xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackend.cpp (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "MCTargetDesc/ARMAsmBackend.h"
10 #include "MCTargetDesc/ARMAddressingModes.h"
11 #include "MCTargetDesc/ARMAsmBackendDarwin.h"
12 #include "MCTargetDesc/ARMAsmBackendELF.h"
13 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
14 #include "MCTargetDesc/ARMFixupKinds.h"
15 #include "MCTargetDesc/ARMMCTargetDesc.h"
16 #include "llvm/ADT/StringSwitch.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/BinaryFormat/MachO.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAssembler.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDirectives.h"
23 #include "llvm/MC/MCELFObjectWriter.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCObjectWriter.h"
27 #include "llvm/MC/MCRegisterInfo.h"
28 #include "llvm/MC/MCSectionELF.h"
29 #include "llvm/MC/MCSectionMachO.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/MC/MCValue.h"
32 #include "llvm/MC/MCAsmLayout.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/EndianStream.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Format.h"
37 #include "llvm/Support/TargetParser.h"
38 #include "llvm/Support/raw_ostream.h"
39 using namespace llvm;
40 
41 namespace {
42 class ARMELFObjectWriter : public MCELFObjectTargetWriter {
43 public:
44   ARMELFObjectWriter(uint8_t OSABI)
45       : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
46                                 /*HasRelocationAddend*/ false) {}
47 };
48 } // end anonymous namespace
49 
50 Optional<MCFixupKind> ARMAsmBackend::getFixupKind(StringRef Name) const {
51   if (STI.getTargetTriple().isOSBinFormatELF() && Name == "R_ARM_NONE")
52     return FK_NONE;
53 
54   return MCAsmBackend::getFixupKind(Name);
55 }
56 
57 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
58   unsigned IsPCRelConstant =
59       MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_Constant;
60   const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
61       // This table *must* be in the order that the fixup_* kinds are defined in
62       // ARMFixupKinds.h.
63       //
64       // Name                      Offset (bits) Size (bits)     Flags
65       {"fixup_arm_ldst_pcrel_12", 0, 32, IsPCRelConstant},
66       {"fixup_t2_ldst_pcrel_12", 0, 32,
67        IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
68       {"fixup_arm_pcrel_10_unscaled", 0, 32, IsPCRelConstant},
69       {"fixup_arm_pcrel_10", 0, 32, IsPCRelConstant},
70       {"fixup_t2_pcrel_10", 0, 32,
71        MCFixupKindInfo::FKF_IsPCRel |
72            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
73       {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
74       {"fixup_t2_pcrel_9", 0, 32,
75        IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
76       {"fixup_thumb_adr_pcrel_10", 0, 8,
77        IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
78       {"fixup_arm_adr_pcrel_12", 0, 32, IsPCRelConstant},
79       {"fixup_t2_adr_pcrel_12", 0, 32,
80        IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
81       {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
82       {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
83       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
84       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
85       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
86       {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
87       {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
88       {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
89       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
90       {"fixup_arm_thumb_blx", 0, 32,
91        MCFixupKindInfo::FKF_IsPCRel |
92            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
93       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
94       {"fixup_arm_thumb_cp", 0, 8,
95        MCFixupKindInfo::FKF_IsPCRel |
96            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
97       {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel},
98       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
99       // - 19.
100       {"fixup_arm_movt_hi16", 0, 20, 0},
101       {"fixup_arm_movw_lo16", 0, 20, 0},
102       {"fixup_t2_movt_hi16", 0, 20, 0},
103       {"fixup_t2_movw_lo16", 0, 20, 0},
104       {"fixup_arm_mod_imm", 0, 12, 0},
105       {"fixup_t2_so_imm", 0, 26, 0},
106       {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
107       {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
108       {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
109       {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
110       {"fixup_bfcsel_else_target", 0, 32, 0},
111       {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
112       {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel}
113   };
114   const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
115       // This table *must* be in the order that the fixup_* kinds are defined in
116       // ARMFixupKinds.h.
117       //
118       // Name                      Offset (bits) Size (bits)     Flags
119       {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
120       {"fixup_t2_ldst_pcrel_12", 0, 32,
121        MCFixupKindInfo::FKF_IsPCRel |
122            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
123       {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
124       {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
125       {"fixup_t2_pcrel_10", 0, 32,
126        MCFixupKindInfo::FKF_IsPCRel |
127            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
128       {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
129       {"fixup_t2_pcrel_9", 0, 32,
130        MCFixupKindInfo::FKF_IsPCRel |
131            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
132       {"fixup_thumb_adr_pcrel_10", 8, 8,
133        MCFixupKindInfo::FKF_IsPCRel |
134            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
135       {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
136       {"fixup_t2_adr_pcrel_12", 0, 32,
137        MCFixupKindInfo::FKF_IsPCRel |
138            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
139       {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
140       {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
141       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
142       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
143       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
144       {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
145       {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
146       {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
147       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
148       {"fixup_arm_thumb_blx", 0, 32,
149        MCFixupKindInfo::FKF_IsPCRel |
150            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
151       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
152       {"fixup_arm_thumb_cp", 8, 8,
153        MCFixupKindInfo::FKF_IsPCRel |
154            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
155       {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel},
156       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
157       // - 19.
158       {"fixup_arm_movt_hi16", 12, 20, 0},
159       {"fixup_arm_movw_lo16", 12, 20, 0},
160       {"fixup_t2_movt_hi16", 12, 20, 0},
161       {"fixup_t2_movw_lo16", 12, 20, 0},
162       {"fixup_arm_mod_imm", 20, 12, 0},
163       {"fixup_t2_so_imm", 26, 6, 0},
164       {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
165       {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
166       {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
167       {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
168       {"fixup_bfcsel_else_target", 0, 32, 0},
169       {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
170       {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel}
171   };
172 
173   if (Kind < FirstTargetFixupKind)
174     return MCAsmBackend::getFixupKindInfo(Kind);
175 
176   assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
177          "Invalid kind!");
178   return (Endian == support::little ? InfosLE
179                                     : InfosBE)[Kind - FirstTargetFixupKind];
180 }
181 
182 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) {
183   switch (Flag) {
184   default:
185     break;
186   case MCAF_Code16:
187     setIsThumb(true);
188     break;
189   case MCAF_Code32:
190     setIsThumb(false);
191     break;
192   }
193 }
194 
195 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op,
196                                          const MCSubtargetInfo &STI) const {
197   bool HasThumb2 = STI.getFeatureBits()[ARM::FeatureThumb2];
198   bool HasV8MBaselineOps = STI.getFeatureBits()[ARM::HasV8MBaselineOps];
199 
200   switch (Op) {
201   default:
202     return Op;
203   case ARM::tBcc:
204     return HasThumb2 ? (unsigned)ARM::t2Bcc : Op;
205   case ARM::tLDRpci:
206     return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op;
207   case ARM::tADR:
208     return HasThumb2 ? (unsigned)ARM::t2ADR : Op;
209   case ARM::tB:
210     return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op;
211   case ARM::tCBZ:
212     return ARM::tHINT;
213   case ARM::tCBNZ:
214     return ARM::tHINT;
215   }
216 }
217 
218 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst,
219                                       const MCSubtargetInfo &STI) const {
220   if (getRelaxedOpcode(Inst.getOpcode(), STI) != Inst.getOpcode())
221     return true;
222   return false;
223 }
224 
225 static const char *checkPCRelOffset(uint64_t Value, int64_t Min, int64_t Max) {
226   int64_t Offset = int64_t(Value) - 4;
227   if (Offset < Min || Offset > Max)
228     return "out of range pc-relative fixup value";
229   return nullptr;
230 }
231 
232 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup,
233                                                     uint64_t Value) const {
234   switch (Fixup.getTargetKind()) {
235   case ARM::fixup_arm_thumb_br: {
236     // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
237     // low bit being an implied zero. There's an implied +4 offset for the
238     // branch, so we adjust the other way here to determine what's
239     // encodable.
240     //
241     // Relax if the value is too big for a (signed) i8.
242     int64_t Offset = int64_t(Value) - 4;
243     if (Offset > 2046 || Offset < -2048)
244       return "out of range pc-relative fixup value";
245     break;
246   }
247   case ARM::fixup_arm_thumb_bcc: {
248     // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
249     // low bit being an implied zero. There's an implied +4 offset for the
250     // branch, so we adjust the other way here to determine what's
251     // encodable.
252     //
253     // Relax if the value is too big for a (signed) i8.
254     int64_t Offset = int64_t(Value) - 4;
255     if (Offset > 254 || Offset < -256)
256       return "out of range pc-relative fixup value";
257     break;
258   }
259   case ARM::fixup_thumb_adr_pcrel_10:
260   case ARM::fixup_arm_thumb_cp: {
261     // If the immediate is negative, greater than 1020, or not a multiple
262     // of four, the wide version of the instruction must be used.
263     int64_t Offset = int64_t(Value) - 4;
264     if (Offset & 3)
265       return "misaligned pc-relative fixup value";
266     else if (Offset > 1020 || Offset < 0)
267       return "out of range pc-relative fixup value";
268     break;
269   }
270   case ARM::fixup_arm_thumb_cb: {
271     // If we have a Thumb CBZ or CBNZ instruction and its target is the next
272     // instruction it is actually out of range for the instruction.
273     // It will be changed to a NOP.
274     int64_t Offset = (Value & ~1);
275     if (Offset == 2)
276       return "will be converted to nop";
277     break;
278   }
279   case ARM::fixup_bf_branch:
280     return checkPCRelOffset(Value, 0, 30);
281   case ARM::fixup_bf_target:
282     return checkPCRelOffset(Value, -0x10000, +0xfffe);
283   case ARM::fixup_bfl_target:
284     return checkPCRelOffset(Value, -0x40000, +0x3fffe);
285   case ARM::fixup_bfc_target:
286     return checkPCRelOffset(Value, -0x1000, +0xffe);
287   case ARM::fixup_wls:
288     return checkPCRelOffset(Value, 0, +0xffe);
289   case ARM::fixup_le:
290     // The offset field in the LE and LETP instructions is an 11-bit
291     // value shifted left by 2 (i.e. 0,2,4,...,4094), and it is
292     // interpreted as a negative offset from the value read from pc,
293     // i.e. from instruction_address+4.
294     //
295     // So an LE instruction can in principle address the instruction
296     // immediately after itself, or (not very usefully) the address
297     // half way through the 4-byte LE.
298     return checkPCRelOffset(Value, -0xffe, 0);
299   case ARM::fixup_bfcsel_else_target: {
300     if (Value != 2 && Value != 4)
301       return "out of range label-relative fixup value";
302     break;
303   }
304 
305   default:
306     llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
307   }
308   return nullptr;
309 }
310 
311 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
312                                          const MCRelaxableFragment *DF,
313                                          const MCAsmLayout &Layout) const {
314   return reasonForFixupRelaxation(Fixup, Value);
315 }
316 
317 void ARMAsmBackend::relaxInstruction(const MCInst &Inst,
318                                      const MCSubtargetInfo &STI,
319                                      MCInst &Res) const {
320   unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode(), STI);
321 
322   // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
323   if (RelaxedOp == Inst.getOpcode()) {
324     SmallString<256> Tmp;
325     raw_svector_ostream OS(Tmp);
326     Inst.dump_pretty(OS);
327     OS << "\n";
328     report_fatal_error("unexpected instruction to relax: " + OS.str());
329   }
330 
331   // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
332   // have to change the operands too.
333   if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) &&
334       RelaxedOp == ARM::tHINT) {
335     Res.setOpcode(RelaxedOp);
336     Res.addOperand(MCOperand::createImm(0));
337     Res.addOperand(MCOperand::createImm(14));
338     Res.addOperand(MCOperand::createReg(0));
339     return;
340   }
341 
342   // The rest of instructions we're relaxing have the same operands.
343   // We just need to update to the proper opcode.
344   Res = Inst;
345   Res.setOpcode(RelaxedOp);
346 }
347 
348 bool ARMAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const {
349   const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
350   const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
351   const uint32_t ARMv4_NopEncoding = 0xe1a00000;   // using MOV r0,r0
352   const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
353   if (isThumb()) {
354     const uint16_t nopEncoding =
355         hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding;
356     uint64_t NumNops = Count / 2;
357     for (uint64_t i = 0; i != NumNops; ++i)
358       support::endian::write(OS, nopEncoding, Endian);
359     if (Count & 1)
360       OS << '\0';
361     return true;
362   }
363   // ARM mode
364   const uint32_t nopEncoding =
365       hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding;
366   uint64_t NumNops = Count / 4;
367   for (uint64_t i = 0; i != NumNops; ++i)
368     support::endian::write(OS, nopEncoding, Endian);
369   // FIXME: should this function return false when unable to write exactly
370   // 'Count' bytes with NOP encodings?
371   switch (Count % 4) {
372   default:
373     break; // No leftover bytes to write
374   case 1:
375     OS << '\0';
376     break;
377   case 2:
378     OS.write("\0\0", 2);
379     break;
380   case 3:
381     OS.write("\0\0\xa0", 3);
382     break;
383   }
384 
385   return true;
386 }
387 
388 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
389   if (IsLittleEndian) {
390     // Note that the halfwords are stored high first and low second in thumb;
391     // so we need to swap the fixup value here to map properly.
392     uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
393     Swapped |= (Value & 0x0000FFFF) << 16;
394     return Swapped;
395   } else
396     return Value;
397 }
398 
399 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf,
400                               bool IsLittleEndian) {
401   uint32_t Value;
402 
403   if (IsLittleEndian) {
404     Value = (SecondHalf & 0xFFFF) << 16;
405     Value |= (FirstHalf & 0xFFFF);
406   } else {
407     Value = (SecondHalf & 0xFFFF);
408     Value |= (FirstHalf & 0xFFFF) << 16;
409   }
410 
411   return Value;
412 }
413 
414 unsigned ARMAsmBackend::adjustFixupValue(const MCAssembler &Asm,
415                                          const MCFixup &Fixup,
416                                          const MCValue &Target, uint64_t Value,
417                                          bool IsResolved, MCContext &Ctx,
418                                          const MCSubtargetInfo* STI) const {
419   unsigned Kind = Fixup.getKind();
420 
421   // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT
422   // and .word relocations they put the Thumb bit into the addend if possible.
423   // Other relocation types don't want this bit though (branches couldn't encode
424   // it if it *was* present, and no other relocations exist) and it can
425   // interfere with checking valid expressions.
426   if (const MCSymbolRefExpr *A = Target.getSymA()) {
427     if (A->hasSubsectionsViaSymbols() && Asm.isThumbFunc(&A->getSymbol()) &&
428         A->getSymbol().isExternal() &&
429         (Kind == FK_Data_4 || Kind == ARM::fixup_arm_movw_lo16 ||
430          Kind == ARM::fixup_arm_movt_hi16 || Kind == ARM::fixup_t2_movw_lo16 ||
431          Kind == ARM::fixup_t2_movt_hi16))
432       Value |= 1;
433   }
434 
435   switch (Kind) {
436   default:
437     Ctx.reportError(Fixup.getLoc(), "bad relocation fixup type");
438     return 0;
439   case FK_NONE:
440   case FK_Data_1:
441   case FK_Data_2:
442   case FK_Data_4:
443     return Value;
444   case FK_SecRel_2:
445     return Value;
446   case FK_SecRel_4:
447     return Value;
448   case ARM::fixup_arm_movt_hi16:
449     assert(STI != nullptr);
450     if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
451       Value >>= 16;
452     LLVM_FALLTHROUGH;
453   case ARM::fixup_arm_movw_lo16: {
454     unsigned Hi4 = (Value & 0xF000) >> 12;
455     unsigned Lo12 = Value & 0x0FFF;
456     // inst{19-16} = Hi4;
457     // inst{11-0} = Lo12;
458     Value = (Hi4 << 16) | (Lo12);
459     return Value;
460   }
461   case ARM::fixup_t2_movt_hi16:
462     assert(STI != nullptr);
463     if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
464       Value >>= 16;
465     LLVM_FALLTHROUGH;
466   case ARM::fixup_t2_movw_lo16: {
467     unsigned Hi4 = (Value & 0xF000) >> 12;
468     unsigned i = (Value & 0x800) >> 11;
469     unsigned Mid3 = (Value & 0x700) >> 8;
470     unsigned Lo8 = Value & 0x0FF;
471     // inst{19-16} = Hi4;
472     // inst{26} = i;
473     // inst{14-12} = Mid3;
474     // inst{7-0} = Lo8;
475     Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
476     return swapHalfWords(Value, Endian == support::little);
477   }
478   case ARM::fixup_arm_ldst_pcrel_12:
479     // ARM PC-relative values are offset by 8.
480     Value -= 4;
481     LLVM_FALLTHROUGH;
482   case ARM::fixup_t2_ldst_pcrel_12: {
483     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
484     Value -= 4;
485     bool isAdd = true;
486     if ((int64_t)Value < 0) {
487       Value = -Value;
488       isAdd = false;
489     }
490     if (Value >= 4096) {
491       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
492       return 0;
493     }
494     Value |= isAdd << 23;
495 
496     // Same addressing mode as fixup_arm_pcrel_10,
497     // but with 16-bit halfwords swapped.
498     if (Kind == ARM::fixup_t2_ldst_pcrel_12)
499       return swapHalfWords(Value, Endian == support::little);
500 
501     return Value;
502   }
503   case ARM::fixup_arm_adr_pcrel_12: {
504     // ARM PC-relative values are offset by 8.
505     Value -= 8;
506     unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
507     if ((int64_t)Value < 0) {
508       Value = -Value;
509       opc = 2; // 0b0010
510     }
511     if (ARM_AM::getSOImmVal(Value) == -1) {
512       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
513       return 0;
514     }
515     // Encode the immediate and shift the opcode into place.
516     return ARM_AM::getSOImmVal(Value) | (opc << 21);
517   }
518 
519   case ARM::fixup_t2_adr_pcrel_12: {
520     Value -= 4;
521     unsigned opc = 0;
522     if ((int64_t)Value < 0) {
523       Value = -Value;
524       opc = 5;
525     }
526 
527     uint32_t out = (opc << 21);
528     out |= (Value & 0x800) << 15;
529     out |= (Value & 0x700) << 4;
530     out |= (Value & 0x0FF);
531 
532     return swapHalfWords(out, Endian == support::little);
533   }
534 
535   case ARM::fixup_arm_condbranch:
536   case ARM::fixup_arm_uncondbranch:
537   case ARM::fixup_arm_uncondbl:
538   case ARM::fixup_arm_condbl:
539   case ARM::fixup_arm_blx:
540     // These values don't encode the low two bits since they're always zero.
541     // Offset by 8 just as above.
542     if (const MCSymbolRefExpr *SRE =
543             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
544       if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
545         return 0;
546     return 0xffffff & ((Value - 8) >> 2);
547   case ARM::fixup_t2_uncondbranch: {
548     Value = Value - 4;
549     if (!isInt<25>(Value)) {
550       Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
551       return 0;
552     }
553 
554     Value >>= 1; // Low bit is not encoded.
555 
556     uint32_t out = 0;
557     bool I = Value & 0x800000;
558     bool J1 = Value & 0x400000;
559     bool J2 = Value & 0x200000;
560     J1 ^= I;
561     J2 ^= I;
562 
563     out |= I << 26;                 // S bit
564     out |= !J1 << 13;               // J1 bit
565     out |= !J2 << 11;               // J2 bit
566     out |= (Value & 0x1FF800) << 5; // imm6 field
567     out |= (Value & 0x0007FF);      // imm11 field
568 
569     return swapHalfWords(out, Endian == support::little);
570   }
571   case ARM::fixup_t2_condbranch: {
572     Value = Value - 4;
573     if (!isInt<21>(Value)) {
574       Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
575       return 0;
576     }
577 
578     Value >>= 1; // Low bit is not encoded.
579 
580     uint64_t out = 0;
581     out |= (Value & 0x80000) << 7; // S bit
582     out |= (Value & 0x40000) >> 7; // J2 bit
583     out |= (Value & 0x20000) >> 4; // J1 bit
584     out |= (Value & 0x1F800) << 5; // imm6 field
585     out |= (Value & 0x007FF);      // imm11 field
586 
587     return swapHalfWords(out, Endian == support::little);
588   }
589   case ARM::fixup_arm_thumb_bl: {
590     if (!isInt<25>(Value - 4) ||
591         (!STI->getFeatureBits()[ARM::FeatureThumb2] &&
592          !STI->getFeatureBits()[ARM::HasV8MBaselineOps] &&
593          !STI->getFeatureBits()[ARM::HasV6MOps] &&
594          !isInt<23>(Value - 4))) {
595       Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
596       return 0;
597     }
598 
599     // The value doesn't encode the low bit (always zero) and is offset by
600     // four. The 32-bit immediate value is encoded as
601     //   imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
602     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
603     // The value is encoded into disjoint bit positions in the destination
604     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
605     // J = either J1 or J2 bit
606     //
607     //   BL:  xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
608     //
609     // Note that the halfwords are stored high first, low second; so we need
610     // to transpose the fixup value here to map properly.
611     uint32_t offset = (Value - 4) >> 1;
612     uint32_t signBit = (offset & 0x800000) >> 23;
613     uint32_t I1Bit = (offset & 0x400000) >> 22;
614     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
615     uint32_t I2Bit = (offset & 0x200000) >> 21;
616     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
617     uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
618     uint32_t imm11Bits = (offset & 0x000007FF);
619 
620     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
621     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
622                            (uint16_t)imm11Bits);
623     return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
624   }
625   case ARM::fixup_arm_thumb_blx: {
626     // The value doesn't encode the low two bits (always zero) and is offset by
627     // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
628     //   imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
629     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
630     // The value is encoded into disjoint bit positions in the destination
631     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
632     // J = either J1 or J2 bit, 0 = zero.
633     //
634     //   BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
635     //
636     // Note that the halfwords are stored high first, low second; so we need
637     // to transpose the fixup value here to map properly.
638     if (Value % 4 != 0) {
639       Ctx.reportError(Fixup.getLoc(), "misaligned ARM call destination");
640       return 0;
641     }
642 
643     uint32_t offset = (Value - 4) >> 2;
644     if (const MCSymbolRefExpr *SRE =
645             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
646       if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
647         offset = 0;
648     uint32_t signBit = (offset & 0x400000) >> 22;
649     uint32_t I1Bit = (offset & 0x200000) >> 21;
650     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
651     uint32_t I2Bit = (offset & 0x100000) >> 20;
652     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
653     uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
654     uint32_t imm10LBits = (offset & 0x3FF);
655 
656     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
657     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
658                            ((uint16_t)imm10LBits) << 1);
659     return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
660   }
661   case ARM::fixup_thumb_adr_pcrel_10:
662   case ARM::fixup_arm_thumb_cp:
663     // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
664     // could have an error on our hands.
665     assert(STI != nullptr);
666     if (!STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) {
667       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
668       if (FixupDiagnostic) {
669         Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
670         return 0;
671       }
672     }
673     // Offset by 4, and don't encode the low two bits.
674     return ((Value - 4) >> 2) & 0xff;
675   case ARM::fixup_arm_thumb_cb: {
676     // CB instructions can only branch to offsets in [4, 126] in multiples of 2
677     // so ensure that the raw value LSB is zero and it lies in [2, 130].
678     // An offset of 2 will be relaxed to a NOP.
679     if ((int64_t)Value < 2 || Value > 0x82 || Value & 1) {
680       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
681       return 0;
682     }
683     // Offset by 4 and don't encode the lower bit, which is always 0.
684     // FIXME: diagnose if no Thumb2
685     uint32_t Binary = (Value - 4) >> 1;
686     return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
687   }
688   case ARM::fixup_arm_thumb_br:
689     // Offset by 4 and don't encode the lower bit, which is always 0.
690     assert(STI != nullptr);
691     if (!STI->getFeatureBits()[ARM::FeatureThumb2] &&
692         !STI->getFeatureBits()[ARM::HasV8MBaselineOps]) {
693       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
694       if (FixupDiagnostic) {
695         Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
696         return 0;
697       }
698     }
699     return ((Value - 4) >> 1) & 0x7ff;
700   case ARM::fixup_arm_thumb_bcc:
701     // Offset by 4 and don't encode the lower bit, which is always 0.
702     assert(STI != nullptr);
703     if (!STI->getFeatureBits()[ARM::FeatureThumb2]) {
704       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
705       if (FixupDiagnostic) {
706         Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
707         return 0;
708       }
709     }
710     return ((Value - 4) >> 1) & 0xff;
711   case ARM::fixup_arm_pcrel_10_unscaled: {
712     Value = Value - 8; // ARM fixups offset by an additional word and don't
713                        // need to adjust for the half-word ordering.
714     bool isAdd = true;
715     if ((int64_t)Value < 0) {
716       Value = -Value;
717       isAdd = false;
718     }
719     // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
720     if (Value >= 256) {
721       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
722       return 0;
723     }
724     Value = (Value & 0xf) | ((Value & 0xf0) << 4);
725     return Value | (isAdd << 23);
726   }
727   case ARM::fixup_arm_pcrel_10:
728     Value = Value - 4; // ARM fixups offset by an additional word and don't
729                        // need to adjust for the half-word ordering.
730     LLVM_FALLTHROUGH;
731   case ARM::fixup_t2_pcrel_10: {
732     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
733     Value = Value - 4;
734     bool isAdd = true;
735     if ((int64_t)Value < 0) {
736       Value = -Value;
737       isAdd = false;
738     }
739     // These values don't encode the low two bits since they're always zero.
740     Value >>= 2;
741     if (Value >= 256) {
742       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
743       return 0;
744     }
745     Value |= isAdd << 23;
746 
747     // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
748     // swapped.
749     if (Kind == ARM::fixup_t2_pcrel_10)
750       return swapHalfWords(Value, Endian == support::little);
751 
752     return Value;
753   }
754   case ARM::fixup_arm_pcrel_9:
755     Value = Value - 4; // ARM fixups offset by an additional word and don't
756                        // need to adjust for the half-word ordering.
757     LLVM_FALLTHROUGH;
758   case ARM::fixup_t2_pcrel_9: {
759     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
760     Value = Value - 4;
761     bool isAdd = true;
762     if ((int64_t)Value < 0) {
763       Value = -Value;
764       isAdd = false;
765     }
766     // These values don't encode the low bit since it's always zero.
767     if (Value & 1) {
768       Ctx.reportError(Fixup.getLoc(), "invalid value for this fixup");
769       return 0;
770     }
771     Value >>= 1;
772     if (Value >= 256) {
773       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
774       return 0;
775     }
776     Value |= isAdd << 23;
777 
778     // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords
779     // swapped.
780     if (Kind == ARM::fixup_t2_pcrel_9)
781       return swapHalfWords(Value, Endian == support::little);
782 
783     return Value;
784   }
785   case ARM::fixup_arm_mod_imm:
786     Value = ARM_AM::getSOImmVal(Value);
787     if (Value >> 12) {
788       Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
789       return 0;
790     }
791     return Value;
792   case ARM::fixup_t2_so_imm: {
793     Value = ARM_AM::getT2SOImmVal(Value);
794     if ((int64_t)Value < 0) {
795       Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
796       return 0;
797     }
798     // Value will contain a 12-bit value broken up into a 4-bit shift in bits
799     // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate
800     // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit
801     // 10 of the upper half-word and imm3 is placed at 14:12 of the lower
802     // half-word.
803     uint64_t EncValue = 0;
804     EncValue |= (Value & 0x800) << 15;
805     EncValue |= (Value & 0x700) << 4;
806     EncValue |= (Value & 0xff);
807     return swapHalfWords(EncValue, Endian == support::little);
808   }
809   case ARM::fixup_bf_branch: {
810     const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
811     if (FixupDiagnostic) {
812       Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
813       return 0;
814     }
815     uint32_t out = (((Value - 4) >> 1) & 0xf) << 23;
816     return swapHalfWords(out, Endian == support::little);
817   }
818   case ARM::fixup_bf_target:
819   case ARM::fixup_bfl_target:
820   case ARM::fixup_bfc_target: {
821     const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
822     if (FixupDiagnostic) {
823       Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
824       return 0;
825     }
826     uint32_t out = 0;
827     uint32_t HighBitMask = (Kind == ARM::fixup_bf_target ? 0xf800 :
828                             Kind == ARM::fixup_bfl_target ? 0x3f800 : 0x800);
829     out |= (((Value - 4) >> 1) & 0x1) << 11;
830     out |= (((Value - 4) >> 1) & 0x7fe);
831     out |= (((Value - 4) >> 1) & HighBitMask) << 5;
832     return swapHalfWords(out, Endian == support::little);
833   }
834   case ARM::fixup_bfcsel_else_target: {
835     // If this is a fixup of a branch future's else target then it should be a
836     // constant MCExpr representing the distance between the branch targetted
837     // and the instruction after that same branch.
838     Value = Target.getConstant();
839 
840     const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
841     if (FixupDiagnostic) {
842       Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
843       return 0;
844     }
845     uint32_t out = ((Value >> 2) & 1) << 17;
846     return swapHalfWords(out, Endian == support::little);
847   }
848   case ARM::fixup_wls:
849   case ARM::fixup_le: {
850     const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
851     if (FixupDiagnostic) {
852       Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
853       return 0;
854     }
855     uint64_t real_value = Value - 4;
856     uint32_t out = 0;
857     if (Kind == ARM::fixup_le)
858       real_value = -real_value;
859     out |= ((real_value >> 1) & 0x1) << 11;
860     out |= ((real_value >> 1) & 0x7fe);
861     return swapHalfWords(out, Endian == support::little);
862   }
863   }
864 }
865 
866 bool ARMAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
867                                           const MCFixup &Fixup,
868                                           const MCValue &Target) {
869   const MCSymbolRefExpr *A = Target.getSymA();
870   const MCSymbol *Sym = A ? &A->getSymbol() : nullptr;
871   const unsigned FixupKind = Fixup.getKind();
872   if (FixupKind == FK_NONE)
873     return true;
874   if (FixupKind == ARM::fixup_arm_thumb_bl) {
875     assert(Sym && "How did we resolve this?");
876 
877     // If the symbol is external the linker will handle it.
878     // FIXME: Should we handle it as an optimization?
879 
880     // If the symbol is out of range, produce a relocation and hope the
881     // linker can handle it. GNU AS produces an error in this case.
882     if (Sym->isExternal())
883       return true;
884   }
885   // Create relocations for unconditional branches to function symbols with
886   // different execution mode in ELF binaries.
887   if (Sym && Sym->isELF()) {
888     unsigned Type = cast<MCSymbolELF>(Sym)->getType();
889     if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)) {
890       if (Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_uncondbranch))
891         return true;
892       if (!Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_thumb_br ||
893                                     FixupKind == ARM::fixup_arm_thumb_bl ||
894                                     FixupKind == ARM::fixup_t2_condbranch ||
895                                     FixupKind == ARM::fixup_t2_uncondbranch))
896         return true;
897     }
898   }
899   // We must always generate a relocation for BL/BLX instructions if we have
900   // a symbol to reference, as the linker relies on knowing the destination
901   // symbol's thumb-ness to get interworking right.
902   if (A && (FixupKind == ARM::fixup_arm_thumb_blx ||
903             FixupKind == ARM::fixup_arm_blx ||
904             FixupKind == ARM::fixup_arm_uncondbl ||
905             FixupKind == ARM::fixup_arm_condbl))
906     return true;
907   return false;
908 }
909 
910 /// getFixupKindNumBytes - The number of bytes the fixup may change.
911 static unsigned getFixupKindNumBytes(unsigned Kind) {
912   switch (Kind) {
913   default:
914     llvm_unreachable("Unknown fixup kind!");
915 
916   case FK_NONE:
917     return 0;
918 
919   case FK_Data_1:
920   case ARM::fixup_arm_thumb_bcc:
921   case ARM::fixup_arm_thumb_cp:
922   case ARM::fixup_thumb_adr_pcrel_10:
923     return 1;
924 
925   case FK_Data_2:
926   case ARM::fixup_arm_thumb_br:
927   case ARM::fixup_arm_thumb_cb:
928   case ARM::fixup_arm_mod_imm:
929     return 2;
930 
931   case ARM::fixup_arm_pcrel_10_unscaled:
932   case ARM::fixup_arm_ldst_pcrel_12:
933   case ARM::fixup_arm_pcrel_10:
934   case ARM::fixup_arm_pcrel_9:
935   case ARM::fixup_arm_adr_pcrel_12:
936   case ARM::fixup_arm_uncondbl:
937   case ARM::fixup_arm_condbl:
938   case ARM::fixup_arm_blx:
939   case ARM::fixup_arm_condbranch:
940   case ARM::fixup_arm_uncondbranch:
941     return 3;
942 
943   case FK_Data_4:
944   case ARM::fixup_t2_ldst_pcrel_12:
945   case ARM::fixup_t2_condbranch:
946   case ARM::fixup_t2_uncondbranch:
947   case ARM::fixup_t2_pcrel_10:
948   case ARM::fixup_t2_pcrel_9:
949   case ARM::fixup_t2_adr_pcrel_12:
950   case ARM::fixup_arm_thumb_bl:
951   case ARM::fixup_arm_thumb_blx:
952   case ARM::fixup_arm_movt_hi16:
953   case ARM::fixup_arm_movw_lo16:
954   case ARM::fixup_t2_movt_hi16:
955   case ARM::fixup_t2_movw_lo16:
956   case ARM::fixup_t2_so_imm:
957   case ARM::fixup_bf_branch:
958   case ARM::fixup_bf_target:
959   case ARM::fixup_bfl_target:
960   case ARM::fixup_bfc_target:
961   case ARM::fixup_bfcsel_else_target:
962   case ARM::fixup_wls:
963   case ARM::fixup_le:
964     return 4;
965 
966   case FK_SecRel_2:
967     return 2;
968   case FK_SecRel_4:
969     return 4;
970   }
971 }
972 
973 /// getFixupKindContainerSizeBytes - The number of bytes of the
974 /// container involved in big endian.
975 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) {
976   switch (Kind) {
977   default:
978     llvm_unreachable("Unknown fixup kind!");
979 
980   case FK_NONE:
981     return 0;
982 
983   case FK_Data_1:
984     return 1;
985   case FK_Data_2:
986     return 2;
987   case FK_Data_4:
988     return 4;
989 
990   case ARM::fixup_arm_thumb_bcc:
991   case ARM::fixup_arm_thumb_cp:
992   case ARM::fixup_thumb_adr_pcrel_10:
993   case ARM::fixup_arm_thumb_br:
994   case ARM::fixup_arm_thumb_cb:
995     // Instruction size is 2 bytes.
996     return 2;
997 
998   case ARM::fixup_arm_pcrel_10_unscaled:
999   case ARM::fixup_arm_ldst_pcrel_12:
1000   case ARM::fixup_arm_pcrel_10:
1001   case ARM::fixup_arm_pcrel_9:
1002   case ARM::fixup_arm_adr_pcrel_12:
1003   case ARM::fixup_arm_uncondbl:
1004   case ARM::fixup_arm_condbl:
1005   case ARM::fixup_arm_blx:
1006   case ARM::fixup_arm_condbranch:
1007   case ARM::fixup_arm_uncondbranch:
1008   case ARM::fixup_t2_ldst_pcrel_12:
1009   case ARM::fixup_t2_condbranch:
1010   case ARM::fixup_t2_uncondbranch:
1011   case ARM::fixup_t2_pcrel_10:
1012   case ARM::fixup_t2_adr_pcrel_12:
1013   case ARM::fixup_arm_thumb_bl:
1014   case ARM::fixup_arm_thumb_blx:
1015   case ARM::fixup_arm_movt_hi16:
1016   case ARM::fixup_arm_movw_lo16:
1017   case ARM::fixup_t2_movt_hi16:
1018   case ARM::fixup_t2_movw_lo16:
1019   case ARM::fixup_arm_mod_imm:
1020   case ARM::fixup_t2_so_imm:
1021   case ARM::fixup_bf_branch:
1022   case ARM::fixup_bf_target:
1023   case ARM::fixup_bfl_target:
1024   case ARM::fixup_bfc_target:
1025   case ARM::fixup_bfcsel_else_target:
1026   case ARM::fixup_wls:
1027   case ARM::fixup_le:
1028     // Instruction size is 4 bytes.
1029     return 4;
1030   }
1031 }
1032 
1033 void ARMAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
1034                                const MCValue &Target,
1035                                MutableArrayRef<char> Data, uint64_t Value,
1036                                bool IsResolved,
1037                                const MCSubtargetInfo* STI) const {
1038   unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
1039   MCContext &Ctx = Asm.getContext();
1040   Value = adjustFixupValue(Asm, Fixup, Target, Value, IsResolved, Ctx, STI);
1041   if (!Value)
1042     return; // Doesn't change encoding.
1043 
1044   unsigned Offset = Fixup.getOffset();
1045   assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
1046 
1047   // Used to point to big endian bytes.
1048   unsigned FullSizeBytes;
1049   if (Endian == support::big) {
1050     FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind());
1051     assert((Offset + FullSizeBytes) <= Data.size() && "Invalid fixup size!");
1052     assert(NumBytes <= FullSizeBytes && "Invalid fixup size!");
1053   }
1054 
1055   // For each byte of the fragment that the fixup touches, mask in the bits from
1056   // the fixup value. The Value has been "split up" into the appropriate
1057   // bitfields above.
1058   for (unsigned i = 0; i != NumBytes; ++i) {
1059     unsigned Idx = Endian == support::little ? i : (FullSizeBytes - 1 - i);
1060     Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
1061   }
1062 }
1063 
1064 namespace CU {
1065 
1066 /// Compact unwind encoding values.
1067 enum CompactUnwindEncodings {
1068   UNWIND_ARM_MODE_MASK                         = 0x0F000000,
1069   UNWIND_ARM_MODE_FRAME                        = 0x01000000,
1070   UNWIND_ARM_MODE_FRAME_D                      = 0x02000000,
1071   UNWIND_ARM_MODE_DWARF                        = 0x04000000,
1072 
1073   UNWIND_ARM_FRAME_STACK_ADJUST_MASK           = 0x00C00000,
1074 
1075   UNWIND_ARM_FRAME_FIRST_PUSH_R4               = 0x00000001,
1076   UNWIND_ARM_FRAME_FIRST_PUSH_R5               = 0x00000002,
1077   UNWIND_ARM_FRAME_FIRST_PUSH_R6               = 0x00000004,
1078 
1079   UNWIND_ARM_FRAME_SECOND_PUSH_R8              = 0x00000008,
1080   UNWIND_ARM_FRAME_SECOND_PUSH_R9              = 0x00000010,
1081   UNWIND_ARM_FRAME_SECOND_PUSH_R10             = 0x00000020,
1082   UNWIND_ARM_FRAME_SECOND_PUSH_R11             = 0x00000040,
1083   UNWIND_ARM_FRAME_SECOND_PUSH_R12             = 0x00000080,
1084 
1085   UNWIND_ARM_FRAME_D_REG_COUNT_MASK            = 0x00000F00,
1086 
1087   UNWIND_ARM_DWARF_SECTION_OFFSET              = 0x00FFFFFF
1088 };
1089 
1090 } // end CU namespace
1091 
1092 /// Generate compact unwind encoding for the function based on the CFI
1093 /// instructions. If the CFI instructions describe a frame that cannot be
1094 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
1095 /// tells the runtime to fallback and unwind using dwarf.
1096 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
1097     ArrayRef<MCCFIInstruction> Instrs) const {
1098   DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
1099   // Only armv7k uses CFI based unwinding.
1100   if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K)
1101     return 0;
1102   // No .cfi directives means no frame.
1103   if (Instrs.empty())
1104     return 0;
1105   // Start off assuming CFA is at SP+0.
1106   unsigned CFARegister = ARM::SP;
1107   int CFARegisterOffset = 0;
1108   // Mark savable registers as initially unsaved
1109   DenseMap<unsigned, int> RegOffsets;
1110   int FloatRegCount = 0;
1111   // Process each .cfi directive and build up compact unwind info.
1112   for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
1113     unsigned Reg;
1114     const MCCFIInstruction &Inst = Instrs[i];
1115     switch (Inst.getOperation()) {
1116     case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa
1117       CFARegisterOffset = -Inst.getOffset();
1118       CFARegister = *MRI.getLLVMRegNum(Inst.getRegister(), true);
1119       break;
1120     case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset
1121       CFARegisterOffset = -Inst.getOffset();
1122       break;
1123     case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register
1124       CFARegister = *MRI.getLLVMRegNum(Inst.getRegister(), true);
1125       break;
1126     case MCCFIInstruction::OpOffset: // DW_CFA_offset
1127       Reg = *MRI.getLLVMRegNum(Inst.getRegister(), true);
1128       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
1129         RegOffsets[Reg] = Inst.getOffset();
1130       else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
1131         RegOffsets[Reg] = Inst.getOffset();
1132         ++FloatRegCount;
1133       } else {
1134         DEBUG_WITH_TYPE("compact-unwind",
1135                         llvm::dbgs() << ".cfi_offset on unknown register="
1136                                      << Inst.getRegister() << "\n");
1137         return CU::UNWIND_ARM_MODE_DWARF;
1138       }
1139       break;
1140     case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc
1141       // Ignore
1142       break;
1143     default:
1144       // Directive not convertable to compact unwind, bail out.
1145       DEBUG_WITH_TYPE("compact-unwind",
1146                       llvm::dbgs()
1147                           << "CFI directive not compatiable with comact "
1148                              "unwind encoding, opcode=" << Inst.getOperation()
1149                           << "\n");
1150       return CU::UNWIND_ARM_MODE_DWARF;
1151       break;
1152     }
1153   }
1154 
1155   // If no frame set up, return no unwind info.
1156   if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0))
1157     return 0;
1158 
1159   // Verify standard frame (lr/r7) was used.
1160   if (CFARegister != ARM::R7) {
1161     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
1162                                                    << CFARegister
1163                                                    << " instead of r7\n");
1164     return CU::UNWIND_ARM_MODE_DWARF;
1165   }
1166   int StackAdjust = CFARegisterOffset - 8;
1167   if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) {
1168     DEBUG_WITH_TYPE("compact-unwind",
1169                     llvm::dbgs()
1170                         << "LR not saved as standard frame, StackAdjust="
1171                         << StackAdjust
1172                         << ", CFARegisterOffset=" << CFARegisterOffset
1173                         << ", lr save at offset=" << RegOffsets[14] << "\n");
1174     return CU::UNWIND_ARM_MODE_DWARF;
1175   }
1176   if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) {
1177     DEBUG_WITH_TYPE("compact-unwind",
1178                     llvm::dbgs() << "r7 not saved as standard frame\n");
1179     return CU::UNWIND_ARM_MODE_DWARF;
1180   }
1181   uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME;
1182 
1183   // If var-args are used, there may be a stack adjust required.
1184   switch (StackAdjust) {
1185   case 0:
1186     break;
1187   case 4:
1188     CompactUnwindEncoding |= 0x00400000;
1189     break;
1190   case 8:
1191     CompactUnwindEncoding |= 0x00800000;
1192     break;
1193   case 12:
1194     CompactUnwindEncoding |= 0x00C00000;
1195     break;
1196   default:
1197     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
1198                                           << ".cfi_def_cfa stack adjust ("
1199                                           << StackAdjust << ") out of range\n");
1200     return CU::UNWIND_ARM_MODE_DWARF;
1201   }
1202 
1203   // If r6 is saved, it must be right below r7.
1204   static struct {
1205     unsigned Reg;
1206     unsigned Encoding;
1207   } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6},
1208                    {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5},
1209                    {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4},
1210                    {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12},
1211                    {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11},
1212                    {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10},
1213                    {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9},
1214                    {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}};
1215 
1216   int CurOffset = -8 - StackAdjust;
1217   for (auto CSReg : GPRCSRegs) {
1218     auto Offset = RegOffsets.find(CSReg.Reg);
1219     if (Offset == RegOffsets.end())
1220       continue;
1221 
1222     int RegOffset = Offset->second;
1223     if (RegOffset != CurOffset - 4) {
1224       DEBUG_WITH_TYPE("compact-unwind",
1225                       llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at "
1226                                    << RegOffset << " but only supported at "
1227                                    << CurOffset << "\n");
1228       return CU::UNWIND_ARM_MODE_DWARF;
1229     }
1230     CompactUnwindEncoding |= CSReg.Encoding;
1231     CurOffset -= 4;
1232   }
1233 
1234   // If no floats saved, we are done.
1235   if (FloatRegCount == 0)
1236     return CompactUnwindEncoding;
1237 
1238   // Switch mode to include D register saving.
1239   CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK;
1240   CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D;
1241 
1242   // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
1243   // but needs coordination with the linker and libunwind.
1244   if (FloatRegCount > 4) {
1245     DEBUG_WITH_TYPE("compact-unwind",
1246                     llvm::dbgs() << "unsupported number of D registers saved ("
1247                                  << FloatRegCount << ")\n");
1248       return CU::UNWIND_ARM_MODE_DWARF;
1249   }
1250 
1251   // Floating point registers must either be saved sequentially, or we defer to
1252   // DWARF. No gaps allowed here so check that each saved d-register is
1253   // precisely where it should be.
1254   static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 };
1255   for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) {
1256     auto Offset = RegOffsets.find(FPRCSRegs[Idx]);
1257     if (Offset == RegOffsets.end()) {
1258       DEBUG_WITH_TYPE("compact-unwind",
1259                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1260                                    << MRI.getName(FPRCSRegs[Idx])
1261                                    << " not saved\n");
1262       return CU::UNWIND_ARM_MODE_DWARF;
1263     } else if (Offset->second != CurOffset - 8) {
1264       DEBUG_WITH_TYPE("compact-unwind",
1265                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1266                                    << MRI.getName(FPRCSRegs[Idx])
1267                                    << " saved at " << Offset->second
1268                                    << ", expected at " << CurOffset - 8
1269                                    << "\n");
1270       return CU::UNWIND_ARM_MODE_DWARF;
1271     }
1272     CurOffset -= 8;
1273   }
1274 
1275   return CompactUnwindEncoding | ((FloatRegCount - 1) << 8);
1276 }
1277 
1278 static MachO::CPUSubTypeARM getMachOSubTypeFromArch(StringRef Arch) {
1279   ARM::ArchKind AK = ARM::parseArch(Arch);
1280   switch (AK) {
1281   default:
1282     return MachO::CPU_SUBTYPE_ARM_V7;
1283   case ARM::ArchKind::ARMV4T:
1284     return MachO::CPU_SUBTYPE_ARM_V4T;
1285   case ARM::ArchKind::ARMV5T:
1286   case ARM::ArchKind::ARMV5TE:
1287   case ARM::ArchKind::ARMV5TEJ:
1288     return MachO::CPU_SUBTYPE_ARM_V5;
1289   case ARM::ArchKind::ARMV6:
1290   case ARM::ArchKind::ARMV6K:
1291     return MachO::CPU_SUBTYPE_ARM_V6;
1292   case ARM::ArchKind::ARMV7A:
1293     return MachO::CPU_SUBTYPE_ARM_V7;
1294   case ARM::ArchKind::ARMV7S:
1295     return MachO::CPU_SUBTYPE_ARM_V7S;
1296   case ARM::ArchKind::ARMV7K:
1297     return MachO::CPU_SUBTYPE_ARM_V7K;
1298   case ARM::ArchKind::ARMV6M:
1299     return MachO::CPU_SUBTYPE_ARM_V6M;
1300   case ARM::ArchKind::ARMV7M:
1301     return MachO::CPU_SUBTYPE_ARM_V7M;
1302   case ARM::ArchKind::ARMV7EM:
1303     return MachO::CPU_SUBTYPE_ARM_V7EM;
1304   }
1305 }
1306 
1307 static MCAsmBackend *createARMAsmBackend(const Target &T,
1308                                          const MCSubtargetInfo &STI,
1309                                          const MCRegisterInfo &MRI,
1310                                          const MCTargetOptions &Options,
1311                                          support::endianness Endian) {
1312   const Triple &TheTriple = STI.getTargetTriple();
1313   switch (TheTriple.getObjectFormat()) {
1314   default:
1315     llvm_unreachable("unsupported object format");
1316   case Triple::MachO: {
1317     MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TheTriple.getArchName());
1318     return new ARMAsmBackendDarwin(T, STI, MRI, CS);
1319   }
1320   case Triple::COFF:
1321     assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
1322     return new ARMAsmBackendWinCOFF(T, STI);
1323   case Triple::ELF:
1324     assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
1325     uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
1326     return new ARMAsmBackendELF(T, STI, OSABI, Endian);
1327   }
1328 }
1329 
1330 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T,
1331                                           const MCSubtargetInfo &STI,
1332                                           const MCRegisterInfo &MRI,
1333                                           const MCTargetOptions &Options) {
1334   return createARMAsmBackend(T, STI, MRI, Options, support::little);
1335 }
1336 
1337 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
1338                                           const MCSubtargetInfo &STI,
1339                                           const MCRegisterInfo &MRI,
1340                                           const MCTargetOptions &Options) {
1341   return createARMAsmBackend(T, STI, MRI, Options, support::big);
1342 }
1343