xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackend.cpp (revision 1165fc9a526630487a1feb63daef65c5aee1a583)
1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "MCTargetDesc/ARMAsmBackend.h"
10 #include "MCTargetDesc/ARMAddressingModes.h"
11 #include "MCTargetDesc/ARMAsmBackendDarwin.h"
12 #include "MCTargetDesc/ARMAsmBackendELF.h"
13 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
14 #include "MCTargetDesc/ARMFixupKinds.h"
15 #include "MCTargetDesc/ARMMCTargetDesc.h"
16 #include "llvm/ADT/StringSwitch.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/BinaryFormat/MachO.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAssembler.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDirectives.h"
23 #include "llvm/MC/MCELFObjectWriter.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCObjectWriter.h"
27 #include "llvm/MC/MCRegisterInfo.h"
28 #include "llvm/MC/MCSectionELF.h"
29 #include "llvm/MC/MCSectionMachO.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/MC/MCValue.h"
32 #include "llvm/MC/MCAsmLayout.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/EndianStream.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Format.h"
37 #include "llvm/Support/TargetParser.h"
38 #include "llvm/Support/raw_ostream.h"
39 using namespace llvm;
40 
41 namespace {
42 class ARMELFObjectWriter : public MCELFObjectTargetWriter {
43 public:
44   ARMELFObjectWriter(uint8_t OSABI)
45       : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
46                                 /*HasRelocationAddend*/ false) {}
47 };
48 } // end anonymous namespace
49 
50 Optional<MCFixupKind> ARMAsmBackend::getFixupKind(StringRef Name) const {
51   return None;
52 }
53 
54 Optional<MCFixupKind> ARMAsmBackendELF::getFixupKind(StringRef Name) const {
55   unsigned Type = llvm::StringSwitch<unsigned>(Name)
56 #define ELF_RELOC(X, Y) .Case(#X, Y)
57 #include "llvm/BinaryFormat/ELFRelocs/ARM.def"
58 #undef ELF_RELOC
59                       .Case("BFD_RELOC_NONE", ELF::R_ARM_NONE)
60                       .Case("BFD_RELOC_8", ELF::R_ARM_ABS8)
61                       .Case("BFD_RELOC_16", ELF::R_ARM_ABS16)
62                       .Case("BFD_RELOC_32", ELF::R_ARM_ABS32)
63                       .Default(-1u);
64   if (Type == -1u)
65     return None;
66   return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
67 }
68 
69 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
70   unsigned IsPCRelConstant =
71       MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_Constant;
72   const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
73       // This table *must* be in the order that the fixup_* kinds are defined in
74       // ARMFixupKinds.h.
75       //
76       // Name                      Offset (bits) Size (bits)     Flags
77       {"fixup_arm_ldst_pcrel_12", 0, 32, IsPCRelConstant},
78       {"fixup_t2_ldst_pcrel_12", 0, 32,
79        IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
80       {"fixup_arm_pcrel_10_unscaled", 0, 32, IsPCRelConstant},
81       {"fixup_arm_pcrel_10", 0, 32, IsPCRelConstant},
82       {"fixup_t2_pcrel_10", 0, 32,
83        MCFixupKindInfo::FKF_IsPCRel |
84            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
85       {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
86       {"fixup_t2_pcrel_9", 0, 32,
87        IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
88       {"fixup_arm_ldst_abs_12", 0, 32, 0},
89       {"fixup_thumb_adr_pcrel_10", 0, 8,
90        IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
91       {"fixup_arm_adr_pcrel_12", 0, 32, IsPCRelConstant},
92       {"fixup_t2_adr_pcrel_12", 0, 32,
93        IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
94       {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
95       {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
96       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
97       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
98       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
99       {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
100       {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
101       {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
102       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
103       {"fixup_arm_thumb_blx", 0, 32,
104        MCFixupKindInfo::FKF_IsPCRel |
105            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
106       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
107       {"fixup_arm_thumb_cp", 0, 8,
108        MCFixupKindInfo::FKF_IsPCRel |
109            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
110       {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel},
111       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
112       // - 19.
113       {"fixup_arm_movt_hi16", 0, 20, 0},
114       {"fixup_arm_movw_lo16", 0, 20, 0},
115       {"fixup_t2_movt_hi16", 0, 20, 0},
116       {"fixup_t2_movw_lo16", 0, 20, 0},
117       {"fixup_arm_mod_imm", 0, 12, 0},
118       {"fixup_t2_so_imm", 0, 26, 0},
119       {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
120       {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
121       {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
122       {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
123       {"fixup_bfcsel_else_target", 0, 32, 0},
124       {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
125       {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel}};
126   const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
127       // This table *must* be in the order that the fixup_* kinds are defined in
128       // ARMFixupKinds.h.
129       //
130       // Name                      Offset (bits) Size (bits)     Flags
131       {"fixup_arm_ldst_pcrel_12", 0, 32, IsPCRelConstant},
132       {"fixup_t2_ldst_pcrel_12", 0, 32,
133        IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
134       {"fixup_arm_pcrel_10_unscaled", 0, 32, IsPCRelConstant},
135       {"fixup_arm_pcrel_10", 0, 32, IsPCRelConstant},
136       {"fixup_t2_pcrel_10", 0, 32,
137        MCFixupKindInfo::FKF_IsPCRel |
138            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
139       {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
140       {"fixup_t2_pcrel_9", 0, 32,
141        IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
142       {"fixup_arm_ldst_abs_12", 0, 32, 0},
143       {"fixup_thumb_adr_pcrel_10", 8, 8,
144        IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
145       {"fixup_arm_adr_pcrel_12", 0, 32, IsPCRelConstant},
146       {"fixup_t2_adr_pcrel_12", 0, 32,
147        IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
148       {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
149       {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
150       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
151       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
152       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
153       {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
154       {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
155       {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
156       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
157       {"fixup_arm_thumb_blx", 0, 32,
158        MCFixupKindInfo::FKF_IsPCRel |
159            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
160       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
161       {"fixup_arm_thumb_cp", 8, 8,
162        MCFixupKindInfo::FKF_IsPCRel |
163            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
164       {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel},
165       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
166       // - 19.
167       {"fixup_arm_movt_hi16", 12, 20, 0},
168       {"fixup_arm_movw_lo16", 12, 20, 0},
169       {"fixup_t2_movt_hi16", 12, 20, 0},
170       {"fixup_t2_movw_lo16", 12, 20, 0},
171       {"fixup_arm_mod_imm", 20, 12, 0},
172       {"fixup_t2_so_imm", 26, 6, 0},
173       {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
174       {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
175       {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
176       {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
177       {"fixup_bfcsel_else_target", 0, 32, 0},
178       {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
179       {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel}};
180 
181   // Fixup kinds from .reloc directive are like R_ARM_NONE. They do not require
182   // any extra processing.
183   if (Kind >= FirstLiteralRelocationKind)
184     return MCAsmBackend::getFixupKindInfo(FK_NONE);
185 
186   if (Kind < FirstTargetFixupKind)
187     return MCAsmBackend::getFixupKindInfo(Kind);
188 
189   assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
190          "Invalid kind!");
191   return (Endian == support::little ? InfosLE
192                                     : InfosBE)[Kind - FirstTargetFixupKind];
193 }
194 
195 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) {
196   switch (Flag) {
197   default:
198     break;
199   case MCAF_Code16:
200     setIsThumb(true);
201     break;
202   case MCAF_Code32:
203     setIsThumb(false);
204     break;
205   }
206 }
207 
208 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op,
209                                          const MCSubtargetInfo &STI) const {
210   bool HasThumb2 = STI.getFeatureBits()[ARM::FeatureThumb2];
211   bool HasV8MBaselineOps = STI.getFeatureBits()[ARM::HasV8MBaselineOps];
212 
213   switch (Op) {
214   default:
215     return Op;
216   case ARM::tBcc:
217     return HasThumb2 ? (unsigned)ARM::t2Bcc : Op;
218   case ARM::tLDRpci:
219     return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op;
220   case ARM::tADR:
221     return HasThumb2 ? (unsigned)ARM::t2ADR : Op;
222   case ARM::tB:
223     return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op;
224   case ARM::tCBZ:
225     return ARM::tHINT;
226   case ARM::tCBNZ:
227     return ARM::tHINT;
228   }
229 }
230 
231 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst,
232                                       const MCSubtargetInfo &STI) const {
233   if (getRelaxedOpcode(Inst.getOpcode(), STI) != Inst.getOpcode())
234     return true;
235   return false;
236 }
237 
238 static const char *checkPCRelOffset(uint64_t Value, int64_t Min, int64_t Max) {
239   int64_t Offset = int64_t(Value) - 4;
240   if (Offset < Min || Offset > Max)
241     return "out of range pc-relative fixup value";
242   return nullptr;
243 }
244 
245 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup,
246                                                     uint64_t Value) const {
247   switch (Fixup.getTargetKind()) {
248   case ARM::fixup_arm_thumb_br: {
249     // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
250     // low bit being an implied zero. There's an implied +4 offset for the
251     // branch, so we adjust the other way here to determine what's
252     // encodable.
253     //
254     // Relax if the value is too big for a (signed) i8.
255     int64_t Offset = int64_t(Value) - 4;
256     if (Offset > 2046 || Offset < -2048)
257       return "out of range pc-relative fixup value";
258     break;
259   }
260   case ARM::fixup_arm_thumb_bcc: {
261     // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
262     // low bit being an implied zero. There's an implied +4 offset for the
263     // branch, so we adjust the other way here to determine what's
264     // encodable.
265     //
266     // Relax if the value is too big for a (signed) i8.
267     int64_t Offset = int64_t(Value) - 4;
268     if (Offset > 254 || Offset < -256)
269       return "out of range pc-relative fixup value";
270     break;
271   }
272   case ARM::fixup_thumb_adr_pcrel_10:
273   case ARM::fixup_arm_thumb_cp: {
274     // If the immediate is negative, greater than 1020, or not a multiple
275     // of four, the wide version of the instruction must be used.
276     int64_t Offset = int64_t(Value) - 4;
277     if (Offset & 3)
278       return "misaligned pc-relative fixup value";
279     else if (Offset > 1020 || Offset < 0)
280       return "out of range pc-relative fixup value";
281     break;
282   }
283   case ARM::fixup_arm_thumb_cb: {
284     // If we have a Thumb CBZ or CBNZ instruction and its target is the next
285     // instruction it is actually out of range for the instruction.
286     // It will be changed to a NOP.
287     int64_t Offset = (Value & ~1);
288     if (Offset == 2)
289       return "will be converted to nop";
290     break;
291   }
292   case ARM::fixup_bf_branch:
293     return checkPCRelOffset(Value, 0, 30);
294   case ARM::fixup_bf_target:
295     return checkPCRelOffset(Value, -0x10000, +0xfffe);
296   case ARM::fixup_bfl_target:
297     return checkPCRelOffset(Value, -0x40000, +0x3fffe);
298   case ARM::fixup_bfc_target:
299     return checkPCRelOffset(Value, -0x1000, +0xffe);
300   case ARM::fixup_wls:
301     return checkPCRelOffset(Value, 0, +0xffe);
302   case ARM::fixup_le:
303     // The offset field in the LE and LETP instructions is an 11-bit
304     // value shifted left by 2 (i.e. 0,2,4,...,4094), and it is
305     // interpreted as a negative offset from the value read from pc,
306     // i.e. from instruction_address+4.
307     //
308     // So an LE instruction can in principle address the instruction
309     // immediately after itself, or (not very usefully) the address
310     // half way through the 4-byte LE.
311     return checkPCRelOffset(Value, -0xffe, 0);
312   case ARM::fixup_bfcsel_else_target: {
313     if (Value != 2 && Value != 4)
314       return "out of range label-relative fixup value";
315     break;
316   }
317 
318   default:
319     llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
320   }
321   return nullptr;
322 }
323 
324 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
325                                          const MCRelaxableFragment *DF,
326                                          const MCAsmLayout &Layout) const {
327   return reasonForFixupRelaxation(Fixup, Value);
328 }
329 
330 void ARMAsmBackend::relaxInstruction(MCInst &Inst,
331                                      const MCSubtargetInfo &STI) const {
332   unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode(), STI);
333 
334   // Return a diagnostic if we get here w/ a bogus instruction.
335   if (RelaxedOp == Inst.getOpcode()) {
336     SmallString<256> Tmp;
337     raw_svector_ostream OS(Tmp);
338     Inst.dump_pretty(OS);
339     OS << "\n";
340     report_fatal_error("unexpected instruction to relax: " + OS.str());
341   }
342 
343   // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
344   // have to change the operands too.
345   if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) &&
346       RelaxedOp == ARM::tHINT) {
347     MCInst Res;
348     Res.setOpcode(RelaxedOp);
349     Res.addOperand(MCOperand::createImm(0));
350     Res.addOperand(MCOperand::createImm(14));
351     Res.addOperand(MCOperand::createReg(0));
352     Inst = std::move(Res);
353     return;
354   }
355 
356   // The rest of instructions we're relaxing have the same operands.
357   // We just need to update to the proper opcode.
358   Inst.setOpcode(RelaxedOp);
359 }
360 
361 bool ARMAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count,
362                                  const MCSubtargetInfo *STI) const {
363   const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
364   const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
365   const uint32_t ARMv4_NopEncoding = 0xe1a00000;   // using MOV r0,r0
366   const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
367   if (isThumb()) {
368     const uint16_t nopEncoding =
369         hasNOP(STI) ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding;
370     uint64_t NumNops = Count / 2;
371     for (uint64_t i = 0; i != NumNops; ++i)
372       support::endian::write(OS, nopEncoding, Endian);
373     if (Count & 1)
374       OS << '\0';
375     return true;
376   }
377   // ARM mode
378   const uint32_t nopEncoding =
379       hasNOP(STI) ? ARMv6T2_NopEncoding : ARMv4_NopEncoding;
380   uint64_t NumNops = Count / 4;
381   for (uint64_t i = 0; i != NumNops; ++i)
382     support::endian::write(OS, nopEncoding, Endian);
383   // FIXME: should this function return false when unable to write exactly
384   // 'Count' bytes with NOP encodings?
385   switch (Count % 4) {
386   default:
387     break; // No leftover bytes to write
388   case 1:
389     OS << '\0';
390     break;
391   case 2:
392     OS.write("\0\0", 2);
393     break;
394   case 3:
395     OS.write("\0\0\xa0", 3);
396     break;
397   }
398 
399   return true;
400 }
401 
402 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
403   if (IsLittleEndian) {
404     // Note that the halfwords are stored high first and low second in thumb;
405     // so we need to swap the fixup value here to map properly.
406     uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
407     Swapped |= (Value & 0x0000FFFF) << 16;
408     return Swapped;
409   } else
410     return Value;
411 }
412 
413 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf,
414                               bool IsLittleEndian) {
415   uint32_t Value;
416 
417   if (IsLittleEndian) {
418     Value = (SecondHalf & 0xFFFF) << 16;
419     Value |= (FirstHalf & 0xFFFF);
420   } else {
421     Value = (SecondHalf & 0xFFFF);
422     Value |= (FirstHalf & 0xFFFF) << 16;
423   }
424 
425   return Value;
426 }
427 
428 unsigned ARMAsmBackend::adjustFixupValue(const MCAssembler &Asm,
429                                          const MCFixup &Fixup,
430                                          const MCValue &Target, uint64_t Value,
431                                          bool IsResolved, MCContext &Ctx,
432                                          const MCSubtargetInfo* STI) const {
433   unsigned Kind = Fixup.getKind();
434 
435   // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT
436   // and .word relocations they put the Thumb bit into the addend if possible.
437   // Other relocation types don't want this bit though (branches couldn't encode
438   // it if it *was* present, and no other relocations exist) and it can
439   // interfere with checking valid expressions.
440   if (const MCSymbolRefExpr *A = Target.getSymA()) {
441     if (A->hasSubsectionsViaSymbols() && Asm.isThumbFunc(&A->getSymbol()) &&
442         A->getSymbol().isExternal() &&
443         (Kind == FK_Data_4 || Kind == ARM::fixup_arm_movw_lo16 ||
444          Kind == ARM::fixup_arm_movt_hi16 || Kind == ARM::fixup_t2_movw_lo16 ||
445          Kind == ARM::fixup_t2_movt_hi16))
446       Value |= 1;
447   }
448 
449   switch (Kind) {
450   default:
451     Ctx.reportError(Fixup.getLoc(), "bad relocation fixup type");
452     return 0;
453   case FK_Data_1:
454   case FK_Data_2:
455   case FK_Data_4:
456     return Value;
457   case FK_SecRel_2:
458     return Value;
459   case FK_SecRel_4:
460     return Value;
461   case ARM::fixup_arm_movt_hi16:
462     assert(STI != nullptr);
463     if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
464       Value >>= 16;
465     LLVM_FALLTHROUGH;
466   case ARM::fixup_arm_movw_lo16: {
467     unsigned Hi4 = (Value & 0xF000) >> 12;
468     unsigned Lo12 = Value & 0x0FFF;
469     // inst{19-16} = Hi4;
470     // inst{11-0} = Lo12;
471     Value = (Hi4 << 16) | (Lo12);
472     return Value;
473   }
474   case ARM::fixup_t2_movt_hi16:
475     assert(STI != nullptr);
476     if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
477       Value >>= 16;
478     LLVM_FALLTHROUGH;
479   case ARM::fixup_t2_movw_lo16: {
480     unsigned Hi4 = (Value & 0xF000) >> 12;
481     unsigned i = (Value & 0x800) >> 11;
482     unsigned Mid3 = (Value & 0x700) >> 8;
483     unsigned Lo8 = Value & 0x0FF;
484     // inst{19-16} = Hi4;
485     // inst{26} = i;
486     // inst{14-12} = Mid3;
487     // inst{7-0} = Lo8;
488     Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
489     return swapHalfWords(Value, Endian == support::little);
490   }
491   case ARM::fixup_arm_ldst_pcrel_12:
492     // ARM PC-relative values are offset by 8.
493     Value -= 4;
494     LLVM_FALLTHROUGH;
495   case ARM::fixup_t2_ldst_pcrel_12:
496     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
497     Value -= 4;
498     LLVM_FALLTHROUGH;
499   case ARM::fixup_arm_ldst_abs_12: {
500     bool isAdd = true;
501     if ((int64_t)Value < 0) {
502       Value = -Value;
503       isAdd = false;
504     }
505     if (Value >= 4096) {
506       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
507       return 0;
508     }
509     Value |= isAdd << 23;
510 
511     // Same addressing mode as fixup_arm_pcrel_10,
512     // but with 16-bit halfwords swapped.
513     if (Kind == ARM::fixup_t2_ldst_pcrel_12)
514       return swapHalfWords(Value, Endian == support::little);
515 
516     return Value;
517   }
518   case ARM::fixup_arm_adr_pcrel_12: {
519     // ARM PC-relative values are offset by 8.
520     Value -= 8;
521     unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
522     if ((int64_t)Value < 0) {
523       Value = -Value;
524       opc = 2; // 0b0010
525     }
526     if (ARM_AM::getSOImmVal(Value) == -1) {
527       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
528       return 0;
529     }
530     // Encode the immediate and shift the opcode into place.
531     return ARM_AM::getSOImmVal(Value) | (opc << 21);
532   }
533 
534   case ARM::fixup_t2_adr_pcrel_12: {
535     Value -= 4;
536     unsigned opc = 0;
537     if ((int64_t)Value < 0) {
538       Value = -Value;
539       opc = 5;
540     }
541 
542     uint32_t out = (opc << 21);
543     out |= (Value & 0x800) << 15;
544     out |= (Value & 0x700) << 4;
545     out |= (Value & 0x0FF);
546 
547     return swapHalfWords(out, Endian == support::little);
548   }
549 
550   case ARM::fixup_arm_condbranch:
551   case ARM::fixup_arm_uncondbranch:
552   case ARM::fixup_arm_uncondbl:
553   case ARM::fixup_arm_condbl:
554   case ARM::fixup_arm_blx:
555     // These values don't encode the low two bits since they're always zero.
556     // Offset by 8 just as above.
557     if (const MCSymbolRefExpr *SRE =
558             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
559       if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
560         return 0;
561     return 0xffffff & ((Value - 8) >> 2);
562   case ARM::fixup_t2_uncondbranch: {
563     Value = Value - 4;
564     if (!isInt<25>(Value)) {
565       Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
566       return 0;
567     }
568 
569     Value >>= 1; // Low bit is not encoded.
570 
571     uint32_t out = 0;
572     bool I = Value & 0x800000;
573     bool J1 = Value & 0x400000;
574     bool J2 = Value & 0x200000;
575     J1 ^= I;
576     J2 ^= I;
577 
578     out |= I << 26;                 // S bit
579     out |= !J1 << 13;               // J1 bit
580     out |= !J2 << 11;               // J2 bit
581     out |= (Value & 0x1FF800) << 5; // imm6 field
582     out |= (Value & 0x0007FF);      // imm11 field
583 
584     return swapHalfWords(out, Endian == support::little);
585   }
586   case ARM::fixup_t2_condbranch: {
587     Value = Value - 4;
588     if (!isInt<21>(Value)) {
589       Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
590       return 0;
591     }
592 
593     Value >>= 1; // Low bit is not encoded.
594 
595     uint64_t out = 0;
596     out |= (Value & 0x80000) << 7; // S bit
597     out |= (Value & 0x40000) >> 7; // J2 bit
598     out |= (Value & 0x20000) >> 4; // J1 bit
599     out |= (Value & 0x1F800) << 5; // imm6 field
600     out |= (Value & 0x007FF);      // imm11 field
601 
602     return swapHalfWords(out, Endian == support::little);
603   }
604   case ARM::fixup_arm_thumb_bl: {
605     if (!isInt<25>(Value - 4) ||
606         (!STI->getFeatureBits()[ARM::FeatureThumb2] &&
607          !STI->getFeatureBits()[ARM::HasV8MBaselineOps] &&
608          !STI->getFeatureBits()[ARM::HasV6MOps] &&
609          !isInt<23>(Value - 4))) {
610       Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
611       return 0;
612     }
613 
614     // The value doesn't encode the low bit (always zero) and is offset by
615     // four. The 32-bit immediate value is encoded as
616     //   imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
617     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
618     // The value is encoded into disjoint bit positions in the destination
619     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
620     // J = either J1 or J2 bit
621     //
622     //   BL:  xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
623     //
624     // Note that the halfwords are stored high first, low second; so we need
625     // to transpose the fixup value here to map properly.
626     uint32_t offset = (Value - 4) >> 1;
627     uint32_t signBit = (offset & 0x800000) >> 23;
628     uint32_t I1Bit = (offset & 0x400000) >> 22;
629     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
630     uint32_t I2Bit = (offset & 0x200000) >> 21;
631     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
632     uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
633     uint32_t imm11Bits = (offset & 0x000007FF);
634 
635     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
636     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
637                            (uint16_t)imm11Bits);
638     return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
639   }
640   case ARM::fixup_arm_thumb_blx: {
641     // The value doesn't encode the low two bits (always zero) and is offset by
642     // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
643     //   imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
644     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
645     // The value is encoded into disjoint bit positions in the destination
646     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
647     // J = either J1 or J2 bit, 0 = zero.
648     //
649     //   BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
650     //
651     // Note that the halfwords are stored high first, low second; so we need
652     // to transpose the fixup value here to map properly.
653     if (Value % 4 != 0) {
654       Ctx.reportError(Fixup.getLoc(), "misaligned ARM call destination");
655       return 0;
656     }
657 
658     uint32_t offset = (Value - 4) >> 2;
659     if (const MCSymbolRefExpr *SRE =
660             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
661       if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
662         offset = 0;
663     uint32_t signBit = (offset & 0x400000) >> 22;
664     uint32_t I1Bit = (offset & 0x200000) >> 21;
665     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
666     uint32_t I2Bit = (offset & 0x100000) >> 20;
667     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
668     uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
669     uint32_t imm10LBits = (offset & 0x3FF);
670 
671     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
672     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
673                            ((uint16_t)imm10LBits) << 1);
674     return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
675   }
676   case ARM::fixup_thumb_adr_pcrel_10:
677   case ARM::fixup_arm_thumb_cp:
678     // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
679     // could have an error on our hands.
680     assert(STI != nullptr);
681     if (!STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) {
682       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
683       if (FixupDiagnostic) {
684         Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
685         return 0;
686       }
687     }
688     // Offset by 4, and don't encode the low two bits.
689     return ((Value - 4) >> 2) & 0xff;
690   case ARM::fixup_arm_thumb_cb: {
691     // CB instructions can only branch to offsets in [4, 126] in multiples of 2
692     // so ensure that the raw value LSB is zero and it lies in [2, 130].
693     // An offset of 2 will be relaxed to a NOP.
694     if ((int64_t)Value < 2 || Value > 0x82 || Value & 1) {
695       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
696       return 0;
697     }
698     // Offset by 4 and don't encode the lower bit, which is always 0.
699     // FIXME: diagnose if no Thumb2
700     uint32_t Binary = (Value - 4) >> 1;
701     return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
702   }
703   case ARM::fixup_arm_thumb_br:
704     // Offset by 4 and don't encode the lower bit, which is always 0.
705     assert(STI != nullptr);
706     if (!STI->getFeatureBits()[ARM::FeatureThumb2] &&
707         !STI->getFeatureBits()[ARM::HasV8MBaselineOps]) {
708       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
709       if (FixupDiagnostic) {
710         Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
711         return 0;
712       }
713     }
714     return ((Value - 4) >> 1) & 0x7ff;
715   case ARM::fixup_arm_thumb_bcc:
716     // Offset by 4 and don't encode the lower bit, which is always 0.
717     assert(STI != nullptr);
718     if (!STI->getFeatureBits()[ARM::FeatureThumb2]) {
719       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
720       if (FixupDiagnostic) {
721         Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
722         return 0;
723       }
724     }
725     return ((Value - 4) >> 1) & 0xff;
726   case ARM::fixup_arm_pcrel_10_unscaled: {
727     Value = Value - 8; // ARM fixups offset by an additional word and don't
728                        // need to adjust for the half-word ordering.
729     bool isAdd = true;
730     if ((int64_t)Value < 0) {
731       Value = -Value;
732       isAdd = false;
733     }
734     // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
735     if (Value >= 256) {
736       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
737       return 0;
738     }
739     Value = (Value & 0xf) | ((Value & 0xf0) << 4);
740     return Value | (isAdd << 23);
741   }
742   case ARM::fixup_arm_pcrel_10:
743     Value = Value - 4; // ARM fixups offset by an additional word and don't
744                        // need to adjust for the half-word ordering.
745     LLVM_FALLTHROUGH;
746   case ARM::fixup_t2_pcrel_10: {
747     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
748     Value = Value - 4;
749     bool isAdd = true;
750     if ((int64_t)Value < 0) {
751       Value = -Value;
752       isAdd = false;
753     }
754     // These values don't encode the low two bits since they're always zero.
755     Value >>= 2;
756     if (Value >= 256) {
757       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
758       return 0;
759     }
760     Value |= isAdd << 23;
761 
762     // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
763     // swapped.
764     if (Kind == ARM::fixup_t2_pcrel_10)
765       return swapHalfWords(Value, Endian == support::little);
766 
767     return Value;
768   }
769   case ARM::fixup_arm_pcrel_9:
770     Value = Value - 4; // ARM fixups offset by an additional word and don't
771                        // need to adjust for the half-word ordering.
772     LLVM_FALLTHROUGH;
773   case ARM::fixup_t2_pcrel_9: {
774     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
775     Value = Value - 4;
776     bool isAdd = true;
777     if ((int64_t)Value < 0) {
778       Value = -Value;
779       isAdd = false;
780     }
781     // These values don't encode the low bit since it's always zero.
782     if (Value & 1) {
783       Ctx.reportError(Fixup.getLoc(), "invalid value for this fixup");
784       return 0;
785     }
786     Value >>= 1;
787     if (Value >= 256) {
788       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
789       return 0;
790     }
791     Value |= isAdd << 23;
792 
793     // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords
794     // swapped.
795     if (Kind == ARM::fixup_t2_pcrel_9)
796       return swapHalfWords(Value, Endian == support::little);
797 
798     return Value;
799   }
800   case ARM::fixup_arm_mod_imm:
801     Value = ARM_AM::getSOImmVal(Value);
802     if (Value >> 12) {
803       Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
804       return 0;
805     }
806     return Value;
807   case ARM::fixup_t2_so_imm: {
808     Value = ARM_AM::getT2SOImmVal(Value);
809     if ((int64_t)Value < 0) {
810       Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
811       return 0;
812     }
813     // Value will contain a 12-bit value broken up into a 4-bit shift in bits
814     // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate
815     // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit
816     // 10 of the upper half-word and imm3 is placed at 14:12 of the lower
817     // half-word.
818     uint64_t EncValue = 0;
819     EncValue |= (Value & 0x800) << 15;
820     EncValue |= (Value & 0x700) << 4;
821     EncValue |= (Value & 0xff);
822     return swapHalfWords(EncValue, Endian == support::little);
823   }
824   case ARM::fixup_bf_branch: {
825     const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
826     if (FixupDiagnostic) {
827       Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
828       return 0;
829     }
830     uint32_t out = (((Value - 4) >> 1) & 0xf) << 23;
831     return swapHalfWords(out, Endian == support::little);
832   }
833   case ARM::fixup_bf_target:
834   case ARM::fixup_bfl_target:
835   case ARM::fixup_bfc_target: {
836     const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
837     if (FixupDiagnostic) {
838       Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
839       return 0;
840     }
841     uint32_t out = 0;
842     uint32_t HighBitMask = (Kind == ARM::fixup_bf_target ? 0xf800 :
843                             Kind == ARM::fixup_bfl_target ? 0x3f800 : 0x800);
844     out |= (((Value - 4) >> 1) & 0x1) << 11;
845     out |= (((Value - 4) >> 1) & 0x7fe);
846     out |= (((Value - 4) >> 1) & HighBitMask) << 5;
847     return swapHalfWords(out, Endian == support::little);
848   }
849   case ARM::fixup_bfcsel_else_target: {
850     // If this is a fixup of a branch future's else target then it should be a
851     // constant MCExpr representing the distance between the branch targetted
852     // and the instruction after that same branch.
853     Value = Target.getConstant();
854 
855     const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
856     if (FixupDiagnostic) {
857       Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
858       return 0;
859     }
860     uint32_t out = ((Value >> 2) & 1) << 17;
861     return swapHalfWords(out, Endian == support::little);
862   }
863   case ARM::fixup_wls:
864   case ARM::fixup_le: {
865     const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
866     if (FixupDiagnostic) {
867       Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
868       return 0;
869     }
870     uint64_t real_value = Value - 4;
871     uint32_t out = 0;
872     if (Kind == ARM::fixup_le)
873       real_value = -real_value;
874     out |= ((real_value >> 1) & 0x1) << 11;
875     out |= ((real_value >> 1) & 0x7fe);
876     return swapHalfWords(out, Endian == support::little);
877   }
878   }
879 }
880 
881 bool ARMAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
882                                           const MCFixup &Fixup,
883                                           const MCValue &Target) {
884   const MCSymbolRefExpr *A = Target.getSymA();
885   const MCSymbol *Sym = A ? &A->getSymbol() : nullptr;
886   const unsigned FixupKind = Fixup.getKind();
887   if (FixupKind >= FirstLiteralRelocationKind)
888     return true;
889   if (FixupKind == ARM::fixup_arm_thumb_bl) {
890     assert(Sym && "How did we resolve this?");
891 
892     // If the symbol is external the linker will handle it.
893     // FIXME: Should we handle it as an optimization?
894 
895     // If the symbol is out of range, produce a relocation and hope the
896     // linker can handle it. GNU AS produces an error in this case.
897     if (Sym->isExternal())
898       return true;
899   }
900   // Create relocations for unconditional branches to function symbols with
901   // different execution mode in ELF binaries.
902   if (Sym && Sym->isELF()) {
903     unsigned Type = cast<MCSymbolELF>(Sym)->getType();
904     if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)) {
905       if (Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_uncondbranch))
906         return true;
907       if (!Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_thumb_br ||
908                                     FixupKind == ARM::fixup_arm_thumb_bl ||
909                                     FixupKind == ARM::fixup_t2_condbranch ||
910                                     FixupKind == ARM::fixup_t2_uncondbranch))
911         return true;
912     }
913   }
914   // We must always generate a relocation for BL/BLX instructions if we have
915   // a symbol to reference, as the linker relies on knowing the destination
916   // symbol's thumb-ness to get interworking right.
917   if (A && (FixupKind == ARM::fixup_arm_thumb_blx ||
918             FixupKind == ARM::fixup_arm_blx ||
919             FixupKind == ARM::fixup_arm_uncondbl ||
920             FixupKind == ARM::fixup_arm_condbl))
921     return true;
922   return false;
923 }
924 
925 /// getFixupKindNumBytes - The number of bytes the fixup may change.
926 static unsigned getFixupKindNumBytes(unsigned Kind) {
927   switch (Kind) {
928   default:
929     llvm_unreachable("Unknown fixup kind!");
930 
931   case FK_Data_1:
932   case ARM::fixup_arm_thumb_bcc:
933   case ARM::fixup_arm_thumb_cp:
934   case ARM::fixup_thumb_adr_pcrel_10:
935     return 1;
936 
937   case FK_Data_2:
938   case ARM::fixup_arm_thumb_br:
939   case ARM::fixup_arm_thumb_cb:
940   case ARM::fixup_arm_mod_imm:
941     return 2;
942 
943   case ARM::fixup_arm_pcrel_10_unscaled:
944   case ARM::fixup_arm_ldst_pcrel_12:
945   case ARM::fixup_arm_pcrel_10:
946   case ARM::fixup_arm_pcrel_9:
947   case ARM::fixup_arm_ldst_abs_12:
948   case ARM::fixup_arm_adr_pcrel_12:
949   case ARM::fixup_arm_uncondbl:
950   case ARM::fixup_arm_condbl:
951   case ARM::fixup_arm_blx:
952   case ARM::fixup_arm_condbranch:
953   case ARM::fixup_arm_uncondbranch:
954     return 3;
955 
956   case FK_Data_4:
957   case ARM::fixup_t2_ldst_pcrel_12:
958   case ARM::fixup_t2_condbranch:
959   case ARM::fixup_t2_uncondbranch:
960   case ARM::fixup_t2_pcrel_10:
961   case ARM::fixup_t2_pcrel_9:
962   case ARM::fixup_t2_adr_pcrel_12:
963   case ARM::fixup_arm_thumb_bl:
964   case ARM::fixup_arm_thumb_blx:
965   case ARM::fixup_arm_movt_hi16:
966   case ARM::fixup_arm_movw_lo16:
967   case ARM::fixup_t2_movt_hi16:
968   case ARM::fixup_t2_movw_lo16:
969   case ARM::fixup_t2_so_imm:
970   case ARM::fixup_bf_branch:
971   case ARM::fixup_bf_target:
972   case ARM::fixup_bfl_target:
973   case ARM::fixup_bfc_target:
974   case ARM::fixup_bfcsel_else_target:
975   case ARM::fixup_wls:
976   case ARM::fixup_le:
977     return 4;
978 
979   case FK_SecRel_2:
980     return 2;
981   case FK_SecRel_4:
982     return 4;
983   }
984 }
985 
986 /// getFixupKindContainerSizeBytes - The number of bytes of the
987 /// container involved in big endian.
988 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) {
989   switch (Kind) {
990   default:
991     llvm_unreachable("Unknown fixup kind!");
992 
993   case FK_Data_1:
994     return 1;
995   case FK_Data_2:
996     return 2;
997   case FK_Data_4:
998     return 4;
999 
1000   case ARM::fixup_arm_thumb_bcc:
1001   case ARM::fixup_arm_thumb_cp:
1002   case ARM::fixup_thumb_adr_pcrel_10:
1003   case ARM::fixup_arm_thumb_br:
1004   case ARM::fixup_arm_thumb_cb:
1005     // Instruction size is 2 bytes.
1006     return 2;
1007 
1008   case ARM::fixup_arm_pcrel_10_unscaled:
1009   case ARM::fixup_arm_ldst_pcrel_12:
1010   case ARM::fixup_arm_pcrel_10:
1011   case ARM::fixup_arm_pcrel_9:
1012   case ARM::fixup_arm_adr_pcrel_12:
1013   case ARM::fixup_arm_uncondbl:
1014   case ARM::fixup_arm_condbl:
1015   case ARM::fixup_arm_blx:
1016   case ARM::fixup_arm_condbranch:
1017   case ARM::fixup_arm_uncondbranch:
1018   case ARM::fixup_t2_ldst_pcrel_12:
1019   case ARM::fixup_t2_condbranch:
1020   case ARM::fixup_t2_uncondbranch:
1021   case ARM::fixup_t2_pcrel_10:
1022   case ARM::fixup_t2_pcrel_9:
1023   case ARM::fixup_t2_adr_pcrel_12:
1024   case ARM::fixup_arm_thumb_bl:
1025   case ARM::fixup_arm_thumb_blx:
1026   case ARM::fixup_arm_movt_hi16:
1027   case ARM::fixup_arm_movw_lo16:
1028   case ARM::fixup_t2_movt_hi16:
1029   case ARM::fixup_t2_movw_lo16:
1030   case ARM::fixup_arm_mod_imm:
1031   case ARM::fixup_t2_so_imm:
1032   case ARM::fixup_bf_branch:
1033   case ARM::fixup_bf_target:
1034   case ARM::fixup_bfl_target:
1035   case ARM::fixup_bfc_target:
1036   case ARM::fixup_bfcsel_else_target:
1037   case ARM::fixup_wls:
1038   case ARM::fixup_le:
1039     // Instruction size is 4 bytes.
1040     return 4;
1041   }
1042 }
1043 
1044 void ARMAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
1045                                const MCValue &Target,
1046                                MutableArrayRef<char> Data, uint64_t Value,
1047                                bool IsResolved,
1048                                const MCSubtargetInfo* STI) const {
1049   unsigned Kind = Fixup.getKind();
1050   if (Kind >= FirstLiteralRelocationKind)
1051     return;
1052   MCContext &Ctx = Asm.getContext();
1053   Value = adjustFixupValue(Asm, Fixup, Target, Value, IsResolved, Ctx, STI);
1054   if (!Value)
1055     return; // Doesn't change encoding.
1056   const unsigned NumBytes = getFixupKindNumBytes(Kind);
1057 
1058   unsigned Offset = Fixup.getOffset();
1059   assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
1060 
1061   // Used to point to big endian bytes.
1062   unsigned FullSizeBytes;
1063   if (Endian == support::big) {
1064     FullSizeBytes = getFixupKindContainerSizeBytes(Kind);
1065     assert((Offset + FullSizeBytes) <= Data.size() && "Invalid fixup size!");
1066     assert(NumBytes <= FullSizeBytes && "Invalid fixup size!");
1067   }
1068 
1069   // For each byte of the fragment that the fixup touches, mask in the bits from
1070   // the fixup value. The Value has been "split up" into the appropriate
1071   // bitfields above.
1072   for (unsigned i = 0; i != NumBytes; ++i) {
1073     unsigned Idx = Endian == support::little ? i : (FullSizeBytes - 1 - i);
1074     Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
1075   }
1076 }
1077 
1078 namespace CU {
1079 
1080 /// Compact unwind encoding values.
1081 enum CompactUnwindEncodings {
1082   UNWIND_ARM_MODE_MASK                         = 0x0F000000,
1083   UNWIND_ARM_MODE_FRAME                        = 0x01000000,
1084   UNWIND_ARM_MODE_FRAME_D                      = 0x02000000,
1085   UNWIND_ARM_MODE_DWARF                        = 0x04000000,
1086 
1087   UNWIND_ARM_FRAME_STACK_ADJUST_MASK           = 0x00C00000,
1088 
1089   UNWIND_ARM_FRAME_FIRST_PUSH_R4               = 0x00000001,
1090   UNWIND_ARM_FRAME_FIRST_PUSH_R5               = 0x00000002,
1091   UNWIND_ARM_FRAME_FIRST_PUSH_R6               = 0x00000004,
1092 
1093   UNWIND_ARM_FRAME_SECOND_PUSH_R8              = 0x00000008,
1094   UNWIND_ARM_FRAME_SECOND_PUSH_R9              = 0x00000010,
1095   UNWIND_ARM_FRAME_SECOND_PUSH_R10             = 0x00000020,
1096   UNWIND_ARM_FRAME_SECOND_PUSH_R11             = 0x00000040,
1097   UNWIND_ARM_FRAME_SECOND_PUSH_R12             = 0x00000080,
1098 
1099   UNWIND_ARM_FRAME_D_REG_COUNT_MASK            = 0x00000F00,
1100 
1101   UNWIND_ARM_DWARF_SECTION_OFFSET              = 0x00FFFFFF
1102 };
1103 
1104 } // end CU namespace
1105 
1106 /// Generate compact unwind encoding for the function based on the CFI
1107 /// instructions. If the CFI instructions describe a frame that cannot be
1108 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
1109 /// tells the runtime to fallback and unwind using dwarf.
1110 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
1111     ArrayRef<MCCFIInstruction> Instrs) const {
1112   DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
1113   // Only armv7k uses CFI based unwinding.
1114   if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K)
1115     return 0;
1116   // No .cfi directives means no frame.
1117   if (Instrs.empty())
1118     return 0;
1119   // Start off assuming CFA is at SP+0.
1120   unsigned CFARegister = ARM::SP;
1121   int CFARegisterOffset = 0;
1122   // Mark savable registers as initially unsaved
1123   DenseMap<unsigned, int> RegOffsets;
1124   int FloatRegCount = 0;
1125   // Process each .cfi directive and build up compact unwind info.
1126   for (const MCCFIInstruction &Inst : Instrs) {
1127     unsigned Reg;
1128     switch (Inst.getOperation()) {
1129     case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa
1130       CFARegisterOffset = Inst.getOffset();
1131       CFARegister = *MRI.getLLVMRegNum(Inst.getRegister(), true);
1132       break;
1133     case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset
1134       CFARegisterOffset = Inst.getOffset();
1135       break;
1136     case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register
1137       CFARegister = *MRI.getLLVMRegNum(Inst.getRegister(), true);
1138       break;
1139     case MCCFIInstruction::OpOffset: // DW_CFA_offset
1140       Reg = *MRI.getLLVMRegNum(Inst.getRegister(), true);
1141       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
1142         RegOffsets[Reg] = Inst.getOffset();
1143       else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
1144         RegOffsets[Reg] = Inst.getOffset();
1145         ++FloatRegCount;
1146       } else {
1147         DEBUG_WITH_TYPE("compact-unwind",
1148                         llvm::dbgs() << ".cfi_offset on unknown register="
1149                                      << Inst.getRegister() << "\n");
1150         return CU::UNWIND_ARM_MODE_DWARF;
1151       }
1152       break;
1153     case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc
1154       // Ignore
1155       break;
1156     default:
1157       // Directive not convertable to compact unwind, bail out.
1158       DEBUG_WITH_TYPE("compact-unwind",
1159                       llvm::dbgs()
1160                           << "CFI directive not compatiable with comact "
1161                              "unwind encoding, opcode=" << Inst.getOperation()
1162                           << "\n");
1163       return CU::UNWIND_ARM_MODE_DWARF;
1164       break;
1165     }
1166   }
1167 
1168   // If no frame set up, return no unwind info.
1169   if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0))
1170     return 0;
1171 
1172   // Verify standard frame (lr/r7) was used.
1173   if (CFARegister != ARM::R7) {
1174     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
1175                                                    << CFARegister
1176                                                    << " instead of r7\n");
1177     return CU::UNWIND_ARM_MODE_DWARF;
1178   }
1179   int StackAdjust = CFARegisterOffset - 8;
1180   if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) {
1181     DEBUG_WITH_TYPE("compact-unwind",
1182                     llvm::dbgs()
1183                         << "LR not saved as standard frame, StackAdjust="
1184                         << StackAdjust
1185                         << ", CFARegisterOffset=" << CFARegisterOffset
1186                         << ", lr save at offset=" << RegOffsets[14] << "\n");
1187     return CU::UNWIND_ARM_MODE_DWARF;
1188   }
1189   if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) {
1190     DEBUG_WITH_TYPE("compact-unwind",
1191                     llvm::dbgs() << "r7 not saved as standard frame\n");
1192     return CU::UNWIND_ARM_MODE_DWARF;
1193   }
1194   uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME;
1195 
1196   // If var-args are used, there may be a stack adjust required.
1197   switch (StackAdjust) {
1198   case 0:
1199     break;
1200   case 4:
1201     CompactUnwindEncoding |= 0x00400000;
1202     break;
1203   case 8:
1204     CompactUnwindEncoding |= 0x00800000;
1205     break;
1206   case 12:
1207     CompactUnwindEncoding |= 0x00C00000;
1208     break;
1209   default:
1210     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
1211                                           << ".cfi_def_cfa stack adjust ("
1212                                           << StackAdjust << ") out of range\n");
1213     return CU::UNWIND_ARM_MODE_DWARF;
1214   }
1215 
1216   // If r6 is saved, it must be right below r7.
1217   static struct {
1218     unsigned Reg;
1219     unsigned Encoding;
1220   } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6},
1221                    {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5},
1222                    {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4},
1223                    {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12},
1224                    {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11},
1225                    {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10},
1226                    {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9},
1227                    {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}};
1228 
1229   int CurOffset = -8 - StackAdjust;
1230   for (auto CSReg : GPRCSRegs) {
1231     auto Offset = RegOffsets.find(CSReg.Reg);
1232     if (Offset == RegOffsets.end())
1233       continue;
1234 
1235     int RegOffset = Offset->second;
1236     if (RegOffset != CurOffset - 4) {
1237       DEBUG_WITH_TYPE("compact-unwind",
1238                       llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at "
1239                                    << RegOffset << " but only supported at "
1240                                    << CurOffset << "\n");
1241       return CU::UNWIND_ARM_MODE_DWARF;
1242     }
1243     CompactUnwindEncoding |= CSReg.Encoding;
1244     CurOffset -= 4;
1245   }
1246 
1247   // If no floats saved, we are done.
1248   if (FloatRegCount == 0)
1249     return CompactUnwindEncoding;
1250 
1251   // Switch mode to include D register saving.
1252   CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK;
1253   CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D;
1254 
1255   // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
1256   // but needs coordination with the linker and libunwind.
1257   if (FloatRegCount > 4) {
1258     DEBUG_WITH_TYPE("compact-unwind",
1259                     llvm::dbgs() << "unsupported number of D registers saved ("
1260                                  << FloatRegCount << ")\n");
1261       return CU::UNWIND_ARM_MODE_DWARF;
1262   }
1263 
1264   // Floating point registers must either be saved sequentially, or we defer to
1265   // DWARF. No gaps allowed here so check that each saved d-register is
1266   // precisely where it should be.
1267   static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 };
1268   for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) {
1269     auto Offset = RegOffsets.find(FPRCSRegs[Idx]);
1270     if (Offset == RegOffsets.end()) {
1271       DEBUG_WITH_TYPE("compact-unwind",
1272                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1273                                    << MRI.getName(FPRCSRegs[Idx])
1274                                    << " not saved\n");
1275       return CU::UNWIND_ARM_MODE_DWARF;
1276     } else if (Offset->second != CurOffset - 8) {
1277       DEBUG_WITH_TYPE("compact-unwind",
1278                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1279                                    << MRI.getName(FPRCSRegs[Idx])
1280                                    << " saved at " << Offset->second
1281                                    << ", expected at " << CurOffset - 8
1282                                    << "\n");
1283       return CU::UNWIND_ARM_MODE_DWARF;
1284     }
1285     CurOffset -= 8;
1286   }
1287 
1288   return CompactUnwindEncoding | ((FloatRegCount - 1) << 8);
1289 }
1290 
1291 static MCAsmBackend *createARMAsmBackend(const Target &T,
1292                                          const MCSubtargetInfo &STI,
1293                                          const MCRegisterInfo &MRI,
1294                                          const MCTargetOptions &Options,
1295                                          support::endianness Endian) {
1296   const Triple &TheTriple = STI.getTargetTriple();
1297   switch (TheTriple.getObjectFormat()) {
1298   default:
1299     llvm_unreachable("unsupported object format");
1300   case Triple::MachO:
1301     return new ARMAsmBackendDarwin(T, STI, MRI);
1302   case Triple::COFF:
1303     assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
1304     return new ARMAsmBackendWinCOFF(T, STI.getTargetTriple().isThumb());
1305   case Triple::ELF:
1306     assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
1307     uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
1308     return new ARMAsmBackendELF(T, STI.getTargetTriple().isThumb(), OSABI,
1309                                 Endian);
1310   }
1311 }
1312 
1313 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T,
1314                                           const MCSubtargetInfo &STI,
1315                                           const MCRegisterInfo &MRI,
1316                                           const MCTargetOptions &Options) {
1317   return createARMAsmBackend(T, STI, MRI, Options, support::little);
1318 }
1319 
1320 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
1321                                           const MCSubtargetInfo &STI,
1322                                           const MCRegisterInfo &MRI,
1323                                           const MCTargetOptions &Options) {
1324   return createARMAsmBackend(T, STI, MRI, Options, support::big);
1325 }
1326