offset (bits) Size (bits) Flags 130 {"fixup_arm_ldst_pcrel_12", 0, 32, IsPCRelConstant}, 131 {"fixup_t2_ldst_pcrel_12", 0, 32, 132 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 133 {"fixup_arm_pcrel_10_unscaled", 0, 32, IsPCRelConstant}, 134 {"fixup_arm_pcrel_10", 0, 32, IsPCRelConstant}, 135 {"fixup_t2_pcrel_10", 0, 32, 136 MCFixupKindInfo::FKF_IsPCRel | 137 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 138 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 139 {"fixup_t2_pcrel_9", 0, 32, 140 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 141 {"fixup_arm_ldst_abs_12", 0, 32, 0}, 142 {"fixup_thumb_adr_pcrel_10", 8, 8, 143 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 144 {"fixup_arm_adr_pcrel_12", 0, 32, IsPCRelConstant}, 145 {"fixup_t2_adr_pcrel_12", 0, 32, 146 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 147 {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 148 {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 149 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 150 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 151 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 152 {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 153 {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 154 {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 155 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 156 {"fixup_arm_thumb_blx", 0, 32, 157 MCFixupKindInfo::FKF_IsPCRel | 158 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 159 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 160 {"fixup_arm_thumb_cp", 8, 8, 161 MCFixupKindInfo::FKF_IsPCRel | 162 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 163 {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel}, 164 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 165 // - 19. 166 {"fixup_arm_movt_hi16", 12, 20, 0}, 167 {"fixup_arm_movw_lo16", 12, 20, 0}, 168 {"fixup_t2_movt_hi16", 12, 20, 0}, 169 {"fixup_t2_movw_lo16", 12, 20, 0}, 170 {"fixup_arm_mod_imm", 20, 12, 0}, 171 {"fixup_t2_so_imm", 26, 6, 0}, 172 {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 173 {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 174 {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 175 {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 176 {"fixup_bfcsel_else_target", 0, 32, 0}, 177 {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 178 {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel}}; 179 180 // Fixup kinds from .reloc directive are like R_ARM_NONE. They do not require 181 // any extra processing. 182 if (Kind >= FirstLiteralRelocationKind) 183 return MCAsmBackend::getFixupKindInfo(FK_NONE); 184 185 if (Kind < FirstTargetFixupKind) 186 return MCAsmBackend::getFixupKindInfo(Kind); 187 188 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && 189 "Invalid kind!"); 190 return (Endian == support::little ? InfosLE 191 : InfosBE)[Kind - FirstTargetFixupKind]; 192 } 193 194 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) { 195 switch (Flag) { 196 default: 197 break; 198 case MCAF_Code16: 199 setIsThumb(true); 200 break; 201 case MCAF_Code32: 202 setIsThumb(false); 203 break; 204 } 205 } 206 207 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op, 208 const MCSubtargetInfo &STI) const { 209 bool HasThumb2 = STI.getFeatureBits()[ARM::FeatureThumb2]; 210 bool HasV8MBaselineOps = STI.getFeatureBits()[ARM::HasV8MBaselineOps]; 211 212 switch (Op) { 213 default: 214 return Op; 215 case ARM::tBcc: 216 return HasThumb2 ? (unsigned)ARM::t2Bcc : Op; 217 case ARM::tLDRpci: 218 return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op; 219 case ARM::tADR: 220 return HasThumb2 ? (unsigned)ARM::t2ADR : Op; 221 case ARM::tB: 222 return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op; 223 case ARM::tCBZ: 224 return ARM::tHINT; 225 case ARM::tCBNZ: 226 return ARM::tHINT; 227 } 228 } 229 230 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst, 231 const MCSubtargetInfo &STI) const { 232 if (getRelaxedOpcode(Inst.getOpcode(), STI) != Inst.getOpcode()) 233 return true; 234 return false; 235 } 236 237 static const char *checkPCRelOffset(uint64_t Value, int64_t Min, int64_t Max) { 238 int64_t Offset = int64_t(Value) - 4; 239 if (Offset < Min || Offset > Max) 240 return "out of range pc-relative fixup value"; 241 return nullptr; 242 } 243 244 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup, 245 uint64_t Value) const { 246 switch (Fixup.getTargetKind()) { 247 case ARM::fixup_arm_thumb_br: { 248 // Relaxing tB to t2B. tB has a signed 12-bit displacement with the 249 // low bit being an implied zero. There's an implied +4 offset for the 250 // branch, so we adjust the other way here to determine what's 251 // encodable. 252 // 253 // Relax if the value is too big for a (signed) i8. 254 int64_t Offset = int64_t(Value) - 4; 255 if (Offset > 2046 || Offset < -2048) 256 return "out of range pc-relative fixup value"; 257 break; 258 } 259 case ARM::fixup_arm_thumb_bcc: { 260 // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the 261 // low bit being an implied zero. There's an implied +4 offset for the 262 // branch, so we adjust the other way here to determine what's 263 // encodable. 264 // 265 // Relax if the value is too big for a (signed) i8. 266 int64_t Offset = int64_t(Value) - 4; 267 if (Offset > 254 || Offset < -256) 268 return "out of range pc-relative fixup value"; 269 break; 270 } 271 case ARM::fixup_thumb_adr_pcrel_10: 272 case ARM::fixup_arm_thumb_cp: { 273 // If the immediate is negative, greater than 1020, or not a multiple 274 // of four, the wide version of the instruction must be used. 275 int64_t Offset = int64_t(Value) - 4; 276 if (Offset & 3) 277 return "misaligned pc-relative fixup value"; 278 else if (Offset > 1020 || Offset < 0) 279 return "out of range pc-relative fixup value"; 280 break; 281 } 282 case ARM::fixup_arm_thumb_cb: { 283 // If we have a Thumb CBZ or CBNZ instruction and its target is the next 284 // instruction it is actually out of range for the instruction. 285 // It will be changed to a NOP. 286 int64_t Offset = (Value & ~1); 287 if (Offset == 2) 288 return "will be converted to nop"; 289 break; 290 } 291 case ARM::fixup_bf_branch: 292 return checkPCRelOffset(Value, 0, 30); 293 case ARM::fixup_bf_target: 294 return checkPCRelOffset(Value, -0x10000, +0xfffe); 295 case ARM::fixup_bfl_target: 296 return checkPCRelOffset(Value, -0x40000, +0x3fffe); 297 case ARM::fixup_bfc_target: 298 return checkPCRelOffset(Value, -0x1000, +0xffe); 299 case ARM::fixup_wls: 300 return checkPCRelOffset(Value, 0, +0xffe); 301 case ARM::fixup_le: 302 // The offset field in the LE and LETP instructions is an 11-bit 303 // value shifted left by 2 (i.e. 0,2,4,...,4094), and it is 304 // interpreted as a negative offset from the value read from pc, 305 // i.e. from instruction_address+4. 306 // 307 // So an LE instruction can in principle address the instruction 308 // immediately after itself, or (not very usefully) the address 309 // half way through the 4-byte LE. 310 return checkPCRelOffset(Value, -0xffe, 0); 311 case ARM::fixup_bfcsel_else_target: { 312 if (Value != 2 && Value != 4) 313 return "out of range label-relative fixup value"; 314 break; 315 } 316 317 default: 318 llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!"); 319 } 320 return nullptr; 321 } 322 323 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value, 324 const MCRelaxableFragment *DF, 325 const MCAsmLayout &Layout) const { 326 return reasonForFixupRelaxation(Fixup, Value); 327 } 328 329 void ARMAsmBackend::relaxInstruction(MCInst &Inst, 330 const MCSubtargetInfo &STI) const { 331 unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode(), STI); 332 333 // Sanity check w/ diagnostic if we get here w/ a bogus instruction. 334 if (RelaxedOp == Inst.getOpcode()) { 335 SmallString<256> Tmp; 336 raw_svector_ostream OS(Tmp); 337 Inst.dump_pretty(OS); 338 OS << "\n"; 339 report_fatal_error("unexpected instruction to relax: " + OS.str()); 340 } 341 342 // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we 343 // have to change the operands too. 344 if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) && 345 RelaxedOp == ARM::tHINT) { 346 MCInst Res; 347 Res.setOpcode(RelaxedOp); 348 Res.addOperand(MCOperand::createImm(0)); 349 Res.addOperand(MCOperand::createImm(14)); 350 Res.addOperand(MCOperand::createReg(0)); 351 Inst = std::move(Res); 352 return; 353 } 354 355 // The rest of instructions we're relaxing have the same operands. 356 // We just need to update to the proper opcode. 357 Inst.setOpcode(RelaxedOp); 358 } 359 360 bool ARMAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const { 361 const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8 362 const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP 363 const uint32_t ARMv4_NopEncoding = 0xe1a00000; // using MOV r0,r0 364 const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP 365 if (isThumb()) { 366 const uint16_t nopEncoding = 367 hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding; 368 uint64_t NumNops = Count / 2; 369 for (uint64_t i = 0; i != NumNops; ++i) 370 support::endian::write(OS, nopEncoding, Endian); 371 if (Count & 1) 372 OS << '\0'; 373 return true; 374 } 375 // ARM mode 376 const uint32_t nopEncoding = 377 hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding; 378 uint64_t NumNops = Count / 4; 379 for (uint64_t i = 0; i != NumNops; ++i) 380 support::endian::write(OS, nopEncoding, Endian); 381 // FIXME: should this function return false when unable to write exactly 382 // 'Count' bytes with NOP encodings? 383 switch (Count % 4) { 384 default: 385 break; // No leftover bytes to write 386 case 1: 387 OS << '\0'; 388 break; 389 case 2: 390 OS.write("\0\0", 2); 391 break; 392 case 3: 393 OS.write("\0\0\xa0", 3); 394 break; 395 } 396 397 return true; 398 } 399 400 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) { 401 if (IsLittleEndian) { 402 // Note that the halfwords are stored high first and low second in thumb; 403 // so we need to swap the fixup value here to map properly. 404 uint32_t Swapped = (Value & 0xFFFF0000) >> 16; 405 Swapped |= (Value & 0x0000FFFF) << 16; 406 return Swapped; 407 } else 408 return Value; 409 } 410 411 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf, 412 bool IsLittleEndian) { 413 uint32_t Value; 414 415 if (IsLittleEndian) { 416 Value = (SecondHalf & 0xFFFF) << 16; 417 Value |= (FirstHalf & 0xFFFF); 418 } else { 419 Value = (SecondHalf & 0xFFFF); 420 Value |= (FirstHalf & 0xFFFF) << 16; 421 } 422 423 return Value; 424 } 425 426 unsigned ARMAsmBackend::adjustFixupValue(const MCAssembler &Asm, 427 const MCFixup &Fixup, 428 const MCValue &Target, uint64_t Value, 429 bool IsResolved, MCContext &Ctx, 430 const MCSubtargetInfo* STI) const { 431 unsigned Kind = Fixup.getKind(); 432 433 // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT 434 // and .word relocations they put the Thumb bit into the addend if possible. 435 // Other relocation types don't want this bit though (branches couldn't encode 436 // it if it *was* present, and no other relocations exist) and it can 437 // interfere with checking valid expressions. 438 if (const MCSymbolRefExpr *A = Target.getSymA()) { 439 if (A->hasSubsectionsViaSymbols() && Asm.isThumbFunc(&A->getSymbol()) && 440 A->getSymbol().isExternal() && 441 (Kind == FK_Data_4 || Kind == ARM::fixup_arm_movw_lo16 || 442 Kind == ARM::fixup_arm_movt_hi16 || Kind == ARM::fixup_t2_movw_lo16 || 443 Kind == ARM::fixup_t2_movt_hi16)) 444 Value |= 1; 445 } 446 447 switch (Kind) { 448 default: 449 Ctx.reportError(Fixup.getLoc(), "bad relocation fixup type"); 450 return 0; 451 case FK_Data_1: 452 case FK_Data_2: 453 case FK_Data_4: 454 return Value; 455 case FK_SecRel_2: 456 return Value; 457 case FK_SecRel_4: 458 return Value; 459 case ARM::fixup_arm_movt_hi16: 460 assert(STI != nullptr); 461 if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF()) 462 Value >>= 16; 463 LLVM_FALLTHROUGH; 464 case ARM::fixup_arm_movw_lo16: { 465 unsigned Hi4 = (Value & 0xF000) >> 12; 466 unsigned Lo12 = Value & 0x0FFF; 467 // inst{19-16} = Hi4; 468 // inst{11-0} = Lo12; 469 Value = (Hi4 << 16) | (Lo12); 470 return Value; 471 } 472 case ARM::fixup_t2_movt_hi16: 473 assert(STI != nullptr); 474 if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF()) 475 Value >>= 16; 476 LLVM_FALLTHROUGH; 477 case ARM::fixup_t2_movw_lo16: { 478 unsigned Hi4 = (Value & 0xF000) >> 12; 479 unsigned i = (Value & 0x800) >> 11; 480 unsigned Mid3 = (Value & 0x700) >> 8; 481 unsigned Lo8 = Value & 0x0FF; 482 // inst{19-16} = Hi4; 483 // inst{26} = i; 484 // inst{14-12} = Mid3; 485 // inst{7-0} = Lo8; 486 Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8); 487 return swapHalfWords(Value, Endian == support::little); 488 } 489 case ARM::fixup_arm_ldst_pcrel_12: 490 // ARM PC-relative values are offset by 8. 491 Value -= 4; 492 LLVM_FALLTHROUGH; 493 case ARM::fixup_t2_ldst_pcrel_12: 494 // Offset by 4, adjusted by two due to the half-word ordering of thumb. 495 Value -= 4; 496 LLVM_FALLTHROUGH; 497 case ARM::fixup_arm_ldst_abs_12: { 498 bool isAdd = true; 499 if ((int64_t)Value < 0) { 500 Value = -Value; 501 isAdd = false; 502 } 503 if (Value >= 4096) { 504 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 505 return 0; 506 } 507 Value |= isAdd << 23; 508 509 // Same addressing mode as fixup_arm_pcrel_10, 510 // but with 16-bit halfwords swapped. 511 if (Kind == ARM::fixup_t2_ldst_pcrel_12) 512 return swapHalfWords(Value, Endian == support::little); 513 514 return Value; 515 } 516 case ARM::fixup_arm_adr_pcrel_12: { 517 // ARM PC-relative values are offset by 8. 518 Value -= 8; 519 unsigned opc = 4; // bits {24-21}. Default to add: 0b0100 520 if ((int64_t)Value < 0) { 521 Value = -Value; 522 opc = 2; // 0b0010 523 } 524 if (ARM_AM::getSOImmVal(Value) == -1) { 525 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 526 return 0; 527 } 528 // Encode the immediate and shift the opcode into place. 529 return ARM_AM::getSOImmVal(Value) | (opc << 21); 530 } 531 532 case ARM::fixup_t2_adr_pcrel_12: { 533 Value -= 4; 534 unsigned opc = 0; 535 if ((int64_t)Value < 0) { 536 Value = -Value; 537 opc = 5; 538 } 539 540 uint32_t out = (opc << 21); 541 out |= (Value & 0x800) << 15; 542 out |= (Value & 0x700) << 4; 543 out |= (Value & 0x0FF); 544 545 return swapHalfWords(out, Endian == support::little); 546 } 547 548 case ARM::fixup_arm_condbranch: 549 case ARM::fixup_arm_uncondbranch: 550 case ARM::fixup_arm_uncondbl: 551 case ARM::fixup_arm_condbl: 552 case ARM::fixup_arm_blx: 553 // These values don't encode the low two bits since they're always zero. 554 // Offset by 8 just as above. 555 if (const MCSymbolRefExpr *SRE = 556 dyn_cast<MCSymbolRefExpr>(Fixup.getValue())) 557 if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL) 558 return 0; 559 return 0xffffff & ((Value - 8) >> 2); 560 case ARM::fixup_t2_uncondbranch: { 561 Value = Value - 4; 562 if (!isInt<25>(Value)) { 563 Ctx.reportError(Fixup.getLoc(), "Relocation out of range"); 564 return 0; 565 } 566 567 Value >>= 1; // Low bit is not encoded. 568 569 uint32_t out = 0; 570 bool I = Value & 0x800000; 571 bool J1 = Value & 0x400000; 572 bool J2 = Value & 0x200000; 573 J1 ^= I; 574 J2 ^= I; 575 576 out |= I << 26; // S bit 577 out |= !J1 << 13; // J1 bit 578 out |= !J2 << 11; // J2 bit 579 out |= (Value & 0x1FF800) << 5; // imm6 field 580 out |= (Value & 0x0007FF); // imm11 field 581 582 return swapHalfWords(out, Endian == support::little); 583 } 584 case ARM::fixup_t2_condbranch: { 585 Value = Value - 4; 586 if (!isInt<21>(Value)) { 587 Ctx.reportError(Fixup.getLoc(), "Relocation out of range"); 588 return 0; 589 } 590 591 Value >>= 1; // Low bit is not encoded. 592 593 uint64_t out = 0; 594 out |= (Value & 0x80000) << 7; // S bit 595 out |= (Value & 0x40000) >> 7; // J2 bit 596 out |= (Value & 0x20000) >> 4; // J1 bit 597 out |= (Value & 0x1F800) << 5; // imm6 field 598 out |= (Value & 0x007FF); // imm11 field 599 600 return swapHalfWords(out, Endian == support::little); 601 } 602 case ARM::fixup_arm_thumb_bl: { 603 if (!isInt<25>(Value - 4) || 604 (!STI->getFeatureBits()[ARM::FeatureThumb2] && 605 !STI->getFeatureBits()[ARM::HasV8MBaselineOps] && 606 !STI->getFeatureBits()[ARM::HasV6MOps] && 607 !isInt<23>(Value - 4))) { 608 Ctx.reportError(Fixup.getLoc(), "Relocation out of range"); 609 return 0; 610 } 611 612 // The value doesn't encode the low bit (always zero) and is offset by 613 // four. The 32-bit immediate value is encoded as 614 // imm32 = SignExtend(S:I1:I2:imm10:imm11:0) 615 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S). 616 // The value is encoded into disjoint bit positions in the destination 617 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit, 618 // J = either J1 or J2 bit 619 // 620 // BL: xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII 621 // 622 // Note that the halfwords are stored high first, low second; so we need 623 // to transpose the fixup value here to map properly. 624 uint32_t offset = (Value - 4) >> 1; 625 uint32_t signBit = (offset & 0x800000) >> 23; 626 uint32_t I1Bit = (offset & 0x400000) >> 22; 627 uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit; 628 uint32_t I2Bit = (offset & 0x200000) >> 21; 629 uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit; 630 uint32_t imm10Bits = (offset & 0x1FF800) >> 11; 631 uint32_t imm11Bits = (offset & 0x000007FF); 632 633 uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits); 634 uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) | 635 (uint16_t)imm11Bits); 636 return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little); 637 } 638 case ARM::fixup_arm_thumb_blx: { 639 // The value doesn't encode the low two bits (always zero) and is offset by 640 // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as 641 // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00) 642 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S). 643 // The value is encoded into disjoint bit positions in the destination 644 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit, 645 // J = either J1 or J2 bit, 0 = zero. 646 // 647 // BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0 648 // 649 // Note that the halfwords are stored high first, low second; so we need 650 // to transpose the fixup value here to map properly. 651 if (Value % 4 != 0) { 652 Ctx.reportError(Fixup.getLoc(), "misaligned ARM call destination"); 653 return 0; 654 } 655 656 uint32_t offset = (Value - 4) >> 2; 657 if (const MCSymbolRefExpr *SRE = 658 dyn_cast<MCSymbolRefExpr>(Fixup.getValue())) 659 if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL) 660 offset = 0; 661 uint32_t signBit = (offset & 0x400000) >> 22; 662 uint32_t I1Bit = (offset & 0x200000) >> 21; 663 uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit; 664 uint32_t I2Bit = (offset & 0x100000) >> 20; 665 uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit; 666 uint32_t imm10HBits = (offset & 0xFFC00) >> 10; 667 uint32_t imm10LBits = (offset & 0x3FF); 668 669 uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits); 670 uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) | 671 ((uint16_t)imm10LBits) << 1); 672 return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little); 673 } 674 case ARM::fixup_thumb_adr_pcrel_10: 675 case ARM::fixup_arm_thumb_cp: 676 // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we 677 // could have an error on our hands. 678 assert(STI != nullptr); 679 if (!STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) { 680 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 681 if (FixupDiagnostic) { 682 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 683 return 0; 684 } 685 } 686 // Offset by 4, and don't encode the low two bits. 687 return ((Value - 4) >> 2) & 0xff; 688 case ARM::fixup_arm_thumb_cb: { 689 // CB instructions can only branch to offsets in [4, 126] in multiples of 2 690 // so ensure that the raw value LSB is zero and it lies in [2, 130]. 691 // An offset of 2 will be relaxed to a NOP. 692 if ((int64_t)Value < 2 || Value > 0x82 || Value & 1) { 693 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 694 return 0; 695 } 696 // Offset by 4 and don't encode the lower bit, which is always 0. 697 // FIXME: diagnose if no Thumb2 698 uint32_t Binary = (Value - 4) >> 1; 699 return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3); 700 } 701 case ARM::fixup_arm_thumb_br: 702 // Offset by 4 and don't encode the lower bit, which is always 0. 703 assert(STI != nullptr); 704 if (!STI->getFeatureBits()[ARM::FeatureThumb2] && 705 !STI->getFeatureBits()[ARM::HasV8MBaselineOps]) { 706 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 707 if (FixupDiagnostic) { 708 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 709 return 0; 710 } 711 } 712 return ((Value - 4) >> 1) & 0x7ff; 713 case ARM::fixup_arm_thumb_bcc: 714 // Offset by 4 and don't encode the lower bit, which is always 0. 715 assert(STI != nullptr); 716 if (!STI->getFeatureBits()[ARM::FeatureThumb2]) { 717 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 718 if (FixupDiagnostic) { 719 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 720 return 0; 721 } 722 } 723 return ((Value - 4) >> 1) & 0xff; 724 case ARM::fixup_arm_pcrel_10_unscaled: { 725 Value = Value - 8; // ARM fixups offset by an additional word and don't 726 // need to adjust for the half-word ordering. 727 bool isAdd = true; 728 if ((int64_t)Value < 0) { 729 Value = -Value; 730 isAdd = false; 731 } 732 // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8]. 733 if (Value >= 256) { 734 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 735 return 0; 736 } 737 Value = (Value & 0xf) | ((Value & 0xf0) << 4); 738 return Value | (isAdd << 23); 739 } 740 case ARM::fixup_arm_pcrel_10: 741 Value = Value - 4; // ARM fixups offset by an additional word and don't 742 // need to adjust for the half-word ordering. 743 LLVM_FALLTHROUGH; 744 case ARM::fixup_t2_pcrel_10: { 745 // Offset by 4, adjusted by two due to the half-word ordering of thumb. 746 Value = Value - 4; 747 bool isAdd = true; 748 if ((int64_t)Value < 0) { 749 Value = -Value; 750 isAdd = false; 751 } 752 // These values don't encode the low two bits since they're always zero. 753 Value >>= 2; 754 if (Value >= 256) { 755 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 756 return 0; 757 } 758 Value |= isAdd << 23; 759 760 // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords 761 // swapped. 762 if (Kind == ARM::fixup_t2_pcrel_10) 763 return swapHalfWords(Value, Endian == support::little); 764 765 return Value; 766 } 767 case ARM::fixup_arm_pcrel_9: 768 Value = Value - 4; // ARM fixups offset by an additional word and don't 769 // need to adjust for the half-word ordering. 770 LLVM_FALLTHROUGH; 771 case ARM::fixup_t2_pcrel_9: { 772 // Offset by 4, adjusted by two due to the half-word ordering of thumb. 773 Value = Value - 4; 774 bool isAdd = true; 775 if ((int64_t)Value < 0) { 776 Value = -Value; 777 isAdd = false; 778 } 779 // These values don't encode the low bit since it's always zero. 780 if (Value & 1) { 781 Ctx.reportError(Fixup.getLoc(), "invalid value for this fixup"); 782 return 0; 783 } 784 Value >>= 1; 785 if (Value >= 256) { 786 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 787 return 0; 788 } 789 Value |= isAdd << 23; 790 791 // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords 792 // swapped. 793 if (Kind == ARM::fixup_t2_pcrel_9) 794 return swapHalfWords(Value, Endian == support::little); 795 796 return Value; 797 } 798 case ARM::fixup_arm_mod_imm: 799 Value = ARM_AM::getSOImmVal(Value); 800 if (Value >> 12) { 801 Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value"); 802 return 0; 803 } 804 return Value; 805 case ARM::fixup_t2_so_imm: { 806 Value = ARM_AM::getT2SOImmVal(Value); 807 if ((int64_t)Value < 0) { 808 Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value"); 809 return 0; 810 } 811 // Value will contain a 12-bit value broken up into a 4-bit shift in bits 812 // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate 813 // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit 814 // 10 of the upper half-word and imm3 is placed at 14:12 of the lower 815 // half-word. 816 uint64_t EncValue = 0; 817 EncValue |= (Value & 0x800) << 15; 818 EncValue |= (Value & 0x700) << 4; 819 EncValue |= (Value & 0xff); 820 return swapHalfWords(EncValue, Endian == support::little); 821 } 822 case ARM::fixup_bf_branch: { 823 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 824 if (FixupDiagnostic) { 825 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 826 return 0; 827 } 828 uint32_t out = (((Value - 4) >> 1) & 0xf) << 23; 829 return swapHalfWords(out, Endian == support::little); 830 } 831 case ARM::fixup_bf_target: 832 case ARM::fixup_bfl_target: 833 case ARM::fixup_bfc_target: { 834 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 835 if (FixupDiagnostic) { 836 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 837 return 0; 838 } 839 uint32_t out = 0; 840 uint32_t HighBitMask = (Kind == ARM::fixup_bf_target ? 0xf800 : 841 Kind == ARM::fixup_bfl_target ? 0x3f800 : 0x800); 842 out |= (((Value - 4) >> 1) & 0x1) << 11; 843 out |= (((Value - 4) >> 1) & 0x7fe); 844 out |= (((Value - 4) >> 1) & HighBitMask) << 5; 845 return swapHalfWords(out, Endian == support::little); 846 } 847 case ARM::fixup_bfcsel_else_target: { 848 // If this is a fixup of a branch future's else target then it should be a 849 // constant MCExpr representing the distance between the branch targetted 850 // and the instruction after that same branch. 851 Value = Target.getConstant(); 852 853 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 854 if (FixupDiagnostic) { 855 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 856 return 0; 857 } 858 uint32_t out = ((Value >> 2) & 1) << 17; 859 return swapHalfWords(out, Endian == support::little); 860 } 861 case ARM::fixup_wls: 862 case ARM::fixup_le: { 863 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 864 if (FixupDiagnostic) { 865 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 866 return 0; 867 } 868 uint64_t real_value = Value - 4; 869 uint32_t out = 0; 870 if (Kind == ARM::fixup_le) 871 real_value = -real_value; 872 out |= ((real_value >> 1) & 0x1) << 11; 873 out |= ((real_value >> 1) & 0x7fe); 874 return swapHalfWords(out, Endian == support::little); 875 } 876 } 877 } 878 879 bool ARMAsmBackend::shouldForceRelocation(const MCAssembler &Asm, 880 const MCFixup &Fixup, 881 const MCValue &Target) { 882 const MCSymbolRefExpr *A = Target.getSymA(); 883 const MCSymbol *Sym = A ? &A->getSymbol() : nullptr; 884 const unsigned FixupKind = Fixup.getKind(); 885 if (FixupKind >= FirstLiteralRelocationKind) 886 return true; 887 if (FixupKind == ARM::fixup_arm_thumb_bl) { 888 assert(Sym && "How did we resolve this?"); 889 890 // If the symbol is external the linker will handle it. 891 // FIXME: Should we handle it as an optimization? 892 893 // If the symbol is out of range, produce a relocation and hope the 894 // linker can handle it. GNU AS produces an error in this case. 895 if (Sym->isExternal()) 896 return true; 897 } 898 // Create relocations for unconditional branches to function symbols with 899 // different execution mode in ELF binaries. 900 if (Sym && Sym->isELF()) { 901 unsigned Type = cast<MCSymbolELF>(Sym)->getType(); 902 if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)) { 903 if (Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_uncondbranch)) 904 return true; 905 if (!Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_thumb_br || 906 FixupKind == ARM::fixup_arm_thumb_bl || 907 FixupKind == ARM::fixup_t2_condbranch || 908 FixupKind == ARM::fixup_t2_uncondbranch)) 909 return true; 910 } 911 } 912 // We must always generate a relocation for BL/BLX instructions if we have 913 // a symbol to reference, as the linker relies on knowing the destination 914 // symbol's thumb-ness to get interworking right. 915 if (A && (FixupKind == ARM::fixup_arm_thumb_blx || 916 FixupKind == ARM::fixup_arm_blx || 917 FixupKind == ARM::fixup_arm_uncondbl || 918 FixupKind == ARM::fixup_arm_condbl)) 919 return true; 920 return false; 921 } 922 923 /// getFixupKindNumBytes - The number of bytes the fixup may change. 924 static unsigned getFixupKindNumBytes(unsigned Kind) { 925 switch (Kind) { 926 default: 927 llvm_unreachable("Unknown fixup kind!"); 928 929 case FK_Data_1: 930 case ARM::fixup_arm_thumb_bcc: 931 case ARM::fixup_arm_thumb_cp: 932 case ARM::fixup_thumb_adr_pcrel_10: 933 return 1; 934 935 case FK_Data_2: 936 case ARM::fixup_arm_thumb_br: 937 case ARM::fixup_arm_thumb_cb: 938 case ARM::fixup_arm_mod_imm: 939 return 2; 940 941 case ARM::fixup_arm_pcrel_10_unscaled: 942 case ARM::fixup_arm_ldst_pcrel_12: 943 case ARM::fixup_arm_pcrel_10: 944 case ARM::fixup_arm_pcrel_9: 945 case ARM::fixup_arm_ldst_abs_12: 946 case ARM::fixup_arm_adr_pcrel_12: 947 case ARM::fixup_arm_uncondbl: 948 case ARM::fixup_arm_condbl: 949 case ARM::fixup_arm_blx: 950 case ARM::fixup_arm_condbranch: 951 case ARM::fixup_arm_uncondbranch: 952 return 3; 953 954 case FK_Data_4: 955 case ARM::fixup_t2_ldst_pcrel_12: 956 case ARM::fixup_t2_condbranch: 957 case ARM::fixup_t2_uncondbranch: 958 case ARM::fixup_t2_pcrel_10: 959 case ARM::fixup_t2_pcrel_9: 960 case ARM::fixup_t2_adr_pcrel_12: 961 case ARM::fixup_arm_thumb_bl: 962 case ARM::fixup_arm_thumb_blx: 963 case ARM::fixup_arm_movt_hi16: 964 case ARM::fixup_arm_movw_lo16: 965 case ARM::fixup_t2_movt_hi16: 966 case ARM::fixup_t2_movw_lo16: 967 case ARM::fixup_t2_so_imm: 968 case ARM::fixup_bf_branch: 969 case ARM::fixup_bf_target: 970 case ARM::fixup_bfl_target: 971 case ARM::fixup_bfc_target: 972 case ARM::fixup_bfcsel_else_target: 973 case ARM::fixup_wls: 974 case ARM::fixup_le: 975 return 4; 976 977 case FK_SecRel_2: 978 return 2; 979 case FK_SecRel_4: 980 return 4; 981 } 982 } 983 984 /// getFixupKindContainerSizeBytes - The number of bytes of the 985 /// container involved in big endian. 986 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) { 987 switch (Kind) { 988 default: 989 llvm_unreachable("Unknown fixup kind!"); 990 991 case FK_Data_1: 992 return 1; 993 case FK_Data_2: 994 return 2; 995 case FK_Data_4: 996 return 4; 997 998 case ARM::fixup_arm_thumb_bcc: 999 case ARM::fixup_arm_thumb_cp: 1000 case ARM::fixup_thumb_adr_pcrel_10: 1001 case ARM::fixup_arm_thumb_br: 1002 case ARM::fixup_arm_thumb_cb: 1003 // Instruction size is 2 bytes. 1004 return 2; 1005 1006 case ARM::fixup_arm_pcrel_10_unscaled: 1007 case ARM::fixup_arm_ldst_pcrel_12: 1008 case ARM::fixup_arm_pcrel_10: 1009 case ARM::fixup_arm_pcrel_9: 1010 case ARM::fixup_arm_adr_pcrel_12: 1011 case ARM::fixup_arm_uncondbl: 1012 case ARM::fixup_arm_condbl: 1013 case ARM::fixup_arm_blx: 1014 case ARM::fixup_arm_condbranch: 1015 case ARM::fixup_arm_uncondbranch: 1016 case ARM::fixup_t2_ldst_pcrel_12: 1017 case ARM::fixup_t2_condbranch: 1018 case ARM::fixup_t2_uncondbranch: 1019 case ARM::fixup_t2_pcrel_10: 1020 case ARM::fixup_t2_pcrel_9: 1021 case ARM::fixup_t2_adr_pcrel_12: 1022 case ARM::fixup_arm_thumb_bl: 1023 case ARM::fixup_arm_thumb_blx: 1024 case ARM::fixup_arm_movt_hi16: 1025 case ARM::fixup_arm_movw_lo16: 1026 case ARM::fixup_t2_movt_hi16: 1027 case ARM::fixup_t2_movw_lo16: 1028 case ARM::fixup_arm_mod_imm: 1029 case ARM::fixup_t2_so_imm: 1030 case ARM::fixup_bf_branch: 1031 case ARM::fixup_bf_target: 1032 case ARM::fixup_bfl_target: 1033 case ARM::fixup_bfc_target: 1034 case ARM::fixup_bfcsel_else_target: 1035 case ARM::fixup_wls: 1036 case ARM::fixup_le: 1037 // Instruction size is 4 bytes. 1038 return 4; 1039 } 1040 } 1041 1042 void ARMAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, 1043 const MCValue &Target, 1044 MutableArrayRef<char> Data, uint64_t Value, 1045 bool IsResolved, 1046 const MCSubtargetInfo* STI) const { 1047 unsigned Kind = Fixup.getKind(); 1048 if (Kind >= FirstLiteralRelocationKind) 1049 return; 1050 unsigned NumBytes = getFixupKindNumBytes(Kind); 1051 MCContext &Ctx = Asm.getContext(); 1052 Value = adjustFixupValue(Asm, Fixup, Target, Value, IsResolved, Ctx, STI); 1053 if (!Value) 1054 return; // Doesn't change encoding. 1055 1056 unsigned Offset = Fixup.getOffset(); 1057 assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!"); 1058 1059 // Used to point to big endian bytes. 1060 unsigned FullSizeBytes; 1061 if (Endian == support::big) { 1062 FullSizeBytes = getFixupKindContainerSizeBytes(Kind); 1063 assert((Offset + FullSizeBytes) <= Data.size() && "Invalid fixup size!"); 1064 assert(NumBytes <= FullSizeBytes && "Invalid fixup size!"); 1065 } 1066 1067 // For each byte of the fragment that the fixup touches, mask in the bits from 1068 // the fixup value. The Value has been "split up" into the appropriate 1069 // bitfields above. 1070 for (unsigned i = 0; i != NumBytes; ++i) { 1071 unsigned Idx = Endian == support::little ? i : (FullSizeBytes - 1 - i); 1072 Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff); 1073 } 1074 } 1075 1076 namespace CU { 1077 1078 /// Compact unwind encoding values. 1079 enum CompactUnwindEncodings { 1080 UNWIND_ARM_MODE_MASK = 0x0F000000, 1081 UNWIND_ARM_MODE_FRAME = 0x01000000, 1082 UNWIND_ARM_MODE_FRAME_D = 0x02000000, 1083 UNWIND_ARM_MODE_DWARF = 0x04000000, 1084 1085 UNWIND_ARM_FRAME_STACK_ADJUST_MASK = 0x00C00000, 1086 1087 UNWIND_ARM_FRAME_FIRST_PUSH_R4 = 0x00000001, 1088 UNWIND_ARM_FRAME_FIRST_PUSH_R5 = 0x00000002, 1089 UNWIND_ARM_FRAME_FIRST_PUSH_R6 = 0x00000004, 1090 1091 UNWIND_ARM_FRAME_SECOND_PUSH_R8 = 0x00000008, 1092 UNWIND_ARM_FRAME_SECOND_PUSH_R9 = 0x00000010, 1093 UNWIND_ARM_FRAME_SECOND_PUSH_R10 = 0x00000020, 1094 UNWIND_ARM_FRAME_SECOND_PUSH_R11 = 0x00000040, 1095 UNWIND_ARM_FRAME_SECOND_PUSH_R12 = 0x00000080, 1096 1097 UNWIND_ARM_FRAME_D_REG_COUNT_MASK = 0x00000F00, 1098 1099 UNWIND_ARM_DWARF_SECTION_OFFSET = 0x00FFFFFF 1100 }; 1101 1102 } // end CU namespace 1103 1104 /// Generate compact unwind encoding for the function based on the CFI 1105 /// instructions. If the CFI instructions describe a frame that cannot be 1106 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which 1107 /// tells the runtime to fallback and unwind using dwarf. 1108 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding( 1109 ArrayRef<MCCFIInstruction> Instrs) const { 1110 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n"); 1111 // Only armv7k uses CFI based unwinding. 1112 if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K) 1113 return 0; 1114 // No .cfi directives means no frame. 1115 if (Instrs.empty()) 1116 return 0; 1117 // Start off assuming CFA is at SP+0. 1118 unsigned CFARegister = ARM::SP; 1119 int CFARegisterOffset = 0; 1120 // Mark savable registers as initially unsaved 1121 DenseMap<unsigned, int> RegOffsets; 1122 int FloatRegCount = 0; 1123 // Process each .cfi directive and build up compact unwind info. 1124 for (size_t i = 0, e = Instrs.size(); i != e; ++i) { 1125 unsigned Reg; 1126 const MCCFIInstruction &Inst = Instrs[i]; 1127 switch (Inst.getOperation()) { 1128 case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa 1129 CFARegisterOffset = Inst.getOffset(); 1130 CFARegister = *MRI.getLLVMRegNum(Inst.getRegister(), true); 1131 break; 1132 case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset 1133 CFARegisterOffset = Inst.getOffset(); 1134 break; 1135 case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register 1136 CFARegister = *MRI.getLLVMRegNum(Inst.getRegister(), true); 1137 break; 1138 case MCCFIInstruction::OpOffset: // DW_CFA_offset 1139 Reg = *MRI.getLLVMRegNum(Inst.getRegister(), true); 1140 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 1141 RegOffsets[Reg] = Inst.getOffset(); 1142 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 1143 RegOffsets[Reg] = Inst.getOffset(); 1144 ++FloatRegCount; 1145 } else { 1146 DEBUG_WITH_TYPE("compact-unwind", 1147 llvm::dbgs() << ".cfi_offset on unknown register=" 1148 << Inst.getRegister() << "\n"); 1149 return CU::UNWIND_ARM_MODE_DWARF; 1150 } 1151 break; 1152 case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc 1153 // Ignore 1154 break; 1155 default: 1156 // Directive not convertable to compact unwind, bail out. 1157 DEBUG_WITH_TYPE("compact-unwind", 1158 llvm::dbgs() 1159 << "CFI directive not compatiable with comact " 1160 "unwind encoding, opcode=" << Inst.getOperation() 1161 << "\n"); 1162 return CU::UNWIND_ARM_MODE_DWARF; 1163 break; 1164 } 1165 } 1166 1167 // If no frame set up, return no unwind info. 1168 if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0)) 1169 return 0; 1170 1171 // Verify standard frame (lr/r7) was used. 1172 if (CFARegister != ARM::R7) { 1173 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is " 1174 << CFARegister 1175 << " instead of r7\n"); 1176 return CU::UNWIND_ARM_MODE_DWARF; 1177 } 1178 int StackAdjust = CFARegisterOffset - 8; 1179 if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) { 1180 DEBUG_WITH_TYPE("compact-unwind", 1181 llvm::dbgs() 1182 << "LR not saved as standard frame, StackAdjust=" 1183 << StackAdjust 1184 << ", CFARegisterOffset=" << CFARegisterOffset 1185 << ", lr save at offset=" << RegOffsets[14] << "\n"); 1186 return CU::UNWIND_ARM_MODE_DWARF; 1187 } 1188 if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) { 1189 DEBUG_WITH_TYPE("compact-unwind", 1190 llvm::dbgs() << "r7 not saved as standard frame\n"); 1191 return CU::UNWIND_ARM_MODE_DWARF; 1192 } 1193 uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME; 1194 1195 // If var-args are used, there may be a stack adjust required. 1196 switch (StackAdjust) { 1197 case 0: 1198 break; 1199 case 4: 1200 CompactUnwindEncoding |= 0x00400000; 1201 break; 1202 case 8: 1203 CompactUnwindEncoding |= 0x00800000; 1204 break; 1205 case 12: 1206 CompactUnwindEncoding |= 0x00C00000; 1207 break; 1208 default: 1209 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() 1210 << ".cfi_def_cfa stack adjust (" 1211 << StackAdjust << ") out of range\n"); 1212 return CU::UNWIND_ARM_MODE_DWARF; 1213 } 1214 1215 // If r6 is saved, it must be right below r7. 1216 static struct { 1217 unsigned Reg; 1218 unsigned Encoding; 1219 } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6}, 1220 {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5}, 1221 {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4}, 1222 {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12}, 1223 {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11}, 1224 {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10}, 1225 {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9}, 1226 {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}}; 1227 1228 int CurOffset = -8 - StackAdjust; 1229 for (auto CSReg : GPRCSRegs) { 1230 auto Offset = RegOffsets.find(CSReg.Reg); 1231 if (Offset == RegOffsets.end()) 1232 continue; 1233 1234 int RegOffset = Offset->second; 1235 if (RegOffset != CurOffset - 4) { 1236 DEBUG_WITH_TYPE("compact-unwind", 1237 llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at " 1238 << RegOffset << " but only supported at " 1239 << CurOffset << "\n"); 1240 return CU::UNWIND_ARM_MODE_DWARF; 1241 } 1242 CompactUnwindEncoding |= CSReg.Encoding; 1243 CurOffset -= 4; 1244 } 1245 1246 // If no floats saved, we are done. 1247 if (FloatRegCount == 0) 1248 return CompactUnwindEncoding; 1249 1250 // Switch mode to include D register saving. 1251 CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK; 1252 CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D; 1253 1254 // FIXME: supporting more than 4 saved D-registers compactly would be trivial, 1255 // but needs coordination with the linker and libunwind. 1256 if (FloatRegCount > 4) { 1257 DEBUG_WITH_TYPE("compact-unwind", 1258 llvm::dbgs() << "unsupported number of D registers saved (" 1259 << FloatRegCount << ")\n"); 1260 return CU::UNWIND_ARM_MODE_DWARF; 1261 } 1262 1263 // Floating point registers must either be saved sequentially, or we defer to 1264 // DWARF. No gaps allowed here so check that each saved d-register is 1265 // precisely where it should be. 1266 static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 }; 1267 for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) { 1268 auto Offset = RegOffsets.find(FPRCSRegs[Idx]); 1269 if (Offset == RegOffsets.end()) { 1270 DEBUG_WITH_TYPE("compact-unwind", 1271 llvm::dbgs() << FloatRegCount << " D-regs saved, but " 1272 << MRI.getName(FPRCSRegs[Idx]) 1273 << " not saved\n"); 1274 return CU::UNWIND_ARM_MODE_DWARF; 1275 } else if (Offset->second != CurOffset - 8) { 1276 DEBUG_WITH_TYPE("compact-unwind", 1277 llvm::dbgs() << FloatRegCount << " D-regs saved, but " 1278 << MRI.getName(FPRCSRegs[Idx]) 1279 << " saved at " << Offset->second 1280 << ", expected at " << CurOffset - 8 1281 << "\n"); 1282 return CU::UNWIND_ARM_MODE_DWARF; 1283 } 1284 CurOffset -= 8; 1285 } 1286 1287 return CompactUnwindEncoding | ((FloatRegCount - 1) << 8); 1288 } 1289 1290 static MCAsmBackend *createARMAsmBackend(const Target &T, 1291 const MCSubtargetInfo &STI, 1292 const MCRegisterInfo &MRI, 1293 const MCTargetOptions &Options, 1294 support::endianness Endian) { 1295 const Triple &TheTriple = STI.getTargetTriple(); 1296 switch (TheTriple.getObjectFormat()) { 1297 default: 1298 llvm_unreachable("unsupported object format"); 1299 case Triple::MachO: 1300 return new ARMAsmBackendDarwin(T, STI, MRI); 1301 case Triple::COFF: 1302 assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported"); 1303 return new ARMAsmBackendWinCOFF(T, STI); 1304 case Triple::ELF: 1305 assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target"); 1306 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); 1307 return new ARMAsmBackendELF(T, STI, OSABI, Endian); 1308 } 1309 } 1310 1311 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T, 1312 const MCSubtargetInfo &STI, 1313 const MCRegisterInfo &MRI, 1314 const MCTargetOptions &Options) { 1315 return createARMAsmBackend(T, STI, MRI, Options, support::little); 1316 } 1317 1318 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T, 1319 const MCSubtargetInfo &STI, 1320 const MCRegisterInfo &MRI, 1321 const MCTargetOptions &Options) { 1322 return createARMAsmBackend(T, STI, MRI, Options, support::big); 1323 } 1324