1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MCTargetDesc/ARMAsmBackend.h" 10 #include "MCTargetDesc/ARMAddressingModes.h" 11 #include "MCTargetDesc/ARMAsmBackendDarwin.h" 12 #include "MCTargetDesc/ARMAsmBackendELF.h" 13 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h" 14 #include "MCTargetDesc/ARMFixupKinds.h" 15 #include "MCTargetDesc/ARMMCTargetDesc.h" 16 #include "llvm/ADT/StringSwitch.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/BinaryFormat/MachO.h" 19 #include "llvm/MC/MCAsmBackend.h" 20 #include "llvm/MC/MCAssembler.h" 21 #include "llvm/MC/MCContext.h" 22 #include "llvm/MC/MCDirectives.h" 23 #include "llvm/MC/MCELFObjectWriter.h" 24 #include "llvm/MC/MCExpr.h" 25 #include "llvm/MC/MCFixupKindInfo.h" 26 #include "llvm/MC/MCObjectWriter.h" 27 #include "llvm/MC/MCRegisterInfo.h" 28 #include "llvm/MC/MCSectionELF.h" 29 #include "llvm/MC/MCSectionMachO.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include "llvm/MC/MCValue.h" 32 #include "llvm/MC/MCAsmLayout.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/EndianStream.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/Format.h" 37 #include "llvm/Support/TargetParser.h" 38 #include "llvm/Support/raw_ostream.h" 39 using namespace llvm; 40 41 namespace { 42 class ARMELFObjectWriter : public MCELFObjectTargetWriter { 43 public: 44 ARMELFObjectWriter(uint8_t OSABI) 45 : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM, 46 /*HasRelocationAddend*/ false) {} 47 }; 48 } // end anonymous namespace 49 50 Optional<MCFixupKind> ARMAsmBackend::getFixupKind(StringRef Name) const { 51 if (!STI.getTargetTriple().isOSBinFormatELF()) 52 return None; 53 54 unsigned Type = llvm::StringSwitch<unsigned>(Name) 55 #define ELF_RELOC(X, Y) .Case(#X, Y) 56 #include "llvm/BinaryFormat/ELFRelocs/ARM.def" 57 #undef ELF_RELOC 58 .Default(-1u); 59 if (Type == -1u) 60 return None; 61 return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type); 62 } 63 64 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const { 65 unsigned IsPCRelConstant = 66 MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_Constant; 67 const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = { 68 // This table *must* be in the order that the fixup_* kinds are defined in 69 // ARMFixupKinds.h. 70 // 71 // Name Offset (bits) Size (bits) Flags 72 {"fixup_arm_ldst_pcrel_12", 0, 32, IsPCRelConstant}, 73 {"fixup_t2_ldst_pcrel_12", 0, 32, 74 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 75 {"fixup_arm_pcrel_10_unscaled", 0, 32, IsPCRelConstant}, 76 {"fixup_arm_pcrel_10", 0, 32, IsPCRelConstant}, 77 {"fixup_t2_pcrel_10", 0, 32, 78 MCFixupKindInfo::FKF_IsPCRel | 79 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 80 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 81 {"fixup_t2_pcrel_9", 0, 32, 82 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 83 {"fixup_thumb_adr_pcrel_10", 0, 8, 84 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 85 {"fixup_arm_adr_pcrel_12", 0, 32, IsPCRelConstant}, 86 {"fixup_t2_adr_pcrel_12", 0, 32, 87 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 88 {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 89 {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 90 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 91 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 92 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 93 {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 94 {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 95 {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 96 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 97 {"fixup_arm_thumb_blx", 0, 32, 98 MCFixupKindInfo::FKF_IsPCRel | 99 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 100 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 101 {"fixup_arm_thumb_cp", 0, 8, 102 MCFixupKindInfo::FKF_IsPCRel | 103 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 104 {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel}, 105 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 106 // - 19. 107 {"fixup_arm_movt_hi16", 0, 20, 0}, 108 {"fixup_arm_movw_lo16", 0, 20, 0}, 109 {"fixup_t2_movt_hi16", 0, 20, 0}, 110 {"fixup_t2_movw_lo16", 0, 20, 0}, 111 {"fixup_arm_mod_imm", 0, 12, 0}, 112 {"fixup_t2_so_imm", 0, 26, 0}, 113 {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 114 {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 115 {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 116 {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 117 {"fixup_bfcsel_else_target", 0, 32, 0}, 118 {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 119 {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel} 120 }; 121 const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = { 122 // This table *must* be in the order that the fixup_* kinds are defined in 123 // ARMFixupKinds.h. 124 // 125 // Name Offset (bits) Size (bits) Flags 126 {"fixup_arm_ldst_pcrel_12", 0, 32, IsPCRelConstant}, 127 {"fixup_t2_ldst_pcrel_12", 0, 32, 128 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 129 {"fixup_arm_pcrel_10_unscaled", 0, 32, IsPCRelConstant}, 130 {"fixup_arm_pcrel_10", 0, 32, IsPCRelConstant}, 131 {"fixup_t2_pcrel_10", 0, 32, 132 MCFixupKindInfo::FKF_IsPCRel | 133 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 134 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 135 {"fixup_t2_pcrel_9", 0, 32, 136 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 137 {"fixup_thumb_adr_pcrel_10", 8, 8, 138 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 139 {"fixup_arm_adr_pcrel_12", 0, 32, IsPCRelConstant}, 140 {"fixup_t2_adr_pcrel_12", 0, 32, 141 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 142 {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 143 {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 144 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 145 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 146 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 147 {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 148 {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 149 {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 150 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 151 {"fixup_arm_thumb_blx", 0, 32, 152 MCFixupKindInfo::FKF_IsPCRel | 153 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 154 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 155 {"fixup_arm_thumb_cp", 8, 8, 156 MCFixupKindInfo::FKF_IsPCRel | 157 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 158 {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel}, 159 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 160 // - 19. 161 {"fixup_arm_movt_hi16", 12, 20, 0}, 162 {"fixup_arm_movw_lo16", 12, 20, 0}, 163 {"fixup_t2_movt_hi16", 12, 20, 0}, 164 {"fixup_t2_movw_lo16", 12, 20, 0}, 165 {"fixup_arm_mod_imm", 20, 12, 0}, 166 {"fixup_t2_so_imm", 26, 6, 0}, 167 {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 168 {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 169 {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 170 {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 171 {"fixup_bfcsel_else_target", 0, 32, 0}, 172 {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 173 {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel} 174 }; 175 176 // Fixup kinds from .reloc directive are like R_ARM_NONE. They do not require 177 // any extra processing. 178 if (Kind >= FirstLiteralRelocationKind) 179 return MCAsmBackend::getFixupKindInfo(FK_NONE); 180 181 if (Kind < FirstTargetFixupKind) 182 return MCAsmBackend::getFixupKindInfo(Kind); 183 184 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && 185 "Invalid kind!"); 186 return (Endian == support::little ? InfosLE 187 : InfosBE)[Kind - FirstTargetFixupKind]; 188 } 189 190 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) { 191 switch (Flag) { 192 default: 193 break; 194 case MCAF_Code16: 195 setIsThumb(true); 196 break; 197 case MCAF_Code32: 198 setIsThumb(false); 199 break; 200 } 201 } 202 203 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op, 204 const MCSubtargetInfo &STI) const { 205 bool HasThumb2 = STI.getFeatureBits()[ARM::FeatureThumb2]; 206 bool HasV8MBaselineOps = STI.getFeatureBits()[ARM::HasV8MBaselineOps]; 207 208 switch (Op) { 209 default: 210 return Op; 211 case ARM::tBcc: 212 return HasThumb2 ? (unsigned)ARM::t2Bcc : Op; 213 case ARM::tLDRpci: 214 return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op; 215 case ARM::tADR: 216 return HasThumb2 ? (unsigned)ARM::t2ADR : Op; 217 case ARM::tB: 218 return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op; 219 case ARM::tCBZ: 220 return ARM::tHINT; 221 case ARM::tCBNZ: 222 return ARM::tHINT; 223 } 224 } 225 226 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst, 227 const MCSubtargetInfo &STI) const { 228 if (getRelaxedOpcode(Inst.getOpcode(), STI) != Inst.getOpcode()) 229 return true; 230 return false; 231 } 232 233 static const char *checkPCRelOffset(uint64_t Value, int64_t Min, int64_t Max) { 234 int64_t Offset = int64_t(Value) - 4; 235 if (Offset < Min || Offset > Max) 236 return "out of range pc-relative fixup value"; 237 return nullptr; 238 } 239 240 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup, 241 uint64_t Value) const { 242 switch (Fixup.getTargetKind()) { 243 case ARM::fixup_arm_thumb_br: { 244 // Relaxing tB to t2B. tB has a signed 12-bit displacement with the 245 // low bit being an implied zero. There's an implied +4 offset for the 246 // branch, so we adjust the other way here to determine what's 247 // encodable. 248 // 249 // Relax if the value is too big for a (signed) i8. 250 int64_t Offset = int64_t(Value) - 4; 251 if (Offset > 2046 || Offset < -2048) 252 return "out of range pc-relative fixup value"; 253 break; 254 } 255 case ARM::fixup_arm_thumb_bcc: { 256 // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the 257 // low bit being an implied zero. There's an implied +4 offset for the 258 // branch, so we adjust the other way here to determine what's 259 // encodable. 260 // 261 // Relax if the value is too big for a (signed) i8. 262 int64_t Offset = int64_t(Value) - 4; 263 if (Offset > 254 || Offset < -256) 264 return "out of range pc-relative fixup value"; 265 break; 266 } 267 case ARM::fixup_thumb_adr_pcrel_10: 268 case ARM::fixup_arm_thumb_cp: { 269 // If the immediate is negative, greater than 1020, or not a multiple 270 // of four, the wide version of the instruction must be used. 271 int64_t Offset = int64_t(Value) - 4; 272 if (Offset & 3) 273 return "misaligned pc-relative fixup value"; 274 else if (Offset > 1020 || Offset < 0) 275 return "out of range pc-relative fixup value"; 276 break; 277 } 278 case ARM::fixup_arm_thumb_cb: { 279 // If we have a Thumb CBZ or CBNZ instruction and its target is the next 280 // instruction it is actually out of range for the instruction. 281 // It will be changed to a NOP. 282 int64_t Offset = (Value & ~1); 283 if (Offset == 2) 284 return "will be converted to nop"; 285 break; 286 } 287 case ARM::fixup_bf_branch: 288 return checkPCRelOffset(Value, 0, 30); 289 case ARM::fixup_bf_target: 290 return checkPCRelOffset(Value, -0x10000, +0xfffe); 291 case ARM::fixup_bfl_target: 292 return checkPCRelOffset(Value, -0x40000, +0x3fffe); 293 case ARM::fixup_bfc_target: 294 return checkPCRelOffset(Value, -0x1000, +0xffe); 295 case ARM::fixup_wls: 296 return checkPCRelOffset(Value, 0, +0xffe); 297 case ARM::fixup_le: 298 // The offset field in the LE and LETP instructions is an 11-bit 299 // value shifted left by 2 (i.e. 0,2,4,...,4094), and it is 300 // interpreted as a negative offset from the value read from pc, 301 // i.e. from instruction_address+4. 302 // 303 // So an LE instruction can in principle address the instruction 304 // immediately after itself, or (not very usefully) the address 305 // half way through the 4-byte LE. 306 return checkPCRelOffset(Value, -0xffe, 0); 307 case ARM::fixup_bfcsel_else_target: { 308 if (Value != 2 && Value != 4) 309 return "out of range label-relative fixup value"; 310 break; 311 } 312 313 default: 314 llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!"); 315 } 316 return nullptr; 317 } 318 319 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value, 320 const MCRelaxableFragment *DF, 321 const MCAsmLayout &Layout) const { 322 return reasonForFixupRelaxation(Fixup, Value); 323 } 324 325 void ARMAsmBackend::relaxInstruction(MCInst &Inst, 326 const MCSubtargetInfo &STI) const { 327 unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode(), STI); 328 329 // Sanity check w/ diagnostic if we get here w/ a bogus instruction. 330 if (RelaxedOp == Inst.getOpcode()) { 331 SmallString<256> Tmp; 332 raw_svector_ostream OS(Tmp); 333 Inst.dump_pretty(OS); 334 OS << "\n"; 335 report_fatal_error("unexpected instruction to relax: " + OS.str()); 336 } 337 338 // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we 339 // have to change the operands too. 340 if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) && 341 RelaxedOp == ARM::tHINT) { 342 MCInst Res; 343 Res.setOpcode(RelaxedOp); 344 Res.addOperand(MCOperand::createImm(0)); 345 Res.addOperand(MCOperand::createImm(14)); 346 Res.addOperand(MCOperand::createReg(0)); 347 Inst = std::move(Res); 348 return; 349 } 350 351 // The rest of instructions we're relaxing have the same operands. 352 // We just need to update to the proper opcode. 353 Inst.setOpcode(RelaxedOp); 354 } 355 356 bool ARMAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const { 357 const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8 358 const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP 359 const uint32_t ARMv4_NopEncoding = 0xe1a00000; // using MOV r0,r0 360 const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP 361 if (isThumb()) { 362 const uint16_t nopEncoding = 363 hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding; 364 uint64_t NumNops = Count / 2; 365 for (uint64_t i = 0; i != NumNops; ++i) 366 support::endian::write(OS, nopEncoding, Endian); 367 if (Count & 1) 368 OS << '\0'; 369 return true; 370 } 371 // ARM mode 372 const uint32_t nopEncoding = 373 hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding; 374 uint64_t NumNops = Count / 4; 375 for (uint64_t i = 0; i != NumNops; ++i) 376 support::endian::write(OS, nopEncoding, Endian); 377 // FIXME: should this function return false when unable to write exactly 378 // 'Count' bytes with NOP encodings? 379 switch (Count % 4) { 380 default: 381 break; // No leftover bytes to write 382 case 1: 383 OS << '\0'; 384 break; 385 case 2: 386 OS.write("\0\0", 2); 387 break; 388 case 3: 389 OS.write("\0\0\xa0", 3); 390 break; 391 } 392 393 return true; 394 } 395 396 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) { 397 if (IsLittleEndian) { 398 // Note that the halfwords are stored high first and low second in thumb; 399 // so we need to swap the fixup value here to map properly. 400 uint32_t Swapped = (Value & 0xFFFF0000) >> 16; 401 Swapped |= (Value & 0x0000FFFF) << 16; 402 return Swapped; 403 } else 404 return Value; 405 } 406 407 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf, 408 bool IsLittleEndian) { 409 uint32_t Value; 410 411 if (IsLittleEndian) { 412 Value = (SecondHalf & 0xFFFF) << 16; 413 Value |= (FirstHalf & 0xFFFF); 414 } else { 415 Value = (SecondHalf & 0xFFFF); 416 Value |= (FirstHalf & 0xFFFF) << 16; 417 } 418 419 return Value; 420 } 421 422 unsigned ARMAsmBackend::adjustFixupValue(const MCAssembler &Asm, 423 const MCFixup &Fixup, 424 const MCValue &Target, uint64_t Value, 425 bool IsResolved, MCContext &Ctx, 426 const MCSubtargetInfo* STI) const { 427 unsigned Kind = Fixup.getKind(); 428 429 // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT 430 // and .word relocations they put the Thumb bit into the addend if possible. 431 // Other relocation types don't want this bit though (branches couldn't encode 432 // it if it *was* present, and no other relocations exist) and it can 433 // interfere with checking valid expressions. 434 if (const MCSymbolRefExpr *A = Target.getSymA()) { 435 if (A->hasSubsectionsViaSymbols() && Asm.isThumbFunc(&A->getSymbol()) && 436 A->getSymbol().isExternal() && 437 (Kind == FK_Data_4 || Kind == ARM::fixup_arm_movw_lo16 || 438 Kind == ARM::fixup_arm_movt_hi16 || Kind == ARM::fixup_t2_movw_lo16 || 439 Kind == ARM::fixup_t2_movt_hi16)) 440 Value |= 1; 441 } 442 443 switch (Kind) { 444 default: 445 Ctx.reportError(Fixup.getLoc(), "bad relocation fixup type"); 446 return 0; 447 case FK_Data_1: 448 case FK_Data_2: 449 case FK_Data_4: 450 return Value; 451 case FK_SecRel_2: 452 return Value; 453 case FK_SecRel_4: 454 return Value; 455 case ARM::fixup_arm_movt_hi16: 456 assert(STI != nullptr); 457 if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF()) 458 Value >>= 16; 459 LLVM_FALLTHROUGH; 460 case ARM::fixup_arm_movw_lo16: { 461 unsigned Hi4 = (Value & 0xF000) >> 12; 462 unsigned Lo12 = Value & 0x0FFF; 463 // inst{19-16} = Hi4; 464 // inst{11-0} = Lo12; 465 Value = (Hi4 << 16) | (Lo12); 466 return Value; 467 } 468 case ARM::fixup_t2_movt_hi16: 469 assert(STI != nullptr); 470 if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF()) 471 Value >>= 16; 472 LLVM_FALLTHROUGH; 473 case ARM::fixup_t2_movw_lo16: { 474 unsigned Hi4 = (Value & 0xF000) >> 12; 475 unsigned i = (Value & 0x800) >> 11; 476 unsigned Mid3 = (Value & 0x700) >> 8; 477 unsigned Lo8 = Value & 0x0FF; 478 // inst{19-16} = Hi4; 479 // inst{26} = i; 480 // inst{14-12} = Mid3; 481 // inst{7-0} = Lo8; 482 Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8); 483 return swapHalfWords(Value, Endian == support::little); 484 } 485 case ARM::fixup_arm_ldst_pcrel_12: 486 // ARM PC-relative values are offset by 8. 487 Value -= 4; 488 LLVM_FALLTHROUGH; 489 case ARM::fixup_t2_ldst_pcrel_12: { 490 // Offset by 4, adjusted by two due to the half-word ordering of thumb. 491 Value -= 4; 492 bool isAdd = true; 493 if ((int64_t)Value < 0) { 494 Value = -Value; 495 isAdd = false; 496 } 497 if (Value >= 4096) { 498 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 499 return 0; 500 } 501 Value |= isAdd << 23; 502 503 // Same addressing mode as fixup_arm_pcrel_10, 504 // but with 16-bit halfwords swapped. 505 if (Kind == ARM::fixup_t2_ldst_pcrel_12) 506 return swapHalfWords(Value, Endian == support::little); 507 508 return Value; 509 } 510 case ARM::fixup_arm_adr_pcrel_12: { 511 // ARM PC-relative values are offset by 8. 512 Value -= 8; 513 unsigned opc = 4; // bits {24-21}. Default to add: 0b0100 514 if ((int64_t)Value < 0) { 515 Value = -Value; 516 opc = 2; // 0b0010 517 } 518 if (ARM_AM::getSOImmVal(Value) == -1) { 519 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 520 return 0; 521 } 522 // Encode the immediate and shift the opcode into place. 523 return ARM_AM::getSOImmVal(Value) | (opc << 21); 524 } 525 526 case ARM::fixup_t2_adr_pcrel_12: { 527 Value -= 4; 528 unsigned opc = 0; 529 if ((int64_t)Value < 0) { 530 Value = -Value; 531 opc = 5; 532 } 533 534 uint32_t out = (opc << 21); 535 out |= (Value & 0x800) << 15; 536 out |= (Value & 0x700) << 4; 537 out |= (Value & 0x0FF); 538 539 return swapHalfWords(out, Endian == support::little); 540 } 541 542 case ARM::fixup_arm_condbranch: 543 case ARM::fixup_arm_uncondbranch: 544 case ARM::fixup_arm_uncondbl: 545 case ARM::fixup_arm_condbl: 546 case ARM::fixup_arm_blx: 547 // These values don't encode the low two bits since they're always zero. 548 // Offset by 8 just as above. 549 if (const MCSymbolRefExpr *SRE = 550 dyn_cast<MCSymbolRefExpr>(Fixup.getValue())) 551 if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL) 552 return 0; 553 return 0xffffff & ((Value - 8) >> 2); 554 case ARM::fixup_t2_uncondbranch: { 555 Value = Value - 4; 556 if (!isInt<25>(Value)) { 557 Ctx.reportError(Fixup.getLoc(), "Relocation out of range"); 558 return 0; 559 } 560 561 Value >>= 1; // Low bit is not encoded. 562 563 uint32_t out = 0; 564 bool I = Value & 0x800000; 565 bool J1 = Value & 0x400000; 566 bool J2 = Value & 0x200000; 567 J1 ^= I; 568 J2 ^= I; 569 570 out |= I << 26; // S bit 571 out |= !J1 << 13; // J1 bit 572 out |= !J2 << 11; // J2 bit 573 out |= (Value & 0x1FF800) << 5; // imm6 field 574 out |= (Value & 0x0007FF); // imm11 field 575 576 return swapHalfWords(out, Endian == support::little); 577 } 578 case ARM::fixup_t2_condbranch: { 579 Value = Value - 4; 580 if (!isInt<21>(Value)) { 581 Ctx.reportError(Fixup.getLoc(), "Relocation out of range"); 582 return 0; 583 } 584 585 Value >>= 1; // Low bit is not encoded. 586 587 uint64_t out = 0; 588 out |= (Value & 0x80000) << 7; // S bit 589 out |= (Value & 0x40000) >> 7; // J2 bit 590 out |= (Value & 0x20000) >> 4; // J1 bit 591 out |= (Value & 0x1F800) << 5; // imm6 field 592 out |= (Value & 0x007FF); // imm11 field 593 594 return swapHalfWords(out, Endian == support::little); 595 } 596 case ARM::fixup_arm_thumb_bl: { 597 if (!isInt<25>(Value - 4) || 598 (!STI->getFeatureBits()[ARM::FeatureThumb2] && 599 !STI->getFeatureBits()[ARM::HasV8MBaselineOps] && 600 !STI->getFeatureBits()[ARM::HasV6MOps] && 601 !isInt<23>(Value - 4))) { 602 Ctx.reportError(Fixup.getLoc(), "Relocation out of range"); 603 return 0; 604 } 605 606 // The value doesn't encode the low bit (always zero) and is offset by 607 // four. The 32-bit immediate value is encoded as 608 // imm32 = SignExtend(S:I1:I2:imm10:imm11:0) 609 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S). 610 // The value is encoded into disjoint bit positions in the destination 611 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit, 612 // J = either J1 or J2 bit 613 // 614 // BL: xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII 615 // 616 // Note that the halfwords are stored high first, low second; so we need 617 // to transpose the fixup value here to map properly. 618 uint32_t offset = (Value - 4) >> 1; 619 uint32_t signBit = (offset & 0x800000) >> 23; 620 uint32_t I1Bit = (offset & 0x400000) >> 22; 621 uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit; 622 uint32_t I2Bit = (offset & 0x200000) >> 21; 623 uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit; 624 uint32_t imm10Bits = (offset & 0x1FF800) >> 11; 625 uint32_t imm11Bits = (offset & 0x000007FF); 626 627 uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits); 628 uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) | 629 (uint16_t)imm11Bits); 630 return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little); 631 } 632 case ARM::fixup_arm_thumb_blx: { 633 // The value doesn't encode the low two bits (always zero) and is offset by 634 // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as 635 // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00) 636 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S). 637 // The value is encoded into disjoint bit positions in the destination 638 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit, 639 // J = either J1 or J2 bit, 0 = zero. 640 // 641 // BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0 642 // 643 // Note that the halfwords are stored high first, low second; so we need 644 // to transpose the fixup value here to map properly. 645 if (Value % 4 != 0) { 646 Ctx.reportError(Fixup.getLoc(), "misaligned ARM call destination"); 647 return 0; 648 } 649 650 uint32_t offset = (Value - 4) >> 2; 651 if (const MCSymbolRefExpr *SRE = 652 dyn_cast<MCSymbolRefExpr>(Fixup.getValue())) 653 if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL) 654 offset = 0; 655 uint32_t signBit = (offset & 0x400000) >> 22; 656 uint32_t I1Bit = (offset & 0x200000) >> 21; 657 uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit; 658 uint32_t I2Bit = (offset & 0x100000) >> 20; 659 uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit; 660 uint32_t imm10HBits = (offset & 0xFFC00) >> 10; 661 uint32_t imm10LBits = (offset & 0x3FF); 662 663 uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits); 664 uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) | 665 ((uint16_t)imm10LBits) << 1); 666 return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little); 667 } 668 case ARM::fixup_thumb_adr_pcrel_10: 669 case ARM::fixup_arm_thumb_cp: 670 // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we 671 // could have an error on our hands. 672 assert(STI != nullptr); 673 if (!STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) { 674 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 675 if (FixupDiagnostic) { 676 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 677 return 0; 678 } 679 } 680 // Offset by 4, and don't encode the low two bits. 681 return ((Value - 4) >> 2) & 0xff; 682 case ARM::fixup_arm_thumb_cb: { 683 // CB instructions can only branch to offsets in [4, 126] in multiples of 2 684 // so ensure that the raw value LSB is zero and it lies in [2, 130]. 685 // An offset of 2 will be relaxed to a NOP. 686 if ((int64_t)Value < 2 || Value > 0x82 || Value & 1) { 687 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 688 return 0; 689 } 690 // Offset by 4 and don't encode the lower bit, which is always 0. 691 // FIXME: diagnose if no Thumb2 692 uint32_t Binary = (Value - 4) >> 1; 693 return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3); 694 } 695 case ARM::fixup_arm_thumb_br: 696 // Offset by 4 and don't encode the lower bit, which is always 0. 697 assert(STI != nullptr); 698 if (!STI->getFeatureBits()[ARM::FeatureThumb2] && 699 !STI->getFeatureBits()[ARM::HasV8MBaselineOps]) { 700 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 701 if (FixupDiagnostic) { 702 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 703 return 0; 704 } 705 } 706 return ((Value - 4) >> 1) & 0x7ff; 707 case ARM::fixup_arm_thumb_bcc: 708 // Offset by 4 and don't encode the lower bit, which is always 0. 709 assert(STI != nullptr); 710 if (!STI->getFeatureBits()[ARM::FeatureThumb2]) { 711 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 712 if (FixupDiagnostic) { 713 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 714 return 0; 715 } 716 } 717 return ((Value - 4) >> 1) & 0xff; 718 case ARM::fixup_arm_pcrel_10_unscaled: { 719 Value = Value - 8; // ARM fixups offset by an additional word and don't 720 // need to adjust for the half-word ordering. 721 bool isAdd = true; 722 if ((int64_t)Value < 0) { 723 Value = -Value; 724 isAdd = false; 725 } 726 // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8]. 727 if (Value >= 256) { 728 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 729 return 0; 730 } 731 Value = (Value & 0xf) | ((Value & 0xf0) << 4); 732 return Value | (isAdd << 23); 733 } 734 case ARM::fixup_arm_pcrel_10: 735 Value = Value - 4; // ARM fixups offset by an additional word and don't 736 // need to adjust for the half-word ordering. 737 LLVM_FALLTHROUGH; 738 case ARM::fixup_t2_pcrel_10: { 739 // Offset by 4, adjusted by two due to the half-word ordering of thumb. 740 Value = Value - 4; 741 bool isAdd = true; 742 if ((int64_t)Value < 0) { 743 Value = -Value; 744 isAdd = false; 745 } 746 // These values don't encode the low two bits since they're always zero. 747 Value >>= 2; 748 if (Value >= 256) { 749 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 750 return 0; 751 } 752 Value |= isAdd << 23; 753 754 // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords 755 // swapped. 756 if (Kind == ARM::fixup_t2_pcrel_10) 757 return swapHalfWords(Value, Endian == support::little); 758 759 return Value; 760 } 761 case ARM::fixup_arm_pcrel_9: 762 Value = Value - 4; // ARM fixups offset by an additional word and don't 763 // need to adjust for the half-word ordering. 764 LLVM_FALLTHROUGH; 765 case ARM::fixup_t2_pcrel_9: { 766 // Offset by 4, adjusted by two due to the half-word ordering of thumb. 767 Value = Value - 4; 768 bool isAdd = true; 769 if ((int64_t)Value < 0) { 770 Value = -Value; 771 isAdd = false; 772 } 773 // These values don't encode the low bit since it's always zero. 774 if (Value & 1) { 775 Ctx.reportError(Fixup.getLoc(), "invalid value for this fixup"); 776 return 0; 777 } 778 Value >>= 1; 779 if (Value >= 256) { 780 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 781 return 0; 782 } 783 Value |= isAdd << 23; 784 785 // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords 786 // swapped. 787 if (Kind == ARM::fixup_t2_pcrel_9) 788 return swapHalfWords(Value, Endian == support::little); 789 790 return Value; 791 } 792 case ARM::fixup_arm_mod_imm: 793 Value = ARM_AM::getSOImmVal(Value); 794 if (Value >> 12) { 795 Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value"); 796 return 0; 797 } 798 return Value; 799 case ARM::fixup_t2_so_imm: { 800 Value = ARM_AM::getT2SOImmVal(Value); 801 if ((int64_t)Value < 0) { 802 Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value"); 803 return 0; 804 } 805 // Value will contain a 12-bit value broken up into a 4-bit shift in bits 806 // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate 807 // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit 808 // 10 of the upper half-word and imm3 is placed at 14:12 of the lower 809 // half-word. 810 uint64_t EncValue = 0; 811 EncValue |= (Value & 0x800) << 15; 812 EncValue |= (Value & 0x700) << 4; 813 EncValue |= (Value & 0xff); 814 return swapHalfWords(EncValue, Endian == support::little); 815 } 816 case ARM::fixup_bf_branch: { 817 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 818 if (FixupDiagnostic) { 819 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 820 return 0; 821 } 822 uint32_t out = (((Value - 4) >> 1) & 0xf) << 23; 823 return swapHalfWords(out, Endian == support::little); 824 } 825 case ARM::fixup_bf_target: 826 case ARM::fixup_bfl_target: 827 case ARM::fixup_bfc_target: { 828 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 829 if (FixupDiagnostic) { 830 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 831 return 0; 832 } 833 uint32_t out = 0; 834 uint32_t HighBitMask = (Kind == ARM::fixup_bf_target ? 0xf800 : 835 Kind == ARM::fixup_bfl_target ? 0x3f800 : 0x800); 836 out |= (((Value - 4) >> 1) & 0x1) << 11; 837 out |= (((Value - 4) >> 1) & 0x7fe); 838 out |= (((Value - 4) >> 1) & HighBitMask) << 5; 839 return swapHalfWords(out, Endian == support::little); 840 } 841 case ARM::fixup_bfcsel_else_target: { 842 // If this is a fixup of a branch future's else target then it should be a 843 // constant MCExpr representing the distance between the branch targetted 844 // and the instruction after that same branch. 845 Value = Target.getConstant(); 846 847 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 848 if (FixupDiagnostic) { 849 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 850 return 0; 851 } 852 uint32_t out = ((Value >> 2) & 1) << 17; 853 return swapHalfWords(out, Endian == support::little); 854 } 855 case ARM::fixup_wls: 856 case ARM::fixup_le: { 857 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 858 if (FixupDiagnostic) { 859 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 860 return 0; 861 } 862 uint64_t real_value = Value - 4; 863 uint32_t out = 0; 864 if (Kind == ARM::fixup_le) 865 real_value = -real_value; 866 out |= ((real_value >> 1) & 0x1) << 11; 867 out |= ((real_value >> 1) & 0x7fe); 868 return swapHalfWords(out, Endian == support::little); 869 } 870 } 871 } 872 873 bool ARMAsmBackend::shouldForceRelocation(const MCAssembler &Asm, 874 const MCFixup &Fixup, 875 const MCValue &Target) { 876 const MCSymbolRefExpr *A = Target.getSymA(); 877 const MCSymbol *Sym = A ? &A->getSymbol() : nullptr; 878 const unsigned FixupKind = Fixup.getKind(); 879 if (FixupKind >= FirstLiteralRelocationKind) 880 return true; 881 if (FixupKind == ARM::fixup_arm_thumb_bl) { 882 assert(Sym && "How did we resolve this?"); 883 884 // If the symbol is external the linker will handle it. 885 // FIXME: Should we handle it as an optimization? 886 887 // If the symbol is out of range, produce a relocation and hope the 888 // linker can handle it. GNU AS produces an error in this case. 889 if (Sym->isExternal()) 890 return true; 891 } 892 // Create relocations for unconditional branches to function symbols with 893 // different execution mode in ELF binaries. 894 if (Sym && Sym->isELF()) { 895 unsigned Type = cast<MCSymbolELF>(Sym)->getType(); 896 if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)) { 897 if (Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_uncondbranch)) 898 return true; 899 if (!Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_thumb_br || 900 FixupKind == ARM::fixup_arm_thumb_bl || 901 FixupKind == ARM::fixup_t2_condbranch || 902 FixupKind == ARM::fixup_t2_uncondbranch)) 903 return true; 904 } 905 } 906 // We must always generate a relocation for BL/BLX instructions if we have 907 // a symbol to reference, as the linker relies on knowing the destination 908 // symbol's thumb-ness to get interworking right. 909 if (A && (FixupKind == ARM::fixup_arm_thumb_blx || 910 FixupKind == ARM::fixup_arm_blx || 911 FixupKind == ARM::fixup_arm_uncondbl || 912 FixupKind == ARM::fixup_arm_condbl)) 913 return true; 914 return false; 915 } 916 917 /// getFixupKindNumBytes - The number of bytes the fixup may change. 918 static unsigned getFixupKindNumBytes(unsigned Kind) { 919 switch (Kind) { 920 default: 921 llvm_unreachable("Unknown fixup kind!"); 922 923 case FK_Data_1: 924 case ARM::fixup_arm_thumb_bcc: 925 case ARM::fixup_arm_thumb_cp: 926 case ARM::fixup_thumb_adr_pcrel_10: 927 return 1; 928 929 case FK_Data_2: 930 case ARM::fixup_arm_thumb_br: 931 case ARM::fixup_arm_thumb_cb: 932 case ARM::fixup_arm_mod_imm: 933 return 2; 934 935 case ARM::fixup_arm_pcrel_10_unscaled: 936 case ARM::fixup_arm_ldst_pcrel_12: 937 case ARM::fixup_arm_pcrel_10: 938 case ARM::fixup_arm_pcrel_9: 939 case ARM::fixup_arm_adr_pcrel_12: 940 case ARM::fixup_arm_uncondbl: 941 case ARM::fixup_arm_condbl: 942 case ARM::fixup_arm_blx: 943 case ARM::fixup_arm_condbranch: 944 case ARM::fixup_arm_uncondbranch: 945 return 3; 946 947 case FK_Data_4: 948 case ARM::fixup_t2_ldst_pcrel_12: 949 case ARM::fixup_t2_condbranch: 950 case ARM::fixup_t2_uncondbranch: 951 case ARM::fixup_t2_pcrel_10: 952 case ARM::fixup_t2_pcrel_9: 953 case ARM::fixup_t2_adr_pcrel_12: 954 case ARM::fixup_arm_thumb_bl: 955 case ARM::fixup_arm_thumb_blx: 956 case ARM::fixup_arm_movt_hi16: 957 case ARM::fixup_arm_movw_lo16: 958 case ARM::fixup_t2_movt_hi16: 959 case ARM::fixup_t2_movw_lo16: 960 case ARM::fixup_t2_so_imm: 961 case ARM::fixup_bf_branch: 962 case ARM::fixup_bf_target: 963 case ARM::fixup_bfl_target: 964 case ARM::fixup_bfc_target: 965 case ARM::fixup_bfcsel_else_target: 966 case ARM::fixup_wls: 967 case ARM::fixup_le: 968 return 4; 969 970 case FK_SecRel_2: 971 return 2; 972 case FK_SecRel_4: 973 return 4; 974 } 975 } 976 977 /// getFixupKindContainerSizeBytes - The number of bytes of the 978 /// container involved in big endian. 979 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) { 980 switch (Kind) { 981 default: 982 llvm_unreachable("Unknown fixup kind!"); 983 984 case FK_Data_1: 985 return 1; 986 case FK_Data_2: 987 return 2; 988 case FK_Data_4: 989 return 4; 990 991 case ARM::fixup_arm_thumb_bcc: 992 case ARM::fixup_arm_thumb_cp: 993 case ARM::fixup_thumb_adr_pcrel_10: 994 case ARM::fixup_arm_thumb_br: 995 case ARM::fixup_arm_thumb_cb: 996 // Instruction size is 2 bytes. 997 return 2; 998 999 case ARM::fixup_arm_pcrel_10_unscaled: 1000 case ARM::fixup_arm_ldst_pcrel_12: 1001 case ARM::fixup_arm_pcrel_10: 1002 case ARM::fixup_arm_pcrel_9: 1003 case ARM::fixup_arm_adr_pcrel_12: 1004 case ARM::fixup_arm_uncondbl: 1005 case ARM::fixup_arm_condbl: 1006 case ARM::fixup_arm_blx: 1007 case ARM::fixup_arm_condbranch: 1008 case ARM::fixup_arm_uncondbranch: 1009 case ARM::fixup_t2_ldst_pcrel_12: 1010 case ARM::fixup_t2_condbranch: 1011 case ARM::fixup_t2_uncondbranch: 1012 case ARM::fixup_t2_pcrel_10: 1013 case ARM::fixup_t2_pcrel_9: 1014 case ARM::fixup_t2_adr_pcrel_12: 1015 case ARM::fixup_arm_thumb_bl: 1016 case ARM::fixup_arm_thumb_blx: 1017 case ARM::fixup_arm_movt_hi16: 1018 case ARM::fixup_arm_movw_lo16: 1019 case ARM::fixup_t2_movt_hi16: 1020 case ARM::fixup_t2_movw_lo16: 1021 case ARM::fixup_arm_mod_imm: 1022 case ARM::fixup_t2_so_imm: 1023 case ARM::fixup_bf_branch: 1024 case ARM::fixup_bf_target: 1025 case ARM::fixup_bfl_target: 1026 case ARM::fixup_bfc_target: 1027 case ARM::fixup_bfcsel_else_target: 1028 case ARM::fixup_wls: 1029 case ARM::fixup_le: 1030 // Instruction size is 4 bytes. 1031 return 4; 1032 } 1033 } 1034 1035 void ARMAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, 1036 const MCValue &Target, 1037 MutableArrayRef<char> Data, uint64_t Value, 1038 bool IsResolved, 1039 const MCSubtargetInfo* STI) const { 1040 unsigned Kind = Fixup.getKind(); 1041 if (Kind >= FirstLiteralRelocationKind) 1042 return; 1043 unsigned NumBytes = getFixupKindNumBytes(Kind); 1044 MCContext &Ctx = Asm.getContext(); 1045 Value = adjustFixupValue(Asm, Fixup, Target, Value, IsResolved, Ctx, STI); 1046 if (!Value) 1047 return; // Doesn't change encoding. 1048 1049 unsigned Offset = Fixup.getOffset(); 1050 assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!"); 1051 1052 // Used to point to big endian bytes. 1053 unsigned FullSizeBytes; 1054 if (Endian == support::big) { 1055 FullSizeBytes = getFixupKindContainerSizeBytes(Kind); 1056 assert((Offset + FullSizeBytes) <= Data.size() && "Invalid fixup size!"); 1057 assert(NumBytes <= FullSizeBytes && "Invalid fixup size!"); 1058 } 1059 1060 // For each byte of the fragment that the fixup touches, mask in the bits from 1061 // the fixup value. The Value has been "split up" into the appropriate 1062 // bitfields above. 1063 for (unsigned i = 0; i != NumBytes; ++i) { 1064 unsigned Idx = Endian == support::little ? i : (FullSizeBytes - 1 - i); 1065 Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff); 1066 } 1067 } 1068 1069 namespace CU { 1070 1071 /// Compact unwind encoding values. 1072 enum CompactUnwindEncodings { 1073 UNWIND_ARM_MODE_MASK = 0x0F000000, 1074 UNWIND_ARM_MODE_FRAME = 0x01000000, 1075 UNWIND_ARM_MODE_FRAME_D = 0x02000000, 1076 UNWIND_ARM_MODE_DWARF = 0x04000000, 1077 1078 UNWIND_ARM_FRAME_STACK_ADJUST_MASK = 0x00C00000, 1079 1080 UNWIND_ARM_FRAME_FIRST_PUSH_R4 = 0x00000001, 1081 UNWIND_ARM_FRAME_FIRST_PUSH_R5 = 0x00000002, 1082 UNWIND_ARM_FRAME_FIRST_PUSH_R6 = 0x00000004, 1083 1084 UNWIND_ARM_FRAME_SECOND_PUSH_R8 = 0x00000008, 1085 UNWIND_ARM_FRAME_SECOND_PUSH_R9 = 0x00000010, 1086 UNWIND_ARM_FRAME_SECOND_PUSH_R10 = 0x00000020, 1087 UNWIND_ARM_FRAME_SECOND_PUSH_R11 = 0x00000040, 1088 UNWIND_ARM_FRAME_SECOND_PUSH_R12 = 0x00000080, 1089 1090 UNWIND_ARM_FRAME_D_REG_COUNT_MASK = 0x00000F00, 1091 1092 UNWIND_ARM_DWARF_SECTION_OFFSET = 0x00FFFFFF 1093 }; 1094 1095 } // end CU namespace 1096 1097 /// Generate compact unwind encoding for the function based on the CFI 1098 /// instructions. If the CFI instructions describe a frame that cannot be 1099 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which 1100 /// tells the runtime to fallback and unwind using dwarf. 1101 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding( 1102 ArrayRef<MCCFIInstruction> Instrs) const { 1103 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n"); 1104 // Only armv7k uses CFI based unwinding. 1105 if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K) 1106 return 0; 1107 // No .cfi directives means no frame. 1108 if (Instrs.empty()) 1109 return 0; 1110 // Start off assuming CFA is at SP+0. 1111 unsigned CFARegister = ARM::SP; 1112 int CFARegisterOffset = 0; 1113 // Mark savable registers as initially unsaved 1114 DenseMap<unsigned, int> RegOffsets; 1115 int FloatRegCount = 0; 1116 // Process each .cfi directive and build up compact unwind info. 1117 for (size_t i = 0, e = Instrs.size(); i != e; ++i) { 1118 unsigned Reg; 1119 const MCCFIInstruction &Inst = Instrs[i]; 1120 switch (Inst.getOperation()) { 1121 case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa 1122 CFARegisterOffset = Inst.getOffset(); 1123 CFARegister = *MRI.getLLVMRegNum(Inst.getRegister(), true); 1124 break; 1125 case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset 1126 CFARegisterOffset = Inst.getOffset(); 1127 break; 1128 case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register 1129 CFARegister = *MRI.getLLVMRegNum(Inst.getRegister(), true); 1130 break; 1131 case MCCFIInstruction::OpOffset: // DW_CFA_offset 1132 Reg = *MRI.getLLVMRegNum(Inst.getRegister(), true); 1133 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 1134 RegOffsets[Reg] = Inst.getOffset(); 1135 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 1136 RegOffsets[Reg] = Inst.getOffset(); 1137 ++FloatRegCount; 1138 } else { 1139 DEBUG_WITH_TYPE("compact-unwind", 1140 llvm::dbgs() << ".cfi_offset on unknown register=" 1141 << Inst.getRegister() << "\n"); 1142 return CU::UNWIND_ARM_MODE_DWARF; 1143 } 1144 break; 1145 case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc 1146 // Ignore 1147 break; 1148 default: 1149 // Directive not convertable to compact unwind, bail out. 1150 DEBUG_WITH_TYPE("compact-unwind", 1151 llvm::dbgs() 1152 << "CFI directive not compatiable with comact " 1153 "unwind encoding, opcode=" << Inst.getOperation() 1154 << "\n"); 1155 return CU::UNWIND_ARM_MODE_DWARF; 1156 break; 1157 } 1158 } 1159 1160 // If no frame set up, return no unwind info. 1161 if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0)) 1162 return 0; 1163 1164 // Verify standard frame (lr/r7) was used. 1165 if (CFARegister != ARM::R7) { 1166 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is " 1167 << CFARegister 1168 << " instead of r7\n"); 1169 return CU::UNWIND_ARM_MODE_DWARF; 1170 } 1171 int StackAdjust = CFARegisterOffset - 8; 1172 if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) { 1173 DEBUG_WITH_TYPE("compact-unwind", 1174 llvm::dbgs() 1175 << "LR not saved as standard frame, StackAdjust=" 1176 << StackAdjust 1177 << ", CFARegisterOffset=" << CFARegisterOffset 1178 << ", lr save at offset=" << RegOffsets[14] << "\n"); 1179 return CU::UNWIND_ARM_MODE_DWARF; 1180 } 1181 if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) { 1182 DEBUG_WITH_TYPE("compact-unwind", 1183 llvm::dbgs() << "r7 not saved as standard frame\n"); 1184 return CU::UNWIND_ARM_MODE_DWARF; 1185 } 1186 uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME; 1187 1188 // If var-args are used, there may be a stack adjust required. 1189 switch (StackAdjust) { 1190 case 0: 1191 break; 1192 case 4: 1193 CompactUnwindEncoding |= 0x00400000; 1194 break; 1195 case 8: 1196 CompactUnwindEncoding |= 0x00800000; 1197 break; 1198 case 12: 1199 CompactUnwindEncoding |= 0x00C00000; 1200 break; 1201 default: 1202 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() 1203 << ".cfi_def_cfa stack adjust (" 1204 << StackAdjust << ") out of range\n"); 1205 return CU::UNWIND_ARM_MODE_DWARF; 1206 } 1207 1208 // If r6 is saved, it must be right below r7. 1209 static struct { 1210 unsigned Reg; 1211 unsigned Encoding; 1212 } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6}, 1213 {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5}, 1214 {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4}, 1215 {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12}, 1216 {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11}, 1217 {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10}, 1218 {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9}, 1219 {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}}; 1220 1221 int CurOffset = -8 - StackAdjust; 1222 for (auto CSReg : GPRCSRegs) { 1223 auto Offset = RegOffsets.find(CSReg.Reg); 1224 if (Offset == RegOffsets.end()) 1225 continue; 1226 1227 int RegOffset = Offset->second; 1228 if (RegOffset != CurOffset - 4) { 1229 DEBUG_WITH_TYPE("compact-unwind", 1230 llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at " 1231 << RegOffset << " but only supported at " 1232 << CurOffset << "\n"); 1233 return CU::UNWIND_ARM_MODE_DWARF; 1234 } 1235 CompactUnwindEncoding |= CSReg.Encoding; 1236 CurOffset -= 4; 1237 } 1238 1239 // If no floats saved, we are done. 1240 if (FloatRegCount == 0) 1241 return CompactUnwindEncoding; 1242 1243 // Switch mode to include D register saving. 1244 CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK; 1245 CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D; 1246 1247 // FIXME: supporting more than 4 saved D-registers compactly would be trivial, 1248 // but needs coordination with the linker and libunwind. 1249 if (FloatRegCount > 4) { 1250 DEBUG_WITH_TYPE("compact-unwind", 1251 llvm::dbgs() << "unsupported number of D registers saved (" 1252 << FloatRegCount << ")\n"); 1253 return CU::UNWIND_ARM_MODE_DWARF; 1254 } 1255 1256 // Floating point registers must either be saved sequentially, or we defer to 1257 // DWARF. No gaps allowed here so check that each saved d-register is 1258 // precisely where it should be. 1259 static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 }; 1260 for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) { 1261 auto Offset = RegOffsets.find(FPRCSRegs[Idx]); 1262 if (Offset == RegOffsets.end()) { 1263 DEBUG_WITH_TYPE("compact-unwind", 1264 llvm::dbgs() << FloatRegCount << " D-regs saved, but " 1265 << MRI.getName(FPRCSRegs[Idx]) 1266 << " not saved\n"); 1267 return CU::UNWIND_ARM_MODE_DWARF; 1268 } else if (Offset->second != CurOffset - 8) { 1269 DEBUG_WITH_TYPE("compact-unwind", 1270 llvm::dbgs() << FloatRegCount << " D-regs saved, but " 1271 << MRI.getName(FPRCSRegs[Idx]) 1272 << " saved at " << Offset->second 1273 << ", expected at " << CurOffset - 8 1274 << "\n"); 1275 return CU::UNWIND_ARM_MODE_DWARF; 1276 } 1277 CurOffset -= 8; 1278 } 1279 1280 return CompactUnwindEncoding | ((FloatRegCount - 1) << 8); 1281 } 1282 1283 static MCAsmBackend *createARMAsmBackend(const Target &T, 1284 const MCSubtargetInfo &STI, 1285 const MCRegisterInfo &MRI, 1286 const MCTargetOptions &Options, 1287 support::endianness Endian) { 1288 const Triple &TheTriple = STI.getTargetTriple(); 1289 switch (TheTriple.getObjectFormat()) { 1290 default: 1291 llvm_unreachable("unsupported object format"); 1292 case Triple::MachO: 1293 return new ARMAsmBackendDarwin(T, STI, MRI); 1294 case Triple::COFF: 1295 assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported"); 1296 return new ARMAsmBackendWinCOFF(T, STI); 1297 case Triple::ELF: 1298 assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target"); 1299 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); 1300 return new ARMAsmBackendELF(T, STI, OSABI, Endian); 1301 } 1302 } 1303 1304 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T, 1305 const MCSubtargetInfo &STI, 1306 const MCRegisterInfo &MRI, 1307 const MCTargetOptions &Options) { 1308 return createARMAsmBackend(T, STI, MRI, Options, support::little); 1309 } 1310 1311 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T, 1312 const MCSubtargetInfo &STI, 1313 const MCRegisterInfo &MRI, 1314 const MCTargetOptions &Options) { 1315 return createARMAsmBackend(T, STI, MRI, Options, support::big); 1316 } 1317