1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMFeatures.h" 10 #include "ARMBaseInstrInfo.h" 11 #include "Utils/ARMBaseInfo.h" 12 #include "MCTargetDesc/ARMAddressingModes.h" 13 #include "MCTargetDesc/ARMBaseInfo.h" 14 #include "MCTargetDesc/ARMInstPrinter.h" 15 #include "MCTargetDesc/ARMMCExpr.h" 16 #include "MCTargetDesc/ARMMCTargetDesc.h" 17 #include "TargetInfo/ARMTargetInfo.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringSet.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/MC/MCContext.h" 31 #include "llvm/MC/MCExpr.h" 32 #include "llvm/MC/MCInst.h" 33 #include "llvm/MC/MCInstrDesc.h" 34 #include "llvm/MC/MCInstrInfo.h" 35 #include "llvm/MC/MCParser/MCAsmLexer.h" 36 #include "llvm/MC/MCParser/MCAsmParser.h" 37 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 38 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 39 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 40 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 41 #include "llvm/MC/MCRegisterInfo.h" 42 #include "llvm/MC/MCSection.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSubtargetInfo.h" 45 #include "llvm/MC/MCSymbol.h" 46 #include "llvm/MC/SubtargetFeature.h" 47 #include "llvm/Support/ARMBuildAttributes.h" 48 #include "llvm/Support/ARMEHABI.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/SMLoc.h" 55 #include "llvm/Support/TargetParser.h" 56 #include "llvm/Support/TargetRegistry.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstddef> 61 #include <cstdint> 62 #include <iterator> 63 #include <limits> 64 #include <memory> 65 #include <string> 66 #include <utility> 67 #include <vector> 68 69 #define DEBUG_TYPE "asm-parser" 70 71 using namespace llvm; 72 73 namespace llvm { 74 extern const MCInstrDesc ARMInsts[]; 75 } // end namespace llvm 76 77 namespace { 78 79 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 80 81 static cl::opt<ImplicitItModeTy> ImplicitItMode( 82 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 83 cl::desc("Allow conditional instructions outdside of an IT block"), 84 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 85 "Accept in both ISAs, emit implicit ITs in Thumb"), 86 clEnumValN(ImplicitItModeTy::Never, "never", 87 "Warn in ARM, reject in Thumb"), 88 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 89 "Accept in ARM, reject in Thumb"), 90 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 91 "Warn in ARM, emit implicit ITs in Thumb"))); 92 93 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 94 cl::init(false)); 95 96 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 97 98 static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) { 99 // Position==0 means we're not in an IT block at all. Position==1 100 // means we want the first state bit, which is always 0 (Then). 101 // Position==2 means we want the second state bit, stored at bit 3 102 // of Mask, and so on downwards. So (5 - Position) will shift the 103 // right bit down to bit 0, including the always-0 bit at bit 4 for 104 // the mandatory initial Then. 105 return (Mask >> (5 - Position) & 1); 106 } 107 108 class UnwindContext { 109 using Locs = SmallVector<SMLoc, 4>; 110 111 MCAsmParser &Parser; 112 Locs FnStartLocs; 113 Locs CantUnwindLocs; 114 Locs PersonalityLocs; 115 Locs PersonalityIndexLocs; 116 Locs HandlerDataLocs; 117 int FPReg; 118 119 public: 120 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 121 122 bool hasFnStart() const { return !FnStartLocs.empty(); } 123 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 124 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 125 126 bool hasPersonality() const { 127 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 128 } 129 130 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 131 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 132 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 133 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 134 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 135 136 void saveFPReg(int Reg) { FPReg = Reg; } 137 int getFPReg() const { return FPReg; } 138 139 void emitFnStartLocNotes() const { 140 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 141 FI != FE; ++FI) 142 Parser.Note(*FI, ".fnstart was specified here"); 143 } 144 145 void emitCantUnwindLocNotes() const { 146 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 147 UE = CantUnwindLocs.end(); UI != UE; ++UI) 148 Parser.Note(*UI, ".cantunwind was specified here"); 149 } 150 151 void emitHandlerDataLocNotes() const { 152 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 153 HE = HandlerDataLocs.end(); HI != HE; ++HI) 154 Parser.Note(*HI, ".handlerdata was specified here"); 155 } 156 157 void emitPersonalityLocNotes() const { 158 for (Locs::const_iterator PI = PersonalityLocs.begin(), 159 PE = PersonalityLocs.end(), 160 PII = PersonalityIndexLocs.begin(), 161 PIE = PersonalityIndexLocs.end(); 162 PI != PE || PII != PIE;) { 163 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 164 Parser.Note(*PI++, ".personality was specified here"); 165 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 166 Parser.Note(*PII++, ".personalityindex was specified here"); 167 else 168 llvm_unreachable(".personality and .personalityindex cannot be " 169 "at the same location"); 170 } 171 } 172 173 void reset() { 174 FnStartLocs = Locs(); 175 CantUnwindLocs = Locs(); 176 PersonalityLocs = Locs(); 177 HandlerDataLocs = Locs(); 178 PersonalityIndexLocs = Locs(); 179 FPReg = ARM::SP; 180 } 181 }; 182 183 // Various sets of ARM instruction mnemonics which are used by the asm parser 184 class ARMMnemonicSets { 185 StringSet<> CDE; 186 StringSet<> CDEWithVPTSuffix; 187 public: 188 ARMMnemonicSets(const MCSubtargetInfo &STI); 189 190 /// Returns true iff a given mnemonic is a CDE instruction 191 bool isCDEInstr(StringRef Mnemonic) { 192 // Quick check before searching the set 193 if (!Mnemonic.startswith("cx") && !Mnemonic.startswith("vcx")) 194 return false; 195 return CDE.count(Mnemonic); 196 } 197 198 /// Returns true iff a given mnemonic is a VPT-predicable CDE instruction 199 /// (possibly with a predication suffix "e" or "t") 200 bool isVPTPredicableCDEInstr(StringRef Mnemonic) { 201 if (!Mnemonic.startswith("vcx")) 202 return false; 203 return CDEWithVPTSuffix.count(Mnemonic); 204 } 205 206 /// Returns true iff a given mnemonic is an IT-predicable CDE instruction 207 /// (possibly with a condition suffix) 208 bool isITPredicableCDEInstr(StringRef Mnemonic) { 209 if (!Mnemonic.startswith("cx")) 210 return false; 211 return Mnemonic.startswith("cx1a") || Mnemonic.startswith("cx1da") || 212 Mnemonic.startswith("cx2a") || Mnemonic.startswith("cx2da") || 213 Mnemonic.startswith("cx3a") || Mnemonic.startswith("cx3da"); 214 } 215 216 /// Return true iff a given mnemonic is an integer CDE instruction with 217 /// dual-register destination 218 bool isCDEDualRegInstr(StringRef Mnemonic) { 219 if (!Mnemonic.startswith("cx")) 220 return false; 221 return Mnemonic == "cx1d" || Mnemonic == "cx1da" || 222 Mnemonic == "cx2d" || Mnemonic == "cx2da" || 223 Mnemonic == "cx3d" || Mnemonic == "cx3da"; 224 } 225 }; 226 227 ARMMnemonicSets::ARMMnemonicSets(const MCSubtargetInfo &STI) { 228 for (StringRef Mnemonic: { "cx1", "cx1a", "cx1d", "cx1da", 229 "cx2", "cx2a", "cx2d", "cx2da", 230 "cx3", "cx3a", "cx3d", "cx3da", }) 231 CDE.insert(Mnemonic); 232 for (StringRef Mnemonic : 233 {"vcx1", "vcx1a", "vcx2", "vcx2a", "vcx3", "vcx3a"}) { 234 CDE.insert(Mnemonic); 235 CDEWithVPTSuffix.insert(Mnemonic); 236 CDEWithVPTSuffix.insert(std::string(Mnemonic) + "t"); 237 CDEWithVPTSuffix.insert(std::string(Mnemonic) + "e"); 238 } 239 } 240 241 class ARMAsmParser : public MCTargetAsmParser { 242 const MCRegisterInfo *MRI; 243 UnwindContext UC; 244 ARMMnemonicSets MS; 245 246 ARMTargetStreamer &getTargetStreamer() { 247 assert(getParser().getStreamer().getTargetStreamer() && 248 "do not have a target streamer"); 249 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 250 return static_cast<ARMTargetStreamer &>(TS); 251 } 252 253 // Map of register aliases registers via the .req directive. 254 StringMap<unsigned> RegisterReqs; 255 256 bool NextSymbolIsThumb; 257 258 bool useImplicitITThumb() const { 259 return ImplicitItMode == ImplicitItModeTy::Always || 260 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 261 } 262 263 bool useImplicitITARM() const { 264 return ImplicitItMode == ImplicitItModeTy::Always || 265 ImplicitItMode == ImplicitItModeTy::ARMOnly; 266 } 267 268 struct { 269 ARMCC::CondCodes Cond; // Condition for IT block. 270 unsigned Mask:4; // Condition mask for instructions. 271 // Starting at first 1 (from lsb). 272 // '1' condition as indicated in IT. 273 // '0' inverse of condition (else). 274 // Count of instructions in IT block is 275 // 4 - trailingzeroes(mask) 276 // Note that this does not have the same encoding 277 // as in the IT instruction, which also depends 278 // on the low bit of the condition code. 279 280 unsigned CurPosition; // Current position in parsing of IT 281 // block. In range [0,4], with 0 being the IT 282 // instruction itself. Initialized according to 283 // count of instructions in block. ~0U if no 284 // active IT block. 285 286 bool IsExplicit; // true - The IT instruction was present in the 287 // input, we should not modify it. 288 // false - The IT instruction was added 289 // implicitly, we can extend it if that 290 // would be legal. 291 } ITState; 292 293 SmallVector<MCInst, 4> PendingConditionalInsts; 294 295 void flushPendingInstructions(MCStreamer &Out) override { 296 if (!inImplicitITBlock()) { 297 assert(PendingConditionalInsts.size() == 0); 298 return; 299 } 300 301 // Emit the IT instruction 302 MCInst ITInst; 303 ITInst.setOpcode(ARM::t2IT); 304 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 305 ITInst.addOperand(MCOperand::createImm(ITState.Mask)); 306 Out.emitInstruction(ITInst, getSTI()); 307 308 // Emit the conditonal instructions 309 assert(PendingConditionalInsts.size() <= 4); 310 for (const MCInst &Inst : PendingConditionalInsts) { 311 Out.emitInstruction(Inst, getSTI()); 312 } 313 PendingConditionalInsts.clear(); 314 315 // Clear the IT state 316 ITState.Mask = 0; 317 ITState.CurPosition = ~0U; 318 } 319 320 bool inITBlock() { return ITState.CurPosition != ~0U; } 321 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 322 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 323 324 bool lastInITBlock() { 325 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 326 } 327 328 void forwardITPosition() { 329 if (!inITBlock()) return; 330 // Move to the next instruction in the IT block, if there is one. If not, 331 // mark the block as done, except for implicit IT blocks, which we leave 332 // open until we find an instruction that can't be added to it. 333 unsigned TZ = countTrailingZeros(ITState.Mask); 334 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 335 ITState.CurPosition = ~0U; // Done with the IT block after this. 336 } 337 338 // Rewind the state of the current IT block, removing the last slot from it. 339 void rewindImplicitITPosition() { 340 assert(inImplicitITBlock()); 341 assert(ITState.CurPosition > 1); 342 ITState.CurPosition--; 343 unsigned TZ = countTrailingZeros(ITState.Mask); 344 unsigned NewMask = 0; 345 NewMask |= ITState.Mask & (0xC << TZ); 346 NewMask |= 0x2 << TZ; 347 ITState.Mask = NewMask; 348 } 349 350 // Rewind the state of the current IT block, removing the last slot from it. 351 // If we were at the first slot, this closes the IT block. 352 void discardImplicitITBlock() { 353 assert(inImplicitITBlock()); 354 assert(ITState.CurPosition == 1); 355 ITState.CurPosition = ~0U; 356 } 357 358 // Return the low-subreg of a given Q register. 359 unsigned getDRegFromQReg(unsigned QReg) const { 360 return MRI->getSubReg(QReg, ARM::dsub_0); 361 } 362 363 // Get the condition code corresponding to the current IT block slot. 364 ARMCC::CondCodes currentITCond() { 365 unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition); 366 return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond; 367 } 368 369 // Invert the condition of the current IT block slot without changing any 370 // other slots in the same block. 371 void invertCurrentITCondition() { 372 if (ITState.CurPosition == 1) { 373 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 374 } else { 375 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 376 } 377 } 378 379 // Returns true if the current IT block is full (all 4 slots used). 380 bool isITBlockFull() { 381 return inITBlock() && (ITState.Mask & 1); 382 } 383 384 // Extend the current implicit IT block to have one more slot with the given 385 // condition code. 386 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 387 assert(inImplicitITBlock()); 388 assert(!isITBlockFull()); 389 assert(Cond == ITState.Cond || 390 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 391 unsigned TZ = countTrailingZeros(ITState.Mask); 392 unsigned NewMask = 0; 393 // Keep any existing condition bits. 394 NewMask |= ITState.Mask & (0xE << TZ); 395 // Insert the new condition bit. 396 NewMask |= (Cond != ITState.Cond) << TZ; 397 // Move the trailing 1 down one bit. 398 NewMask |= 1 << (TZ - 1); 399 ITState.Mask = NewMask; 400 } 401 402 // Create a new implicit IT block with a dummy condition code. 403 void startImplicitITBlock() { 404 assert(!inITBlock()); 405 ITState.Cond = ARMCC::AL; 406 ITState.Mask = 8; 407 ITState.CurPosition = 1; 408 ITState.IsExplicit = false; 409 } 410 411 // Create a new explicit IT block with the given condition and mask. 412 // The mask should be in the format used in ARMOperand and 413 // MCOperand, with a 1 implying 'e', regardless of the low bit of 414 // the condition. 415 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 416 assert(!inITBlock()); 417 ITState.Cond = Cond; 418 ITState.Mask = Mask; 419 ITState.CurPosition = 0; 420 ITState.IsExplicit = true; 421 } 422 423 struct { 424 unsigned Mask : 4; 425 unsigned CurPosition; 426 } VPTState; 427 bool inVPTBlock() { return VPTState.CurPosition != ~0U; } 428 void forwardVPTPosition() { 429 if (!inVPTBlock()) return; 430 unsigned TZ = countTrailingZeros(VPTState.Mask); 431 if (++VPTState.CurPosition == 5 - TZ) 432 VPTState.CurPosition = ~0U; 433 } 434 435 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 436 return getParser().Note(L, Msg, Range); 437 } 438 439 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 440 return getParser().Warning(L, Msg, Range); 441 } 442 443 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 444 return getParser().Error(L, Msg, Range); 445 } 446 447 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 448 unsigned ListNo, bool IsARPop = false); 449 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 450 unsigned ListNo); 451 452 int tryParseRegister(); 453 bool tryParseRegisterWithWriteBack(OperandVector &); 454 int tryParseShiftRegister(OperandVector &); 455 bool parseRegisterList(OperandVector &, bool EnforceOrder = true); 456 bool parseMemory(OperandVector &); 457 bool parseOperand(OperandVector &, StringRef Mnemonic); 458 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 459 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 460 unsigned &ShiftAmount); 461 bool parseLiteralValues(unsigned Size, SMLoc L); 462 bool parseDirectiveThumb(SMLoc L); 463 bool parseDirectiveARM(SMLoc L); 464 bool parseDirectiveThumbFunc(SMLoc L); 465 bool parseDirectiveCode(SMLoc L); 466 bool parseDirectiveSyntax(SMLoc L); 467 bool parseDirectiveReq(StringRef Name, SMLoc L); 468 bool parseDirectiveUnreq(SMLoc L); 469 bool parseDirectiveArch(SMLoc L); 470 bool parseDirectiveEabiAttr(SMLoc L); 471 bool parseDirectiveCPU(SMLoc L); 472 bool parseDirectiveFPU(SMLoc L); 473 bool parseDirectiveFnStart(SMLoc L); 474 bool parseDirectiveFnEnd(SMLoc L); 475 bool parseDirectiveCantUnwind(SMLoc L); 476 bool parseDirectivePersonality(SMLoc L); 477 bool parseDirectiveHandlerData(SMLoc L); 478 bool parseDirectiveSetFP(SMLoc L); 479 bool parseDirectivePad(SMLoc L); 480 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 481 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 482 bool parseDirectiveLtorg(SMLoc L); 483 bool parseDirectiveEven(SMLoc L); 484 bool parseDirectivePersonalityIndex(SMLoc L); 485 bool parseDirectiveUnwindRaw(SMLoc L); 486 bool parseDirectiveTLSDescSeq(SMLoc L); 487 bool parseDirectiveMovSP(SMLoc L); 488 bool parseDirectiveObjectArch(SMLoc L); 489 bool parseDirectiveArchExtension(SMLoc L); 490 bool parseDirectiveAlign(SMLoc L); 491 bool parseDirectiveThumbSet(SMLoc L); 492 493 bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken); 494 StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken, 495 unsigned &PredicationCode, 496 unsigned &VPTPredicationCode, bool &CarrySetting, 497 unsigned &ProcessorIMod, StringRef &ITMask); 498 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken, 499 StringRef FullInst, bool &CanAcceptCarrySet, 500 bool &CanAcceptPredicationCode, 501 bool &CanAcceptVPTPredicationCode); 502 bool enableArchExtFeature(StringRef Name, SMLoc &ExtLoc); 503 504 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 505 OperandVector &Operands); 506 bool CDEConvertDualRegOperand(StringRef Mnemonic, OperandVector &Operands); 507 508 bool isThumb() const { 509 // FIXME: Can tablegen auto-generate this? 510 return getSTI().getFeatureBits()[ARM::ModeThumb]; 511 } 512 513 bool isThumbOne() const { 514 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 515 } 516 517 bool isThumbTwo() const { 518 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 519 } 520 521 bool hasThumb() const { 522 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 523 } 524 525 bool hasThumb2() const { 526 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 527 } 528 529 bool hasV6Ops() const { 530 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 531 } 532 533 bool hasV6T2Ops() const { 534 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 535 } 536 537 bool hasV6MOps() const { 538 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 539 } 540 541 bool hasV7Ops() const { 542 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 543 } 544 545 bool hasV8Ops() const { 546 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 547 } 548 549 bool hasV8MBaseline() const { 550 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 551 } 552 553 bool hasV8MMainline() const { 554 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 555 } 556 bool hasV8_1MMainline() const { 557 return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps]; 558 } 559 bool hasMVE() const { 560 return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps]; 561 } 562 bool hasMVEFloat() const { 563 return getSTI().getFeatureBits()[ARM::HasMVEFloatOps]; 564 } 565 bool hasCDE() const { 566 return getSTI().getFeatureBits()[ARM::HasCDEOps]; 567 } 568 bool has8MSecExt() const { 569 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 570 } 571 572 bool hasARM() const { 573 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 574 } 575 576 bool hasDSP() const { 577 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 578 } 579 580 bool hasD32() const { 581 return getSTI().getFeatureBits()[ARM::FeatureD32]; 582 } 583 584 bool hasV8_1aOps() const { 585 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 586 } 587 588 bool hasRAS() const { 589 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 590 } 591 592 void SwitchMode() { 593 MCSubtargetInfo &STI = copySTI(); 594 auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 595 setAvailableFeatures(FB); 596 } 597 598 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 599 600 bool isMClass() const { 601 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 602 } 603 604 /// @name Auto-generated Match Functions 605 /// { 606 607 #define GET_ASSEMBLER_HEADER 608 #include "ARMGenAsmMatcher.inc" 609 610 /// } 611 612 OperandMatchResultTy parseITCondCode(OperandVector &); 613 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 614 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 615 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 616 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 617 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &); 618 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 619 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 620 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 621 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 622 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 623 int High); 624 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 625 return parsePKHImm(O, "lsl", 0, 31); 626 } 627 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 628 return parsePKHImm(O, "asr", 1, 32); 629 } 630 OperandMatchResultTy parseSetEndImm(OperandVector &); 631 OperandMatchResultTy parseShifterImm(OperandVector &); 632 OperandMatchResultTy parseRotImm(OperandVector &); 633 OperandMatchResultTy parseModImm(OperandVector &); 634 OperandMatchResultTy parseBitfield(OperandVector &); 635 OperandMatchResultTy parsePostIdxReg(OperandVector &); 636 OperandMatchResultTy parseAM3Offset(OperandVector &); 637 OperandMatchResultTy parseFPImm(OperandVector &); 638 OperandMatchResultTy parseVectorList(OperandVector &); 639 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 640 SMLoc &EndLoc); 641 642 // Asm Match Converter Methods 643 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 644 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 645 void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &); 646 647 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 648 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 649 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 650 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 651 bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 652 bool isITBlockTerminator(MCInst &Inst) const; 653 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); 654 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, 655 bool Load, bool ARMMode, bool Writeback); 656 657 public: 658 enum ARMMatchResultTy { 659 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 660 Match_RequiresNotITBlock, 661 Match_RequiresV6, 662 Match_RequiresThumb2, 663 Match_RequiresV8, 664 Match_RequiresFlagSetting, 665 #define GET_OPERAND_DIAGNOSTIC_TYPES 666 #include "ARMGenAsmMatcher.inc" 667 668 }; 669 670 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 671 const MCInstrInfo &MII, const MCTargetOptions &Options) 672 : MCTargetAsmParser(Options, STI, MII), UC(Parser), MS(STI) { 673 MCAsmParserExtension::Initialize(Parser); 674 675 // Cache the MCRegisterInfo. 676 MRI = getContext().getRegisterInfo(); 677 678 // Initialize the set of available features. 679 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 680 681 // Add build attributes based on the selected target. 682 if (AddBuildAttributes) 683 getTargetStreamer().emitTargetAttributes(STI); 684 685 // Not in an ITBlock to start with. 686 ITState.CurPosition = ~0U; 687 688 VPTState.CurPosition = ~0U; 689 690 NextSymbolIsThumb = false; 691 } 692 693 // Implementation of the MCTargetAsmParser interface: 694 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 695 OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc, 696 SMLoc &EndLoc) override; 697 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 698 SMLoc NameLoc, OperandVector &Operands) override; 699 bool ParseDirective(AsmToken DirectiveID) override; 700 701 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 702 unsigned Kind) override; 703 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 704 705 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 706 OperandVector &Operands, MCStreamer &Out, 707 uint64_t &ErrorInfo, 708 bool MatchingInlineAsm) override; 709 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 710 SmallVectorImpl<NearMissInfo> &NearMisses, 711 bool MatchingInlineAsm, bool &EmitInITBlock, 712 MCStreamer &Out); 713 714 struct NearMissMessage { 715 SMLoc Loc; 716 SmallString<128> Message; 717 }; 718 719 const char *getCustomOperandDiag(ARMMatchResultTy MatchError); 720 721 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 722 SmallVectorImpl<NearMissMessage> &NearMissesOut, 723 SMLoc IDLoc, OperandVector &Operands); 724 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, 725 OperandVector &Operands); 726 727 void doBeforeLabelEmit(MCSymbol *Symbol) override; 728 729 void onLabelParsed(MCSymbol *Symbol) override; 730 }; 731 732 /// ARMOperand - Instances of this class represent a parsed ARM machine 733 /// operand. 734 class ARMOperand : public MCParsedAsmOperand { 735 enum KindTy { 736 k_CondCode, 737 k_VPTPred, 738 k_CCOut, 739 k_ITCondMask, 740 k_CoprocNum, 741 k_CoprocReg, 742 k_CoprocOption, 743 k_Immediate, 744 k_MemBarrierOpt, 745 k_InstSyncBarrierOpt, 746 k_TraceSyncBarrierOpt, 747 k_Memory, 748 k_PostIndexRegister, 749 k_MSRMask, 750 k_BankedReg, 751 k_ProcIFlags, 752 k_VectorIndex, 753 k_Register, 754 k_RegisterList, 755 k_RegisterListWithAPSR, 756 k_DPRRegisterList, 757 k_SPRRegisterList, 758 k_FPSRegisterListWithVPR, 759 k_FPDRegisterListWithVPR, 760 k_VectorList, 761 k_VectorListAllLanes, 762 k_VectorListIndexed, 763 k_ShiftedRegister, 764 k_ShiftedImmediate, 765 k_ShifterImmediate, 766 k_RotateImmediate, 767 k_ModifiedImmediate, 768 k_ConstantPoolImmediate, 769 k_BitfieldDescriptor, 770 k_Token, 771 } Kind; 772 773 SMLoc StartLoc, EndLoc, AlignmentLoc; 774 SmallVector<unsigned, 8> Registers; 775 776 struct CCOp { 777 ARMCC::CondCodes Val; 778 }; 779 780 struct VCCOp { 781 ARMVCC::VPTCodes Val; 782 }; 783 784 struct CopOp { 785 unsigned Val; 786 }; 787 788 struct CoprocOptionOp { 789 unsigned Val; 790 }; 791 792 struct ITMaskOp { 793 unsigned Mask:4; 794 }; 795 796 struct MBOptOp { 797 ARM_MB::MemBOpt Val; 798 }; 799 800 struct ISBOptOp { 801 ARM_ISB::InstSyncBOpt Val; 802 }; 803 804 struct TSBOptOp { 805 ARM_TSB::TraceSyncBOpt Val; 806 }; 807 808 struct IFlagsOp { 809 ARM_PROC::IFlags Val; 810 }; 811 812 struct MMaskOp { 813 unsigned Val; 814 }; 815 816 struct BankedRegOp { 817 unsigned Val; 818 }; 819 820 struct TokOp { 821 const char *Data; 822 unsigned Length; 823 }; 824 825 struct RegOp { 826 unsigned RegNum; 827 }; 828 829 // A vector register list is a sequential list of 1 to 4 registers. 830 struct VectorListOp { 831 unsigned RegNum; 832 unsigned Count; 833 unsigned LaneIndex; 834 bool isDoubleSpaced; 835 }; 836 837 struct VectorIndexOp { 838 unsigned Val; 839 }; 840 841 struct ImmOp { 842 const MCExpr *Val; 843 }; 844 845 /// Combined record for all forms of ARM address expressions. 846 struct MemoryOp { 847 unsigned BaseRegNum; 848 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 849 // was specified. 850 const MCExpr *OffsetImm; // Offset immediate value 851 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 852 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 853 unsigned ShiftImm; // shift for OffsetReg. 854 unsigned Alignment; // 0 = no alignment specified 855 // n = alignment in bytes (2, 4, 8, 16, or 32) 856 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 857 }; 858 859 struct PostIdxRegOp { 860 unsigned RegNum; 861 bool isAdd; 862 ARM_AM::ShiftOpc ShiftTy; 863 unsigned ShiftImm; 864 }; 865 866 struct ShifterImmOp { 867 bool isASR; 868 unsigned Imm; 869 }; 870 871 struct RegShiftedRegOp { 872 ARM_AM::ShiftOpc ShiftTy; 873 unsigned SrcReg; 874 unsigned ShiftReg; 875 unsigned ShiftImm; 876 }; 877 878 struct RegShiftedImmOp { 879 ARM_AM::ShiftOpc ShiftTy; 880 unsigned SrcReg; 881 unsigned ShiftImm; 882 }; 883 884 struct RotImmOp { 885 unsigned Imm; 886 }; 887 888 struct ModImmOp { 889 unsigned Bits; 890 unsigned Rot; 891 }; 892 893 struct BitfieldOp { 894 unsigned LSB; 895 unsigned Width; 896 }; 897 898 union { 899 struct CCOp CC; 900 struct VCCOp VCC; 901 struct CopOp Cop; 902 struct CoprocOptionOp CoprocOption; 903 struct MBOptOp MBOpt; 904 struct ISBOptOp ISBOpt; 905 struct TSBOptOp TSBOpt; 906 struct ITMaskOp ITMask; 907 struct IFlagsOp IFlags; 908 struct MMaskOp MMask; 909 struct BankedRegOp BankedReg; 910 struct TokOp Tok; 911 struct RegOp Reg; 912 struct VectorListOp VectorList; 913 struct VectorIndexOp VectorIndex; 914 struct ImmOp Imm; 915 struct MemoryOp Memory; 916 struct PostIdxRegOp PostIdxReg; 917 struct ShifterImmOp ShifterImm; 918 struct RegShiftedRegOp RegShiftedReg; 919 struct RegShiftedImmOp RegShiftedImm; 920 struct RotImmOp RotImm; 921 struct ModImmOp ModImm; 922 struct BitfieldOp Bitfield; 923 }; 924 925 public: 926 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 927 928 /// getStartLoc - Get the location of the first token of this operand. 929 SMLoc getStartLoc() const override { return StartLoc; } 930 931 /// getEndLoc - Get the location of the last token of this operand. 932 SMLoc getEndLoc() const override { return EndLoc; } 933 934 /// getLocRange - Get the range between the first and last token of this 935 /// operand. 936 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 937 938 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 939 SMLoc getAlignmentLoc() const { 940 assert(Kind == k_Memory && "Invalid access!"); 941 return AlignmentLoc; 942 } 943 944 ARMCC::CondCodes getCondCode() const { 945 assert(Kind == k_CondCode && "Invalid access!"); 946 return CC.Val; 947 } 948 949 ARMVCC::VPTCodes getVPTPred() const { 950 assert(isVPTPred() && "Invalid access!"); 951 return VCC.Val; 952 } 953 954 unsigned getCoproc() const { 955 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 956 return Cop.Val; 957 } 958 959 StringRef getToken() const { 960 assert(Kind == k_Token && "Invalid access!"); 961 return StringRef(Tok.Data, Tok.Length); 962 } 963 964 unsigned getReg() const override { 965 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 966 return Reg.RegNum; 967 } 968 969 const SmallVectorImpl<unsigned> &getRegList() const { 970 assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR || 971 Kind == k_DPRRegisterList || Kind == k_SPRRegisterList || 972 Kind == k_FPSRegisterListWithVPR || 973 Kind == k_FPDRegisterListWithVPR) && 974 "Invalid access!"); 975 return Registers; 976 } 977 978 const MCExpr *getImm() const { 979 assert(isImm() && "Invalid access!"); 980 return Imm.Val; 981 } 982 983 const MCExpr *getConstantPoolImm() const { 984 assert(isConstantPoolImm() && "Invalid access!"); 985 return Imm.Val; 986 } 987 988 unsigned getVectorIndex() const { 989 assert(Kind == k_VectorIndex && "Invalid access!"); 990 return VectorIndex.Val; 991 } 992 993 ARM_MB::MemBOpt getMemBarrierOpt() const { 994 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 995 return MBOpt.Val; 996 } 997 998 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 999 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 1000 return ISBOpt.Val; 1001 } 1002 1003 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const { 1004 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!"); 1005 return TSBOpt.Val; 1006 } 1007 1008 ARM_PROC::IFlags getProcIFlags() const { 1009 assert(Kind == k_ProcIFlags && "Invalid access!"); 1010 return IFlags.Val; 1011 } 1012 1013 unsigned getMSRMask() const { 1014 assert(Kind == k_MSRMask && "Invalid access!"); 1015 return MMask.Val; 1016 } 1017 1018 unsigned getBankedReg() const { 1019 assert(Kind == k_BankedReg && "Invalid access!"); 1020 return BankedReg.Val; 1021 } 1022 1023 bool isCoprocNum() const { return Kind == k_CoprocNum; } 1024 bool isCoprocReg() const { return Kind == k_CoprocReg; } 1025 bool isCoprocOption() const { return Kind == k_CoprocOption; } 1026 bool isCondCode() const { return Kind == k_CondCode; } 1027 bool isVPTPred() const { return Kind == k_VPTPred; } 1028 bool isCCOut() const { return Kind == k_CCOut; } 1029 bool isITMask() const { return Kind == k_ITCondMask; } 1030 bool isITCondCode() const { return Kind == k_CondCode; } 1031 bool isImm() const override { 1032 return Kind == k_Immediate; 1033 } 1034 1035 bool isARMBranchTarget() const { 1036 if (!isImm()) return false; 1037 1038 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 1039 return CE->getValue() % 4 == 0; 1040 return true; 1041 } 1042 1043 1044 bool isThumbBranchTarget() const { 1045 if (!isImm()) return false; 1046 1047 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 1048 return CE->getValue() % 2 == 0; 1049 return true; 1050 } 1051 1052 // checks whether this operand is an unsigned offset which fits is a field 1053 // of specified width and scaled by a specific number of bits 1054 template<unsigned width, unsigned scale> 1055 bool isUnsignedOffset() const { 1056 if (!isImm()) return false; 1057 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1058 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1059 int64_t Val = CE->getValue(); 1060 int64_t Align = 1LL << scale; 1061 int64_t Max = Align * ((1LL << width) - 1); 1062 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 1063 } 1064 return false; 1065 } 1066 1067 // checks whether this operand is an signed offset which fits is a field 1068 // of specified width and scaled by a specific number of bits 1069 template<unsigned width, unsigned scale> 1070 bool isSignedOffset() const { 1071 if (!isImm()) return false; 1072 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1073 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1074 int64_t Val = CE->getValue(); 1075 int64_t Align = 1LL << scale; 1076 int64_t Max = Align * ((1LL << (width-1)) - 1); 1077 int64_t Min = -Align * (1LL << (width-1)); 1078 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 1079 } 1080 return false; 1081 } 1082 1083 // checks whether this operand is an offset suitable for the LE / 1084 // LETP instructions in Arm v8.1M 1085 bool isLEOffset() const { 1086 if (!isImm()) return false; 1087 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1088 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1089 int64_t Val = CE->getValue(); 1090 return Val < 0 && Val >= -4094 && (Val & 1) == 0; 1091 } 1092 return false; 1093 } 1094 1095 // checks whether this operand is a memory operand computed as an offset 1096 // applied to PC. the offset may have 8 bits of magnitude and is represented 1097 // with two bits of shift. textually it may be either [pc, #imm], #imm or 1098 // relocable expression... 1099 bool isThumbMemPC() const { 1100 int64_t Val = 0; 1101 if (isImm()) { 1102 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1103 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 1104 if (!CE) return false; 1105 Val = CE->getValue(); 1106 } 1107 else if (isGPRMem()) { 1108 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 1109 if(Memory.BaseRegNum != ARM::PC) return false; 1110 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 1111 Val = CE->getValue(); 1112 else 1113 return false; 1114 } 1115 else return false; 1116 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 1117 } 1118 1119 bool isFPImm() const { 1120 if (!isImm()) return false; 1121 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1122 if (!CE) return false; 1123 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1124 return Val != -1; 1125 } 1126 1127 template<int64_t N, int64_t M> 1128 bool isImmediate() const { 1129 if (!isImm()) return false; 1130 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1131 if (!CE) return false; 1132 int64_t Value = CE->getValue(); 1133 return Value >= N && Value <= M; 1134 } 1135 1136 template<int64_t N, int64_t M> 1137 bool isImmediateS4() const { 1138 if (!isImm()) return false; 1139 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1140 if (!CE) return false; 1141 int64_t Value = CE->getValue(); 1142 return ((Value & 3) == 0) && Value >= N && Value <= M; 1143 } 1144 template<int64_t N, int64_t M> 1145 bool isImmediateS2() const { 1146 if (!isImm()) return false; 1147 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1148 if (!CE) return false; 1149 int64_t Value = CE->getValue(); 1150 return ((Value & 1) == 0) && Value >= N && Value <= M; 1151 } 1152 bool isFBits16() const { 1153 return isImmediate<0, 17>(); 1154 } 1155 bool isFBits32() const { 1156 return isImmediate<1, 33>(); 1157 } 1158 bool isImm8s4() const { 1159 return isImmediateS4<-1020, 1020>(); 1160 } 1161 bool isImm7s4() const { 1162 return isImmediateS4<-508, 508>(); 1163 } 1164 bool isImm7Shift0() const { 1165 return isImmediate<-127, 127>(); 1166 } 1167 bool isImm7Shift1() const { 1168 return isImmediateS2<-255, 255>(); 1169 } 1170 bool isImm7Shift2() const { 1171 return isImmediateS4<-511, 511>(); 1172 } 1173 bool isImm7() const { 1174 return isImmediate<-127, 127>(); 1175 } 1176 bool isImm0_1020s4() const { 1177 return isImmediateS4<0, 1020>(); 1178 } 1179 bool isImm0_508s4() const { 1180 return isImmediateS4<0, 508>(); 1181 } 1182 bool isImm0_508s4Neg() const { 1183 if (!isImm()) return false; 1184 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1185 if (!CE) return false; 1186 int64_t Value = -CE->getValue(); 1187 // explicitly exclude zero. we want that to use the normal 0_508 version. 1188 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 1189 } 1190 1191 bool isImm0_4095Neg() const { 1192 if (!isImm()) return false; 1193 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1194 if (!CE) return false; 1195 // isImm0_4095Neg is used with 32-bit immediates only. 1196 // 32-bit immediates are zero extended to 64-bit when parsed, 1197 // thus simple -CE->getValue() results in a big negative number, 1198 // not a small positive number as intended 1199 if ((CE->getValue() >> 32) > 0) return false; 1200 uint32_t Value = -static_cast<uint32_t>(CE->getValue()); 1201 return Value > 0 && Value < 4096; 1202 } 1203 1204 bool isImm0_7() const { 1205 return isImmediate<0, 7>(); 1206 } 1207 1208 bool isImm1_16() const { 1209 return isImmediate<1, 16>(); 1210 } 1211 1212 bool isImm1_32() const { 1213 return isImmediate<1, 32>(); 1214 } 1215 1216 bool isImm8_255() const { 1217 return isImmediate<8, 255>(); 1218 } 1219 1220 bool isImm256_65535Expr() const { 1221 if (!isImm()) return false; 1222 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1223 // If it's not a constant expression, it'll generate a fixup and be 1224 // handled later. 1225 if (!CE) return true; 1226 int64_t Value = CE->getValue(); 1227 return Value >= 256 && Value < 65536; 1228 } 1229 1230 bool isImm0_65535Expr() const { 1231 if (!isImm()) return false; 1232 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1233 // If it's not a constant expression, it'll generate a fixup and be 1234 // handled later. 1235 if (!CE) return true; 1236 int64_t Value = CE->getValue(); 1237 return Value >= 0 && Value < 65536; 1238 } 1239 1240 bool isImm24bit() const { 1241 return isImmediate<0, 0xffffff + 1>(); 1242 } 1243 1244 bool isImmThumbSR() const { 1245 return isImmediate<1, 33>(); 1246 } 1247 1248 template<int shift> 1249 bool isExpImmValue(uint64_t Value) const { 1250 uint64_t mask = (1 << shift) - 1; 1251 if ((Value & mask) != 0 || (Value >> shift) > 0xff) 1252 return false; 1253 return true; 1254 } 1255 1256 template<int shift> 1257 bool isExpImm() const { 1258 if (!isImm()) return false; 1259 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1260 if (!CE) return false; 1261 1262 return isExpImmValue<shift>(CE->getValue()); 1263 } 1264 1265 template<int shift, int size> 1266 bool isInvertedExpImm() const { 1267 if (!isImm()) return false; 1268 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1269 if (!CE) return false; 1270 1271 uint64_t OriginalValue = CE->getValue(); 1272 uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1); 1273 return isExpImmValue<shift>(InvertedValue); 1274 } 1275 1276 bool isPKHLSLImm() const { 1277 return isImmediate<0, 32>(); 1278 } 1279 1280 bool isPKHASRImm() const { 1281 return isImmediate<0, 33>(); 1282 } 1283 1284 bool isAdrLabel() const { 1285 // If we have an immediate that's not a constant, treat it as a label 1286 // reference needing a fixup. 1287 if (isImm() && !isa<MCConstantExpr>(getImm())) 1288 return true; 1289 1290 // If it is a constant, it must fit into a modified immediate encoding. 1291 if (!isImm()) return false; 1292 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1293 if (!CE) return false; 1294 int64_t Value = CE->getValue(); 1295 return (ARM_AM::getSOImmVal(Value) != -1 || 1296 ARM_AM::getSOImmVal(-Value) != -1); 1297 } 1298 1299 bool isT2SOImm() const { 1300 // If we have an immediate that's not a constant, treat it as an expression 1301 // needing a fixup. 1302 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1303 // We want to avoid matching :upper16: and :lower16: as we want these 1304 // expressions to match in isImm0_65535Expr() 1305 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1306 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1307 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1308 } 1309 if (!isImm()) return false; 1310 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1311 if (!CE) return false; 1312 int64_t Value = CE->getValue(); 1313 return ARM_AM::getT2SOImmVal(Value) != -1; 1314 } 1315 1316 bool isT2SOImmNot() const { 1317 if (!isImm()) return false; 1318 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1319 if (!CE) return false; 1320 int64_t Value = CE->getValue(); 1321 return ARM_AM::getT2SOImmVal(Value) == -1 && 1322 ARM_AM::getT2SOImmVal(~Value) != -1; 1323 } 1324 1325 bool isT2SOImmNeg() const { 1326 if (!isImm()) return false; 1327 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1328 if (!CE) return false; 1329 int64_t Value = CE->getValue(); 1330 // Only use this when not representable as a plain so_imm. 1331 return ARM_AM::getT2SOImmVal(Value) == -1 && 1332 ARM_AM::getT2SOImmVal(-Value) != -1; 1333 } 1334 1335 bool isSetEndImm() const { 1336 if (!isImm()) return false; 1337 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1338 if (!CE) return false; 1339 int64_t Value = CE->getValue(); 1340 return Value == 1 || Value == 0; 1341 } 1342 1343 bool isReg() const override { return Kind == k_Register; } 1344 bool isRegList() const { return Kind == k_RegisterList; } 1345 bool isRegListWithAPSR() const { 1346 return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList; 1347 } 1348 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1349 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1350 bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; } 1351 bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; } 1352 bool isToken() const override { return Kind == k_Token; } 1353 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1354 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1355 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; } 1356 bool isMem() const override { 1357 return isGPRMem() || isMVEMem(); 1358 } 1359 bool isMVEMem() const { 1360 if (Kind != k_Memory) 1361 return false; 1362 if (Memory.BaseRegNum && 1363 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) && 1364 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum)) 1365 return false; 1366 if (Memory.OffsetRegNum && 1367 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1368 Memory.OffsetRegNum)) 1369 return false; 1370 return true; 1371 } 1372 bool isGPRMem() const { 1373 if (Kind != k_Memory) 1374 return false; 1375 if (Memory.BaseRegNum && 1376 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) 1377 return false; 1378 if (Memory.OffsetRegNum && 1379 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) 1380 return false; 1381 return true; 1382 } 1383 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1384 bool isRegShiftedReg() const { 1385 return Kind == k_ShiftedRegister && 1386 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1387 RegShiftedReg.SrcReg) && 1388 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1389 RegShiftedReg.ShiftReg); 1390 } 1391 bool isRegShiftedImm() const { 1392 return Kind == k_ShiftedImmediate && 1393 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1394 RegShiftedImm.SrcReg); 1395 } 1396 bool isRotImm() const { return Kind == k_RotateImmediate; } 1397 1398 template<unsigned Min, unsigned Max> 1399 bool isPowerTwoInRange() const { 1400 if (!isImm()) return false; 1401 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1402 if (!CE) return false; 1403 int64_t Value = CE->getValue(); 1404 return Value > 0 && countPopulation((uint64_t)Value) == 1 && 1405 Value >= Min && Value <= Max; 1406 } 1407 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1408 1409 bool isModImmNot() const { 1410 if (!isImm()) return false; 1411 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1412 if (!CE) return false; 1413 int64_t Value = CE->getValue(); 1414 return ARM_AM::getSOImmVal(~Value) != -1; 1415 } 1416 1417 bool isModImmNeg() const { 1418 if (!isImm()) return false; 1419 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1420 if (!CE) return false; 1421 int64_t Value = CE->getValue(); 1422 return ARM_AM::getSOImmVal(Value) == -1 && 1423 ARM_AM::getSOImmVal(-Value) != -1; 1424 } 1425 1426 bool isThumbModImmNeg1_7() const { 1427 if (!isImm()) return false; 1428 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1429 if (!CE) return false; 1430 int32_t Value = -(int32_t)CE->getValue(); 1431 return 0 < Value && Value < 8; 1432 } 1433 1434 bool isThumbModImmNeg8_255() const { 1435 if (!isImm()) return false; 1436 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1437 if (!CE) return false; 1438 int32_t Value = -(int32_t)CE->getValue(); 1439 return 7 < Value && Value < 256; 1440 } 1441 1442 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1443 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1444 bool isPostIdxRegShifted() const { 1445 return Kind == k_PostIndexRegister && 1446 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); 1447 } 1448 bool isPostIdxReg() const { 1449 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; 1450 } 1451 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1452 if (!isGPRMem()) 1453 return false; 1454 // No offset of any kind. 1455 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1456 (alignOK || Memory.Alignment == Alignment); 1457 } 1458 bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const { 1459 if (!isGPRMem()) 1460 return false; 1461 1462 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1463 Memory.BaseRegNum)) 1464 return false; 1465 1466 // No offset of any kind. 1467 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1468 (alignOK || Memory.Alignment == Alignment); 1469 } 1470 bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const { 1471 if (!isGPRMem()) 1472 return false; 1473 1474 if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains( 1475 Memory.BaseRegNum)) 1476 return false; 1477 1478 // No offset of any kind. 1479 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1480 (alignOK || Memory.Alignment == Alignment); 1481 } 1482 bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const { 1483 if (!isGPRMem()) 1484 return false; 1485 1486 if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains( 1487 Memory.BaseRegNum)) 1488 return false; 1489 1490 // No offset of any kind. 1491 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1492 (alignOK || Memory.Alignment == Alignment); 1493 } 1494 bool isMemPCRelImm12() const { 1495 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1496 return false; 1497 // Base register must be PC. 1498 if (Memory.BaseRegNum != ARM::PC) 1499 return false; 1500 // Immediate offset in range [-4095, 4095]. 1501 if (!Memory.OffsetImm) return true; 1502 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1503 int64_t Val = CE->getValue(); 1504 return (Val > -4096 && Val < 4096) || 1505 (Val == std::numeric_limits<int32_t>::min()); 1506 } 1507 return false; 1508 } 1509 1510 bool isAlignedMemory() const { 1511 return isMemNoOffset(true); 1512 } 1513 1514 bool isAlignedMemoryNone() const { 1515 return isMemNoOffset(false, 0); 1516 } 1517 1518 bool isDupAlignedMemoryNone() const { 1519 return isMemNoOffset(false, 0); 1520 } 1521 1522 bool isAlignedMemory16() const { 1523 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1524 return true; 1525 return isMemNoOffset(false, 0); 1526 } 1527 1528 bool isDupAlignedMemory16() const { 1529 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1530 return true; 1531 return isMemNoOffset(false, 0); 1532 } 1533 1534 bool isAlignedMemory32() const { 1535 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1536 return true; 1537 return isMemNoOffset(false, 0); 1538 } 1539 1540 bool isDupAlignedMemory32() const { 1541 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1542 return true; 1543 return isMemNoOffset(false, 0); 1544 } 1545 1546 bool isAlignedMemory64() const { 1547 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1548 return true; 1549 return isMemNoOffset(false, 0); 1550 } 1551 1552 bool isDupAlignedMemory64() const { 1553 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1554 return true; 1555 return isMemNoOffset(false, 0); 1556 } 1557 1558 bool isAlignedMemory64or128() const { 1559 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1560 return true; 1561 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1562 return true; 1563 return isMemNoOffset(false, 0); 1564 } 1565 1566 bool isDupAlignedMemory64or128() const { 1567 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1568 return true; 1569 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1570 return true; 1571 return isMemNoOffset(false, 0); 1572 } 1573 1574 bool isAlignedMemory64or128or256() const { 1575 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1576 return true; 1577 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1578 return true; 1579 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1580 return true; 1581 return isMemNoOffset(false, 0); 1582 } 1583 1584 bool isAddrMode2() const { 1585 if (!isGPRMem() || Memory.Alignment != 0) return false; 1586 // Check for register offset. 1587 if (Memory.OffsetRegNum) return true; 1588 // Immediate offset in range [-4095, 4095]. 1589 if (!Memory.OffsetImm) return true; 1590 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1591 int64_t Val = CE->getValue(); 1592 return Val > -4096 && Val < 4096; 1593 } 1594 return false; 1595 } 1596 1597 bool isAM2OffsetImm() const { 1598 if (!isImm()) return false; 1599 // Immediate offset in range [-4095, 4095]. 1600 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1601 if (!CE) return false; 1602 int64_t Val = CE->getValue(); 1603 return (Val == std::numeric_limits<int32_t>::min()) || 1604 (Val > -4096 && Val < 4096); 1605 } 1606 1607 bool isAddrMode3() const { 1608 // If we have an immediate that's not a constant, treat it as a label 1609 // reference needing a fixup. If it is a constant, it's something else 1610 // and we reject it. 1611 if (isImm() && !isa<MCConstantExpr>(getImm())) 1612 return true; 1613 if (!isGPRMem() || Memory.Alignment != 0) return false; 1614 // No shifts are legal for AM3. 1615 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1616 // Check for register offset. 1617 if (Memory.OffsetRegNum) return true; 1618 // Immediate offset in range [-255, 255]. 1619 if (!Memory.OffsetImm) return true; 1620 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1621 int64_t Val = CE->getValue(); 1622 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and 1623 // we have to check for this too. 1624 return (Val > -256 && Val < 256) || 1625 Val == std::numeric_limits<int32_t>::min(); 1626 } 1627 return false; 1628 } 1629 1630 bool isAM3Offset() const { 1631 if (isPostIdxReg()) 1632 return true; 1633 if (!isImm()) 1634 return false; 1635 // Immediate offset in range [-255, 255]. 1636 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1637 if (!CE) return false; 1638 int64_t Val = CE->getValue(); 1639 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1640 return (Val > -256 && Val < 256) || 1641 Val == std::numeric_limits<int32_t>::min(); 1642 } 1643 1644 bool isAddrMode5() const { 1645 // If we have an immediate that's not a constant, treat it as a label 1646 // reference needing a fixup. If it is a constant, it's something else 1647 // and we reject it. 1648 if (isImm() && !isa<MCConstantExpr>(getImm())) 1649 return true; 1650 if (!isGPRMem() || Memory.Alignment != 0) return false; 1651 // Check for register offset. 1652 if (Memory.OffsetRegNum) return false; 1653 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1654 if (!Memory.OffsetImm) return true; 1655 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1656 int64_t Val = CE->getValue(); 1657 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1658 Val == std::numeric_limits<int32_t>::min(); 1659 } 1660 return false; 1661 } 1662 1663 bool isAddrMode5FP16() const { 1664 // If we have an immediate that's not a constant, treat it as a label 1665 // reference needing a fixup. If it is a constant, it's something else 1666 // and we reject it. 1667 if (isImm() && !isa<MCConstantExpr>(getImm())) 1668 return true; 1669 if (!isGPRMem() || Memory.Alignment != 0) return false; 1670 // Check for register offset. 1671 if (Memory.OffsetRegNum) return false; 1672 // Immediate offset in range [-510, 510] and a multiple of 2. 1673 if (!Memory.OffsetImm) return true; 1674 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1675 int64_t Val = CE->getValue(); 1676 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || 1677 Val == std::numeric_limits<int32_t>::min(); 1678 } 1679 return false; 1680 } 1681 1682 bool isMemTBB() const { 1683 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1684 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1685 return false; 1686 return true; 1687 } 1688 1689 bool isMemTBH() const { 1690 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1691 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1692 Memory.Alignment != 0 ) 1693 return false; 1694 return true; 1695 } 1696 1697 bool isMemRegOffset() const { 1698 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1699 return false; 1700 return true; 1701 } 1702 1703 bool isT2MemRegOffset() const { 1704 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1705 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1706 return false; 1707 // Only lsl #{0, 1, 2, 3} allowed. 1708 if (Memory.ShiftType == ARM_AM::no_shift) 1709 return true; 1710 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1711 return false; 1712 return true; 1713 } 1714 1715 bool isMemThumbRR() const { 1716 // Thumb reg+reg addressing is simple. Just two registers, a base and 1717 // an offset. No shifts, negations or any other complicating factors. 1718 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1719 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1720 return false; 1721 return isARMLowRegister(Memory.BaseRegNum) && 1722 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1723 } 1724 1725 bool isMemThumbRIs4() const { 1726 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1727 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1728 return false; 1729 // Immediate offset, multiple of 4 in range [0, 124]. 1730 if (!Memory.OffsetImm) return true; 1731 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1732 int64_t Val = CE->getValue(); 1733 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1734 } 1735 return false; 1736 } 1737 1738 bool isMemThumbRIs2() const { 1739 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1740 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1741 return false; 1742 // Immediate offset, multiple of 4 in range [0, 62]. 1743 if (!Memory.OffsetImm) return true; 1744 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1745 int64_t Val = CE->getValue(); 1746 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1747 } 1748 return false; 1749 } 1750 1751 bool isMemThumbRIs1() const { 1752 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1753 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1754 return false; 1755 // Immediate offset in range [0, 31]. 1756 if (!Memory.OffsetImm) return true; 1757 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1758 int64_t Val = CE->getValue(); 1759 return Val >= 0 && Val <= 31; 1760 } 1761 return false; 1762 } 1763 1764 bool isMemThumbSPI() const { 1765 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1766 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1767 return false; 1768 // Immediate offset, multiple of 4 in range [0, 1020]. 1769 if (!Memory.OffsetImm) return true; 1770 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1771 int64_t Val = CE->getValue(); 1772 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1773 } 1774 return false; 1775 } 1776 1777 bool isMemImm8s4Offset() const { 1778 // If we have an immediate that's not a constant, treat it as a label 1779 // reference needing a fixup. If it is a constant, it's something else 1780 // and we reject it. 1781 if (isImm() && !isa<MCConstantExpr>(getImm())) 1782 return true; 1783 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1784 return false; 1785 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1786 if (!Memory.OffsetImm) return true; 1787 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1788 int64_t Val = CE->getValue(); 1789 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1790 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || 1791 Val == std::numeric_limits<int32_t>::min(); 1792 } 1793 return false; 1794 } 1795 1796 bool isMemImm7s4Offset() const { 1797 // If we have an immediate that's not a constant, treat it as a label 1798 // reference needing a fixup. If it is a constant, it's something else 1799 // and we reject it. 1800 if (isImm() && !isa<MCConstantExpr>(getImm())) 1801 return true; 1802 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1803 !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1804 Memory.BaseRegNum)) 1805 return false; 1806 // Immediate offset a multiple of 4 in range [-508, 508]. 1807 if (!Memory.OffsetImm) return true; 1808 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1809 int64_t Val = CE->getValue(); 1810 // Special case, #-0 is INT32_MIN. 1811 return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN; 1812 } 1813 return false; 1814 } 1815 1816 bool isMemImm0_1020s4Offset() const { 1817 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1818 return false; 1819 // Immediate offset a multiple of 4 in range [0, 1020]. 1820 if (!Memory.OffsetImm) return true; 1821 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1822 int64_t Val = CE->getValue(); 1823 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1824 } 1825 return false; 1826 } 1827 1828 bool isMemImm8Offset() const { 1829 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1830 return false; 1831 // Base reg of PC isn't allowed for these encodings. 1832 if (Memory.BaseRegNum == ARM::PC) return false; 1833 // Immediate offset in range [-255, 255]. 1834 if (!Memory.OffsetImm) return true; 1835 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1836 int64_t Val = CE->getValue(); 1837 return (Val == std::numeric_limits<int32_t>::min()) || 1838 (Val > -256 && Val < 256); 1839 } 1840 return false; 1841 } 1842 1843 template<unsigned Bits, unsigned RegClassID> 1844 bool isMemImm7ShiftedOffset() const { 1845 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1846 !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum)) 1847 return false; 1848 1849 // Expect an immediate offset equal to an element of the range 1850 // [-127, 127], shifted left by Bits. 1851 1852 if (!Memory.OffsetImm) return true; 1853 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1854 int64_t Val = CE->getValue(); 1855 1856 // INT32_MIN is a special-case value (indicating the encoding with 1857 // zero offset and the subtract bit set) 1858 if (Val == INT32_MIN) 1859 return true; 1860 1861 unsigned Divisor = 1U << Bits; 1862 1863 // Check that the low bits are zero 1864 if (Val % Divisor != 0) 1865 return false; 1866 1867 // Check that the remaining offset is within range. 1868 Val /= Divisor; 1869 return (Val >= -127 && Val <= 127); 1870 } 1871 return false; 1872 } 1873 1874 template <int shift> bool isMemRegRQOffset() const { 1875 if (!isMVEMem() || Memory.OffsetImm != 0 || Memory.Alignment != 0) 1876 return false; 1877 1878 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1879 Memory.BaseRegNum)) 1880 return false; 1881 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1882 Memory.OffsetRegNum)) 1883 return false; 1884 1885 if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift) 1886 return false; 1887 1888 if (shift > 0 && 1889 (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift)) 1890 return false; 1891 1892 return true; 1893 } 1894 1895 template <int shift> bool isMemRegQOffset() const { 1896 if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1897 return false; 1898 1899 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1900 Memory.BaseRegNum)) 1901 return false; 1902 1903 if (!Memory.OffsetImm) 1904 return true; 1905 static_assert(shift < 56, 1906 "Such that we dont shift by a value higher than 62"); 1907 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1908 int64_t Val = CE->getValue(); 1909 1910 // The value must be a multiple of (1 << shift) 1911 if ((Val & ((1U << shift) - 1)) != 0) 1912 return false; 1913 1914 // And be in the right range, depending on the amount that it is shifted 1915 // by. Shift 0, is equal to 7 unsigned bits, the sign bit is set 1916 // separately. 1917 int64_t Range = (1U << (7 + shift)) - 1; 1918 return (Val == INT32_MIN) || (Val > -Range && Val < Range); 1919 } 1920 return false; 1921 } 1922 1923 bool isMemPosImm8Offset() const { 1924 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1925 return false; 1926 // Immediate offset in range [0, 255]. 1927 if (!Memory.OffsetImm) return true; 1928 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1929 int64_t Val = CE->getValue(); 1930 return Val >= 0 && Val < 256; 1931 } 1932 return false; 1933 } 1934 1935 bool isMemNegImm8Offset() const { 1936 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1937 return false; 1938 // Base reg of PC isn't allowed for these encodings. 1939 if (Memory.BaseRegNum == ARM::PC) return false; 1940 // Immediate offset in range [-255, -1]. 1941 if (!Memory.OffsetImm) return false; 1942 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1943 int64_t Val = CE->getValue(); 1944 return (Val == std::numeric_limits<int32_t>::min()) || 1945 (Val > -256 && Val < 0); 1946 } 1947 return false; 1948 } 1949 1950 bool isMemUImm12Offset() const { 1951 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1952 return false; 1953 // Immediate offset in range [0, 4095]. 1954 if (!Memory.OffsetImm) return true; 1955 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1956 int64_t Val = CE->getValue(); 1957 return (Val >= 0 && Val < 4096); 1958 } 1959 return false; 1960 } 1961 1962 bool isMemImm12Offset() const { 1963 // If we have an immediate that's not a constant, treat it as a label 1964 // reference needing a fixup. If it is a constant, it's something else 1965 // and we reject it. 1966 1967 if (isImm() && !isa<MCConstantExpr>(getImm())) 1968 return true; 1969 1970 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1971 return false; 1972 // Immediate offset in range [-4095, 4095]. 1973 if (!Memory.OffsetImm) return true; 1974 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1975 int64_t Val = CE->getValue(); 1976 return (Val > -4096 && Val < 4096) || 1977 (Val == std::numeric_limits<int32_t>::min()); 1978 } 1979 // If we have an immediate that's not a constant, treat it as a 1980 // symbolic expression needing a fixup. 1981 return true; 1982 } 1983 1984 bool isConstPoolAsmImm() const { 1985 // Delay processing of Constant Pool Immediate, this will turn into 1986 // a constant. Match no other operand 1987 return (isConstantPoolImm()); 1988 } 1989 1990 bool isPostIdxImm8() const { 1991 if (!isImm()) return false; 1992 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1993 if (!CE) return false; 1994 int64_t Val = CE->getValue(); 1995 return (Val > -256 && Val < 256) || 1996 (Val == std::numeric_limits<int32_t>::min()); 1997 } 1998 1999 bool isPostIdxImm8s4() const { 2000 if (!isImm()) return false; 2001 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2002 if (!CE) return false; 2003 int64_t Val = CE->getValue(); 2004 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 2005 (Val == std::numeric_limits<int32_t>::min()); 2006 } 2007 2008 bool isMSRMask() const { return Kind == k_MSRMask; } 2009 bool isBankedReg() const { return Kind == k_BankedReg; } 2010 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 2011 2012 // NEON operands. 2013 bool isSingleSpacedVectorList() const { 2014 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 2015 } 2016 2017 bool isDoubleSpacedVectorList() const { 2018 return Kind == k_VectorList && VectorList.isDoubleSpaced; 2019 } 2020 2021 bool isVecListOneD() const { 2022 if (!isSingleSpacedVectorList()) return false; 2023 return VectorList.Count == 1; 2024 } 2025 2026 bool isVecListTwoMQ() const { 2027 return isSingleSpacedVectorList() && VectorList.Count == 2 && 2028 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 2029 VectorList.RegNum); 2030 } 2031 2032 bool isVecListDPair() const { 2033 if (!isSingleSpacedVectorList()) return false; 2034 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 2035 .contains(VectorList.RegNum)); 2036 } 2037 2038 bool isVecListThreeD() const { 2039 if (!isSingleSpacedVectorList()) return false; 2040 return VectorList.Count == 3; 2041 } 2042 2043 bool isVecListFourD() const { 2044 if (!isSingleSpacedVectorList()) return false; 2045 return VectorList.Count == 4; 2046 } 2047 2048 bool isVecListDPairSpaced() const { 2049 if (Kind != k_VectorList) return false; 2050 if (isSingleSpacedVectorList()) return false; 2051 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 2052 .contains(VectorList.RegNum)); 2053 } 2054 2055 bool isVecListThreeQ() const { 2056 if (!isDoubleSpacedVectorList()) return false; 2057 return VectorList.Count == 3; 2058 } 2059 2060 bool isVecListFourQ() const { 2061 if (!isDoubleSpacedVectorList()) return false; 2062 return VectorList.Count == 4; 2063 } 2064 2065 bool isVecListFourMQ() const { 2066 return isSingleSpacedVectorList() && VectorList.Count == 4 && 2067 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 2068 VectorList.RegNum); 2069 } 2070 2071 bool isSingleSpacedVectorAllLanes() const { 2072 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 2073 } 2074 2075 bool isDoubleSpacedVectorAllLanes() const { 2076 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 2077 } 2078 2079 bool isVecListOneDAllLanes() const { 2080 if (!isSingleSpacedVectorAllLanes()) return false; 2081 return VectorList.Count == 1; 2082 } 2083 2084 bool isVecListDPairAllLanes() const { 2085 if (!isSingleSpacedVectorAllLanes()) return false; 2086 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 2087 .contains(VectorList.RegNum)); 2088 } 2089 2090 bool isVecListDPairSpacedAllLanes() const { 2091 if (!isDoubleSpacedVectorAllLanes()) return false; 2092 return VectorList.Count == 2; 2093 } 2094 2095 bool isVecListThreeDAllLanes() const { 2096 if (!isSingleSpacedVectorAllLanes()) return false; 2097 return VectorList.Count == 3; 2098 } 2099 2100 bool isVecListThreeQAllLanes() const { 2101 if (!isDoubleSpacedVectorAllLanes()) return false; 2102 return VectorList.Count == 3; 2103 } 2104 2105 bool isVecListFourDAllLanes() const { 2106 if (!isSingleSpacedVectorAllLanes()) return false; 2107 return VectorList.Count == 4; 2108 } 2109 2110 bool isVecListFourQAllLanes() const { 2111 if (!isDoubleSpacedVectorAllLanes()) return false; 2112 return VectorList.Count == 4; 2113 } 2114 2115 bool isSingleSpacedVectorIndexed() const { 2116 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 2117 } 2118 2119 bool isDoubleSpacedVectorIndexed() const { 2120 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 2121 } 2122 2123 bool isVecListOneDByteIndexed() const { 2124 if (!isSingleSpacedVectorIndexed()) return false; 2125 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 2126 } 2127 2128 bool isVecListOneDHWordIndexed() const { 2129 if (!isSingleSpacedVectorIndexed()) return false; 2130 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 2131 } 2132 2133 bool isVecListOneDWordIndexed() const { 2134 if (!isSingleSpacedVectorIndexed()) return false; 2135 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 2136 } 2137 2138 bool isVecListTwoDByteIndexed() const { 2139 if (!isSingleSpacedVectorIndexed()) return false; 2140 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 2141 } 2142 2143 bool isVecListTwoDHWordIndexed() const { 2144 if (!isSingleSpacedVectorIndexed()) return false; 2145 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2146 } 2147 2148 bool isVecListTwoQWordIndexed() const { 2149 if (!isDoubleSpacedVectorIndexed()) return false; 2150 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2151 } 2152 2153 bool isVecListTwoQHWordIndexed() const { 2154 if (!isDoubleSpacedVectorIndexed()) return false; 2155 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2156 } 2157 2158 bool isVecListTwoDWordIndexed() const { 2159 if (!isSingleSpacedVectorIndexed()) return false; 2160 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2161 } 2162 2163 bool isVecListThreeDByteIndexed() const { 2164 if (!isSingleSpacedVectorIndexed()) return false; 2165 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 2166 } 2167 2168 bool isVecListThreeDHWordIndexed() const { 2169 if (!isSingleSpacedVectorIndexed()) return false; 2170 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2171 } 2172 2173 bool isVecListThreeQWordIndexed() const { 2174 if (!isDoubleSpacedVectorIndexed()) return false; 2175 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2176 } 2177 2178 bool isVecListThreeQHWordIndexed() const { 2179 if (!isDoubleSpacedVectorIndexed()) return false; 2180 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2181 } 2182 2183 bool isVecListThreeDWordIndexed() const { 2184 if (!isSingleSpacedVectorIndexed()) return false; 2185 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2186 } 2187 2188 bool isVecListFourDByteIndexed() const { 2189 if (!isSingleSpacedVectorIndexed()) return false; 2190 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 2191 } 2192 2193 bool isVecListFourDHWordIndexed() const { 2194 if (!isSingleSpacedVectorIndexed()) return false; 2195 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2196 } 2197 2198 bool isVecListFourQWordIndexed() const { 2199 if (!isDoubleSpacedVectorIndexed()) return false; 2200 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2201 } 2202 2203 bool isVecListFourQHWordIndexed() const { 2204 if (!isDoubleSpacedVectorIndexed()) return false; 2205 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2206 } 2207 2208 bool isVecListFourDWordIndexed() const { 2209 if (!isSingleSpacedVectorIndexed()) return false; 2210 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2211 } 2212 2213 bool isVectorIndex() const { return Kind == k_VectorIndex; } 2214 2215 template <unsigned NumLanes> 2216 bool isVectorIndexInRange() const { 2217 if (Kind != k_VectorIndex) return false; 2218 return VectorIndex.Val < NumLanes; 2219 } 2220 2221 bool isVectorIndex8() const { return isVectorIndexInRange<8>(); } 2222 bool isVectorIndex16() const { return isVectorIndexInRange<4>(); } 2223 bool isVectorIndex32() const { return isVectorIndexInRange<2>(); } 2224 bool isVectorIndex64() const { return isVectorIndexInRange<1>(); } 2225 2226 template<int PermittedValue, int OtherPermittedValue> 2227 bool isMVEPairVectorIndex() const { 2228 if (Kind != k_VectorIndex) return false; 2229 return VectorIndex.Val == PermittedValue || 2230 VectorIndex.Val == OtherPermittedValue; 2231 } 2232 2233 bool isNEONi8splat() const { 2234 if (!isImm()) return false; 2235 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2236 // Must be a constant. 2237 if (!CE) return false; 2238 int64_t Value = CE->getValue(); 2239 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 2240 // value. 2241 return Value >= 0 && Value < 256; 2242 } 2243 2244 bool isNEONi16splat() const { 2245 if (isNEONByteReplicate(2)) 2246 return false; // Leave that for bytes replication and forbid by default. 2247 if (!isImm()) 2248 return false; 2249 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2250 // Must be a constant. 2251 if (!CE) return false; 2252 unsigned Value = CE->getValue(); 2253 return ARM_AM::isNEONi16splat(Value); 2254 } 2255 2256 bool isNEONi16splatNot() const { 2257 if (!isImm()) 2258 return false; 2259 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2260 // Must be a constant. 2261 if (!CE) return false; 2262 unsigned Value = CE->getValue(); 2263 return ARM_AM::isNEONi16splat(~Value & 0xffff); 2264 } 2265 2266 bool isNEONi32splat() const { 2267 if (isNEONByteReplicate(4)) 2268 return false; // Leave that for bytes replication and forbid by default. 2269 if (!isImm()) 2270 return false; 2271 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2272 // Must be a constant. 2273 if (!CE) return false; 2274 unsigned Value = CE->getValue(); 2275 return ARM_AM::isNEONi32splat(Value); 2276 } 2277 2278 bool isNEONi32splatNot() const { 2279 if (!isImm()) 2280 return false; 2281 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2282 // Must be a constant. 2283 if (!CE) return false; 2284 unsigned Value = CE->getValue(); 2285 return ARM_AM::isNEONi32splat(~Value); 2286 } 2287 2288 static bool isValidNEONi32vmovImm(int64_t Value) { 2289 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 2290 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 2291 return ((Value & 0xffffffffffffff00) == 0) || 2292 ((Value & 0xffffffffffff00ff) == 0) || 2293 ((Value & 0xffffffffff00ffff) == 0) || 2294 ((Value & 0xffffffff00ffffff) == 0) || 2295 ((Value & 0xffffffffffff00ff) == 0xff) || 2296 ((Value & 0xffffffffff00ffff) == 0xffff); 2297 } 2298 2299 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { 2300 assert((Width == 8 || Width == 16 || Width == 32) && 2301 "Invalid element width"); 2302 assert(NumElems * Width <= 64 && "Invalid result width"); 2303 2304 if (!isImm()) 2305 return false; 2306 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2307 // Must be a constant. 2308 if (!CE) 2309 return false; 2310 int64_t Value = CE->getValue(); 2311 if (!Value) 2312 return false; // Don't bother with zero. 2313 if (Inv) 2314 Value = ~Value; 2315 2316 uint64_t Mask = (1ull << Width) - 1; 2317 uint64_t Elem = Value & Mask; 2318 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) 2319 return false; 2320 if (Width == 32 && !isValidNEONi32vmovImm(Elem)) 2321 return false; 2322 2323 for (unsigned i = 1; i < NumElems; ++i) { 2324 Value >>= Width; 2325 if ((Value & Mask) != Elem) 2326 return false; 2327 } 2328 return true; 2329 } 2330 2331 bool isNEONByteReplicate(unsigned NumBytes) const { 2332 return isNEONReplicate(8, NumBytes, false); 2333 } 2334 2335 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { 2336 assert((FromW == 8 || FromW == 16 || FromW == 32) && 2337 "Invalid source width"); 2338 assert((ToW == 16 || ToW == 32 || ToW == 64) && 2339 "Invalid destination width"); 2340 assert(FromW < ToW && "ToW is not less than FromW"); 2341 } 2342 2343 template<unsigned FromW, unsigned ToW> 2344 bool isNEONmovReplicate() const { 2345 checkNeonReplicateArgs(FromW, ToW); 2346 if (ToW == 64 && isNEONi64splat()) 2347 return false; 2348 return isNEONReplicate(FromW, ToW / FromW, false); 2349 } 2350 2351 template<unsigned FromW, unsigned ToW> 2352 bool isNEONinvReplicate() const { 2353 checkNeonReplicateArgs(FromW, ToW); 2354 return isNEONReplicate(FromW, ToW / FromW, true); 2355 } 2356 2357 bool isNEONi32vmov() const { 2358 if (isNEONByteReplicate(4)) 2359 return false; // Let it to be classified as byte-replicate case. 2360 if (!isImm()) 2361 return false; 2362 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2363 // Must be a constant. 2364 if (!CE) 2365 return false; 2366 return isValidNEONi32vmovImm(CE->getValue()); 2367 } 2368 2369 bool isNEONi32vmovNeg() const { 2370 if (!isImm()) return false; 2371 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2372 // Must be a constant. 2373 if (!CE) return false; 2374 return isValidNEONi32vmovImm(~CE->getValue()); 2375 } 2376 2377 bool isNEONi64splat() const { 2378 if (!isImm()) return false; 2379 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2380 // Must be a constant. 2381 if (!CE) return false; 2382 uint64_t Value = CE->getValue(); 2383 // i64 value with each byte being either 0 or 0xff. 2384 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 2385 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 2386 return true; 2387 } 2388 2389 template<int64_t Angle, int64_t Remainder> 2390 bool isComplexRotation() const { 2391 if (!isImm()) return false; 2392 2393 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2394 if (!CE) return false; 2395 uint64_t Value = CE->getValue(); 2396 2397 return (Value % Angle == Remainder && Value <= 270); 2398 } 2399 2400 bool isMVELongShift() const { 2401 if (!isImm()) return false; 2402 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2403 // Must be a constant. 2404 if (!CE) return false; 2405 uint64_t Value = CE->getValue(); 2406 return Value >= 1 && Value <= 32; 2407 } 2408 2409 bool isMveSaturateOp() const { 2410 if (!isImm()) return false; 2411 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2412 if (!CE) return false; 2413 uint64_t Value = CE->getValue(); 2414 return Value == 48 || Value == 64; 2415 } 2416 2417 bool isITCondCodeNoAL() const { 2418 if (!isITCondCode()) return false; 2419 ARMCC::CondCodes CC = getCondCode(); 2420 return CC != ARMCC::AL; 2421 } 2422 2423 bool isITCondCodeRestrictedI() const { 2424 if (!isITCondCode()) 2425 return false; 2426 ARMCC::CondCodes CC = getCondCode(); 2427 return CC == ARMCC::EQ || CC == ARMCC::NE; 2428 } 2429 2430 bool isITCondCodeRestrictedS() const { 2431 if (!isITCondCode()) 2432 return false; 2433 ARMCC::CondCodes CC = getCondCode(); 2434 return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE || 2435 CC == ARMCC::GE; 2436 } 2437 2438 bool isITCondCodeRestrictedU() const { 2439 if (!isITCondCode()) 2440 return false; 2441 ARMCC::CondCodes CC = getCondCode(); 2442 return CC == ARMCC::HS || CC == ARMCC::HI; 2443 } 2444 2445 bool isITCondCodeRestrictedFP() const { 2446 if (!isITCondCode()) 2447 return false; 2448 ARMCC::CondCodes CC = getCondCode(); 2449 return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT || 2450 CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE; 2451 } 2452 2453 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 2454 // Add as immediates when possible. Null MCExpr = 0. 2455 if (!Expr) 2456 Inst.addOperand(MCOperand::createImm(0)); 2457 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 2458 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2459 else 2460 Inst.addOperand(MCOperand::createExpr(Expr)); 2461 } 2462 2463 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 2464 assert(N == 1 && "Invalid number of operands!"); 2465 addExpr(Inst, getImm()); 2466 } 2467 2468 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 2469 assert(N == 1 && "Invalid number of operands!"); 2470 addExpr(Inst, getImm()); 2471 } 2472 2473 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 2474 assert(N == 2 && "Invalid number of operands!"); 2475 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2476 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 2477 Inst.addOperand(MCOperand::createReg(RegNum)); 2478 } 2479 2480 void addVPTPredNOperands(MCInst &Inst, unsigned N) const { 2481 assert(N == 2 && "Invalid number of operands!"); 2482 Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred()))); 2483 unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0; 2484 Inst.addOperand(MCOperand::createReg(RegNum)); 2485 } 2486 2487 void addVPTPredROperands(MCInst &Inst, unsigned N) const { 2488 assert(N == 3 && "Invalid number of operands!"); 2489 addVPTPredNOperands(Inst, N-1); 2490 unsigned RegNum; 2491 if (getVPTPred() == ARMVCC::None) { 2492 RegNum = 0; 2493 } else { 2494 unsigned NextOpIndex = Inst.getNumOperands(); 2495 const MCInstrDesc &MCID = ARMInsts[Inst.getOpcode()]; 2496 int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO); 2497 assert(TiedOp >= 0 && 2498 "Inactive register in vpred_r is not tied to an output!"); 2499 RegNum = Inst.getOperand(TiedOp).getReg(); 2500 } 2501 Inst.addOperand(MCOperand::createReg(RegNum)); 2502 } 2503 2504 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 2505 assert(N == 1 && "Invalid number of operands!"); 2506 Inst.addOperand(MCOperand::createImm(getCoproc())); 2507 } 2508 2509 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 2510 assert(N == 1 && "Invalid number of operands!"); 2511 Inst.addOperand(MCOperand::createImm(getCoproc())); 2512 } 2513 2514 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 2515 assert(N == 1 && "Invalid number of operands!"); 2516 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 2517 } 2518 2519 void addITMaskOperands(MCInst &Inst, unsigned N) const { 2520 assert(N == 1 && "Invalid number of operands!"); 2521 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 2522 } 2523 2524 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 2525 assert(N == 1 && "Invalid number of operands!"); 2526 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2527 } 2528 2529 void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const { 2530 assert(N == 1 && "Invalid number of operands!"); 2531 Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode())))); 2532 } 2533 2534 void addCCOutOperands(MCInst &Inst, unsigned N) const { 2535 assert(N == 1 && "Invalid number of operands!"); 2536 Inst.addOperand(MCOperand::createReg(getReg())); 2537 } 2538 2539 void addRegOperands(MCInst &Inst, unsigned N) const { 2540 assert(N == 1 && "Invalid number of operands!"); 2541 Inst.addOperand(MCOperand::createReg(getReg())); 2542 } 2543 2544 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 2545 assert(N == 3 && "Invalid number of operands!"); 2546 assert(isRegShiftedReg() && 2547 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 2548 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 2549 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 2550 Inst.addOperand(MCOperand::createImm( 2551 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 2552 } 2553 2554 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 2555 assert(N == 2 && "Invalid number of operands!"); 2556 assert(isRegShiftedImm() && 2557 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 2558 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 2559 // Shift of #32 is encoded as 0 where permitted 2560 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 2561 Inst.addOperand(MCOperand::createImm( 2562 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 2563 } 2564 2565 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 2566 assert(N == 1 && "Invalid number of operands!"); 2567 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 2568 ShifterImm.Imm)); 2569 } 2570 2571 void addRegListOperands(MCInst &Inst, unsigned N) const { 2572 assert(N == 1 && "Invalid number of operands!"); 2573 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2574 for (SmallVectorImpl<unsigned>::const_iterator 2575 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2576 Inst.addOperand(MCOperand::createReg(*I)); 2577 } 2578 2579 void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const { 2580 assert(N == 1 && "Invalid number of operands!"); 2581 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2582 for (SmallVectorImpl<unsigned>::const_iterator 2583 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2584 Inst.addOperand(MCOperand::createReg(*I)); 2585 } 2586 2587 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2588 addRegListOperands(Inst, N); 2589 } 2590 2591 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2592 addRegListOperands(Inst, N); 2593 } 2594 2595 void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2596 addRegListOperands(Inst, N); 2597 } 2598 2599 void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2600 addRegListOperands(Inst, N); 2601 } 2602 2603 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2604 assert(N == 1 && "Invalid number of operands!"); 2605 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2606 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2607 } 2608 2609 void addModImmOperands(MCInst &Inst, unsigned N) const { 2610 assert(N == 1 && "Invalid number of operands!"); 2611 2612 // Support for fixups (MCFixup) 2613 if (isImm()) 2614 return addImmOperands(Inst, N); 2615 2616 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2617 } 2618 2619 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2620 assert(N == 1 && "Invalid number of operands!"); 2621 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2622 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2623 Inst.addOperand(MCOperand::createImm(Enc)); 2624 } 2625 2626 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2627 assert(N == 1 && "Invalid number of operands!"); 2628 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2629 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2630 Inst.addOperand(MCOperand::createImm(Enc)); 2631 } 2632 2633 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 2634 assert(N == 1 && "Invalid number of operands!"); 2635 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2636 uint32_t Val = -CE->getValue(); 2637 Inst.addOperand(MCOperand::createImm(Val)); 2638 } 2639 2640 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 2641 assert(N == 1 && "Invalid number of operands!"); 2642 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2643 uint32_t Val = -CE->getValue(); 2644 Inst.addOperand(MCOperand::createImm(Val)); 2645 } 2646 2647 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2648 assert(N == 1 && "Invalid number of operands!"); 2649 // Munge the lsb/width into a bitfield mask. 2650 unsigned lsb = Bitfield.LSB; 2651 unsigned width = Bitfield.Width; 2652 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2653 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2654 (32 - (lsb + width))); 2655 Inst.addOperand(MCOperand::createImm(Mask)); 2656 } 2657 2658 void addImmOperands(MCInst &Inst, unsigned N) const { 2659 assert(N == 1 && "Invalid number of operands!"); 2660 addExpr(Inst, getImm()); 2661 } 2662 2663 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2664 assert(N == 1 && "Invalid number of operands!"); 2665 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2666 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2667 } 2668 2669 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2670 assert(N == 1 && "Invalid number of operands!"); 2671 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2672 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2673 } 2674 2675 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2676 assert(N == 1 && "Invalid number of operands!"); 2677 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2678 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2679 Inst.addOperand(MCOperand::createImm(Val)); 2680 } 2681 2682 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2683 assert(N == 1 && "Invalid number of operands!"); 2684 // FIXME: We really want to scale the value here, but the LDRD/STRD 2685 // instruction don't encode operands that way yet. 2686 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2687 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2688 } 2689 2690 void addImm7s4Operands(MCInst &Inst, unsigned N) const { 2691 assert(N == 1 && "Invalid number of operands!"); 2692 // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR 2693 // instruction don't encode operands that way yet. 2694 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2695 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2696 } 2697 2698 void addImm7Shift0Operands(MCInst &Inst, unsigned N) const { 2699 assert(N == 1 && "Invalid number of operands!"); 2700 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2701 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2702 } 2703 2704 void addImm7Shift1Operands(MCInst &Inst, unsigned N) const { 2705 assert(N == 1 && "Invalid number of operands!"); 2706 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2707 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2708 } 2709 2710 void addImm7Shift2Operands(MCInst &Inst, unsigned N) const { 2711 assert(N == 1 && "Invalid number of operands!"); 2712 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2713 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2714 } 2715 2716 void addImm7Operands(MCInst &Inst, unsigned N) const { 2717 assert(N == 1 && "Invalid number of operands!"); 2718 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2719 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2720 } 2721 2722 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2723 assert(N == 1 && "Invalid number of operands!"); 2724 // The immediate is scaled by four in the encoding and is stored 2725 // in the MCInst as such. Lop off the low two bits here. 2726 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2727 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2728 } 2729 2730 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2731 assert(N == 1 && "Invalid number of operands!"); 2732 // The immediate is scaled by four in the encoding and is stored 2733 // in the MCInst as such. Lop off the low two bits here. 2734 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2735 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2736 } 2737 2738 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2739 assert(N == 1 && "Invalid number of operands!"); 2740 // The immediate is scaled by four in the encoding and is stored 2741 // in the MCInst as such. Lop off the low two bits here. 2742 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2743 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2744 } 2745 2746 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2747 assert(N == 1 && "Invalid number of operands!"); 2748 // The constant encodes as the immediate-1, and we store in the instruction 2749 // the bits as encoded, so subtract off one here. 2750 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2751 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2752 } 2753 2754 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2755 assert(N == 1 && "Invalid number of operands!"); 2756 // The constant encodes as the immediate-1, and we store in the instruction 2757 // the bits as encoded, so subtract off one here. 2758 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2759 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2760 } 2761 2762 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2763 assert(N == 1 && "Invalid number of operands!"); 2764 // The constant encodes as the immediate, except for 32, which encodes as 2765 // zero. 2766 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2767 unsigned Imm = CE->getValue(); 2768 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2769 } 2770 2771 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2772 assert(N == 1 && "Invalid number of operands!"); 2773 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2774 // the instruction as well. 2775 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2776 int Val = CE->getValue(); 2777 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2778 } 2779 2780 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2781 assert(N == 1 && "Invalid number of operands!"); 2782 // The operand is actually a t2_so_imm, but we have its bitwise 2783 // negation in the assembly source, so twiddle it here. 2784 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2785 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2786 } 2787 2788 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2789 assert(N == 1 && "Invalid number of operands!"); 2790 // The operand is actually a t2_so_imm, but we have its 2791 // negation in the assembly source, so twiddle it here. 2792 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2793 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2794 } 2795 2796 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2797 assert(N == 1 && "Invalid number of operands!"); 2798 // The operand is actually an imm0_4095, but we have its 2799 // negation in the assembly source, so twiddle it here. 2800 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2801 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2802 } 2803 2804 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2805 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2806 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2807 return; 2808 } 2809 const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val); 2810 Inst.addOperand(MCOperand::createExpr(SR)); 2811 } 2812 2813 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2814 assert(N == 1 && "Invalid number of operands!"); 2815 if (isImm()) { 2816 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2817 if (CE) { 2818 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2819 return; 2820 } 2821 const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val); 2822 Inst.addOperand(MCOperand::createExpr(SR)); 2823 return; 2824 } 2825 2826 assert(isGPRMem() && "Unknown value type!"); 2827 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2828 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 2829 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2830 else 2831 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 2832 } 2833 2834 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2835 assert(N == 1 && "Invalid number of operands!"); 2836 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2837 } 2838 2839 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2840 assert(N == 1 && "Invalid number of operands!"); 2841 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2842 } 2843 2844 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2845 assert(N == 1 && "Invalid number of operands!"); 2846 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt()))); 2847 } 2848 2849 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2850 assert(N == 1 && "Invalid number of operands!"); 2851 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2852 } 2853 2854 void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const { 2855 assert(N == 1 && "Invalid number of operands!"); 2856 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2857 } 2858 2859 void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const { 2860 assert(N == 1 && "Invalid number of operands!"); 2861 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2862 } 2863 2864 void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const { 2865 assert(N == 1 && "Invalid number of operands!"); 2866 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2867 } 2868 2869 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2870 assert(N == 1 && "Invalid number of operands!"); 2871 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 2872 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2873 else 2874 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 2875 } 2876 2877 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2878 assert(N == 1 && "Invalid number of operands!"); 2879 assert(isImm() && "Not an immediate!"); 2880 2881 // If we have an immediate that's not a constant, treat it as a label 2882 // reference needing a fixup. 2883 if (!isa<MCConstantExpr>(getImm())) { 2884 Inst.addOperand(MCOperand::createExpr(getImm())); 2885 return; 2886 } 2887 2888 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2889 int Val = CE->getValue(); 2890 Inst.addOperand(MCOperand::createImm(Val)); 2891 } 2892 2893 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2894 assert(N == 2 && "Invalid number of operands!"); 2895 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2896 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2897 } 2898 2899 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2900 addAlignedMemoryOperands(Inst, N); 2901 } 2902 2903 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2904 addAlignedMemoryOperands(Inst, N); 2905 } 2906 2907 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2908 addAlignedMemoryOperands(Inst, N); 2909 } 2910 2911 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2912 addAlignedMemoryOperands(Inst, N); 2913 } 2914 2915 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2916 addAlignedMemoryOperands(Inst, N); 2917 } 2918 2919 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2920 addAlignedMemoryOperands(Inst, N); 2921 } 2922 2923 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2924 addAlignedMemoryOperands(Inst, N); 2925 } 2926 2927 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2928 addAlignedMemoryOperands(Inst, N); 2929 } 2930 2931 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2932 addAlignedMemoryOperands(Inst, N); 2933 } 2934 2935 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2936 addAlignedMemoryOperands(Inst, N); 2937 } 2938 2939 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2940 addAlignedMemoryOperands(Inst, N); 2941 } 2942 2943 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2944 assert(N == 3 && "Invalid number of operands!"); 2945 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2946 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2947 if (!Memory.OffsetRegNum) { 2948 if (!Memory.OffsetImm) 2949 Inst.addOperand(MCOperand::createImm(0)); 2950 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 2951 int32_t Val = CE->getValue(); 2952 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2953 // Special case for #-0 2954 if (Val == std::numeric_limits<int32_t>::min()) 2955 Val = 0; 2956 if (Val < 0) 2957 Val = -Val; 2958 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2959 Inst.addOperand(MCOperand::createImm(Val)); 2960 } else 2961 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 2962 } else { 2963 // For register offset, we encode the shift type and negation flag 2964 // here. 2965 int32_t Val = 2966 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2967 Memory.ShiftImm, Memory.ShiftType); 2968 Inst.addOperand(MCOperand::createImm(Val)); 2969 } 2970 } 2971 2972 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2973 assert(N == 2 && "Invalid number of operands!"); 2974 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2975 assert(CE && "non-constant AM2OffsetImm operand!"); 2976 int32_t Val = CE->getValue(); 2977 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2978 // Special case for #-0 2979 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2980 if (Val < 0) Val = -Val; 2981 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2982 Inst.addOperand(MCOperand::createReg(0)); 2983 Inst.addOperand(MCOperand::createImm(Val)); 2984 } 2985 2986 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2987 assert(N == 3 && "Invalid number of operands!"); 2988 // If we have an immediate that's not a constant, treat it as a label 2989 // reference needing a fixup. If it is a constant, it's something else 2990 // and we reject it. 2991 if (isImm()) { 2992 Inst.addOperand(MCOperand::createExpr(getImm())); 2993 Inst.addOperand(MCOperand::createReg(0)); 2994 Inst.addOperand(MCOperand::createImm(0)); 2995 return; 2996 } 2997 2998 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2999 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3000 if (!Memory.OffsetRegNum) { 3001 if (!Memory.OffsetImm) 3002 Inst.addOperand(MCOperand::createImm(0)); 3003 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 3004 int32_t Val = CE->getValue(); 3005 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 3006 // Special case for #-0 3007 if (Val == std::numeric_limits<int32_t>::min()) 3008 Val = 0; 3009 if (Val < 0) 3010 Val = -Val; 3011 Val = ARM_AM::getAM3Opc(AddSub, Val); 3012 Inst.addOperand(MCOperand::createImm(Val)); 3013 } else 3014 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3015 } else { 3016 // For register offset, we encode the shift type and negation flag 3017 // here. 3018 int32_t Val = 3019 ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 3020 Inst.addOperand(MCOperand::createImm(Val)); 3021 } 3022 } 3023 3024 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 3025 assert(N == 2 && "Invalid number of operands!"); 3026 if (Kind == k_PostIndexRegister) { 3027 int32_t Val = 3028 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 3029 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3030 Inst.addOperand(MCOperand::createImm(Val)); 3031 return; 3032 } 3033 3034 // Constant offset. 3035 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 3036 int32_t Val = CE->getValue(); 3037 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 3038 // Special case for #-0 3039 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 3040 if (Val < 0) Val = -Val; 3041 Val = ARM_AM::getAM3Opc(AddSub, Val); 3042 Inst.addOperand(MCOperand::createReg(0)); 3043 Inst.addOperand(MCOperand::createImm(Val)); 3044 } 3045 3046 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 3047 assert(N == 2 && "Invalid number of operands!"); 3048 // If we have an immediate that's not a constant, treat it as a label 3049 // reference needing a fixup. If it is a constant, it's something else 3050 // and we reject it. 3051 if (isImm()) { 3052 Inst.addOperand(MCOperand::createExpr(getImm())); 3053 Inst.addOperand(MCOperand::createImm(0)); 3054 return; 3055 } 3056 3057 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3058 if (!Memory.OffsetImm) 3059 Inst.addOperand(MCOperand::createImm(0)); 3060 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 3061 // The lower two bits are always zero and as such are not encoded. 3062 int32_t Val = CE->getValue() / 4; 3063 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 3064 // Special case for #-0 3065 if (Val == std::numeric_limits<int32_t>::min()) 3066 Val = 0; 3067 if (Val < 0) 3068 Val = -Val; 3069 Val = ARM_AM::getAM5Opc(AddSub, Val); 3070 Inst.addOperand(MCOperand::createImm(Val)); 3071 } else 3072 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3073 } 3074 3075 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 3076 assert(N == 2 && "Invalid number of operands!"); 3077 // If we have an immediate that's not a constant, treat it as a label 3078 // reference needing a fixup. If it is a constant, it's something else 3079 // and we reject it. 3080 if (isImm()) { 3081 Inst.addOperand(MCOperand::createExpr(getImm())); 3082 Inst.addOperand(MCOperand::createImm(0)); 3083 return; 3084 } 3085 3086 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3087 // The lower bit is always zero and as such is not encoded. 3088 if (!Memory.OffsetImm) 3089 Inst.addOperand(MCOperand::createImm(0)); 3090 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 3091 int32_t Val = CE->getValue() / 2; 3092 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 3093 // Special case for #-0 3094 if (Val == std::numeric_limits<int32_t>::min()) 3095 Val = 0; 3096 if (Val < 0) 3097 Val = -Val; 3098 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 3099 Inst.addOperand(MCOperand::createImm(Val)); 3100 } else 3101 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3102 } 3103 3104 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 3105 assert(N == 2 && "Invalid number of operands!"); 3106 // If we have an immediate that's not a constant, treat it as a label 3107 // reference needing a fixup. If it is a constant, it's something else 3108 // and we reject it. 3109 if (isImm()) { 3110 Inst.addOperand(MCOperand::createExpr(getImm())); 3111 Inst.addOperand(MCOperand::createImm(0)); 3112 return; 3113 } 3114 3115 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3116 addExpr(Inst, Memory.OffsetImm); 3117 } 3118 3119 void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const { 3120 assert(N == 2 && "Invalid number of operands!"); 3121 // If we have an immediate that's not a constant, treat it as a label 3122 // reference needing a fixup. If it is a constant, it's something else 3123 // and we reject it. 3124 if (isImm()) { 3125 Inst.addOperand(MCOperand::createExpr(getImm())); 3126 Inst.addOperand(MCOperand::createImm(0)); 3127 return; 3128 } 3129 3130 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3131 addExpr(Inst, Memory.OffsetImm); 3132 } 3133 3134 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 3135 assert(N == 2 && "Invalid number of operands!"); 3136 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3137 if (!Memory.OffsetImm) 3138 Inst.addOperand(MCOperand::createImm(0)); 3139 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 3140 // The lower two bits are always zero and as such are not encoded. 3141 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 3142 else 3143 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3144 } 3145 3146 void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const { 3147 assert(N == 2 && "Invalid number of operands!"); 3148 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3149 addExpr(Inst, Memory.OffsetImm); 3150 } 3151 3152 void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const { 3153 assert(N == 2 && "Invalid number of operands!"); 3154 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3155 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3156 } 3157 3158 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 3159 assert(N == 2 && "Invalid number of operands!"); 3160 // If this is an immediate, it's a label reference. 3161 if (isImm()) { 3162 addExpr(Inst, getImm()); 3163 Inst.addOperand(MCOperand::createImm(0)); 3164 return; 3165 } 3166 3167 // Otherwise, it's a normal memory reg+offset. 3168 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3169 addExpr(Inst, Memory.OffsetImm); 3170 } 3171 3172 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 3173 assert(N == 2 && "Invalid number of operands!"); 3174 // If this is an immediate, it's a label reference. 3175 if (isImm()) { 3176 addExpr(Inst, getImm()); 3177 Inst.addOperand(MCOperand::createImm(0)); 3178 return; 3179 } 3180 3181 // Otherwise, it's a normal memory reg+offset. 3182 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3183 addExpr(Inst, Memory.OffsetImm); 3184 } 3185 3186 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 3187 assert(N == 1 && "Invalid number of operands!"); 3188 // This is container for the immediate that we will create the constant 3189 // pool from 3190 addExpr(Inst, getConstantPoolImm()); 3191 } 3192 3193 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 3194 assert(N == 2 && "Invalid number of operands!"); 3195 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3196 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3197 } 3198 3199 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 3200 assert(N == 2 && "Invalid number of operands!"); 3201 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3202 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3203 } 3204 3205 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3206 assert(N == 3 && "Invalid number of operands!"); 3207 unsigned Val = 3208 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 3209 Memory.ShiftImm, Memory.ShiftType); 3210 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3211 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3212 Inst.addOperand(MCOperand::createImm(Val)); 3213 } 3214 3215 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3216 assert(N == 3 && "Invalid number of operands!"); 3217 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3218 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3219 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 3220 } 3221 3222 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 3223 assert(N == 2 && "Invalid number of operands!"); 3224 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3225 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3226 } 3227 3228 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 3229 assert(N == 2 && "Invalid number of operands!"); 3230 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3231 if (!Memory.OffsetImm) 3232 Inst.addOperand(MCOperand::createImm(0)); 3233 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 3234 // The lower two bits are always zero and as such are not encoded. 3235 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 3236 else 3237 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3238 } 3239 3240 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 3241 assert(N == 2 && "Invalid number of operands!"); 3242 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3243 if (!Memory.OffsetImm) 3244 Inst.addOperand(MCOperand::createImm(0)); 3245 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 3246 Inst.addOperand(MCOperand::createImm(CE->getValue() / 2)); 3247 else 3248 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3249 } 3250 3251 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 3252 assert(N == 2 && "Invalid number of operands!"); 3253 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3254 addExpr(Inst, Memory.OffsetImm); 3255 } 3256 3257 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 3258 assert(N == 2 && "Invalid number of operands!"); 3259 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3260 if (!Memory.OffsetImm) 3261 Inst.addOperand(MCOperand::createImm(0)); 3262 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 3263 // The lower two bits are always zero and as such are not encoded. 3264 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 3265 else 3266 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3267 } 3268 3269 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 3270 assert(N == 1 && "Invalid number of operands!"); 3271 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3272 assert(CE && "non-constant post-idx-imm8 operand!"); 3273 int Imm = CE->getValue(); 3274 bool isAdd = Imm >= 0; 3275 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3276 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 3277 Inst.addOperand(MCOperand::createImm(Imm)); 3278 } 3279 3280 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 3281 assert(N == 1 && "Invalid number of operands!"); 3282 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3283 assert(CE && "non-constant post-idx-imm8s4 operand!"); 3284 int Imm = CE->getValue(); 3285 bool isAdd = Imm >= 0; 3286 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3287 // Immediate is scaled by 4. 3288 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 3289 Inst.addOperand(MCOperand::createImm(Imm)); 3290 } 3291 3292 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 3293 assert(N == 2 && "Invalid number of operands!"); 3294 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3295 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 3296 } 3297 3298 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 3299 assert(N == 2 && "Invalid number of operands!"); 3300 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3301 // The sign, shift type, and shift amount are encoded in a single operand 3302 // using the AM2 encoding helpers. 3303 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 3304 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 3305 PostIdxReg.ShiftTy); 3306 Inst.addOperand(MCOperand::createImm(Imm)); 3307 } 3308 3309 void addPowerTwoOperands(MCInst &Inst, unsigned N) const { 3310 assert(N == 1 && "Invalid number of operands!"); 3311 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3312 Inst.addOperand(MCOperand::createImm(CE->getValue())); 3313 } 3314 3315 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 3316 assert(N == 1 && "Invalid number of operands!"); 3317 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 3318 } 3319 3320 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 3321 assert(N == 1 && "Invalid number of operands!"); 3322 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 3323 } 3324 3325 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 3326 assert(N == 1 && "Invalid number of operands!"); 3327 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 3328 } 3329 3330 void addVecListOperands(MCInst &Inst, unsigned N) const { 3331 assert(N == 1 && "Invalid number of operands!"); 3332 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3333 } 3334 3335 void addMVEVecListOperands(MCInst &Inst, unsigned N) const { 3336 assert(N == 1 && "Invalid number of operands!"); 3337 3338 // When we come here, the VectorList field will identify a range 3339 // of q-registers by its base register and length, and it will 3340 // have already been error-checked to be the expected length of 3341 // range and contain only q-regs in the range q0-q7. So we can 3342 // count on the base register being in the range q0-q6 (for 2 3343 // regs) or q0-q4 (for 4) 3344 // 3345 // The MVE instructions taking a register range of this kind will 3346 // need an operand in the QQPR or QQQQPR class, representing the 3347 // entire range as a unit. So we must translate into that class, 3348 // by finding the index of the base register in the MQPR reg 3349 // class, and returning the super-register at the corresponding 3350 // index in the target class. 3351 3352 const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID]; 3353 const MCRegisterClass *RC_out = (VectorList.Count == 2) ? 3354 &ARMMCRegisterClasses[ARM::QQPRRegClassID] : 3355 &ARMMCRegisterClasses[ARM::QQQQPRRegClassID]; 3356 3357 unsigned I, E = RC_out->getNumRegs(); 3358 for (I = 0; I < E; I++) 3359 if (RC_in->getRegister(I) == VectorList.RegNum) 3360 break; 3361 assert(I < E && "Invalid vector list start register!"); 3362 3363 Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I))); 3364 } 3365 3366 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 3367 assert(N == 2 && "Invalid number of operands!"); 3368 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3369 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 3370 } 3371 3372 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 3373 assert(N == 1 && "Invalid number of operands!"); 3374 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3375 } 3376 3377 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 3378 assert(N == 1 && "Invalid number of operands!"); 3379 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3380 } 3381 3382 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 3383 assert(N == 1 && "Invalid number of operands!"); 3384 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3385 } 3386 3387 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { 3388 assert(N == 1 && "Invalid number of operands!"); 3389 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3390 } 3391 3392 void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const { 3393 assert(N == 1 && "Invalid number of operands!"); 3394 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3395 } 3396 3397 void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const { 3398 assert(N == 1 && "Invalid number of operands!"); 3399 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3400 } 3401 3402 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 3403 assert(N == 1 && "Invalid number of operands!"); 3404 // The immediate encodes the type of constant as well as the value. 3405 // Mask in that this is an i8 splat. 3406 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3407 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 3408 } 3409 3410 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 3411 assert(N == 1 && "Invalid number of operands!"); 3412 // The immediate encodes the type of constant as well as the value. 3413 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3414 unsigned Value = CE->getValue(); 3415 Value = ARM_AM::encodeNEONi16splat(Value); 3416 Inst.addOperand(MCOperand::createImm(Value)); 3417 } 3418 3419 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 3420 assert(N == 1 && "Invalid number of operands!"); 3421 // The immediate encodes the type of constant as well as the value. 3422 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3423 unsigned Value = CE->getValue(); 3424 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 3425 Inst.addOperand(MCOperand::createImm(Value)); 3426 } 3427 3428 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 3429 assert(N == 1 && "Invalid number of operands!"); 3430 // The immediate encodes the type of constant as well as the value. 3431 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3432 unsigned Value = CE->getValue(); 3433 Value = ARM_AM::encodeNEONi32splat(Value); 3434 Inst.addOperand(MCOperand::createImm(Value)); 3435 } 3436 3437 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 3438 assert(N == 1 && "Invalid number of operands!"); 3439 // The immediate encodes the type of constant as well as the value. 3440 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3441 unsigned Value = CE->getValue(); 3442 Value = ARM_AM::encodeNEONi32splat(~Value); 3443 Inst.addOperand(MCOperand::createImm(Value)); 3444 } 3445 3446 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { 3447 // The immediate encodes the type of constant as well as the value. 3448 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3449 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 3450 Inst.getOpcode() == ARM::VMOVv16i8) && 3451 "All instructions that wants to replicate non-zero byte " 3452 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 3453 unsigned Value = CE->getValue(); 3454 if (Inv) 3455 Value = ~Value; 3456 unsigned B = Value & 0xff; 3457 B |= 0xe00; // cmode = 0b1110 3458 Inst.addOperand(MCOperand::createImm(B)); 3459 } 3460 3461 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3462 assert(N == 1 && "Invalid number of operands!"); 3463 addNEONi8ReplicateOperands(Inst, true); 3464 } 3465 3466 static unsigned encodeNeonVMOVImmediate(unsigned Value) { 3467 if (Value >= 256 && Value <= 0xffff) 3468 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 3469 else if (Value > 0xffff && Value <= 0xffffff) 3470 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 3471 else if (Value > 0xffffff) 3472 Value = (Value >> 24) | 0x600; 3473 return Value; 3474 } 3475 3476 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 3477 assert(N == 1 && "Invalid number of operands!"); 3478 // The immediate encodes the type of constant as well as the value. 3479 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3480 unsigned Value = encodeNeonVMOVImmediate(CE->getValue()); 3481 Inst.addOperand(MCOperand::createImm(Value)); 3482 } 3483 3484 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3485 assert(N == 1 && "Invalid number of operands!"); 3486 addNEONi8ReplicateOperands(Inst, false); 3487 } 3488 3489 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { 3490 assert(N == 1 && "Invalid number of operands!"); 3491 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3492 assert((Inst.getOpcode() == ARM::VMOVv4i16 || 3493 Inst.getOpcode() == ARM::VMOVv8i16 || 3494 Inst.getOpcode() == ARM::VMVNv4i16 || 3495 Inst.getOpcode() == ARM::VMVNv8i16) && 3496 "All instructions that want to replicate non-zero half-word " 3497 "always must be replaced with V{MOV,MVN}v{4,8}i16."); 3498 uint64_t Value = CE->getValue(); 3499 unsigned Elem = Value & 0xffff; 3500 if (Elem >= 256) 3501 Elem = (Elem >> 8) | 0x200; 3502 Inst.addOperand(MCOperand::createImm(Elem)); 3503 } 3504 3505 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 3506 assert(N == 1 && "Invalid number of operands!"); 3507 // The immediate encodes the type of constant as well as the value. 3508 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3509 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue()); 3510 Inst.addOperand(MCOperand::createImm(Value)); 3511 } 3512 3513 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { 3514 assert(N == 1 && "Invalid number of operands!"); 3515 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3516 assert((Inst.getOpcode() == ARM::VMOVv2i32 || 3517 Inst.getOpcode() == ARM::VMOVv4i32 || 3518 Inst.getOpcode() == ARM::VMVNv2i32 || 3519 Inst.getOpcode() == ARM::VMVNv4i32) && 3520 "All instructions that want to replicate non-zero word " 3521 "always must be replaced with V{MOV,MVN}v{2,4}i32."); 3522 uint64_t Value = CE->getValue(); 3523 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff); 3524 Inst.addOperand(MCOperand::createImm(Elem)); 3525 } 3526 3527 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 3528 assert(N == 1 && "Invalid number of operands!"); 3529 // The immediate encodes the type of constant as well as the value. 3530 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3531 uint64_t Value = CE->getValue(); 3532 unsigned Imm = 0; 3533 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 3534 Imm |= (Value & 1) << i; 3535 } 3536 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 3537 } 3538 3539 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { 3540 assert(N == 1 && "Invalid number of operands!"); 3541 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3542 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); 3543 } 3544 3545 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { 3546 assert(N == 1 && "Invalid number of operands!"); 3547 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3548 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); 3549 } 3550 3551 void addMveSaturateOperands(MCInst &Inst, unsigned N) const { 3552 assert(N == 1 && "Invalid number of operands!"); 3553 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3554 unsigned Imm = CE->getValue(); 3555 assert((Imm == 48 || Imm == 64) && "Invalid saturate operand"); 3556 Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0)); 3557 } 3558 3559 void print(raw_ostream &OS) const override; 3560 3561 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 3562 auto Op = std::make_unique<ARMOperand>(k_ITCondMask); 3563 Op->ITMask.Mask = Mask; 3564 Op->StartLoc = S; 3565 Op->EndLoc = S; 3566 return Op; 3567 } 3568 3569 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 3570 SMLoc S) { 3571 auto Op = std::make_unique<ARMOperand>(k_CondCode); 3572 Op->CC.Val = CC; 3573 Op->StartLoc = S; 3574 Op->EndLoc = S; 3575 return Op; 3576 } 3577 3578 static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC, 3579 SMLoc S) { 3580 auto Op = std::make_unique<ARMOperand>(k_VPTPred); 3581 Op->VCC.Val = CC; 3582 Op->StartLoc = S; 3583 Op->EndLoc = S; 3584 return Op; 3585 } 3586 3587 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 3588 auto Op = std::make_unique<ARMOperand>(k_CoprocNum); 3589 Op->Cop.Val = CopVal; 3590 Op->StartLoc = S; 3591 Op->EndLoc = S; 3592 return Op; 3593 } 3594 3595 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 3596 auto Op = std::make_unique<ARMOperand>(k_CoprocReg); 3597 Op->Cop.Val = CopVal; 3598 Op->StartLoc = S; 3599 Op->EndLoc = S; 3600 return Op; 3601 } 3602 3603 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 3604 SMLoc E) { 3605 auto Op = std::make_unique<ARMOperand>(k_CoprocOption); 3606 Op->Cop.Val = Val; 3607 Op->StartLoc = S; 3608 Op->EndLoc = E; 3609 return Op; 3610 } 3611 3612 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 3613 auto Op = std::make_unique<ARMOperand>(k_CCOut); 3614 Op->Reg.RegNum = RegNum; 3615 Op->StartLoc = S; 3616 Op->EndLoc = S; 3617 return Op; 3618 } 3619 3620 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 3621 auto Op = std::make_unique<ARMOperand>(k_Token); 3622 Op->Tok.Data = Str.data(); 3623 Op->Tok.Length = Str.size(); 3624 Op->StartLoc = S; 3625 Op->EndLoc = S; 3626 return Op; 3627 } 3628 3629 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 3630 SMLoc E) { 3631 auto Op = std::make_unique<ARMOperand>(k_Register); 3632 Op->Reg.RegNum = RegNum; 3633 Op->StartLoc = S; 3634 Op->EndLoc = E; 3635 return Op; 3636 } 3637 3638 static std::unique_ptr<ARMOperand> 3639 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3640 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 3641 SMLoc E) { 3642 auto Op = std::make_unique<ARMOperand>(k_ShiftedRegister); 3643 Op->RegShiftedReg.ShiftTy = ShTy; 3644 Op->RegShiftedReg.SrcReg = SrcReg; 3645 Op->RegShiftedReg.ShiftReg = ShiftReg; 3646 Op->RegShiftedReg.ShiftImm = ShiftImm; 3647 Op->StartLoc = S; 3648 Op->EndLoc = E; 3649 return Op; 3650 } 3651 3652 static std::unique_ptr<ARMOperand> 3653 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3654 unsigned ShiftImm, SMLoc S, SMLoc E) { 3655 auto Op = std::make_unique<ARMOperand>(k_ShiftedImmediate); 3656 Op->RegShiftedImm.ShiftTy = ShTy; 3657 Op->RegShiftedImm.SrcReg = SrcReg; 3658 Op->RegShiftedImm.ShiftImm = ShiftImm; 3659 Op->StartLoc = S; 3660 Op->EndLoc = E; 3661 return Op; 3662 } 3663 3664 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 3665 SMLoc S, SMLoc E) { 3666 auto Op = std::make_unique<ARMOperand>(k_ShifterImmediate); 3667 Op->ShifterImm.isASR = isASR; 3668 Op->ShifterImm.Imm = Imm; 3669 Op->StartLoc = S; 3670 Op->EndLoc = E; 3671 return Op; 3672 } 3673 3674 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 3675 SMLoc E) { 3676 auto Op = std::make_unique<ARMOperand>(k_RotateImmediate); 3677 Op->RotImm.Imm = Imm; 3678 Op->StartLoc = S; 3679 Op->EndLoc = E; 3680 return Op; 3681 } 3682 3683 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 3684 SMLoc S, SMLoc E) { 3685 auto Op = std::make_unique<ARMOperand>(k_ModifiedImmediate); 3686 Op->ModImm.Bits = Bits; 3687 Op->ModImm.Rot = Rot; 3688 Op->StartLoc = S; 3689 Op->EndLoc = E; 3690 return Op; 3691 } 3692 3693 static std::unique_ptr<ARMOperand> 3694 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 3695 auto Op = std::make_unique<ARMOperand>(k_ConstantPoolImmediate); 3696 Op->Imm.Val = Val; 3697 Op->StartLoc = S; 3698 Op->EndLoc = E; 3699 return Op; 3700 } 3701 3702 static std::unique_ptr<ARMOperand> 3703 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 3704 auto Op = std::make_unique<ARMOperand>(k_BitfieldDescriptor); 3705 Op->Bitfield.LSB = LSB; 3706 Op->Bitfield.Width = Width; 3707 Op->StartLoc = S; 3708 Op->EndLoc = E; 3709 return Op; 3710 } 3711 3712 static std::unique_ptr<ARMOperand> 3713 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 3714 SMLoc StartLoc, SMLoc EndLoc) { 3715 assert(Regs.size() > 0 && "RegList contains no registers?"); 3716 KindTy Kind = k_RegisterList; 3717 3718 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 3719 Regs.front().second)) { 3720 if (Regs.back().second == ARM::VPR) 3721 Kind = k_FPDRegisterListWithVPR; 3722 else 3723 Kind = k_DPRRegisterList; 3724 } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 3725 Regs.front().second)) { 3726 if (Regs.back().second == ARM::VPR) 3727 Kind = k_FPSRegisterListWithVPR; 3728 else 3729 Kind = k_SPRRegisterList; 3730 } 3731 3732 if (Kind == k_RegisterList && Regs.back().second == ARM::APSR) 3733 Kind = k_RegisterListWithAPSR; 3734 3735 assert(llvm::is_sorted(Regs) && "Register list must be sorted by encoding"); 3736 3737 auto Op = std::make_unique<ARMOperand>(Kind); 3738 for (const auto &P : Regs) 3739 Op->Registers.push_back(P.second); 3740 3741 Op->StartLoc = StartLoc; 3742 Op->EndLoc = EndLoc; 3743 return Op; 3744 } 3745 3746 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 3747 unsigned Count, 3748 bool isDoubleSpaced, 3749 SMLoc S, SMLoc E) { 3750 auto Op = std::make_unique<ARMOperand>(k_VectorList); 3751 Op->VectorList.RegNum = RegNum; 3752 Op->VectorList.Count = Count; 3753 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3754 Op->StartLoc = S; 3755 Op->EndLoc = E; 3756 return Op; 3757 } 3758 3759 static std::unique_ptr<ARMOperand> 3760 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 3761 SMLoc S, SMLoc E) { 3762 auto Op = std::make_unique<ARMOperand>(k_VectorListAllLanes); 3763 Op->VectorList.RegNum = RegNum; 3764 Op->VectorList.Count = Count; 3765 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3766 Op->StartLoc = S; 3767 Op->EndLoc = E; 3768 return Op; 3769 } 3770 3771 static std::unique_ptr<ARMOperand> 3772 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 3773 bool isDoubleSpaced, SMLoc S, SMLoc E) { 3774 auto Op = std::make_unique<ARMOperand>(k_VectorListIndexed); 3775 Op->VectorList.RegNum = RegNum; 3776 Op->VectorList.Count = Count; 3777 Op->VectorList.LaneIndex = Index; 3778 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3779 Op->StartLoc = S; 3780 Op->EndLoc = E; 3781 return Op; 3782 } 3783 3784 static std::unique_ptr<ARMOperand> 3785 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 3786 auto Op = std::make_unique<ARMOperand>(k_VectorIndex); 3787 Op->VectorIndex.Val = Idx; 3788 Op->StartLoc = S; 3789 Op->EndLoc = E; 3790 return Op; 3791 } 3792 3793 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 3794 SMLoc E) { 3795 auto Op = std::make_unique<ARMOperand>(k_Immediate); 3796 Op->Imm.Val = Val; 3797 Op->StartLoc = S; 3798 Op->EndLoc = E; 3799 return Op; 3800 } 3801 3802 static std::unique_ptr<ARMOperand> 3803 CreateMem(unsigned BaseRegNum, const MCExpr *OffsetImm, unsigned OffsetRegNum, 3804 ARM_AM::ShiftOpc ShiftType, unsigned ShiftImm, unsigned Alignment, 3805 bool isNegative, SMLoc S, SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 3806 auto Op = std::make_unique<ARMOperand>(k_Memory); 3807 Op->Memory.BaseRegNum = BaseRegNum; 3808 Op->Memory.OffsetImm = OffsetImm; 3809 Op->Memory.OffsetRegNum = OffsetRegNum; 3810 Op->Memory.ShiftType = ShiftType; 3811 Op->Memory.ShiftImm = ShiftImm; 3812 Op->Memory.Alignment = Alignment; 3813 Op->Memory.isNegative = isNegative; 3814 Op->StartLoc = S; 3815 Op->EndLoc = E; 3816 Op->AlignmentLoc = AlignmentLoc; 3817 return Op; 3818 } 3819 3820 static std::unique_ptr<ARMOperand> 3821 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 3822 unsigned ShiftImm, SMLoc S, SMLoc E) { 3823 auto Op = std::make_unique<ARMOperand>(k_PostIndexRegister); 3824 Op->PostIdxReg.RegNum = RegNum; 3825 Op->PostIdxReg.isAdd = isAdd; 3826 Op->PostIdxReg.ShiftTy = ShiftTy; 3827 Op->PostIdxReg.ShiftImm = ShiftImm; 3828 Op->StartLoc = S; 3829 Op->EndLoc = E; 3830 return Op; 3831 } 3832 3833 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3834 SMLoc S) { 3835 auto Op = std::make_unique<ARMOperand>(k_MemBarrierOpt); 3836 Op->MBOpt.Val = Opt; 3837 Op->StartLoc = S; 3838 Op->EndLoc = S; 3839 return Op; 3840 } 3841 3842 static std::unique_ptr<ARMOperand> 3843 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3844 auto Op = std::make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3845 Op->ISBOpt.Val = Opt; 3846 Op->StartLoc = S; 3847 Op->EndLoc = S; 3848 return Op; 3849 } 3850 3851 static std::unique_ptr<ARMOperand> 3852 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) { 3853 auto Op = std::make_unique<ARMOperand>(k_TraceSyncBarrierOpt); 3854 Op->TSBOpt.Val = Opt; 3855 Op->StartLoc = S; 3856 Op->EndLoc = S; 3857 return Op; 3858 } 3859 3860 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3861 SMLoc S) { 3862 auto Op = std::make_unique<ARMOperand>(k_ProcIFlags); 3863 Op->IFlags.Val = IFlags; 3864 Op->StartLoc = S; 3865 Op->EndLoc = S; 3866 return Op; 3867 } 3868 3869 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3870 auto Op = std::make_unique<ARMOperand>(k_MSRMask); 3871 Op->MMask.Val = MMask; 3872 Op->StartLoc = S; 3873 Op->EndLoc = S; 3874 return Op; 3875 } 3876 3877 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3878 auto Op = std::make_unique<ARMOperand>(k_BankedReg); 3879 Op->BankedReg.Val = Reg; 3880 Op->StartLoc = S; 3881 Op->EndLoc = S; 3882 return Op; 3883 } 3884 }; 3885 3886 } // end anonymous namespace. 3887 3888 void ARMOperand::print(raw_ostream &OS) const { 3889 auto RegName = [](unsigned Reg) { 3890 if (Reg) 3891 return ARMInstPrinter::getRegisterName(Reg); 3892 else 3893 return "noreg"; 3894 }; 3895 3896 switch (Kind) { 3897 case k_CondCode: 3898 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3899 break; 3900 case k_VPTPred: 3901 OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">"; 3902 break; 3903 case k_CCOut: 3904 OS << "<ccout " << RegName(getReg()) << ">"; 3905 break; 3906 case k_ITCondMask: { 3907 static const char *const MaskStr[] = { 3908 "(invalid)", "(tttt)", "(ttt)", "(ttte)", 3909 "(tt)", "(ttet)", "(tte)", "(ttee)", 3910 "(t)", "(tett)", "(tet)", "(tete)", 3911 "(te)", "(teet)", "(tee)", "(teee)", 3912 }; 3913 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3914 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3915 break; 3916 } 3917 case k_CoprocNum: 3918 OS << "<coprocessor number: " << getCoproc() << ">"; 3919 break; 3920 case k_CoprocReg: 3921 OS << "<coprocessor register: " << getCoproc() << ">"; 3922 break; 3923 case k_CoprocOption: 3924 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3925 break; 3926 case k_MSRMask: 3927 OS << "<mask: " << getMSRMask() << ">"; 3928 break; 3929 case k_BankedReg: 3930 OS << "<banked reg: " << getBankedReg() << ">"; 3931 break; 3932 case k_Immediate: 3933 OS << *getImm(); 3934 break; 3935 case k_MemBarrierOpt: 3936 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3937 break; 3938 case k_InstSyncBarrierOpt: 3939 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3940 break; 3941 case k_TraceSyncBarrierOpt: 3942 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">"; 3943 break; 3944 case k_Memory: 3945 OS << "<memory"; 3946 if (Memory.BaseRegNum) 3947 OS << " base:" << RegName(Memory.BaseRegNum); 3948 if (Memory.OffsetImm) 3949 OS << " offset-imm:" << *Memory.OffsetImm; 3950 if (Memory.OffsetRegNum) 3951 OS << " offset-reg:" << (Memory.isNegative ? "-" : "") 3952 << RegName(Memory.OffsetRegNum); 3953 if (Memory.ShiftType != ARM_AM::no_shift) { 3954 OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType); 3955 OS << " shift-imm:" << Memory.ShiftImm; 3956 } 3957 if (Memory.Alignment) 3958 OS << " alignment:" << Memory.Alignment; 3959 OS << ">"; 3960 break; 3961 case k_PostIndexRegister: 3962 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3963 << RegName(PostIdxReg.RegNum); 3964 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3965 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3966 << PostIdxReg.ShiftImm; 3967 OS << ">"; 3968 break; 3969 case k_ProcIFlags: { 3970 OS << "<ARM_PROC::"; 3971 unsigned IFlags = getProcIFlags(); 3972 for (int i=2; i >= 0; --i) 3973 if (IFlags & (1 << i)) 3974 OS << ARM_PROC::IFlagsToString(1 << i); 3975 OS << ">"; 3976 break; 3977 } 3978 case k_Register: 3979 OS << "<register " << RegName(getReg()) << ">"; 3980 break; 3981 case k_ShifterImmediate: 3982 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3983 << " #" << ShifterImm.Imm << ">"; 3984 break; 3985 case k_ShiftedRegister: 3986 OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " " 3987 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " " 3988 << RegName(RegShiftedReg.ShiftReg) << ">"; 3989 break; 3990 case k_ShiftedImmediate: 3991 OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " " 3992 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #" 3993 << RegShiftedImm.ShiftImm << ">"; 3994 break; 3995 case k_RotateImmediate: 3996 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3997 break; 3998 case k_ModifiedImmediate: 3999 OS << "<mod_imm #" << ModImm.Bits << ", #" 4000 << ModImm.Rot << ")>"; 4001 break; 4002 case k_ConstantPoolImmediate: 4003 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 4004 break; 4005 case k_BitfieldDescriptor: 4006 OS << "<bitfield " << "lsb: " << Bitfield.LSB 4007 << ", width: " << Bitfield.Width << ">"; 4008 break; 4009 case k_RegisterList: 4010 case k_RegisterListWithAPSR: 4011 case k_DPRRegisterList: 4012 case k_SPRRegisterList: 4013 case k_FPSRegisterListWithVPR: 4014 case k_FPDRegisterListWithVPR: { 4015 OS << "<register_list "; 4016 4017 const SmallVectorImpl<unsigned> &RegList = getRegList(); 4018 for (SmallVectorImpl<unsigned>::const_iterator 4019 I = RegList.begin(), E = RegList.end(); I != E; ) { 4020 OS << RegName(*I); 4021 if (++I < E) OS << ", "; 4022 } 4023 4024 OS << ">"; 4025 break; 4026 } 4027 case k_VectorList: 4028 OS << "<vector_list " << VectorList.Count << " * " 4029 << RegName(VectorList.RegNum) << ">"; 4030 break; 4031 case k_VectorListAllLanes: 4032 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 4033 << RegName(VectorList.RegNum) << ">"; 4034 break; 4035 case k_VectorListIndexed: 4036 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 4037 << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">"; 4038 break; 4039 case k_Token: 4040 OS << "'" << getToken() << "'"; 4041 break; 4042 case k_VectorIndex: 4043 OS << "<vectorindex " << getVectorIndex() << ">"; 4044 break; 4045 } 4046 } 4047 4048 /// @name Auto-generated Match Functions 4049 /// { 4050 4051 static unsigned MatchRegisterName(StringRef Name); 4052 4053 /// } 4054 4055 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 4056 SMLoc &StartLoc, SMLoc &EndLoc) { 4057 const AsmToken &Tok = getParser().getTok(); 4058 StartLoc = Tok.getLoc(); 4059 EndLoc = Tok.getEndLoc(); 4060 RegNo = tryParseRegister(); 4061 4062 return (RegNo == (unsigned)-1); 4063 } 4064 4065 OperandMatchResultTy ARMAsmParser::tryParseRegister(unsigned &RegNo, 4066 SMLoc &StartLoc, 4067 SMLoc &EndLoc) { 4068 if (ParseRegister(RegNo, StartLoc, EndLoc)) 4069 return MatchOperand_NoMatch; 4070 return MatchOperand_Success; 4071 } 4072 4073 /// Try to parse a register name. The token must be an Identifier when called, 4074 /// and if it is a register name the token is eaten and the register number is 4075 /// returned. Otherwise return -1. 4076 int ARMAsmParser::tryParseRegister() { 4077 MCAsmParser &Parser = getParser(); 4078 const AsmToken &Tok = Parser.getTok(); 4079 if (Tok.isNot(AsmToken::Identifier)) return -1; 4080 4081 std::string lowerCase = Tok.getString().lower(); 4082 unsigned RegNum = MatchRegisterName(lowerCase); 4083 if (!RegNum) { 4084 RegNum = StringSwitch<unsigned>(lowerCase) 4085 .Case("r13", ARM::SP) 4086 .Case("r14", ARM::LR) 4087 .Case("r15", ARM::PC) 4088 .Case("ip", ARM::R12) 4089 // Additional register name aliases for 'gas' compatibility. 4090 .Case("a1", ARM::R0) 4091 .Case("a2", ARM::R1) 4092 .Case("a3", ARM::R2) 4093 .Case("a4", ARM::R3) 4094 .Case("v1", ARM::R4) 4095 .Case("v2", ARM::R5) 4096 .Case("v3", ARM::R6) 4097 .Case("v4", ARM::R7) 4098 .Case("v5", ARM::R8) 4099 .Case("v6", ARM::R9) 4100 .Case("v7", ARM::R10) 4101 .Case("v8", ARM::R11) 4102 .Case("sb", ARM::R9) 4103 .Case("sl", ARM::R10) 4104 .Case("fp", ARM::R11) 4105 .Default(0); 4106 } 4107 if (!RegNum) { 4108 // Check for aliases registered via .req. Canonicalize to lower case. 4109 // That's more consistent since register names are case insensitive, and 4110 // it's how the original entry was passed in from MC/MCParser/AsmParser. 4111 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 4112 // If no match, return failure. 4113 if (Entry == RegisterReqs.end()) 4114 return -1; 4115 Parser.Lex(); // Eat identifier token. 4116 return Entry->getValue(); 4117 } 4118 4119 // Some FPUs only have 16 D registers, so D16-D31 are invalid 4120 if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 4121 return -1; 4122 4123 Parser.Lex(); // Eat identifier token. 4124 4125 return RegNum; 4126 } 4127 4128 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 4129 // If a recoverable error occurs, return 1. If an irrecoverable error 4130 // occurs, return -1. An irrecoverable error is one where tokens have been 4131 // consumed in the process of trying to parse the shifter (i.e., when it is 4132 // indeed a shifter operand, but malformed). 4133 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 4134 MCAsmParser &Parser = getParser(); 4135 SMLoc S = Parser.getTok().getLoc(); 4136 const AsmToken &Tok = Parser.getTok(); 4137 if (Tok.isNot(AsmToken::Identifier)) 4138 return -1; 4139 4140 std::string lowerCase = Tok.getString().lower(); 4141 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 4142 .Case("asl", ARM_AM::lsl) 4143 .Case("lsl", ARM_AM::lsl) 4144 .Case("lsr", ARM_AM::lsr) 4145 .Case("asr", ARM_AM::asr) 4146 .Case("ror", ARM_AM::ror) 4147 .Case("rrx", ARM_AM::rrx) 4148 .Default(ARM_AM::no_shift); 4149 4150 if (ShiftTy == ARM_AM::no_shift) 4151 return 1; 4152 4153 Parser.Lex(); // Eat the operator. 4154 4155 // The source register for the shift has already been added to the 4156 // operand list, so we need to pop it off and combine it into the shifted 4157 // register operand instead. 4158 std::unique_ptr<ARMOperand> PrevOp( 4159 (ARMOperand *)Operands.pop_back_val().release()); 4160 if (!PrevOp->isReg()) 4161 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 4162 int SrcReg = PrevOp->getReg(); 4163 4164 SMLoc EndLoc; 4165 int64_t Imm = 0; 4166 int ShiftReg = 0; 4167 if (ShiftTy == ARM_AM::rrx) { 4168 // RRX Doesn't have an explicit shift amount. The encoder expects 4169 // the shift register to be the same as the source register. Seems odd, 4170 // but OK. 4171 ShiftReg = SrcReg; 4172 } else { 4173 // Figure out if this is shifted by a constant or a register (for non-RRX). 4174 if (Parser.getTok().is(AsmToken::Hash) || 4175 Parser.getTok().is(AsmToken::Dollar)) { 4176 Parser.Lex(); // Eat hash. 4177 SMLoc ImmLoc = Parser.getTok().getLoc(); 4178 const MCExpr *ShiftExpr = nullptr; 4179 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 4180 Error(ImmLoc, "invalid immediate shift value"); 4181 return -1; 4182 } 4183 // The expression must be evaluatable as an immediate. 4184 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 4185 if (!CE) { 4186 Error(ImmLoc, "invalid immediate shift value"); 4187 return -1; 4188 } 4189 // Range check the immediate. 4190 // lsl, ror: 0 <= imm <= 31 4191 // lsr, asr: 0 <= imm <= 32 4192 Imm = CE->getValue(); 4193 if (Imm < 0 || 4194 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 4195 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 4196 Error(ImmLoc, "immediate shift value out of range"); 4197 return -1; 4198 } 4199 // shift by zero is a nop. Always send it through as lsl. 4200 // ('as' compatibility) 4201 if (Imm == 0) 4202 ShiftTy = ARM_AM::lsl; 4203 } else if (Parser.getTok().is(AsmToken::Identifier)) { 4204 SMLoc L = Parser.getTok().getLoc(); 4205 EndLoc = Parser.getTok().getEndLoc(); 4206 ShiftReg = tryParseRegister(); 4207 if (ShiftReg == -1) { 4208 Error(L, "expected immediate or register in shift operand"); 4209 return -1; 4210 } 4211 } else { 4212 Error(Parser.getTok().getLoc(), 4213 "expected immediate or register in shift operand"); 4214 return -1; 4215 } 4216 } 4217 4218 if (ShiftReg && ShiftTy != ARM_AM::rrx) 4219 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 4220 ShiftReg, Imm, 4221 S, EndLoc)); 4222 else 4223 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 4224 S, EndLoc)); 4225 4226 return 0; 4227 } 4228 4229 /// Try to parse a register name. The token must be an Identifier when called. 4230 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 4231 /// if there is a "writeback". 'true' if it's not a register. 4232 /// 4233 /// TODO this is likely to change to allow different register types and or to 4234 /// parse for a specific register type. 4235 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 4236 MCAsmParser &Parser = getParser(); 4237 SMLoc RegStartLoc = Parser.getTok().getLoc(); 4238 SMLoc RegEndLoc = Parser.getTok().getEndLoc(); 4239 int RegNo = tryParseRegister(); 4240 if (RegNo == -1) 4241 return true; 4242 4243 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); 4244 4245 const AsmToken &ExclaimTok = Parser.getTok(); 4246 if (ExclaimTok.is(AsmToken::Exclaim)) { 4247 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 4248 ExclaimTok.getLoc())); 4249 Parser.Lex(); // Eat exclaim token 4250 return false; 4251 } 4252 4253 // Also check for an index operand. This is only legal for vector registers, 4254 // but that'll get caught OK in operand matching, so we don't need to 4255 // explicitly filter everything else out here. 4256 if (Parser.getTok().is(AsmToken::LBrac)) { 4257 SMLoc SIdx = Parser.getTok().getLoc(); 4258 Parser.Lex(); // Eat left bracket token. 4259 4260 const MCExpr *ImmVal; 4261 if (getParser().parseExpression(ImmVal)) 4262 return true; 4263 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 4264 if (!MCE) 4265 return TokError("immediate value expected for vector index"); 4266 4267 if (Parser.getTok().isNot(AsmToken::RBrac)) 4268 return Error(Parser.getTok().getLoc(), "']' expected"); 4269 4270 SMLoc E = Parser.getTok().getEndLoc(); 4271 Parser.Lex(); // Eat right bracket token. 4272 4273 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 4274 SIdx, E, 4275 getContext())); 4276 } 4277 4278 return false; 4279 } 4280 4281 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 4282 /// instruction with a symbolic operand name. 4283 /// We accept "crN" syntax for GAS compatibility. 4284 /// <operand-name> ::= <prefix><number> 4285 /// If CoprocOp is 'c', then: 4286 /// <prefix> ::= c | cr 4287 /// If CoprocOp is 'p', then : 4288 /// <prefix> ::= p 4289 /// <number> ::= integer in range [0, 15] 4290 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 4291 // Use the same layout as the tablegen'erated register name matcher. Ugly, 4292 // but efficient. 4293 if (Name.size() < 2 || Name[0] != CoprocOp) 4294 return -1; 4295 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 4296 4297 switch (Name.size()) { 4298 default: return -1; 4299 case 1: 4300 switch (Name[0]) { 4301 default: return -1; 4302 case '0': return 0; 4303 case '1': return 1; 4304 case '2': return 2; 4305 case '3': return 3; 4306 case '4': return 4; 4307 case '5': return 5; 4308 case '6': return 6; 4309 case '7': return 7; 4310 case '8': return 8; 4311 case '9': return 9; 4312 } 4313 case 2: 4314 if (Name[0] != '1') 4315 return -1; 4316 switch (Name[1]) { 4317 default: return -1; 4318 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 4319 // However, old cores (v5/v6) did use them in that way. 4320 case '0': return 10; 4321 case '1': return 11; 4322 case '2': return 12; 4323 case '3': return 13; 4324 case '4': return 14; 4325 case '5': return 15; 4326 } 4327 } 4328 } 4329 4330 /// parseITCondCode - Try to parse a condition code for an IT instruction. 4331 OperandMatchResultTy 4332 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 4333 MCAsmParser &Parser = getParser(); 4334 SMLoc S = Parser.getTok().getLoc(); 4335 const AsmToken &Tok = Parser.getTok(); 4336 if (!Tok.is(AsmToken::Identifier)) 4337 return MatchOperand_NoMatch; 4338 unsigned CC = ARMCondCodeFromString(Tok.getString()); 4339 if (CC == ~0U) 4340 return MatchOperand_NoMatch; 4341 Parser.Lex(); // Eat the token. 4342 4343 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 4344 4345 return MatchOperand_Success; 4346 } 4347 4348 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 4349 /// token must be an Identifier when called, and if it is a coprocessor 4350 /// number, the token is eaten and the operand is added to the operand list. 4351 OperandMatchResultTy 4352 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 4353 MCAsmParser &Parser = getParser(); 4354 SMLoc S = Parser.getTok().getLoc(); 4355 const AsmToken &Tok = Parser.getTok(); 4356 if (Tok.isNot(AsmToken::Identifier)) 4357 return MatchOperand_NoMatch; 4358 4359 int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p'); 4360 if (Num == -1) 4361 return MatchOperand_NoMatch; 4362 if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits())) 4363 return MatchOperand_NoMatch; 4364 4365 Parser.Lex(); // Eat identifier token. 4366 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 4367 return MatchOperand_Success; 4368 } 4369 4370 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 4371 /// token must be an Identifier when called, and if it is a coprocessor 4372 /// number, the token is eaten and the operand is added to the operand list. 4373 OperandMatchResultTy 4374 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 4375 MCAsmParser &Parser = getParser(); 4376 SMLoc S = Parser.getTok().getLoc(); 4377 const AsmToken &Tok = Parser.getTok(); 4378 if (Tok.isNot(AsmToken::Identifier)) 4379 return MatchOperand_NoMatch; 4380 4381 int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c'); 4382 if (Reg == -1) 4383 return MatchOperand_NoMatch; 4384 4385 Parser.Lex(); // Eat identifier token. 4386 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 4387 return MatchOperand_Success; 4388 } 4389 4390 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 4391 /// coproc_option : '{' imm0_255 '}' 4392 OperandMatchResultTy 4393 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 4394 MCAsmParser &Parser = getParser(); 4395 SMLoc S = Parser.getTok().getLoc(); 4396 4397 // If this isn't a '{', this isn't a coprocessor immediate operand. 4398 if (Parser.getTok().isNot(AsmToken::LCurly)) 4399 return MatchOperand_NoMatch; 4400 Parser.Lex(); // Eat the '{' 4401 4402 const MCExpr *Expr; 4403 SMLoc Loc = Parser.getTok().getLoc(); 4404 if (getParser().parseExpression(Expr)) { 4405 Error(Loc, "illegal expression"); 4406 return MatchOperand_ParseFail; 4407 } 4408 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4409 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 4410 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 4411 return MatchOperand_ParseFail; 4412 } 4413 int Val = CE->getValue(); 4414 4415 // Check for and consume the closing '}' 4416 if (Parser.getTok().isNot(AsmToken::RCurly)) 4417 return MatchOperand_ParseFail; 4418 SMLoc E = Parser.getTok().getEndLoc(); 4419 Parser.Lex(); // Eat the '}' 4420 4421 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 4422 return MatchOperand_Success; 4423 } 4424 4425 // For register list parsing, we need to map from raw GPR register numbering 4426 // to the enumeration values. The enumeration values aren't sorted by 4427 // register number due to our using "sp", "lr" and "pc" as canonical names. 4428 static unsigned getNextRegister(unsigned Reg) { 4429 // If this is a GPR, we need to do it manually, otherwise we can rely 4430 // on the sort ordering of the enumeration since the other reg-classes 4431 // are sane. 4432 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4433 return Reg + 1; 4434 switch(Reg) { 4435 default: llvm_unreachable("Invalid GPR number!"); 4436 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 4437 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 4438 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 4439 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 4440 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 4441 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 4442 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 4443 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 4444 } 4445 } 4446 4447 // Insert an <Encoding, Register> pair in an ordered vector. Return true on 4448 // success, or false, if duplicate encoding found. 4449 static bool 4450 insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 4451 unsigned Enc, unsigned Reg) { 4452 Regs.emplace_back(Enc, Reg); 4453 for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) { 4454 if (J->first == Enc) { 4455 Regs.erase(J.base()); 4456 return false; 4457 } 4458 if (J->first < Enc) 4459 break; 4460 std::swap(*I, *J); 4461 } 4462 return true; 4463 } 4464 4465 /// Parse a register list. 4466 bool ARMAsmParser::parseRegisterList(OperandVector &Operands, 4467 bool EnforceOrder) { 4468 MCAsmParser &Parser = getParser(); 4469 if (Parser.getTok().isNot(AsmToken::LCurly)) 4470 return TokError("Token is not a Left Curly Brace"); 4471 SMLoc S = Parser.getTok().getLoc(); 4472 Parser.Lex(); // Eat '{' token. 4473 SMLoc RegLoc = Parser.getTok().getLoc(); 4474 4475 // Check the first register in the list to see what register class 4476 // this is a list of. 4477 int Reg = tryParseRegister(); 4478 if (Reg == -1) 4479 return Error(RegLoc, "register expected"); 4480 4481 // The reglist instructions have at most 16 registers, so reserve 4482 // space for that many. 4483 int EReg = 0; 4484 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 4485 4486 // Allow Q regs and just interpret them as the two D sub-registers. 4487 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4488 Reg = getDRegFromQReg(Reg); 4489 EReg = MRI->getEncodingValue(Reg); 4490 Registers.emplace_back(EReg, Reg); 4491 ++Reg; 4492 } 4493 const MCRegisterClass *RC; 4494 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4495 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 4496 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 4497 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 4498 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 4499 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 4500 else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4501 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4502 else 4503 return Error(RegLoc, "invalid register in register list"); 4504 4505 // Store the register. 4506 EReg = MRI->getEncodingValue(Reg); 4507 Registers.emplace_back(EReg, Reg); 4508 4509 // This starts immediately after the first register token in the list, 4510 // so we can see either a comma or a minus (range separator) as a legal 4511 // next token. 4512 while (Parser.getTok().is(AsmToken::Comma) || 4513 Parser.getTok().is(AsmToken::Minus)) { 4514 if (Parser.getTok().is(AsmToken::Minus)) { 4515 Parser.Lex(); // Eat the minus. 4516 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4517 int EndReg = tryParseRegister(); 4518 if (EndReg == -1) 4519 return Error(AfterMinusLoc, "register expected"); 4520 // Allow Q regs and just interpret them as the two D sub-registers. 4521 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4522 EndReg = getDRegFromQReg(EndReg) + 1; 4523 // If the register is the same as the start reg, there's nothing 4524 // more to do. 4525 if (Reg == EndReg) 4526 continue; 4527 // The register must be in the same register class as the first. 4528 if (!RC->contains(EndReg)) 4529 return Error(AfterMinusLoc, "invalid register in register list"); 4530 // Ranges must go from low to high. 4531 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 4532 return Error(AfterMinusLoc, "bad range in register list"); 4533 4534 // Add all the registers in the range to the register list. 4535 while (Reg != EndReg) { 4536 Reg = getNextRegister(Reg); 4537 EReg = MRI->getEncodingValue(Reg); 4538 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4539 Warning(AfterMinusLoc, StringRef("duplicated register (") + 4540 ARMInstPrinter::getRegisterName(Reg) + 4541 ") in register list"); 4542 } 4543 } 4544 continue; 4545 } 4546 Parser.Lex(); // Eat the comma. 4547 RegLoc = Parser.getTok().getLoc(); 4548 int OldReg = Reg; 4549 const AsmToken RegTok = Parser.getTok(); 4550 Reg = tryParseRegister(); 4551 if (Reg == -1) 4552 return Error(RegLoc, "register expected"); 4553 // Allow Q regs and just interpret them as the two D sub-registers. 4554 bool isQReg = false; 4555 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4556 Reg = getDRegFromQReg(Reg); 4557 isQReg = true; 4558 } 4559 if (!RC->contains(Reg) && 4560 RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() && 4561 ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) { 4562 // switch the register classes, as GPRwithAPSRnospRegClassID is a partial 4563 // subset of GPRRegClassId except it contains APSR as well. 4564 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4565 } 4566 if (Reg == ARM::VPR && 4567 (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] || 4568 RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] || 4569 RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) { 4570 RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID]; 4571 EReg = MRI->getEncodingValue(Reg); 4572 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4573 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4574 ") in register list"); 4575 } 4576 continue; 4577 } 4578 // The register must be in the same register class as the first. 4579 if (!RC->contains(Reg)) 4580 return Error(RegLoc, "invalid register in register list"); 4581 // In most cases, the list must be monotonically increasing. An 4582 // exception is CLRM, which is order-independent anyway, so 4583 // there's no potential for confusion if you write clrm {r2,r1} 4584 // instead of clrm {r1,r2}. 4585 if (EnforceOrder && 4586 MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 4587 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4588 Warning(RegLoc, "register list not in ascending order"); 4589 else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4590 return Error(RegLoc, "register list not in ascending order"); 4591 } 4592 // VFP register lists must also be contiguous. 4593 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 4594 RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] && 4595 Reg != OldReg + 1) 4596 return Error(RegLoc, "non-contiguous register range"); 4597 EReg = MRI->getEncodingValue(Reg); 4598 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4599 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4600 ") in register list"); 4601 } 4602 if (isQReg) { 4603 EReg = MRI->getEncodingValue(++Reg); 4604 Registers.emplace_back(EReg, Reg); 4605 } 4606 } 4607 4608 if (Parser.getTok().isNot(AsmToken::RCurly)) 4609 return Error(Parser.getTok().getLoc(), "'}' expected"); 4610 SMLoc E = Parser.getTok().getEndLoc(); 4611 Parser.Lex(); // Eat '}' token. 4612 4613 // Push the register list operand. 4614 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 4615 4616 // The ARM system instruction variants for LDM/STM have a '^' token here. 4617 if (Parser.getTok().is(AsmToken::Caret)) { 4618 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 4619 Parser.Lex(); // Eat '^' token. 4620 } 4621 4622 return false; 4623 } 4624 4625 // Helper function to parse the lane index for vector lists. 4626 OperandMatchResultTy ARMAsmParser:: 4627 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 4628 MCAsmParser &Parser = getParser(); 4629 Index = 0; // Always return a defined index value. 4630 if (Parser.getTok().is(AsmToken::LBrac)) { 4631 Parser.Lex(); // Eat the '['. 4632 if (Parser.getTok().is(AsmToken::RBrac)) { 4633 // "Dn[]" is the 'all lanes' syntax. 4634 LaneKind = AllLanes; 4635 EndLoc = Parser.getTok().getEndLoc(); 4636 Parser.Lex(); // Eat the ']'. 4637 return MatchOperand_Success; 4638 } 4639 4640 // There's an optional '#' token here. Normally there wouldn't be, but 4641 // inline assemble puts one in, and it's friendly to accept that. 4642 if (Parser.getTok().is(AsmToken::Hash)) 4643 Parser.Lex(); // Eat '#' or '$'. 4644 4645 const MCExpr *LaneIndex; 4646 SMLoc Loc = Parser.getTok().getLoc(); 4647 if (getParser().parseExpression(LaneIndex)) { 4648 Error(Loc, "illegal expression"); 4649 return MatchOperand_ParseFail; 4650 } 4651 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 4652 if (!CE) { 4653 Error(Loc, "lane index must be empty or an integer"); 4654 return MatchOperand_ParseFail; 4655 } 4656 if (Parser.getTok().isNot(AsmToken::RBrac)) { 4657 Error(Parser.getTok().getLoc(), "']' expected"); 4658 return MatchOperand_ParseFail; 4659 } 4660 EndLoc = Parser.getTok().getEndLoc(); 4661 Parser.Lex(); // Eat the ']'. 4662 int64_t Val = CE->getValue(); 4663 4664 // FIXME: Make this range check context sensitive for .8, .16, .32. 4665 if (Val < 0 || Val > 7) { 4666 Error(Parser.getTok().getLoc(), "lane index out of range"); 4667 return MatchOperand_ParseFail; 4668 } 4669 Index = Val; 4670 LaneKind = IndexedLane; 4671 return MatchOperand_Success; 4672 } 4673 LaneKind = NoLanes; 4674 return MatchOperand_Success; 4675 } 4676 4677 // parse a vector register list 4678 OperandMatchResultTy 4679 ARMAsmParser::parseVectorList(OperandVector &Operands) { 4680 MCAsmParser &Parser = getParser(); 4681 VectorLaneTy LaneKind; 4682 unsigned LaneIndex; 4683 SMLoc S = Parser.getTok().getLoc(); 4684 // As an extension (to match gas), support a plain D register or Q register 4685 // (without encosing curly braces) as a single or double entry list, 4686 // respectively. 4687 if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) { 4688 SMLoc E = Parser.getTok().getEndLoc(); 4689 int Reg = tryParseRegister(); 4690 if (Reg == -1) 4691 return MatchOperand_NoMatch; 4692 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 4693 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4694 if (Res != MatchOperand_Success) 4695 return Res; 4696 switch (LaneKind) { 4697 case NoLanes: 4698 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 4699 break; 4700 case AllLanes: 4701 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 4702 S, E)); 4703 break; 4704 case IndexedLane: 4705 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 4706 LaneIndex, 4707 false, S, E)); 4708 break; 4709 } 4710 return MatchOperand_Success; 4711 } 4712 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4713 Reg = getDRegFromQReg(Reg); 4714 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4715 if (Res != MatchOperand_Success) 4716 return Res; 4717 switch (LaneKind) { 4718 case NoLanes: 4719 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4720 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4721 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 4722 break; 4723 case AllLanes: 4724 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4725 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4726 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 4727 S, E)); 4728 break; 4729 case IndexedLane: 4730 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 4731 LaneIndex, 4732 false, S, E)); 4733 break; 4734 } 4735 return MatchOperand_Success; 4736 } 4737 Error(S, "vector register expected"); 4738 return MatchOperand_ParseFail; 4739 } 4740 4741 if (Parser.getTok().isNot(AsmToken::LCurly)) 4742 return MatchOperand_NoMatch; 4743 4744 Parser.Lex(); // Eat '{' token. 4745 SMLoc RegLoc = Parser.getTok().getLoc(); 4746 4747 int Reg = tryParseRegister(); 4748 if (Reg == -1) { 4749 Error(RegLoc, "register expected"); 4750 return MatchOperand_ParseFail; 4751 } 4752 unsigned Count = 1; 4753 int Spacing = 0; 4754 unsigned FirstReg = Reg; 4755 4756 if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4757 Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected"); 4758 return MatchOperand_ParseFail; 4759 } 4760 // The list is of D registers, but we also allow Q regs and just interpret 4761 // them as the two D sub-registers. 4762 else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4763 FirstReg = Reg = getDRegFromQReg(Reg); 4764 Spacing = 1; // double-spacing requires explicit D registers, otherwise 4765 // it's ambiguous with four-register single spaced. 4766 ++Reg; 4767 ++Count; 4768 } 4769 4770 SMLoc E; 4771 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 4772 return MatchOperand_ParseFail; 4773 4774 while (Parser.getTok().is(AsmToken::Comma) || 4775 Parser.getTok().is(AsmToken::Minus)) { 4776 if (Parser.getTok().is(AsmToken::Minus)) { 4777 if (!Spacing) 4778 Spacing = 1; // Register range implies a single spaced list. 4779 else if (Spacing == 2) { 4780 Error(Parser.getTok().getLoc(), 4781 "sequential registers in double spaced list"); 4782 return MatchOperand_ParseFail; 4783 } 4784 Parser.Lex(); // Eat the minus. 4785 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4786 int EndReg = tryParseRegister(); 4787 if (EndReg == -1) { 4788 Error(AfterMinusLoc, "register expected"); 4789 return MatchOperand_ParseFail; 4790 } 4791 // Allow Q regs and just interpret them as the two D sub-registers. 4792 if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4793 EndReg = getDRegFromQReg(EndReg) + 1; 4794 // If the register is the same as the start reg, there's nothing 4795 // more to do. 4796 if (Reg == EndReg) 4797 continue; 4798 // The register must be in the same register class as the first. 4799 if ((hasMVE() && 4800 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) || 4801 (!hasMVE() && 4802 !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) { 4803 Error(AfterMinusLoc, "invalid register in register list"); 4804 return MatchOperand_ParseFail; 4805 } 4806 // Ranges must go from low to high. 4807 if (Reg > EndReg) { 4808 Error(AfterMinusLoc, "bad range in register list"); 4809 return MatchOperand_ParseFail; 4810 } 4811 // Parse the lane specifier if present. 4812 VectorLaneTy NextLaneKind; 4813 unsigned NextLaneIndex; 4814 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4815 MatchOperand_Success) 4816 return MatchOperand_ParseFail; 4817 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4818 Error(AfterMinusLoc, "mismatched lane index in register list"); 4819 return MatchOperand_ParseFail; 4820 } 4821 4822 // Add all the registers in the range to the register list. 4823 Count += EndReg - Reg; 4824 Reg = EndReg; 4825 continue; 4826 } 4827 Parser.Lex(); // Eat the comma. 4828 RegLoc = Parser.getTok().getLoc(); 4829 int OldReg = Reg; 4830 Reg = tryParseRegister(); 4831 if (Reg == -1) { 4832 Error(RegLoc, "register expected"); 4833 return MatchOperand_ParseFail; 4834 } 4835 4836 if (hasMVE()) { 4837 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4838 Error(RegLoc, "vector register in range Q0-Q7 expected"); 4839 return MatchOperand_ParseFail; 4840 } 4841 Spacing = 1; 4842 } 4843 // vector register lists must be contiguous. 4844 // It's OK to use the enumeration values directly here rather, as the 4845 // VFP register classes have the enum sorted properly. 4846 // 4847 // The list is of D registers, but we also allow Q regs and just interpret 4848 // them as the two D sub-registers. 4849 else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4850 if (!Spacing) 4851 Spacing = 1; // Register range implies a single spaced list. 4852 else if (Spacing == 2) { 4853 Error(RegLoc, 4854 "invalid register in double-spaced list (must be 'D' register')"); 4855 return MatchOperand_ParseFail; 4856 } 4857 Reg = getDRegFromQReg(Reg); 4858 if (Reg != OldReg + 1) { 4859 Error(RegLoc, "non-contiguous register range"); 4860 return MatchOperand_ParseFail; 4861 } 4862 ++Reg; 4863 Count += 2; 4864 // Parse the lane specifier if present. 4865 VectorLaneTy NextLaneKind; 4866 unsigned NextLaneIndex; 4867 SMLoc LaneLoc = Parser.getTok().getLoc(); 4868 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4869 MatchOperand_Success) 4870 return MatchOperand_ParseFail; 4871 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4872 Error(LaneLoc, "mismatched lane index in register list"); 4873 return MatchOperand_ParseFail; 4874 } 4875 continue; 4876 } 4877 // Normal D register. 4878 // Figure out the register spacing (single or double) of the list if 4879 // we don't know it already. 4880 if (!Spacing) 4881 Spacing = 1 + (Reg == OldReg + 2); 4882 4883 // Just check that it's contiguous and keep going. 4884 if (Reg != OldReg + Spacing) { 4885 Error(RegLoc, "non-contiguous register range"); 4886 return MatchOperand_ParseFail; 4887 } 4888 ++Count; 4889 // Parse the lane specifier if present. 4890 VectorLaneTy NextLaneKind; 4891 unsigned NextLaneIndex; 4892 SMLoc EndLoc = Parser.getTok().getLoc(); 4893 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 4894 return MatchOperand_ParseFail; 4895 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4896 Error(EndLoc, "mismatched lane index in register list"); 4897 return MatchOperand_ParseFail; 4898 } 4899 } 4900 4901 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4902 Error(Parser.getTok().getLoc(), "'}' expected"); 4903 return MatchOperand_ParseFail; 4904 } 4905 E = Parser.getTok().getEndLoc(); 4906 Parser.Lex(); // Eat '}' token. 4907 4908 switch (LaneKind) { 4909 case NoLanes: 4910 case AllLanes: { 4911 // Two-register operands have been converted to the 4912 // composite register classes. 4913 if (Count == 2 && !hasMVE()) { 4914 const MCRegisterClass *RC = (Spacing == 1) ? 4915 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4916 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4917 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4918 } 4919 auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList : 4920 ARMOperand::CreateVectorListAllLanes); 4921 Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E)); 4922 break; 4923 } 4924 case IndexedLane: 4925 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4926 LaneIndex, 4927 (Spacing == 2), 4928 S, E)); 4929 break; 4930 } 4931 return MatchOperand_Success; 4932 } 4933 4934 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4935 OperandMatchResultTy 4936 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4937 MCAsmParser &Parser = getParser(); 4938 SMLoc S = Parser.getTok().getLoc(); 4939 const AsmToken &Tok = Parser.getTok(); 4940 unsigned Opt; 4941 4942 if (Tok.is(AsmToken::Identifier)) { 4943 StringRef OptStr = Tok.getString(); 4944 4945 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4946 .Case("sy", ARM_MB::SY) 4947 .Case("st", ARM_MB::ST) 4948 .Case("ld", ARM_MB::LD) 4949 .Case("sh", ARM_MB::ISH) 4950 .Case("ish", ARM_MB::ISH) 4951 .Case("shst", ARM_MB::ISHST) 4952 .Case("ishst", ARM_MB::ISHST) 4953 .Case("ishld", ARM_MB::ISHLD) 4954 .Case("nsh", ARM_MB::NSH) 4955 .Case("un", ARM_MB::NSH) 4956 .Case("nshst", ARM_MB::NSHST) 4957 .Case("nshld", ARM_MB::NSHLD) 4958 .Case("unst", ARM_MB::NSHST) 4959 .Case("osh", ARM_MB::OSH) 4960 .Case("oshst", ARM_MB::OSHST) 4961 .Case("oshld", ARM_MB::OSHLD) 4962 .Default(~0U); 4963 4964 // ishld, oshld, nshld and ld are only available from ARMv8. 4965 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4966 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4967 Opt = ~0U; 4968 4969 if (Opt == ~0U) 4970 return MatchOperand_NoMatch; 4971 4972 Parser.Lex(); // Eat identifier token. 4973 } else if (Tok.is(AsmToken::Hash) || 4974 Tok.is(AsmToken::Dollar) || 4975 Tok.is(AsmToken::Integer)) { 4976 if (Parser.getTok().isNot(AsmToken::Integer)) 4977 Parser.Lex(); // Eat '#' or '$'. 4978 SMLoc Loc = Parser.getTok().getLoc(); 4979 4980 const MCExpr *MemBarrierID; 4981 if (getParser().parseExpression(MemBarrierID)) { 4982 Error(Loc, "illegal expression"); 4983 return MatchOperand_ParseFail; 4984 } 4985 4986 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4987 if (!CE) { 4988 Error(Loc, "constant expression expected"); 4989 return MatchOperand_ParseFail; 4990 } 4991 4992 int Val = CE->getValue(); 4993 if (Val & ~0xf) { 4994 Error(Loc, "immediate value out of range"); 4995 return MatchOperand_ParseFail; 4996 } 4997 4998 Opt = ARM_MB::RESERVED_0 + Val; 4999 } else 5000 return MatchOperand_ParseFail; 5001 5002 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 5003 return MatchOperand_Success; 5004 } 5005 5006 OperandMatchResultTy 5007 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) { 5008 MCAsmParser &Parser = getParser(); 5009 SMLoc S = Parser.getTok().getLoc(); 5010 const AsmToken &Tok = Parser.getTok(); 5011 5012 if (Tok.isNot(AsmToken::Identifier)) 5013 return MatchOperand_NoMatch; 5014 5015 if (!Tok.getString().equals_insensitive("csync")) 5016 return MatchOperand_NoMatch; 5017 5018 Parser.Lex(); // Eat identifier token. 5019 5020 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S)); 5021 return MatchOperand_Success; 5022 } 5023 5024 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 5025 OperandMatchResultTy 5026 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 5027 MCAsmParser &Parser = getParser(); 5028 SMLoc S = Parser.getTok().getLoc(); 5029 const AsmToken &Tok = Parser.getTok(); 5030 unsigned Opt; 5031 5032 if (Tok.is(AsmToken::Identifier)) { 5033 StringRef OptStr = Tok.getString(); 5034 5035 if (OptStr.equals_insensitive("sy")) 5036 Opt = ARM_ISB::SY; 5037 else 5038 return MatchOperand_NoMatch; 5039 5040 Parser.Lex(); // Eat identifier token. 5041 } else if (Tok.is(AsmToken::Hash) || 5042 Tok.is(AsmToken::Dollar) || 5043 Tok.is(AsmToken::Integer)) { 5044 if (Parser.getTok().isNot(AsmToken::Integer)) 5045 Parser.Lex(); // Eat '#' or '$'. 5046 SMLoc Loc = Parser.getTok().getLoc(); 5047 5048 const MCExpr *ISBarrierID; 5049 if (getParser().parseExpression(ISBarrierID)) { 5050 Error(Loc, "illegal expression"); 5051 return MatchOperand_ParseFail; 5052 } 5053 5054 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 5055 if (!CE) { 5056 Error(Loc, "constant expression expected"); 5057 return MatchOperand_ParseFail; 5058 } 5059 5060 int Val = CE->getValue(); 5061 if (Val & ~0xf) { 5062 Error(Loc, "immediate value out of range"); 5063 return MatchOperand_ParseFail; 5064 } 5065 5066 Opt = ARM_ISB::RESERVED_0 + Val; 5067 } else 5068 return MatchOperand_ParseFail; 5069 5070 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 5071 (ARM_ISB::InstSyncBOpt)Opt, S)); 5072 return MatchOperand_Success; 5073 } 5074 5075 5076 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 5077 OperandMatchResultTy 5078 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 5079 MCAsmParser &Parser = getParser(); 5080 SMLoc S = Parser.getTok().getLoc(); 5081 const AsmToken &Tok = Parser.getTok(); 5082 if (!Tok.is(AsmToken::Identifier)) 5083 return MatchOperand_NoMatch; 5084 StringRef IFlagsStr = Tok.getString(); 5085 5086 // An iflags string of "none" is interpreted to mean that none of the AIF 5087 // bits are set. Not a terribly useful instruction, but a valid encoding. 5088 unsigned IFlags = 0; 5089 if (IFlagsStr != "none") { 5090 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 5091 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) 5092 .Case("a", ARM_PROC::A) 5093 .Case("i", ARM_PROC::I) 5094 .Case("f", ARM_PROC::F) 5095 .Default(~0U); 5096 5097 // If some specific iflag is already set, it means that some letter is 5098 // present more than once, this is not acceptable. 5099 if (Flag == ~0U || (IFlags & Flag)) 5100 return MatchOperand_NoMatch; 5101 5102 IFlags |= Flag; 5103 } 5104 } 5105 5106 Parser.Lex(); // Eat identifier token. 5107 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 5108 return MatchOperand_Success; 5109 } 5110 5111 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 5112 OperandMatchResultTy 5113 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 5114 MCAsmParser &Parser = getParser(); 5115 SMLoc S = Parser.getTok().getLoc(); 5116 const AsmToken &Tok = Parser.getTok(); 5117 5118 if (Tok.is(AsmToken::Integer)) { 5119 int64_t Val = Tok.getIntVal(); 5120 if (Val > 255 || Val < 0) { 5121 return MatchOperand_NoMatch; 5122 } 5123 unsigned SYSmvalue = Val & 0xFF; 5124 Parser.Lex(); 5125 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 5126 return MatchOperand_Success; 5127 } 5128 5129 if (!Tok.is(AsmToken::Identifier)) 5130 return MatchOperand_NoMatch; 5131 StringRef Mask = Tok.getString(); 5132 5133 if (isMClass()) { 5134 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 5135 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 5136 return MatchOperand_NoMatch; 5137 5138 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 5139 5140 Parser.Lex(); // Eat identifier token. 5141 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 5142 return MatchOperand_Success; 5143 } 5144 5145 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 5146 size_t Start = 0, Next = Mask.find('_'); 5147 StringRef Flags = ""; 5148 std::string SpecReg = Mask.slice(Start, Next).lower(); 5149 if (Next != StringRef::npos) 5150 Flags = Mask.slice(Next+1, Mask.size()); 5151 5152 // FlagsVal contains the complete mask: 5153 // 3-0: Mask 5154 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 5155 unsigned FlagsVal = 0; 5156 5157 if (SpecReg == "apsr") { 5158 FlagsVal = StringSwitch<unsigned>(Flags) 5159 .Case("nzcvq", 0x8) // same as CPSR_f 5160 .Case("g", 0x4) // same as CPSR_s 5161 .Case("nzcvqg", 0xc) // same as CPSR_fs 5162 .Default(~0U); 5163 5164 if (FlagsVal == ~0U) { 5165 if (!Flags.empty()) 5166 return MatchOperand_NoMatch; 5167 else 5168 FlagsVal = 8; // No flag 5169 } 5170 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 5171 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 5172 if (Flags == "all" || Flags == "") 5173 Flags = "fc"; 5174 for (int i = 0, e = Flags.size(); i != e; ++i) { 5175 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 5176 .Case("c", 1) 5177 .Case("x", 2) 5178 .Case("s", 4) 5179 .Case("f", 8) 5180 .Default(~0U); 5181 5182 // If some specific flag is already set, it means that some letter is 5183 // present more than once, this is not acceptable. 5184 if (Flag == ~0U || (FlagsVal & Flag)) 5185 return MatchOperand_NoMatch; 5186 FlagsVal |= Flag; 5187 } 5188 } else // No match for special register. 5189 return MatchOperand_NoMatch; 5190 5191 // Special register without flags is NOT equivalent to "fc" flags. 5192 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 5193 // two lines would enable gas compatibility at the expense of breaking 5194 // round-tripping. 5195 // 5196 // if (!FlagsVal) 5197 // FlagsVal = 0x9; 5198 5199 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 5200 if (SpecReg == "spsr") 5201 FlagsVal |= 16; 5202 5203 Parser.Lex(); // Eat identifier token. 5204 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 5205 return MatchOperand_Success; 5206 } 5207 5208 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 5209 /// use in the MRS/MSR instructions added to support virtualization. 5210 OperandMatchResultTy 5211 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 5212 MCAsmParser &Parser = getParser(); 5213 SMLoc S = Parser.getTok().getLoc(); 5214 const AsmToken &Tok = Parser.getTok(); 5215 if (!Tok.is(AsmToken::Identifier)) 5216 return MatchOperand_NoMatch; 5217 StringRef RegName = Tok.getString(); 5218 5219 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); 5220 if (!TheReg) 5221 return MatchOperand_NoMatch; 5222 unsigned Encoding = TheReg->Encoding; 5223 5224 Parser.Lex(); // Eat identifier token. 5225 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 5226 return MatchOperand_Success; 5227 } 5228 5229 OperandMatchResultTy 5230 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 5231 int High) { 5232 MCAsmParser &Parser = getParser(); 5233 const AsmToken &Tok = Parser.getTok(); 5234 if (Tok.isNot(AsmToken::Identifier)) { 5235 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5236 return MatchOperand_ParseFail; 5237 } 5238 StringRef ShiftName = Tok.getString(); 5239 std::string LowerOp = Op.lower(); 5240 std::string UpperOp = Op.upper(); 5241 if (ShiftName != LowerOp && ShiftName != UpperOp) { 5242 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5243 return MatchOperand_ParseFail; 5244 } 5245 Parser.Lex(); // Eat shift type token. 5246 5247 // There must be a '#' and a shift amount. 5248 if (Parser.getTok().isNot(AsmToken::Hash) && 5249 Parser.getTok().isNot(AsmToken::Dollar)) { 5250 Error(Parser.getTok().getLoc(), "'#' expected"); 5251 return MatchOperand_ParseFail; 5252 } 5253 Parser.Lex(); // Eat hash token. 5254 5255 const MCExpr *ShiftAmount; 5256 SMLoc Loc = Parser.getTok().getLoc(); 5257 SMLoc EndLoc; 5258 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5259 Error(Loc, "illegal expression"); 5260 return MatchOperand_ParseFail; 5261 } 5262 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5263 if (!CE) { 5264 Error(Loc, "constant expression expected"); 5265 return MatchOperand_ParseFail; 5266 } 5267 int Val = CE->getValue(); 5268 if (Val < Low || Val > High) { 5269 Error(Loc, "immediate value out of range"); 5270 return MatchOperand_ParseFail; 5271 } 5272 5273 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 5274 5275 return MatchOperand_Success; 5276 } 5277 5278 OperandMatchResultTy 5279 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 5280 MCAsmParser &Parser = getParser(); 5281 const AsmToken &Tok = Parser.getTok(); 5282 SMLoc S = Tok.getLoc(); 5283 if (Tok.isNot(AsmToken::Identifier)) { 5284 Error(S, "'be' or 'le' operand expected"); 5285 return MatchOperand_ParseFail; 5286 } 5287 int Val = StringSwitch<int>(Tok.getString().lower()) 5288 .Case("be", 1) 5289 .Case("le", 0) 5290 .Default(-1); 5291 Parser.Lex(); // Eat the token. 5292 5293 if (Val == -1) { 5294 Error(S, "'be' or 'le' operand expected"); 5295 return MatchOperand_ParseFail; 5296 } 5297 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 5298 getContext()), 5299 S, Tok.getEndLoc())); 5300 return MatchOperand_Success; 5301 } 5302 5303 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 5304 /// instructions. Legal values are: 5305 /// lsl #n 'n' in [0,31] 5306 /// asr #n 'n' in [1,32] 5307 /// n == 32 encoded as n == 0. 5308 OperandMatchResultTy 5309 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 5310 MCAsmParser &Parser = getParser(); 5311 const AsmToken &Tok = Parser.getTok(); 5312 SMLoc S = Tok.getLoc(); 5313 if (Tok.isNot(AsmToken::Identifier)) { 5314 Error(S, "shift operator 'asr' or 'lsl' expected"); 5315 return MatchOperand_ParseFail; 5316 } 5317 StringRef ShiftName = Tok.getString(); 5318 bool isASR; 5319 if (ShiftName == "lsl" || ShiftName == "LSL") 5320 isASR = false; 5321 else if (ShiftName == "asr" || ShiftName == "ASR") 5322 isASR = true; 5323 else { 5324 Error(S, "shift operator 'asr' or 'lsl' expected"); 5325 return MatchOperand_ParseFail; 5326 } 5327 Parser.Lex(); // Eat the operator. 5328 5329 // A '#' and a shift amount. 5330 if (Parser.getTok().isNot(AsmToken::Hash) && 5331 Parser.getTok().isNot(AsmToken::Dollar)) { 5332 Error(Parser.getTok().getLoc(), "'#' expected"); 5333 return MatchOperand_ParseFail; 5334 } 5335 Parser.Lex(); // Eat hash token. 5336 SMLoc ExLoc = Parser.getTok().getLoc(); 5337 5338 const MCExpr *ShiftAmount; 5339 SMLoc EndLoc; 5340 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5341 Error(ExLoc, "malformed shift expression"); 5342 return MatchOperand_ParseFail; 5343 } 5344 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5345 if (!CE) { 5346 Error(ExLoc, "shift amount must be an immediate"); 5347 return MatchOperand_ParseFail; 5348 } 5349 5350 int64_t Val = CE->getValue(); 5351 if (isASR) { 5352 // Shift amount must be in [1,32] 5353 if (Val < 1 || Val > 32) { 5354 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 5355 return MatchOperand_ParseFail; 5356 } 5357 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 5358 if (isThumb() && Val == 32) { 5359 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 5360 return MatchOperand_ParseFail; 5361 } 5362 if (Val == 32) Val = 0; 5363 } else { 5364 // Shift amount must be in [1,32] 5365 if (Val < 0 || Val > 31) { 5366 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 5367 return MatchOperand_ParseFail; 5368 } 5369 } 5370 5371 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 5372 5373 return MatchOperand_Success; 5374 } 5375 5376 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 5377 /// of instructions. Legal values are: 5378 /// ror #n 'n' in {0, 8, 16, 24} 5379 OperandMatchResultTy 5380 ARMAsmParser::parseRotImm(OperandVector &Operands) { 5381 MCAsmParser &Parser = getParser(); 5382 const AsmToken &Tok = Parser.getTok(); 5383 SMLoc S = Tok.getLoc(); 5384 if (Tok.isNot(AsmToken::Identifier)) 5385 return MatchOperand_NoMatch; 5386 StringRef ShiftName = Tok.getString(); 5387 if (ShiftName != "ror" && ShiftName != "ROR") 5388 return MatchOperand_NoMatch; 5389 Parser.Lex(); // Eat the operator. 5390 5391 // A '#' and a rotate amount. 5392 if (Parser.getTok().isNot(AsmToken::Hash) && 5393 Parser.getTok().isNot(AsmToken::Dollar)) { 5394 Error(Parser.getTok().getLoc(), "'#' expected"); 5395 return MatchOperand_ParseFail; 5396 } 5397 Parser.Lex(); // Eat hash token. 5398 SMLoc ExLoc = Parser.getTok().getLoc(); 5399 5400 const MCExpr *ShiftAmount; 5401 SMLoc EndLoc; 5402 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5403 Error(ExLoc, "malformed rotate expression"); 5404 return MatchOperand_ParseFail; 5405 } 5406 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5407 if (!CE) { 5408 Error(ExLoc, "rotate amount must be an immediate"); 5409 return MatchOperand_ParseFail; 5410 } 5411 5412 int64_t Val = CE->getValue(); 5413 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 5414 // normally, zero is represented in asm by omitting the rotate operand 5415 // entirely. 5416 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 5417 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 5418 return MatchOperand_ParseFail; 5419 } 5420 5421 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 5422 5423 return MatchOperand_Success; 5424 } 5425 5426 OperandMatchResultTy 5427 ARMAsmParser::parseModImm(OperandVector &Operands) { 5428 MCAsmParser &Parser = getParser(); 5429 MCAsmLexer &Lexer = getLexer(); 5430 int64_t Imm1, Imm2; 5431 5432 SMLoc S = Parser.getTok().getLoc(); 5433 5434 // 1) A mod_imm operand can appear in the place of a register name: 5435 // add r0, #mod_imm 5436 // add r0, r0, #mod_imm 5437 // to correctly handle the latter, we bail out as soon as we see an 5438 // identifier. 5439 // 5440 // 2) Similarly, we do not want to parse into complex operands: 5441 // mov r0, #mod_imm 5442 // mov r0, :lower16:(_foo) 5443 if (Parser.getTok().is(AsmToken::Identifier) || 5444 Parser.getTok().is(AsmToken::Colon)) 5445 return MatchOperand_NoMatch; 5446 5447 // Hash (dollar) is optional as per the ARMARM 5448 if (Parser.getTok().is(AsmToken::Hash) || 5449 Parser.getTok().is(AsmToken::Dollar)) { 5450 // Avoid parsing into complex operands (#:) 5451 if (Lexer.peekTok().is(AsmToken::Colon)) 5452 return MatchOperand_NoMatch; 5453 5454 // Eat the hash (dollar) 5455 Parser.Lex(); 5456 } 5457 5458 SMLoc Sx1, Ex1; 5459 Sx1 = Parser.getTok().getLoc(); 5460 const MCExpr *Imm1Exp; 5461 if (getParser().parseExpression(Imm1Exp, Ex1)) { 5462 Error(Sx1, "malformed expression"); 5463 return MatchOperand_ParseFail; 5464 } 5465 5466 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 5467 5468 if (CE) { 5469 // Immediate must fit within 32-bits 5470 Imm1 = CE->getValue(); 5471 int Enc = ARM_AM::getSOImmVal(Imm1); 5472 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 5473 // We have a match! 5474 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 5475 (Enc & 0xF00) >> 7, 5476 Sx1, Ex1)); 5477 return MatchOperand_Success; 5478 } 5479 5480 // We have parsed an immediate which is not for us, fallback to a plain 5481 // immediate. This can happen for instruction aliases. For an example, 5482 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 5483 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 5484 // instruction with a mod_imm operand. The alias is defined such that the 5485 // parser method is shared, that's why we have to do this here. 5486 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 5487 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5488 return MatchOperand_Success; 5489 } 5490 } else { 5491 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 5492 // MCFixup). Fallback to a plain immediate. 5493 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5494 return MatchOperand_Success; 5495 } 5496 5497 // From this point onward, we expect the input to be a (#bits, #rot) pair 5498 if (Parser.getTok().isNot(AsmToken::Comma)) { 5499 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 5500 return MatchOperand_ParseFail; 5501 } 5502 5503 if (Imm1 & ~0xFF) { 5504 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 5505 return MatchOperand_ParseFail; 5506 } 5507 5508 // Eat the comma 5509 Parser.Lex(); 5510 5511 // Repeat for #rot 5512 SMLoc Sx2, Ex2; 5513 Sx2 = Parser.getTok().getLoc(); 5514 5515 // Eat the optional hash (dollar) 5516 if (Parser.getTok().is(AsmToken::Hash) || 5517 Parser.getTok().is(AsmToken::Dollar)) 5518 Parser.Lex(); 5519 5520 const MCExpr *Imm2Exp; 5521 if (getParser().parseExpression(Imm2Exp, Ex2)) { 5522 Error(Sx2, "malformed expression"); 5523 return MatchOperand_ParseFail; 5524 } 5525 5526 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 5527 5528 if (CE) { 5529 Imm2 = CE->getValue(); 5530 if (!(Imm2 & ~0x1E)) { 5531 // We have a match! 5532 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 5533 return MatchOperand_Success; 5534 } 5535 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 5536 return MatchOperand_ParseFail; 5537 } else { 5538 Error(Sx2, "constant expression expected"); 5539 return MatchOperand_ParseFail; 5540 } 5541 } 5542 5543 OperandMatchResultTy 5544 ARMAsmParser::parseBitfield(OperandVector &Operands) { 5545 MCAsmParser &Parser = getParser(); 5546 SMLoc S = Parser.getTok().getLoc(); 5547 // The bitfield descriptor is really two operands, the LSB and the width. 5548 if (Parser.getTok().isNot(AsmToken::Hash) && 5549 Parser.getTok().isNot(AsmToken::Dollar)) { 5550 Error(Parser.getTok().getLoc(), "'#' expected"); 5551 return MatchOperand_ParseFail; 5552 } 5553 Parser.Lex(); // Eat hash token. 5554 5555 const MCExpr *LSBExpr; 5556 SMLoc E = Parser.getTok().getLoc(); 5557 if (getParser().parseExpression(LSBExpr)) { 5558 Error(E, "malformed immediate expression"); 5559 return MatchOperand_ParseFail; 5560 } 5561 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 5562 if (!CE) { 5563 Error(E, "'lsb' operand must be an immediate"); 5564 return MatchOperand_ParseFail; 5565 } 5566 5567 int64_t LSB = CE->getValue(); 5568 // The LSB must be in the range [0,31] 5569 if (LSB < 0 || LSB > 31) { 5570 Error(E, "'lsb' operand must be in the range [0,31]"); 5571 return MatchOperand_ParseFail; 5572 } 5573 E = Parser.getTok().getLoc(); 5574 5575 // Expect another immediate operand. 5576 if (Parser.getTok().isNot(AsmToken::Comma)) { 5577 Error(Parser.getTok().getLoc(), "too few operands"); 5578 return MatchOperand_ParseFail; 5579 } 5580 Parser.Lex(); // Eat hash token. 5581 if (Parser.getTok().isNot(AsmToken::Hash) && 5582 Parser.getTok().isNot(AsmToken::Dollar)) { 5583 Error(Parser.getTok().getLoc(), "'#' expected"); 5584 return MatchOperand_ParseFail; 5585 } 5586 Parser.Lex(); // Eat hash token. 5587 5588 const MCExpr *WidthExpr; 5589 SMLoc EndLoc; 5590 if (getParser().parseExpression(WidthExpr, EndLoc)) { 5591 Error(E, "malformed immediate expression"); 5592 return MatchOperand_ParseFail; 5593 } 5594 CE = dyn_cast<MCConstantExpr>(WidthExpr); 5595 if (!CE) { 5596 Error(E, "'width' operand must be an immediate"); 5597 return MatchOperand_ParseFail; 5598 } 5599 5600 int64_t Width = CE->getValue(); 5601 // The LSB must be in the range [1,32-lsb] 5602 if (Width < 1 || Width > 32 - LSB) { 5603 Error(E, "'width' operand must be in the range [1,32-lsb]"); 5604 return MatchOperand_ParseFail; 5605 } 5606 5607 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 5608 5609 return MatchOperand_Success; 5610 } 5611 5612 OperandMatchResultTy 5613 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 5614 // Check for a post-index addressing register operand. Specifically: 5615 // postidx_reg := '+' register {, shift} 5616 // | '-' register {, shift} 5617 // | register {, shift} 5618 5619 // This method must return MatchOperand_NoMatch without consuming any tokens 5620 // in the case where there is no match, as other alternatives take other 5621 // parse methods. 5622 MCAsmParser &Parser = getParser(); 5623 AsmToken Tok = Parser.getTok(); 5624 SMLoc S = Tok.getLoc(); 5625 bool haveEaten = false; 5626 bool isAdd = true; 5627 if (Tok.is(AsmToken::Plus)) { 5628 Parser.Lex(); // Eat the '+' token. 5629 haveEaten = true; 5630 } else if (Tok.is(AsmToken::Minus)) { 5631 Parser.Lex(); // Eat the '-' token. 5632 isAdd = false; 5633 haveEaten = true; 5634 } 5635 5636 SMLoc E = Parser.getTok().getEndLoc(); 5637 int Reg = tryParseRegister(); 5638 if (Reg == -1) { 5639 if (!haveEaten) 5640 return MatchOperand_NoMatch; 5641 Error(Parser.getTok().getLoc(), "register expected"); 5642 return MatchOperand_ParseFail; 5643 } 5644 5645 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 5646 unsigned ShiftImm = 0; 5647 if (Parser.getTok().is(AsmToken::Comma)) { 5648 Parser.Lex(); // Eat the ','. 5649 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 5650 return MatchOperand_ParseFail; 5651 5652 // FIXME: Only approximates end...may include intervening whitespace. 5653 E = Parser.getTok().getLoc(); 5654 } 5655 5656 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 5657 ShiftImm, S, E)); 5658 5659 return MatchOperand_Success; 5660 } 5661 5662 OperandMatchResultTy 5663 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 5664 // Check for a post-index addressing register operand. Specifically: 5665 // am3offset := '+' register 5666 // | '-' register 5667 // | register 5668 // | # imm 5669 // | # + imm 5670 // | # - imm 5671 5672 // This method must return MatchOperand_NoMatch without consuming any tokens 5673 // in the case where there is no match, as other alternatives take other 5674 // parse methods. 5675 MCAsmParser &Parser = getParser(); 5676 AsmToken Tok = Parser.getTok(); 5677 SMLoc S = Tok.getLoc(); 5678 5679 // Do immediates first, as we always parse those if we have a '#'. 5680 if (Parser.getTok().is(AsmToken::Hash) || 5681 Parser.getTok().is(AsmToken::Dollar)) { 5682 Parser.Lex(); // Eat '#' or '$'. 5683 // Explicitly look for a '-', as we need to encode negative zero 5684 // differently. 5685 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5686 const MCExpr *Offset; 5687 SMLoc E; 5688 if (getParser().parseExpression(Offset, E)) 5689 return MatchOperand_ParseFail; 5690 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5691 if (!CE) { 5692 Error(S, "constant expression expected"); 5693 return MatchOperand_ParseFail; 5694 } 5695 // Negative zero is encoded as the flag value 5696 // std::numeric_limits<int32_t>::min(). 5697 int32_t Val = CE->getValue(); 5698 if (isNegative && Val == 0) 5699 Val = std::numeric_limits<int32_t>::min(); 5700 5701 Operands.push_back( 5702 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 5703 5704 return MatchOperand_Success; 5705 } 5706 5707 bool haveEaten = false; 5708 bool isAdd = true; 5709 if (Tok.is(AsmToken::Plus)) { 5710 Parser.Lex(); // Eat the '+' token. 5711 haveEaten = true; 5712 } else if (Tok.is(AsmToken::Minus)) { 5713 Parser.Lex(); // Eat the '-' token. 5714 isAdd = false; 5715 haveEaten = true; 5716 } 5717 5718 Tok = Parser.getTok(); 5719 int Reg = tryParseRegister(); 5720 if (Reg == -1) { 5721 if (!haveEaten) 5722 return MatchOperand_NoMatch; 5723 Error(Tok.getLoc(), "register expected"); 5724 return MatchOperand_ParseFail; 5725 } 5726 5727 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 5728 0, S, Tok.getEndLoc())); 5729 5730 return MatchOperand_Success; 5731 } 5732 5733 /// Convert parsed operands to MCInst. Needed here because this instruction 5734 /// only has two register operands, but multiplication is commutative so 5735 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 5736 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 5737 const OperandVector &Operands) { 5738 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 5739 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 5740 // If we have a three-operand form, make sure to set Rn to be the operand 5741 // that isn't the same as Rd. 5742 unsigned RegOp = 4; 5743 if (Operands.size() == 6 && 5744 ((ARMOperand &)*Operands[4]).getReg() == 5745 ((ARMOperand &)*Operands[3]).getReg()) 5746 RegOp = 5; 5747 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 5748 Inst.addOperand(Inst.getOperand(0)); 5749 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 5750 } 5751 5752 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 5753 const OperandVector &Operands) { 5754 int CondOp = -1, ImmOp = -1; 5755 switch(Inst.getOpcode()) { 5756 case ARM::tB: 5757 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 5758 5759 case ARM::t2B: 5760 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 5761 5762 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 5763 } 5764 // first decide whether or not the branch should be conditional 5765 // by looking at it's location relative to an IT block 5766 if(inITBlock()) { 5767 // inside an IT block we cannot have any conditional branches. any 5768 // such instructions needs to be converted to unconditional form 5769 switch(Inst.getOpcode()) { 5770 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 5771 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 5772 } 5773 } else { 5774 // outside IT blocks we can only have unconditional branches with AL 5775 // condition code or conditional branches with non-AL condition code 5776 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 5777 switch(Inst.getOpcode()) { 5778 case ARM::tB: 5779 case ARM::tBcc: 5780 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 5781 break; 5782 case ARM::t2B: 5783 case ARM::t2Bcc: 5784 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 5785 break; 5786 } 5787 } 5788 5789 // now decide on encoding size based on branch target range 5790 switch(Inst.getOpcode()) { 5791 // classify tB as either t2B or t1B based on range of immediate operand 5792 case ARM::tB: { 5793 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5794 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 5795 Inst.setOpcode(ARM::t2B); 5796 break; 5797 } 5798 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 5799 case ARM::tBcc: { 5800 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5801 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 5802 Inst.setOpcode(ARM::t2Bcc); 5803 break; 5804 } 5805 } 5806 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 5807 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 5808 } 5809 5810 void ARMAsmParser::cvtMVEVMOVQtoDReg( 5811 MCInst &Inst, const OperandVector &Operands) { 5812 5813 // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2 5814 assert(Operands.size() == 8); 5815 5816 ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt 5817 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2 5818 ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd 5819 ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx 5820 // skip second copy of Qd in Operands[6] 5821 ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2 5822 ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code 5823 } 5824 5825 /// Parse an ARM memory expression, return false if successful else return true 5826 /// or an error. The first token must be a '[' when called. 5827 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 5828 MCAsmParser &Parser = getParser(); 5829 SMLoc S, E; 5830 if (Parser.getTok().isNot(AsmToken::LBrac)) 5831 return TokError("Token is not a Left Bracket"); 5832 S = Parser.getTok().getLoc(); 5833 Parser.Lex(); // Eat left bracket token. 5834 5835 const AsmToken &BaseRegTok = Parser.getTok(); 5836 int BaseRegNum = tryParseRegister(); 5837 if (BaseRegNum == -1) 5838 return Error(BaseRegTok.getLoc(), "register expected"); 5839 5840 // The next token must either be a comma, a colon or a closing bracket. 5841 const AsmToken &Tok = Parser.getTok(); 5842 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5843 !Tok.is(AsmToken::RBrac)) 5844 return Error(Tok.getLoc(), "malformed memory operand"); 5845 5846 if (Tok.is(AsmToken::RBrac)) { 5847 E = Tok.getEndLoc(); 5848 Parser.Lex(); // Eat right bracket token. 5849 5850 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5851 ARM_AM::no_shift, 0, 0, false, 5852 S, E)); 5853 5854 // If there's a pre-indexing writeback marker, '!', just add it as a token 5855 // operand. It's rather odd, but syntactically valid. 5856 if (Parser.getTok().is(AsmToken::Exclaim)) { 5857 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5858 Parser.Lex(); // Eat the '!'. 5859 } 5860 5861 return false; 5862 } 5863 5864 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5865 "Lost colon or comma in memory operand?!"); 5866 if (Tok.is(AsmToken::Comma)) { 5867 Parser.Lex(); // Eat the comma. 5868 } 5869 5870 // If we have a ':', it's an alignment specifier. 5871 if (Parser.getTok().is(AsmToken::Colon)) { 5872 Parser.Lex(); // Eat the ':'. 5873 E = Parser.getTok().getLoc(); 5874 SMLoc AlignmentLoc = Tok.getLoc(); 5875 5876 const MCExpr *Expr; 5877 if (getParser().parseExpression(Expr)) 5878 return true; 5879 5880 // The expression has to be a constant. Memory references with relocations 5881 // don't come through here, as they use the <label> forms of the relevant 5882 // instructions. 5883 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5884 if (!CE) 5885 return Error (E, "constant expression expected"); 5886 5887 unsigned Align = 0; 5888 switch (CE->getValue()) { 5889 default: 5890 return Error(E, 5891 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5892 case 16: Align = 2; break; 5893 case 32: Align = 4; break; 5894 case 64: Align = 8; break; 5895 case 128: Align = 16; break; 5896 case 256: Align = 32; break; 5897 } 5898 5899 // Now we should have the closing ']' 5900 if (Parser.getTok().isNot(AsmToken::RBrac)) 5901 return Error(Parser.getTok().getLoc(), "']' expected"); 5902 E = Parser.getTok().getEndLoc(); 5903 Parser.Lex(); // Eat right bracket token. 5904 5905 // Don't worry about range checking the value here. That's handled by 5906 // the is*() predicates. 5907 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5908 ARM_AM::no_shift, 0, Align, 5909 false, S, E, AlignmentLoc)); 5910 5911 // If there's a pre-indexing writeback marker, '!', just add it as a token 5912 // operand. 5913 if (Parser.getTok().is(AsmToken::Exclaim)) { 5914 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5915 Parser.Lex(); // Eat the '!'. 5916 } 5917 5918 return false; 5919 } 5920 5921 // If we have a '#' or '$', it's an immediate offset, else assume it's a 5922 // register offset. Be friendly and also accept a plain integer or expression 5923 // (without a leading hash) for gas compatibility. 5924 if (Parser.getTok().is(AsmToken::Hash) || 5925 Parser.getTok().is(AsmToken::Dollar) || 5926 Parser.getTok().is(AsmToken::LParen) || 5927 Parser.getTok().is(AsmToken::Integer)) { 5928 if (Parser.getTok().is(AsmToken::Hash) || 5929 Parser.getTok().is(AsmToken::Dollar)) 5930 Parser.Lex(); // Eat '#' or '$' 5931 E = Parser.getTok().getLoc(); 5932 5933 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5934 const MCExpr *Offset, *AdjustedOffset; 5935 if (getParser().parseExpression(Offset)) 5936 return true; 5937 5938 if (const auto *CE = dyn_cast<MCConstantExpr>(Offset)) { 5939 // If the constant was #-0, represent it as 5940 // std::numeric_limits<int32_t>::min(). 5941 int32_t Val = CE->getValue(); 5942 if (isNegative && Val == 0) 5943 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5944 getContext()); 5945 // Don't worry about range checking the value here. That's handled by 5946 // the is*() predicates. 5947 AdjustedOffset = CE; 5948 } else 5949 AdjustedOffset = Offset; 5950 Operands.push_back(ARMOperand::CreateMem( 5951 BaseRegNum, AdjustedOffset, 0, ARM_AM::no_shift, 0, 0, false, S, E)); 5952 5953 // Now we should have the closing ']' 5954 if (Parser.getTok().isNot(AsmToken::RBrac)) 5955 return Error(Parser.getTok().getLoc(), "']' expected"); 5956 E = Parser.getTok().getEndLoc(); 5957 Parser.Lex(); // Eat right bracket token. 5958 5959 // If there's a pre-indexing writeback marker, '!', just add it as a token 5960 // operand. 5961 if (Parser.getTok().is(AsmToken::Exclaim)) { 5962 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5963 Parser.Lex(); // Eat the '!'. 5964 } 5965 5966 return false; 5967 } 5968 5969 // The register offset is optionally preceded by a '+' or '-' 5970 bool isNegative = false; 5971 if (Parser.getTok().is(AsmToken::Minus)) { 5972 isNegative = true; 5973 Parser.Lex(); // Eat the '-'. 5974 } else if (Parser.getTok().is(AsmToken::Plus)) { 5975 // Nothing to do. 5976 Parser.Lex(); // Eat the '+'. 5977 } 5978 5979 E = Parser.getTok().getLoc(); 5980 int OffsetRegNum = tryParseRegister(); 5981 if (OffsetRegNum == -1) 5982 return Error(E, "register expected"); 5983 5984 // If there's a shift operator, handle it. 5985 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5986 unsigned ShiftImm = 0; 5987 if (Parser.getTok().is(AsmToken::Comma)) { 5988 Parser.Lex(); // Eat the ','. 5989 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5990 return true; 5991 } 5992 5993 // Now we should have the closing ']' 5994 if (Parser.getTok().isNot(AsmToken::RBrac)) 5995 return Error(Parser.getTok().getLoc(), "']' expected"); 5996 E = Parser.getTok().getEndLoc(); 5997 Parser.Lex(); // Eat right bracket token. 5998 5999 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 6000 ShiftType, ShiftImm, 0, isNegative, 6001 S, E)); 6002 6003 // If there's a pre-indexing writeback marker, '!', just add it as a token 6004 // operand. 6005 if (Parser.getTok().is(AsmToken::Exclaim)) { 6006 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 6007 Parser.Lex(); // Eat the '!'. 6008 } 6009 6010 return false; 6011 } 6012 6013 /// parseMemRegOffsetShift - one of these two: 6014 /// ( lsl | lsr | asr | ror ) , # shift_amount 6015 /// rrx 6016 /// return true if it parses a shift otherwise it returns false. 6017 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 6018 unsigned &Amount) { 6019 MCAsmParser &Parser = getParser(); 6020 SMLoc Loc = Parser.getTok().getLoc(); 6021 const AsmToken &Tok = Parser.getTok(); 6022 if (Tok.isNot(AsmToken::Identifier)) 6023 return Error(Loc, "illegal shift operator"); 6024 StringRef ShiftName = Tok.getString(); 6025 if (ShiftName == "lsl" || ShiftName == "LSL" || 6026 ShiftName == "asl" || ShiftName == "ASL") 6027 St = ARM_AM::lsl; 6028 else if (ShiftName == "lsr" || ShiftName == "LSR") 6029 St = ARM_AM::lsr; 6030 else if (ShiftName == "asr" || ShiftName == "ASR") 6031 St = ARM_AM::asr; 6032 else if (ShiftName == "ror" || ShiftName == "ROR") 6033 St = ARM_AM::ror; 6034 else if (ShiftName == "rrx" || ShiftName == "RRX") 6035 St = ARM_AM::rrx; 6036 else if (ShiftName == "uxtw" || ShiftName == "UXTW") 6037 St = ARM_AM::uxtw; 6038 else 6039 return Error(Loc, "illegal shift operator"); 6040 Parser.Lex(); // Eat shift type token. 6041 6042 // rrx stands alone. 6043 Amount = 0; 6044 if (St != ARM_AM::rrx) { 6045 Loc = Parser.getTok().getLoc(); 6046 // A '#' and a shift amount. 6047 const AsmToken &HashTok = Parser.getTok(); 6048 if (HashTok.isNot(AsmToken::Hash) && 6049 HashTok.isNot(AsmToken::Dollar)) 6050 return Error(HashTok.getLoc(), "'#' expected"); 6051 Parser.Lex(); // Eat hash token. 6052 6053 const MCExpr *Expr; 6054 if (getParser().parseExpression(Expr)) 6055 return true; 6056 // Range check the immediate. 6057 // lsl, ror: 0 <= imm <= 31 6058 // lsr, asr: 0 <= imm <= 32 6059 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 6060 if (!CE) 6061 return Error(Loc, "shift amount must be an immediate"); 6062 int64_t Imm = CE->getValue(); 6063 if (Imm < 0 || 6064 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 6065 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 6066 return Error(Loc, "immediate shift value out of range"); 6067 // If <ShiftTy> #0, turn it into a no_shift. 6068 if (Imm == 0) 6069 St = ARM_AM::lsl; 6070 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 6071 if (Imm == 32) 6072 Imm = 0; 6073 Amount = Imm; 6074 } 6075 6076 return false; 6077 } 6078 6079 /// parseFPImm - A floating point immediate expression operand. 6080 OperandMatchResultTy 6081 ARMAsmParser::parseFPImm(OperandVector &Operands) { 6082 MCAsmParser &Parser = getParser(); 6083 // Anything that can accept a floating point constant as an operand 6084 // needs to go through here, as the regular parseExpression is 6085 // integer only. 6086 // 6087 // This routine still creates a generic Immediate operand, containing 6088 // a bitcast of the 64-bit floating point value. The various operands 6089 // that accept floats can check whether the value is valid for them 6090 // via the standard is*() predicates. 6091 6092 SMLoc S = Parser.getTok().getLoc(); 6093 6094 if (Parser.getTok().isNot(AsmToken::Hash) && 6095 Parser.getTok().isNot(AsmToken::Dollar)) 6096 return MatchOperand_NoMatch; 6097 6098 // Disambiguate the VMOV forms that can accept an FP immediate. 6099 // vmov.f32 <sreg>, #imm 6100 // vmov.f64 <dreg>, #imm 6101 // vmov.f32 <dreg>, #imm @ vector f32x2 6102 // vmov.f32 <qreg>, #imm @ vector f32x4 6103 // 6104 // There are also the NEON VMOV instructions which expect an 6105 // integer constant. Make sure we don't try to parse an FPImm 6106 // for these: 6107 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 6108 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 6109 bool isVmovf = TyOp.isToken() && 6110 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 6111 TyOp.getToken() == ".f16"); 6112 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 6113 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 6114 Mnemonic.getToken() == "fconsts"); 6115 if (!(isVmovf || isFconst)) 6116 return MatchOperand_NoMatch; 6117 6118 Parser.Lex(); // Eat '#' or '$'. 6119 6120 // Handle negation, as that still comes through as a separate token. 6121 bool isNegative = false; 6122 if (Parser.getTok().is(AsmToken::Minus)) { 6123 isNegative = true; 6124 Parser.Lex(); 6125 } 6126 const AsmToken &Tok = Parser.getTok(); 6127 SMLoc Loc = Tok.getLoc(); 6128 if (Tok.is(AsmToken::Real) && isVmovf) { 6129 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 6130 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 6131 // If we had a '-' in front, toggle the sign bit. 6132 IntVal ^= (uint64_t)isNegative << 31; 6133 Parser.Lex(); // Eat the token. 6134 Operands.push_back(ARMOperand::CreateImm( 6135 MCConstantExpr::create(IntVal, getContext()), 6136 S, Parser.getTok().getLoc())); 6137 return MatchOperand_Success; 6138 } 6139 // Also handle plain integers. Instructions which allow floating point 6140 // immediates also allow a raw encoded 8-bit value. 6141 if (Tok.is(AsmToken::Integer) && isFconst) { 6142 int64_t Val = Tok.getIntVal(); 6143 Parser.Lex(); // Eat the token. 6144 if (Val > 255 || Val < 0) { 6145 Error(Loc, "encoded floating point value out of range"); 6146 return MatchOperand_ParseFail; 6147 } 6148 float RealVal = ARM_AM::getFPImmFloat(Val); 6149 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 6150 6151 Operands.push_back(ARMOperand::CreateImm( 6152 MCConstantExpr::create(Val, getContext()), S, 6153 Parser.getTok().getLoc())); 6154 return MatchOperand_Success; 6155 } 6156 6157 Error(Loc, "invalid floating point immediate"); 6158 return MatchOperand_ParseFail; 6159 } 6160 6161 /// Parse a arm instruction operand. For now this parses the operand regardless 6162 /// of the mnemonic. 6163 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 6164 MCAsmParser &Parser = getParser(); 6165 SMLoc S, E; 6166 6167 // Check if the current operand has a custom associated parser, if so, try to 6168 // custom parse the operand, or fallback to the general approach. 6169 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 6170 if (ResTy == MatchOperand_Success) 6171 return false; 6172 // If there wasn't a custom match, try the generic matcher below. Otherwise, 6173 // there was a match, but an error occurred, in which case, just return that 6174 // the operand parsing failed. 6175 if (ResTy == MatchOperand_ParseFail) 6176 return true; 6177 6178 switch (getLexer().getKind()) { 6179 default: 6180 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 6181 return true; 6182 case AsmToken::Identifier: { 6183 // If we've seen a branch mnemonic, the next operand must be a label. This 6184 // is true even if the label is a register name. So "br r1" means branch to 6185 // label "r1". 6186 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 6187 if (!ExpectLabel) { 6188 if (!tryParseRegisterWithWriteBack(Operands)) 6189 return false; 6190 int Res = tryParseShiftRegister(Operands); 6191 if (Res == 0) // success 6192 return false; 6193 else if (Res == -1) // irrecoverable error 6194 return true; 6195 // If this is VMRS, check for the apsr_nzcv operand. 6196 if (Mnemonic == "vmrs" && 6197 Parser.getTok().getString().equals_insensitive("apsr_nzcv")) { 6198 S = Parser.getTok().getLoc(); 6199 Parser.Lex(); 6200 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 6201 return false; 6202 } 6203 } 6204 6205 // Fall though for the Identifier case that is not a register or a 6206 // special name. 6207 LLVM_FALLTHROUGH; 6208 } 6209 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 6210 case AsmToken::Integer: // things like 1f and 2b as a branch targets 6211 case AsmToken::String: // quoted label names. 6212 case AsmToken::Dot: { // . as a branch target 6213 // This was not a register so parse other operands that start with an 6214 // identifier (like labels) as expressions and create them as immediates. 6215 const MCExpr *IdVal; 6216 S = Parser.getTok().getLoc(); 6217 if (getParser().parseExpression(IdVal)) 6218 return true; 6219 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6220 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 6221 return false; 6222 } 6223 case AsmToken::LBrac: 6224 return parseMemory(Operands); 6225 case AsmToken::LCurly: 6226 return parseRegisterList(Operands, !Mnemonic.startswith("clr")); 6227 case AsmToken::Dollar: 6228 case AsmToken::Hash: { 6229 // #42 -> immediate 6230 // $ 42 -> immediate 6231 // $foo -> symbol name 6232 // $42 -> symbol name 6233 S = Parser.getTok().getLoc(); 6234 6235 // Favor the interpretation of $-prefixed operands as symbol names. 6236 // Cases where immediates are explicitly expected are handled by their 6237 // specific ParseMethod implementations. 6238 auto AdjacentToken = getLexer().peekTok(/*ShouldSkipSpace=*/false); 6239 bool ExpectIdentifier = Parser.getTok().is(AsmToken::Dollar) && 6240 (AdjacentToken.is(AsmToken::Identifier) || 6241 AdjacentToken.is(AsmToken::Integer)); 6242 if (!ExpectIdentifier) { 6243 // Token is not part of identifier. Drop leading $ or # before parsing 6244 // expression. 6245 Parser.Lex(); 6246 } 6247 6248 if (Parser.getTok().isNot(AsmToken::Colon)) { 6249 bool IsNegative = Parser.getTok().is(AsmToken::Minus); 6250 const MCExpr *ImmVal; 6251 if (getParser().parseExpression(ImmVal)) 6252 return true; 6253 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 6254 if (CE) { 6255 int32_t Val = CE->getValue(); 6256 if (IsNegative && Val == 0) 6257 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 6258 getContext()); 6259 } 6260 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6261 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 6262 6263 // There can be a trailing '!' on operands that we want as a separate 6264 // '!' Token operand. Handle that here. For example, the compatibility 6265 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 6266 if (Parser.getTok().is(AsmToken::Exclaim)) { 6267 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 6268 Parser.getTok().getLoc())); 6269 Parser.Lex(); // Eat exclaim token 6270 } 6271 return false; 6272 } 6273 // w/ a ':' after the '#', it's just like a plain ':'. 6274 LLVM_FALLTHROUGH; 6275 } 6276 case AsmToken::Colon: { 6277 S = Parser.getTok().getLoc(); 6278 // ":lower16:" and ":upper16:" expression prefixes 6279 // FIXME: Check it's an expression prefix, 6280 // e.g. (FOO - :lower16:BAR) isn't legal. 6281 ARMMCExpr::VariantKind RefKind; 6282 if (parsePrefix(RefKind)) 6283 return true; 6284 6285 const MCExpr *SubExprVal; 6286 if (getParser().parseExpression(SubExprVal)) 6287 return true; 6288 6289 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 6290 getContext()); 6291 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6292 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 6293 return false; 6294 } 6295 case AsmToken::Equal: { 6296 S = Parser.getTok().getLoc(); 6297 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 6298 return Error(S, "unexpected token in operand"); 6299 Parser.Lex(); // Eat '=' 6300 const MCExpr *SubExprVal; 6301 if (getParser().parseExpression(SubExprVal)) 6302 return true; 6303 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6304 6305 // execute-only: we assume that assembly programmers know what they are 6306 // doing and allow literal pool creation here 6307 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 6308 return false; 6309 } 6310 } 6311 } 6312 6313 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 6314 // :lower16: and :upper16:. 6315 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 6316 MCAsmParser &Parser = getParser(); 6317 RefKind = ARMMCExpr::VK_ARM_None; 6318 6319 // consume an optional '#' (GNU compatibility) 6320 if (getLexer().is(AsmToken::Hash)) 6321 Parser.Lex(); 6322 6323 // :lower16: and :upper16: modifiers 6324 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 6325 Parser.Lex(); // Eat ':' 6326 6327 if (getLexer().isNot(AsmToken::Identifier)) { 6328 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 6329 return true; 6330 } 6331 6332 enum { 6333 COFF = (1 << MCContext::IsCOFF), 6334 ELF = (1 << MCContext::IsELF), 6335 MACHO = (1 << MCContext::IsMachO), 6336 WASM = (1 << MCContext::IsWasm), 6337 }; 6338 static const struct PrefixEntry { 6339 const char *Spelling; 6340 ARMMCExpr::VariantKind VariantKind; 6341 uint8_t SupportedFormats; 6342 } PrefixEntries[] = { 6343 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 6344 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 6345 }; 6346 6347 StringRef IDVal = Parser.getTok().getIdentifier(); 6348 6349 const auto &Prefix = 6350 llvm::find_if(PrefixEntries, [&IDVal](const PrefixEntry &PE) { 6351 return PE.Spelling == IDVal; 6352 }); 6353 if (Prefix == std::end(PrefixEntries)) { 6354 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 6355 return true; 6356 } 6357 6358 uint8_t CurrentFormat; 6359 switch (getContext().getObjectFileType()) { 6360 case MCContext::IsMachO: 6361 CurrentFormat = MACHO; 6362 break; 6363 case MCContext::IsELF: 6364 CurrentFormat = ELF; 6365 break; 6366 case MCContext::IsCOFF: 6367 CurrentFormat = COFF; 6368 break; 6369 case MCContext::IsWasm: 6370 CurrentFormat = WASM; 6371 break; 6372 case MCContext::IsGOFF: 6373 case MCContext::IsXCOFF: 6374 llvm_unreachable("unexpected object format"); 6375 break; 6376 } 6377 6378 if (~Prefix->SupportedFormats & CurrentFormat) { 6379 Error(Parser.getTok().getLoc(), 6380 "cannot represent relocation in the current file format"); 6381 return true; 6382 } 6383 6384 RefKind = Prefix->VariantKind; 6385 Parser.Lex(); 6386 6387 if (getLexer().isNot(AsmToken::Colon)) { 6388 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 6389 return true; 6390 } 6391 Parser.Lex(); // Eat the last ':' 6392 6393 return false; 6394 } 6395 6396 /// Given a mnemonic, split out possible predication code and carry 6397 /// setting letters to form a canonical mnemonic and flags. 6398 // 6399 // FIXME: Would be nice to autogen this. 6400 // FIXME: This is a bit of a maze of special cases. 6401 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 6402 StringRef ExtraToken, 6403 unsigned &PredicationCode, 6404 unsigned &VPTPredicationCode, 6405 bool &CarrySetting, 6406 unsigned &ProcessorIMod, 6407 StringRef &ITMask) { 6408 PredicationCode = ARMCC::AL; 6409 VPTPredicationCode = ARMVCC::None; 6410 CarrySetting = false; 6411 ProcessorIMod = 0; 6412 6413 // Ignore some mnemonics we know aren't predicated forms. 6414 // 6415 // FIXME: Would be nice to autogen this. 6416 if ((Mnemonic == "movs" && isThumb()) || 6417 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 6418 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 6419 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 6420 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 6421 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 6422 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 6423 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 6424 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 6425 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 6426 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 6427 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 6428 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 6429 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 6430 Mnemonic == "bxns" || Mnemonic == "blxns" || 6431 Mnemonic == "vdot" || Mnemonic == "vmmla" || 6432 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6433 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6434 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6435 Mnemonic == "wls" || Mnemonic == "le" || Mnemonic == "dls" || 6436 Mnemonic == "csel" || Mnemonic == "csinc" || 6437 Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" || 6438 Mnemonic == "cinv" || Mnemonic == "cneg" || Mnemonic == "cset" || 6439 Mnemonic == "csetm") 6440 return Mnemonic; 6441 6442 // First, split out any predication code. Ignore mnemonics we know aren't 6443 // predicated but do have a carry-set and so weren't caught above. 6444 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 6445 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 6446 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 6447 Mnemonic != "sbcs" && Mnemonic != "rscs" && 6448 !(hasMVE() && 6449 (Mnemonic == "vmine" || 6450 Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" || 6451 Mnemonic == "vrshle" || Mnemonic == "vrshlt" || 6452 Mnemonic == "vmvne" || Mnemonic == "vorne" || 6453 Mnemonic == "vnege" || Mnemonic == "vnegt" || 6454 Mnemonic == "vmule" || Mnemonic == "vmult" || 6455 Mnemonic == "vrintne" || 6456 Mnemonic == "vcmult" || Mnemonic == "vcmule" || 6457 Mnemonic == "vpsele" || Mnemonic == "vpselt" || 6458 Mnemonic.startswith("vq")))) { 6459 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); 6460 if (CC != ~0U) { 6461 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 6462 PredicationCode = CC; 6463 } 6464 } 6465 6466 // Next, determine if we have a carry setting bit. We explicitly ignore all 6467 // the instructions we know end in 's'. 6468 if (Mnemonic.endswith("s") && 6469 !(Mnemonic == "cps" || Mnemonic == "mls" || 6470 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 6471 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 6472 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 6473 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 6474 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 6475 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 6476 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 6477 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 6478 Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" || 6479 Mnemonic == "vmlas" || 6480 (Mnemonic == "movs" && isThumb()))) { 6481 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 6482 CarrySetting = true; 6483 } 6484 6485 // The "cps" instruction can have a interrupt mode operand which is glued into 6486 // the mnemonic. Check if this is the case, split it and parse the imod op 6487 if (Mnemonic.startswith("cps")) { 6488 // Split out any imod code. 6489 unsigned IMod = 6490 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 6491 .Case("ie", ARM_PROC::IE) 6492 .Case("id", ARM_PROC::ID) 6493 .Default(~0U); 6494 if (IMod != ~0U) { 6495 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 6496 ProcessorIMod = IMod; 6497 } 6498 } 6499 6500 if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" && 6501 Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" && 6502 Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" && 6503 Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" && 6504 Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" && 6505 Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" && 6506 Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") { 6507 unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1)); 6508 if (CC != ~0U) { 6509 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1); 6510 VPTPredicationCode = CC; 6511 } 6512 return Mnemonic; 6513 } 6514 6515 // The "it" instruction has the condition mask on the end of the mnemonic. 6516 if (Mnemonic.startswith("it")) { 6517 ITMask = Mnemonic.slice(2, Mnemonic.size()); 6518 Mnemonic = Mnemonic.slice(0, 2); 6519 } 6520 6521 if (Mnemonic.startswith("vpst")) { 6522 ITMask = Mnemonic.slice(4, Mnemonic.size()); 6523 Mnemonic = Mnemonic.slice(0, 4); 6524 } 6525 else if (Mnemonic.startswith("vpt")) { 6526 ITMask = Mnemonic.slice(3, Mnemonic.size()); 6527 Mnemonic = Mnemonic.slice(0, 3); 6528 } 6529 6530 return Mnemonic; 6531 } 6532 6533 /// Given a canonical mnemonic, determine if the instruction ever allows 6534 /// inclusion of carry set or predication code operands. 6535 // 6536 // FIXME: It would be nice to autogen this. 6537 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, 6538 StringRef ExtraToken, 6539 StringRef FullInst, 6540 bool &CanAcceptCarrySet, 6541 bool &CanAcceptPredicationCode, 6542 bool &CanAcceptVPTPredicationCode) { 6543 CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken); 6544 6545 CanAcceptCarrySet = 6546 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6547 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 6548 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 6549 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 6550 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 6551 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 6552 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 6553 (!isThumb() && 6554 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 6555 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 6556 6557 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 6558 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 6559 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 6560 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 6561 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 6562 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 6563 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 6564 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 6565 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 6566 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 6567 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 6568 Mnemonic == "vmovx" || Mnemonic == "vins" || 6569 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6570 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6571 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6572 Mnemonic == "vfmat" || Mnemonic == "vfmab" || 6573 Mnemonic == "vdot" || Mnemonic == "vmmla" || 6574 Mnemonic == "sb" || Mnemonic == "ssbb" || 6575 Mnemonic == "pssbb" || Mnemonic == "vsmmla" || 6576 Mnemonic == "vummla" || Mnemonic == "vusmmla" || 6577 Mnemonic == "vusdot" || Mnemonic == "vsudot" || 6578 Mnemonic == "bfcsel" || Mnemonic == "wls" || 6579 Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" || 6580 Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" || 6581 Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" || 6582 Mnemonic == "cset" || Mnemonic == "csetm" || 6583 Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") || 6584 (hasCDE() && MS.isCDEInstr(Mnemonic) && 6585 !MS.isITPredicableCDEInstr(Mnemonic)) || 6586 (hasMVE() && 6587 (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") || 6588 Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") || 6589 Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") || 6590 Mnemonic.startswith("letp")))) { 6591 // These mnemonics are never predicable 6592 CanAcceptPredicationCode = false; 6593 } else if (!isThumb()) { 6594 // Some instructions are only predicable in Thumb mode 6595 CanAcceptPredicationCode = 6596 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 6597 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 6598 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && 6599 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && 6600 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && 6601 Mnemonic != "stc2" && Mnemonic != "stc2l" && 6602 Mnemonic != "tsb" && 6603 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); 6604 } else if (isThumbOne()) { 6605 if (hasV6MOps()) 6606 CanAcceptPredicationCode = Mnemonic != "movs"; 6607 else 6608 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 6609 } else 6610 CanAcceptPredicationCode = true; 6611 } 6612 6613 // Some Thumb instructions have two operand forms that are not 6614 // available as three operand, convert to two operand form if possible. 6615 // 6616 // FIXME: We would really like to be able to tablegen'erate this. 6617 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 6618 bool CarrySetting, 6619 OperandVector &Operands) { 6620 if (Operands.size() != 6) 6621 return; 6622 6623 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6624 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 6625 if (!Op3.isReg() || !Op4.isReg()) 6626 return; 6627 6628 auto Op3Reg = Op3.getReg(); 6629 auto Op4Reg = Op4.getReg(); 6630 6631 // For most Thumb2 cases we just generate the 3 operand form and reduce 6632 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 6633 // won't accept SP or PC so we do the transformation here taking care 6634 // with immediate range in the 'add sp, sp #imm' case. 6635 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 6636 if (isThumbTwo()) { 6637 if (Mnemonic != "add") 6638 return; 6639 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 6640 (Op5.isReg() && Op5.getReg() == ARM::PC); 6641 if (!TryTransform) { 6642 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 6643 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 6644 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 6645 Op5.isImm() && !Op5.isImm0_508s4()); 6646 } 6647 if (!TryTransform) 6648 return; 6649 } else if (!isThumbOne()) 6650 return; 6651 6652 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 6653 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6654 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 6655 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 6656 return; 6657 6658 // If first 2 operands of a 3 operand instruction are the same 6659 // then transform to 2 operand version of the same instruction 6660 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 6661 bool Transform = Op3Reg == Op4Reg; 6662 6663 // For communtative operations, we might be able to transform if we swap 6664 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 6665 // as tADDrsp. 6666 const ARMOperand *LastOp = &Op5; 6667 bool Swap = false; 6668 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 6669 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 6670 Mnemonic == "and" || Mnemonic == "eor" || 6671 Mnemonic == "adc" || Mnemonic == "orr")) { 6672 Swap = true; 6673 LastOp = &Op4; 6674 Transform = true; 6675 } 6676 6677 // If both registers are the same then remove one of them from 6678 // the operand list, with certain exceptions. 6679 if (Transform) { 6680 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 6681 // 2 operand forms don't exist. 6682 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 6683 LastOp->isReg()) 6684 Transform = false; 6685 6686 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 6687 // 3-bits because the ARMARM says not to. 6688 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 6689 Transform = false; 6690 } 6691 6692 if (Transform) { 6693 if (Swap) 6694 std::swap(Op4, Op5); 6695 Operands.erase(Operands.begin() + 3); 6696 } 6697 } 6698 6699 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 6700 OperandVector &Operands) { 6701 // FIXME: This is all horribly hacky. We really need a better way to deal 6702 // with optional operands like this in the matcher table. 6703 6704 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 6705 // another does not. Specifically, the MOVW instruction does not. So we 6706 // special case it here and remove the defaulted (non-setting) cc_out 6707 // operand if that's the instruction we're trying to match. 6708 // 6709 // We do this as post-processing of the explicit operands rather than just 6710 // conditionally adding the cc_out in the first place because we need 6711 // to check the type of the parsed immediate operand. 6712 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 6713 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 6714 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 6715 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6716 return true; 6717 6718 // Register-register 'add' for thumb does not have a cc_out operand 6719 // when there are only two register operands. 6720 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 6721 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6722 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6723 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6724 return true; 6725 // Register-register 'add' for thumb does not have a cc_out operand 6726 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 6727 // have to check the immediate range here since Thumb2 has a variant 6728 // that can handle a different range and has a cc_out operand. 6729 if (((isThumb() && Mnemonic == "add") || 6730 (isThumbTwo() && Mnemonic == "sub")) && 6731 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6732 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6733 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 6734 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6735 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 6736 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 6737 return true; 6738 // For Thumb2, add/sub immediate does not have a cc_out operand for the 6739 // imm0_4095 variant. That's the least-preferred variant when 6740 // selecting via the generic "add" mnemonic, so to know that we 6741 // should remove the cc_out operand, we have to explicitly check that 6742 // it's not one of the other variants. Ugh. 6743 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 6744 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6745 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6746 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6747 // Nest conditions rather than one big 'if' statement for readability. 6748 // 6749 // If both registers are low, we're in an IT block, and the immediate is 6750 // in range, we should use encoding T1 instead, which has a cc_out. 6751 if (inITBlock() && 6752 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 6753 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 6754 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 6755 return false; 6756 // Check against T3. If the second register is the PC, this is an 6757 // alternate form of ADR, which uses encoding T4, so check for that too. 6758 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 6759 (static_cast<ARMOperand &>(*Operands[5]).isT2SOImm() || 6760 static_cast<ARMOperand &>(*Operands[5]).isT2SOImmNeg())) 6761 return false; 6762 6763 // Otherwise, we use encoding T4, which does not have a cc_out 6764 // operand. 6765 return true; 6766 } 6767 6768 // The thumb2 multiply instruction doesn't have a CCOut register, so 6769 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 6770 // use the 16-bit encoding or not. 6771 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 6772 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6773 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6774 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6775 static_cast<ARMOperand &>(*Operands[5]).isReg() && 6776 // If the registers aren't low regs, the destination reg isn't the 6777 // same as one of the source regs, or the cc_out operand is zero 6778 // outside of an IT block, we have to use the 32-bit encoding, so 6779 // remove the cc_out operand. 6780 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6781 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6782 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 6783 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 6784 static_cast<ARMOperand &>(*Operands[5]).getReg() && 6785 static_cast<ARMOperand &>(*Operands[3]).getReg() != 6786 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 6787 return true; 6788 6789 // Also check the 'mul' syntax variant that doesn't specify an explicit 6790 // destination register. 6791 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 6792 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6793 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6794 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6795 // If the registers aren't low regs or the cc_out operand is zero 6796 // outside of an IT block, we have to use the 32-bit encoding, so 6797 // remove the cc_out operand. 6798 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6799 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6800 !inITBlock())) 6801 return true; 6802 6803 // Register-register 'add/sub' for thumb does not have a cc_out operand 6804 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 6805 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 6806 // right, this will result in better diagnostics (which operand is off) 6807 // anyway. 6808 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 6809 (Operands.size() == 5 || Operands.size() == 6) && 6810 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6811 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 6812 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6813 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 6814 (Operands.size() == 6 && 6815 static_cast<ARMOperand &>(*Operands[5]).isImm()))) { 6816 // Thumb2 (add|sub){s}{p}.w GPRnopc, sp, #{T2SOImm} has cc_out 6817 return (!(isThumbTwo() && 6818 (static_cast<ARMOperand &>(*Operands[4]).isT2SOImm() || 6819 static_cast<ARMOperand &>(*Operands[4]).isT2SOImmNeg()))); 6820 } 6821 // Fixme: Should join all the thumb+thumb2 (add|sub) in a single if case 6822 // Thumb2 ADD r0, #4095 -> ADDW r0, r0, #4095 (T4) 6823 // Thumb2 SUB r0, #4095 -> SUBW r0, r0, #4095 6824 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 6825 (Operands.size() == 5) && 6826 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6827 static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::SP && 6828 static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::PC && 6829 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6830 static_cast<ARMOperand &>(*Operands[4]).isImm()) { 6831 const ARMOperand &IMM = static_cast<ARMOperand &>(*Operands[4]); 6832 if (IMM.isT2SOImm() || IMM.isT2SOImmNeg()) 6833 return false; // add.w / sub.w 6834 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IMM.getImm())) { 6835 const int64_t Value = CE->getValue(); 6836 // Thumb1 imm8 sub / add 6837 if ((Value < ((1 << 7) - 1) << 2) && inITBlock() && (!(Value & 3)) && 6838 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg())) 6839 return false; 6840 return true; // Thumb2 T4 addw / subw 6841 } 6842 } 6843 return false; 6844 } 6845 6846 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 6847 OperandVector &Operands) { 6848 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON 6849 unsigned RegIdx = 3; 6850 if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) || 6851 Mnemonic == "vrintr") && 6852 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 6853 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 6854 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6855 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 6856 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 6857 RegIdx = 4; 6858 6859 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 6860 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6861 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 6862 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6863 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 6864 return true; 6865 } 6866 return false; 6867 } 6868 6869 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic, 6870 OperandVector &Operands) { 6871 if (!hasMVE() || Operands.size() < 3) 6872 return true; 6873 6874 if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") || 6875 Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4")) 6876 return true; 6877 6878 if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot")) 6879 return false; 6880 6881 if (Mnemonic.startswith("vmov") && 6882 !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") || 6883 Mnemonic.startswith("vmovx"))) { 6884 for (auto &Operand : Operands) { 6885 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6886 ((*Operand).isReg() && 6887 (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 6888 (*Operand).getReg()) || 6889 ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6890 (*Operand).getReg())))) { 6891 return true; 6892 } 6893 } 6894 return false; 6895 } else { 6896 for (auto &Operand : Operands) { 6897 // We check the larger class QPR instead of just the legal class 6898 // MQPR, to more accurately report errors when using Q registers 6899 // outside of the allowed range. 6900 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6901 (Operand->isReg() && 6902 (ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6903 Operand->getReg())))) 6904 return false; 6905 } 6906 return true; 6907 } 6908 } 6909 6910 static bool isDataTypeToken(StringRef Tok) { 6911 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 6912 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 6913 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 6914 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 6915 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 6916 Tok == ".f" || Tok == ".d"; 6917 } 6918 6919 // FIXME: This bit should probably be handled via an explicit match class 6920 // in the .td files that matches the suffix instead of having it be 6921 // a literal string token the way it is now. 6922 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 6923 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 6924 } 6925 6926 static void applyMnemonicAliases(StringRef &Mnemonic, 6927 const FeatureBitset &Features, 6928 unsigned VariantID); 6929 6930 // The GNU assembler has aliases of ldrd and strd with the second register 6931 // omitted. We don't have a way to do that in tablegen, so fix it up here. 6932 // 6933 // We have to be careful to not emit an invalid Rt2 here, because the rest of 6934 // the assembly parser could then generate confusing diagnostics refering to 6935 // it. If we do find anything that prevents us from doing the transformation we 6936 // bail out, and let the assembly parser report an error on the instruction as 6937 // it is written. 6938 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, 6939 OperandVector &Operands) { 6940 if (Mnemonic != "ldrd" && Mnemonic != "strd") 6941 return; 6942 if (Operands.size() < 4) 6943 return; 6944 6945 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6946 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6947 6948 if (!Op2.isReg()) 6949 return; 6950 if (!Op3.isGPRMem()) 6951 return; 6952 6953 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); 6954 if (!GPR.contains(Op2.getReg())) 6955 return; 6956 6957 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); 6958 if (!isThumb() && (RtEncoding & 1)) { 6959 // In ARM mode, the registers must be from an aligned pair, this 6960 // restriction does not apply in Thumb mode. 6961 return; 6962 } 6963 if (Op2.getReg() == ARM::PC) 6964 return; 6965 unsigned PairedReg = GPR.getRegister(RtEncoding + 1); 6966 if (!PairedReg || PairedReg == ARM::PC || 6967 (PairedReg == ARM::SP && !hasV8Ops())) 6968 return; 6969 6970 Operands.insert( 6971 Operands.begin() + 3, 6972 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6973 } 6974 6975 // Dual-register instruction have the following syntax: 6976 // <mnemonic> <predicate>? <coproc>, <Rdest>, <Rdest+1>, <Rsrc>, ..., #imm 6977 // This function tries to remove <Rdest+1> and replace <Rdest> with a pair 6978 // operand. If the conversion fails an error is diagnosed, and the function 6979 // returns true. 6980 bool ARMAsmParser::CDEConvertDualRegOperand(StringRef Mnemonic, 6981 OperandVector &Operands) { 6982 assert(MS.isCDEDualRegInstr(Mnemonic)); 6983 bool isPredicable = 6984 Mnemonic == "cx1da" || Mnemonic == "cx2da" || Mnemonic == "cx3da"; 6985 size_t NumPredOps = isPredicable ? 1 : 0; 6986 6987 if (Operands.size() <= 3 + NumPredOps) 6988 return false; 6989 6990 StringRef Op2Diag( 6991 "operand must be an even-numbered register in the range [r0, r10]"); 6992 6993 const MCParsedAsmOperand &Op2 = *Operands[2 + NumPredOps]; 6994 if (!Op2.isReg()) 6995 return Error(Op2.getStartLoc(), Op2Diag); 6996 6997 unsigned RNext; 6998 unsigned RPair; 6999 switch (Op2.getReg()) { 7000 default: 7001 return Error(Op2.getStartLoc(), Op2Diag); 7002 case ARM::R0: 7003 RNext = ARM::R1; 7004 RPair = ARM::R0_R1; 7005 break; 7006 case ARM::R2: 7007 RNext = ARM::R3; 7008 RPair = ARM::R2_R3; 7009 break; 7010 case ARM::R4: 7011 RNext = ARM::R5; 7012 RPair = ARM::R4_R5; 7013 break; 7014 case ARM::R6: 7015 RNext = ARM::R7; 7016 RPair = ARM::R6_R7; 7017 break; 7018 case ARM::R8: 7019 RNext = ARM::R9; 7020 RPair = ARM::R8_R9; 7021 break; 7022 case ARM::R10: 7023 RNext = ARM::R11; 7024 RPair = ARM::R10_R11; 7025 break; 7026 } 7027 7028 const MCParsedAsmOperand &Op3 = *Operands[3 + NumPredOps]; 7029 if (!Op3.isReg() || Op3.getReg() != RNext) 7030 return Error(Op3.getStartLoc(), "operand must be a consecutive register"); 7031 7032 Operands.erase(Operands.begin() + 3 + NumPredOps); 7033 Operands[2 + NumPredOps] = 7034 ARMOperand::CreateReg(RPair, Op2.getStartLoc(), Op2.getEndLoc()); 7035 return false; 7036 } 7037 7038 /// Parse an arm instruction mnemonic followed by its operands. 7039 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 7040 SMLoc NameLoc, OperandVector &Operands) { 7041 MCAsmParser &Parser = getParser(); 7042 7043 // Apply mnemonic aliases before doing anything else, as the destination 7044 // mnemonic may include suffices and we want to handle them normally. 7045 // The generic tblgen'erated code does this later, at the start of 7046 // MatchInstructionImpl(), but that's too late for aliases that include 7047 // any sort of suffix. 7048 const FeatureBitset &AvailableFeatures = getAvailableFeatures(); 7049 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 7050 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 7051 7052 // First check for the ARM-specific .req directive. 7053 if (Parser.getTok().is(AsmToken::Identifier) && 7054 Parser.getTok().getIdentifier().lower() == ".req") { 7055 parseDirectiveReq(Name, NameLoc); 7056 // We always return 'error' for this, as we're done with this 7057 // statement and don't need to match the 'instruction." 7058 return true; 7059 } 7060 7061 // Create the leading tokens for the mnemonic, split by '.' characters. 7062 size_t Start = 0, Next = Name.find('.'); 7063 StringRef Mnemonic = Name.slice(Start, Next); 7064 StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1)); 7065 7066 // Split out the predication code and carry setting flag from the mnemonic. 7067 unsigned PredicationCode; 7068 unsigned VPTPredicationCode; 7069 unsigned ProcessorIMod; 7070 bool CarrySetting; 7071 StringRef ITMask; 7072 Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode, 7073 CarrySetting, ProcessorIMod, ITMask); 7074 7075 // In Thumb1, only the branch (B) instruction can be predicated. 7076 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 7077 return Error(NameLoc, "conditional execution not supported in Thumb1"); 7078 } 7079 7080 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 7081 7082 // Handle the mask for IT and VPT instructions. In ARMOperand and 7083 // MCOperand, this is stored in a format independent of the 7084 // condition code: the lowest set bit indicates the end of the 7085 // encoding, and above that, a 1 bit indicates 'else', and an 0 7086 // indicates 'then'. E.g. 7087 // IT -> 1000 7088 // ITx -> x100 (ITT -> 0100, ITE -> 1100) 7089 // ITxy -> xy10 (e.g. ITET -> 1010) 7090 // ITxyz -> xyz1 (e.g. ITEET -> 1101) 7091 // Note: See the ARM::PredBlockMask enum in 7092 // /lib/Target/ARM/Utils/ARMBaseInfo.h 7093 if (Mnemonic == "it" || Mnemonic.startswith("vpt") || 7094 Mnemonic.startswith("vpst")) { 7095 SMLoc Loc = Mnemonic == "it" ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) : 7096 Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) : 7097 SMLoc::getFromPointer(NameLoc.getPointer() + 4); 7098 if (ITMask.size() > 3) { 7099 if (Mnemonic == "it") 7100 return Error(Loc, "too many conditions on IT instruction"); 7101 return Error(Loc, "too many conditions on VPT instruction"); 7102 } 7103 unsigned Mask = 8; 7104 for (unsigned i = ITMask.size(); i != 0; --i) { 7105 char pos = ITMask[i - 1]; 7106 if (pos != 't' && pos != 'e') { 7107 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 7108 } 7109 Mask >>= 1; 7110 if (ITMask[i - 1] == 'e') 7111 Mask |= 8; 7112 } 7113 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 7114 } 7115 7116 // FIXME: This is all a pretty gross hack. We should automatically handle 7117 // optional operands like this via tblgen. 7118 7119 // Next, add the CCOut and ConditionCode operands, if needed. 7120 // 7121 // For mnemonics which can ever incorporate a carry setting bit or predication 7122 // code, our matching model involves us always generating CCOut and 7123 // ConditionCode operands to match the mnemonic "as written" and then we let 7124 // the matcher deal with finding the right instruction or generating an 7125 // appropriate error. 7126 bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode; 7127 getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet, 7128 CanAcceptPredicationCode, CanAcceptVPTPredicationCode); 7129 7130 // If we had a carry-set on an instruction that can't do that, issue an 7131 // error. 7132 if (!CanAcceptCarrySet && CarrySetting) { 7133 return Error(NameLoc, "instruction '" + Mnemonic + 7134 "' can not set flags, but 's' suffix specified"); 7135 } 7136 // If we had a predication code on an instruction that can't do that, issue an 7137 // error. 7138 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 7139 return Error(NameLoc, "instruction '" + Mnemonic + 7140 "' is not predicable, but condition code specified"); 7141 } 7142 7143 // If we had a VPT predication code on an instruction that can't do that, issue an 7144 // error. 7145 if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) { 7146 return Error(NameLoc, "instruction '" + Mnemonic + 7147 "' is not VPT predicable, but VPT code T/E is specified"); 7148 } 7149 7150 // Add the carry setting operand, if necessary. 7151 if (CanAcceptCarrySet) { 7152 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 7153 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 7154 Loc)); 7155 } 7156 7157 // Add the predication code operand, if necessary. 7158 if (CanAcceptPredicationCode) { 7159 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 7160 CarrySetting); 7161 Operands.push_back(ARMOperand::CreateCondCode( 7162 ARMCC::CondCodes(PredicationCode), Loc)); 7163 } 7164 7165 // Add the VPT predication code operand, if necessary. 7166 // FIXME: We don't add them for the instructions filtered below as these can 7167 // have custom operands which need special parsing. This parsing requires 7168 // the operand to be in the same place in the OperandVector as their 7169 // definition in tblgen. Since these instructions may also have the 7170 // scalar predication operand we do not add the vector one and leave until 7171 // now to fix it up. 7172 if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" && 7173 !Mnemonic.startswith("vcmp") && 7174 !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" && 7175 Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) { 7176 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 7177 CarrySetting); 7178 Operands.push_back(ARMOperand::CreateVPTPred( 7179 ARMVCC::VPTCodes(VPTPredicationCode), Loc)); 7180 } 7181 7182 // Add the processor imod operand, if necessary. 7183 if (ProcessorIMod) { 7184 Operands.push_back(ARMOperand::CreateImm( 7185 MCConstantExpr::create(ProcessorIMod, getContext()), 7186 NameLoc, NameLoc)); 7187 } else if (Mnemonic == "cps" && isMClass()) { 7188 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 7189 } 7190 7191 // Add the remaining tokens in the mnemonic. 7192 while (Next != StringRef::npos) { 7193 Start = Next; 7194 Next = Name.find('.', Start + 1); 7195 ExtraToken = Name.slice(Start, Next); 7196 7197 // Some NEON instructions have an optional datatype suffix that is 7198 // completely ignored. Check for that. 7199 if (isDataTypeToken(ExtraToken) && 7200 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 7201 continue; 7202 7203 // For for ARM mode generate an error if the .n qualifier is used. 7204 if (ExtraToken == ".n" && !isThumb()) { 7205 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 7206 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 7207 "arm mode"); 7208 } 7209 7210 // The .n qualifier is always discarded as that is what the tables 7211 // and matcher expect. In ARM mode the .w qualifier has no effect, 7212 // so discard it to avoid errors that can be caused by the matcher. 7213 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 7214 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 7215 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 7216 } 7217 } 7218 7219 // Read the remaining operands. 7220 if (getLexer().isNot(AsmToken::EndOfStatement)) { 7221 // Read the first operand. 7222 if (parseOperand(Operands, Mnemonic)) { 7223 return true; 7224 } 7225 7226 while (parseOptionalToken(AsmToken::Comma)) { 7227 // Parse and remember the operand. 7228 if (parseOperand(Operands, Mnemonic)) { 7229 return true; 7230 } 7231 } 7232 } 7233 7234 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 7235 return true; 7236 7237 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 7238 7239 if (hasCDE() && MS.isCDEInstr(Mnemonic)) { 7240 // Dual-register instructions use even-odd register pairs as their 7241 // destination operand, in assembly such pair is spelled as two 7242 // consecutive registers, without any special syntax. ConvertDualRegOperand 7243 // tries to convert such operand into register pair, e.g. r2, r3 -> r2_r3. 7244 // It returns true, if an error message has been emitted. If the function 7245 // returns false, the function either succeeded or an error (e.g. missing 7246 // operand) will be diagnosed elsewhere. 7247 if (MS.isCDEDualRegInstr(Mnemonic)) { 7248 bool GotError = CDEConvertDualRegOperand(Mnemonic, Operands); 7249 if (GotError) 7250 return GotError; 7251 } 7252 } 7253 7254 // Some instructions, mostly Thumb, have forms for the same mnemonic that 7255 // do and don't have a cc_out optional-def operand. With some spot-checks 7256 // of the operand list, we can figure out which variant we're trying to 7257 // parse and adjust accordingly before actually matching. We shouldn't ever 7258 // try to remove a cc_out operand that was explicitly set on the 7259 // mnemonic, of course (CarrySetting == true). Reason number #317 the 7260 // table driven matcher doesn't fit well with the ARM instruction set. 7261 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 7262 Operands.erase(Operands.begin() + 1); 7263 7264 // Some instructions have the same mnemonic, but don't always 7265 // have a predicate. Distinguish them here and delete the 7266 // appropriate predicate if needed. This could be either the scalar 7267 // predication code or the vector predication code. 7268 if (PredicationCode == ARMCC::AL && 7269 shouldOmitPredicateOperand(Mnemonic, Operands)) 7270 Operands.erase(Operands.begin() + 1); 7271 7272 7273 if (hasMVE()) { 7274 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) && 7275 Mnemonic == "vmov" && PredicationCode == ARMCC::LT) { 7276 // Very nasty hack to deal with the vector predicated variant of vmovlt 7277 // the scalar predicated vmov with condition 'lt'. We can not tell them 7278 // apart until we have parsed their operands. 7279 Operands.erase(Operands.begin() + 1); 7280 Operands.erase(Operands.begin()); 7281 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7282 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7283 Mnemonic.size() - 1 + CarrySetting); 7284 Operands.insert(Operands.begin(), 7285 ARMOperand::CreateVPTPred(ARMVCC::None, PLoc)); 7286 Operands.insert(Operands.begin(), 7287 ARMOperand::CreateToken(StringRef("vmovlt"), MLoc)); 7288 } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE && 7289 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7290 // Another nasty hack to deal with the ambiguity between vcvt with scalar 7291 // predication 'ne' and vcvtn with vector predication 'e'. As above we 7292 // can only distinguish between the two after we have parsed their 7293 // operands. 7294 Operands.erase(Operands.begin() + 1); 7295 Operands.erase(Operands.begin()); 7296 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7297 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7298 Mnemonic.size() - 1 + CarrySetting); 7299 Operands.insert(Operands.begin(), 7300 ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc)); 7301 Operands.insert(Operands.begin(), 7302 ARMOperand::CreateToken(StringRef("vcvtn"), MLoc)); 7303 } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT && 7304 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7305 // Another hack, this time to distinguish between scalar predicated vmul 7306 // with 'lt' predication code and the vector instruction vmullt with 7307 // vector predication code "none" 7308 Operands.erase(Operands.begin() + 1); 7309 Operands.erase(Operands.begin()); 7310 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7311 Operands.insert(Operands.begin(), 7312 ARMOperand::CreateToken(StringRef("vmullt"), MLoc)); 7313 } 7314 // For vmov and vcmp, as mentioned earlier, we did not add the vector 7315 // predication code, since these may contain operands that require 7316 // special parsing. So now we have to see if they require vector 7317 // predication and replace the scalar one with the vector predication 7318 // operand if that is the case. 7319 else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") || 7320 (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") && 7321 !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") && 7322 !Mnemonic.startswith("vcvtm"))) { 7323 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7324 // We could not split the vector predicate off vcvt because it might 7325 // have been the scalar vcvtt instruction. Now we know its a vector 7326 // instruction, we still need to check whether its the vector 7327 // predicated vcvt with 'Then' predication or the vector vcvtt. We can 7328 // distinguish the two based on the suffixes, if it is any of 7329 // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt. 7330 if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) { 7331 auto Sz1 = static_cast<ARMOperand &>(*Operands[2]); 7332 auto Sz2 = static_cast<ARMOperand &>(*Operands[3]); 7333 if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") && 7334 Sz2.isToken() && Sz2.getToken().startswith(".f"))) { 7335 Operands.erase(Operands.begin()); 7336 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7337 VPTPredicationCode = ARMVCC::Then; 7338 7339 Mnemonic = Mnemonic.substr(0, 4); 7340 Operands.insert(Operands.begin(), 7341 ARMOperand::CreateToken(Mnemonic, MLoc)); 7342 } 7343 } 7344 Operands.erase(Operands.begin() + 1); 7345 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7346 Mnemonic.size() + CarrySetting); 7347 Operands.insert(Operands.begin() + 1, 7348 ARMOperand::CreateVPTPred( 7349 ARMVCC::VPTCodes(VPTPredicationCode), PLoc)); 7350 } 7351 } else if (CanAcceptVPTPredicationCode) { 7352 // For all other instructions, make sure only one of the two 7353 // predication operands is left behind, depending on whether we should 7354 // use the vector predication. 7355 if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7356 if (CanAcceptPredicationCode) 7357 Operands.erase(Operands.begin() + 2); 7358 else 7359 Operands.erase(Operands.begin() + 1); 7360 } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) { 7361 Operands.erase(Operands.begin() + 1); 7362 } 7363 } 7364 } 7365 7366 if (VPTPredicationCode != ARMVCC::None) { 7367 bool usedVPTPredicationCode = false; 7368 for (unsigned I = 1; I < Operands.size(); ++I) 7369 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7370 usedVPTPredicationCode = true; 7371 if (!usedVPTPredicationCode) { 7372 // If we have a VPT predication code and we haven't just turned it 7373 // into an operand, then it was a mistake for splitMnemonic to 7374 // separate it from the rest of the mnemonic in the first place, 7375 // and this may lead to wrong disassembly (e.g. scalar floating 7376 // point VCMPE is actually a different instruction from VCMP, so 7377 // we mustn't treat them the same). In that situation, glue it 7378 // back on. 7379 Mnemonic = Name.slice(0, Mnemonic.size() + 1); 7380 Operands.erase(Operands.begin()); 7381 Operands.insert(Operands.begin(), 7382 ARMOperand::CreateToken(Mnemonic, NameLoc)); 7383 } 7384 } 7385 7386 // ARM mode 'blx' need special handling, as the register operand version 7387 // is predicable, but the label operand version is not. So, we can't rely 7388 // on the Mnemonic based checking to correctly figure out when to put 7389 // a k_CondCode operand in the list. If we're trying to match the label 7390 // version, remove the k_CondCode operand here. 7391 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 7392 static_cast<ARMOperand &>(*Operands[2]).isImm()) 7393 Operands.erase(Operands.begin() + 1); 7394 7395 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 7396 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 7397 // a single GPRPair reg operand is used in the .td file to replace the two 7398 // GPRs. However, when parsing from asm, the two GRPs cannot be 7399 // automatically 7400 // expressed as a GPRPair, so we have to manually merge them. 7401 // FIXME: We would really like to be able to tablegen'erate this. 7402 if (!isThumb() && Operands.size() > 4 && 7403 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 7404 Mnemonic == "stlexd")) { 7405 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 7406 unsigned Idx = isLoad ? 2 : 3; 7407 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 7408 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 7409 7410 const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID); 7411 // Adjust only if Op1 and Op2 are GPRs. 7412 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 7413 MRC.contains(Op2.getReg())) { 7414 unsigned Reg1 = Op1.getReg(); 7415 unsigned Reg2 = Op2.getReg(); 7416 unsigned Rt = MRI->getEncodingValue(Reg1); 7417 unsigned Rt2 = MRI->getEncodingValue(Reg2); 7418 7419 // Rt2 must be Rt + 1 and Rt must be even. 7420 if (Rt + 1 != Rt2 || (Rt & 1)) { 7421 return Error(Op2.getStartLoc(), 7422 isLoad ? "destination operands must be sequential" 7423 : "source operands must be sequential"); 7424 } 7425 unsigned NewReg = MRI->getMatchingSuperReg( 7426 Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID))); 7427 Operands[Idx] = 7428 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 7429 Operands.erase(Operands.begin() + Idx + 1); 7430 } 7431 } 7432 7433 // GNU Assembler extension (compatibility). 7434 fixupGNULDRDAlias(Mnemonic, Operands); 7435 7436 // FIXME: As said above, this is all a pretty gross hack. This instruction 7437 // does not fit with other "subs" and tblgen. 7438 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 7439 // so the Mnemonic is the original name "subs" and delete the predicate 7440 // operand so it will match the table entry. 7441 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 7442 static_cast<ARMOperand &>(*Operands[3]).isReg() && 7443 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 7444 static_cast<ARMOperand &>(*Operands[4]).isReg() && 7445 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 7446 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 7447 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 7448 Operands.erase(Operands.begin() + 1); 7449 } 7450 return false; 7451 } 7452 7453 // Validate context-sensitive operand constraints. 7454 7455 // return 'true' if register list contains non-low GPR registers, 7456 // 'false' otherwise. If Reg is in the register list or is HiReg, set 7457 // 'containsReg' to true. 7458 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 7459 unsigned Reg, unsigned HiReg, 7460 bool &containsReg) { 7461 containsReg = false; 7462 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 7463 unsigned OpReg = Inst.getOperand(i).getReg(); 7464 if (OpReg == Reg) 7465 containsReg = true; 7466 // Anything other than a low register isn't legal here. 7467 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 7468 return true; 7469 } 7470 return false; 7471 } 7472 7473 // Check if the specified regisgter is in the register list of the inst, 7474 // starting at the indicated operand number. 7475 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 7476 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 7477 unsigned OpReg = Inst.getOperand(i).getReg(); 7478 if (OpReg == Reg) 7479 return true; 7480 } 7481 return false; 7482 } 7483 7484 // Return true if instruction has the interesting property of being 7485 // allowed in IT blocks, but not being predicable. 7486 static bool instIsBreakpoint(const MCInst &Inst) { 7487 return Inst.getOpcode() == ARM::tBKPT || 7488 Inst.getOpcode() == ARM::BKPT || 7489 Inst.getOpcode() == ARM::tHLT || 7490 Inst.getOpcode() == ARM::HLT; 7491 } 7492 7493 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 7494 const OperandVector &Operands, 7495 unsigned ListNo, bool IsARPop) { 7496 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7497 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7498 7499 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7500 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 7501 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7502 7503 if (!IsARPop && ListContainsSP) 7504 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7505 "SP may not be in the register list"); 7506 else if (ListContainsPC && ListContainsLR) 7507 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7508 "PC and LR may not be in the register list simultaneously"); 7509 return false; 7510 } 7511 7512 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 7513 const OperandVector &Operands, 7514 unsigned ListNo) { 7515 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7516 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7517 7518 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7519 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7520 7521 if (ListContainsSP && ListContainsPC) 7522 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7523 "SP and PC may not be in the register list"); 7524 else if (ListContainsSP) 7525 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7526 "SP may not be in the register list"); 7527 else if (ListContainsPC) 7528 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7529 "PC may not be in the register list"); 7530 return false; 7531 } 7532 7533 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst, 7534 const OperandVector &Operands, 7535 bool Load, bool ARMMode, bool Writeback) { 7536 unsigned RtIndex = Load || !Writeback ? 0 : 1; 7537 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg()); 7538 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg()); 7539 7540 if (ARMMode) { 7541 // Rt can't be R14. 7542 if (Rt == 14) 7543 return Error(Operands[3]->getStartLoc(), 7544 "Rt can't be R14"); 7545 7546 // Rt must be even-numbered. 7547 if ((Rt & 1) == 1) 7548 return Error(Operands[3]->getStartLoc(), 7549 "Rt must be even-numbered"); 7550 7551 // Rt2 must be Rt + 1. 7552 if (Rt2 != Rt + 1) { 7553 if (Load) 7554 return Error(Operands[3]->getStartLoc(), 7555 "destination operands must be sequential"); 7556 else 7557 return Error(Operands[3]->getStartLoc(), 7558 "source operands must be sequential"); 7559 } 7560 7561 // FIXME: Diagnose m == 15 7562 // FIXME: Diagnose ldrd with m == t || m == t2. 7563 } 7564 7565 if (!ARMMode && Load) { 7566 if (Rt2 == Rt) 7567 return Error(Operands[3]->getStartLoc(), 7568 "destination operands can't be identical"); 7569 } 7570 7571 if (Writeback) { 7572 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 7573 7574 if (Rn == Rt || Rn == Rt2) { 7575 if (Load) 7576 return Error(Operands[3]->getStartLoc(), 7577 "base register needs to be different from destination " 7578 "registers"); 7579 else 7580 return Error(Operands[3]->getStartLoc(), 7581 "source register and base register can't be identical"); 7582 } 7583 7584 // FIXME: Diagnose ldrd/strd with writeback and n == 15. 7585 // (Except the immediate form of ldrd?) 7586 } 7587 7588 return false; 7589 } 7590 7591 static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) { 7592 for (unsigned i = 0; i < MCID.NumOperands; ++i) { 7593 if (ARM::isVpred(MCID.OpInfo[i].OperandType)) 7594 return i; 7595 } 7596 return -1; 7597 } 7598 7599 static bool isVectorPredicable(const MCInstrDesc &MCID) { 7600 return findFirstVectorPredOperandIdx(MCID) != -1; 7601 } 7602 7603 // FIXME: We would really like to be able to tablegen'erate this. 7604 bool ARMAsmParser::validateInstruction(MCInst &Inst, 7605 const OperandVector &Operands) { 7606 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 7607 SMLoc Loc = Operands[0]->getStartLoc(); 7608 7609 // Check the IT block state first. 7610 // NOTE: BKPT and HLT instructions have the interesting property of being 7611 // allowed in IT blocks, but not being predicable. They just always execute. 7612 if (inITBlock() && !instIsBreakpoint(Inst)) { 7613 // The instruction must be predicable. 7614 if (!MCID.isPredicable()) 7615 return Error(Loc, "instructions in IT block must be predicable"); 7616 ARMCC::CondCodes Cond = ARMCC::CondCodes( 7617 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm()); 7618 if (Cond != currentITCond()) { 7619 // Find the condition code Operand to get its SMLoc information. 7620 SMLoc CondLoc; 7621 for (unsigned I = 1; I < Operands.size(); ++I) 7622 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 7623 CondLoc = Operands[I]->getStartLoc(); 7624 return Error(CondLoc, "incorrect condition in IT block; got '" + 7625 StringRef(ARMCondCodeToString(Cond)) + 7626 "', but expected '" + 7627 ARMCondCodeToString(currentITCond()) + "'"); 7628 } 7629 // Check for non-'al' condition codes outside of the IT block. 7630 } else if (isThumbTwo() && MCID.isPredicable() && 7631 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7632 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 7633 Inst.getOpcode() != ARM::t2Bcc && 7634 Inst.getOpcode() != ARM::t2BFic) { 7635 return Error(Loc, "predicated instructions must be in IT block"); 7636 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 7637 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7638 ARMCC::AL) { 7639 return Warning(Loc, "predicated instructions should be in IT block"); 7640 } else if (!MCID.isPredicable()) { 7641 // Check the instruction doesn't have a predicate operand anyway 7642 // that it's not allowed to use. Sometimes this happens in order 7643 // to keep instructions the same shape even though one cannot 7644 // legally be predicated, e.g. vmul.f16 vs vmul.f32. 7645 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 7646 if (MCID.OpInfo[i].isPredicate()) { 7647 if (Inst.getOperand(i).getImm() != ARMCC::AL) 7648 return Error(Loc, "instruction is not predicable"); 7649 break; 7650 } 7651 } 7652 } 7653 7654 // PC-setting instructions in an IT block, but not the last instruction of 7655 // the block, are UNPREDICTABLE. 7656 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 7657 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 7658 } 7659 7660 if (inVPTBlock() && !instIsBreakpoint(Inst)) { 7661 unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition); 7662 if (!isVectorPredicable(MCID)) 7663 return Error(Loc, "instruction in VPT block must be predicable"); 7664 unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm(); 7665 unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then; 7666 if (Pred != VPTPred) { 7667 SMLoc PredLoc; 7668 for (unsigned I = 1; I < Operands.size(); ++I) 7669 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7670 PredLoc = Operands[I]->getStartLoc(); 7671 return Error(PredLoc, "incorrect predication in VPT block; got '" + 7672 StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) + 7673 "', but expected '" + 7674 ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'"); 7675 } 7676 } 7677 else if (isVectorPredicable(MCID) && 7678 Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() != 7679 ARMVCC::None) 7680 return Error(Loc, "VPT predicated instructions must be in VPT block"); 7681 7682 const unsigned Opcode = Inst.getOpcode(); 7683 switch (Opcode) { 7684 case ARM::t2IT: { 7685 // Encoding is unpredictable if it ever results in a notional 'NV' 7686 // predicate. Since we don't parse 'NV' directly this means an 'AL' 7687 // predicate with an "else" mask bit. 7688 unsigned Cond = Inst.getOperand(0).getImm(); 7689 unsigned Mask = Inst.getOperand(1).getImm(); 7690 7691 // Conditions only allowing a 't' are those with no set bit except 7692 // the lowest-order one that indicates the end of the sequence. In 7693 // other words, powers of 2. 7694 if (Cond == ARMCC::AL && countPopulation(Mask) != 1) 7695 return Error(Loc, "unpredictable IT predicate sequence"); 7696 break; 7697 } 7698 case ARM::LDRD: 7699 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7700 /*Writeback*/false)) 7701 return true; 7702 break; 7703 case ARM::LDRD_PRE: 7704 case ARM::LDRD_POST: 7705 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7706 /*Writeback*/true)) 7707 return true; 7708 break; 7709 case ARM::t2LDRDi8: 7710 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7711 /*Writeback*/false)) 7712 return true; 7713 break; 7714 case ARM::t2LDRD_PRE: 7715 case ARM::t2LDRD_POST: 7716 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7717 /*Writeback*/true)) 7718 return true; 7719 break; 7720 case ARM::t2BXJ: { 7721 const unsigned RmReg = Inst.getOperand(0).getReg(); 7722 // Rm = SP is no longer unpredictable in v8-A 7723 if (RmReg == ARM::SP && !hasV8Ops()) 7724 return Error(Operands[2]->getStartLoc(), 7725 "r13 (SP) is an unpredictable operand to BXJ"); 7726 return false; 7727 } 7728 case ARM::STRD: 7729 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7730 /*Writeback*/false)) 7731 return true; 7732 break; 7733 case ARM::STRD_PRE: 7734 case ARM::STRD_POST: 7735 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7736 /*Writeback*/true)) 7737 return true; 7738 break; 7739 case ARM::t2STRD_PRE: 7740 case ARM::t2STRD_POST: 7741 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false, 7742 /*Writeback*/true)) 7743 return true; 7744 break; 7745 case ARM::STR_PRE_IMM: 7746 case ARM::STR_PRE_REG: 7747 case ARM::t2STR_PRE: 7748 case ARM::STR_POST_IMM: 7749 case ARM::STR_POST_REG: 7750 case ARM::t2STR_POST: 7751 case ARM::STRH_PRE: 7752 case ARM::t2STRH_PRE: 7753 case ARM::STRH_POST: 7754 case ARM::t2STRH_POST: 7755 case ARM::STRB_PRE_IMM: 7756 case ARM::STRB_PRE_REG: 7757 case ARM::t2STRB_PRE: 7758 case ARM::STRB_POST_IMM: 7759 case ARM::STRB_POST_REG: 7760 case ARM::t2STRB_POST: { 7761 // Rt must be different from Rn. 7762 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 7763 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7764 7765 if (Rt == Rn) 7766 return Error(Operands[3]->getStartLoc(), 7767 "source register and base register can't be identical"); 7768 return false; 7769 } 7770 case ARM::t2LDR_PRE_imm: 7771 case ARM::t2LDR_POST_imm: 7772 case ARM::t2STR_PRE_imm: 7773 case ARM::t2STR_POST_imm: { 7774 // Rt must be different from Rn. 7775 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 7776 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 7777 7778 if (Rt == Rn) 7779 return Error(Operands[3]->getStartLoc(), 7780 "destination register and base register can't be identical"); 7781 if (Inst.getOpcode() == ARM::t2LDR_POST_imm || 7782 Inst.getOpcode() == ARM::t2STR_POST_imm) { 7783 int Imm = Inst.getOperand(2).getImm(); 7784 if (Imm > 255 || Imm < -255) 7785 return Error(Operands[5]->getStartLoc(), 7786 "operand must be in range [-255, 255]"); 7787 } 7788 if (Inst.getOpcode() == ARM::t2STR_PRE_imm || 7789 Inst.getOpcode() == ARM::t2STR_POST_imm) { 7790 if (Inst.getOperand(0).getReg() == ARM::PC) { 7791 return Error(Operands[3]->getStartLoc(), 7792 "operand must be a register in range [r0, r14]"); 7793 } 7794 } 7795 return false; 7796 } 7797 case ARM::LDR_PRE_IMM: 7798 case ARM::LDR_PRE_REG: 7799 case ARM::t2LDR_PRE: 7800 case ARM::LDR_POST_IMM: 7801 case ARM::LDR_POST_REG: 7802 case ARM::t2LDR_POST: 7803 case ARM::LDRH_PRE: 7804 case ARM::t2LDRH_PRE: 7805 case ARM::LDRH_POST: 7806 case ARM::t2LDRH_POST: 7807 case ARM::LDRSH_PRE: 7808 case ARM::t2LDRSH_PRE: 7809 case ARM::LDRSH_POST: 7810 case ARM::t2LDRSH_POST: 7811 case ARM::LDRB_PRE_IMM: 7812 case ARM::LDRB_PRE_REG: 7813 case ARM::t2LDRB_PRE: 7814 case ARM::LDRB_POST_IMM: 7815 case ARM::LDRB_POST_REG: 7816 case ARM::t2LDRB_POST: 7817 case ARM::LDRSB_PRE: 7818 case ARM::t2LDRSB_PRE: 7819 case ARM::LDRSB_POST: 7820 case ARM::t2LDRSB_POST: { 7821 // Rt must be different from Rn. 7822 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 7823 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7824 7825 if (Rt == Rn) 7826 return Error(Operands[3]->getStartLoc(), 7827 "destination register and base register can't be identical"); 7828 return false; 7829 } 7830 7831 case ARM::MVE_VLDRBU8_rq: 7832 case ARM::MVE_VLDRBU16_rq: 7833 case ARM::MVE_VLDRBS16_rq: 7834 case ARM::MVE_VLDRBU32_rq: 7835 case ARM::MVE_VLDRBS32_rq: 7836 case ARM::MVE_VLDRHU16_rq: 7837 case ARM::MVE_VLDRHU16_rq_u: 7838 case ARM::MVE_VLDRHU32_rq: 7839 case ARM::MVE_VLDRHU32_rq_u: 7840 case ARM::MVE_VLDRHS32_rq: 7841 case ARM::MVE_VLDRHS32_rq_u: 7842 case ARM::MVE_VLDRWU32_rq: 7843 case ARM::MVE_VLDRWU32_rq_u: 7844 case ARM::MVE_VLDRDU64_rq: 7845 case ARM::MVE_VLDRDU64_rq_u: 7846 case ARM::MVE_VLDRWU32_qi: 7847 case ARM::MVE_VLDRWU32_qi_pre: 7848 case ARM::MVE_VLDRDU64_qi: 7849 case ARM::MVE_VLDRDU64_qi_pre: { 7850 // Qd must be different from Qm. 7851 unsigned QdIdx = 0, QmIdx = 2; 7852 bool QmIsPointer = false; 7853 switch (Opcode) { 7854 case ARM::MVE_VLDRWU32_qi: 7855 case ARM::MVE_VLDRDU64_qi: 7856 QmIdx = 1; 7857 QmIsPointer = true; 7858 break; 7859 case ARM::MVE_VLDRWU32_qi_pre: 7860 case ARM::MVE_VLDRDU64_qi_pre: 7861 QdIdx = 1; 7862 QmIsPointer = true; 7863 break; 7864 } 7865 7866 const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg()); 7867 const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg()); 7868 7869 if (Qd == Qm) { 7870 return Error(Operands[3]->getStartLoc(), 7871 Twine("destination vector register and vector ") + 7872 (QmIsPointer ? "pointer" : "offset") + 7873 " register can't be identical"); 7874 } 7875 return false; 7876 } 7877 7878 case ARM::SBFX: 7879 case ARM::t2SBFX: 7880 case ARM::UBFX: 7881 case ARM::t2UBFX: { 7882 // Width must be in range [1, 32-lsb]. 7883 unsigned LSB = Inst.getOperand(2).getImm(); 7884 unsigned Widthm1 = Inst.getOperand(3).getImm(); 7885 if (Widthm1 >= 32 - LSB) 7886 return Error(Operands[5]->getStartLoc(), 7887 "bitfield width must be in range [1,32-lsb]"); 7888 return false; 7889 } 7890 // Notionally handles ARM::tLDMIA_UPD too. 7891 case ARM::tLDMIA: { 7892 // If we're parsing Thumb2, the .w variant is available and handles 7893 // most cases that are normally illegal for a Thumb1 LDM instruction. 7894 // We'll make the transformation in processInstruction() if necessary. 7895 // 7896 // Thumb LDM instructions are writeback iff the base register is not 7897 // in the register list. 7898 unsigned Rn = Inst.getOperand(0).getReg(); 7899 bool HasWritebackToken = 7900 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 7901 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 7902 bool ListContainsBase; 7903 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 7904 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 7905 "registers must be in range r0-r7"); 7906 // If we should have writeback, then there should be a '!' token. 7907 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 7908 return Error(Operands[2]->getStartLoc(), 7909 "writeback operator '!' expected"); 7910 // If we should not have writeback, there must not be a '!'. This is 7911 // true even for the 32-bit wide encodings. 7912 if (ListContainsBase && HasWritebackToken) 7913 return Error(Operands[3]->getStartLoc(), 7914 "writeback operator '!' not allowed when base register " 7915 "in register list"); 7916 7917 if (validatetLDMRegList(Inst, Operands, 3)) 7918 return true; 7919 break; 7920 } 7921 case ARM::LDMIA_UPD: 7922 case ARM::LDMDB_UPD: 7923 case ARM::LDMIB_UPD: 7924 case ARM::LDMDA_UPD: 7925 // ARM variants loading and updating the same register are only officially 7926 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 7927 if (!hasV7Ops()) 7928 break; 7929 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7930 return Error(Operands.back()->getStartLoc(), 7931 "writeback register not allowed in register list"); 7932 break; 7933 case ARM::t2LDMIA: 7934 case ARM::t2LDMDB: 7935 if (validatetLDMRegList(Inst, Operands, 3)) 7936 return true; 7937 break; 7938 case ARM::t2STMIA: 7939 case ARM::t2STMDB: 7940 if (validatetSTMRegList(Inst, Operands, 3)) 7941 return true; 7942 break; 7943 case ARM::t2LDMIA_UPD: 7944 case ARM::t2LDMDB_UPD: 7945 case ARM::t2STMIA_UPD: 7946 case ARM::t2STMDB_UPD: 7947 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7948 return Error(Operands.back()->getStartLoc(), 7949 "writeback register not allowed in register list"); 7950 7951 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 7952 if (validatetLDMRegList(Inst, Operands, 3)) 7953 return true; 7954 } else { 7955 if (validatetSTMRegList(Inst, Operands, 3)) 7956 return true; 7957 } 7958 break; 7959 7960 case ARM::sysLDMIA_UPD: 7961 case ARM::sysLDMDA_UPD: 7962 case ARM::sysLDMDB_UPD: 7963 case ARM::sysLDMIB_UPD: 7964 if (!listContainsReg(Inst, 3, ARM::PC)) 7965 return Error(Operands[4]->getStartLoc(), 7966 "writeback register only allowed on system LDM " 7967 "if PC in register-list"); 7968 break; 7969 case ARM::sysSTMIA_UPD: 7970 case ARM::sysSTMDA_UPD: 7971 case ARM::sysSTMDB_UPD: 7972 case ARM::sysSTMIB_UPD: 7973 return Error(Operands[2]->getStartLoc(), 7974 "system STM cannot have writeback register"); 7975 case ARM::tMUL: 7976 // The second source operand must be the same register as the destination 7977 // operand. 7978 // 7979 // In this case, we must directly check the parsed operands because the 7980 // cvtThumbMultiply() function is written in such a way that it guarantees 7981 // this first statement is always true for the new Inst. Essentially, the 7982 // destination is unconditionally copied into the second source operand 7983 // without checking to see if it matches what we actually parsed. 7984 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 7985 ((ARMOperand &)*Operands[5]).getReg()) && 7986 (((ARMOperand &)*Operands[3]).getReg() != 7987 ((ARMOperand &)*Operands[4]).getReg())) { 7988 return Error(Operands[3]->getStartLoc(), 7989 "destination register must match source register"); 7990 } 7991 break; 7992 7993 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 7994 // so only issue a diagnostic for thumb1. The instructions will be 7995 // switched to the t2 encodings in processInstruction() if necessary. 7996 case ARM::tPOP: { 7997 bool ListContainsBase; 7998 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 7999 !isThumbTwo()) 8000 return Error(Operands[2]->getStartLoc(), 8001 "registers must be in range r0-r7 or pc"); 8002 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 8003 return true; 8004 break; 8005 } 8006 case ARM::tPUSH: { 8007 bool ListContainsBase; 8008 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 8009 !isThumbTwo()) 8010 return Error(Operands[2]->getStartLoc(), 8011 "registers must be in range r0-r7 or lr"); 8012 if (validatetSTMRegList(Inst, Operands, 2)) 8013 return true; 8014 break; 8015 } 8016 case ARM::tSTMIA_UPD: { 8017 bool ListContainsBase, InvalidLowList; 8018 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 8019 0, ListContainsBase); 8020 if (InvalidLowList && !isThumbTwo()) 8021 return Error(Operands[4]->getStartLoc(), 8022 "registers must be in range r0-r7"); 8023 8024 // This would be converted to a 32-bit stm, but that's not valid if the 8025 // writeback register is in the list. 8026 if (InvalidLowList && ListContainsBase) 8027 return Error(Operands[4]->getStartLoc(), 8028 "writeback operator '!' not allowed when base register " 8029 "in register list"); 8030 8031 if (validatetSTMRegList(Inst, Operands, 4)) 8032 return true; 8033 break; 8034 } 8035 case ARM::tADDrSP: 8036 // If the non-SP source operand and the destination operand are not the 8037 // same, we need thumb2 (for the wide encoding), or we have an error. 8038 if (!isThumbTwo() && 8039 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8040 return Error(Operands[4]->getStartLoc(), 8041 "source register must be the same as destination"); 8042 } 8043 break; 8044 8045 case ARM::t2ADDrr: 8046 case ARM::t2ADDrs: 8047 case ARM::t2SUBrr: 8048 case ARM::t2SUBrs: 8049 if (Inst.getOperand(0).getReg() == ARM::SP && 8050 Inst.getOperand(1).getReg() != ARM::SP) 8051 return Error(Operands[4]->getStartLoc(), 8052 "source register must be sp if destination is sp"); 8053 break; 8054 8055 // Final range checking for Thumb unconditional branch instructions. 8056 case ARM::tB: 8057 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 8058 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 8059 break; 8060 case ARM::t2B: { 8061 int op = (Operands[2]->isImm()) ? 2 : 3; 8062 ARMOperand &Operand = static_cast<ARMOperand &>(*Operands[op]); 8063 // Delay the checks of symbolic expressions until they are resolved. 8064 if (!isa<MCBinaryExpr>(Operand.getImm()) && 8065 !Operand.isSignedOffset<24, 1>()) 8066 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 8067 break; 8068 } 8069 // Final range checking for Thumb conditional branch instructions. 8070 case ARM::tBcc: 8071 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 8072 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 8073 break; 8074 case ARM::t2Bcc: { 8075 int Op = (Operands[2]->isImm()) ? 2 : 3; 8076 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 8077 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 8078 break; 8079 } 8080 case ARM::tCBZ: 8081 case ARM::tCBNZ: { 8082 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 8083 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 8084 break; 8085 } 8086 case ARM::MOVi16: 8087 case ARM::MOVTi16: 8088 case ARM::t2MOVi16: 8089 case ARM::t2MOVTi16: 8090 { 8091 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 8092 // especially when we turn it into a movw and the expression <symbol> does 8093 // not have a :lower16: or :upper16 as part of the expression. We don't 8094 // want the behavior of silently truncating, which can be unexpected and 8095 // lead to bugs that are difficult to find since this is an easy mistake 8096 // to make. 8097 int i = (Operands[3]->isImm()) ? 3 : 4; 8098 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 8099 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 8100 if (CE) break; 8101 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 8102 if (!E) break; 8103 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 8104 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 8105 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 8106 return Error( 8107 Op.getStartLoc(), 8108 "immediate expression for mov requires :lower16: or :upper16"); 8109 break; 8110 } 8111 case ARM::HINT: 8112 case ARM::t2HINT: { 8113 unsigned Imm8 = Inst.getOperand(0).getImm(); 8114 unsigned Pred = Inst.getOperand(1).getImm(); 8115 // ESB is not predicable (pred must be AL). Without the RAS extension, this 8116 // behaves as any other unallocated hint. 8117 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) 8118 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 8119 "predicable, but condition " 8120 "code specified"); 8121 if (Imm8 == 0x14 && Pred != ARMCC::AL) 8122 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not " 8123 "predicable, but condition " 8124 "code specified"); 8125 break; 8126 } 8127 case ARM::t2BFi: 8128 case ARM::t2BFr: 8129 case ARM::t2BFLi: 8130 case ARM::t2BFLr: { 8131 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() || 8132 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 8133 return Error(Operands[2]->getStartLoc(), 8134 "branch location out of range or not a multiple of 2"); 8135 8136 if (Opcode == ARM::t2BFi) { 8137 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>()) 8138 return Error(Operands[3]->getStartLoc(), 8139 "branch target out of range or not a multiple of 2"); 8140 } else if (Opcode == ARM::t2BFLi) { 8141 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>()) 8142 return Error(Operands[3]->getStartLoc(), 8143 "branch target out of range or not a multiple of 2"); 8144 } 8145 break; 8146 } 8147 case ARM::t2BFic: { 8148 if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() || 8149 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 8150 return Error(Operands[1]->getStartLoc(), 8151 "branch location out of range or not a multiple of 2"); 8152 8153 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>()) 8154 return Error(Operands[2]->getStartLoc(), 8155 "branch target out of range or not a multiple of 2"); 8156 8157 assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() && 8158 "branch location and else branch target should either both be " 8159 "immediates or both labels"); 8160 8161 if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) { 8162 int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm(); 8163 if (Diff != 4 && Diff != 2) 8164 return Error( 8165 Operands[3]->getStartLoc(), 8166 "else branch target must be 2 or 4 greater than the branch location"); 8167 } 8168 break; 8169 } 8170 case ARM::t2CLRM: { 8171 for (unsigned i = 2; i < Inst.getNumOperands(); i++) { 8172 if (Inst.getOperand(i).isReg() && 8173 !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains( 8174 Inst.getOperand(i).getReg())) { 8175 return Error(Operands[2]->getStartLoc(), 8176 "invalid register in register list. Valid registers are " 8177 "r0-r12, lr/r14 and APSR."); 8178 } 8179 } 8180 break; 8181 } 8182 case ARM::DSB: 8183 case ARM::t2DSB: { 8184 8185 if (Inst.getNumOperands() < 2) 8186 break; 8187 8188 unsigned Option = Inst.getOperand(0).getImm(); 8189 unsigned Pred = Inst.getOperand(1).getImm(); 8190 8191 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL). 8192 if (Option == 0 && Pred != ARMCC::AL) 8193 return Error(Operands[1]->getStartLoc(), 8194 "instruction 'ssbb' is not predicable, but condition code " 8195 "specified"); 8196 if (Option == 4 && Pred != ARMCC::AL) 8197 return Error(Operands[1]->getStartLoc(), 8198 "instruction 'pssbb' is not predicable, but condition code " 8199 "specified"); 8200 break; 8201 } 8202 case ARM::VMOVRRS: { 8203 // Source registers must be sequential. 8204 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 8205 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 8206 if (Sm1 != Sm + 1) 8207 return Error(Operands[5]->getStartLoc(), 8208 "source operands must be sequential"); 8209 break; 8210 } 8211 case ARM::VMOVSRR: { 8212 // Destination registers must be sequential. 8213 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 8214 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 8215 if (Sm1 != Sm + 1) 8216 return Error(Operands[3]->getStartLoc(), 8217 "destination operands must be sequential"); 8218 break; 8219 } 8220 case ARM::VLDMDIA: 8221 case ARM::VSTMDIA: { 8222 ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]); 8223 auto &RegList = Op.getRegList(); 8224 if (RegList.size() < 1 || RegList.size() > 16) 8225 return Error(Operands[3]->getStartLoc(), 8226 "list of registers must be at least 1 and at most 16"); 8227 break; 8228 } 8229 case ARM::MVE_VQDMULLs32bh: 8230 case ARM::MVE_VQDMULLs32th: 8231 case ARM::MVE_VCMULf32: 8232 case ARM::MVE_VMULLBs32: 8233 case ARM::MVE_VMULLTs32: 8234 case ARM::MVE_VMULLBu32: 8235 case ARM::MVE_VMULLTu32: { 8236 if (Operands[3]->getReg() == Operands[4]->getReg()) { 8237 return Error (Operands[3]->getStartLoc(), 8238 "Qd register and Qn register can't be identical"); 8239 } 8240 if (Operands[3]->getReg() == Operands[5]->getReg()) { 8241 return Error (Operands[3]->getStartLoc(), 8242 "Qd register and Qm register can't be identical"); 8243 } 8244 break; 8245 } 8246 case ARM::MVE_VMOV_rr_q: { 8247 if (Operands[4]->getReg() != Operands[6]->getReg()) 8248 return Error (Operands[4]->getStartLoc(), "Q-registers must be the same"); 8249 if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() != 8250 static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2) 8251 return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 8252 break; 8253 } 8254 case ARM::MVE_VMOV_q_rr: { 8255 if (Operands[2]->getReg() != Operands[4]->getReg()) 8256 return Error (Operands[2]->getStartLoc(), "Q-registers must be the same"); 8257 if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() != 8258 static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2) 8259 return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 8260 break; 8261 } 8262 case ARM::UMAAL: 8263 case ARM::UMLAL: 8264 case ARM::UMULL: 8265 case ARM::t2UMAAL: 8266 case ARM::t2UMLAL: 8267 case ARM::t2UMULL: 8268 case ARM::SMLAL: 8269 case ARM::SMLALBB: 8270 case ARM::SMLALBT: 8271 case ARM::SMLALD: 8272 case ARM::SMLALDX: 8273 case ARM::SMLALTB: 8274 case ARM::SMLALTT: 8275 case ARM::SMLSLD: 8276 case ARM::SMLSLDX: 8277 case ARM::SMULL: 8278 case ARM::t2SMLAL: 8279 case ARM::t2SMLALBB: 8280 case ARM::t2SMLALBT: 8281 case ARM::t2SMLALD: 8282 case ARM::t2SMLALDX: 8283 case ARM::t2SMLALTB: 8284 case ARM::t2SMLALTT: 8285 case ARM::t2SMLSLD: 8286 case ARM::t2SMLSLDX: 8287 case ARM::t2SMULL: { 8288 unsigned RdHi = Inst.getOperand(0).getReg(); 8289 unsigned RdLo = Inst.getOperand(1).getReg(); 8290 if(RdHi == RdLo) { 8291 return Error(Loc, 8292 "unpredictable instruction, RdHi and RdLo must be different"); 8293 } 8294 break; 8295 } 8296 8297 case ARM::CDE_CX1: 8298 case ARM::CDE_CX1A: 8299 case ARM::CDE_CX1D: 8300 case ARM::CDE_CX1DA: 8301 case ARM::CDE_CX2: 8302 case ARM::CDE_CX2A: 8303 case ARM::CDE_CX2D: 8304 case ARM::CDE_CX2DA: 8305 case ARM::CDE_CX3: 8306 case ARM::CDE_CX3A: 8307 case ARM::CDE_CX3D: 8308 case ARM::CDE_CX3DA: 8309 case ARM::CDE_VCX1_vec: 8310 case ARM::CDE_VCX1_fpsp: 8311 case ARM::CDE_VCX1_fpdp: 8312 case ARM::CDE_VCX1A_vec: 8313 case ARM::CDE_VCX1A_fpsp: 8314 case ARM::CDE_VCX1A_fpdp: 8315 case ARM::CDE_VCX2_vec: 8316 case ARM::CDE_VCX2_fpsp: 8317 case ARM::CDE_VCX2_fpdp: 8318 case ARM::CDE_VCX2A_vec: 8319 case ARM::CDE_VCX2A_fpsp: 8320 case ARM::CDE_VCX2A_fpdp: 8321 case ARM::CDE_VCX3_vec: 8322 case ARM::CDE_VCX3_fpsp: 8323 case ARM::CDE_VCX3_fpdp: 8324 case ARM::CDE_VCX3A_vec: 8325 case ARM::CDE_VCX3A_fpsp: 8326 case ARM::CDE_VCX3A_fpdp: { 8327 assert(Inst.getOperand(1).isImm() && 8328 "CDE operand 1 must be a coprocessor ID"); 8329 int64_t Coproc = Inst.getOperand(1).getImm(); 8330 if (Coproc < 8 && !ARM::isCDECoproc(Coproc, *STI)) 8331 return Error(Operands[1]->getStartLoc(), 8332 "coprocessor must be configured as CDE"); 8333 else if (Coproc >= 8) 8334 return Error(Operands[1]->getStartLoc(), 8335 "coprocessor must be in the range [p0, p7]"); 8336 break; 8337 } 8338 8339 case ARM::t2CDP: 8340 case ARM::t2CDP2: 8341 case ARM::t2LDC2L_OFFSET: 8342 case ARM::t2LDC2L_OPTION: 8343 case ARM::t2LDC2L_POST: 8344 case ARM::t2LDC2L_PRE: 8345 case ARM::t2LDC2_OFFSET: 8346 case ARM::t2LDC2_OPTION: 8347 case ARM::t2LDC2_POST: 8348 case ARM::t2LDC2_PRE: 8349 case ARM::t2LDCL_OFFSET: 8350 case ARM::t2LDCL_OPTION: 8351 case ARM::t2LDCL_POST: 8352 case ARM::t2LDCL_PRE: 8353 case ARM::t2LDC_OFFSET: 8354 case ARM::t2LDC_OPTION: 8355 case ARM::t2LDC_POST: 8356 case ARM::t2LDC_PRE: 8357 case ARM::t2MCR: 8358 case ARM::t2MCR2: 8359 case ARM::t2MCRR: 8360 case ARM::t2MCRR2: 8361 case ARM::t2MRC: 8362 case ARM::t2MRC2: 8363 case ARM::t2MRRC: 8364 case ARM::t2MRRC2: 8365 case ARM::t2STC2L_OFFSET: 8366 case ARM::t2STC2L_OPTION: 8367 case ARM::t2STC2L_POST: 8368 case ARM::t2STC2L_PRE: 8369 case ARM::t2STC2_OFFSET: 8370 case ARM::t2STC2_OPTION: 8371 case ARM::t2STC2_POST: 8372 case ARM::t2STC2_PRE: 8373 case ARM::t2STCL_OFFSET: 8374 case ARM::t2STCL_OPTION: 8375 case ARM::t2STCL_POST: 8376 case ARM::t2STCL_PRE: 8377 case ARM::t2STC_OFFSET: 8378 case ARM::t2STC_OPTION: 8379 case ARM::t2STC_POST: 8380 case ARM::t2STC_PRE: { 8381 unsigned Opcode = Inst.getOpcode(); 8382 // Inst.getOperand indexes operands in the (oops ...) and (iops ...) dags, 8383 // CopInd is the index of the coprocessor operand. 8384 size_t CopInd = 0; 8385 if (Opcode == ARM::t2MRRC || Opcode == ARM::t2MRRC2) 8386 CopInd = 2; 8387 else if (Opcode == ARM::t2MRC || Opcode == ARM::t2MRC2) 8388 CopInd = 1; 8389 assert(Inst.getOperand(CopInd).isImm() && 8390 "Operand must be a coprocessor ID"); 8391 int64_t Coproc = Inst.getOperand(CopInd).getImm(); 8392 // Operands[2] is the coprocessor operand at syntactic level 8393 if (ARM::isCDECoproc(Coproc, *STI)) 8394 return Error(Operands[2]->getStartLoc(), 8395 "coprocessor must be configured as GCP"); 8396 break; 8397 } 8398 } 8399 8400 return false; 8401 } 8402 8403 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 8404 switch(Opc) { 8405 default: llvm_unreachable("unexpected opcode!"); 8406 // VST1LN 8407 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 8408 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 8409 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 8410 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 8411 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 8412 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 8413 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 8414 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 8415 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 8416 8417 // VST2LN 8418 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 8419 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 8420 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 8421 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 8422 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 8423 8424 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 8425 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 8426 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 8427 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 8428 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 8429 8430 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 8431 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 8432 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 8433 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 8434 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 8435 8436 // VST3LN 8437 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 8438 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 8439 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 8440 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 8441 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 8442 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 8443 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 8444 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 8445 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 8446 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 8447 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 8448 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 8449 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 8450 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 8451 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 8452 8453 // VST3 8454 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 8455 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 8456 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 8457 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 8458 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 8459 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 8460 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 8461 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 8462 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 8463 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 8464 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 8465 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 8466 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 8467 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 8468 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 8469 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 8470 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 8471 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 8472 8473 // VST4LN 8474 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 8475 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 8476 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 8477 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 8478 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 8479 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 8480 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 8481 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 8482 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 8483 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 8484 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 8485 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 8486 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 8487 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 8488 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 8489 8490 // VST4 8491 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8492 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8493 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8494 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8495 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8496 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8497 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8498 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8499 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8500 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8501 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8502 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8503 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 8504 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 8505 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 8506 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 8507 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 8508 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 8509 } 8510 } 8511 8512 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 8513 switch(Opc) { 8514 default: llvm_unreachable("unexpected opcode!"); 8515 // VLD1LN 8516 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8517 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8518 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8519 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8520 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8521 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8522 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 8523 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 8524 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 8525 8526 // VLD2LN 8527 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8528 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8529 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8530 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 8531 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8532 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8533 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8534 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8535 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 8536 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8537 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 8538 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 8539 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 8540 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 8541 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 8542 8543 // VLD3DUP 8544 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8545 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8546 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8547 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 8548 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8549 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8550 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8551 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8552 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8553 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 8554 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8555 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8556 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 8557 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 8558 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 8559 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 8560 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 8561 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 8562 8563 // VLD3LN 8564 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8565 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8566 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8567 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 8568 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8569 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8570 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8571 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8572 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 8573 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8574 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 8575 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 8576 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 8577 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 8578 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 8579 8580 // VLD3 8581 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8582 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8583 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8584 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8585 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8586 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8587 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8588 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8589 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8590 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8591 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8592 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8593 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 8594 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 8595 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 8596 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 8597 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 8598 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 8599 8600 // VLD4LN 8601 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8602 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8603 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8604 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8605 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8606 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8607 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8608 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8609 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8610 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8611 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 8612 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 8613 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 8614 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 8615 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 8616 8617 // VLD4DUP 8618 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8619 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8620 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8621 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 8622 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 8623 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8624 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8625 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8626 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8627 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 8628 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 8629 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8630 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 8631 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 8632 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 8633 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 8634 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 8635 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 8636 8637 // VLD4 8638 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8639 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8640 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8641 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8642 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8643 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8644 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8645 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8646 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8647 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8648 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8649 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8650 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 8651 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 8652 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 8653 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 8654 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 8655 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 8656 } 8657 } 8658 8659 bool ARMAsmParser::processInstruction(MCInst &Inst, 8660 const OperandVector &Operands, 8661 MCStreamer &Out) { 8662 // Check if we have the wide qualifier, because if it's present we 8663 // must avoid selecting a 16-bit thumb instruction. 8664 bool HasWideQualifier = false; 8665 for (auto &Op : Operands) { 8666 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 8667 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 8668 HasWideQualifier = true; 8669 break; 8670 } 8671 } 8672 8673 switch (Inst.getOpcode()) { 8674 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 8675 case ARM::LDRT_POST: 8676 case ARM::LDRBT_POST: { 8677 const unsigned Opcode = 8678 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 8679 : ARM::LDRBT_POST_IMM; 8680 MCInst TmpInst; 8681 TmpInst.setOpcode(Opcode); 8682 TmpInst.addOperand(Inst.getOperand(0)); 8683 TmpInst.addOperand(Inst.getOperand(1)); 8684 TmpInst.addOperand(Inst.getOperand(1)); 8685 TmpInst.addOperand(MCOperand::createReg(0)); 8686 TmpInst.addOperand(MCOperand::createImm(0)); 8687 TmpInst.addOperand(Inst.getOperand(2)); 8688 TmpInst.addOperand(Inst.getOperand(3)); 8689 Inst = TmpInst; 8690 return true; 8691 } 8692 // Alias for 'ldr{sb,h,sh}t Rt, [Rn] {, #imm}' for ommitted immediate. 8693 case ARM::LDRSBTii: 8694 case ARM::LDRHTii: 8695 case ARM::LDRSHTii: { 8696 MCInst TmpInst; 8697 8698 if (Inst.getOpcode() == ARM::LDRSBTii) 8699 TmpInst.setOpcode(ARM::LDRSBTi); 8700 else if (Inst.getOpcode() == ARM::LDRHTii) 8701 TmpInst.setOpcode(ARM::LDRHTi); 8702 else if (Inst.getOpcode() == ARM::LDRSHTii) 8703 TmpInst.setOpcode(ARM::LDRSHTi); 8704 TmpInst.addOperand(Inst.getOperand(0)); 8705 TmpInst.addOperand(Inst.getOperand(1)); 8706 TmpInst.addOperand(Inst.getOperand(1)); 8707 TmpInst.addOperand(MCOperand::createImm(256)); 8708 TmpInst.addOperand(Inst.getOperand(2)); 8709 Inst = TmpInst; 8710 return true; 8711 } 8712 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 8713 case ARM::STRT_POST: 8714 case ARM::STRBT_POST: { 8715 const unsigned Opcode = 8716 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 8717 : ARM::STRBT_POST_IMM; 8718 MCInst TmpInst; 8719 TmpInst.setOpcode(Opcode); 8720 TmpInst.addOperand(Inst.getOperand(1)); 8721 TmpInst.addOperand(Inst.getOperand(0)); 8722 TmpInst.addOperand(Inst.getOperand(1)); 8723 TmpInst.addOperand(MCOperand::createReg(0)); 8724 TmpInst.addOperand(MCOperand::createImm(0)); 8725 TmpInst.addOperand(Inst.getOperand(2)); 8726 TmpInst.addOperand(Inst.getOperand(3)); 8727 Inst = TmpInst; 8728 return true; 8729 } 8730 // Alias for alternate form of 'ADR Rd, #imm' instruction. 8731 case ARM::ADDri: { 8732 if (Inst.getOperand(1).getReg() != ARM::PC || 8733 Inst.getOperand(5).getReg() != 0 || 8734 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 8735 return false; 8736 MCInst TmpInst; 8737 TmpInst.setOpcode(ARM::ADR); 8738 TmpInst.addOperand(Inst.getOperand(0)); 8739 if (Inst.getOperand(2).isImm()) { 8740 // Immediate (mod_imm) will be in its encoded form, we must unencode it 8741 // before passing it to the ADR instruction. 8742 unsigned Enc = Inst.getOperand(2).getImm(); 8743 TmpInst.addOperand(MCOperand::createImm( 8744 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 8745 } else { 8746 // Turn PC-relative expression into absolute expression. 8747 // Reading PC provides the start of the current instruction + 8 and 8748 // the transform to adr is biased by that. 8749 MCSymbol *Dot = getContext().createTempSymbol(); 8750 Out.emitLabel(Dot); 8751 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 8752 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 8753 MCSymbolRefExpr::VK_None, 8754 getContext()); 8755 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 8756 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 8757 getContext()); 8758 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 8759 getContext()); 8760 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 8761 } 8762 TmpInst.addOperand(Inst.getOperand(3)); 8763 TmpInst.addOperand(Inst.getOperand(4)); 8764 Inst = TmpInst; 8765 return true; 8766 } 8767 // Aliases for imm syntax of LDR instructions. 8768 case ARM::t2LDR_PRE_imm: 8769 case ARM::t2LDR_POST_imm: { 8770 MCInst TmpInst; 8771 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2LDR_PRE_imm ? ARM::t2LDR_PRE 8772 : ARM::t2LDR_POST); 8773 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8774 TmpInst.addOperand(Inst.getOperand(4)); // Rt_wb 8775 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8776 TmpInst.addOperand(Inst.getOperand(2)); // imm 8777 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8778 Inst = TmpInst; 8779 return true; 8780 } 8781 // Aliases for imm syntax of STR instructions. 8782 case ARM::t2STR_PRE_imm: 8783 case ARM::t2STR_POST_imm: { 8784 MCInst TmpInst; 8785 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2STR_PRE_imm ? ARM::t2STR_PRE 8786 : ARM::t2STR_POST); 8787 TmpInst.addOperand(Inst.getOperand(4)); // Rt_wb 8788 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8789 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8790 TmpInst.addOperand(Inst.getOperand(2)); // imm 8791 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8792 Inst = TmpInst; 8793 return true; 8794 } 8795 // Aliases for alternate PC+imm syntax of LDR instructions. 8796 case ARM::t2LDRpcrel: 8797 // Select the narrow version if the immediate will fit. 8798 if (Inst.getOperand(1).getImm() > 0 && 8799 Inst.getOperand(1).getImm() <= 0xff && 8800 !HasWideQualifier) 8801 Inst.setOpcode(ARM::tLDRpci); 8802 else 8803 Inst.setOpcode(ARM::t2LDRpci); 8804 return true; 8805 case ARM::t2LDRBpcrel: 8806 Inst.setOpcode(ARM::t2LDRBpci); 8807 return true; 8808 case ARM::t2LDRHpcrel: 8809 Inst.setOpcode(ARM::t2LDRHpci); 8810 return true; 8811 case ARM::t2LDRSBpcrel: 8812 Inst.setOpcode(ARM::t2LDRSBpci); 8813 return true; 8814 case ARM::t2LDRSHpcrel: 8815 Inst.setOpcode(ARM::t2LDRSHpci); 8816 return true; 8817 case ARM::LDRConstPool: 8818 case ARM::tLDRConstPool: 8819 case ARM::t2LDRConstPool: { 8820 // Pseudo instruction ldr rt, =immediate is converted to a 8821 // MOV rt, immediate if immediate is known and representable 8822 // otherwise we create a constant pool entry that we load from. 8823 MCInst TmpInst; 8824 if (Inst.getOpcode() == ARM::LDRConstPool) 8825 TmpInst.setOpcode(ARM::LDRi12); 8826 else if (Inst.getOpcode() == ARM::tLDRConstPool) 8827 TmpInst.setOpcode(ARM::tLDRpci); 8828 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 8829 TmpInst.setOpcode(ARM::t2LDRpci); 8830 const ARMOperand &PoolOperand = 8831 (HasWideQualifier ? 8832 static_cast<ARMOperand &>(*Operands[4]) : 8833 static_cast<ARMOperand &>(*Operands[3])); 8834 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 8835 // If SubExprVal is a constant we may be able to use a MOV 8836 if (isa<MCConstantExpr>(SubExprVal) && 8837 Inst.getOperand(0).getReg() != ARM::PC && 8838 Inst.getOperand(0).getReg() != ARM::SP) { 8839 int64_t Value = 8840 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 8841 bool UseMov = true; 8842 bool MovHasS = true; 8843 if (Inst.getOpcode() == ARM::LDRConstPool) { 8844 // ARM Constant 8845 if (ARM_AM::getSOImmVal(Value) != -1) { 8846 Value = ARM_AM::getSOImmVal(Value); 8847 TmpInst.setOpcode(ARM::MOVi); 8848 } 8849 else if (ARM_AM::getSOImmVal(~Value) != -1) { 8850 Value = ARM_AM::getSOImmVal(~Value); 8851 TmpInst.setOpcode(ARM::MVNi); 8852 } 8853 else if (hasV6T2Ops() && 8854 Value >=0 && Value < 65536) { 8855 TmpInst.setOpcode(ARM::MOVi16); 8856 MovHasS = false; 8857 } 8858 else 8859 UseMov = false; 8860 } 8861 else { 8862 // Thumb/Thumb2 Constant 8863 if (hasThumb2() && 8864 ARM_AM::getT2SOImmVal(Value) != -1) 8865 TmpInst.setOpcode(ARM::t2MOVi); 8866 else if (hasThumb2() && 8867 ARM_AM::getT2SOImmVal(~Value) != -1) { 8868 TmpInst.setOpcode(ARM::t2MVNi); 8869 Value = ~Value; 8870 } 8871 else if (hasV8MBaseline() && 8872 Value >=0 && Value < 65536) { 8873 TmpInst.setOpcode(ARM::t2MOVi16); 8874 MovHasS = false; 8875 } 8876 else 8877 UseMov = false; 8878 } 8879 if (UseMov) { 8880 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8881 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 8882 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8883 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8884 if (MovHasS) 8885 TmpInst.addOperand(MCOperand::createReg(0)); // S 8886 Inst = TmpInst; 8887 return true; 8888 } 8889 } 8890 // No opportunity to use MOV/MVN create constant pool 8891 const MCExpr *CPLoc = 8892 getTargetStreamer().addConstantPoolEntry(SubExprVal, 8893 PoolOperand.getStartLoc()); 8894 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8895 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 8896 if (TmpInst.getOpcode() == ARM::LDRi12) 8897 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 8898 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8899 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8900 Inst = TmpInst; 8901 return true; 8902 } 8903 // Handle NEON VST complex aliases. 8904 case ARM::VST1LNdWB_register_Asm_8: 8905 case ARM::VST1LNdWB_register_Asm_16: 8906 case ARM::VST1LNdWB_register_Asm_32: { 8907 MCInst TmpInst; 8908 // Shuffle the operands around so the lane index operand is in the 8909 // right place. 8910 unsigned Spacing; 8911 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8912 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8913 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8914 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8915 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8916 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8917 TmpInst.addOperand(Inst.getOperand(1)); // lane 8918 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8919 TmpInst.addOperand(Inst.getOperand(6)); 8920 Inst = TmpInst; 8921 return true; 8922 } 8923 8924 case ARM::VST2LNdWB_register_Asm_8: 8925 case ARM::VST2LNdWB_register_Asm_16: 8926 case ARM::VST2LNdWB_register_Asm_32: 8927 case ARM::VST2LNqWB_register_Asm_16: 8928 case ARM::VST2LNqWB_register_Asm_32: { 8929 MCInst TmpInst; 8930 // Shuffle the operands around so the lane index operand is in the 8931 // right place. 8932 unsigned Spacing; 8933 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8934 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8935 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8936 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8937 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8938 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8939 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8940 Spacing)); 8941 TmpInst.addOperand(Inst.getOperand(1)); // lane 8942 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8943 TmpInst.addOperand(Inst.getOperand(6)); 8944 Inst = TmpInst; 8945 return true; 8946 } 8947 8948 case ARM::VST3LNdWB_register_Asm_8: 8949 case ARM::VST3LNdWB_register_Asm_16: 8950 case ARM::VST3LNdWB_register_Asm_32: 8951 case ARM::VST3LNqWB_register_Asm_16: 8952 case ARM::VST3LNqWB_register_Asm_32: { 8953 MCInst TmpInst; 8954 // Shuffle the operands around so the lane index operand is in the 8955 // right place. 8956 unsigned Spacing; 8957 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8958 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8959 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8960 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8961 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8962 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8963 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8964 Spacing)); 8965 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8966 Spacing * 2)); 8967 TmpInst.addOperand(Inst.getOperand(1)); // lane 8968 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8969 TmpInst.addOperand(Inst.getOperand(6)); 8970 Inst = TmpInst; 8971 return true; 8972 } 8973 8974 case ARM::VST4LNdWB_register_Asm_8: 8975 case ARM::VST4LNdWB_register_Asm_16: 8976 case ARM::VST4LNdWB_register_Asm_32: 8977 case ARM::VST4LNqWB_register_Asm_16: 8978 case ARM::VST4LNqWB_register_Asm_32: { 8979 MCInst TmpInst; 8980 // Shuffle the operands around so the lane index operand is in the 8981 // right place. 8982 unsigned Spacing; 8983 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8984 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8985 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8986 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8987 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8988 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8989 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8990 Spacing)); 8991 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8992 Spacing * 2)); 8993 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8994 Spacing * 3)); 8995 TmpInst.addOperand(Inst.getOperand(1)); // lane 8996 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8997 TmpInst.addOperand(Inst.getOperand(6)); 8998 Inst = TmpInst; 8999 return true; 9000 } 9001 9002 case ARM::VST1LNdWB_fixed_Asm_8: 9003 case ARM::VST1LNdWB_fixed_Asm_16: 9004 case ARM::VST1LNdWB_fixed_Asm_32: { 9005 MCInst TmpInst; 9006 // Shuffle the operands around so the lane index operand is in the 9007 // right place. 9008 unsigned Spacing; 9009 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9010 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9011 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9012 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9013 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9014 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9015 TmpInst.addOperand(Inst.getOperand(1)); // lane 9016 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9017 TmpInst.addOperand(Inst.getOperand(5)); 9018 Inst = TmpInst; 9019 return true; 9020 } 9021 9022 case ARM::VST2LNdWB_fixed_Asm_8: 9023 case ARM::VST2LNdWB_fixed_Asm_16: 9024 case ARM::VST2LNdWB_fixed_Asm_32: 9025 case ARM::VST2LNqWB_fixed_Asm_16: 9026 case ARM::VST2LNqWB_fixed_Asm_32: { 9027 MCInst TmpInst; 9028 // Shuffle the operands around so the lane index operand is in the 9029 // right place. 9030 unsigned Spacing; 9031 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9032 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9033 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9034 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9035 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9036 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9037 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9038 Spacing)); 9039 TmpInst.addOperand(Inst.getOperand(1)); // lane 9040 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9041 TmpInst.addOperand(Inst.getOperand(5)); 9042 Inst = TmpInst; 9043 return true; 9044 } 9045 9046 case ARM::VST3LNdWB_fixed_Asm_8: 9047 case ARM::VST3LNdWB_fixed_Asm_16: 9048 case ARM::VST3LNdWB_fixed_Asm_32: 9049 case ARM::VST3LNqWB_fixed_Asm_16: 9050 case ARM::VST3LNqWB_fixed_Asm_32: { 9051 MCInst TmpInst; 9052 // Shuffle the operands around so the lane index operand is in the 9053 // right place. 9054 unsigned Spacing; 9055 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9056 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9057 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9058 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9059 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9060 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9061 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9062 Spacing)); 9063 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9064 Spacing * 2)); 9065 TmpInst.addOperand(Inst.getOperand(1)); // lane 9066 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9067 TmpInst.addOperand(Inst.getOperand(5)); 9068 Inst = TmpInst; 9069 return true; 9070 } 9071 9072 case ARM::VST4LNdWB_fixed_Asm_8: 9073 case ARM::VST4LNdWB_fixed_Asm_16: 9074 case ARM::VST4LNdWB_fixed_Asm_32: 9075 case ARM::VST4LNqWB_fixed_Asm_16: 9076 case ARM::VST4LNqWB_fixed_Asm_32: { 9077 MCInst TmpInst; 9078 // Shuffle the operands around so the lane index operand is in the 9079 // right place. 9080 unsigned Spacing; 9081 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9082 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9083 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9084 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9085 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9086 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9087 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9088 Spacing)); 9089 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9090 Spacing * 2)); 9091 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9092 Spacing * 3)); 9093 TmpInst.addOperand(Inst.getOperand(1)); // lane 9094 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9095 TmpInst.addOperand(Inst.getOperand(5)); 9096 Inst = TmpInst; 9097 return true; 9098 } 9099 9100 case ARM::VST1LNdAsm_8: 9101 case ARM::VST1LNdAsm_16: 9102 case ARM::VST1LNdAsm_32: { 9103 MCInst TmpInst; 9104 // Shuffle the operands around so the lane index operand is in the 9105 // right place. 9106 unsigned Spacing; 9107 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9108 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9109 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9110 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9111 TmpInst.addOperand(Inst.getOperand(1)); // lane 9112 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9113 TmpInst.addOperand(Inst.getOperand(5)); 9114 Inst = TmpInst; 9115 return true; 9116 } 9117 9118 case ARM::VST2LNdAsm_8: 9119 case ARM::VST2LNdAsm_16: 9120 case ARM::VST2LNdAsm_32: 9121 case ARM::VST2LNqAsm_16: 9122 case ARM::VST2LNqAsm_32: { 9123 MCInst TmpInst; 9124 // Shuffle the operands around so the lane index operand is in the 9125 // right place. 9126 unsigned Spacing; 9127 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9128 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9129 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9130 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9131 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9132 Spacing)); 9133 TmpInst.addOperand(Inst.getOperand(1)); // lane 9134 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9135 TmpInst.addOperand(Inst.getOperand(5)); 9136 Inst = TmpInst; 9137 return true; 9138 } 9139 9140 case ARM::VST3LNdAsm_8: 9141 case ARM::VST3LNdAsm_16: 9142 case ARM::VST3LNdAsm_32: 9143 case ARM::VST3LNqAsm_16: 9144 case ARM::VST3LNqAsm_32: { 9145 MCInst TmpInst; 9146 // Shuffle the operands around so the lane index operand is in the 9147 // right place. 9148 unsigned Spacing; 9149 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9150 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9151 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9152 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9153 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9154 Spacing)); 9155 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9156 Spacing * 2)); 9157 TmpInst.addOperand(Inst.getOperand(1)); // lane 9158 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9159 TmpInst.addOperand(Inst.getOperand(5)); 9160 Inst = TmpInst; 9161 return true; 9162 } 9163 9164 case ARM::VST4LNdAsm_8: 9165 case ARM::VST4LNdAsm_16: 9166 case ARM::VST4LNdAsm_32: 9167 case ARM::VST4LNqAsm_16: 9168 case ARM::VST4LNqAsm_32: { 9169 MCInst TmpInst; 9170 // Shuffle the operands around so the lane index operand is in the 9171 // right place. 9172 unsigned Spacing; 9173 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9174 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9175 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9176 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9177 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9178 Spacing)); 9179 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9180 Spacing * 2)); 9181 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9182 Spacing * 3)); 9183 TmpInst.addOperand(Inst.getOperand(1)); // lane 9184 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9185 TmpInst.addOperand(Inst.getOperand(5)); 9186 Inst = TmpInst; 9187 return true; 9188 } 9189 9190 // Handle NEON VLD complex aliases. 9191 case ARM::VLD1LNdWB_register_Asm_8: 9192 case ARM::VLD1LNdWB_register_Asm_16: 9193 case ARM::VLD1LNdWB_register_Asm_32: { 9194 MCInst TmpInst; 9195 // Shuffle the operands around so the lane index operand is in the 9196 // right place. 9197 unsigned Spacing; 9198 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9199 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9200 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9201 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9202 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9203 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9204 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9205 TmpInst.addOperand(Inst.getOperand(1)); // lane 9206 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9207 TmpInst.addOperand(Inst.getOperand(6)); 9208 Inst = TmpInst; 9209 return true; 9210 } 9211 9212 case ARM::VLD2LNdWB_register_Asm_8: 9213 case ARM::VLD2LNdWB_register_Asm_16: 9214 case ARM::VLD2LNdWB_register_Asm_32: 9215 case ARM::VLD2LNqWB_register_Asm_16: 9216 case ARM::VLD2LNqWB_register_Asm_32: { 9217 MCInst TmpInst; 9218 // Shuffle the operands around so the lane index operand is in the 9219 // right place. 9220 unsigned Spacing; 9221 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9222 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9223 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9224 Spacing)); 9225 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9226 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9227 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9228 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9229 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9230 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9231 Spacing)); 9232 TmpInst.addOperand(Inst.getOperand(1)); // lane 9233 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9234 TmpInst.addOperand(Inst.getOperand(6)); 9235 Inst = TmpInst; 9236 return true; 9237 } 9238 9239 case ARM::VLD3LNdWB_register_Asm_8: 9240 case ARM::VLD3LNdWB_register_Asm_16: 9241 case ARM::VLD3LNdWB_register_Asm_32: 9242 case ARM::VLD3LNqWB_register_Asm_16: 9243 case ARM::VLD3LNqWB_register_Asm_32: { 9244 MCInst TmpInst; 9245 // Shuffle the operands around so the lane index operand is in the 9246 // right place. 9247 unsigned Spacing; 9248 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9249 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9250 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9251 Spacing)); 9252 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9253 Spacing * 2)); 9254 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9255 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9256 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9257 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9258 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9259 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9260 Spacing)); 9261 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9262 Spacing * 2)); 9263 TmpInst.addOperand(Inst.getOperand(1)); // lane 9264 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9265 TmpInst.addOperand(Inst.getOperand(6)); 9266 Inst = TmpInst; 9267 return true; 9268 } 9269 9270 case ARM::VLD4LNdWB_register_Asm_8: 9271 case ARM::VLD4LNdWB_register_Asm_16: 9272 case ARM::VLD4LNdWB_register_Asm_32: 9273 case ARM::VLD4LNqWB_register_Asm_16: 9274 case ARM::VLD4LNqWB_register_Asm_32: { 9275 MCInst TmpInst; 9276 // Shuffle the operands around so the lane index operand is in the 9277 // right place. 9278 unsigned Spacing; 9279 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9280 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9281 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9282 Spacing)); 9283 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9284 Spacing * 2)); 9285 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9286 Spacing * 3)); 9287 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9288 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9289 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9290 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9291 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9292 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9293 Spacing)); 9294 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9295 Spacing * 2)); 9296 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9297 Spacing * 3)); 9298 TmpInst.addOperand(Inst.getOperand(1)); // lane 9299 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9300 TmpInst.addOperand(Inst.getOperand(6)); 9301 Inst = TmpInst; 9302 return true; 9303 } 9304 9305 case ARM::VLD1LNdWB_fixed_Asm_8: 9306 case ARM::VLD1LNdWB_fixed_Asm_16: 9307 case ARM::VLD1LNdWB_fixed_Asm_32: { 9308 MCInst TmpInst; 9309 // Shuffle the operands around so the lane index operand is in the 9310 // right place. 9311 unsigned Spacing; 9312 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9313 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9314 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9315 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9316 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9317 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9318 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9319 TmpInst.addOperand(Inst.getOperand(1)); // lane 9320 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9321 TmpInst.addOperand(Inst.getOperand(5)); 9322 Inst = TmpInst; 9323 return true; 9324 } 9325 9326 case ARM::VLD2LNdWB_fixed_Asm_8: 9327 case ARM::VLD2LNdWB_fixed_Asm_16: 9328 case ARM::VLD2LNdWB_fixed_Asm_32: 9329 case ARM::VLD2LNqWB_fixed_Asm_16: 9330 case ARM::VLD2LNqWB_fixed_Asm_32: { 9331 MCInst TmpInst; 9332 // Shuffle the operands around so the lane index operand is in the 9333 // right place. 9334 unsigned Spacing; 9335 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9336 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9337 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9338 Spacing)); 9339 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9340 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9341 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9342 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9343 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9344 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9345 Spacing)); 9346 TmpInst.addOperand(Inst.getOperand(1)); // lane 9347 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9348 TmpInst.addOperand(Inst.getOperand(5)); 9349 Inst = TmpInst; 9350 return true; 9351 } 9352 9353 case ARM::VLD3LNdWB_fixed_Asm_8: 9354 case ARM::VLD3LNdWB_fixed_Asm_16: 9355 case ARM::VLD3LNdWB_fixed_Asm_32: 9356 case ARM::VLD3LNqWB_fixed_Asm_16: 9357 case ARM::VLD3LNqWB_fixed_Asm_32: { 9358 MCInst TmpInst; 9359 // Shuffle the operands around so the lane index operand is in the 9360 // right place. 9361 unsigned Spacing; 9362 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9363 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9364 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9365 Spacing)); 9366 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9367 Spacing * 2)); 9368 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9369 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9370 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9371 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9372 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9373 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9374 Spacing)); 9375 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9376 Spacing * 2)); 9377 TmpInst.addOperand(Inst.getOperand(1)); // lane 9378 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9379 TmpInst.addOperand(Inst.getOperand(5)); 9380 Inst = TmpInst; 9381 return true; 9382 } 9383 9384 case ARM::VLD4LNdWB_fixed_Asm_8: 9385 case ARM::VLD4LNdWB_fixed_Asm_16: 9386 case ARM::VLD4LNdWB_fixed_Asm_32: 9387 case ARM::VLD4LNqWB_fixed_Asm_16: 9388 case ARM::VLD4LNqWB_fixed_Asm_32: { 9389 MCInst TmpInst; 9390 // Shuffle the operands around so the lane index operand is in the 9391 // right place. 9392 unsigned Spacing; 9393 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9394 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9395 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9396 Spacing)); 9397 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9398 Spacing * 2)); 9399 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9400 Spacing * 3)); 9401 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9402 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9403 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9404 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9405 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9406 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9407 Spacing)); 9408 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9409 Spacing * 2)); 9410 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9411 Spacing * 3)); 9412 TmpInst.addOperand(Inst.getOperand(1)); // lane 9413 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9414 TmpInst.addOperand(Inst.getOperand(5)); 9415 Inst = TmpInst; 9416 return true; 9417 } 9418 9419 case ARM::VLD1LNdAsm_8: 9420 case ARM::VLD1LNdAsm_16: 9421 case ARM::VLD1LNdAsm_32: { 9422 MCInst TmpInst; 9423 // Shuffle the operands around so the lane index operand is in the 9424 // right place. 9425 unsigned Spacing; 9426 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9427 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9428 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9429 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9430 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9431 TmpInst.addOperand(Inst.getOperand(1)); // lane 9432 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9433 TmpInst.addOperand(Inst.getOperand(5)); 9434 Inst = TmpInst; 9435 return true; 9436 } 9437 9438 case ARM::VLD2LNdAsm_8: 9439 case ARM::VLD2LNdAsm_16: 9440 case ARM::VLD2LNdAsm_32: 9441 case ARM::VLD2LNqAsm_16: 9442 case ARM::VLD2LNqAsm_32: { 9443 MCInst TmpInst; 9444 // Shuffle the operands around so the lane index operand is in the 9445 // right place. 9446 unsigned Spacing; 9447 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9448 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9449 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9450 Spacing)); 9451 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9452 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9453 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9454 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9455 Spacing)); 9456 TmpInst.addOperand(Inst.getOperand(1)); // lane 9457 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9458 TmpInst.addOperand(Inst.getOperand(5)); 9459 Inst = TmpInst; 9460 return true; 9461 } 9462 9463 case ARM::VLD3LNdAsm_8: 9464 case ARM::VLD3LNdAsm_16: 9465 case ARM::VLD3LNdAsm_32: 9466 case ARM::VLD3LNqAsm_16: 9467 case ARM::VLD3LNqAsm_32: { 9468 MCInst TmpInst; 9469 // Shuffle the operands around so the lane index operand is in the 9470 // right place. 9471 unsigned Spacing; 9472 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9473 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9474 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9475 Spacing)); 9476 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9477 Spacing * 2)); 9478 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9479 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9480 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9481 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9482 Spacing)); 9483 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9484 Spacing * 2)); 9485 TmpInst.addOperand(Inst.getOperand(1)); // lane 9486 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9487 TmpInst.addOperand(Inst.getOperand(5)); 9488 Inst = TmpInst; 9489 return true; 9490 } 9491 9492 case ARM::VLD4LNdAsm_8: 9493 case ARM::VLD4LNdAsm_16: 9494 case ARM::VLD4LNdAsm_32: 9495 case ARM::VLD4LNqAsm_16: 9496 case ARM::VLD4LNqAsm_32: { 9497 MCInst TmpInst; 9498 // Shuffle the operands around so the lane index operand is in the 9499 // right place. 9500 unsigned Spacing; 9501 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9502 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9503 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9504 Spacing)); 9505 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9506 Spacing * 2)); 9507 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9508 Spacing * 3)); 9509 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9510 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9511 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9512 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9513 Spacing)); 9514 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9515 Spacing * 2)); 9516 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9517 Spacing * 3)); 9518 TmpInst.addOperand(Inst.getOperand(1)); // lane 9519 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9520 TmpInst.addOperand(Inst.getOperand(5)); 9521 Inst = TmpInst; 9522 return true; 9523 } 9524 9525 // VLD3DUP single 3-element structure to all lanes instructions. 9526 case ARM::VLD3DUPdAsm_8: 9527 case ARM::VLD3DUPdAsm_16: 9528 case ARM::VLD3DUPdAsm_32: 9529 case ARM::VLD3DUPqAsm_8: 9530 case ARM::VLD3DUPqAsm_16: 9531 case ARM::VLD3DUPqAsm_32: { 9532 MCInst TmpInst; 9533 unsigned Spacing; 9534 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9535 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9536 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9537 Spacing)); 9538 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9539 Spacing * 2)); 9540 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9541 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9542 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9543 TmpInst.addOperand(Inst.getOperand(4)); 9544 Inst = TmpInst; 9545 return true; 9546 } 9547 9548 case ARM::VLD3DUPdWB_fixed_Asm_8: 9549 case ARM::VLD3DUPdWB_fixed_Asm_16: 9550 case ARM::VLD3DUPdWB_fixed_Asm_32: 9551 case ARM::VLD3DUPqWB_fixed_Asm_8: 9552 case ARM::VLD3DUPqWB_fixed_Asm_16: 9553 case ARM::VLD3DUPqWB_fixed_Asm_32: { 9554 MCInst TmpInst; 9555 unsigned Spacing; 9556 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9557 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9558 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9559 Spacing)); 9560 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9561 Spacing * 2)); 9562 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9563 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9564 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9565 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9566 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9567 TmpInst.addOperand(Inst.getOperand(4)); 9568 Inst = TmpInst; 9569 return true; 9570 } 9571 9572 case ARM::VLD3DUPdWB_register_Asm_8: 9573 case ARM::VLD3DUPdWB_register_Asm_16: 9574 case ARM::VLD3DUPdWB_register_Asm_32: 9575 case ARM::VLD3DUPqWB_register_Asm_8: 9576 case ARM::VLD3DUPqWB_register_Asm_16: 9577 case ARM::VLD3DUPqWB_register_Asm_32: { 9578 MCInst TmpInst; 9579 unsigned Spacing; 9580 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9581 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9582 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9583 Spacing)); 9584 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9585 Spacing * 2)); 9586 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9587 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9588 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9589 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9590 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9591 TmpInst.addOperand(Inst.getOperand(5)); 9592 Inst = TmpInst; 9593 return true; 9594 } 9595 9596 // VLD3 multiple 3-element structure instructions. 9597 case ARM::VLD3dAsm_8: 9598 case ARM::VLD3dAsm_16: 9599 case ARM::VLD3dAsm_32: 9600 case ARM::VLD3qAsm_8: 9601 case ARM::VLD3qAsm_16: 9602 case ARM::VLD3qAsm_32: { 9603 MCInst TmpInst; 9604 unsigned Spacing; 9605 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9606 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9607 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9608 Spacing)); 9609 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9610 Spacing * 2)); 9611 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9612 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9613 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9614 TmpInst.addOperand(Inst.getOperand(4)); 9615 Inst = TmpInst; 9616 return true; 9617 } 9618 9619 case ARM::VLD3dWB_fixed_Asm_8: 9620 case ARM::VLD3dWB_fixed_Asm_16: 9621 case ARM::VLD3dWB_fixed_Asm_32: 9622 case ARM::VLD3qWB_fixed_Asm_8: 9623 case ARM::VLD3qWB_fixed_Asm_16: 9624 case ARM::VLD3qWB_fixed_Asm_32: { 9625 MCInst TmpInst; 9626 unsigned Spacing; 9627 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9628 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9629 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9630 Spacing)); 9631 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9632 Spacing * 2)); 9633 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9634 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9635 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9636 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9637 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9638 TmpInst.addOperand(Inst.getOperand(4)); 9639 Inst = TmpInst; 9640 return true; 9641 } 9642 9643 case ARM::VLD3dWB_register_Asm_8: 9644 case ARM::VLD3dWB_register_Asm_16: 9645 case ARM::VLD3dWB_register_Asm_32: 9646 case ARM::VLD3qWB_register_Asm_8: 9647 case ARM::VLD3qWB_register_Asm_16: 9648 case ARM::VLD3qWB_register_Asm_32: { 9649 MCInst TmpInst; 9650 unsigned Spacing; 9651 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9652 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9653 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9654 Spacing)); 9655 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9656 Spacing * 2)); 9657 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9658 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9659 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9660 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9661 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9662 TmpInst.addOperand(Inst.getOperand(5)); 9663 Inst = TmpInst; 9664 return true; 9665 } 9666 9667 // VLD4DUP single 3-element structure to all lanes instructions. 9668 case ARM::VLD4DUPdAsm_8: 9669 case ARM::VLD4DUPdAsm_16: 9670 case ARM::VLD4DUPdAsm_32: 9671 case ARM::VLD4DUPqAsm_8: 9672 case ARM::VLD4DUPqAsm_16: 9673 case ARM::VLD4DUPqAsm_32: { 9674 MCInst TmpInst; 9675 unsigned Spacing; 9676 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9677 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9678 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9679 Spacing)); 9680 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9681 Spacing * 2)); 9682 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9683 Spacing * 3)); 9684 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9685 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9686 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9687 TmpInst.addOperand(Inst.getOperand(4)); 9688 Inst = TmpInst; 9689 return true; 9690 } 9691 9692 case ARM::VLD4DUPdWB_fixed_Asm_8: 9693 case ARM::VLD4DUPdWB_fixed_Asm_16: 9694 case ARM::VLD4DUPdWB_fixed_Asm_32: 9695 case ARM::VLD4DUPqWB_fixed_Asm_8: 9696 case ARM::VLD4DUPqWB_fixed_Asm_16: 9697 case ARM::VLD4DUPqWB_fixed_Asm_32: { 9698 MCInst TmpInst; 9699 unsigned Spacing; 9700 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9701 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9702 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9703 Spacing)); 9704 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9705 Spacing * 2)); 9706 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9707 Spacing * 3)); 9708 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9709 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9710 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9711 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9712 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9713 TmpInst.addOperand(Inst.getOperand(4)); 9714 Inst = TmpInst; 9715 return true; 9716 } 9717 9718 case ARM::VLD4DUPdWB_register_Asm_8: 9719 case ARM::VLD4DUPdWB_register_Asm_16: 9720 case ARM::VLD4DUPdWB_register_Asm_32: 9721 case ARM::VLD4DUPqWB_register_Asm_8: 9722 case ARM::VLD4DUPqWB_register_Asm_16: 9723 case ARM::VLD4DUPqWB_register_Asm_32: { 9724 MCInst TmpInst; 9725 unsigned Spacing; 9726 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9727 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9728 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9729 Spacing)); 9730 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9731 Spacing * 2)); 9732 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9733 Spacing * 3)); 9734 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9735 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9736 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9737 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9738 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9739 TmpInst.addOperand(Inst.getOperand(5)); 9740 Inst = TmpInst; 9741 return true; 9742 } 9743 9744 // VLD4 multiple 4-element structure instructions. 9745 case ARM::VLD4dAsm_8: 9746 case ARM::VLD4dAsm_16: 9747 case ARM::VLD4dAsm_32: 9748 case ARM::VLD4qAsm_8: 9749 case ARM::VLD4qAsm_16: 9750 case ARM::VLD4qAsm_32: { 9751 MCInst TmpInst; 9752 unsigned Spacing; 9753 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9754 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9755 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9756 Spacing)); 9757 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9758 Spacing * 2)); 9759 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9760 Spacing * 3)); 9761 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9762 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9763 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9764 TmpInst.addOperand(Inst.getOperand(4)); 9765 Inst = TmpInst; 9766 return true; 9767 } 9768 9769 case ARM::VLD4dWB_fixed_Asm_8: 9770 case ARM::VLD4dWB_fixed_Asm_16: 9771 case ARM::VLD4dWB_fixed_Asm_32: 9772 case ARM::VLD4qWB_fixed_Asm_8: 9773 case ARM::VLD4qWB_fixed_Asm_16: 9774 case ARM::VLD4qWB_fixed_Asm_32: { 9775 MCInst TmpInst; 9776 unsigned Spacing; 9777 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9778 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9779 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9780 Spacing)); 9781 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9782 Spacing * 2)); 9783 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9784 Spacing * 3)); 9785 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9786 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9787 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9788 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9789 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9790 TmpInst.addOperand(Inst.getOperand(4)); 9791 Inst = TmpInst; 9792 return true; 9793 } 9794 9795 case ARM::VLD4dWB_register_Asm_8: 9796 case ARM::VLD4dWB_register_Asm_16: 9797 case ARM::VLD4dWB_register_Asm_32: 9798 case ARM::VLD4qWB_register_Asm_8: 9799 case ARM::VLD4qWB_register_Asm_16: 9800 case ARM::VLD4qWB_register_Asm_32: { 9801 MCInst TmpInst; 9802 unsigned Spacing; 9803 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9804 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9805 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9806 Spacing)); 9807 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9808 Spacing * 2)); 9809 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9810 Spacing * 3)); 9811 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9812 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9813 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9814 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9815 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9816 TmpInst.addOperand(Inst.getOperand(5)); 9817 Inst = TmpInst; 9818 return true; 9819 } 9820 9821 // VST3 multiple 3-element structure instructions. 9822 case ARM::VST3dAsm_8: 9823 case ARM::VST3dAsm_16: 9824 case ARM::VST3dAsm_32: 9825 case ARM::VST3qAsm_8: 9826 case ARM::VST3qAsm_16: 9827 case ARM::VST3qAsm_32: { 9828 MCInst TmpInst; 9829 unsigned Spacing; 9830 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9831 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9832 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9833 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9834 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9835 Spacing)); 9836 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9837 Spacing * 2)); 9838 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9839 TmpInst.addOperand(Inst.getOperand(4)); 9840 Inst = TmpInst; 9841 return true; 9842 } 9843 9844 case ARM::VST3dWB_fixed_Asm_8: 9845 case ARM::VST3dWB_fixed_Asm_16: 9846 case ARM::VST3dWB_fixed_Asm_32: 9847 case ARM::VST3qWB_fixed_Asm_8: 9848 case ARM::VST3qWB_fixed_Asm_16: 9849 case ARM::VST3qWB_fixed_Asm_32: { 9850 MCInst TmpInst; 9851 unsigned Spacing; 9852 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9853 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9854 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9855 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9856 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9857 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9858 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9859 Spacing)); 9860 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9861 Spacing * 2)); 9862 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9863 TmpInst.addOperand(Inst.getOperand(4)); 9864 Inst = TmpInst; 9865 return true; 9866 } 9867 9868 case ARM::VST3dWB_register_Asm_8: 9869 case ARM::VST3dWB_register_Asm_16: 9870 case ARM::VST3dWB_register_Asm_32: 9871 case ARM::VST3qWB_register_Asm_8: 9872 case ARM::VST3qWB_register_Asm_16: 9873 case ARM::VST3qWB_register_Asm_32: { 9874 MCInst TmpInst; 9875 unsigned Spacing; 9876 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9877 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9878 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9879 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9880 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9881 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9882 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9883 Spacing)); 9884 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9885 Spacing * 2)); 9886 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9887 TmpInst.addOperand(Inst.getOperand(5)); 9888 Inst = TmpInst; 9889 return true; 9890 } 9891 9892 // VST4 multiple 3-element structure instructions. 9893 case ARM::VST4dAsm_8: 9894 case ARM::VST4dAsm_16: 9895 case ARM::VST4dAsm_32: 9896 case ARM::VST4qAsm_8: 9897 case ARM::VST4qAsm_16: 9898 case ARM::VST4qAsm_32: { 9899 MCInst TmpInst; 9900 unsigned Spacing; 9901 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9902 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9903 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9904 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9905 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9906 Spacing)); 9907 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9908 Spacing * 2)); 9909 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9910 Spacing * 3)); 9911 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9912 TmpInst.addOperand(Inst.getOperand(4)); 9913 Inst = TmpInst; 9914 return true; 9915 } 9916 9917 case ARM::VST4dWB_fixed_Asm_8: 9918 case ARM::VST4dWB_fixed_Asm_16: 9919 case ARM::VST4dWB_fixed_Asm_32: 9920 case ARM::VST4qWB_fixed_Asm_8: 9921 case ARM::VST4qWB_fixed_Asm_16: 9922 case ARM::VST4qWB_fixed_Asm_32: { 9923 MCInst TmpInst; 9924 unsigned Spacing; 9925 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9926 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9927 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9928 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9929 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9930 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9931 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9932 Spacing)); 9933 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9934 Spacing * 2)); 9935 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9936 Spacing * 3)); 9937 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9938 TmpInst.addOperand(Inst.getOperand(4)); 9939 Inst = TmpInst; 9940 return true; 9941 } 9942 9943 case ARM::VST4dWB_register_Asm_8: 9944 case ARM::VST4dWB_register_Asm_16: 9945 case ARM::VST4dWB_register_Asm_32: 9946 case ARM::VST4qWB_register_Asm_8: 9947 case ARM::VST4qWB_register_Asm_16: 9948 case ARM::VST4qWB_register_Asm_32: { 9949 MCInst TmpInst; 9950 unsigned Spacing; 9951 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9952 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9953 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9954 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9955 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9956 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9957 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9958 Spacing)); 9959 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9960 Spacing * 2)); 9961 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9962 Spacing * 3)); 9963 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9964 TmpInst.addOperand(Inst.getOperand(5)); 9965 Inst = TmpInst; 9966 return true; 9967 } 9968 9969 // Handle encoding choice for the shift-immediate instructions. 9970 case ARM::t2LSLri: 9971 case ARM::t2LSRri: 9972 case ARM::t2ASRri: 9973 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9974 isARMLowRegister(Inst.getOperand(1).getReg()) && 9975 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9976 !HasWideQualifier) { 9977 unsigned NewOpc; 9978 switch (Inst.getOpcode()) { 9979 default: llvm_unreachable("unexpected opcode"); 9980 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 9981 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 9982 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 9983 } 9984 // The Thumb1 operands aren't in the same order. Awesome, eh? 9985 MCInst TmpInst; 9986 TmpInst.setOpcode(NewOpc); 9987 TmpInst.addOperand(Inst.getOperand(0)); 9988 TmpInst.addOperand(Inst.getOperand(5)); 9989 TmpInst.addOperand(Inst.getOperand(1)); 9990 TmpInst.addOperand(Inst.getOperand(2)); 9991 TmpInst.addOperand(Inst.getOperand(3)); 9992 TmpInst.addOperand(Inst.getOperand(4)); 9993 Inst = TmpInst; 9994 return true; 9995 } 9996 return false; 9997 9998 // Handle the Thumb2 mode MOV complex aliases. 9999 case ARM::t2MOVsr: 10000 case ARM::t2MOVSsr: { 10001 // Which instruction to expand to depends on the CCOut operand and 10002 // whether we're in an IT block if the register operands are low 10003 // registers. 10004 bool isNarrow = false; 10005 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10006 isARMLowRegister(Inst.getOperand(1).getReg()) && 10007 isARMLowRegister(Inst.getOperand(2).getReg()) && 10008 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 10009 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 10010 !HasWideQualifier) 10011 isNarrow = true; 10012 MCInst TmpInst; 10013 unsigned newOpc; 10014 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 10015 default: llvm_unreachable("unexpected opcode!"); 10016 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 10017 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 10018 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 10019 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 10020 } 10021 TmpInst.setOpcode(newOpc); 10022 TmpInst.addOperand(Inst.getOperand(0)); // Rd 10023 if (isNarrow) 10024 TmpInst.addOperand(MCOperand::createReg( 10025 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 10026 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10027 TmpInst.addOperand(Inst.getOperand(2)); // Rm 10028 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 10029 TmpInst.addOperand(Inst.getOperand(5)); 10030 if (!isNarrow) 10031 TmpInst.addOperand(MCOperand::createReg( 10032 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 10033 Inst = TmpInst; 10034 return true; 10035 } 10036 case ARM::t2MOVsi: 10037 case ARM::t2MOVSsi: { 10038 // Which instruction to expand to depends on the CCOut operand and 10039 // whether we're in an IT block if the register operands are low 10040 // registers. 10041 bool isNarrow = false; 10042 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10043 isARMLowRegister(Inst.getOperand(1).getReg()) && 10044 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 10045 !HasWideQualifier) 10046 isNarrow = true; 10047 MCInst TmpInst; 10048 unsigned newOpc; 10049 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 10050 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 10051 bool isMov = false; 10052 // MOV rd, rm, LSL #0 is actually a MOV instruction 10053 if (Shift == ARM_AM::lsl && Amount == 0) { 10054 isMov = true; 10055 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 10056 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 10057 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 10058 // instead. 10059 if (inITBlock()) { 10060 isNarrow = false; 10061 } 10062 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 10063 } else { 10064 switch(Shift) { 10065 default: llvm_unreachable("unexpected opcode!"); 10066 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 10067 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 10068 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 10069 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 10070 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 10071 } 10072 } 10073 if (Amount == 32) Amount = 0; 10074 TmpInst.setOpcode(newOpc); 10075 TmpInst.addOperand(Inst.getOperand(0)); // Rd 10076 if (isNarrow && !isMov) 10077 TmpInst.addOperand(MCOperand::createReg( 10078 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 10079 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10080 if (newOpc != ARM::t2RRX && !isMov) 10081 TmpInst.addOperand(MCOperand::createImm(Amount)); 10082 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 10083 TmpInst.addOperand(Inst.getOperand(4)); 10084 if (!isNarrow) 10085 TmpInst.addOperand(MCOperand::createReg( 10086 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 10087 Inst = TmpInst; 10088 return true; 10089 } 10090 // Handle the ARM mode MOV complex aliases. 10091 case ARM::ASRr: 10092 case ARM::LSRr: 10093 case ARM::LSLr: 10094 case ARM::RORr: { 10095 ARM_AM::ShiftOpc ShiftTy; 10096 switch(Inst.getOpcode()) { 10097 default: llvm_unreachable("unexpected opcode!"); 10098 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 10099 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 10100 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 10101 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 10102 } 10103 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 10104 MCInst TmpInst; 10105 TmpInst.setOpcode(ARM::MOVsr); 10106 TmpInst.addOperand(Inst.getOperand(0)); // Rd 10107 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10108 TmpInst.addOperand(Inst.getOperand(2)); // Rm 10109 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 10110 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 10111 TmpInst.addOperand(Inst.getOperand(4)); 10112 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 10113 Inst = TmpInst; 10114 return true; 10115 } 10116 case ARM::ASRi: 10117 case ARM::LSRi: 10118 case ARM::LSLi: 10119 case ARM::RORi: { 10120 ARM_AM::ShiftOpc ShiftTy; 10121 switch(Inst.getOpcode()) { 10122 default: llvm_unreachable("unexpected opcode!"); 10123 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 10124 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 10125 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 10126 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 10127 } 10128 // A shift by zero is a plain MOVr, not a MOVsi. 10129 unsigned Amt = Inst.getOperand(2).getImm(); 10130 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 10131 // A shift by 32 should be encoded as 0 when permitted 10132 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 10133 Amt = 0; 10134 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 10135 MCInst TmpInst; 10136 TmpInst.setOpcode(Opc); 10137 TmpInst.addOperand(Inst.getOperand(0)); // Rd 10138 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10139 if (Opc == ARM::MOVsi) 10140 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 10141 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 10142 TmpInst.addOperand(Inst.getOperand(4)); 10143 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 10144 Inst = TmpInst; 10145 return true; 10146 } 10147 case ARM::RRXi: { 10148 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 10149 MCInst TmpInst; 10150 TmpInst.setOpcode(ARM::MOVsi); 10151 TmpInst.addOperand(Inst.getOperand(0)); // Rd 10152 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10153 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 10154 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10155 TmpInst.addOperand(Inst.getOperand(3)); 10156 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 10157 Inst = TmpInst; 10158 return true; 10159 } 10160 case ARM::t2LDMIA_UPD: { 10161 // If this is a load of a single register, then we should use 10162 // a post-indexed LDR instruction instead, per the ARM ARM. 10163 if (Inst.getNumOperands() != 5) 10164 return false; 10165 MCInst TmpInst; 10166 TmpInst.setOpcode(ARM::t2LDR_POST); 10167 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10168 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10169 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10170 TmpInst.addOperand(MCOperand::createImm(4)); 10171 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10172 TmpInst.addOperand(Inst.getOperand(3)); 10173 Inst = TmpInst; 10174 return true; 10175 } 10176 case ARM::t2STMDB_UPD: { 10177 // If this is a store of a single register, then we should use 10178 // a pre-indexed STR instruction instead, per the ARM ARM. 10179 if (Inst.getNumOperands() != 5) 10180 return false; 10181 MCInst TmpInst; 10182 TmpInst.setOpcode(ARM::t2STR_PRE); 10183 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10184 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10185 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10186 TmpInst.addOperand(MCOperand::createImm(-4)); 10187 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10188 TmpInst.addOperand(Inst.getOperand(3)); 10189 Inst = TmpInst; 10190 return true; 10191 } 10192 case ARM::LDMIA_UPD: 10193 // If this is a load of a single register via a 'pop', then we should use 10194 // a post-indexed LDR instruction instead, per the ARM ARM. 10195 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 10196 Inst.getNumOperands() == 5) { 10197 MCInst TmpInst; 10198 TmpInst.setOpcode(ARM::LDR_POST_IMM); 10199 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10200 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10201 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10202 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 10203 TmpInst.addOperand(MCOperand::createImm(4)); 10204 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10205 TmpInst.addOperand(Inst.getOperand(3)); 10206 Inst = TmpInst; 10207 return true; 10208 } 10209 break; 10210 case ARM::STMDB_UPD: 10211 // If this is a store of a single register via a 'push', then we should use 10212 // a pre-indexed STR instruction instead, per the ARM ARM. 10213 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 10214 Inst.getNumOperands() == 5) { 10215 MCInst TmpInst; 10216 TmpInst.setOpcode(ARM::STR_PRE_IMM); 10217 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10218 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10219 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 10220 TmpInst.addOperand(MCOperand::createImm(-4)); 10221 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10222 TmpInst.addOperand(Inst.getOperand(3)); 10223 Inst = TmpInst; 10224 } 10225 break; 10226 case ARM::t2ADDri12: 10227 case ARM::t2SUBri12: 10228 case ARM::t2ADDspImm12: 10229 case ARM::t2SUBspImm12: { 10230 // If the immediate fits for encoding T3 and the generic 10231 // mnemonic was used, encoding T3 is preferred. 10232 const StringRef Token = static_cast<ARMOperand &>(*Operands[0]).getToken(); 10233 if ((Token != "add" && Token != "sub") || 10234 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 10235 break; 10236 switch (Inst.getOpcode()) { 10237 case ARM::t2ADDri12: 10238 Inst.setOpcode(ARM::t2ADDri); 10239 break; 10240 case ARM::t2SUBri12: 10241 Inst.setOpcode(ARM::t2SUBri); 10242 break; 10243 case ARM::t2ADDspImm12: 10244 Inst.setOpcode(ARM::t2ADDspImm); 10245 break; 10246 case ARM::t2SUBspImm12: 10247 Inst.setOpcode(ARM::t2SUBspImm); 10248 break; 10249 } 10250 10251 Inst.addOperand(MCOperand::createReg(0)); // cc_out 10252 return true; 10253 } 10254 case ARM::tADDi8: 10255 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 10256 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 10257 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 10258 // to encoding T1 if <Rd> is omitted." 10259 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 10260 Inst.setOpcode(ARM::tADDi3); 10261 return true; 10262 } 10263 break; 10264 case ARM::tSUBi8: 10265 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 10266 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 10267 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 10268 // to encoding T1 if <Rd> is omitted." 10269 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 10270 Inst.setOpcode(ARM::tSUBi3); 10271 return true; 10272 } 10273 break; 10274 case ARM::t2ADDri: 10275 case ARM::t2SUBri: { 10276 // If the destination and first source operand are the same, and 10277 // the flags are compatible with the current IT status, use encoding T2 10278 // instead of T3. For compatibility with the system 'as'. Make sure the 10279 // wide encoding wasn't explicit. 10280 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 10281 !isARMLowRegister(Inst.getOperand(0).getReg()) || 10282 (Inst.getOperand(2).isImm() && 10283 (unsigned)Inst.getOperand(2).getImm() > 255) || 10284 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 10285 HasWideQualifier) 10286 break; 10287 MCInst TmpInst; 10288 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 10289 ARM::tADDi8 : ARM::tSUBi8); 10290 TmpInst.addOperand(Inst.getOperand(0)); 10291 TmpInst.addOperand(Inst.getOperand(5)); 10292 TmpInst.addOperand(Inst.getOperand(0)); 10293 TmpInst.addOperand(Inst.getOperand(2)); 10294 TmpInst.addOperand(Inst.getOperand(3)); 10295 TmpInst.addOperand(Inst.getOperand(4)); 10296 Inst = TmpInst; 10297 return true; 10298 } 10299 case ARM::t2ADDspImm: 10300 case ARM::t2SUBspImm: { 10301 // Prefer T1 encoding if possible 10302 if (Inst.getOperand(5).getReg() != 0 || HasWideQualifier) 10303 break; 10304 unsigned V = Inst.getOperand(2).getImm(); 10305 if (V & 3 || V > ((1 << 7) - 1) << 2) 10306 break; 10307 MCInst TmpInst; 10308 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDspImm ? ARM::tADDspi 10309 : ARM::tSUBspi); 10310 TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // destination reg 10311 TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // source reg 10312 TmpInst.addOperand(MCOperand::createImm(V / 4)); // immediate 10313 TmpInst.addOperand(Inst.getOperand(3)); // pred 10314 TmpInst.addOperand(Inst.getOperand(4)); 10315 Inst = TmpInst; 10316 return true; 10317 } 10318 case ARM::t2ADDrr: { 10319 // If the destination and first source operand are the same, and 10320 // there's no setting of the flags, use encoding T2 instead of T3. 10321 // Note that this is only for ADD, not SUB. This mirrors the system 10322 // 'as' behaviour. Also take advantage of ADD being commutative. 10323 // Make sure the wide encoding wasn't explicit. 10324 bool Swap = false; 10325 auto DestReg = Inst.getOperand(0).getReg(); 10326 bool Transform = DestReg == Inst.getOperand(1).getReg(); 10327 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 10328 Transform = true; 10329 Swap = true; 10330 } 10331 if (!Transform || 10332 Inst.getOperand(5).getReg() != 0 || 10333 HasWideQualifier) 10334 break; 10335 MCInst TmpInst; 10336 TmpInst.setOpcode(ARM::tADDhirr); 10337 TmpInst.addOperand(Inst.getOperand(0)); 10338 TmpInst.addOperand(Inst.getOperand(0)); 10339 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 10340 TmpInst.addOperand(Inst.getOperand(3)); 10341 TmpInst.addOperand(Inst.getOperand(4)); 10342 Inst = TmpInst; 10343 return true; 10344 } 10345 case ARM::tADDrSP: 10346 // If the non-SP source operand and the destination operand are not the 10347 // same, we need to use the 32-bit encoding if it's available. 10348 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 10349 Inst.setOpcode(ARM::t2ADDrr); 10350 Inst.addOperand(MCOperand::createReg(0)); // cc_out 10351 return true; 10352 } 10353 break; 10354 case ARM::tB: 10355 // A Thumb conditional branch outside of an IT block is a tBcc. 10356 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 10357 Inst.setOpcode(ARM::tBcc); 10358 return true; 10359 } 10360 break; 10361 case ARM::t2B: 10362 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 10363 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 10364 Inst.setOpcode(ARM::t2Bcc); 10365 return true; 10366 } 10367 break; 10368 case ARM::t2Bcc: 10369 // If the conditional is AL or we're in an IT block, we really want t2B. 10370 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 10371 Inst.setOpcode(ARM::t2B); 10372 return true; 10373 } 10374 break; 10375 case ARM::tBcc: 10376 // If the conditional is AL, we really want tB. 10377 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 10378 Inst.setOpcode(ARM::tB); 10379 return true; 10380 } 10381 break; 10382 case ARM::tLDMIA: { 10383 // If the register list contains any high registers, or if the writeback 10384 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 10385 // instead if we're in Thumb2. Otherwise, this should have generated 10386 // an error in validateInstruction(). 10387 unsigned Rn = Inst.getOperand(0).getReg(); 10388 bool hasWritebackToken = 10389 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 10390 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 10391 bool listContainsBase; 10392 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 10393 (!listContainsBase && !hasWritebackToken) || 10394 (listContainsBase && hasWritebackToken)) { 10395 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 10396 assert(isThumbTwo()); 10397 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 10398 // If we're switching to the updating version, we need to insert 10399 // the writeback tied operand. 10400 if (hasWritebackToken) 10401 Inst.insert(Inst.begin(), 10402 MCOperand::createReg(Inst.getOperand(0).getReg())); 10403 return true; 10404 } 10405 break; 10406 } 10407 case ARM::tSTMIA_UPD: { 10408 // If the register list contains any high registers, we need to use 10409 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 10410 // should have generated an error in validateInstruction(). 10411 unsigned Rn = Inst.getOperand(0).getReg(); 10412 bool listContainsBase; 10413 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 10414 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 10415 assert(isThumbTwo()); 10416 Inst.setOpcode(ARM::t2STMIA_UPD); 10417 return true; 10418 } 10419 break; 10420 } 10421 case ARM::tPOP: { 10422 bool listContainsBase; 10423 // If the register list contains any high registers, we need to use 10424 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 10425 // should have generated an error in validateInstruction(). 10426 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 10427 return false; 10428 assert(isThumbTwo()); 10429 Inst.setOpcode(ARM::t2LDMIA_UPD); 10430 // Add the base register and writeback operands. 10431 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10432 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10433 return true; 10434 } 10435 case ARM::tPUSH: { 10436 bool listContainsBase; 10437 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 10438 return false; 10439 assert(isThumbTwo()); 10440 Inst.setOpcode(ARM::t2STMDB_UPD); 10441 // Add the base register and writeback operands. 10442 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10443 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10444 return true; 10445 } 10446 case ARM::t2MOVi: 10447 // If we can use the 16-bit encoding and the user didn't explicitly 10448 // request the 32-bit variant, transform it here. 10449 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10450 (Inst.getOperand(1).isImm() && 10451 (unsigned)Inst.getOperand(1).getImm() <= 255) && 10452 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10453 !HasWideQualifier) { 10454 // The operands aren't in the same order for tMOVi8... 10455 MCInst TmpInst; 10456 TmpInst.setOpcode(ARM::tMOVi8); 10457 TmpInst.addOperand(Inst.getOperand(0)); 10458 TmpInst.addOperand(Inst.getOperand(4)); 10459 TmpInst.addOperand(Inst.getOperand(1)); 10460 TmpInst.addOperand(Inst.getOperand(2)); 10461 TmpInst.addOperand(Inst.getOperand(3)); 10462 Inst = TmpInst; 10463 return true; 10464 } 10465 break; 10466 10467 case ARM::t2MOVr: 10468 // If we can use the 16-bit encoding and the user didn't explicitly 10469 // request the 32-bit variant, transform it here. 10470 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10471 isARMLowRegister(Inst.getOperand(1).getReg()) && 10472 Inst.getOperand(2).getImm() == ARMCC::AL && 10473 Inst.getOperand(4).getReg() == ARM::CPSR && 10474 !HasWideQualifier) { 10475 // The operands aren't the same for tMOV[S]r... (no cc_out) 10476 MCInst TmpInst; 10477 unsigned Op = Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr; 10478 TmpInst.setOpcode(Op); 10479 TmpInst.addOperand(Inst.getOperand(0)); 10480 TmpInst.addOperand(Inst.getOperand(1)); 10481 if (Op == ARM::tMOVr) { 10482 TmpInst.addOperand(Inst.getOperand(2)); 10483 TmpInst.addOperand(Inst.getOperand(3)); 10484 } 10485 Inst = TmpInst; 10486 return true; 10487 } 10488 break; 10489 10490 case ARM::t2SXTH: 10491 case ARM::t2SXTB: 10492 case ARM::t2UXTH: 10493 case ARM::t2UXTB: 10494 // If we can use the 16-bit encoding and the user didn't explicitly 10495 // request the 32-bit variant, transform it here. 10496 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10497 isARMLowRegister(Inst.getOperand(1).getReg()) && 10498 Inst.getOperand(2).getImm() == 0 && 10499 !HasWideQualifier) { 10500 unsigned NewOpc; 10501 switch (Inst.getOpcode()) { 10502 default: llvm_unreachable("Illegal opcode!"); 10503 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 10504 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 10505 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 10506 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 10507 } 10508 // The operands aren't the same for thumb1 (no rotate operand). 10509 MCInst TmpInst; 10510 TmpInst.setOpcode(NewOpc); 10511 TmpInst.addOperand(Inst.getOperand(0)); 10512 TmpInst.addOperand(Inst.getOperand(1)); 10513 TmpInst.addOperand(Inst.getOperand(3)); 10514 TmpInst.addOperand(Inst.getOperand(4)); 10515 Inst = TmpInst; 10516 return true; 10517 } 10518 break; 10519 10520 case ARM::MOVsi: { 10521 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 10522 // rrx shifts and asr/lsr of #32 is encoded as 0 10523 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 10524 return false; 10525 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 10526 // Shifting by zero is accepted as a vanilla 'MOVr' 10527 MCInst TmpInst; 10528 TmpInst.setOpcode(ARM::MOVr); 10529 TmpInst.addOperand(Inst.getOperand(0)); 10530 TmpInst.addOperand(Inst.getOperand(1)); 10531 TmpInst.addOperand(Inst.getOperand(3)); 10532 TmpInst.addOperand(Inst.getOperand(4)); 10533 TmpInst.addOperand(Inst.getOperand(5)); 10534 Inst = TmpInst; 10535 return true; 10536 } 10537 return false; 10538 } 10539 case ARM::ANDrsi: 10540 case ARM::ORRrsi: 10541 case ARM::EORrsi: 10542 case ARM::BICrsi: 10543 case ARM::SUBrsi: 10544 case ARM::ADDrsi: { 10545 unsigned newOpc; 10546 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 10547 if (SOpc == ARM_AM::rrx) return false; 10548 switch (Inst.getOpcode()) { 10549 default: llvm_unreachable("unexpected opcode!"); 10550 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 10551 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 10552 case ARM::EORrsi: newOpc = ARM::EORrr; break; 10553 case ARM::BICrsi: newOpc = ARM::BICrr; break; 10554 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 10555 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 10556 } 10557 // If the shift is by zero, use the non-shifted instruction definition. 10558 // The exception is for right shifts, where 0 == 32 10559 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 10560 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 10561 MCInst TmpInst; 10562 TmpInst.setOpcode(newOpc); 10563 TmpInst.addOperand(Inst.getOperand(0)); 10564 TmpInst.addOperand(Inst.getOperand(1)); 10565 TmpInst.addOperand(Inst.getOperand(2)); 10566 TmpInst.addOperand(Inst.getOperand(4)); 10567 TmpInst.addOperand(Inst.getOperand(5)); 10568 TmpInst.addOperand(Inst.getOperand(6)); 10569 Inst = TmpInst; 10570 return true; 10571 } 10572 return false; 10573 } 10574 case ARM::ITasm: 10575 case ARM::t2IT: { 10576 // Set up the IT block state according to the IT instruction we just 10577 // matched. 10578 assert(!inITBlock() && "nested IT blocks?!"); 10579 startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()), 10580 Inst.getOperand(1).getImm()); 10581 break; 10582 } 10583 case ARM::t2LSLrr: 10584 case ARM::t2LSRrr: 10585 case ARM::t2ASRrr: 10586 case ARM::t2SBCrr: 10587 case ARM::t2RORrr: 10588 case ARM::t2BICrr: 10589 // Assemblers should use the narrow encodings of these instructions when permissible. 10590 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10591 isARMLowRegister(Inst.getOperand(2).getReg())) && 10592 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 10593 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10594 !HasWideQualifier) { 10595 unsigned NewOpc; 10596 switch (Inst.getOpcode()) { 10597 default: llvm_unreachable("unexpected opcode"); 10598 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 10599 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 10600 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 10601 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 10602 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 10603 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 10604 } 10605 MCInst TmpInst; 10606 TmpInst.setOpcode(NewOpc); 10607 TmpInst.addOperand(Inst.getOperand(0)); 10608 TmpInst.addOperand(Inst.getOperand(5)); 10609 TmpInst.addOperand(Inst.getOperand(1)); 10610 TmpInst.addOperand(Inst.getOperand(2)); 10611 TmpInst.addOperand(Inst.getOperand(3)); 10612 TmpInst.addOperand(Inst.getOperand(4)); 10613 Inst = TmpInst; 10614 return true; 10615 } 10616 return false; 10617 10618 case ARM::t2ANDrr: 10619 case ARM::t2EORrr: 10620 case ARM::t2ADCrr: 10621 case ARM::t2ORRrr: 10622 // Assemblers should use the narrow encodings of these instructions when permissible. 10623 // These instructions are special in that they are commutable, so shorter encodings 10624 // are available more often. 10625 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10626 isARMLowRegister(Inst.getOperand(2).getReg())) && 10627 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 10628 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 10629 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10630 !HasWideQualifier) { 10631 unsigned NewOpc; 10632 switch (Inst.getOpcode()) { 10633 default: llvm_unreachable("unexpected opcode"); 10634 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 10635 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 10636 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 10637 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 10638 } 10639 MCInst TmpInst; 10640 TmpInst.setOpcode(NewOpc); 10641 TmpInst.addOperand(Inst.getOperand(0)); 10642 TmpInst.addOperand(Inst.getOperand(5)); 10643 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 10644 TmpInst.addOperand(Inst.getOperand(1)); 10645 TmpInst.addOperand(Inst.getOperand(2)); 10646 } else { 10647 TmpInst.addOperand(Inst.getOperand(2)); 10648 TmpInst.addOperand(Inst.getOperand(1)); 10649 } 10650 TmpInst.addOperand(Inst.getOperand(3)); 10651 TmpInst.addOperand(Inst.getOperand(4)); 10652 Inst = TmpInst; 10653 return true; 10654 } 10655 return false; 10656 case ARM::MVE_VPST: 10657 case ARM::MVE_VPTv16i8: 10658 case ARM::MVE_VPTv8i16: 10659 case ARM::MVE_VPTv4i32: 10660 case ARM::MVE_VPTv16u8: 10661 case ARM::MVE_VPTv8u16: 10662 case ARM::MVE_VPTv4u32: 10663 case ARM::MVE_VPTv16s8: 10664 case ARM::MVE_VPTv8s16: 10665 case ARM::MVE_VPTv4s32: 10666 case ARM::MVE_VPTv4f32: 10667 case ARM::MVE_VPTv8f16: 10668 case ARM::MVE_VPTv16i8r: 10669 case ARM::MVE_VPTv8i16r: 10670 case ARM::MVE_VPTv4i32r: 10671 case ARM::MVE_VPTv16u8r: 10672 case ARM::MVE_VPTv8u16r: 10673 case ARM::MVE_VPTv4u32r: 10674 case ARM::MVE_VPTv16s8r: 10675 case ARM::MVE_VPTv8s16r: 10676 case ARM::MVE_VPTv4s32r: 10677 case ARM::MVE_VPTv4f32r: 10678 case ARM::MVE_VPTv8f16r: { 10679 assert(!inVPTBlock() && "Nested VPT blocks are not allowed"); 10680 MCOperand &MO = Inst.getOperand(0); 10681 VPTState.Mask = MO.getImm(); 10682 VPTState.CurPosition = 0; 10683 break; 10684 } 10685 } 10686 return false; 10687 } 10688 10689 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 10690 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 10691 // suffix depending on whether they're in an IT block or not. 10692 unsigned Opc = Inst.getOpcode(); 10693 const MCInstrDesc &MCID = MII.get(Opc); 10694 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 10695 assert(MCID.hasOptionalDef() && 10696 "optionally flag setting instruction missing optional def operand"); 10697 assert(MCID.NumOperands == Inst.getNumOperands() && 10698 "operand count mismatch!"); 10699 // Find the optional-def operand (cc_out). 10700 unsigned OpNo; 10701 for (OpNo = 0; 10702 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 10703 ++OpNo) 10704 ; 10705 // If we're parsing Thumb1, reject it completely. 10706 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 10707 return Match_RequiresFlagSetting; 10708 // If we're parsing Thumb2, which form is legal depends on whether we're 10709 // in an IT block. 10710 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 10711 !inITBlock()) 10712 return Match_RequiresITBlock; 10713 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 10714 inITBlock()) 10715 return Match_RequiresNotITBlock; 10716 // LSL with zero immediate is not allowed in an IT block 10717 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 10718 return Match_RequiresNotITBlock; 10719 } else if (isThumbOne()) { 10720 // Some high-register supporting Thumb1 encodings only allow both registers 10721 // to be from r0-r7 when in Thumb2. 10722 if (Opc == ARM::tADDhirr && !hasV6MOps() && 10723 isARMLowRegister(Inst.getOperand(1).getReg()) && 10724 isARMLowRegister(Inst.getOperand(2).getReg())) 10725 return Match_RequiresThumb2; 10726 // Others only require ARMv6 or later. 10727 else if (Opc == ARM::tMOVr && !hasV6Ops() && 10728 isARMLowRegister(Inst.getOperand(0).getReg()) && 10729 isARMLowRegister(Inst.getOperand(1).getReg())) 10730 return Match_RequiresV6; 10731 } 10732 10733 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 10734 // than the loop below can handle, so it uses the GPRnopc register class and 10735 // we do SP handling here. 10736 if (Opc == ARM::t2MOVr && !hasV8Ops()) 10737 { 10738 // SP as both source and destination is not allowed 10739 if (Inst.getOperand(0).getReg() == ARM::SP && 10740 Inst.getOperand(1).getReg() == ARM::SP) 10741 return Match_RequiresV8; 10742 // When flags-setting SP as either source or destination is not allowed 10743 if (Inst.getOperand(4).getReg() == ARM::CPSR && 10744 (Inst.getOperand(0).getReg() == ARM::SP || 10745 Inst.getOperand(1).getReg() == ARM::SP)) 10746 return Match_RequiresV8; 10747 } 10748 10749 switch (Inst.getOpcode()) { 10750 case ARM::VMRS: 10751 case ARM::VMSR: 10752 case ARM::VMRS_FPCXTS: 10753 case ARM::VMRS_FPCXTNS: 10754 case ARM::VMSR_FPCXTS: 10755 case ARM::VMSR_FPCXTNS: 10756 case ARM::VMRS_FPSCR_NZCVQC: 10757 case ARM::VMSR_FPSCR_NZCVQC: 10758 case ARM::FMSTAT: 10759 case ARM::VMRS_VPR: 10760 case ARM::VMRS_P0: 10761 case ARM::VMSR_VPR: 10762 case ARM::VMSR_P0: 10763 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of 10764 // ARMv8-A. 10765 if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP && 10766 (isThumb() && !hasV8Ops())) 10767 return Match_InvalidOperand; 10768 break; 10769 case ARM::t2TBB: 10770 case ARM::t2TBH: 10771 // Rn = sp is only allowed with ARMv8-A 10772 if (!hasV8Ops() && (Inst.getOperand(0).getReg() == ARM::SP)) 10773 return Match_RequiresV8; 10774 break; 10775 default: 10776 break; 10777 } 10778 10779 for (unsigned I = 0; I < MCID.NumOperands; ++I) 10780 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 10781 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 10782 const auto &Op = Inst.getOperand(I); 10783 if (!Op.isReg()) { 10784 // This can happen in awkward cases with tied operands, e.g. a 10785 // writeback load/store with a complex addressing mode in 10786 // which there's an output operand corresponding to the 10787 // updated written-back base register: the Tablegen-generated 10788 // AsmMatcher will have written a placeholder operand to that 10789 // slot in the form of an immediate 0, because it can't 10790 // generate the register part of the complex addressing-mode 10791 // operand ahead of time. 10792 continue; 10793 } 10794 10795 unsigned Reg = Op.getReg(); 10796 if ((Reg == ARM::SP) && !hasV8Ops()) 10797 return Match_RequiresV8; 10798 else if (Reg == ARM::PC) 10799 return Match_InvalidOperand; 10800 } 10801 10802 return Match_Success; 10803 } 10804 10805 namespace llvm { 10806 10807 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 10808 return true; // In an assembly source, no need to second-guess 10809 } 10810 10811 } // end namespace llvm 10812 10813 // Returns true if Inst is unpredictable if it is in and IT block, but is not 10814 // the last instruction in the block. 10815 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 10816 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10817 10818 // All branch & call instructions terminate IT blocks with the exception of 10819 // SVC. 10820 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || 10821 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) 10822 return true; 10823 10824 // Any arithmetic instruction which writes to the PC also terminates the IT 10825 // block. 10826 if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI)) 10827 return true; 10828 10829 return false; 10830 } 10831 10832 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 10833 SmallVectorImpl<NearMissInfo> &NearMisses, 10834 bool MatchingInlineAsm, 10835 bool &EmitInITBlock, 10836 MCStreamer &Out) { 10837 // If we can't use an implicit IT block here, just match as normal. 10838 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 10839 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10840 10841 // Try to match the instruction in an extension of the current IT block (if 10842 // there is one). 10843 if (inImplicitITBlock()) { 10844 extendImplicitITBlock(ITState.Cond); 10845 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10846 Match_Success) { 10847 // The match succeded, but we still have to check that the instruction is 10848 // valid in this implicit IT block. 10849 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10850 if (MCID.isPredicable()) { 10851 ARMCC::CondCodes InstCond = 10852 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10853 .getImm(); 10854 ARMCC::CondCodes ITCond = currentITCond(); 10855 if (InstCond == ITCond) { 10856 EmitInITBlock = true; 10857 return Match_Success; 10858 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 10859 invertCurrentITCondition(); 10860 EmitInITBlock = true; 10861 return Match_Success; 10862 } 10863 } 10864 } 10865 rewindImplicitITPosition(); 10866 } 10867 10868 // Finish the current IT block, and try to match outside any IT block. 10869 flushPendingInstructions(Out); 10870 unsigned PlainMatchResult = 10871 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10872 if (PlainMatchResult == Match_Success) { 10873 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10874 if (MCID.isPredicable()) { 10875 ARMCC::CondCodes InstCond = 10876 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10877 .getImm(); 10878 // Some forms of the branch instruction have their own condition code 10879 // fields, so can be conditionally executed without an IT block. 10880 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 10881 EmitInITBlock = false; 10882 return Match_Success; 10883 } 10884 if (InstCond == ARMCC::AL) { 10885 EmitInITBlock = false; 10886 return Match_Success; 10887 } 10888 } else { 10889 EmitInITBlock = false; 10890 return Match_Success; 10891 } 10892 } 10893 10894 // Try to match in a new IT block. The matcher doesn't check the actual 10895 // condition, so we create an IT block with a dummy condition, and fix it up 10896 // once we know the actual condition. 10897 startImplicitITBlock(); 10898 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10899 Match_Success) { 10900 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10901 if (MCID.isPredicable()) { 10902 ITState.Cond = 10903 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10904 .getImm(); 10905 EmitInITBlock = true; 10906 return Match_Success; 10907 } 10908 } 10909 discardImplicitITBlock(); 10910 10911 // If none of these succeed, return the error we got when trying to match 10912 // outside any IT blocks. 10913 EmitInITBlock = false; 10914 return PlainMatchResult; 10915 } 10916 10917 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, 10918 unsigned VariantID = 0); 10919 10920 static const char *getSubtargetFeatureName(uint64_t Val); 10921 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 10922 OperandVector &Operands, 10923 MCStreamer &Out, uint64_t &ErrorInfo, 10924 bool MatchingInlineAsm) { 10925 MCInst Inst; 10926 unsigned MatchResult; 10927 bool PendConditionalInstruction = false; 10928 10929 SmallVector<NearMissInfo, 4> NearMisses; 10930 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, 10931 PendConditionalInstruction, Out); 10932 10933 switch (MatchResult) { 10934 case Match_Success: 10935 LLVM_DEBUG(dbgs() << "Parsed as: "; 10936 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10937 dbgs() << "\n"); 10938 10939 // Context sensitive operand constraints aren't handled by the matcher, 10940 // so check them here. 10941 if (validateInstruction(Inst, Operands)) { 10942 // Still progress the IT block, otherwise one wrong condition causes 10943 // nasty cascading errors. 10944 forwardITPosition(); 10945 forwardVPTPosition(); 10946 return true; 10947 } 10948 10949 { // processInstruction() updates inITBlock state, we need to save it away 10950 bool wasInITBlock = inITBlock(); 10951 10952 // Some instructions need post-processing to, for example, tweak which 10953 // encoding is selected. Loop on it while changes happen so the 10954 // individual transformations can chain off each other. E.g., 10955 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 10956 while (processInstruction(Inst, Operands, Out)) 10957 LLVM_DEBUG(dbgs() << "Changed to: "; 10958 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10959 dbgs() << "\n"); 10960 10961 // Only after the instruction is fully processed, we can validate it 10962 if (wasInITBlock && hasV8Ops() && isThumb() && 10963 !isV8EligibleForIT(&Inst)) { 10964 Warning(IDLoc, "deprecated instruction in IT block"); 10965 } 10966 } 10967 10968 // Only move forward at the very end so that everything in validate 10969 // and process gets a consistent answer about whether we're in an IT 10970 // block. 10971 forwardITPosition(); 10972 forwardVPTPosition(); 10973 10974 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 10975 // doesn't actually encode. 10976 if (Inst.getOpcode() == ARM::ITasm) 10977 return false; 10978 10979 Inst.setLoc(IDLoc); 10980 if (PendConditionalInstruction) { 10981 PendingConditionalInsts.push_back(Inst); 10982 if (isITBlockFull() || isITBlockTerminator(Inst)) 10983 flushPendingInstructions(Out); 10984 } else { 10985 Out.emitInstruction(Inst, getSTI()); 10986 } 10987 return false; 10988 case Match_NearMisses: 10989 ReportNearMisses(NearMisses, IDLoc, Operands); 10990 return true; 10991 case Match_MnemonicFail: { 10992 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 10993 std::string Suggestion = ARMMnemonicSpellCheck( 10994 ((ARMOperand &)*Operands[0]).getToken(), FBS); 10995 return Error(IDLoc, "invalid instruction" + Suggestion, 10996 ((ARMOperand &)*Operands[0]).getLocRange()); 10997 } 10998 } 10999 11000 llvm_unreachable("Implement any new match types added!"); 11001 } 11002 11003 /// parseDirective parses the arm specific directives 11004 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 11005 const MCContext::Environment Format = getContext().getObjectFileType(); 11006 bool IsMachO = Format == MCContext::IsMachO; 11007 bool IsCOFF = Format == MCContext::IsCOFF; 11008 11009 std::string IDVal = DirectiveID.getIdentifier().lower(); 11010 if (IDVal == ".word") 11011 parseLiteralValues(4, DirectiveID.getLoc()); 11012 else if (IDVal == ".short" || IDVal == ".hword") 11013 parseLiteralValues(2, DirectiveID.getLoc()); 11014 else if (IDVal == ".thumb") 11015 parseDirectiveThumb(DirectiveID.getLoc()); 11016 else if (IDVal == ".arm") 11017 parseDirectiveARM(DirectiveID.getLoc()); 11018 else if (IDVal == ".thumb_func") 11019 parseDirectiveThumbFunc(DirectiveID.getLoc()); 11020 else if (IDVal == ".code") 11021 parseDirectiveCode(DirectiveID.getLoc()); 11022 else if (IDVal == ".syntax") 11023 parseDirectiveSyntax(DirectiveID.getLoc()); 11024 else if (IDVal == ".unreq") 11025 parseDirectiveUnreq(DirectiveID.getLoc()); 11026 else if (IDVal == ".fnend") 11027 parseDirectiveFnEnd(DirectiveID.getLoc()); 11028 else if (IDVal == ".cantunwind") 11029 parseDirectiveCantUnwind(DirectiveID.getLoc()); 11030 else if (IDVal == ".personality") 11031 parseDirectivePersonality(DirectiveID.getLoc()); 11032 else if (IDVal == ".handlerdata") 11033 parseDirectiveHandlerData(DirectiveID.getLoc()); 11034 else if (IDVal == ".setfp") 11035 parseDirectiveSetFP(DirectiveID.getLoc()); 11036 else if (IDVal == ".pad") 11037 parseDirectivePad(DirectiveID.getLoc()); 11038 else if (IDVal == ".save") 11039 parseDirectiveRegSave(DirectiveID.getLoc(), false); 11040 else if (IDVal == ".vsave") 11041 parseDirectiveRegSave(DirectiveID.getLoc(), true); 11042 else if (IDVal == ".ltorg" || IDVal == ".pool") 11043 parseDirectiveLtorg(DirectiveID.getLoc()); 11044 else if (IDVal == ".even") 11045 parseDirectiveEven(DirectiveID.getLoc()); 11046 else if (IDVal == ".personalityindex") 11047 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 11048 else if (IDVal == ".unwind_raw") 11049 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 11050 else if (IDVal == ".movsp") 11051 parseDirectiveMovSP(DirectiveID.getLoc()); 11052 else if (IDVal == ".arch_extension") 11053 parseDirectiveArchExtension(DirectiveID.getLoc()); 11054 else if (IDVal == ".align") 11055 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 11056 else if (IDVal == ".thumb_set") 11057 parseDirectiveThumbSet(DirectiveID.getLoc()); 11058 else if (IDVal == ".inst") 11059 parseDirectiveInst(DirectiveID.getLoc()); 11060 else if (IDVal == ".inst.n") 11061 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 11062 else if (IDVal == ".inst.w") 11063 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 11064 else if (!IsMachO && !IsCOFF) { 11065 if (IDVal == ".arch") 11066 parseDirectiveArch(DirectiveID.getLoc()); 11067 else if (IDVal == ".cpu") 11068 parseDirectiveCPU(DirectiveID.getLoc()); 11069 else if (IDVal == ".eabi_attribute") 11070 parseDirectiveEabiAttr(DirectiveID.getLoc()); 11071 else if (IDVal == ".fpu") 11072 parseDirectiveFPU(DirectiveID.getLoc()); 11073 else if (IDVal == ".fnstart") 11074 parseDirectiveFnStart(DirectiveID.getLoc()); 11075 else if (IDVal == ".object_arch") 11076 parseDirectiveObjectArch(DirectiveID.getLoc()); 11077 else if (IDVal == ".tlsdescseq") 11078 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 11079 else 11080 return true; 11081 } else 11082 return true; 11083 return false; 11084 } 11085 11086 /// parseLiteralValues 11087 /// ::= .hword expression [, expression]* 11088 /// ::= .short expression [, expression]* 11089 /// ::= .word expression [, expression]* 11090 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 11091 auto parseOne = [&]() -> bool { 11092 const MCExpr *Value; 11093 if (getParser().parseExpression(Value)) 11094 return true; 11095 getParser().getStreamer().emitValue(Value, Size, L); 11096 return false; 11097 }; 11098 return (parseMany(parseOne)); 11099 } 11100 11101 /// parseDirectiveThumb 11102 /// ::= .thumb 11103 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 11104 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 11105 check(!hasThumb(), L, "target does not support Thumb mode")) 11106 return true; 11107 11108 if (!isThumb()) 11109 SwitchMode(); 11110 11111 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16); 11112 return false; 11113 } 11114 11115 /// parseDirectiveARM 11116 /// ::= .arm 11117 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 11118 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 11119 check(!hasARM(), L, "target does not support ARM mode")) 11120 return true; 11121 11122 if (isThumb()) 11123 SwitchMode(); 11124 getParser().getStreamer().emitAssemblerFlag(MCAF_Code32); 11125 return false; 11126 } 11127 11128 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) { 11129 // We need to flush the current implicit IT block on a label, because it is 11130 // not legal to branch into an IT block. 11131 flushPendingInstructions(getStreamer()); 11132 } 11133 11134 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 11135 if (NextSymbolIsThumb) { 11136 getParser().getStreamer().emitThumbFunc(Symbol); 11137 NextSymbolIsThumb = false; 11138 } 11139 } 11140 11141 /// parseDirectiveThumbFunc 11142 /// ::= .thumbfunc symbol_name 11143 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 11144 MCAsmParser &Parser = getParser(); 11145 const auto Format = getContext().getObjectFileType(); 11146 bool IsMachO = Format == MCContext::IsMachO; 11147 11148 // Darwin asm has (optionally) function name after .thumb_func direction 11149 // ELF doesn't 11150 11151 if (IsMachO) { 11152 if (Parser.getTok().is(AsmToken::Identifier) || 11153 Parser.getTok().is(AsmToken::String)) { 11154 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 11155 Parser.getTok().getIdentifier()); 11156 getParser().getStreamer().emitThumbFunc(Func); 11157 Parser.Lex(); 11158 if (parseToken(AsmToken::EndOfStatement, 11159 "unexpected token in '.thumb_func' directive")) 11160 return true; 11161 return false; 11162 } 11163 } 11164 11165 if (parseToken(AsmToken::EndOfStatement, 11166 "unexpected token in '.thumb_func' directive")) 11167 return true; 11168 11169 // .thumb_func implies .thumb 11170 if (!isThumb()) 11171 SwitchMode(); 11172 11173 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16); 11174 11175 NextSymbolIsThumb = true; 11176 return false; 11177 } 11178 11179 /// parseDirectiveSyntax 11180 /// ::= .syntax unified | divided 11181 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 11182 MCAsmParser &Parser = getParser(); 11183 const AsmToken &Tok = Parser.getTok(); 11184 if (Tok.isNot(AsmToken::Identifier)) { 11185 Error(L, "unexpected token in .syntax directive"); 11186 return false; 11187 } 11188 11189 StringRef Mode = Tok.getString(); 11190 Parser.Lex(); 11191 if (check(Mode == "divided" || Mode == "DIVIDED", L, 11192 "'.syntax divided' arm assembly not supported") || 11193 check(Mode != "unified" && Mode != "UNIFIED", L, 11194 "unrecognized syntax mode in .syntax directive") || 11195 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11196 return true; 11197 11198 // TODO tell the MC streamer the mode 11199 // getParser().getStreamer().Emit???(); 11200 return false; 11201 } 11202 11203 /// parseDirectiveCode 11204 /// ::= .code 16 | 32 11205 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 11206 MCAsmParser &Parser = getParser(); 11207 const AsmToken &Tok = Parser.getTok(); 11208 if (Tok.isNot(AsmToken::Integer)) 11209 return Error(L, "unexpected token in .code directive"); 11210 int64_t Val = Parser.getTok().getIntVal(); 11211 if (Val != 16 && Val != 32) { 11212 Error(L, "invalid operand to .code directive"); 11213 return false; 11214 } 11215 Parser.Lex(); 11216 11217 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11218 return true; 11219 11220 if (Val == 16) { 11221 if (!hasThumb()) 11222 return Error(L, "target does not support Thumb mode"); 11223 11224 if (!isThumb()) 11225 SwitchMode(); 11226 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16); 11227 } else { 11228 if (!hasARM()) 11229 return Error(L, "target does not support ARM mode"); 11230 11231 if (isThumb()) 11232 SwitchMode(); 11233 getParser().getStreamer().emitAssemblerFlag(MCAF_Code32); 11234 } 11235 11236 return false; 11237 } 11238 11239 /// parseDirectiveReq 11240 /// ::= name .req registername 11241 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 11242 MCAsmParser &Parser = getParser(); 11243 Parser.Lex(); // Eat the '.req' token. 11244 unsigned Reg; 11245 SMLoc SRegLoc, ERegLoc; 11246 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 11247 "register name expected") || 11248 parseToken(AsmToken::EndOfStatement, 11249 "unexpected input in .req directive.")) 11250 return true; 11251 11252 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 11253 return Error(SRegLoc, 11254 "redefinition of '" + Name + "' does not match original."); 11255 11256 return false; 11257 } 11258 11259 /// parseDirectiveUneq 11260 /// ::= .unreq registername 11261 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 11262 MCAsmParser &Parser = getParser(); 11263 if (Parser.getTok().isNot(AsmToken::Identifier)) 11264 return Error(L, "unexpected input in .unreq directive."); 11265 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 11266 Parser.Lex(); // Eat the identifier. 11267 if (parseToken(AsmToken::EndOfStatement, 11268 "unexpected input in '.unreq' directive")) 11269 return true; 11270 return false; 11271 } 11272 11273 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 11274 // before, if supported by the new target, or emit mapping symbols for the mode 11275 // switch. 11276 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 11277 if (WasThumb != isThumb()) { 11278 if (WasThumb && hasThumb()) { 11279 // Stay in Thumb mode 11280 SwitchMode(); 11281 } else if (!WasThumb && hasARM()) { 11282 // Stay in ARM mode 11283 SwitchMode(); 11284 } else { 11285 // Mode switch forced, because the new arch doesn't support the old mode. 11286 getParser().getStreamer().emitAssemblerFlag(isThumb() ? MCAF_Code16 11287 : MCAF_Code32); 11288 // Warn about the implcit mode switch. GAS does not switch modes here, 11289 // but instead stays in the old mode, reporting an error on any following 11290 // instructions as the mode does not exist on the target. 11291 Warning(Loc, Twine("new target does not support ") + 11292 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 11293 (!WasThumb ? "thumb" : "arm") + " mode"); 11294 } 11295 } 11296 } 11297 11298 /// parseDirectiveArch 11299 /// ::= .arch token 11300 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 11301 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 11302 ARM::ArchKind ID = ARM::parseArch(Arch); 11303 11304 if (ID == ARM::ArchKind::INVALID) 11305 return Error(L, "Unknown arch name"); 11306 11307 bool WasThumb = isThumb(); 11308 Triple T; 11309 MCSubtargetInfo &STI = copySTI(); 11310 STI.setDefaultFeatures("", /*TuneCPU*/ "", 11311 ("+" + ARM::getArchName(ID)).str()); 11312 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 11313 FixModeAfterArchChange(WasThumb, L); 11314 11315 getTargetStreamer().emitArch(ID); 11316 return false; 11317 } 11318 11319 /// parseDirectiveEabiAttr 11320 /// ::= .eabi_attribute int, int [, "str"] 11321 /// ::= .eabi_attribute Tag_name, int [, "str"] 11322 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 11323 MCAsmParser &Parser = getParser(); 11324 int64_t Tag; 11325 SMLoc TagLoc; 11326 TagLoc = Parser.getTok().getLoc(); 11327 if (Parser.getTok().is(AsmToken::Identifier)) { 11328 StringRef Name = Parser.getTok().getIdentifier(); 11329 Optional<unsigned> Ret = ELFAttrs::attrTypeFromString( 11330 Name, ARMBuildAttrs::getARMAttributeTags()); 11331 if (!Ret.hasValue()) { 11332 Error(TagLoc, "attribute name not recognised: " + Name); 11333 return false; 11334 } 11335 Tag = Ret.getValue(); 11336 Parser.Lex(); 11337 } else { 11338 const MCExpr *AttrExpr; 11339 11340 TagLoc = Parser.getTok().getLoc(); 11341 if (Parser.parseExpression(AttrExpr)) 11342 return true; 11343 11344 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 11345 if (check(!CE, TagLoc, "expected numeric constant")) 11346 return true; 11347 11348 Tag = CE->getValue(); 11349 } 11350 11351 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 11352 return true; 11353 11354 StringRef StringValue = ""; 11355 bool IsStringValue = false; 11356 11357 int64_t IntegerValue = 0; 11358 bool IsIntegerValue = false; 11359 11360 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 11361 IsStringValue = true; 11362 else if (Tag == ARMBuildAttrs::compatibility) { 11363 IsStringValue = true; 11364 IsIntegerValue = true; 11365 } else if (Tag < 32 || Tag % 2 == 0) 11366 IsIntegerValue = true; 11367 else if (Tag % 2 == 1) 11368 IsStringValue = true; 11369 else 11370 llvm_unreachable("invalid tag type"); 11371 11372 if (IsIntegerValue) { 11373 const MCExpr *ValueExpr; 11374 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 11375 if (Parser.parseExpression(ValueExpr)) 11376 return true; 11377 11378 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 11379 if (!CE) 11380 return Error(ValueExprLoc, "expected numeric constant"); 11381 IntegerValue = CE->getValue(); 11382 } 11383 11384 if (Tag == ARMBuildAttrs::compatibility) { 11385 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 11386 return true; 11387 } 11388 11389 if (IsStringValue) { 11390 if (Parser.getTok().isNot(AsmToken::String)) 11391 return Error(Parser.getTok().getLoc(), "bad string constant"); 11392 11393 StringValue = Parser.getTok().getStringContents(); 11394 Parser.Lex(); 11395 } 11396 11397 if (Parser.parseToken(AsmToken::EndOfStatement, 11398 "unexpected token in '.eabi_attribute' directive")) 11399 return true; 11400 11401 if (IsIntegerValue && IsStringValue) { 11402 assert(Tag == ARMBuildAttrs::compatibility); 11403 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 11404 } else if (IsIntegerValue) 11405 getTargetStreamer().emitAttribute(Tag, IntegerValue); 11406 else if (IsStringValue) 11407 getTargetStreamer().emitTextAttribute(Tag, StringValue); 11408 return false; 11409 } 11410 11411 /// parseDirectiveCPU 11412 /// ::= .cpu str 11413 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 11414 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 11415 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 11416 11417 // FIXME: This is using table-gen data, but should be moved to 11418 // ARMTargetParser once that is table-gen'd. 11419 if (!getSTI().isCPUStringValid(CPU)) 11420 return Error(L, "Unknown CPU name"); 11421 11422 bool WasThumb = isThumb(); 11423 MCSubtargetInfo &STI = copySTI(); 11424 STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, ""); 11425 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 11426 FixModeAfterArchChange(WasThumb, L); 11427 11428 return false; 11429 } 11430 11431 /// parseDirectiveFPU 11432 /// ::= .fpu str 11433 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 11434 SMLoc FPUNameLoc = getTok().getLoc(); 11435 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 11436 11437 unsigned ID = ARM::parseFPU(FPU); 11438 std::vector<StringRef> Features; 11439 if (!ARM::getFPUFeatures(ID, Features)) 11440 return Error(FPUNameLoc, "Unknown FPU name"); 11441 11442 MCSubtargetInfo &STI = copySTI(); 11443 for (auto Feature : Features) 11444 STI.ApplyFeatureFlag(Feature); 11445 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 11446 11447 getTargetStreamer().emitFPU(ID); 11448 return false; 11449 } 11450 11451 /// parseDirectiveFnStart 11452 /// ::= .fnstart 11453 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 11454 if (parseToken(AsmToken::EndOfStatement, 11455 "unexpected token in '.fnstart' directive")) 11456 return true; 11457 11458 if (UC.hasFnStart()) { 11459 Error(L, ".fnstart starts before the end of previous one"); 11460 UC.emitFnStartLocNotes(); 11461 return true; 11462 } 11463 11464 // Reset the unwind directives parser state 11465 UC.reset(); 11466 11467 getTargetStreamer().emitFnStart(); 11468 11469 UC.recordFnStart(L); 11470 return false; 11471 } 11472 11473 /// parseDirectiveFnEnd 11474 /// ::= .fnend 11475 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 11476 if (parseToken(AsmToken::EndOfStatement, 11477 "unexpected token in '.fnend' directive")) 11478 return true; 11479 // Check the ordering of unwind directives 11480 if (!UC.hasFnStart()) 11481 return Error(L, ".fnstart must precede .fnend directive"); 11482 11483 // Reset the unwind directives parser state 11484 getTargetStreamer().emitFnEnd(); 11485 11486 UC.reset(); 11487 return false; 11488 } 11489 11490 /// parseDirectiveCantUnwind 11491 /// ::= .cantunwind 11492 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 11493 if (parseToken(AsmToken::EndOfStatement, 11494 "unexpected token in '.cantunwind' directive")) 11495 return true; 11496 11497 UC.recordCantUnwind(L); 11498 // Check the ordering of unwind directives 11499 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 11500 return true; 11501 11502 if (UC.hasHandlerData()) { 11503 Error(L, ".cantunwind can't be used with .handlerdata directive"); 11504 UC.emitHandlerDataLocNotes(); 11505 return true; 11506 } 11507 if (UC.hasPersonality()) { 11508 Error(L, ".cantunwind can't be used with .personality directive"); 11509 UC.emitPersonalityLocNotes(); 11510 return true; 11511 } 11512 11513 getTargetStreamer().emitCantUnwind(); 11514 return false; 11515 } 11516 11517 /// parseDirectivePersonality 11518 /// ::= .personality name 11519 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 11520 MCAsmParser &Parser = getParser(); 11521 bool HasExistingPersonality = UC.hasPersonality(); 11522 11523 // Parse the name of the personality routine 11524 if (Parser.getTok().isNot(AsmToken::Identifier)) 11525 return Error(L, "unexpected input in .personality directive."); 11526 StringRef Name(Parser.getTok().getIdentifier()); 11527 Parser.Lex(); 11528 11529 if (parseToken(AsmToken::EndOfStatement, 11530 "unexpected token in '.personality' directive")) 11531 return true; 11532 11533 UC.recordPersonality(L); 11534 11535 // Check the ordering of unwind directives 11536 if (!UC.hasFnStart()) 11537 return Error(L, ".fnstart must precede .personality directive"); 11538 if (UC.cantUnwind()) { 11539 Error(L, ".personality can't be used with .cantunwind directive"); 11540 UC.emitCantUnwindLocNotes(); 11541 return true; 11542 } 11543 if (UC.hasHandlerData()) { 11544 Error(L, ".personality must precede .handlerdata directive"); 11545 UC.emitHandlerDataLocNotes(); 11546 return true; 11547 } 11548 if (HasExistingPersonality) { 11549 Error(L, "multiple personality directives"); 11550 UC.emitPersonalityLocNotes(); 11551 return true; 11552 } 11553 11554 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 11555 getTargetStreamer().emitPersonality(PR); 11556 return false; 11557 } 11558 11559 /// parseDirectiveHandlerData 11560 /// ::= .handlerdata 11561 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 11562 if (parseToken(AsmToken::EndOfStatement, 11563 "unexpected token in '.handlerdata' directive")) 11564 return true; 11565 11566 UC.recordHandlerData(L); 11567 // Check the ordering of unwind directives 11568 if (!UC.hasFnStart()) 11569 return Error(L, ".fnstart must precede .personality directive"); 11570 if (UC.cantUnwind()) { 11571 Error(L, ".handlerdata can't be used with .cantunwind directive"); 11572 UC.emitCantUnwindLocNotes(); 11573 return true; 11574 } 11575 11576 getTargetStreamer().emitHandlerData(); 11577 return false; 11578 } 11579 11580 /// parseDirectiveSetFP 11581 /// ::= .setfp fpreg, spreg [, offset] 11582 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 11583 MCAsmParser &Parser = getParser(); 11584 // Check the ordering of unwind directives 11585 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 11586 check(UC.hasHandlerData(), L, 11587 ".setfp must precede .handlerdata directive")) 11588 return true; 11589 11590 // Parse fpreg 11591 SMLoc FPRegLoc = Parser.getTok().getLoc(); 11592 int FPReg = tryParseRegister(); 11593 11594 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 11595 Parser.parseToken(AsmToken::Comma, "comma expected")) 11596 return true; 11597 11598 // Parse spreg 11599 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11600 int SPReg = tryParseRegister(); 11601 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 11602 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 11603 "register should be either $sp or the latest fp register")) 11604 return true; 11605 11606 // Update the frame pointer register 11607 UC.saveFPReg(FPReg); 11608 11609 // Parse offset 11610 int64_t Offset = 0; 11611 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11612 if (Parser.getTok().isNot(AsmToken::Hash) && 11613 Parser.getTok().isNot(AsmToken::Dollar)) 11614 return Error(Parser.getTok().getLoc(), "'#' expected"); 11615 Parser.Lex(); // skip hash token. 11616 11617 const MCExpr *OffsetExpr; 11618 SMLoc ExLoc = Parser.getTok().getLoc(); 11619 SMLoc EndLoc; 11620 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11621 return Error(ExLoc, "malformed setfp offset"); 11622 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11623 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 11624 return true; 11625 Offset = CE->getValue(); 11626 } 11627 11628 if (Parser.parseToken(AsmToken::EndOfStatement)) 11629 return true; 11630 11631 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 11632 static_cast<unsigned>(SPReg), Offset); 11633 return false; 11634 } 11635 11636 /// parseDirective 11637 /// ::= .pad offset 11638 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 11639 MCAsmParser &Parser = getParser(); 11640 // Check the ordering of unwind directives 11641 if (!UC.hasFnStart()) 11642 return Error(L, ".fnstart must precede .pad directive"); 11643 if (UC.hasHandlerData()) 11644 return Error(L, ".pad must precede .handlerdata directive"); 11645 11646 // Parse the offset 11647 if (Parser.getTok().isNot(AsmToken::Hash) && 11648 Parser.getTok().isNot(AsmToken::Dollar)) 11649 return Error(Parser.getTok().getLoc(), "'#' expected"); 11650 Parser.Lex(); // skip hash token. 11651 11652 const MCExpr *OffsetExpr; 11653 SMLoc ExLoc = Parser.getTok().getLoc(); 11654 SMLoc EndLoc; 11655 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11656 return Error(ExLoc, "malformed pad offset"); 11657 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11658 if (!CE) 11659 return Error(ExLoc, "pad offset must be an immediate"); 11660 11661 if (parseToken(AsmToken::EndOfStatement, 11662 "unexpected token in '.pad' directive")) 11663 return true; 11664 11665 getTargetStreamer().emitPad(CE->getValue()); 11666 return false; 11667 } 11668 11669 /// parseDirectiveRegSave 11670 /// ::= .save { registers } 11671 /// ::= .vsave { registers } 11672 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 11673 // Check the ordering of unwind directives 11674 if (!UC.hasFnStart()) 11675 return Error(L, ".fnstart must precede .save or .vsave directives"); 11676 if (UC.hasHandlerData()) 11677 return Error(L, ".save or .vsave must precede .handlerdata directive"); 11678 11679 // RAII object to make sure parsed operands are deleted. 11680 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 11681 11682 // Parse the register list 11683 if (parseRegisterList(Operands) || 11684 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11685 return true; 11686 ARMOperand &Op = (ARMOperand &)*Operands[0]; 11687 if (!IsVector && !Op.isRegList()) 11688 return Error(L, ".save expects GPR registers"); 11689 if (IsVector && !Op.isDPRRegList()) 11690 return Error(L, ".vsave expects DPR registers"); 11691 11692 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 11693 return false; 11694 } 11695 11696 /// parseDirectiveInst 11697 /// ::= .inst opcode [, ...] 11698 /// ::= .inst.n opcode [, ...] 11699 /// ::= .inst.w opcode [, ...] 11700 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 11701 int Width = 4; 11702 11703 if (isThumb()) { 11704 switch (Suffix) { 11705 case 'n': 11706 Width = 2; 11707 break; 11708 case 'w': 11709 break; 11710 default: 11711 Width = 0; 11712 break; 11713 } 11714 } else { 11715 if (Suffix) 11716 return Error(Loc, "width suffixes are invalid in ARM mode"); 11717 } 11718 11719 auto parseOne = [&]() -> bool { 11720 const MCExpr *Expr; 11721 if (getParser().parseExpression(Expr)) 11722 return true; 11723 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 11724 if (!Value) { 11725 return Error(Loc, "expected constant expression"); 11726 } 11727 11728 char CurSuffix = Suffix; 11729 switch (Width) { 11730 case 2: 11731 if (Value->getValue() > 0xffff) 11732 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 11733 break; 11734 case 4: 11735 if (Value->getValue() > 0xffffffff) 11736 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 11737 " operand is too big"); 11738 break; 11739 case 0: 11740 // Thumb mode, no width indicated. Guess from the opcode, if possible. 11741 if (Value->getValue() < 0xe800) 11742 CurSuffix = 'n'; 11743 else if (Value->getValue() >= 0xe8000000) 11744 CurSuffix = 'w'; 11745 else 11746 return Error(Loc, "cannot determine Thumb instruction size, " 11747 "use inst.n/inst.w instead"); 11748 break; 11749 default: 11750 llvm_unreachable("only supported widths are 2 and 4"); 11751 } 11752 11753 getTargetStreamer().emitInst(Value->getValue(), CurSuffix); 11754 return false; 11755 }; 11756 11757 if (parseOptionalToken(AsmToken::EndOfStatement)) 11758 return Error(Loc, "expected expression following directive"); 11759 if (parseMany(parseOne)) 11760 return true; 11761 return false; 11762 } 11763 11764 /// parseDirectiveLtorg 11765 /// ::= .ltorg | .pool 11766 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 11767 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11768 return true; 11769 getTargetStreamer().emitCurrentConstantPool(); 11770 return false; 11771 } 11772 11773 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 11774 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11775 11776 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11777 return true; 11778 11779 if (!Section) { 11780 getStreamer().InitSections(false); 11781 Section = getStreamer().getCurrentSectionOnly(); 11782 } 11783 11784 assert(Section && "must have section to emit alignment"); 11785 if (Section->UseCodeAlign()) 11786 getStreamer().emitCodeAlignment(2); 11787 else 11788 getStreamer().emitValueToAlignment(2); 11789 11790 return false; 11791 } 11792 11793 /// parseDirectivePersonalityIndex 11794 /// ::= .personalityindex index 11795 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 11796 MCAsmParser &Parser = getParser(); 11797 bool HasExistingPersonality = UC.hasPersonality(); 11798 11799 const MCExpr *IndexExpression; 11800 SMLoc IndexLoc = Parser.getTok().getLoc(); 11801 if (Parser.parseExpression(IndexExpression) || 11802 parseToken(AsmToken::EndOfStatement, 11803 "unexpected token in '.personalityindex' directive")) { 11804 return true; 11805 } 11806 11807 UC.recordPersonalityIndex(L); 11808 11809 if (!UC.hasFnStart()) { 11810 return Error(L, ".fnstart must precede .personalityindex directive"); 11811 } 11812 if (UC.cantUnwind()) { 11813 Error(L, ".personalityindex cannot be used with .cantunwind"); 11814 UC.emitCantUnwindLocNotes(); 11815 return true; 11816 } 11817 if (UC.hasHandlerData()) { 11818 Error(L, ".personalityindex must precede .handlerdata directive"); 11819 UC.emitHandlerDataLocNotes(); 11820 return true; 11821 } 11822 if (HasExistingPersonality) { 11823 Error(L, "multiple personality directives"); 11824 UC.emitPersonalityLocNotes(); 11825 return true; 11826 } 11827 11828 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 11829 if (!CE) 11830 return Error(IndexLoc, "index must be a constant number"); 11831 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 11832 return Error(IndexLoc, 11833 "personality routine index should be in range [0-3]"); 11834 11835 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 11836 return false; 11837 } 11838 11839 /// parseDirectiveUnwindRaw 11840 /// ::= .unwind_raw offset, opcode [, opcode...] 11841 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 11842 MCAsmParser &Parser = getParser(); 11843 int64_t StackOffset; 11844 const MCExpr *OffsetExpr; 11845 SMLoc OffsetLoc = getLexer().getLoc(); 11846 11847 if (!UC.hasFnStart()) 11848 return Error(L, ".fnstart must precede .unwind_raw directives"); 11849 if (getParser().parseExpression(OffsetExpr)) 11850 return Error(OffsetLoc, "expected expression"); 11851 11852 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11853 if (!CE) 11854 return Error(OffsetLoc, "offset must be a constant"); 11855 11856 StackOffset = CE->getValue(); 11857 11858 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 11859 return true; 11860 11861 SmallVector<uint8_t, 16> Opcodes; 11862 11863 auto parseOne = [&]() -> bool { 11864 const MCExpr *OE = nullptr; 11865 SMLoc OpcodeLoc = getLexer().getLoc(); 11866 if (check(getLexer().is(AsmToken::EndOfStatement) || 11867 Parser.parseExpression(OE), 11868 OpcodeLoc, "expected opcode expression")) 11869 return true; 11870 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 11871 if (!OC) 11872 return Error(OpcodeLoc, "opcode value must be a constant"); 11873 const int64_t Opcode = OC->getValue(); 11874 if (Opcode & ~0xff) 11875 return Error(OpcodeLoc, "invalid opcode"); 11876 Opcodes.push_back(uint8_t(Opcode)); 11877 return false; 11878 }; 11879 11880 // Must have at least 1 element 11881 SMLoc OpcodeLoc = getLexer().getLoc(); 11882 if (parseOptionalToken(AsmToken::EndOfStatement)) 11883 return Error(OpcodeLoc, "expected opcode expression"); 11884 if (parseMany(parseOne)) 11885 return true; 11886 11887 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 11888 return false; 11889 } 11890 11891 /// parseDirectiveTLSDescSeq 11892 /// ::= .tlsdescseq tls-variable 11893 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 11894 MCAsmParser &Parser = getParser(); 11895 11896 if (getLexer().isNot(AsmToken::Identifier)) 11897 return TokError("expected variable after '.tlsdescseq' directive"); 11898 11899 const MCSymbolRefExpr *SRE = 11900 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 11901 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 11902 Lex(); 11903 11904 if (parseToken(AsmToken::EndOfStatement, 11905 "unexpected token in '.tlsdescseq' directive")) 11906 return true; 11907 11908 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 11909 return false; 11910 } 11911 11912 /// parseDirectiveMovSP 11913 /// ::= .movsp reg [, #offset] 11914 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 11915 MCAsmParser &Parser = getParser(); 11916 if (!UC.hasFnStart()) 11917 return Error(L, ".fnstart must precede .movsp directives"); 11918 if (UC.getFPReg() != ARM::SP) 11919 return Error(L, "unexpected .movsp directive"); 11920 11921 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11922 int SPReg = tryParseRegister(); 11923 if (SPReg == -1) 11924 return Error(SPRegLoc, "register expected"); 11925 if (SPReg == ARM::SP || SPReg == ARM::PC) 11926 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 11927 11928 int64_t Offset = 0; 11929 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11930 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 11931 return true; 11932 11933 const MCExpr *OffsetExpr; 11934 SMLoc OffsetLoc = Parser.getTok().getLoc(); 11935 11936 if (Parser.parseExpression(OffsetExpr)) 11937 return Error(OffsetLoc, "malformed offset expression"); 11938 11939 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11940 if (!CE) 11941 return Error(OffsetLoc, "offset must be an immediate constant"); 11942 11943 Offset = CE->getValue(); 11944 } 11945 11946 if (parseToken(AsmToken::EndOfStatement, 11947 "unexpected token in '.movsp' directive")) 11948 return true; 11949 11950 getTargetStreamer().emitMovSP(SPReg, Offset); 11951 UC.saveFPReg(SPReg); 11952 11953 return false; 11954 } 11955 11956 /// parseDirectiveObjectArch 11957 /// ::= .object_arch name 11958 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 11959 MCAsmParser &Parser = getParser(); 11960 if (getLexer().isNot(AsmToken::Identifier)) 11961 return Error(getLexer().getLoc(), "unexpected token"); 11962 11963 StringRef Arch = Parser.getTok().getString(); 11964 SMLoc ArchLoc = Parser.getTok().getLoc(); 11965 Lex(); 11966 11967 ARM::ArchKind ID = ARM::parseArch(Arch); 11968 11969 if (ID == ARM::ArchKind::INVALID) 11970 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 11971 if (parseToken(AsmToken::EndOfStatement)) 11972 return true; 11973 11974 getTargetStreamer().emitObjectArch(ID); 11975 return false; 11976 } 11977 11978 /// parseDirectiveAlign 11979 /// ::= .align 11980 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 11981 // NOTE: if this is not the end of the statement, fall back to the target 11982 // agnostic handling for this directive which will correctly handle this. 11983 if (parseOptionalToken(AsmToken::EndOfStatement)) { 11984 // '.align' is target specifically handled to mean 2**2 byte alignment. 11985 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11986 assert(Section && "must have section to emit alignment"); 11987 if (Section->UseCodeAlign()) 11988 getStreamer().emitCodeAlignment(4, 0); 11989 else 11990 getStreamer().emitValueToAlignment(4, 0, 1, 0); 11991 return false; 11992 } 11993 return true; 11994 } 11995 11996 /// parseDirectiveThumbSet 11997 /// ::= .thumb_set name, value 11998 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 11999 MCAsmParser &Parser = getParser(); 12000 12001 StringRef Name; 12002 if (check(Parser.parseIdentifier(Name), 12003 "expected identifier after '.thumb_set'") || 12004 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 12005 return true; 12006 12007 MCSymbol *Sym; 12008 const MCExpr *Value; 12009 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 12010 Parser, Sym, Value)) 12011 return true; 12012 12013 getTargetStreamer().emitThumbSet(Sym, Value); 12014 return false; 12015 } 12016 12017 /// Force static initialization. 12018 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmParser() { 12019 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 12020 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 12021 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 12022 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 12023 } 12024 12025 #define GET_REGISTER_MATCHER 12026 #define GET_SUBTARGET_FEATURE_NAME 12027 #define GET_MATCHER_IMPLEMENTATION 12028 #define GET_MNEMONIC_SPELL_CHECKER 12029 #include "ARMGenAsmMatcher.inc" 12030 12031 // Some diagnostics need to vary with subtarget features, so they are handled 12032 // here. For example, the DPR class has either 16 or 32 registers, depending 12033 // on the FPU available. 12034 const char * 12035 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { 12036 switch (MatchError) { 12037 // rGPR contains sp starting with ARMv8. 12038 case Match_rGPR: 12039 return hasV8Ops() ? "operand must be a register in range [r0, r14]" 12040 : "operand must be a register in range [r0, r12] or r14"; 12041 // DPR contains 16 registers for some FPUs, and 32 for others. 12042 case Match_DPR: 12043 return hasD32() ? "operand must be a register in range [d0, d31]" 12044 : "operand must be a register in range [d0, d15]"; 12045 case Match_DPR_RegList: 12046 return hasD32() ? "operand must be a list of registers in range [d0, d31]" 12047 : "operand must be a list of registers in range [d0, d15]"; 12048 12049 // For all other diags, use the static string from tablegen. 12050 default: 12051 return getMatchKindDiag(MatchError); 12052 } 12053 } 12054 12055 // Process the list of near-misses, throwing away ones we don't want to report 12056 // to the user, and converting the rest to a source location and string that 12057 // should be reported. 12058 void 12059 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 12060 SmallVectorImpl<NearMissMessage> &NearMissesOut, 12061 SMLoc IDLoc, OperandVector &Operands) { 12062 // TODO: If operand didn't match, sub in a dummy one and run target 12063 // predicate, so that we can avoid reporting near-misses that are invalid? 12064 // TODO: Many operand types dont have SuperClasses set, so we report 12065 // redundant ones. 12066 // TODO: Some operands are superclasses of registers (e.g. 12067 // MCK_RegShiftedImm), we don't have any way to represent that currently. 12068 // TODO: This is not all ARM-specific, can some of it be factored out? 12069 12070 // Record some information about near-misses that we have already seen, so 12071 // that we can avoid reporting redundant ones. For example, if there are 12072 // variants of an instruction that take 8- and 16-bit immediates, we want 12073 // to only report the widest one. 12074 std::multimap<unsigned, unsigned> OperandMissesSeen; 12075 SmallSet<FeatureBitset, 4> FeatureMissesSeen; 12076 bool ReportedTooFewOperands = false; 12077 12078 // Process the near-misses in reverse order, so that we see more general ones 12079 // first, and so can avoid emitting more specific ones. 12080 for (NearMissInfo &I : reverse(NearMissesIn)) { 12081 switch (I.getKind()) { 12082 case NearMissInfo::NearMissOperand: { 12083 SMLoc OperandLoc = 12084 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); 12085 const char *OperandDiag = 12086 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); 12087 12088 // If we have already emitted a message for a superclass, don't also report 12089 // the sub-class. We consider all operand classes that we don't have a 12090 // specialised diagnostic for to be equal for the propose of this check, 12091 // so that we don't report the generic error multiple times on the same 12092 // operand. 12093 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; 12094 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); 12095 if (std::any_of(PrevReports.first, PrevReports.second, 12096 [DupCheckMatchClass]( 12097 const std::pair<unsigned, unsigned> Pair) { 12098 if (DupCheckMatchClass == ~0U || Pair.second == ~0U) 12099 return Pair.second == DupCheckMatchClass; 12100 else 12101 return isSubclass((MatchClassKind)DupCheckMatchClass, 12102 (MatchClassKind)Pair.second); 12103 })) 12104 break; 12105 OperandMissesSeen.insert( 12106 std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); 12107 12108 NearMissMessage Message; 12109 Message.Loc = OperandLoc; 12110 if (OperandDiag) { 12111 Message.Message = OperandDiag; 12112 } else if (I.getOperandClass() == InvalidMatchClass) { 12113 Message.Message = "too many operands for instruction"; 12114 } else { 12115 Message.Message = "invalid operand for instruction"; 12116 LLVM_DEBUG( 12117 dbgs() << "Missing diagnostic string for operand class " 12118 << getMatchClassName((MatchClassKind)I.getOperandClass()) 12119 << I.getOperandClass() << ", error " << I.getOperandError() 12120 << ", opcode " << MII.getName(I.getOpcode()) << "\n"); 12121 } 12122 NearMissesOut.emplace_back(Message); 12123 break; 12124 } 12125 case NearMissInfo::NearMissFeature: { 12126 const FeatureBitset &MissingFeatures = I.getFeatures(); 12127 // Don't report the same set of features twice. 12128 if (FeatureMissesSeen.count(MissingFeatures)) 12129 break; 12130 FeatureMissesSeen.insert(MissingFeatures); 12131 12132 // Special case: don't report a feature set which includes arm-mode for 12133 // targets that don't have ARM mode. 12134 if (MissingFeatures.test(Feature_IsARMBit) && !hasARM()) 12135 break; 12136 // Don't report any near-misses that both require switching instruction 12137 // set, and adding other subtarget features. 12138 if (isThumb() && MissingFeatures.test(Feature_IsARMBit) && 12139 MissingFeatures.count() > 1) 12140 break; 12141 if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) && 12142 MissingFeatures.count() > 1) 12143 break; 12144 if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) && 12145 (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit, 12146 Feature_IsThumbBit})).any()) 12147 break; 12148 if (isMClass() && MissingFeatures.test(Feature_HasNEONBit)) 12149 break; 12150 12151 NearMissMessage Message; 12152 Message.Loc = IDLoc; 12153 raw_svector_ostream OS(Message.Message); 12154 12155 OS << "instruction requires:"; 12156 for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) 12157 if (MissingFeatures.test(i)) 12158 OS << ' ' << getSubtargetFeatureName(i); 12159 12160 NearMissesOut.emplace_back(Message); 12161 12162 break; 12163 } 12164 case NearMissInfo::NearMissPredicate: { 12165 NearMissMessage Message; 12166 Message.Loc = IDLoc; 12167 switch (I.getPredicateError()) { 12168 case Match_RequiresNotITBlock: 12169 Message.Message = "flag setting instruction only valid outside IT block"; 12170 break; 12171 case Match_RequiresITBlock: 12172 Message.Message = "instruction only valid inside IT block"; 12173 break; 12174 case Match_RequiresV6: 12175 Message.Message = "instruction variant requires ARMv6 or later"; 12176 break; 12177 case Match_RequiresThumb2: 12178 Message.Message = "instruction variant requires Thumb2"; 12179 break; 12180 case Match_RequiresV8: 12181 Message.Message = "instruction variant requires ARMv8 or later"; 12182 break; 12183 case Match_RequiresFlagSetting: 12184 Message.Message = "no flag-preserving variant of this instruction available"; 12185 break; 12186 case Match_InvalidOperand: 12187 Message.Message = "invalid operand for instruction"; 12188 break; 12189 default: 12190 llvm_unreachable("Unhandled target predicate error"); 12191 break; 12192 } 12193 NearMissesOut.emplace_back(Message); 12194 break; 12195 } 12196 case NearMissInfo::NearMissTooFewOperands: { 12197 if (!ReportedTooFewOperands) { 12198 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); 12199 NearMissesOut.emplace_back(NearMissMessage{ 12200 EndLoc, StringRef("too few operands for instruction")}); 12201 ReportedTooFewOperands = true; 12202 } 12203 break; 12204 } 12205 case NearMissInfo::NoNearMiss: 12206 // This should never leave the matcher. 12207 llvm_unreachable("not a near-miss"); 12208 break; 12209 } 12210 } 12211 } 12212 12213 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, 12214 SMLoc IDLoc, OperandVector &Operands) { 12215 SmallVector<NearMissMessage, 4> Messages; 12216 FilterNearMisses(NearMisses, Messages, IDLoc, Operands); 12217 12218 if (Messages.size() == 0) { 12219 // No near-misses were found, so the best we can do is "invalid 12220 // instruction". 12221 Error(IDLoc, "invalid instruction"); 12222 } else if (Messages.size() == 1) { 12223 // One near miss was found, report it as the sole error. 12224 Error(Messages[0].Loc, Messages[0].Message); 12225 } else { 12226 // More than one near miss, so report a generic "invalid instruction" 12227 // error, followed by notes for each of the near-misses. 12228 Error(IDLoc, "invalid instruction, any one of the following would fix this:"); 12229 for (auto &M : Messages) { 12230 Note(M.Loc, M.Message); 12231 } 12232 } 12233 } 12234 12235 bool ARMAsmParser::enableArchExtFeature(StringRef Name, SMLoc &ExtLoc) { 12236 // FIXME: This structure should be moved inside ARMTargetParser 12237 // when we start to table-generate them, and we can use the ARM 12238 // flags below, that were generated by table-gen. 12239 static const struct { 12240 const uint64_t Kind; 12241 const FeatureBitset ArchCheck; 12242 const FeatureBitset Features; 12243 } Extensions[] = { 12244 {ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC}}, 12245 {ARM::AEK_AES, 12246 {Feature_HasV8Bit}, 12247 {ARM::FeatureAES, ARM::FeatureNEON, ARM::FeatureFPARMv8}}, 12248 {ARM::AEK_SHA2, 12249 {Feature_HasV8Bit}, 12250 {ARM::FeatureSHA2, ARM::FeatureNEON, ARM::FeatureFPARMv8}}, 12251 {ARM::AEK_CRYPTO, 12252 {Feature_HasV8Bit}, 12253 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8}}, 12254 {ARM::AEK_FP, 12255 {Feature_HasV8Bit}, 12256 {ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8}}, 12257 {(ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), 12258 {Feature_HasV7Bit, Feature_IsNotMClassBit}, 12259 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM}}, 12260 {ARM::AEK_MP, 12261 {Feature_HasV7Bit, Feature_IsNotMClassBit}, 12262 {ARM::FeatureMP}}, 12263 {ARM::AEK_SIMD, 12264 {Feature_HasV8Bit}, 12265 {ARM::FeatureNEON, ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8}}, 12266 {ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone}}, 12267 // FIXME: Only available in A-class, isel not predicated 12268 {ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization}}, 12269 {ARM::AEK_FP16, 12270 {Feature_HasV8_2aBit}, 12271 {ARM::FeatureFPARMv8, ARM::FeatureFullFP16}}, 12272 {ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS}}, 12273 {ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB}}, 12274 // FIXME: Unsupported extensions. 12275 {ARM::AEK_OS, {}, {}}, 12276 {ARM::AEK_IWMMXT, {}, {}}, 12277 {ARM::AEK_IWMMXT2, {}, {}}, 12278 {ARM::AEK_MAVERICK, {}, {}}, 12279 {ARM::AEK_XSCALE, {}, {}}, 12280 }; 12281 bool EnableFeature = true; 12282 if (Name.startswith_insensitive("no")) { 12283 EnableFeature = false; 12284 Name = Name.substr(2); 12285 } 12286 uint64_t FeatureKind = ARM::parseArchExt(Name); 12287 if (FeatureKind == ARM::AEK_INVALID) 12288 return Error(ExtLoc, "unknown architectural extension: " + Name); 12289 12290 for (const auto &Extension : Extensions) { 12291 if (Extension.Kind != FeatureKind) 12292 continue; 12293 12294 if (Extension.Features.none()) 12295 return Error(ExtLoc, "unsupported architectural extension: " + Name); 12296 12297 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 12298 return Error(ExtLoc, "architectural extension '" + Name + 12299 "' is not " 12300 "allowed for the current base architecture"); 12301 12302 MCSubtargetInfo &STI = copySTI(); 12303 if (EnableFeature) { 12304 STI.SetFeatureBitsTransitively(Extension.Features); 12305 } else { 12306 STI.ClearFeatureBitsTransitively(Extension.Features); 12307 } 12308 FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits()); 12309 setAvailableFeatures(Features); 12310 return true; 12311 } 12312 return false; 12313 } 12314 12315 /// parseDirectiveArchExtension 12316 /// ::= .arch_extension [no]feature 12317 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 12318 12319 MCAsmParser &Parser = getParser(); 12320 12321 if (getLexer().isNot(AsmToken::Identifier)) 12322 return Error(getLexer().getLoc(), "expected architecture extension name"); 12323 12324 StringRef Name = Parser.getTok().getString(); 12325 SMLoc ExtLoc = Parser.getTok().getLoc(); 12326 Lex(); 12327 12328 if (parseToken(AsmToken::EndOfStatement, 12329 "unexpected token in '.arch_extension' directive")) 12330 return true; 12331 12332 if (Name == "nocrypto") { 12333 enableArchExtFeature("nosha2", ExtLoc); 12334 enableArchExtFeature("noaes", ExtLoc); 12335 } 12336 12337 if (enableArchExtFeature(Name, ExtLoc)) 12338 return false; 12339 12340 return Error(ExtLoc, "unknown architectural extension: " + Name); 12341 } 12342 12343 // Define this matcher function after the auto-generated include so we 12344 // have the match class enum definitions. 12345 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 12346 unsigned Kind) { 12347 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 12348 // If the kind is a token for a literal immediate, check if our asm 12349 // operand matches. This is for InstAliases which have a fixed-value 12350 // immediate in the syntax. 12351 switch (Kind) { 12352 default: break; 12353 case MCK__HASH_0: 12354 if (Op.isImm()) 12355 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 12356 if (CE->getValue() == 0) 12357 return Match_Success; 12358 break; 12359 case MCK__HASH_8: 12360 if (Op.isImm()) 12361 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 12362 if (CE->getValue() == 8) 12363 return Match_Success; 12364 break; 12365 case MCK__HASH_16: 12366 if (Op.isImm()) 12367 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 12368 if (CE->getValue() == 16) 12369 return Match_Success; 12370 break; 12371 case MCK_ModImm: 12372 if (Op.isImm()) { 12373 const MCExpr *SOExpr = Op.getImm(); 12374 int64_t Value; 12375 if (!SOExpr->evaluateAsAbsolute(Value)) 12376 return Match_Success; 12377 assert((Value >= std::numeric_limits<int32_t>::min() && 12378 Value <= std::numeric_limits<uint32_t>::max()) && 12379 "expression value must be representable in 32 bits"); 12380 } 12381 break; 12382 case MCK_rGPR: 12383 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 12384 return Match_Success; 12385 return Match_rGPR; 12386 case MCK_GPRPair: 12387 if (Op.isReg() && 12388 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 12389 return Match_Success; 12390 break; 12391 } 12392 return Match_InvalidOperand; 12393 } 12394 12395 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic, 12396 StringRef ExtraToken) { 12397 if (!hasMVE()) 12398 return false; 12399 12400 return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") || 12401 Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") || 12402 Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") || 12403 Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") || 12404 Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") || 12405 Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") || 12406 Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") || 12407 Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") || 12408 Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") || 12409 Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") || 12410 Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") || 12411 Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") || 12412 Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") || 12413 Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") || 12414 Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") || 12415 Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") || 12416 Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") || 12417 Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") || 12418 Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") || 12419 Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") || 12420 Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") || 12421 Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") || 12422 Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") || 12423 Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") || 12424 Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") || 12425 Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") || 12426 Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") || 12427 Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") || 12428 Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") || 12429 Mnemonic.startswith("vqabs") || 12430 (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") || 12431 Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") || 12432 Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") || 12433 Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") || 12434 Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") || 12435 Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") || 12436 Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") || 12437 Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") || 12438 Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") || 12439 Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") || 12440 Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") || 12441 Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") || 12442 Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") || 12443 Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") || 12444 Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") || 12445 Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") || 12446 Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") || 12447 Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") || 12448 Mnemonic.startswith("vldrb") || 12449 (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") || 12450 (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") || 12451 Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") || 12452 Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") || 12453 Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") || 12454 Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") || 12455 Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") || 12456 Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") || 12457 Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") || 12458 Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") || 12459 Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") || 12460 Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") || 12461 Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") || 12462 Mnemonic.startswith("vcvt") || 12463 MS.isVPTPredicableCDEInstr(Mnemonic) || 12464 (Mnemonic.startswith("vmov") && 12465 !(ExtraToken == ".f16" || ExtraToken == ".32" || 12466 ExtraToken == ".16" || ExtraToken == ".8")); 12467 } 12468