xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/MCTargetDesc/ARMAddressingModes.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
10b57cec5SDimitry Andric //===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This file contains the ARM addressing mode implementation stuff.
100b57cec5SDimitry Andric //
110b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
120b57cec5SDimitry Andric 
130b57cec5SDimitry Andric #ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
140b57cec5SDimitry Andric #define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
150b57cec5SDimitry Andric 
160b57cec5SDimitry Andric #include "llvm/ADT/APFloat.h"
170b57cec5SDimitry Andric #include "llvm/ADT/APInt.h"
180b57cec5SDimitry Andric #include "llvm/ADT/bit.h"
190b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h"
200b57cec5SDimitry Andric #include "llvm/Support/MathExtras.h"
210b57cec5SDimitry Andric #include <cassert>
220b57cec5SDimitry Andric 
230b57cec5SDimitry Andric namespace llvm {
240b57cec5SDimitry Andric 
250b57cec5SDimitry Andric /// ARM_AM - ARM Addressing Mode Stuff
260b57cec5SDimitry Andric namespace ARM_AM {
270b57cec5SDimitry Andric   enum ShiftOpc {
280b57cec5SDimitry Andric     no_shift = 0,
290b57cec5SDimitry Andric     asr,
300b57cec5SDimitry Andric     lsl,
310b57cec5SDimitry Andric     lsr,
320b57cec5SDimitry Andric     ror,
330b57cec5SDimitry Andric     rrx,
340b57cec5SDimitry Andric     uxtw
350b57cec5SDimitry Andric   };
360b57cec5SDimitry Andric 
370b57cec5SDimitry Andric   enum AddrOpc {
380b57cec5SDimitry Andric     sub = 0,
390b57cec5SDimitry Andric     add
400b57cec5SDimitry Andric   };
410b57cec5SDimitry Andric 
getAddrOpcStr(AddrOpc Op)420b57cec5SDimitry Andric   inline const char *getAddrOpcStr(AddrOpc Op) { return Op == sub ? "-" : ""; }
430b57cec5SDimitry Andric 
getShiftOpcStr(ShiftOpc Op)44*0fca6ea1SDimitry Andric   inline const StringRef getShiftOpcStr(ShiftOpc Op) {
450b57cec5SDimitry Andric     switch (Op) {
460b57cec5SDimitry Andric     default: llvm_unreachable("Unknown shift opc!");
470b57cec5SDimitry Andric     case ARM_AM::asr: return "asr";
480b57cec5SDimitry Andric     case ARM_AM::lsl: return "lsl";
490b57cec5SDimitry Andric     case ARM_AM::lsr: return "lsr";
500b57cec5SDimitry Andric     case ARM_AM::ror: return "ror";
510b57cec5SDimitry Andric     case ARM_AM::rrx: return "rrx";
520b57cec5SDimitry Andric     case ARM_AM::uxtw: return "uxtw";
530b57cec5SDimitry Andric     }
540b57cec5SDimitry Andric   }
550b57cec5SDimitry Andric 
getShiftOpcEncoding(ShiftOpc Op)560b57cec5SDimitry Andric   inline unsigned getShiftOpcEncoding(ShiftOpc Op) {
570b57cec5SDimitry Andric     switch (Op) {
580b57cec5SDimitry Andric     default: llvm_unreachable("Unknown shift opc!");
590b57cec5SDimitry Andric     case ARM_AM::asr: return 2;
600b57cec5SDimitry Andric     case ARM_AM::lsl: return 0;
610b57cec5SDimitry Andric     case ARM_AM::lsr: return 1;
620b57cec5SDimitry Andric     case ARM_AM::ror: return 3;
630b57cec5SDimitry Andric     }
640b57cec5SDimitry Andric   }
650b57cec5SDimitry Andric 
660b57cec5SDimitry Andric   enum AMSubMode {
670b57cec5SDimitry Andric     bad_am_submode = 0,
680b57cec5SDimitry Andric     ia,
690b57cec5SDimitry Andric     ib,
700b57cec5SDimitry Andric     da,
710b57cec5SDimitry Andric     db
720b57cec5SDimitry Andric   };
730b57cec5SDimitry Andric 
getAMSubModeStr(AMSubMode Mode)740b57cec5SDimitry Andric   inline const char *getAMSubModeStr(AMSubMode Mode) {
750b57cec5SDimitry Andric     switch (Mode) {
760b57cec5SDimitry Andric     default: llvm_unreachable("Unknown addressing sub-mode!");
770b57cec5SDimitry Andric     case ARM_AM::ia: return "ia";
780b57cec5SDimitry Andric     case ARM_AM::ib: return "ib";
790b57cec5SDimitry Andric     case ARM_AM::da: return "da";
800b57cec5SDimitry Andric     case ARM_AM::db: return "db";
810b57cec5SDimitry Andric     }
820b57cec5SDimitry Andric   }
830b57cec5SDimitry Andric 
840b57cec5SDimitry Andric   //===--------------------------------------------------------------------===//
850b57cec5SDimitry Andric   // Addressing Mode #1: shift_operand with registers
860b57cec5SDimitry Andric   //===--------------------------------------------------------------------===//
870b57cec5SDimitry Andric   //
880b57cec5SDimitry Andric   // This 'addressing mode' is used for arithmetic instructions.  It can
890b57cec5SDimitry Andric   // represent things like:
900b57cec5SDimitry Andric   //   reg
910b57cec5SDimitry Andric   //   reg [asr|lsl|lsr|ror|rrx] reg
920b57cec5SDimitry Andric   //   reg [asr|lsl|lsr|ror|rrx] imm
930b57cec5SDimitry Andric   //
940b57cec5SDimitry Andric   // This is stored three operands [rega, regb, opc].  The first is the base
950b57cec5SDimitry Andric   // reg, the second is the shift amount (or reg0 if not present or imm).  The
960b57cec5SDimitry Andric   // third operand encodes the shift opcode and the imm if a reg isn't present.
970b57cec5SDimitry Andric   //
getSORegOpc(ShiftOpc ShOp,unsigned Imm)980b57cec5SDimitry Andric   inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
990b57cec5SDimitry Andric     return ShOp | (Imm << 3);
1000b57cec5SDimitry Andric   }
getSORegOffset(unsigned Op)1010b57cec5SDimitry Andric   inline unsigned getSORegOffset(unsigned Op) { return Op >> 3; }
getSORegShOp(unsigned Op)1020b57cec5SDimitry Andric   inline ShiftOpc getSORegShOp(unsigned Op) { return (ShiftOpc)(Op & 7); }
1030b57cec5SDimitry Andric 
1040b57cec5SDimitry Andric   /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
1050b57cec5SDimitry Andric   /// the 8-bit imm value.
getSOImmValImm(unsigned Imm)1060b57cec5SDimitry Andric   inline unsigned getSOImmValImm(unsigned Imm) { return Imm & 0xFF; }
1070b57cec5SDimitry Andric   /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
1080b57cec5SDimitry Andric   /// the rotate amount.
getSOImmValRot(unsigned Imm)1090b57cec5SDimitry Andric   inline unsigned getSOImmValRot(unsigned Imm) { return (Imm >> 8) * 2; }
1100b57cec5SDimitry Andric 
1110b57cec5SDimitry Andric   /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
1120b57cec5SDimitry Andric   /// computing the rotate amount to use.  If this immediate value cannot be
1130b57cec5SDimitry Andric   /// handled with a single shifter-op, determine a good rotate amount that will
1140b57cec5SDimitry Andric   /// take a maximal chunk of bits out of the immediate.
getSOImmValRotate(unsigned Imm)1150b57cec5SDimitry Andric   inline unsigned getSOImmValRotate(unsigned Imm) {
1160b57cec5SDimitry Andric     // 8-bit (or less) immediates are trivially shifter_operands with a rotate
1170b57cec5SDimitry Andric     // of zero.
1180b57cec5SDimitry Andric     if ((Imm & ~255U) == 0) return 0;
1190b57cec5SDimitry Andric 
1200b57cec5SDimitry Andric     // Use CTZ to compute the rotate amount.
12106c3fb27SDimitry Andric     unsigned TZ = llvm::countr_zero(Imm);
1220b57cec5SDimitry Andric 
1230b57cec5SDimitry Andric     // Rotate amount must be even.  Something like 0x200 must be rotated 8 bits,
1240b57cec5SDimitry Andric     // not 9.
1250b57cec5SDimitry Andric     unsigned RotAmt = TZ & ~1;
1260b57cec5SDimitry Andric 
1270b57cec5SDimitry Andric     // If we can handle this spread, return it.
12806c3fb27SDimitry Andric     if ((llvm::rotr<uint32_t>(Imm, RotAmt) & ~255U) == 0)
1290b57cec5SDimitry Andric       return (32-RotAmt)&31;  // HW rotates right, not left.
1300b57cec5SDimitry Andric 
1310b57cec5SDimitry Andric     // For values like 0xF000000F, we should ignore the low 6 bits, then
1320b57cec5SDimitry Andric     // retry the hunt.
1330b57cec5SDimitry Andric     if (Imm & 63U) {
13406c3fb27SDimitry Andric       unsigned TZ2 = llvm::countr_zero(Imm & ~63U);
1350b57cec5SDimitry Andric       unsigned RotAmt2 = TZ2 & ~1;
13606c3fb27SDimitry Andric       if ((llvm::rotr<uint32_t>(Imm, RotAmt2) & ~255U) == 0)
1370b57cec5SDimitry Andric         return (32-RotAmt2)&31;  // HW rotates right, not left.
1380b57cec5SDimitry Andric     }
1390b57cec5SDimitry Andric 
1400b57cec5SDimitry Andric     // Otherwise, we have no way to cover this span of bits with a single
1410b57cec5SDimitry Andric     // shifter_op immediate.  Return a chunk of bits that will be useful to
1420b57cec5SDimitry Andric     // handle.
1430b57cec5SDimitry Andric     return (32-RotAmt)&31;  // HW rotates right, not left.
1440b57cec5SDimitry Andric   }
1450b57cec5SDimitry Andric 
1460b57cec5SDimitry Andric   /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
1470b57cec5SDimitry Andric   /// into an shifter_operand immediate operand, return the 12-bit encoding for
1480b57cec5SDimitry Andric   /// it.  If not, return -1.
getSOImmVal(unsigned Arg)1490b57cec5SDimitry Andric   inline int getSOImmVal(unsigned Arg) {
1500b57cec5SDimitry Andric     // 8-bit (or less) immediates are trivially shifter_operands with a rotate
1510b57cec5SDimitry Andric     // of zero.
1520b57cec5SDimitry Andric     if ((Arg & ~255U) == 0) return Arg;
1530b57cec5SDimitry Andric 
1540b57cec5SDimitry Andric     unsigned RotAmt = getSOImmValRotate(Arg);
1550b57cec5SDimitry Andric 
1560b57cec5SDimitry Andric     // If this cannot be handled with a single shifter_op, bail out.
15706c3fb27SDimitry Andric     if (llvm::rotr<uint32_t>(~255U, RotAmt) & Arg)
1580b57cec5SDimitry Andric       return -1;
1590b57cec5SDimitry Andric 
1600b57cec5SDimitry Andric     // Encode this correctly.
16106c3fb27SDimitry Andric     return llvm::rotl<uint32_t>(Arg, RotAmt) | ((RotAmt >> 1) << 8);
1620b57cec5SDimitry Andric   }
1630b57cec5SDimitry Andric 
1640b57cec5SDimitry Andric   /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
1650b57cec5SDimitry Andric   /// or'ing together two SOImmVal's.
isSOImmTwoPartVal(unsigned V)1660b57cec5SDimitry Andric   inline bool isSOImmTwoPartVal(unsigned V) {
1670b57cec5SDimitry Andric     // If this can be handled with a single shifter_op, bail out.
16806c3fb27SDimitry Andric     V = llvm::rotr<uint32_t>(~255U, getSOImmValRotate(V)) & V;
1690b57cec5SDimitry Andric     if (V == 0)
1700b57cec5SDimitry Andric       return false;
1710b57cec5SDimitry Andric 
1720b57cec5SDimitry Andric     // If this can be handled with two shifter_op's, accept.
17306c3fb27SDimitry Andric     V = llvm::rotr<uint32_t>(~255U, getSOImmValRotate(V)) & V;
1740b57cec5SDimitry Andric     return V == 0;
1750b57cec5SDimitry Andric   }
1760b57cec5SDimitry Andric 
1770b57cec5SDimitry Andric   /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
1780b57cec5SDimitry Andric   /// return the first chunk of it.
getSOImmTwoPartFirst(unsigned V)1790b57cec5SDimitry Andric   inline unsigned getSOImmTwoPartFirst(unsigned V) {
18006c3fb27SDimitry Andric     return llvm::rotr<uint32_t>(255U, getSOImmValRotate(V)) & V;
1810b57cec5SDimitry Andric   }
1820b57cec5SDimitry Andric 
1830b57cec5SDimitry Andric   /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
1840b57cec5SDimitry Andric   /// return the second chunk of it.
getSOImmTwoPartSecond(unsigned V)1850b57cec5SDimitry Andric   inline unsigned getSOImmTwoPartSecond(unsigned V) {
1860b57cec5SDimitry Andric     // Mask out the first hunk.
18706c3fb27SDimitry Andric     V = llvm::rotr<uint32_t>(~255U, getSOImmValRotate(V)) & V;
1880b57cec5SDimitry Andric 
1890b57cec5SDimitry Andric     // Take what's left.
19006c3fb27SDimitry Andric     assert(V == (llvm::rotr<uint32_t>(255U, getSOImmValRotate(V)) & V));
1910b57cec5SDimitry Andric     return V;
1920b57cec5SDimitry Andric   }
1930b57cec5SDimitry Andric 
194e8d8bef9SDimitry Andric   /// isSOImmTwoPartValNeg - Return true if the specified value can be obtained
195e8d8bef9SDimitry Andric   /// by two SOImmVal, that -V = First + Second.
196e8d8bef9SDimitry Andric   /// "R+V" can be optimized to (sub (sub R, First), Second).
197e8d8bef9SDimitry Andric   /// "R=V" can be optimized to (sub (mvn R, ~(-First)), Second).
isSOImmTwoPartValNeg(unsigned V)198e8d8bef9SDimitry Andric   inline bool isSOImmTwoPartValNeg(unsigned V) {
199e8d8bef9SDimitry Andric     unsigned First;
200e8d8bef9SDimitry Andric     if (!isSOImmTwoPartVal(-V))
201e8d8bef9SDimitry Andric       return false;
202e8d8bef9SDimitry Andric     // Return false if ~(-First) is not a SoImmval.
203e8d8bef9SDimitry Andric     First = getSOImmTwoPartFirst(-V);
204e8d8bef9SDimitry Andric     First = ~(-First);
20506c3fb27SDimitry Andric     return !(llvm::rotr<uint32_t>(~255U, getSOImmValRotate(First)) & First);
206e8d8bef9SDimitry Andric   }
207e8d8bef9SDimitry Andric 
2080b57cec5SDimitry Andric   /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
2090b57cec5SDimitry Andric   /// by a left shift. Returns the shift amount to use.
getThumbImmValShift(unsigned Imm)2100b57cec5SDimitry Andric   inline unsigned getThumbImmValShift(unsigned Imm) {
2110b57cec5SDimitry Andric     // 8-bit (or less) immediates are trivially immediate operand with a shift
2120b57cec5SDimitry Andric     // of zero.
2130b57cec5SDimitry Andric     if ((Imm & ~255U) == 0) return 0;
2140b57cec5SDimitry Andric 
2150b57cec5SDimitry Andric     // Use CTZ to compute the shift amount.
21606c3fb27SDimitry Andric     return llvm::countr_zero(Imm);
2170b57cec5SDimitry Andric   }
2180b57cec5SDimitry Andric 
2190b57cec5SDimitry Andric   /// isThumbImmShiftedVal - Return true if the specified value can be obtained
2200b57cec5SDimitry Andric   /// by left shifting a 8-bit immediate.
isThumbImmShiftedVal(unsigned V)2210b57cec5SDimitry Andric   inline bool isThumbImmShiftedVal(unsigned V) {
2220b57cec5SDimitry Andric     // If this can be handled with
2230b57cec5SDimitry Andric     V = (~255U << getThumbImmValShift(V)) & V;
2240b57cec5SDimitry Andric     return V == 0;
2250b57cec5SDimitry Andric   }
2260b57cec5SDimitry Andric 
2270b57cec5SDimitry Andric   /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
2280b57cec5SDimitry Andric   /// by a left shift. Returns the shift amount to use.
getThumbImm16ValShift(unsigned Imm)2290b57cec5SDimitry Andric   inline unsigned getThumbImm16ValShift(unsigned Imm) {
2300b57cec5SDimitry Andric     // 16-bit (or less) immediates are trivially immediate operand with a shift
2310b57cec5SDimitry Andric     // of zero.
2320b57cec5SDimitry Andric     if ((Imm & ~65535U) == 0) return 0;
2330b57cec5SDimitry Andric 
2340b57cec5SDimitry Andric     // Use CTZ to compute the shift amount.
23506c3fb27SDimitry Andric     return llvm::countr_zero(Imm);
2360b57cec5SDimitry Andric   }
2370b57cec5SDimitry Andric 
2380b57cec5SDimitry Andric   /// isThumbImm16ShiftedVal - Return true if the specified value can be
2390b57cec5SDimitry Andric   /// obtained by left shifting a 16-bit immediate.
isThumbImm16ShiftedVal(unsigned V)2400b57cec5SDimitry Andric   inline bool isThumbImm16ShiftedVal(unsigned V) {
2410b57cec5SDimitry Andric     // If this can be handled with
2420b57cec5SDimitry Andric     V = (~65535U << getThumbImm16ValShift(V)) & V;
2430b57cec5SDimitry Andric     return V == 0;
2440b57cec5SDimitry Andric   }
2450b57cec5SDimitry Andric 
2460b57cec5SDimitry Andric   /// getThumbImmNonShiftedVal - If V is a value that satisfies
2470b57cec5SDimitry Andric   /// isThumbImmShiftedVal, return the non-shiftd value.
getThumbImmNonShiftedVal(unsigned V)2480b57cec5SDimitry Andric   inline unsigned getThumbImmNonShiftedVal(unsigned V) {
2490b57cec5SDimitry Andric     return V >> getThumbImmValShift(V);
2500b57cec5SDimitry Andric   }
2510b57cec5SDimitry Andric 
2520b57cec5SDimitry Andric 
2530b57cec5SDimitry Andric   /// getT2SOImmValSplat - Return the 12-bit encoded representation
2540b57cec5SDimitry Andric   /// if the specified value can be obtained by splatting the low 8 bits
2550b57cec5SDimitry Andric   /// into every other byte or every byte of a 32-bit value. i.e.,
2560b57cec5SDimitry Andric   ///     00000000 00000000 00000000 abcdefgh    control = 0
2570b57cec5SDimitry Andric   ///     00000000 abcdefgh 00000000 abcdefgh    control = 1
2580b57cec5SDimitry Andric   ///     abcdefgh 00000000 abcdefgh 00000000    control = 2
2590b57cec5SDimitry Andric   ///     abcdefgh abcdefgh abcdefgh abcdefgh    control = 3
2600b57cec5SDimitry Andric   /// Return -1 if none of the above apply.
2610b57cec5SDimitry Andric   /// See ARM Reference Manual A6.3.2.
getT2SOImmValSplatVal(unsigned V)2620b57cec5SDimitry Andric   inline int getT2SOImmValSplatVal(unsigned V) {
2630b57cec5SDimitry Andric     unsigned u, Vs, Imm;
2640b57cec5SDimitry Andric     // control = 0
2650b57cec5SDimitry Andric     if ((V & 0xffffff00) == 0)
2660b57cec5SDimitry Andric       return V;
2670b57cec5SDimitry Andric 
2680b57cec5SDimitry Andric     // If the value is zeroes in the first byte, just shift those off
2690b57cec5SDimitry Andric     Vs = ((V & 0xff) == 0) ? V >> 8 : V;
2700b57cec5SDimitry Andric     // Any passing value only has 8 bits of payload, splatted across the word
2710b57cec5SDimitry Andric     Imm = Vs & 0xff;
2720b57cec5SDimitry Andric     // Likewise, any passing values have the payload splatted into the 3rd byte
2730b57cec5SDimitry Andric     u = Imm | (Imm << 16);
2740b57cec5SDimitry Andric 
2750b57cec5SDimitry Andric     // control = 1 or 2
2760b57cec5SDimitry Andric     if (Vs == u)
2770b57cec5SDimitry Andric       return (((Vs == V) ? 1 : 2) << 8) | Imm;
2780b57cec5SDimitry Andric 
2790b57cec5SDimitry Andric     // control = 3
2800b57cec5SDimitry Andric     if (Vs == (u | (u << 8)))
2810b57cec5SDimitry Andric       return (3 << 8) | Imm;
2820b57cec5SDimitry Andric 
2830b57cec5SDimitry Andric     return -1;
2840b57cec5SDimitry Andric   }
2850b57cec5SDimitry Andric 
2860b57cec5SDimitry Andric   /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
2870b57cec5SDimitry Andric   /// specified value is a rotated 8-bit value. Return -1 if no rotation
2880b57cec5SDimitry Andric   /// encoding is possible.
2890b57cec5SDimitry Andric   /// See ARM Reference Manual A6.3.2.
getT2SOImmValRotateVal(unsigned V)2900b57cec5SDimitry Andric   inline int getT2SOImmValRotateVal(unsigned V) {
29106c3fb27SDimitry Andric     unsigned RotAmt = llvm::countl_zero(V);
2920b57cec5SDimitry Andric     if (RotAmt >= 24)
2930b57cec5SDimitry Andric       return -1;
2940b57cec5SDimitry Andric 
2950b57cec5SDimitry Andric     // If 'Arg' can be handled with a single shifter_op return the value.
29606c3fb27SDimitry Andric     if ((llvm::rotr<uint32_t>(0xff000000U, RotAmt) & V) == V)
29706c3fb27SDimitry Andric       return (llvm::rotr<uint32_t>(V, 24 - RotAmt) & 0x7f) |
29806c3fb27SDimitry Andric              ((RotAmt + 8) << 7);
2990b57cec5SDimitry Andric 
3000b57cec5SDimitry Andric     return -1;
3010b57cec5SDimitry Andric   }
3020b57cec5SDimitry Andric 
3030b57cec5SDimitry Andric   /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
3040b57cec5SDimitry Andric   /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
3050b57cec5SDimitry Andric   /// encoding for it.  If not, return -1.
3060b57cec5SDimitry Andric   /// See ARM Reference Manual A6.3.2.
getT2SOImmVal(unsigned Arg)3070b57cec5SDimitry Andric   inline int getT2SOImmVal(unsigned Arg) {
3080b57cec5SDimitry Andric     // If 'Arg' is an 8-bit splat, then get the encoded value.
3090b57cec5SDimitry Andric     int Splat = getT2SOImmValSplatVal(Arg);
3100b57cec5SDimitry Andric     if (Splat != -1)
3110b57cec5SDimitry Andric       return Splat;
3120b57cec5SDimitry Andric 
3130b57cec5SDimitry Andric     // If 'Arg' can be handled with a single shifter_op return the value.
3140b57cec5SDimitry Andric     int Rot = getT2SOImmValRotateVal(Arg);
3150b57cec5SDimitry Andric     if (Rot != -1)
3160b57cec5SDimitry Andric       return Rot;
3170b57cec5SDimitry Andric 
3180b57cec5SDimitry Andric     return -1;
3190b57cec5SDimitry Andric   }
3200b57cec5SDimitry Andric 
getT2SOImmValRotate(unsigned V)3210b57cec5SDimitry Andric   inline unsigned getT2SOImmValRotate(unsigned V) {
3220b57cec5SDimitry Andric     if ((V & ~255U) == 0) return 0;
3230b57cec5SDimitry Andric     // Use CTZ to compute the rotate amount.
32406c3fb27SDimitry Andric     unsigned RotAmt = llvm::countr_zero(V);
3250b57cec5SDimitry Andric     return (32 - RotAmt) & 31;
3260b57cec5SDimitry Andric   }
3270b57cec5SDimitry Andric 
isT2SOImmTwoPartVal(unsigned Imm)3280b57cec5SDimitry Andric   inline bool isT2SOImmTwoPartVal(unsigned Imm) {
3290b57cec5SDimitry Andric     unsigned V = Imm;
3300b57cec5SDimitry Andric     // Passing values can be any combination of splat values and shifter
3310b57cec5SDimitry Andric     // values. If this can be handled with a single shifter or splat, bail
3320b57cec5SDimitry Andric     // out. Those should be handled directly, not with a two-part val.
3330b57cec5SDimitry Andric     if (getT2SOImmValSplatVal(V) != -1)
3340b57cec5SDimitry Andric       return false;
33506c3fb27SDimitry Andric     V = llvm::rotr<uint32_t>(~255U, getT2SOImmValRotate(V)) & V;
3360b57cec5SDimitry Andric     if (V == 0)
3370b57cec5SDimitry Andric       return false;
3380b57cec5SDimitry Andric 
3390b57cec5SDimitry Andric     // If this can be handled as an immediate, accept.
3400b57cec5SDimitry Andric     if (getT2SOImmVal(V) != -1) return true;
3410b57cec5SDimitry Andric 
3420b57cec5SDimitry Andric     // Likewise, try masking out a splat value first.
3430b57cec5SDimitry Andric     V = Imm;
3440b57cec5SDimitry Andric     if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
3450b57cec5SDimitry Andric       V &= ~0xff00ff00U;
3460b57cec5SDimitry Andric     else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
3470b57cec5SDimitry Andric       V &= ~0x00ff00ffU;
3480b57cec5SDimitry Andric     // If what's left can be handled as an immediate, accept.
3490b57cec5SDimitry Andric     if (getT2SOImmVal(V) != -1) return true;
3500b57cec5SDimitry Andric 
3510b57cec5SDimitry Andric     // Otherwise, do not accept.
3520b57cec5SDimitry Andric     return false;
3530b57cec5SDimitry Andric   }
3540b57cec5SDimitry Andric 
getT2SOImmTwoPartFirst(unsigned Imm)3550b57cec5SDimitry Andric   inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) {
3560b57cec5SDimitry Andric     assert (isT2SOImmTwoPartVal(Imm) &&
3570b57cec5SDimitry Andric             "Immedate cannot be encoded as two part immediate!");
3580b57cec5SDimitry Andric     // Try a shifter operand as one part
35906c3fb27SDimitry Andric     unsigned V = llvm::rotr<uint32_t>(~255, getT2SOImmValRotate(Imm)) & Imm;
3600b57cec5SDimitry Andric     // If the rest is encodable as an immediate, then return it.
3610b57cec5SDimitry Andric     if (getT2SOImmVal(V) != -1) return V;
3620b57cec5SDimitry Andric 
3630b57cec5SDimitry Andric     // Try masking out a splat value first.
3640b57cec5SDimitry Andric     if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
3650b57cec5SDimitry Andric       return Imm & 0xff00ff00U;
3660b57cec5SDimitry Andric 
3670b57cec5SDimitry Andric     // The other splat is all that's left as an option.
3680b57cec5SDimitry Andric     assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
3690b57cec5SDimitry Andric     return Imm & 0x00ff00ffU;
3700b57cec5SDimitry Andric   }
3710b57cec5SDimitry Andric 
getT2SOImmTwoPartSecond(unsigned Imm)3720b57cec5SDimitry Andric   inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) {
3730b57cec5SDimitry Andric     // Mask out the first hunk
3740b57cec5SDimitry Andric     Imm ^= getT2SOImmTwoPartFirst(Imm);
3750b57cec5SDimitry Andric     // Return what's left
3760b57cec5SDimitry Andric     assert (getT2SOImmVal(Imm) != -1 &&
3770b57cec5SDimitry Andric             "Unable to encode second part of T2 two part SO immediate");
3780b57cec5SDimitry Andric     return Imm;
3790b57cec5SDimitry Andric   }
3800b57cec5SDimitry Andric 
3810b57cec5SDimitry Andric 
3820b57cec5SDimitry Andric   //===--------------------------------------------------------------------===//
3830b57cec5SDimitry Andric   // Addressing Mode #2
3840b57cec5SDimitry Andric   //===--------------------------------------------------------------------===//
3850b57cec5SDimitry Andric   //
3860b57cec5SDimitry Andric   // This is used for most simple load/store instructions.
3870b57cec5SDimitry Andric   //
3880b57cec5SDimitry Andric   // addrmode2 := reg +/- reg shop imm
3890b57cec5SDimitry Andric   // addrmode2 := reg +/- imm12
3900b57cec5SDimitry Andric   //
3910b57cec5SDimitry Andric   // The first operand is always a Reg.  The second operand is a reg if in
3920b57cec5SDimitry Andric   // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
3930b57cec5SDimitry Andric   // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
3940b57cec5SDimitry Andric   // fourth operand 16-17 encodes the index mode.
3950b57cec5SDimitry Andric   //
3960b57cec5SDimitry Andric   // If this addressing mode is a frame index (before prolog/epilog insertion
3970b57cec5SDimitry Andric   // and code rewriting), this operand will have the form:  FI#, reg0, <offs>
3980b57cec5SDimitry Andric   // with no shift amount for the frame offset.
3990b57cec5SDimitry Andric   //
4000b57cec5SDimitry Andric   inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO,
4010b57cec5SDimitry Andric                             unsigned IdxMode = 0) {
4020b57cec5SDimitry Andric     assert(Imm12 < (1 << 12) && "Imm too large!");
4030b57cec5SDimitry Andric     bool isSub = Opc == sub;
4040b57cec5SDimitry Andric     return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
4050b57cec5SDimitry Andric   }
getAM2Offset(unsigned AM2Opc)4060b57cec5SDimitry Andric   inline unsigned getAM2Offset(unsigned AM2Opc) {
4070b57cec5SDimitry Andric     return AM2Opc & ((1 << 12)-1);
4080b57cec5SDimitry Andric   }
getAM2Op(unsigned AM2Opc)4090b57cec5SDimitry Andric   inline AddrOpc getAM2Op(unsigned AM2Opc) {
4100b57cec5SDimitry Andric     return ((AM2Opc >> 12) & 1) ? sub : add;
4110b57cec5SDimitry Andric   }
getAM2ShiftOpc(unsigned AM2Opc)4120b57cec5SDimitry Andric   inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
4130b57cec5SDimitry Andric     return (ShiftOpc)((AM2Opc >> 13) & 7);
4140b57cec5SDimitry Andric   }
getAM2IdxMode(unsigned AM2Opc)4150b57cec5SDimitry Andric   inline unsigned getAM2IdxMode(unsigned AM2Opc) { return (AM2Opc >> 16); }
4160b57cec5SDimitry Andric 
4170b57cec5SDimitry Andric   //===--------------------------------------------------------------------===//
4180b57cec5SDimitry Andric   // Addressing Mode #3
4190b57cec5SDimitry Andric   //===--------------------------------------------------------------------===//
4200b57cec5SDimitry Andric   //
4210b57cec5SDimitry Andric   // This is used for sign-extending loads, and load/store-pair instructions.
4220b57cec5SDimitry Andric   //
4230b57cec5SDimitry Andric   // addrmode3 := reg +/- reg
4240b57cec5SDimitry Andric   // addrmode3 := reg +/- imm8
4250b57cec5SDimitry Andric   //
4260b57cec5SDimitry Andric   // The first operand is always a Reg.  The second operand is a reg if in
4270b57cec5SDimitry Andric   // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
4280b57cec5SDimitry Andric   // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
4290b57cec5SDimitry Andric   // index mode.
4300b57cec5SDimitry Andric 
4310b57cec5SDimitry Andric   /// getAM3Opc - This function encodes the addrmode3 opc field.
4320b57cec5SDimitry Andric   inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset,
4330b57cec5SDimitry Andric                             unsigned IdxMode = 0) {
4340b57cec5SDimitry Andric     bool isSub = Opc == sub;
4350b57cec5SDimitry Andric     return ((int)isSub << 8) | Offset | (IdxMode << 9);
4360b57cec5SDimitry Andric   }
getAM3Offset(unsigned AM3Opc)4370b57cec5SDimitry Andric   inline unsigned char getAM3Offset(unsigned AM3Opc) { return AM3Opc & 0xFF; }
getAM3Op(unsigned AM3Opc)4380b57cec5SDimitry Andric   inline AddrOpc getAM3Op(unsigned AM3Opc) {
4390b57cec5SDimitry Andric     return ((AM3Opc >> 8) & 1) ? sub : add;
4400b57cec5SDimitry Andric   }
getAM3IdxMode(unsigned AM3Opc)4410b57cec5SDimitry Andric   inline unsigned getAM3IdxMode(unsigned AM3Opc) { return (AM3Opc >> 9); }
4420b57cec5SDimitry Andric 
4430b57cec5SDimitry Andric   //===--------------------------------------------------------------------===//
4440b57cec5SDimitry Andric   // Addressing Mode #4
4450b57cec5SDimitry Andric   //===--------------------------------------------------------------------===//
4460b57cec5SDimitry Andric   //
4470b57cec5SDimitry Andric   // This is used for load / store multiple instructions.
4480b57cec5SDimitry Andric   //
4490b57cec5SDimitry Andric   // addrmode4 := reg, <mode>
4500b57cec5SDimitry Andric   //
4510b57cec5SDimitry Andric   // The four modes are:
4520b57cec5SDimitry Andric   //    IA - Increment after
4530b57cec5SDimitry Andric   //    IB - Increment before
4540b57cec5SDimitry Andric   //    DA - Decrement after
4550b57cec5SDimitry Andric   //    DB - Decrement before
4560b57cec5SDimitry Andric   // For VFP instructions, only the IA and DB modes are valid.
4570b57cec5SDimitry Andric 
getAM4SubMode(unsigned Mode)4580b57cec5SDimitry Andric   inline AMSubMode getAM4SubMode(unsigned Mode) {
4590b57cec5SDimitry Andric     return (AMSubMode)(Mode & 0x7);
4600b57cec5SDimitry Andric   }
4610b57cec5SDimitry Andric 
getAM4ModeImm(AMSubMode SubMode)4620b57cec5SDimitry Andric   inline unsigned getAM4ModeImm(AMSubMode SubMode) { return (int)SubMode; }
4630b57cec5SDimitry Andric 
4640b57cec5SDimitry Andric   //===--------------------------------------------------------------------===//
4650b57cec5SDimitry Andric   // Addressing Mode #5
4660b57cec5SDimitry Andric   //===--------------------------------------------------------------------===//
4670b57cec5SDimitry Andric   //
4680b57cec5SDimitry Andric   // This is used for coprocessor instructions, such as FP load/stores.
4690b57cec5SDimitry Andric   //
4700b57cec5SDimitry Andric   // addrmode5 := reg +/- imm8*4
4710b57cec5SDimitry Andric   //
4720b57cec5SDimitry Andric   // The first operand is always a Reg.  The second operand encodes the
4730b57cec5SDimitry Andric   // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
4740b57cec5SDimitry Andric 
4750b57cec5SDimitry Andric   /// getAM5Opc - This function encodes the addrmode5 opc field.
getAM5Opc(AddrOpc Opc,unsigned char Offset)4760b57cec5SDimitry Andric   inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
4770b57cec5SDimitry Andric     bool isSub = Opc == sub;
4780b57cec5SDimitry Andric     return ((int)isSub << 8) | Offset;
4790b57cec5SDimitry Andric   }
getAM5Offset(unsigned AM5Opc)4800b57cec5SDimitry Andric   inline unsigned char getAM5Offset(unsigned AM5Opc) { return AM5Opc & 0xFF; }
getAM5Op(unsigned AM5Opc)4810b57cec5SDimitry Andric   inline AddrOpc getAM5Op(unsigned AM5Opc) {
4820b57cec5SDimitry Andric     return ((AM5Opc >> 8) & 1) ? sub : add;
4830b57cec5SDimitry Andric   }
4840b57cec5SDimitry Andric 
4850b57cec5SDimitry Andric   //===--------------------------------------------------------------------===//
4860b57cec5SDimitry Andric   // Addressing Mode #5 FP16
4870b57cec5SDimitry Andric   //===--------------------------------------------------------------------===//
4880b57cec5SDimitry Andric   //
4890b57cec5SDimitry Andric   // This is used for coprocessor instructions, such as 16-bit FP load/stores.
4900b57cec5SDimitry Andric   //
4910b57cec5SDimitry Andric   // addrmode5fp16 := reg +/- imm8*2
4920b57cec5SDimitry Andric   //
4930b57cec5SDimitry Andric   // The first operand is always a Reg.  The second operand encodes the
4940b57cec5SDimitry Andric   // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
4950b57cec5SDimitry Andric 
4960b57cec5SDimitry Andric   /// getAM5FP16Opc - This function encodes the addrmode5fp16 opc field.
getAM5FP16Opc(AddrOpc Opc,unsigned char Offset)4970b57cec5SDimitry Andric   inline unsigned getAM5FP16Opc(AddrOpc Opc, unsigned char Offset) {
4980b57cec5SDimitry Andric     bool isSub = Opc == sub;
4990b57cec5SDimitry Andric     return ((int)isSub << 8) | Offset;
5000b57cec5SDimitry Andric   }
getAM5FP16Offset(unsigned AM5Opc)5010b57cec5SDimitry Andric   inline unsigned char getAM5FP16Offset(unsigned AM5Opc) {
5020b57cec5SDimitry Andric     return AM5Opc & 0xFF;
5030b57cec5SDimitry Andric   }
getAM5FP16Op(unsigned AM5Opc)5040b57cec5SDimitry Andric   inline AddrOpc getAM5FP16Op(unsigned AM5Opc) {
5050b57cec5SDimitry Andric     return ((AM5Opc >> 8) & 1) ? sub : add;
5060b57cec5SDimitry Andric   }
5070b57cec5SDimitry Andric 
5080b57cec5SDimitry Andric   //===--------------------------------------------------------------------===//
5090b57cec5SDimitry Andric   // Addressing Mode #6
5100b57cec5SDimitry Andric   //===--------------------------------------------------------------------===//
5110b57cec5SDimitry Andric   //
5120b57cec5SDimitry Andric   // This is used for NEON load / store instructions.
5130b57cec5SDimitry Andric   //
5140b57cec5SDimitry Andric   // addrmode6 := reg with optional alignment
5150b57cec5SDimitry Andric   //
5160b57cec5SDimitry Andric   // This is stored in two operands [regaddr, align].  The first is the
5170b57cec5SDimitry Andric   // address register.  The second operand is the value of the alignment
5180b57cec5SDimitry Andric   // specifier in bytes or zero if no explicit alignment.
5190b57cec5SDimitry Andric   // Valid alignments depend on the specific instruction.
5200b57cec5SDimitry Andric 
5210b57cec5SDimitry Andric   //===--------------------------------------------------------------------===//
5228bcb0991SDimitry Andric   // NEON/MVE Modified Immediates
5230b57cec5SDimitry Andric   //===--------------------------------------------------------------------===//
5240b57cec5SDimitry Andric   //
5258bcb0991SDimitry Andric   // Several NEON and MVE instructions (e.g., VMOV) take a "modified immediate"
5260b57cec5SDimitry Andric   // vector operand, where a small immediate encoded in the instruction
5270b57cec5SDimitry Andric   // specifies a full NEON vector value.  These modified immediates are
5280b57cec5SDimitry Andric   // represented here as encoded integers.  The low 8 bits hold the immediate
5290b57cec5SDimitry Andric   // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
5300b57cec5SDimitry Andric   // the "Cmode" field of the instruction.  The interfaces below treat the
5310b57cec5SDimitry Andric   // Op and Cmode values as a single 5-bit value.
5320b57cec5SDimitry Andric 
createVMOVModImm(unsigned OpCmode,unsigned Val)5338bcb0991SDimitry Andric   inline unsigned createVMOVModImm(unsigned OpCmode, unsigned Val) {
5340b57cec5SDimitry Andric     return (OpCmode << 8) | Val;
5350b57cec5SDimitry Andric   }
getVMOVModImmOpCmode(unsigned ModImm)5368bcb0991SDimitry Andric   inline unsigned getVMOVModImmOpCmode(unsigned ModImm) {
5370b57cec5SDimitry Andric     return (ModImm >> 8) & 0x1f;
5380b57cec5SDimitry Andric   }
getVMOVModImmVal(unsigned ModImm)5398bcb0991SDimitry Andric   inline unsigned getVMOVModImmVal(unsigned ModImm) { return ModImm & 0xff; }
5400b57cec5SDimitry Andric 
5418bcb0991SDimitry Andric   /// decodeVMOVModImm - Decode a NEON/MVE modified immediate value into the
5420b57cec5SDimitry Andric   /// element value and the element size in bits.  (If the element size is
5430b57cec5SDimitry Andric   /// smaller than the vector, it is splatted into all the elements.)
decodeVMOVModImm(unsigned ModImm,unsigned & EltBits)5448bcb0991SDimitry Andric   inline uint64_t decodeVMOVModImm(unsigned ModImm, unsigned &EltBits) {
5458bcb0991SDimitry Andric     unsigned OpCmode = getVMOVModImmOpCmode(ModImm);
5468bcb0991SDimitry Andric     unsigned Imm8 = getVMOVModImmVal(ModImm);
5470b57cec5SDimitry Andric     uint64_t Val = 0;
5480b57cec5SDimitry Andric 
5490b57cec5SDimitry Andric     if (OpCmode == 0xe) {
5500b57cec5SDimitry Andric       // 8-bit vector elements
5510b57cec5SDimitry Andric       Val = Imm8;
5520b57cec5SDimitry Andric       EltBits = 8;
5530b57cec5SDimitry Andric     } else if ((OpCmode & 0xc) == 0x8) {
5540b57cec5SDimitry Andric       // 16-bit vector elements
5550b57cec5SDimitry Andric       unsigned ByteNum = (OpCmode & 0x6) >> 1;
5560b57cec5SDimitry Andric       Val = Imm8 << (8 * ByteNum);
5570b57cec5SDimitry Andric       EltBits = 16;
5580b57cec5SDimitry Andric     } else if ((OpCmode & 0x8) == 0) {
5590b57cec5SDimitry Andric       // 32-bit vector elements, zero with one byte set
5600b57cec5SDimitry Andric       unsigned ByteNum = (OpCmode & 0x6) >> 1;
5610b57cec5SDimitry Andric       Val = Imm8 << (8 * ByteNum);
5620b57cec5SDimitry Andric       EltBits = 32;
5630b57cec5SDimitry Andric     } else if ((OpCmode & 0xe) == 0xc) {
5640b57cec5SDimitry Andric       // 32-bit vector elements, one byte with low bits set
5650b57cec5SDimitry Andric       unsigned ByteNum = 1 + (OpCmode & 0x1);
5660b57cec5SDimitry Andric       Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
5670b57cec5SDimitry Andric       EltBits = 32;
5680b57cec5SDimitry Andric     } else if (OpCmode == 0x1e) {
5690b57cec5SDimitry Andric       // 64-bit vector elements
5700b57cec5SDimitry Andric       for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
5710b57cec5SDimitry Andric         if ((ModImm >> ByteNum) & 1)
5720b57cec5SDimitry Andric           Val |= (uint64_t)0xff << (8 * ByteNum);
5730b57cec5SDimitry Andric       }
5740b57cec5SDimitry Andric       EltBits = 64;
5750b57cec5SDimitry Andric     } else {
5768bcb0991SDimitry Andric       llvm_unreachable("Unsupported VMOV immediate");
5770b57cec5SDimitry Andric     }
5780b57cec5SDimitry Andric     return Val;
5790b57cec5SDimitry Andric   }
5800b57cec5SDimitry Andric 
5810b57cec5SDimitry Andric   // Generic validation for single-byte immediate (0X00, 00X0, etc).
isNEONBytesplat(unsigned Value,unsigned Size)5820b57cec5SDimitry Andric   inline bool isNEONBytesplat(unsigned Value, unsigned Size) {
5830b57cec5SDimitry Andric     assert(Size >= 1 && Size <= 4 && "Invalid size");
5840b57cec5SDimitry Andric     unsigned count = 0;
5850b57cec5SDimitry Andric     for (unsigned i = 0; i < Size; ++i) {
5860b57cec5SDimitry Andric       if (Value & 0xff) count++;
5870b57cec5SDimitry Andric       Value >>= 8;
5880b57cec5SDimitry Andric     }
5890b57cec5SDimitry Andric     return count == 1;
5900b57cec5SDimitry Andric   }
5910b57cec5SDimitry Andric 
5920b57cec5SDimitry Andric   /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
isNEONi16splat(unsigned Value)5930b57cec5SDimitry Andric   inline bool isNEONi16splat(unsigned Value) {
5940b57cec5SDimitry Andric     if (Value > 0xffff)
5950b57cec5SDimitry Andric       return false;
5960b57cec5SDimitry Andric     // i16 value with set bits only in one byte X0 or 0X.
5970b57cec5SDimitry Andric     return Value == 0 || isNEONBytesplat(Value, 2);
5980b57cec5SDimitry Andric   }
5990b57cec5SDimitry Andric 
6000b57cec5SDimitry Andric   // Encode NEON 16 bits Splat immediate for instructions like VBIC/VORR
encodeNEONi16splat(unsigned Value)6010b57cec5SDimitry Andric   inline unsigned encodeNEONi16splat(unsigned Value) {
6020b57cec5SDimitry Andric     assert(isNEONi16splat(Value) && "Invalid NEON splat value");
6030b57cec5SDimitry Andric     if (Value >= 0x100)
6040b57cec5SDimitry Andric       Value = (Value >> 8) | 0xa00;
6050b57cec5SDimitry Andric     else
6060b57cec5SDimitry Andric       Value |= 0x800;
6070b57cec5SDimitry Andric     return Value;
6080b57cec5SDimitry Andric   }
6090b57cec5SDimitry Andric 
6100b57cec5SDimitry Andric   /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
isNEONi32splat(unsigned Value)6110b57cec5SDimitry Andric   inline bool isNEONi32splat(unsigned Value) {
6120b57cec5SDimitry Andric     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
6130b57cec5SDimitry Andric     return Value == 0 || isNEONBytesplat(Value, 4);
6140b57cec5SDimitry Andric   }
6150b57cec5SDimitry Andric 
6160b57cec5SDimitry Andric   /// Encode NEON 32 bits Splat immediate for instructions like VBIC/VORR.
encodeNEONi32splat(unsigned Value)6170b57cec5SDimitry Andric   inline unsigned encodeNEONi32splat(unsigned Value) {
6180b57cec5SDimitry Andric     assert(isNEONi32splat(Value) && "Invalid NEON splat value");
6190b57cec5SDimitry Andric     if (Value >= 0x100 && Value <= 0xff00)
6200b57cec5SDimitry Andric       Value = (Value >> 8) | 0x200;
6210b57cec5SDimitry Andric     else if (Value > 0xffff && Value <= 0xff0000)
6220b57cec5SDimitry Andric       Value = (Value >> 16) | 0x400;
6230b57cec5SDimitry Andric     else if (Value > 0xffffff)
6240b57cec5SDimitry Andric       Value = (Value >> 24) | 0x600;
6250b57cec5SDimitry Andric     return Value;
6260b57cec5SDimitry Andric   }
6270b57cec5SDimitry Andric 
6280b57cec5SDimitry Andric   //===--------------------------------------------------------------------===//
6290b57cec5SDimitry Andric   // Floating-point Immediates
6300b57cec5SDimitry Andric   //
getFPImmFloat(unsigned Imm)6310b57cec5SDimitry Andric   inline float getFPImmFloat(unsigned Imm) {
6320b57cec5SDimitry Andric     // We expect an 8-bit binary encoding of a floating-point number here.
6330b57cec5SDimitry Andric 
6340b57cec5SDimitry Andric     uint8_t Sign = (Imm >> 7) & 0x1;
6350b57cec5SDimitry Andric     uint8_t Exp = (Imm >> 4) & 0x7;
6360b57cec5SDimitry Andric     uint8_t Mantissa = Imm & 0xf;
6370b57cec5SDimitry Andric 
6380b57cec5SDimitry Andric     //   8-bit FP    IEEE Float Encoding
6390b57cec5SDimitry Andric     //   abcd efgh   aBbbbbbc defgh000 00000000 00000000
6400b57cec5SDimitry Andric     //
6410b57cec5SDimitry Andric     // where B = NOT(b);
6420b57cec5SDimitry Andric     uint32_t I = 0;
6430b57cec5SDimitry Andric     I |= Sign << 31;
6440b57cec5SDimitry Andric     I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
6450b57cec5SDimitry Andric     I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
6460b57cec5SDimitry Andric     I |= (Exp & 0x3) << 23;
6470b57cec5SDimitry Andric     I |= Mantissa << 19;
6480b57cec5SDimitry Andric     return bit_cast<float>(I);
6490b57cec5SDimitry Andric   }
6500b57cec5SDimitry Andric 
6510b57cec5SDimitry Andric   /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
6520b57cec5SDimitry Andric   /// floating-point value. If the value cannot be represented as an 8-bit
6530b57cec5SDimitry Andric   /// floating-point value, then return -1.
getFP16Imm(const APInt & Imm)6540b57cec5SDimitry Andric   inline int getFP16Imm(const APInt &Imm) {
6550b57cec5SDimitry Andric     uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
6560b57cec5SDimitry Andric     int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15;  // -14 to 15
6570b57cec5SDimitry Andric     int64_t Mantissa = Imm.getZExtValue() & 0x3ff;  // 10 bits
6580b57cec5SDimitry Andric 
6590b57cec5SDimitry Andric     // We can handle 4 bits of mantissa.
6600b57cec5SDimitry Andric     // mantissa = (16+UInt(e:f:g:h))/16.
6610b57cec5SDimitry Andric     if (Mantissa & 0x3f)
6620b57cec5SDimitry Andric       return -1;
6630b57cec5SDimitry Andric     Mantissa >>= 6;
6640b57cec5SDimitry Andric 
6650b57cec5SDimitry Andric     // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
6660b57cec5SDimitry Andric     if (Exp < -3 || Exp > 4)
6670b57cec5SDimitry Andric       return -1;
6680b57cec5SDimitry Andric     Exp = ((Exp+3) & 0x7) ^ 4;
6690b57cec5SDimitry Andric 
6700b57cec5SDimitry Andric     return ((int)Sign << 7) | (Exp << 4) | Mantissa;
6710b57cec5SDimitry Andric   }
6720b57cec5SDimitry Andric 
getFP16Imm(const APFloat & FPImm)6730b57cec5SDimitry Andric   inline int getFP16Imm(const APFloat &FPImm) {
6740b57cec5SDimitry Andric     return getFP16Imm(FPImm.bitcastToAPInt());
6750b57cec5SDimitry Andric   }
6760b57cec5SDimitry Andric 
677e8d8bef9SDimitry Andric   /// If this is a FP16Imm encoded as a fp32 value, return the 8-bit encoding
678e8d8bef9SDimitry Andric   /// for it. Otherwise return -1 like getFP16Imm.
getFP32FP16Imm(const APInt & Imm)679e8d8bef9SDimitry Andric   inline int getFP32FP16Imm(const APInt &Imm) {
680e8d8bef9SDimitry Andric     if (Imm.getActiveBits() > 16)
681e8d8bef9SDimitry Andric       return -1;
682e8d8bef9SDimitry Andric     return ARM_AM::getFP16Imm(Imm.trunc(16));
683e8d8bef9SDimitry Andric   }
684e8d8bef9SDimitry Andric 
getFP32FP16Imm(const APFloat & FPImm)685e8d8bef9SDimitry Andric   inline int getFP32FP16Imm(const APFloat &FPImm) {
686e8d8bef9SDimitry Andric     return getFP32FP16Imm(FPImm.bitcastToAPInt());
687e8d8bef9SDimitry Andric   }
688e8d8bef9SDimitry Andric 
6890b57cec5SDimitry Andric   /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
6900b57cec5SDimitry Andric   /// floating-point value. If the value cannot be represented as an 8-bit
6910b57cec5SDimitry Andric   /// floating-point value, then return -1.
getFP32Imm(const APInt & Imm)6920b57cec5SDimitry Andric   inline int getFP32Imm(const APInt &Imm) {
6930b57cec5SDimitry Andric     uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
6940b57cec5SDimitry Andric     int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
6950b57cec5SDimitry Andric     int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
6960b57cec5SDimitry Andric 
6970b57cec5SDimitry Andric     // We can handle 4 bits of mantissa.
6980b57cec5SDimitry Andric     // mantissa = (16+UInt(e:f:g:h))/16.
6990b57cec5SDimitry Andric     if (Mantissa & 0x7ffff)
7000b57cec5SDimitry Andric       return -1;
7010b57cec5SDimitry Andric     Mantissa >>= 19;
7020b57cec5SDimitry Andric     if ((Mantissa & 0xf) != Mantissa)
7030b57cec5SDimitry Andric       return -1;
7040b57cec5SDimitry Andric 
7050b57cec5SDimitry Andric     // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
7060b57cec5SDimitry Andric     if (Exp < -3 || Exp > 4)
7070b57cec5SDimitry Andric       return -1;
7080b57cec5SDimitry Andric     Exp = ((Exp+3) & 0x7) ^ 4;
7090b57cec5SDimitry Andric 
7100b57cec5SDimitry Andric     return ((int)Sign << 7) | (Exp << 4) | Mantissa;
7110b57cec5SDimitry Andric   }
7120b57cec5SDimitry Andric 
getFP32Imm(const APFloat & FPImm)7130b57cec5SDimitry Andric   inline int getFP32Imm(const APFloat &FPImm) {
7140b57cec5SDimitry Andric     return getFP32Imm(FPImm.bitcastToAPInt());
7150b57cec5SDimitry Andric   }
7160b57cec5SDimitry Andric 
7170b57cec5SDimitry Andric   /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
7180b57cec5SDimitry Andric   /// floating-point value. If the value cannot be represented as an 8-bit
7190b57cec5SDimitry Andric   /// floating-point value, then return -1.
getFP64Imm(const APInt & Imm)7200b57cec5SDimitry Andric   inline int getFP64Imm(const APInt &Imm) {
7210b57cec5SDimitry Andric     uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
7220b57cec5SDimitry Andric     int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
7230b57cec5SDimitry Andric     uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
7240b57cec5SDimitry Andric 
7250b57cec5SDimitry Andric     // We can handle 4 bits of mantissa.
7260b57cec5SDimitry Andric     // mantissa = (16+UInt(e:f:g:h))/16.
7270b57cec5SDimitry Andric     if (Mantissa & 0xffffffffffffULL)
7280b57cec5SDimitry Andric       return -1;
7290b57cec5SDimitry Andric     Mantissa >>= 48;
7300b57cec5SDimitry Andric     if ((Mantissa & 0xf) != Mantissa)
7310b57cec5SDimitry Andric       return -1;
7320b57cec5SDimitry Andric 
7330b57cec5SDimitry Andric     // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
7340b57cec5SDimitry Andric     if (Exp < -3 || Exp > 4)
7350b57cec5SDimitry Andric       return -1;
7360b57cec5SDimitry Andric     Exp = ((Exp+3) & 0x7) ^ 4;
7370b57cec5SDimitry Andric 
7380b57cec5SDimitry Andric     return ((int)Sign << 7) | (Exp << 4) | Mantissa;
7390b57cec5SDimitry Andric   }
7400b57cec5SDimitry Andric 
getFP64Imm(const APFloat & FPImm)7410b57cec5SDimitry Andric   inline int getFP64Imm(const APFloat &FPImm) {
7420b57cec5SDimitry Andric     return getFP64Imm(FPImm.bitcastToAPInt());
7430b57cec5SDimitry Andric   }
7440b57cec5SDimitry Andric 
7450b57cec5SDimitry Andric } // end namespace ARM_AM
7460b57cec5SDimitry Andric } // end namespace llvm
7470b57cec5SDimitry Andric 
7480b57cec5SDimitry Andric #endif
749