xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/MCTargetDesc/ARMAddressingModes.h (revision 35c0a8c449fd2b7f75029ebed5e10852240f0865)
1 //===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the ARM addressing mode implementation stuff.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
14 #define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
15 
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/bit.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/MathExtras.h"
21 #include <cassert>
22 
23 namespace llvm {
24 
25 /// ARM_AM - ARM Addressing Mode Stuff
26 namespace ARM_AM {
27   enum ShiftOpc {
28     no_shift = 0,
29     asr,
30     lsl,
31     lsr,
32     ror,
33     rrx,
34     uxtw
35   };
36 
37   enum AddrOpc {
38     sub = 0,
39     add
40   };
41 
42   inline const char *getAddrOpcStr(AddrOpc Op) { return Op == sub ? "-" : ""; }
43 
44   inline const StringRef getShiftOpcStr(ShiftOpc Op) {
45     switch (Op) {
46     default: llvm_unreachable("Unknown shift opc!");
47     case ARM_AM::asr: return "asr";
48     case ARM_AM::lsl: return "lsl";
49     case ARM_AM::lsr: return "lsr";
50     case ARM_AM::ror: return "ror";
51     case ARM_AM::rrx: return "rrx";
52     case ARM_AM::uxtw: return "uxtw";
53     }
54   }
55 
56   inline unsigned getShiftOpcEncoding(ShiftOpc Op) {
57     switch (Op) {
58     default: llvm_unreachable("Unknown shift opc!");
59     case ARM_AM::asr: return 2;
60     case ARM_AM::lsl: return 0;
61     case ARM_AM::lsr: return 1;
62     case ARM_AM::ror: return 3;
63     }
64   }
65 
66   enum AMSubMode {
67     bad_am_submode = 0,
68     ia,
69     ib,
70     da,
71     db
72   };
73 
74   inline const char *getAMSubModeStr(AMSubMode Mode) {
75     switch (Mode) {
76     default: llvm_unreachable("Unknown addressing sub-mode!");
77     case ARM_AM::ia: return "ia";
78     case ARM_AM::ib: return "ib";
79     case ARM_AM::da: return "da";
80     case ARM_AM::db: return "db";
81     }
82   }
83 
84   //===--------------------------------------------------------------------===//
85   // Addressing Mode #1: shift_operand with registers
86   //===--------------------------------------------------------------------===//
87   //
88   // This 'addressing mode' is used for arithmetic instructions.  It can
89   // represent things like:
90   //   reg
91   //   reg [asr|lsl|lsr|ror|rrx] reg
92   //   reg [asr|lsl|lsr|ror|rrx] imm
93   //
94   // This is stored three operands [rega, regb, opc].  The first is the base
95   // reg, the second is the shift amount (or reg0 if not present or imm).  The
96   // third operand encodes the shift opcode and the imm if a reg isn't present.
97   //
98   inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
99     return ShOp | (Imm << 3);
100   }
101   inline unsigned getSORegOffset(unsigned Op) { return Op >> 3; }
102   inline ShiftOpc getSORegShOp(unsigned Op) { return (ShiftOpc)(Op & 7); }
103 
104   /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
105   /// the 8-bit imm value.
106   inline unsigned getSOImmValImm(unsigned Imm) { return Imm & 0xFF; }
107   /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
108   /// the rotate amount.
109   inline unsigned getSOImmValRot(unsigned Imm) { return (Imm >> 8) * 2; }
110 
111   /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
112   /// computing the rotate amount to use.  If this immediate value cannot be
113   /// handled with a single shifter-op, determine a good rotate amount that will
114   /// take a maximal chunk of bits out of the immediate.
115   inline unsigned getSOImmValRotate(unsigned Imm) {
116     // 8-bit (or less) immediates are trivially shifter_operands with a rotate
117     // of zero.
118     if ((Imm & ~255U) == 0) return 0;
119 
120     // Use CTZ to compute the rotate amount.
121     unsigned TZ = llvm::countr_zero(Imm);
122 
123     // Rotate amount must be even.  Something like 0x200 must be rotated 8 bits,
124     // not 9.
125     unsigned RotAmt = TZ & ~1;
126 
127     // If we can handle this spread, return it.
128     if ((llvm::rotr<uint32_t>(Imm, RotAmt) & ~255U) == 0)
129       return (32-RotAmt)&31;  // HW rotates right, not left.
130 
131     // For values like 0xF000000F, we should ignore the low 6 bits, then
132     // retry the hunt.
133     if (Imm & 63U) {
134       unsigned TZ2 = llvm::countr_zero(Imm & ~63U);
135       unsigned RotAmt2 = TZ2 & ~1;
136       if ((llvm::rotr<uint32_t>(Imm, RotAmt2) & ~255U) == 0)
137         return (32-RotAmt2)&31;  // HW rotates right, not left.
138     }
139 
140     // Otherwise, we have no way to cover this span of bits with a single
141     // shifter_op immediate.  Return a chunk of bits that will be useful to
142     // handle.
143     return (32-RotAmt)&31;  // HW rotates right, not left.
144   }
145 
146   /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
147   /// into an shifter_operand immediate operand, return the 12-bit encoding for
148   /// it.  If not, return -1.
149   inline int getSOImmVal(unsigned Arg) {
150     // 8-bit (or less) immediates are trivially shifter_operands with a rotate
151     // of zero.
152     if ((Arg & ~255U) == 0) return Arg;
153 
154     unsigned RotAmt = getSOImmValRotate(Arg);
155 
156     // If this cannot be handled with a single shifter_op, bail out.
157     if (llvm::rotr<uint32_t>(~255U, RotAmt) & Arg)
158       return -1;
159 
160     // Encode this correctly.
161     return llvm::rotl<uint32_t>(Arg, RotAmt) | ((RotAmt >> 1) << 8);
162   }
163 
164   /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
165   /// or'ing together two SOImmVal's.
166   inline bool isSOImmTwoPartVal(unsigned V) {
167     // If this can be handled with a single shifter_op, bail out.
168     V = llvm::rotr<uint32_t>(~255U, getSOImmValRotate(V)) & V;
169     if (V == 0)
170       return false;
171 
172     // If this can be handled with two shifter_op's, accept.
173     V = llvm::rotr<uint32_t>(~255U, getSOImmValRotate(V)) & V;
174     return V == 0;
175   }
176 
177   /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
178   /// return the first chunk of it.
179   inline unsigned getSOImmTwoPartFirst(unsigned V) {
180     return llvm::rotr<uint32_t>(255U, getSOImmValRotate(V)) & V;
181   }
182 
183   /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
184   /// return the second chunk of it.
185   inline unsigned getSOImmTwoPartSecond(unsigned V) {
186     // Mask out the first hunk.
187     V = llvm::rotr<uint32_t>(~255U, getSOImmValRotate(V)) & V;
188 
189     // Take what's left.
190     assert(V == (llvm::rotr<uint32_t>(255U, getSOImmValRotate(V)) & V));
191     return V;
192   }
193 
194   /// isSOImmTwoPartValNeg - Return true if the specified value can be obtained
195   /// by two SOImmVal, that -V = First + Second.
196   /// "R+V" can be optimized to (sub (sub R, First), Second).
197   /// "R=V" can be optimized to (sub (mvn R, ~(-First)), Second).
198   inline bool isSOImmTwoPartValNeg(unsigned V) {
199     unsigned First;
200     if (!isSOImmTwoPartVal(-V))
201       return false;
202     // Return false if ~(-First) is not a SoImmval.
203     First = getSOImmTwoPartFirst(-V);
204     First = ~(-First);
205     return !(llvm::rotr<uint32_t>(~255U, getSOImmValRotate(First)) & First);
206   }
207 
208   /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
209   /// by a left shift. Returns the shift amount to use.
210   inline unsigned getThumbImmValShift(unsigned Imm) {
211     // 8-bit (or less) immediates are trivially immediate operand with a shift
212     // of zero.
213     if ((Imm & ~255U) == 0) return 0;
214 
215     // Use CTZ to compute the shift amount.
216     return llvm::countr_zero(Imm);
217   }
218 
219   /// isThumbImmShiftedVal - Return true if the specified value can be obtained
220   /// by left shifting a 8-bit immediate.
221   inline bool isThumbImmShiftedVal(unsigned V) {
222     // If this can be handled with
223     V = (~255U << getThumbImmValShift(V)) & V;
224     return V == 0;
225   }
226 
227   /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
228   /// by a left shift. Returns the shift amount to use.
229   inline unsigned getThumbImm16ValShift(unsigned Imm) {
230     // 16-bit (or less) immediates are trivially immediate operand with a shift
231     // of zero.
232     if ((Imm & ~65535U) == 0) return 0;
233 
234     // Use CTZ to compute the shift amount.
235     return llvm::countr_zero(Imm);
236   }
237 
238   /// isThumbImm16ShiftedVal - Return true if the specified value can be
239   /// obtained by left shifting a 16-bit immediate.
240   inline bool isThumbImm16ShiftedVal(unsigned V) {
241     // If this can be handled with
242     V = (~65535U << getThumbImm16ValShift(V)) & V;
243     return V == 0;
244   }
245 
246   /// getThumbImmNonShiftedVal - If V is a value that satisfies
247   /// isThumbImmShiftedVal, return the non-shiftd value.
248   inline unsigned getThumbImmNonShiftedVal(unsigned V) {
249     return V >> getThumbImmValShift(V);
250   }
251 
252 
253   /// getT2SOImmValSplat - Return the 12-bit encoded representation
254   /// if the specified value can be obtained by splatting the low 8 bits
255   /// into every other byte or every byte of a 32-bit value. i.e.,
256   ///     00000000 00000000 00000000 abcdefgh    control = 0
257   ///     00000000 abcdefgh 00000000 abcdefgh    control = 1
258   ///     abcdefgh 00000000 abcdefgh 00000000    control = 2
259   ///     abcdefgh abcdefgh abcdefgh abcdefgh    control = 3
260   /// Return -1 if none of the above apply.
261   /// See ARM Reference Manual A6.3.2.
262   inline int getT2SOImmValSplatVal(unsigned V) {
263     unsigned u, Vs, Imm;
264     // control = 0
265     if ((V & 0xffffff00) == 0)
266       return V;
267 
268     // If the value is zeroes in the first byte, just shift those off
269     Vs = ((V & 0xff) == 0) ? V >> 8 : V;
270     // Any passing value only has 8 bits of payload, splatted across the word
271     Imm = Vs & 0xff;
272     // Likewise, any passing values have the payload splatted into the 3rd byte
273     u = Imm | (Imm << 16);
274 
275     // control = 1 or 2
276     if (Vs == u)
277       return (((Vs == V) ? 1 : 2) << 8) | Imm;
278 
279     // control = 3
280     if (Vs == (u | (u << 8)))
281       return (3 << 8) | Imm;
282 
283     return -1;
284   }
285 
286   /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
287   /// specified value is a rotated 8-bit value. Return -1 if no rotation
288   /// encoding is possible.
289   /// See ARM Reference Manual A6.3.2.
290   inline int getT2SOImmValRotateVal(unsigned V) {
291     unsigned RotAmt = llvm::countl_zero(V);
292     if (RotAmt >= 24)
293       return -1;
294 
295     // If 'Arg' can be handled with a single shifter_op return the value.
296     if ((llvm::rotr<uint32_t>(0xff000000U, RotAmt) & V) == V)
297       return (llvm::rotr<uint32_t>(V, 24 - RotAmt) & 0x7f) |
298              ((RotAmt + 8) << 7);
299 
300     return -1;
301   }
302 
303   /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
304   /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
305   /// encoding for it.  If not, return -1.
306   /// See ARM Reference Manual A6.3.2.
307   inline int getT2SOImmVal(unsigned Arg) {
308     // If 'Arg' is an 8-bit splat, then get the encoded value.
309     int Splat = getT2SOImmValSplatVal(Arg);
310     if (Splat != -1)
311       return Splat;
312 
313     // If 'Arg' can be handled with a single shifter_op return the value.
314     int Rot = getT2SOImmValRotateVal(Arg);
315     if (Rot != -1)
316       return Rot;
317 
318     return -1;
319   }
320 
321   inline unsigned getT2SOImmValRotate(unsigned V) {
322     if ((V & ~255U) == 0) return 0;
323     // Use CTZ to compute the rotate amount.
324     unsigned RotAmt = llvm::countr_zero(V);
325     return (32 - RotAmt) & 31;
326   }
327 
328   inline bool isT2SOImmTwoPartVal(unsigned Imm) {
329     unsigned V = Imm;
330     // Passing values can be any combination of splat values and shifter
331     // values. If this can be handled with a single shifter or splat, bail
332     // out. Those should be handled directly, not with a two-part val.
333     if (getT2SOImmValSplatVal(V) != -1)
334       return false;
335     V = llvm::rotr<uint32_t>(~255U, getT2SOImmValRotate(V)) & V;
336     if (V == 0)
337       return false;
338 
339     // If this can be handled as an immediate, accept.
340     if (getT2SOImmVal(V) != -1) return true;
341 
342     // Likewise, try masking out a splat value first.
343     V = Imm;
344     if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
345       V &= ~0xff00ff00U;
346     else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
347       V &= ~0x00ff00ffU;
348     // If what's left can be handled as an immediate, accept.
349     if (getT2SOImmVal(V) != -1) return true;
350 
351     // Otherwise, do not accept.
352     return false;
353   }
354 
355   inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) {
356     assert (isT2SOImmTwoPartVal(Imm) &&
357             "Immedate cannot be encoded as two part immediate!");
358     // Try a shifter operand as one part
359     unsigned V = llvm::rotr<uint32_t>(~255, getT2SOImmValRotate(Imm)) & Imm;
360     // If the rest is encodable as an immediate, then return it.
361     if (getT2SOImmVal(V) != -1) return V;
362 
363     // Try masking out a splat value first.
364     if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
365       return Imm & 0xff00ff00U;
366 
367     // The other splat is all that's left as an option.
368     assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
369     return Imm & 0x00ff00ffU;
370   }
371 
372   inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) {
373     // Mask out the first hunk
374     Imm ^= getT2SOImmTwoPartFirst(Imm);
375     // Return what's left
376     assert (getT2SOImmVal(Imm) != -1 &&
377             "Unable to encode second part of T2 two part SO immediate");
378     return Imm;
379   }
380 
381 
382   //===--------------------------------------------------------------------===//
383   // Addressing Mode #2
384   //===--------------------------------------------------------------------===//
385   //
386   // This is used for most simple load/store instructions.
387   //
388   // addrmode2 := reg +/- reg shop imm
389   // addrmode2 := reg +/- imm12
390   //
391   // The first operand is always a Reg.  The second operand is a reg if in
392   // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
393   // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
394   // fourth operand 16-17 encodes the index mode.
395   //
396   // If this addressing mode is a frame index (before prolog/epilog insertion
397   // and code rewriting), this operand will have the form:  FI#, reg0, <offs>
398   // with no shift amount for the frame offset.
399   //
400   inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO,
401                             unsigned IdxMode = 0) {
402     assert(Imm12 < (1 << 12) && "Imm too large!");
403     bool isSub = Opc == sub;
404     return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
405   }
406   inline unsigned getAM2Offset(unsigned AM2Opc) {
407     return AM2Opc & ((1 << 12)-1);
408   }
409   inline AddrOpc getAM2Op(unsigned AM2Opc) {
410     return ((AM2Opc >> 12) & 1) ? sub : add;
411   }
412   inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
413     return (ShiftOpc)((AM2Opc >> 13) & 7);
414   }
415   inline unsigned getAM2IdxMode(unsigned AM2Opc) { return (AM2Opc >> 16); }
416 
417   //===--------------------------------------------------------------------===//
418   // Addressing Mode #3
419   //===--------------------------------------------------------------------===//
420   //
421   // This is used for sign-extending loads, and load/store-pair instructions.
422   //
423   // addrmode3 := reg +/- reg
424   // addrmode3 := reg +/- imm8
425   //
426   // The first operand is always a Reg.  The second operand is a reg if in
427   // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
428   // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
429   // index mode.
430 
431   /// getAM3Opc - This function encodes the addrmode3 opc field.
432   inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset,
433                             unsigned IdxMode = 0) {
434     bool isSub = Opc == sub;
435     return ((int)isSub << 8) | Offset | (IdxMode << 9);
436   }
437   inline unsigned char getAM3Offset(unsigned AM3Opc) { return AM3Opc & 0xFF; }
438   inline AddrOpc getAM3Op(unsigned AM3Opc) {
439     return ((AM3Opc >> 8) & 1) ? sub : add;
440   }
441   inline unsigned getAM3IdxMode(unsigned AM3Opc) { return (AM3Opc >> 9); }
442 
443   //===--------------------------------------------------------------------===//
444   // Addressing Mode #4
445   //===--------------------------------------------------------------------===//
446   //
447   // This is used for load / store multiple instructions.
448   //
449   // addrmode4 := reg, <mode>
450   //
451   // The four modes are:
452   //    IA - Increment after
453   //    IB - Increment before
454   //    DA - Decrement after
455   //    DB - Decrement before
456   // For VFP instructions, only the IA and DB modes are valid.
457 
458   inline AMSubMode getAM4SubMode(unsigned Mode) {
459     return (AMSubMode)(Mode & 0x7);
460   }
461 
462   inline unsigned getAM4ModeImm(AMSubMode SubMode) { return (int)SubMode; }
463 
464   //===--------------------------------------------------------------------===//
465   // Addressing Mode #5
466   //===--------------------------------------------------------------------===//
467   //
468   // This is used for coprocessor instructions, such as FP load/stores.
469   //
470   // addrmode5 := reg +/- imm8*4
471   //
472   // The first operand is always a Reg.  The second operand encodes the
473   // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
474 
475   /// getAM5Opc - This function encodes the addrmode5 opc field.
476   inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
477     bool isSub = Opc == sub;
478     return ((int)isSub << 8) | Offset;
479   }
480   inline unsigned char getAM5Offset(unsigned AM5Opc) { return AM5Opc & 0xFF; }
481   inline AddrOpc getAM5Op(unsigned AM5Opc) {
482     return ((AM5Opc >> 8) & 1) ? sub : add;
483   }
484 
485   //===--------------------------------------------------------------------===//
486   // Addressing Mode #5 FP16
487   //===--------------------------------------------------------------------===//
488   //
489   // This is used for coprocessor instructions, such as 16-bit FP load/stores.
490   //
491   // addrmode5fp16 := reg +/- imm8*2
492   //
493   // The first operand is always a Reg.  The second operand encodes the
494   // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
495 
496   /// getAM5FP16Opc - This function encodes the addrmode5fp16 opc field.
497   inline unsigned getAM5FP16Opc(AddrOpc Opc, unsigned char Offset) {
498     bool isSub = Opc == sub;
499     return ((int)isSub << 8) | Offset;
500   }
501   inline unsigned char getAM5FP16Offset(unsigned AM5Opc) {
502     return AM5Opc & 0xFF;
503   }
504   inline AddrOpc getAM5FP16Op(unsigned AM5Opc) {
505     return ((AM5Opc >> 8) & 1) ? sub : add;
506   }
507 
508   //===--------------------------------------------------------------------===//
509   // Addressing Mode #6
510   //===--------------------------------------------------------------------===//
511   //
512   // This is used for NEON load / store instructions.
513   //
514   // addrmode6 := reg with optional alignment
515   //
516   // This is stored in two operands [regaddr, align].  The first is the
517   // address register.  The second operand is the value of the alignment
518   // specifier in bytes or zero if no explicit alignment.
519   // Valid alignments depend on the specific instruction.
520 
521   //===--------------------------------------------------------------------===//
522   // NEON/MVE Modified Immediates
523   //===--------------------------------------------------------------------===//
524   //
525   // Several NEON and MVE instructions (e.g., VMOV) take a "modified immediate"
526   // vector operand, where a small immediate encoded in the instruction
527   // specifies a full NEON vector value.  These modified immediates are
528   // represented here as encoded integers.  The low 8 bits hold the immediate
529   // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
530   // the "Cmode" field of the instruction.  The interfaces below treat the
531   // Op and Cmode values as a single 5-bit value.
532 
533   inline unsigned createVMOVModImm(unsigned OpCmode, unsigned Val) {
534     return (OpCmode << 8) | Val;
535   }
536   inline unsigned getVMOVModImmOpCmode(unsigned ModImm) {
537     return (ModImm >> 8) & 0x1f;
538   }
539   inline unsigned getVMOVModImmVal(unsigned ModImm) { return ModImm & 0xff; }
540 
541   /// decodeVMOVModImm - Decode a NEON/MVE modified immediate value into the
542   /// element value and the element size in bits.  (If the element size is
543   /// smaller than the vector, it is splatted into all the elements.)
544   inline uint64_t decodeVMOVModImm(unsigned ModImm, unsigned &EltBits) {
545     unsigned OpCmode = getVMOVModImmOpCmode(ModImm);
546     unsigned Imm8 = getVMOVModImmVal(ModImm);
547     uint64_t Val = 0;
548 
549     if (OpCmode == 0xe) {
550       // 8-bit vector elements
551       Val = Imm8;
552       EltBits = 8;
553     } else if ((OpCmode & 0xc) == 0x8) {
554       // 16-bit vector elements
555       unsigned ByteNum = (OpCmode & 0x6) >> 1;
556       Val = Imm8 << (8 * ByteNum);
557       EltBits = 16;
558     } else if ((OpCmode & 0x8) == 0) {
559       // 32-bit vector elements, zero with one byte set
560       unsigned ByteNum = (OpCmode & 0x6) >> 1;
561       Val = Imm8 << (8 * ByteNum);
562       EltBits = 32;
563     } else if ((OpCmode & 0xe) == 0xc) {
564       // 32-bit vector elements, one byte with low bits set
565       unsigned ByteNum = 1 + (OpCmode & 0x1);
566       Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
567       EltBits = 32;
568     } else if (OpCmode == 0x1e) {
569       // 64-bit vector elements
570       for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
571         if ((ModImm >> ByteNum) & 1)
572           Val |= (uint64_t)0xff << (8 * ByteNum);
573       }
574       EltBits = 64;
575     } else {
576       llvm_unreachable("Unsupported VMOV immediate");
577     }
578     return Val;
579   }
580 
581   // Generic validation for single-byte immediate (0X00, 00X0, etc).
582   inline bool isNEONBytesplat(unsigned Value, unsigned Size) {
583     assert(Size >= 1 && Size <= 4 && "Invalid size");
584     unsigned count = 0;
585     for (unsigned i = 0; i < Size; ++i) {
586       if (Value & 0xff) count++;
587       Value >>= 8;
588     }
589     return count == 1;
590   }
591 
592   /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
593   inline bool isNEONi16splat(unsigned Value) {
594     if (Value > 0xffff)
595       return false;
596     // i16 value with set bits only in one byte X0 or 0X.
597     return Value == 0 || isNEONBytesplat(Value, 2);
598   }
599 
600   // Encode NEON 16 bits Splat immediate for instructions like VBIC/VORR
601   inline unsigned encodeNEONi16splat(unsigned Value) {
602     assert(isNEONi16splat(Value) && "Invalid NEON splat value");
603     if (Value >= 0x100)
604       Value = (Value >> 8) | 0xa00;
605     else
606       Value |= 0x800;
607     return Value;
608   }
609 
610   /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
611   inline bool isNEONi32splat(unsigned Value) {
612     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
613     return Value == 0 || isNEONBytesplat(Value, 4);
614   }
615 
616   /// Encode NEON 32 bits Splat immediate for instructions like VBIC/VORR.
617   inline unsigned encodeNEONi32splat(unsigned Value) {
618     assert(isNEONi32splat(Value) && "Invalid NEON splat value");
619     if (Value >= 0x100 && Value <= 0xff00)
620       Value = (Value >> 8) | 0x200;
621     else if (Value > 0xffff && Value <= 0xff0000)
622       Value = (Value >> 16) | 0x400;
623     else if (Value > 0xffffff)
624       Value = (Value >> 24) | 0x600;
625     return Value;
626   }
627 
628   //===--------------------------------------------------------------------===//
629   // Floating-point Immediates
630   //
631   inline float getFPImmFloat(unsigned Imm) {
632     // We expect an 8-bit binary encoding of a floating-point number here.
633 
634     uint8_t Sign = (Imm >> 7) & 0x1;
635     uint8_t Exp = (Imm >> 4) & 0x7;
636     uint8_t Mantissa = Imm & 0xf;
637 
638     //   8-bit FP    IEEE Float Encoding
639     //   abcd efgh   aBbbbbbc defgh000 00000000 00000000
640     //
641     // where B = NOT(b);
642     uint32_t I = 0;
643     I |= Sign << 31;
644     I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
645     I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
646     I |= (Exp & 0x3) << 23;
647     I |= Mantissa << 19;
648     return bit_cast<float>(I);
649   }
650 
651   /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
652   /// floating-point value. If the value cannot be represented as an 8-bit
653   /// floating-point value, then return -1.
654   inline int getFP16Imm(const APInt &Imm) {
655     uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
656     int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15;  // -14 to 15
657     int64_t Mantissa = Imm.getZExtValue() & 0x3ff;  // 10 bits
658 
659     // We can handle 4 bits of mantissa.
660     // mantissa = (16+UInt(e:f:g:h))/16.
661     if (Mantissa & 0x3f)
662       return -1;
663     Mantissa >>= 6;
664 
665     // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
666     if (Exp < -3 || Exp > 4)
667       return -1;
668     Exp = ((Exp+3) & 0x7) ^ 4;
669 
670     return ((int)Sign << 7) | (Exp << 4) | Mantissa;
671   }
672 
673   inline int getFP16Imm(const APFloat &FPImm) {
674     return getFP16Imm(FPImm.bitcastToAPInt());
675   }
676 
677   /// If this is a FP16Imm encoded as a fp32 value, return the 8-bit encoding
678   /// for it. Otherwise return -1 like getFP16Imm.
679   inline int getFP32FP16Imm(const APInt &Imm) {
680     if (Imm.getActiveBits() > 16)
681       return -1;
682     return ARM_AM::getFP16Imm(Imm.trunc(16));
683   }
684 
685   inline int getFP32FP16Imm(const APFloat &FPImm) {
686     return getFP32FP16Imm(FPImm.bitcastToAPInt());
687   }
688 
689   /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
690   /// floating-point value. If the value cannot be represented as an 8-bit
691   /// floating-point value, then return -1.
692   inline int getFP32Imm(const APInt &Imm) {
693     uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
694     int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
695     int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
696 
697     // We can handle 4 bits of mantissa.
698     // mantissa = (16+UInt(e:f:g:h))/16.
699     if (Mantissa & 0x7ffff)
700       return -1;
701     Mantissa >>= 19;
702     if ((Mantissa & 0xf) != Mantissa)
703       return -1;
704 
705     // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
706     if (Exp < -3 || Exp > 4)
707       return -1;
708     Exp = ((Exp+3) & 0x7) ^ 4;
709 
710     return ((int)Sign << 7) | (Exp << 4) | Mantissa;
711   }
712 
713   inline int getFP32Imm(const APFloat &FPImm) {
714     return getFP32Imm(FPImm.bitcastToAPInt());
715   }
716 
717   /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
718   /// floating-point value. If the value cannot be represented as an 8-bit
719   /// floating-point value, then return -1.
720   inline int getFP64Imm(const APInt &Imm) {
721     uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
722     int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
723     uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
724 
725     // We can handle 4 bits of mantissa.
726     // mantissa = (16+UInt(e:f:g:h))/16.
727     if (Mantissa & 0xffffffffffffULL)
728       return -1;
729     Mantissa >>= 48;
730     if ((Mantissa & 0xf) != Mantissa)
731       return -1;
732 
733     // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
734     if (Exp < -3 || Exp > 4)
735       return -1;
736     Exp = ((Exp+3) & 0x7) ^ 4;
737 
738     return ((int)Sign << 7) | (Exp << 4) | Mantissa;
739   }
740 
741   inline int getFP64Imm(const APFloat &FPImm) {
742     return getFP64Imm(FPImm.bitcastToAPInt());
743   }
744 
745 } // end namespace ARM_AM
746 } // end namespace llvm
747 
748 #endif
749