1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMFeatures.h" 10 #include "ARMBaseInstrInfo.h" 11 #include "Utils/ARMBaseInfo.h" 12 #include "MCTargetDesc/ARMAddressingModes.h" 13 #include "MCTargetDesc/ARMBaseInfo.h" 14 #include "MCTargetDesc/ARMInstPrinter.h" 15 #include "MCTargetDesc/ARMMCExpr.h" 16 #include "MCTargetDesc/ARMMCTargetDesc.h" 17 #include "TargetInfo/ARMTargetInfo.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringSet.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/MC/MCContext.h" 31 #include "llvm/MC/MCExpr.h" 32 #include "llvm/MC/MCInst.h" 33 #include "llvm/MC/MCInstrDesc.h" 34 #include "llvm/MC/MCInstrInfo.h" 35 #include "llvm/MC/MCObjectFileInfo.h" 36 #include "llvm/MC/MCParser/MCAsmLexer.h" 37 #include "llvm/MC/MCParser/MCAsmParser.h" 38 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 39 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 40 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 41 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 42 #include "llvm/MC/MCRegisterInfo.h" 43 #include "llvm/MC/MCSection.h" 44 #include "llvm/MC/MCStreamer.h" 45 #include "llvm/MC/MCSubtargetInfo.h" 46 #include "llvm/MC/MCSymbol.h" 47 #include "llvm/MC/SubtargetFeature.h" 48 #include "llvm/Support/ARMBuildAttributes.h" 49 #include "llvm/Support/ARMEHABI.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/SMLoc.h" 56 #include "llvm/Support/TargetParser.h" 57 #include "llvm/Support/TargetRegistry.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cstddef> 62 #include <cstdint> 63 #include <iterator> 64 #include <limits> 65 #include <memory> 66 #include <string> 67 #include <utility> 68 #include <vector> 69 70 #define DEBUG_TYPE "asm-parser" 71 72 using namespace llvm; 73 74 namespace llvm { 75 extern const MCInstrDesc ARMInsts[]; 76 } // end namespace llvm 77 78 namespace { 79 80 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 81 82 static cl::opt<ImplicitItModeTy> ImplicitItMode( 83 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 84 cl::desc("Allow conditional instructions outdside of an IT block"), 85 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 86 "Accept in both ISAs, emit implicit ITs in Thumb"), 87 clEnumValN(ImplicitItModeTy::Never, "never", 88 "Warn in ARM, reject in Thumb"), 89 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 90 "Accept in ARM, reject in Thumb"), 91 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 92 "Warn in ARM, emit implicit ITs in Thumb"))); 93 94 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 95 cl::init(false)); 96 97 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 98 99 static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) { 100 // Position==0 means we're not in an IT block at all. Position==1 101 // means we want the first state bit, which is always 0 (Then). 102 // Position==2 means we want the second state bit, stored at bit 3 103 // of Mask, and so on downwards. So (5 - Position) will shift the 104 // right bit down to bit 0, including the always-0 bit at bit 4 for 105 // the mandatory initial Then. 106 return (Mask >> (5 - Position) & 1); 107 } 108 109 class UnwindContext { 110 using Locs = SmallVector<SMLoc, 4>; 111 112 MCAsmParser &Parser; 113 Locs FnStartLocs; 114 Locs CantUnwindLocs; 115 Locs PersonalityLocs; 116 Locs PersonalityIndexLocs; 117 Locs HandlerDataLocs; 118 int FPReg; 119 120 public: 121 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 122 123 bool hasFnStart() const { return !FnStartLocs.empty(); } 124 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 125 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 126 127 bool hasPersonality() const { 128 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 129 } 130 131 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 132 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 133 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 134 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 135 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 136 137 void saveFPReg(int Reg) { FPReg = Reg; } 138 int getFPReg() const { return FPReg; } 139 140 void emitFnStartLocNotes() const { 141 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 142 FI != FE; ++FI) 143 Parser.Note(*FI, ".fnstart was specified here"); 144 } 145 146 void emitCantUnwindLocNotes() const { 147 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 148 UE = CantUnwindLocs.end(); UI != UE; ++UI) 149 Parser.Note(*UI, ".cantunwind was specified here"); 150 } 151 152 void emitHandlerDataLocNotes() const { 153 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 154 HE = HandlerDataLocs.end(); HI != HE; ++HI) 155 Parser.Note(*HI, ".handlerdata was specified here"); 156 } 157 158 void emitPersonalityLocNotes() const { 159 for (Locs::const_iterator PI = PersonalityLocs.begin(), 160 PE = PersonalityLocs.end(), 161 PII = PersonalityIndexLocs.begin(), 162 PIE = PersonalityIndexLocs.end(); 163 PI != PE || PII != PIE;) { 164 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 165 Parser.Note(*PI++, ".personality was specified here"); 166 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 167 Parser.Note(*PII++, ".personalityindex was specified here"); 168 else 169 llvm_unreachable(".personality and .personalityindex cannot be " 170 "at the same location"); 171 } 172 } 173 174 void reset() { 175 FnStartLocs = Locs(); 176 CantUnwindLocs = Locs(); 177 PersonalityLocs = Locs(); 178 HandlerDataLocs = Locs(); 179 PersonalityIndexLocs = Locs(); 180 FPReg = ARM::SP; 181 } 182 }; 183 184 // Various sets of ARM instruction mnemonics which are used by the asm parser 185 class ARMMnemonicSets { 186 StringSet<> CDE; 187 StringSet<> CDEWithVPTSuffix; 188 public: 189 ARMMnemonicSets(const MCSubtargetInfo &STI); 190 191 /// Returns true iff a given mnemonic is a CDE instruction 192 bool isCDEInstr(StringRef Mnemonic) { 193 // Quick check before searching the set 194 if (!Mnemonic.startswith("cx") && !Mnemonic.startswith("vcx")) 195 return false; 196 return CDE.count(Mnemonic); 197 } 198 199 /// Returns true iff a given mnemonic is a VPT-predicable CDE instruction 200 /// (possibly with a predication suffix "e" or "t") 201 bool isVPTPredicableCDEInstr(StringRef Mnemonic) { 202 if (!Mnemonic.startswith("vcx")) 203 return false; 204 return CDEWithVPTSuffix.count(Mnemonic); 205 } 206 207 /// Returns true iff a given mnemonic is an IT-predicable CDE instruction 208 /// (possibly with a condition suffix) 209 bool isITPredicableCDEInstr(StringRef Mnemonic) { 210 if (!Mnemonic.startswith("cx")) 211 return false; 212 return Mnemonic.startswith("cx1a") || Mnemonic.startswith("cx1da") || 213 Mnemonic.startswith("cx2a") || Mnemonic.startswith("cx2da") || 214 Mnemonic.startswith("cx3a") || Mnemonic.startswith("cx3da"); 215 } 216 217 /// Return true iff a given mnemonic is an integer CDE instruction with 218 /// dual-register destination 219 bool isCDEDualRegInstr(StringRef Mnemonic) { 220 if (!Mnemonic.startswith("cx")) 221 return false; 222 return Mnemonic == "cx1d" || Mnemonic == "cx1da" || 223 Mnemonic == "cx2d" || Mnemonic == "cx2da" || 224 Mnemonic == "cx3d" || Mnemonic == "cx3da"; 225 } 226 }; 227 228 ARMMnemonicSets::ARMMnemonicSets(const MCSubtargetInfo &STI) { 229 for (StringRef Mnemonic: { "cx1", "cx1a", "cx1d", "cx1da", 230 "cx2", "cx2a", "cx2d", "cx2da", 231 "cx3", "cx3a", "cx3d", "cx3da", }) 232 CDE.insert(Mnemonic); 233 for (StringRef Mnemonic : 234 {"vcx1", "vcx1a", "vcx2", "vcx2a", "vcx3", "vcx3a"}) { 235 CDE.insert(Mnemonic); 236 CDEWithVPTSuffix.insert(Mnemonic); 237 CDEWithVPTSuffix.insert(std::string(Mnemonic) + "t"); 238 CDEWithVPTSuffix.insert(std::string(Mnemonic) + "e"); 239 } 240 } 241 242 class ARMAsmParser : public MCTargetAsmParser { 243 const MCRegisterInfo *MRI; 244 UnwindContext UC; 245 ARMMnemonicSets MS; 246 247 ARMTargetStreamer &getTargetStreamer() { 248 assert(getParser().getStreamer().getTargetStreamer() && 249 "do not have a target streamer"); 250 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 251 return static_cast<ARMTargetStreamer &>(TS); 252 } 253 254 // Map of register aliases registers via the .req directive. 255 StringMap<unsigned> RegisterReqs; 256 257 bool NextSymbolIsThumb; 258 259 bool useImplicitITThumb() const { 260 return ImplicitItMode == ImplicitItModeTy::Always || 261 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 262 } 263 264 bool useImplicitITARM() const { 265 return ImplicitItMode == ImplicitItModeTy::Always || 266 ImplicitItMode == ImplicitItModeTy::ARMOnly; 267 } 268 269 struct { 270 ARMCC::CondCodes Cond; // Condition for IT block. 271 unsigned Mask:4; // Condition mask for instructions. 272 // Starting at first 1 (from lsb). 273 // '1' condition as indicated in IT. 274 // '0' inverse of condition (else). 275 // Count of instructions in IT block is 276 // 4 - trailingzeroes(mask) 277 // Note that this does not have the same encoding 278 // as in the IT instruction, which also depends 279 // on the low bit of the condition code. 280 281 unsigned CurPosition; // Current position in parsing of IT 282 // block. In range [0,4], with 0 being the IT 283 // instruction itself. Initialized according to 284 // count of instructions in block. ~0U if no 285 // active IT block. 286 287 bool IsExplicit; // true - The IT instruction was present in the 288 // input, we should not modify it. 289 // false - The IT instruction was added 290 // implicitly, we can extend it if that 291 // would be legal. 292 } ITState; 293 294 SmallVector<MCInst, 4> PendingConditionalInsts; 295 296 void flushPendingInstructions(MCStreamer &Out) override { 297 if (!inImplicitITBlock()) { 298 assert(PendingConditionalInsts.size() == 0); 299 return; 300 } 301 302 // Emit the IT instruction 303 MCInst ITInst; 304 ITInst.setOpcode(ARM::t2IT); 305 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 306 ITInst.addOperand(MCOperand::createImm(ITState.Mask)); 307 Out.emitInstruction(ITInst, getSTI()); 308 309 // Emit the conditonal instructions 310 assert(PendingConditionalInsts.size() <= 4); 311 for (const MCInst &Inst : PendingConditionalInsts) { 312 Out.emitInstruction(Inst, getSTI()); 313 } 314 PendingConditionalInsts.clear(); 315 316 // Clear the IT state 317 ITState.Mask = 0; 318 ITState.CurPosition = ~0U; 319 } 320 321 bool inITBlock() { return ITState.CurPosition != ~0U; } 322 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 323 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 324 325 bool lastInITBlock() { 326 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 327 } 328 329 void forwardITPosition() { 330 if (!inITBlock()) return; 331 // Move to the next instruction in the IT block, if there is one. If not, 332 // mark the block as done, except for implicit IT blocks, which we leave 333 // open until we find an instruction that can't be added to it. 334 unsigned TZ = countTrailingZeros(ITState.Mask); 335 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 336 ITState.CurPosition = ~0U; // Done with the IT block after this. 337 } 338 339 // Rewind the state of the current IT block, removing the last slot from it. 340 void rewindImplicitITPosition() { 341 assert(inImplicitITBlock()); 342 assert(ITState.CurPosition > 1); 343 ITState.CurPosition--; 344 unsigned TZ = countTrailingZeros(ITState.Mask); 345 unsigned NewMask = 0; 346 NewMask |= ITState.Mask & (0xC << TZ); 347 NewMask |= 0x2 << TZ; 348 ITState.Mask = NewMask; 349 } 350 351 // Rewind the state of the current IT block, removing the last slot from it. 352 // If we were at the first slot, this closes the IT block. 353 void discardImplicitITBlock() { 354 assert(inImplicitITBlock()); 355 assert(ITState.CurPosition == 1); 356 ITState.CurPosition = ~0U; 357 } 358 359 // Return the low-subreg of a given Q register. 360 unsigned getDRegFromQReg(unsigned QReg) const { 361 return MRI->getSubReg(QReg, ARM::dsub_0); 362 } 363 364 // Get the condition code corresponding to the current IT block slot. 365 ARMCC::CondCodes currentITCond() { 366 unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition); 367 return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond; 368 } 369 370 // Invert the condition of the current IT block slot without changing any 371 // other slots in the same block. 372 void invertCurrentITCondition() { 373 if (ITState.CurPosition == 1) { 374 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 375 } else { 376 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 377 } 378 } 379 380 // Returns true if the current IT block is full (all 4 slots used). 381 bool isITBlockFull() { 382 return inITBlock() && (ITState.Mask & 1); 383 } 384 385 // Extend the current implicit IT block to have one more slot with the given 386 // condition code. 387 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 388 assert(inImplicitITBlock()); 389 assert(!isITBlockFull()); 390 assert(Cond == ITState.Cond || 391 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 392 unsigned TZ = countTrailingZeros(ITState.Mask); 393 unsigned NewMask = 0; 394 // Keep any existing condition bits. 395 NewMask |= ITState.Mask & (0xE << TZ); 396 // Insert the new condition bit. 397 NewMask |= (Cond != ITState.Cond) << TZ; 398 // Move the trailing 1 down one bit. 399 NewMask |= 1 << (TZ - 1); 400 ITState.Mask = NewMask; 401 } 402 403 // Create a new implicit IT block with a dummy condition code. 404 void startImplicitITBlock() { 405 assert(!inITBlock()); 406 ITState.Cond = ARMCC::AL; 407 ITState.Mask = 8; 408 ITState.CurPosition = 1; 409 ITState.IsExplicit = false; 410 } 411 412 // Create a new explicit IT block with the given condition and mask. 413 // The mask should be in the format used in ARMOperand and 414 // MCOperand, with a 1 implying 'e', regardless of the low bit of 415 // the condition. 416 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 417 assert(!inITBlock()); 418 ITState.Cond = Cond; 419 ITState.Mask = Mask; 420 ITState.CurPosition = 0; 421 ITState.IsExplicit = true; 422 } 423 424 struct { 425 unsigned Mask : 4; 426 unsigned CurPosition; 427 } VPTState; 428 bool inVPTBlock() { return VPTState.CurPosition != ~0U; } 429 void forwardVPTPosition() { 430 if (!inVPTBlock()) return; 431 unsigned TZ = countTrailingZeros(VPTState.Mask); 432 if (++VPTState.CurPosition == 5 - TZ) 433 VPTState.CurPosition = ~0U; 434 } 435 436 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 437 return getParser().Note(L, Msg, Range); 438 } 439 440 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 441 return getParser().Warning(L, Msg, Range); 442 } 443 444 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 445 return getParser().Error(L, Msg, Range); 446 } 447 448 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 449 unsigned ListNo, bool IsARPop = false); 450 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 451 unsigned ListNo); 452 453 int tryParseRegister(); 454 bool tryParseRegisterWithWriteBack(OperandVector &); 455 int tryParseShiftRegister(OperandVector &); 456 bool parseRegisterList(OperandVector &, bool EnforceOrder = true); 457 bool parseMemory(OperandVector &); 458 bool parseOperand(OperandVector &, StringRef Mnemonic); 459 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 460 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 461 unsigned &ShiftAmount); 462 bool parseLiteralValues(unsigned Size, SMLoc L); 463 bool parseDirectiveThumb(SMLoc L); 464 bool parseDirectiveARM(SMLoc L); 465 bool parseDirectiveThumbFunc(SMLoc L); 466 bool parseDirectiveCode(SMLoc L); 467 bool parseDirectiveSyntax(SMLoc L); 468 bool parseDirectiveReq(StringRef Name, SMLoc L); 469 bool parseDirectiveUnreq(SMLoc L); 470 bool parseDirectiveArch(SMLoc L); 471 bool parseDirectiveEabiAttr(SMLoc L); 472 bool parseDirectiveCPU(SMLoc L); 473 bool parseDirectiveFPU(SMLoc L); 474 bool parseDirectiveFnStart(SMLoc L); 475 bool parseDirectiveFnEnd(SMLoc L); 476 bool parseDirectiveCantUnwind(SMLoc L); 477 bool parseDirectivePersonality(SMLoc L); 478 bool parseDirectiveHandlerData(SMLoc L); 479 bool parseDirectiveSetFP(SMLoc L); 480 bool parseDirectivePad(SMLoc L); 481 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 482 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 483 bool parseDirectiveLtorg(SMLoc L); 484 bool parseDirectiveEven(SMLoc L); 485 bool parseDirectivePersonalityIndex(SMLoc L); 486 bool parseDirectiveUnwindRaw(SMLoc L); 487 bool parseDirectiveTLSDescSeq(SMLoc L); 488 bool parseDirectiveMovSP(SMLoc L); 489 bool parseDirectiveObjectArch(SMLoc L); 490 bool parseDirectiveArchExtension(SMLoc L); 491 bool parseDirectiveAlign(SMLoc L); 492 bool parseDirectiveThumbSet(SMLoc L); 493 494 bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken); 495 StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken, 496 unsigned &PredicationCode, 497 unsigned &VPTPredicationCode, bool &CarrySetting, 498 unsigned &ProcessorIMod, StringRef &ITMask); 499 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken, 500 StringRef FullInst, bool &CanAcceptCarrySet, 501 bool &CanAcceptPredicationCode, 502 bool &CanAcceptVPTPredicationCode); 503 504 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 505 OperandVector &Operands); 506 bool CDEConvertDualRegOperand(StringRef Mnemonic, OperandVector &Operands); 507 508 bool isThumb() const { 509 // FIXME: Can tablegen auto-generate this? 510 return getSTI().getFeatureBits()[ARM::ModeThumb]; 511 } 512 513 bool isThumbOne() const { 514 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 515 } 516 517 bool isThumbTwo() const { 518 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 519 } 520 521 bool hasThumb() const { 522 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 523 } 524 525 bool hasThumb2() const { 526 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 527 } 528 529 bool hasV6Ops() const { 530 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 531 } 532 533 bool hasV6T2Ops() const { 534 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 535 } 536 537 bool hasV6MOps() const { 538 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 539 } 540 541 bool hasV7Ops() const { 542 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 543 } 544 545 bool hasV8Ops() const { 546 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 547 } 548 549 bool hasV8MBaseline() const { 550 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 551 } 552 553 bool hasV8MMainline() const { 554 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 555 } 556 bool hasV8_1MMainline() const { 557 return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps]; 558 } 559 bool hasMVE() const { 560 return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps]; 561 } 562 bool hasMVEFloat() const { 563 return getSTI().getFeatureBits()[ARM::HasMVEFloatOps]; 564 } 565 bool hasCDE() const { 566 return getSTI().getFeatureBits()[ARM::HasCDEOps]; 567 } 568 bool has8MSecExt() const { 569 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 570 } 571 572 bool hasARM() const { 573 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 574 } 575 576 bool hasDSP() const { 577 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 578 } 579 580 bool hasD32() const { 581 return getSTI().getFeatureBits()[ARM::FeatureD32]; 582 } 583 584 bool hasV8_1aOps() const { 585 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 586 } 587 588 bool hasRAS() const { 589 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 590 } 591 592 void SwitchMode() { 593 MCSubtargetInfo &STI = copySTI(); 594 auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 595 setAvailableFeatures(FB); 596 } 597 598 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 599 600 bool isMClass() const { 601 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 602 } 603 604 /// @name Auto-generated Match Functions 605 /// { 606 607 #define GET_ASSEMBLER_HEADER 608 #include "ARMGenAsmMatcher.inc" 609 610 /// } 611 612 OperandMatchResultTy parseITCondCode(OperandVector &); 613 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 614 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 615 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 616 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 617 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &); 618 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 619 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 620 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 621 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 622 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 623 int High); 624 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 625 return parsePKHImm(O, "lsl", 0, 31); 626 } 627 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 628 return parsePKHImm(O, "asr", 1, 32); 629 } 630 OperandMatchResultTy parseSetEndImm(OperandVector &); 631 OperandMatchResultTy parseShifterImm(OperandVector &); 632 OperandMatchResultTy parseRotImm(OperandVector &); 633 OperandMatchResultTy parseModImm(OperandVector &); 634 OperandMatchResultTy parseBitfield(OperandVector &); 635 OperandMatchResultTy parsePostIdxReg(OperandVector &); 636 OperandMatchResultTy parseAM3Offset(OperandVector &); 637 OperandMatchResultTy parseFPImm(OperandVector &); 638 OperandMatchResultTy parseVectorList(OperandVector &); 639 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 640 SMLoc &EndLoc); 641 642 // Asm Match Converter Methods 643 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 644 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 645 void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &); 646 647 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 648 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 649 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 650 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 651 bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 652 bool isITBlockTerminator(MCInst &Inst) const; 653 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); 654 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, 655 bool Load, bool ARMMode, bool Writeback); 656 657 public: 658 enum ARMMatchResultTy { 659 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 660 Match_RequiresNotITBlock, 661 Match_RequiresV6, 662 Match_RequiresThumb2, 663 Match_RequiresV8, 664 Match_RequiresFlagSetting, 665 #define GET_OPERAND_DIAGNOSTIC_TYPES 666 #include "ARMGenAsmMatcher.inc" 667 668 }; 669 670 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 671 const MCInstrInfo &MII, const MCTargetOptions &Options) 672 : MCTargetAsmParser(Options, STI, MII), UC(Parser), MS(STI) { 673 MCAsmParserExtension::Initialize(Parser); 674 675 // Cache the MCRegisterInfo. 676 MRI = getContext().getRegisterInfo(); 677 678 // Initialize the set of available features. 679 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 680 681 // Add build attributes based on the selected target. 682 if (AddBuildAttributes) 683 getTargetStreamer().emitTargetAttributes(STI); 684 685 // Not in an ITBlock to start with. 686 ITState.CurPosition = ~0U; 687 688 VPTState.CurPosition = ~0U; 689 690 NextSymbolIsThumb = false; 691 } 692 693 // Implementation of the MCTargetAsmParser interface: 694 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 695 OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc, 696 SMLoc &EndLoc) override; 697 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 698 SMLoc NameLoc, OperandVector &Operands) override; 699 bool ParseDirective(AsmToken DirectiveID) override; 700 701 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 702 unsigned Kind) override; 703 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 704 705 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 706 OperandVector &Operands, MCStreamer &Out, 707 uint64_t &ErrorInfo, 708 bool MatchingInlineAsm) override; 709 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 710 SmallVectorImpl<NearMissInfo> &NearMisses, 711 bool MatchingInlineAsm, bool &EmitInITBlock, 712 MCStreamer &Out); 713 714 struct NearMissMessage { 715 SMLoc Loc; 716 SmallString<128> Message; 717 }; 718 719 const char *getCustomOperandDiag(ARMMatchResultTy MatchError); 720 721 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 722 SmallVectorImpl<NearMissMessage> &NearMissesOut, 723 SMLoc IDLoc, OperandVector &Operands); 724 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, 725 OperandVector &Operands); 726 727 void doBeforeLabelEmit(MCSymbol *Symbol) override; 728 729 void onLabelParsed(MCSymbol *Symbol) override; 730 }; 731 732 /// ARMOperand - Instances of this class represent a parsed ARM machine 733 /// operand. 734 class ARMOperand : public MCParsedAsmOperand { 735 enum KindTy { 736 k_CondCode, 737 k_VPTPred, 738 k_CCOut, 739 k_ITCondMask, 740 k_CoprocNum, 741 k_CoprocReg, 742 k_CoprocOption, 743 k_Immediate, 744 k_MemBarrierOpt, 745 k_InstSyncBarrierOpt, 746 k_TraceSyncBarrierOpt, 747 k_Memory, 748 k_PostIndexRegister, 749 k_MSRMask, 750 k_BankedReg, 751 k_ProcIFlags, 752 k_VectorIndex, 753 k_Register, 754 k_RegisterList, 755 k_RegisterListWithAPSR, 756 k_DPRRegisterList, 757 k_SPRRegisterList, 758 k_FPSRegisterListWithVPR, 759 k_FPDRegisterListWithVPR, 760 k_VectorList, 761 k_VectorListAllLanes, 762 k_VectorListIndexed, 763 k_ShiftedRegister, 764 k_ShiftedImmediate, 765 k_ShifterImmediate, 766 k_RotateImmediate, 767 k_ModifiedImmediate, 768 k_ConstantPoolImmediate, 769 k_BitfieldDescriptor, 770 k_Token, 771 } Kind; 772 773 SMLoc StartLoc, EndLoc, AlignmentLoc; 774 SmallVector<unsigned, 8> Registers; 775 776 struct CCOp { 777 ARMCC::CondCodes Val; 778 }; 779 780 struct VCCOp { 781 ARMVCC::VPTCodes Val; 782 }; 783 784 struct CopOp { 785 unsigned Val; 786 }; 787 788 struct CoprocOptionOp { 789 unsigned Val; 790 }; 791 792 struct ITMaskOp { 793 unsigned Mask:4; 794 }; 795 796 struct MBOptOp { 797 ARM_MB::MemBOpt Val; 798 }; 799 800 struct ISBOptOp { 801 ARM_ISB::InstSyncBOpt Val; 802 }; 803 804 struct TSBOptOp { 805 ARM_TSB::TraceSyncBOpt Val; 806 }; 807 808 struct IFlagsOp { 809 ARM_PROC::IFlags Val; 810 }; 811 812 struct MMaskOp { 813 unsigned Val; 814 }; 815 816 struct BankedRegOp { 817 unsigned Val; 818 }; 819 820 struct TokOp { 821 const char *Data; 822 unsigned Length; 823 }; 824 825 struct RegOp { 826 unsigned RegNum; 827 }; 828 829 // A vector register list is a sequential list of 1 to 4 registers. 830 struct VectorListOp { 831 unsigned RegNum; 832 unsigned Count; 833 unsigned LaneIndex; 834 bool isDoubleSpaced; 835 }; 836 837 struct VectorIndexOp { 838 unsigned Val; 839 }; 840 841 struct ImmOp { 842 const MCExpr *Val; 843 }; 844 845 /// Combined record for all forms of ARM address expressions. 846 struct MemoryOp { 847 unsigned BaseRegNum; 848 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 849 // was specified. 850 const MCConstantExpr *OffsetImm; // Offset immediate value 851 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 852 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 853 unsigned ShiftImm; // shift for OffsetReg. 854 unsigned Alignment; // 0 = no alignment specified 855 // n = alignment in bytes (2, 4, 8, 16, or 32) 856 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 857 }; 858 859 struct PostIdxRegOp { 860 unsigned RegNum; 861 bool isAdd; 862 ARM_AM::ShiftOpc ShiftTy; 863 unsigned ShiftImm; 864 }; 865 866 struct ShifterImmOp { 867 bool isASR; 868 unsigned Imm; 869 }; 870 871 struct RegShiftedRegOp { 872 ARM_AM::ShiftOpc ShiftTy; 873 unsigned SrcReg; 874 unsigned ShiftReg; 875 unsigned ShiftImm; 876 }; 877 878 struct RegShiftedImmOp { 879 ARM_AM::ShiftOpc ShiftTy; 880 unsigned SrcReg; 881 unsigned ShiftImm; 882 }; 883 884 struct RotImmOp { 885 unsigned Imm; 886 }; 887 888 struct ModImmOp { 889 unsigned Bits; 890 unsigned Rot; 891 }; 892 893 struct BitfieldOp { 894 unsigned LSB; 895 unsigned Width; 896 }; 897 898 union { 899 struct CCOp CC; 900 struct VCCOp VCC; 901 struct CopOp Cop; 902 struct CoprocOptionOp CoprocOption; 903 struct MBOptOp MBOpt; 904 struct ISBOptOp ISBOpt; 905 struct TSBOptOp TSBOpt; 906 struct ITMaskOp ITMask; 907 struct IFlagsOp IFlags; 908 struct MMaskOp MMask; 909 struct BankedRegOp BankedReg; 910 struct TokOp Tok; 911 struct RegOp Reg; 912 struct VectorListOp VectorList; 913 struct VectorIndexOp VectorIndex; 914 struct ImmOp Imm; 915 struct MemoryOp Memory; 916 struct PostIdxRegOp PostIdxReg; 917 struct ShifterImmOp ShifterImm; 918 struct RegShiftedRegOp RegShiftedReg; 919 struct RegShiftedImmOp RegShiftedImm; 920 struct RotImmOp RotImm; 921 struct ModImmOp ModImm; 922 struct BitfieldOp Bitfield; 923 }; 924 925 public: 926 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 927 928 /// getStartLoc - Get the location of the first token of this operand. 929 SMLoc getStartLoc() const override { return StartLoc; } 930 931 /// getEndLoc - Get the location of the last token of this operand. 932 SMLoc getEndLoc() const override { return EndLoc; } 933 934 /// getLocRange - Get the range between the first and last token of this 935 /// operand. 936 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 937 938 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 939 SMLoc getAlignmentLoc() const { 940 assert(Kind == k_Memory && "Invalid access!"); 941 return AlignmentLoc; 942 } 943 944 ARMCC::CondCodes getCondCode() const { 945 assert(Kind == k_CondCode && "Invalid access!"); 946 return CC.Val; 947 } 948 949 ARMVCC::VPTCodes getVPTPred() const { 950 assert(isVPTPred() && "Invalid access!"); 951 return VCC.Val; 952 } 953 954 unsigned getCoproc() const { 955 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 956 return Cop.Val; 957 } 958 959 StringRef getToken() const { 960 assert(Kind == k_Token && "Invalid access!"); 961 return StringRef(Tok.Data, Tok.Length); 962 } 963 964 unsigned getReg() const override { 965 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 966 return Reg.RegNum; 967 } 968 969 const SmallVectorImpl<unsigned> &getRegList() const { 970 assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR || 971 Kind == k_DPRRegisterList || Kind == k_SPRRegisterList || 972 Kind == k_FPSRegisterListWithVPR || 973 Kind == k_FPDRegisterListWithVPR) && 974 "Invalid access!"); 975 return Registers; 976 } 977 978 const MCExpr *getImm() const { 979 assert(isImm() && "Invalid access!"); 980 return Imm.Val; 981 } 982 983 const MCExpr *getConstantPoolImm() const { 984 assert(isConstantPoolImm() && "Invalid access!"); 985 return Imm.Val; 986 } 987 988 unsigned getVectorIndex() const { 989 assert(Kind == k_VectorIndex && "Invalid access!"); 990 return VectorIndex.Val; 991 } 992 993 ARM_MB::MemBOpt getMemBarrierOpt() const { 994 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 995 return MBOpt.Val; 996 } 997 998 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 999 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 1000 return ISBOpt.Val; 1001 } 1002 1003 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const { 1004 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!"); 1005 return TSBOpt.Val; 1006 } 1007 1008 ARM_PROC::IFlags getProcIFlags() const { 1009 assert(Kind == k_ProcIFlags && "Invalid access!"); 1010 return IFlags.Val; 1011 } 1012 1013 unsigned getMSRMask() const { 1014 assert(Kind == k_MSRMask && "Invalid access!"); 1015 return MMask.Val; 1016 } 1017 1018 unsigned getBankedReg() const { 1019 assert(Kind == k_BankedReg && "Invalid access!"); 1020 return BankedReg.Val; 1021 } 1022 1023 bool isCoprocNum() const { return Kind == k_CoprocNum; } 1024 bool isCoprocReg() const { return Kind == k_CoprocReg; } 1025 bool isCoprocOption() const { return Kind == k_CoprocOption; } 1026 bool isCondCode() const { return Kind == k_CondCode; } 1027 bool isVPTPred() const { return Kind == k_VPTPred; } 1028 bool isCCOut() const { return Kind == k_CCOut; } 1029 bool isITMask() const { return Kind == k_ITCondMask; } 1030 bool isITCondCode() const { return Kind == k_CondCode; } 1031 bool isImm() const override { 1032 return Kind == k_Immediate; 1033 } 1034 1035 bool isARMBranchTarget() const { 1036 if (!isImm()) return false; 1037 1038 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 1039 return CE->getValue() % 4 == 0; 1040 return true; 1041 } 1042 1043 1044 bool isThumbBranchTarget() const { 1045 if (!isImm()) return false; 1046 1047 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 1048 return CE->getValue() % 2 == 0; 1049 return true; 1050 } 1051 1052 // checks whether this operand is an unsigned offset which fits is a field 1053 // of specified width and scaled by a specific number of bits 1054 template<unsigned width, unsigned scale> 1055 bool isUnsignedOffset() const { 1056 if (!isImm()) return false; 1057 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1058 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1059 int64_t Val = CE->getValue(); 1060 int64_t Align = 1LL << scale; 1061 int64_t Max = Align * ((1LL << width) - 1); 1062 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 1063 } 1064 return false; 1065 } 1066 1067 // checks whether this operand is an signed offset which fits is a field 1068 // of specified width and scaled by a specific number of bits 1069 template<unsigned width, unsigned scale> 1070 bool isSignedOffset() const { 1071 if (!isImm()) return false; 1072 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1073 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1074 int64_t Val = CE->getValue(); 1075 int64_t Align = 1LL << scale; 1076 int64_t Max = Align * ((1LL << (width-1)) - 1); 1077 int64_t Min = -Align * (1LL << (width-1)); 1078 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 1079 } 1080 return false; 1081 } 1082 1083 // checks whether this operand is an offset suitable for the LE / 1084 // LETP instructions in Arm v8.1M 1085 bool isLEOffset() const { 1086 if (!isImm()) return false; 1087 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1088 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1089 int64_t Val = CE->getValue(); 1090 return Val < 0 && Val >= -4094 && (Val & 1) == 0; 1091 } 1092 return false; 1093 } 1094 1095 // checks whether this operand is a memory operand computed as an offset 1096 // applied to PC. the offset may have 8 bits of magnitude and is represented 1097 // with two bits of shift. textually it may be either [pc, #imm], #imm or 1098 // relocable expression... 1099 bool isThumbMemPC() const { 1100 int64_t Val = 0; 1101 if (isImm()) { 1102 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1103 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 1104 if (!CE) return false; 1105 Val = CE->getValue(); 1106 } 1107 else if (isGPRMem()) { 1108 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 1109 if(Memory.BaseRegNum != ARM::PC) return false; 1110 Val = Memory.OffsetImm->getValue(); 1111 } 1112 else return false; 1113 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 1114 } 1115 1116 bool isFPImm() const { 1117 if (!isImm()) return false; 1118 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1119 if (!CE) return false; 1120 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1121 return Val != -1; 1122 } 1123 1124 template<int64_t N, int64_t M> 1125 bool isImmediate() const { 1126 if (!isImm()) return false; 1127 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1128 if (!CE) return false; 1129 int64_t Value = CE->getValue(); 1130 return Value >= N && Value <= M; 1131 } 1132 1133 template<int64_t N, int64_t M> 1134 bool isImmediateS4() const { 1135 if (!isImm()) return false; 1136 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1137 if (!CE) return false; 1138 int64_t Value = CE->getValue(); 1139 return ((Value & 3) == 0) && Value >= N && Value <= M; 1140 } 1141 template<int64_t N, int64_t M> 1142 bool isImmediateS2() const { 1143 if (!isImm()) return false; 1144 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1145 if (!CE) return false; 1146 int64_t Value = CE->getValue(); 1147 return ((Value & 1) == 0) && Value >= N && Value <= M; 1148 } 1149 bool isFBits16() const { 1150 return isImmediate<0, 17>(); 1151 } 1152 bool isFBits32() const { 1153 return isImmediate<1, 33>(); 1154 } 1155 bool isImm8s4() const { 1156 return isImmediateS4<-1020, 1020>(); 1157 } 1158 bool isImm7s4() const { 1159 return isImmediateS4<-508, 508>(); 1160 } 1161 bool isImm7Shift0() const { 1162 return isImmediate<-127, 127>(); 1163 } 1164 bool isImm7Shift1() const { 1165 return isImmediateS2<-255, 255>(); 1166 } 1167 bool isImm7Shift2() const { 1168 return isImmediateS4<-511, 511>(); 1169 } 1170 bool isImm7() const { 1171 return isImmediate<-127, 127>(); 1172 } 1173 bool isImm0_1020s4() const { 1174 return isImmediateS4<0, 1020>(); 1175 } 1176 bool isImm0_508s4() const { 1177 return isImmediateS4<0, 508>(); 1178 } 1179 bool isImm0_508s4Neg() const { 1180 if (!isImm()) return false; 1181 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1182 if (!CE) return false; 1183 int64_t Value = -CE->getValue(); 1184 // explicitly exclude zero. we want that to use the normal 0_508 version. 1185 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 1186 } 1187 1188 bool isImm0_4095Neg() const { 1189 if (!isImm()) return false; 1190 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1191 if (!CE) return false; 1192 // isImm0_4095Neg is used with 32-bit immediates only. 1193 // 32-bit immediates are zero extended to 64-bit when parsed, 1194 // thus simple -CE->getValue() results in a big negative number, 1195 // not a small positive number as intended 1196 if ((CE->getValue() >> 32) > 0) return false; 1197 uint32_t Value = -static_cast<uint32_t>(CE->getValue()); 1198 return Value > 0 && Value < 4096; 1199 } 1200 1201 bool isImm0_7() const { 1202 return isImmediate<0, 7>(); 1203 } 1204 1205 bool isImm1_16() const { 1206 return isImmediate<1, 16>(); 1207 } 1208 1209 bool isImm1_32() const { 1210 return isImmediate<1, 32>(); 1211 } 1212 1213 bool isImm8_255() const { 1214 return isImmediate<8, 255>(); 1215 } 1216 1217 bool isImm256_65535Expr() const { 1218 if (!isImm()) return false; 1219 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1220 // If it's not a constant expression, it'll generate a fixup and be 1221 // handled later. 1222 if (!CE) return true; 1223 int64_t Value = CE->getValue(); 1224 return Value >= 256 && Value < 65536; 1225 } 1226 1227 bool isImm0_65535Expr() const { 1228 if (!isImm()) return false; 1229 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1230 // If it's not a constant expression, it'll generate a fixup and be 1231 // handled later. 1232 if (!CE) return true; 1233 int64_t Value = CE->getValue(); 1234 return Value >= 0 && Value < 65536; 1235 } 1236 1237 bool isImm24bit() const { 1238 return isImmediate<0, 0xffffff + 1>(); 1239 } 1240 1241 bool isImmThumbSR() const { 1242 return isImmediate<1, 33>(); 1243 } 1244 1245 template<int shift> 1246 bool isExpImmValue(uint64_t Value) const { 1247 uint64_t mask = (1 << shift) - 1; 1248 if ((Value & mask) != 0 || (Value >> shift) > 0xff) 1249 return false; 1250 return true; 1251 } 1252 1253 template<int shift> 1254 bool isExpImm() const { 1255 if (!isImm()) return false; 1256 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1257 if (!CE) return false; 1258 1259 return isExpImmValue<shift>(CE->getValue()); 1260 } 1261 1262 template<int shift, int size> 1263 bool isInvertedExpImm() const { 1264 if (!isImm()) return false; 1265 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1266 if (!CE) return false; 1267 1268 uint64_t OriginalValue = CE->getValue(); 1269 uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1); 1270 return isExpImmValue<shift>(InvertedValue); 1271 } 1272 1273 bool isPKHLSLImm() const { 1274 return isImmediate<0, 32>(); 1275 } 1276 1277 bool isPKHASRImm() const { 1278 return isImmediate<0, 33>(); 1279 } 1280 1281 bool isAdrLabel() const { 1282 // If we have an immediate that's not a constant, treat it as a label 1283 // reference needing a fixup. 1284 if (isImm() && !isa<MCConstantExpr>(getImm())) 1285 return true; 1286 1287 // If it is a constant, it must fit into a modified immediate encoding. 1288 if (!isImm()) return false; 1289 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1290 if (!CE) return false; 1291 int64_t Value = CE->getValue(); 1292 return (ARM_AM::getSOImmVal(Value) != -1 || 1293 ARM_AM::getSOImmVal(-Value) != -1); 1294 } 1295 1296 bool isT2SOImm() const { 1297 // If we have an immediate that's not a constant, treat it as an expression 1298 // needing a fixup. 1299 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1300 // We want to avoid matching :upper16: and :lower16: as we want these 1301 // expressions to match in isImm0_65535Expr() 1302 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1303 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1304 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1305 } 1306 if (!isImm()) return false; 1307 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1308 if (!CE) return false; 1309 int64_t Value = CE->getValue(); 1310 return ARM_AM::getT2SOImmVal(Value) != -1; 1311 } 1312 1313 bool isT2SOImmNot() const { 1314 if (!isImm()) return false; 1315 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1316 if (!CE) return false; 1317 int64_t Value = CE->getValue(); 1318 return ARM_AM::getT2SOImmVal(Value) == -1 && 1319 ARM_AM::getT2SOImmVal(~Value) != -1; 1320 } 1321 1322 bool isT2SOImmNeg() const { 1323 if (!isImm()) return false; 1324 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1325 if (!CE) return false; 1326 int64_t Value = CE->getValue(); 1327 // Only use this when not representable as a plain so_imm. 1328 return ARM_AM::getT2SOImmVal(Value) == -1 && 1329 ARM_AM::getT2SOImmVal(-Value) != -1; 1330 } 1331 1332 bool isSetEndImm() const { 1333 if (!isImm()) return false; 1334 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1335 if (!CE) return false; 1336 int64_t Value = CE->getValue(); 1337 return Value == 1 || Value == 0; 1338 } 1339 1340 bool isReg() const override { return Kind == k_Register; } 1341 bool isRegList() const { return Kind == k_RegisterList; } 1342 bool isRegListWithAPSR() const { 1343 return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList; 1344 } 1345 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1346 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1347 bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; } 1348 bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; } 1349 bool isToken() const override { return Kind == k_Token; } 1350 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1351 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1352 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; } 1353 bool isMem() const override { 1354 return isGPRMem() || isMVEMem(); 1355 } 1356 bool isMVEMem() const { 1357 if (Kind != k_Memory) 1358 return false; 1359 if (Memory.BaseRegNum && 1360 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) && 1361 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum)) 1362 return false; 1363 if (Memory.OffsetRegNum && 1364 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1365 Memory.OffsetRegNum)) 1366 return false; 1367 return true; 1368 } 1369 bool isGPRMem() const { 1370 if (Kind != k_Memory) 1371 return false; 1372 if (Memory.BaseRegNum && 1373 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) 1374 return false; 1375 if (Memory.OffsetRegNum && 1376 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) 1377 return false; 1378 return true; 1379 } 1380 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1381 bool isRegShiftedReg() const { 1382 return Kind == k_ShiftedRegister && 1383 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1384 RegShiftedReg.SrcReg) && 1385 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1386 RegShiftedReg.ShiftReg); 1387 } 1388 bool isRegShiftedImm() const { 1389 return Kind == k_ShiftedImmediate && 1390 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1391 RegShiftedImm.SrcReg); 1392 } 1393 bool isRotImm() const { return Kind == k_RotateImmediate; } 1394 1395 template<unsigned Min, unsigned Max> 1396 bool isPowerTwoInRange() const { 1397 if (!isImm()) return false; 1398 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1399 if (!CE) return false; 1400 int64_t Value = CE->getValue(); 1401 return Value > 0 && countPopulation((uint64_t)Value) == 1 && 1402 Value >= Min && Value <= Max; 1403 } 1404 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1405 1406 bool isModImmNot() const { 1407 if (!isImm()) return false; 1408 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1409 if (!CE) return false; 1410 int64_t Value = CE->getValue(); 1411 return ARM_AM::getSOImmVal(~Value) != -1; 1412 } 1413 1414 bool isModImmNeg() const { 1415 if (!isImm()) return false; 1416 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1417 if (!CE) return false; 1418 int64_t Value = CE->getValue(); 1419 return ARM_AM::getSOImmVal(Value) == -1 && 1420 ARM_AM::getSOImmVal(-Value) != -1; 1421 } 1422 1423 bool isThumbModImmNeg1_7() const { 1424 if (!isImm()) return false; 1425 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1426 if (!CE) return false; 1427 int32_t Value = -(int32_t)CE->getValue(); 1428 return 0 < Value && Value < 8; 1429 } 1430 1431 bool isThumbModImmNeg8_255() const { 1432 if (!isImm()) return false; 1433 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1434 if (!CE) return false; 1435 int32_t Value = -(int32_t)CE->getValue(); 1436 return 7 < Value && Value < 256; 1437 } 1438 1439 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1440 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1441 bool isPostIdxRegShifted() const { 1442 return Kind == k_PostIndexRegister && 1443 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); 1444 } 1445 bool isPostIdxReg() const { 1446 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; 1447 } 1448 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1449 if (!isGPRMem()) 1450 return false; 1451 // No offset of any kind. 1452 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1453 (alignOK || Memory.Alignment == Alignment); 1454 } 1455 bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const { 1456 if (!isGPRMem()) 1457 return false; 1458 1459 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1460 Memory.BaseRegNum)) 1461 return false; 1462 1463 // No offset of any kind. 1464 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1465 (alignOK || Memory.Alignment == Alignment); 1466 } 1467 bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const { 1468 if (!isGPRMem()) 1469 return false; 1470 1471 if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains( 1472 Memory.BaseRegNum)) 1473 return false; 1474 1475 // No offset of any kind. 1476 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1477 (alignOK || Memory.Alignment == Alignment); 1478 } 1479 bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const { 1480 if (!isGPRMem()) 1481 return false; 1482 1483 if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains( 1484 Memory.BaseRegNum)) 1485 return false; 1486 1487 // No offset of any kind. 1488 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1489 (alignOK || Memory.Alignment == Alignment); 1490 } 1491 bool isMemPCRelImm12() const { 1492 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1493 return false; 1494 // Base register must be PC. 1495 if (Memory.BaseRegNum != ARM::PC) 1496 return false; 1497 // Immediate offset in range [-4095, 4095]. 1498 if (!Memory.OffsetImm) return true; 1499 int64_t Val = Memory.OffsetImm->getValue(); 1500 return (Val > -4096 && Val < 4096) || 1501 (Val == std::numeric_limits<int32_t>::min()); 1502 } 1503 1504 bool isAlignedMemory() const { 1505 return isMemNoOffset(true); 1506 } 1507 1508 bool isAlignedMemoryNone() const { 1509 return isMemNoOffset(false, 0); 1510 } 1511 1512 bool isDupAlignedMemoryNone() const { 1513 return isMemNoOffset(false, 0); 1514 } 1515 1516 bool isAlignedMemory16() const { 1517 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1518 return true; 1519 return isMemNoOffset(false, 0); 1520 } 1521 1522 bool isDupAlignedMemory16() const { 1523 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1524 return true; 1525 return isMemNoOffset(false, 0); 1526 } 1527 1528 bool isAlignedMemory32() const { 1529 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1530 return true; 1531 return isMemNoOffset(false, 0); 1532 } 1533 1534 bool isDupAlignedMemory32() const { 1535 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1536 return true; 1537 return isMemNoOffset(false, 0); 1538 } 1539 1540 bool isAlignedMemory64() const { 1541 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1542 return true; 1543 return isMemNoOffset(false, 0); 1544 } 1545 1546 bool isDupAlignedMemory64() const { 1547 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1548 return true; 1549 return isMemNoOffset(false, 0); 1550 } 1551 1552 bool isAlignedMemory64or128() const { 1553 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1554 return true; 1555 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1556 return true; 1557 return isMemNoOffset(false, 0); 1558 } 1559 1560 bool isDupAlignedMemory64or128() const { 1561 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1562 return true; 1563 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1564 return true; 1565 return isMemNoOffset(false, 0); 1566 } 1567 1568 bool isAlignedMemory64or128or256() const { 1569 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1570 return true; 1571 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1572 return true; 1573 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1574 return true; 1575 return isMemNoOffset(false, 0); 1576 } 1577 1578 bool isAddrMode2() const { 1579 if (!isGPRMem() || Memory.Alignment != 0) return false; 1580 // Check for register offset. 1581 if (Memory.OffsetRegNum) return true; 1582 // Immediate offset in range [-4095, 4095]. 1583 if (!Memory.OffsetImm) return true; 1584 int64_t Val = Memory.OffsetImm->getValue(); 1585 return Val > -4096 && Val < 4096; 1586 } 1587 1588 bool isAM2OffsetImm() const { 1589 if (!isImm()) return false; 1590 // Immediate offset in range [-4095, 4095]. 1591 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1592 if (!CE) return false; 1593 int64_t Val = CE->getValue(); 1594 return (Val == std::numeric_limits<int32_t>::min()) || 1595 (Val > -4096 && Val < 4096); 1596 } 1597 1598 bool isAddrMode3() const { 1599 // If we have an immediate that's not a constant, treat it as a label 1600 // reference needing a fixup. If it is a constant, it's something else 1601 // and we reject it. 1602 if (isImm() && !isa<MCConstantExpr>(getImm())) 1603 return true; 1604 if (!isGPRMem() || Memory.Alignment != 0) return false; 1605 // No shifts are legal for AM3. 1606 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1607 // Check for register offset. 1608 if (Memory.OffsetRegNum) return true; 1609 // Immediate offset in range [-255, 255]. 1610 if (!Memory.OffsetImm) return true; 1611 int64_t Val = Memory.OffsetImm->getValue(); 1612 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we 1613 // have to check for this too. 1614 return (Val > -256 && Val < 256) || 1615 Val == std::numeric_limits<int32_t>::min(); 1616 } 1617 1618 bool isAM3Offset() const { 1619 if (isPostIdxReg()) 1620 return true; 1621 if (!isImm()) 1622 return false; 1623 // Immediate offset in range [-255, 255]. 1624 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1625 if (!CE) return false; 1626 int64_t Val = CE->getValue(); 1627 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1628 return (Val > -256 && Val < 256) || 1629 Val == std::numeric_limits<int32_t>::min(); 1630 } 1631 1632 bool isAddrMode5() const { 1633 // If we have an immediate that's not a constant, treat it as a label 1634 // reference needing a fixup. If it is a constant, it's something else 1635 // and we reject it. 1636 if (isImm() && !isa<MCConstantExpr>(getImm())) 1637 return true; 1638 if (!isGPRMem() || Memory.Alignment != 0) return false; 1639 // Check for register offset. 1640 if (Memory.OffsetRegNum) return false; 1641 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1642 if (!Memory.OffsetImm) return true; 1643 int64_t Val = Memory.OffsetImm->getValue(); 1644 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1645 Val == std::numeric_limits<int32_t>::min(); 1646 } 1647 1648 bool isAddrMode5FP16() const { 1649 // If we have an immediate that's not a constant, treat it as a label 1650 // reference needing a fixup. If it is a constant, it's something else 1651 // and we reject it. 1652 if (isImm() && !isa<MCConstantExpr>(getImm())) 1653 return true; 1654 if (!isGPRMem() || Memory.Alignment != 0) return false; 1655 // Check for register offset. 1656 if (Memory.OffsetRegNum) return false; 1657 // Immediate offset in range [-510, 510] and a multiple of 2. 1658 if (!Memory.OffsetImm) return true; 1659 int64_t Val = Memory.OffsetImm->getValue(); 1660 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || 1661 Val == std::numeric_limits<int32_t>::min(); 1662 } 1663 1664 bool isMemTBB() const { 1665 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1666 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1667 return false; 1668 return true; 1669 } 1670 1671 bool isMemTBH() const { 1672 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1673 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1674 Memory.Alignment != 0 ) 1675 return false; 1676 return true; 1677 } 1678 1679 bool isMemRegOffset() const { 1680 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1681 return false; 1682 return true; 1683 } 1684 1685 bool isT2MemRegOffset() const { 1686 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1687 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1688 return false; 1689 // Only lsl #{0, 1, 2, 3} allowed. 1690 if (Memory.ShiftType == ARM_AM::no_shift) 1691 return true; 1692 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1693 return false; 1694 return true; 1695 } 1696 1697 bool isMemThumbRR() const { 1698 // Thumb reg+reg addressing is simple. Just two registers, a base and 1699 // an offset. No shifts, negations or any other complicating factors. 1700 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1701 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1702 return false; 1703 return isARMLowRegister(Memory.BaseRegNum) && 1704 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1705 } 1706 1707 bool isMemThumbRIs4() const { 1708 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1709 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1710 return false; 1711 // Immediate offset, multiple of 4 in range [0, 124]. 1712 if (!Memory.OffsetImm) return true; 1713 int64_t Val = Memory.OffsetImm->getValue(); 1714 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1715 } 1716 1717 bool isMemThumbRIs2() const { 1718 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1719 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1720 return false; 1721 // Immediate offset, multiple of 4 in range [0, 62]. 1722 if (!Memory.OffsetImm) return true; 1723 int64_t Val = Memory.OffsetImm->getValue(); 1724 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1725 } 1726 1727 bool isMemThumbRIs1() const { 1728 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1729 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1730 return false; 1731 // Immediate offset in range [0, 31]. 1732 if (!Memory.OffsetImm) return true; 1733 int64_t Val = Memory.OffsetImm->getValue(); 1734 return Val >= 0 && Val <= 31; 1735 } 1736 1737 bool isMemThumbSPI() const { 1738 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1739 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1740 return false; 1741 // Immediate offset, multiple of 4 in range [0, 1020]. 1742 if (!Memory.OffsetImm) return true; 1743 int64_t Val = Memory.OffsetImm->getValue(); 1744 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1745 } 1746 1747 bool isMemImm8s4Offset() const { 1748 // If we have an immediate that's not a constant, treat it as a label 1749 // reference needing a fixup. If it is a constant, it's something else 1750 // and we reject it. 1751 if (isImm() && !isa<MCConstantExpr>(getImm())) 1752 return true; 1753 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1754 return false; 1755 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1756 if (!Memory.OffsetImm) return true; 1757 int64_t Val = Memory.OffsetImm->getValue(); 1758 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1759 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || 1760 Val == std::numeric_limits<int32_t>::min(); 1761 } 1762 bool isMemImm7s4Offset() const { 1763 // If we have an immediate that's not a constant, treat it as a label 1764 // reference needing a fixup. If it is a constant, it's something else 1765 // and we reject it. 1766 if (isImm() && !isa<MCConstantExpr>(getImm())) 1767 return true; 1768 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1769 !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1770 Memory.BaseRegNum)) 1771 return false; 1772 // Immediate offset a multiple of 4 in range [-508, 508]. 1773 if (!Memory.OffsetImm) return true; 1774 int64_t Val = Memory.OffsetImm->getValue(); 1775 // Special case, #-0 is INT32_MIN. 1776 return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN; 1777 } 1778 bool isMemImm0_1020s4Offset() const { 1779 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1780 return false; 1781 // Immediate offset a multiple of 4 in range [0, 1020]. 1782 if (!Memory.OffsetImm) return true; 1783 int64_t Val = Memory.OffsetImm->getValue(); 1784 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1785 } 1786 1787 bool isMemImm8Offset() const { 1788 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1789 return false; 1790 // Base reg of PC isn't allowed for these encodings. 1791 if (Memory.BaseRegNum == ARM::PC) return false; 1792 // Immediate offset in range [-255, 255]. 1793 if (!Memory.OffsetImm) return true; 1794 int64_t Val = Memory.OffsetImm->getValue(); 1795 return (Val == std::numeric_limits<int32_t>::min()) || 1796 (Val > -256 && Val < 256); 1797 } 1798 1799 template<unsigned Bits, unsigned RegClassID> 1800 bool isMemImm7ShiftedOffset() const { 1801 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1802 !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum)) 1803 return false; 1804 1805 // Expect an immediate offset equal to an element of the range 1806 // [-127, 127], shifted left by Bits. 1807 1808 if (!Memory.OffsetImm) return true; 1809 int64_t Val = Memory.OffsetImm->getValue(); 1810 1811 // INT32_MIN is a special-case value (indicating the encoding with 1812 // zero offset and the subtract bit set) 1813 if (Val == INT32_MIN) 1814 return true; 1815 1816 unsigned Divisor = 1U << Bits; 1817 1818 // Check that the low bits are zero 1819 if (Val % Divisor != 0) 1820 return false; 1821 1822 // Check that the remaining offset is within range. 1823 Val /= Divisor; 1824 return (Val >= -127 && Val <= 127); 1825 } 1826 1827 template <int shift> bool isMemRegRQOffset() const { 1828 if (!isMVEMem() || Memory.OffsetImm != 0 || Memory.Alignment != 0) 1829 return false; 1830 1831 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1832 Memory.BaseRegNum)) 1833 return false; 1834 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1835 Memory.OffsetRegNum)) 1836 return false; 1837 1838 if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift) 1839 return false; 1840 1841 if (shift > 0 && 1842 (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift)) 1843 return false; 1844 1845 return true; 1846 } 1847 1848 template <int shift> bool isMemRegQOffset() const { 1849 if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1850 return false; 1851 1852 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1853 Memory.BaseRegNum)) 1854 return false; 1855 1856 if(!Memory.OffsetImm) return true; 1857 static_assert(shift < 56, 1858 "Such that we dont shift by a value higher than 62"); 1859 int64_t Val = Memory.OffsetImm->getValue(); 1860 1861 // The value must be a multiple of (1 << shift) 1862 if ((Val & ((1U << shift) - 1)) != 0) 1863 return false; 1864 1865 // And be in the right range, depending on the amount that it is shifted 1866 // by. Shift 0, is equal to 7 unsigned bits, the sign bit is set 1867 // separately. 1868 int64_t Range = (1U << (7+shift)) - 1; 1869 return (Val == INT32_MIN) || (Val > -Range && Val < Range); 1870 } 1871 1872 bool isMemPosImm8Offset() const { 1873 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1874 return false; 1875 // Immediate offset in range [0, 255]. 1876 if (!Memory.OffsetImm) return true; 1877 int64_t Val = Memory.OffsetImm->getValue(); 1878 return Val >= 0 && Val < 256; 1879 } 1880 1881 bool isMemNegImm8Offset() const { 1882 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1883 return false; 1884 // Base reg of PC isn't allowed for these encodings. 1885 if (Memory.BaseRegNum == ARM::PC) return false; 1886 // Immediate offset in range [-255, -1]. 1887 if (!Memory.OffsetImm) return false; 1888 int64_t Val = Memory.OffsetImm->getValue(); 1889 return (Val == std::numeric_limits<int32_t>::min()) || 1890 (Val > -256 && Val < 0); 1891 } 1892 1893 bool isMemUImm12Offset() const { 1894 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1895 return false; 1896 // Immediate offset in range [0, 4095]. 1897 if (!Memory.OffsetImm) return true; 1898 int64_t Val = Memory.OffsetImm->getValue(); 1899 return (Val >= 0 && Val < 4096); 1900 } 1901 1902 bool isMemImm12Offset() const { 1903 // If we have an immediate that's not a constant, treat it as a label 1904 // reference needing a fixup. If it is a constant, it's something else 1905 // and we reject it. 1906 1907 if (isImm() && !isa<MCConstantExpr>(getImm())) 1908 return true; 1909 1910 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1911 return false; 1912 // Immediate offset in range [-4095, 4095]. 1913 if (!Memory.OffsetImm) return true; 1914 int64_t Val = Memory.OffsetImm->getValue(); 1915 return (Val > -4096 && Val < 4096) || 1916 (Val == std::numeric_limits<int32_t>::min()); 1917 } 1918 1919 bool isConstPoolAsmImm() const { 1920 // Delay processing of Constant Pool Immediate, this will turn into 1921 // a constant. Match no other operand 1922 return (isConstantPoolImm()); 1923 } 1924 1925 bool isPostIdxImm8() const { 1926 if (!isImm()) return false; 1927 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1928 if (!CE) return false; 1929 int64_t Val = CE->getValue(); 1930 return (Val > -256 && Val < 256) || 1931 (Val == std::numeric_limits<int32_t>::min()); 1932 } 1933 1934 bool isPostIdxImm8s4() const { 1935 if (!isImm()) return false; 1936 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1937 if (!CE) return false; 1938 int64_t Val = CE->getValue(); 1939 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1940 (Val == std::numeric_limits<int32_t>::min()); 1941 } 1942 1943 bool isMSRMask() const { return Kind == k_MSRMask; } 1944 bool isBankedReg() const { return Kind == k_BankedReg; } 1945 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1946 1947 // NEON operands. 1948 bool isSingleSpacedVectorList() const { 1949 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1950 } 1951 1952 bool isDoubleSpacedVectorList() const { 1953 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1954 } 1955 1956 bool isVecListOneD() const { 1957 if (!isSingleSpacedVectorList()) return false; 1958 return VectorList.Count == 1; 1959 } 1960 1961 bool isVecListTwoMQ() const { 1962 return isSingleSpacedVectorList() && VectorList.Count == 2 && 1963 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1964 VectorList.RegNum); 1965 } 1966 1967 bool isVecListDPair() const { 1968 if (!isSingleSpacedVectorList()) return false; 1969 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1970 .contains(VectorList.RegNum)); 1971 } 1972 1973 bool isVecListThreeD() const { 1974 if (!isSingleSpacedVectorList()) return false; 1975 return VectorList.Count == 3; 1976 } 1977 1978 bool isVecListFourD() const { 1979 if (!isSingleSpacedVectorList()) return false; 1980 return VectorList.Count == 4; 1981 } 1982 1983 bool isVecListDPairSpaced() const { 1984 if (Kind != k_VectorList) return false; 1985 if (isSingleSpacedVectorList()) return false; 1986 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1987 .contains(VectorList.RegNum)); 1988 } 1989 1990 bool isVecListThreeQ() const { 1991 if (!isDoubleSpacedVectorList()) return false; 1992 return VectorList.Count == 3; 1993 } 1994 1995 bool isVecListFourQ() const { 1996 if (!isDoubleSpacedVectorList()) return false; 1997 return VectorList.Count == 4; 1998 } 1999 2000 bool isVecListFourMQ() const { 2001 return isSingleSpacedVectorList() && VectorList.Count == 4 && 2002 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 2003 VectorList.RegNum); 2004 } 2005 2006 bool isSingleSpacedVectorAllLanes() const { 2007 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 2008 } 2009 2010 bool isDoubleSpacedVectorAllLanes() const { 2011 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 2012 } 2013 2014 bool isVecListOneDAllLanes() const { 2015 if (!isSingleSpacedVectorAllLanes()) return false; 2016 return VectorList.Count == 1; 2017 } 2018 2019 bool isVecListDPairAllLanes() const { 2020 if (!isSingleSpacedVectorAllLanes()) return false; 2021 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 2022 .contains(VectorList.RegNum)); 2023 } 2024 2025 bool isVecListDPairSpacedAllLanes() const { 2026 if (!isDoubleSpacedVectorAllLanes()) return false; 2027 return VectorList.Count == 2; 2028 } 2029 2030 bool isVecListThreeDAllLanes() const { 2031 if (!isSingleSpacedVectorAllLanes()) return false; 2032 return VectorList.Count == 3; 2033 } 2034 2035 bool isVecListThreeQAllLanes() const { 2036 if (!isDoubleSpacedVectorAllLanes()) return false; 2037 return VectorList.Count == 3; 2038 } 2039 2040 bool isVecListFourDAllLanes() const { 2041 if (!isSingleSpacedVectorAllLanes()) return false; 2042 return VectorList.Count == 4; 2043 } 2044 2045 bool isVecListFourQAllLanes() const { 2046 if (!isDoubleSpacedVectorAllLanes()) return false; 2047 return VectorList.Count == 4; 2048 } 2049 2050 bool isSingleSpacedVectorIndexed() const { 2051 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 2052 } 2053 2054 bool isDoubleSpacedVectorIndexed() const { 2055 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 2056 } 2057 2058 bool isVecListOneDByteIndexed() const { 2059 if (!isSingleSpacedVectorIndexed()) return false; 2060 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 2061 } 2062 2063 bool isVecListOneDHWordIndexed() const { 2064 if (!isSingleSpacedVectorIndexed()) return false; 2065 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 2066 } 2067 2068 bool isVecListOneDWordIndexed() const { 2069 if (!isSingleSpacedVectorIndexed()) return false; 2070 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 2071 } 2072 2073 bool isVecListTwoDByteIndexed() const { 2074 if (!isSingleSpacedVectorIndexed()) return false; 2075 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 2076 } 2077 2078 bool isVecListTwoDHWordIndexed() const { 2079 if (!isSingleSpacedVectorIndexed()) return false; 2080 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2081 } 2082 2083 bool isVecListTwoQWordIndexed() const { 2084 if (!isDoubleSpacedVectorIndexed()) return false; 2085 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2086 } 2087 2088 bool isVecListTwoQHWordIndexed() const { 2089 if (!isDoubleSpacedVectorIndexed()) return false; 2090 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2091 } 2092 2093 bool isVecListTwoDWordIndexed() const { 2094 if (!isSingleSpacedVectorIndexed()) return false; 2095 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2096 } 2097 2098 bool isVecListThreeDByteIndexed() const { 2099 if (!isSingleSpacedVectorIndexed()) return false; 2100 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 2101 } 2102 2103 bool isVecListThreeDHWordIndexed() const { 2104 if (!isSingleSpacedVectorIndexed()) return false; 2105 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2106 } 2107 2108 bool isVecListThreeQWordIndexed() const { 2109 if (!isDoubleSpacedVectorIndexed()) return false; 2110 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2111 } 2112 2113 bool isVecListThreeQHWordIndexed() const { 2114 if (!isDoubleSpacedVectorIndexed()) return false; 2115 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2116 } 2117 2118 bool isVecListThreeDWordIndexed() const { 2119 if (!isSingleSpacedVectorIndexed()) return false; 2120 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2121 } 2122 2123 bool isVecListFourDByteIndexed() const { 2124 if (!isSingleSpacedVectorIndexed()) return false; 2125 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 2126 } 2127 2128 bool isVecListFourDHWordIndexed() const { 2129 if (!isSingleSpacedVectorIndexed()) return false; 2130 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2131 } 2132 2133 bool isVecListFourQWordIndexed() const { 2134 if (!isDoubleSpacedVectorIndexed()) return false; 2135 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2136 } 2137 2138 bool isVecListFourQHWordIndexed() const { 2139 if (!isDoubleSpacedVectorIndexed()) return false; 2140 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2141 } 2142 2143 bool isVecListFourDWordIndexed() const { 2144 if (!isSingleSpacedVectorIndexed()) return false; 2145 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2146 } 2147 2148 bool isVectorIndex() const { return Kind == k_VectorIndex; } 2149 2150 template <unsigned NumLanes> 2151 bool isVectorIndexInRange() const { 2152 if (Kind != k_VectorIndex) return false; 2153 return VectorIndex.Val < NumLanes; 2154 } 2155 2156 bool isVectorIndex8() const { return isVectorIndexInRange<8>(); } 2157 bool isVectorIndex16() const { return isVectorIndexInRange<4>(); } 2158 bool isVectorIndex32() const { return isVectorIndexInRange<2>(); } 2159 bool isVectorIndex64() const { return isVectorIndexInRange<1>(); } 2160 2161 template<int PermittedValue, int OtherPermittedValue> 2162 bool isMVEPairVectorIndex() const { 2163 if (Kind != k_VectorIndex) return false; 2164 return VectorIndex.Val == PermittedValue || 2165 VectorIndex.Val == OtherPermittedValue; 2166 } 2167 2168 bool isNEONi8splat() const { 2169 if (!isImm()) return false; 2170 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2171 // Must be a constant. 2172 if (!CE) return false; 2173 int64_t Value = CE->getValue(); 2174 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 2175 // value. 2176 return Value >= 0 && Value < 256; 2177 } 2178 2179 bool isNEONi16splat() const { 2180 if (isNEONByteReplicate(2)) 2181 return false; // Leave that for bytes replication and forbid by default. 2182 if (!isImm()) 2183 return false; 2184 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2185 // Must be a constant. 2186 if (!CE) return false; 2187 unsigned Value = CE->getValue(); 2188 return ARM_AM::isNEONi16splat(Value); 2189 } 2190 2191 bool isNEONi16splatNot() const { 2192 if (!isImm()) 2193 return false; 2194 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2195 // Must be a constant. 2196 if (!CE) return false; 2197 unsigned Value = CE->getValue(); 2198 return ARM_AM::isNEONi16splat(~Value & 0xffff); 2199 } 2200 2201 bool isNEONi32splat() const { 2202 if (isNEONByteReplicate(4)) 2203 return false; // Leave that for bytes replication and forbid by default. 2204 if (!isImm()) 2205 return false; 2206 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2207 // Must be a constant. 2208 if (!CE) return false; 2209 unsigned Value = CE->getValue(); 2210 return ARM_AM::isNEONi32splat(Value); 2211 } 2212 2213 bool isNEONi32splatNot() const { 2214 if (!isImm()) 2215 return false; 2216 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2217 // Must be a constant. 2218 if (!CE) return false; 2219 unsigned Value = CE->getValue(); 2220 return ARM_AM::isNEONi32splat(~Value); 2221 } 2222 2223 static bool isValidNEONi32vmovImm(int64_t Value) { 2224 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 2225 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 2226 return ((Value & 0xffffffffffffff00) == 0) || 2227 ((Value & 0xffffffffffff00ff) == 0) || 2228 ((Value & 0xffffffffff00ffff) == 0) || 2229 ((Value & 0xffffffff00ffffff) == 0) || 2230 ((Value & 0xffffffffffff00ff) == 0xff) || 2231 ((Value & 0xffffffffff00ffff) == 0xffff); 2232 } 2233 2234 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { 2235 assert((Width == 8 || Width == 16 || Width == 32) && 2236 "Invalid element width"); 2237 assert(NumElems * Width <= 64 && "Invalid result width"); 2238 2239 if (!isImm()) 2240 return false; 2241 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2242 // Must be a constant. 2243 if (!CE) 2244 return false; 2245 int64_t Value = CE->getValue(); 2246 if (!Value) 2247 return false; // Don't bother with zero. 2248 if (Inv) 2249 Value = ~Value; 2250 2251 uint64_t Mask = (1ull << Width) - 1; 2252 uint64_t Elem = Value & Mask; 2253 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) 2254 return false; 2255 if (Width == 32 && !isValidNEONi32vmovImm(Elem)) 2256 return false; 2257 2258 for (unsigned i = 1; i < NumElems; ++i) { 2259 Value >>= Width; 2260 if ((Value & Mask) != Elem) 2261 return false; 2262 } 2263 return true; 2264 } 2265 2266 bool isNEONByteReplicate(unsigned NumBytes) const { 2267 return isNEONReplicate(8, NumBytes, false); 2268 } 2269 2270 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { 2271 assert((FromW == 8 || FromW == 16 || FromW == 32) && 2272 "Invalid source width"); 2273 assert((ToW == 16 || ToW == 32 || ToW == 64) && 2274 "Invalid destination width"); 2275 assert(FromW < ToW && "ToW is not less than FromW"); 2276 } 2277 2278 template<unsigned FromW, unsigned ToW> 2279 bool isNEONmovReplicate() const { 2280 checkNeonReplicateArgs(FromW, ToW); 2281 if (ToW == 64 && isNEONi64splat()) 2282 return false; 2283 return isNEONReplicate(FromW, ToW / FromW, false); 2284 } 2285 2286 template<unsigned FromW, unsigned ToW> 2287 bool isNEONinvReplicate() const { 2288 checkNeonReplicateArgs(FromW, ToW); 2289 return isNEONReplicate(FromW, ToW / FromW, true); 2290 } 2291 2292 bool isNEONi32vmov() const { 2293 if (isNEONByteReplicate(4)) 2294 return false; // Let it to be classified as byte-replicate case. 2295 if (!isImm()) 2296 return false; 2297 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2298 // Must be a constant. 2299 if (!CE) 2300 return false; 2301 return isValidNEONi32vmovImm(CE->getValue()); 2302 } 2303 2304 bool isNEONi32vmovNeg() const { 2305 if (!isImm()) return false; 2306 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2307 // Must be a constant. 2308 if (!CE) return false; 2309 return isValidNEONi32vmovImm(~CE->getValue()); 2310 } 2311 2312 bool isNEONi64splat() const { 2313 if (!isImm()) return false; 2314 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2315 // Must be a constant. 2316 if (!CE) return false; 2317 uint64_t Value = CE->getValue(); 2318 // i64 value with each byte being either 0 or 0xff. 2319 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 2320 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 2321 return true; 2322 } 2323 2324 template<int64_t Angle, int64_t Remainder> 2325 bool isComplexRotation() const { 2326 if (!isImm()) return false; 2327 2328 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2329 if (!CE) return false; 2330 uint64_t Value = CE->getValue(); 2331 2332 return (Value % Angle == Remainder && Value <= 270); 2333 } 2334 2335 bool isMVELongShift() const { 2336 if (!isImm()) return false; 2337 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2338 // Must be a constant. 2339 if (!CE) return false; 2340 uint64_t Value = CE->getValue(); 2341 return Value >= 1 && Value <= 32; 2342 } 2343 2344 bool isMveSaturateOp() const { 2345 if (!isImm()) return false; 2346 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2347 if (!CE) return false; 2348 uint64_t Value = CE->getValue(); 2349 return Value == 48 || Value == 64; 2350 } 2351 2352 bool isITCondCodeNoAL() const { 2353 if (!isITCondCode()) return false; 2354 ARMCC::CondCodes CC = getCondCode(); 2355 return CC != ARMCC::AL; 2356 } 2357 2358 bool isITCondCodeRestrictedI() const { 2359 if (!isITCondCode()) 2360 return false; 2361 ARMCC::CondCodes CC = getCondCode(); 2362 return CC == ARMCC::EQ || CC == ARMCC::NE; 2363 } 2364 2365 bool isITCondCodeRestrictedS() const { 2366 if (!isITCondCode()) 2367 return false; 2368 ARMCC::CondCodes CC = getCondCode(); 2369 return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE || 2370 CC == ARMCC::GE; 2371 } 2372 2373 bool isITCondCodeRestrictedU() const { 2374 if (!isITCondCode()) 2375 return false; 2376 ARMCC::CondCodes CC = getCondCode(); 2377 return CC == ARMCC::HS || CC == ARMCC::HI; 2378 } 2379 2380 bool isITCondCodeRestrictedFP() const { 2381 if (!isITCondCode()) 2382 return false; 2383 ARMCC::CondCodes CC = getCondCode(); 2384 return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT || 2385 CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE; 2386 } 2387 2388 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 2389 // Add as immediates when possible. Null MCExpr = 0. 2390 if (!Expr) 2391 Inst.addOperand(MCOperand::createImm(0)); 2392 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 2393 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2394 else 2395 Inst.addOperand(MCOperand::createExpr(Expr)); 2396 } 2397 2398 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 2399 assert(N == 1 && "Invalid number of operands!"); 2400 addExpr(Inst, getImm()); 2401 } 2402 2403 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 2404 assert(N == 1 && "Invalid number of operands!"); 2405 addExpr(Inst, getImm()); 2406 } 2407 2408 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 2409 assert(N == 2 && "Invalid number of operands!"); 2410 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2411 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 2412 Inst.addOperand(MCOperand::createReg(RegNum)); 2413 } 2414 2415 void addVPTPredNOperands(MCInst &Inst, unsigned N) const { 2416 assert(N == 2 && "Invalid number of operands!"); 2417 Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred()))); 2418 unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0; 2419 Inst.addOperand(MCOperand::createReg(RegNum)); 2420 } 2421 2422 void addVPTPredROperands(MCInst &Inst, unsigned N) const { 2423 assert(N == 3 && "Invalid number of operands!"); 2424 addVPTPredNOperands(Inst, N-1); 2425 unsigned RegNum; 2426 if (getVPTPred() == ARMVCC::None) { 2427 RegNum = 0; 2428 } else { 2429 unsigned NextOpIndex = Inst.getNumOperands(); 2430 const MCInstrDesc &MCID = ARMInsts[Inst.getOpcode()]; 2431 int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO); 2432 assert(TiedOp >= 0 && 2433 "Inactive register in vpred_r is not tied to an output!"); 2434 RegNum = Inst.getOperand(TiedOp).getReg(); 2435 } 2436 Inst.addOperand(MCOperand::createReg(RegNum)); 2437 } 2438 2439 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 2440 assert(N == 1 && "Invalid number of operands!"); 2441 Inst.addOperand(MCOperand::createImm(getCoproc())); 2442 } 2443 2444 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 2445 assert(N == 1 && "Invalid number of operands!"); 2446 Inst.addOperand(MCOperand::createImm(getCoproc())); 2447 } 2448 2449 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 2450 assert(N == 1 && "Invalid number of operands!"); 2451 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 2452 } 2453 2454 void addITMaskOperands(MCInst &Inst, unsigned N) const { 2455 assert(N == 1 && "Invalid number of operands!"); 2456 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 2457 } 2458 2459 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 2460 assert(N == 1 && "Invalid number of operands!"); 2461 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2462 } 2463 2464 void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const { 2465 assert(N == 1 && "Invalid number of operands!"); 2466 Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode())))); 2467 } 2468 2469 void addCCOutOperands(MCInst &Inst, unsigned N) const { 2470 assert(N == 1 && "Invalid number of operands!"); 2471 Inst.addOperand(MCOperand::createReg(getReg())); 2472 } 2473 2474 void addRegOperands(MCInst &Inst, unsigned N) const { 2475 assert(N == 1 && "Invalid number of operands!"); 2476 Inst.addOperand(MCOperand::createReg(getReg())); 2477 } 2478 2479 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 2480 assert(N == 3 && "Invalid number of operands!"); 2481 assert(isRegShiftedReg() && 2482 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 2483 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 2484 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 2485 Inst.addOperand(MCOperand::createImm( 2486 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 2487 } 2488 2489 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 2490 assert(N == 2 && "Invalid number of operands!"); 2491 assert(isRegShiftedImm() && 2492 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 2493 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 2494 // Shift of #32 is encoded as 0 where permitted 2495 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 2496 Inst.addOperand(MCOperand::createImm( 2497 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 2498 } 2499 2500 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 2501 assert(N == 1 && "Invalid number of operands!"); 2502 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 2503 ShifterImm.Imm)); 2504 } 2505 2506 void addRegListOperands(MCInst &Inst, unsigned N) const { 2507 assert(N == 1 && "Invalid number of operands!"); 2508 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2509 for (SmallVectorImpl<unsigned>::const_iterator 2510 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2511 Inst.addOperand(MCOperand::createReg(*I)); 2512 } 2513 2514 void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const { 2515 assert(N == 1 && "Invalid number of operands!"); 2516 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2517 for (SmallVectorImpl<unsigned>::const_iterator 2518 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2519 Inst.addOperand(MCOperand::createReg(*I)); 2520 } 2521 2522 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2523 addRegListOperands(Inst, N); 2524 } 2525 2526 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2527 addRegListOperands(Inst, N); 2528 } 2529 2530 void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2531 addRegListOperands(Inst, N); 2532 } 2533 2534 void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2535 addRegListOperands(Inst, N); 2536 } 2537 2538 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2539 assert(N == 1 && "Invalid number of operands!"); 2540 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2541 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2542 } 2543 2544 void addModImmOperands(MCInst &Inst, unsigned N) const { 2545 assert(N == 1 && "Invalid number of operands!"); 2546 2547 // Support for fixups (MCFixup) 2548 if (isImm()) 2549 return addImmOperands(Inst, N); 2550 2551 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2552 } 2553 2554 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2555 assert(N == 1 && "Invalid number of operands!"); 2556 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2557 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2558 Inst.addOperand(MCOperand::createImm(Enc)); 2559 } 2560 2561 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2562 assert(N == 1 && "Invalid number of operands!"); 2563 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2564 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2565 Inst.addOperand(MCOperand::createImm(Enc)); 2566 } 2567 2568 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 2569 assert(N == 1 && "Invalid number of operands!"); 2570 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2571 uint32_t Val = -CE->getValue(); 2572 Inst.addOperand(MCOperand::createImm(Val)); 2573 } 2574 2575 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 2576 assert(N == 1 && "Invalid number of operands!"); 2577 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2578 uint32_t Val = -CE->getValue(); 2579 Inst.addOperand(MCOperand::createImm(Val)); 2580 } 2581 2582 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2583 assert(N == 1 && "Invalid number of operands!"); 2584 // Munge the lsb/width into a bitfield mask. 2585 unsigned lsb = Bitfield.LSB; 2586 unsigned width = Bitfield.Width; 2587 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2588 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2589 (32 - (lsb + width))); 2590 Inst.addOperand(MCOperand::createImm(Mask)); 2591 } 2592 2593 void addImmOperands(MCInst &Inst, unsigned N) const { 2594 assert(N == 1 && "Invalid number of operands!"); 2595 addExpr(Inst, getImm()); 2596 } 2597 2598 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2599 assert(N == 1 && "Invalid number of operands!"); 2600 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2601 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2602 } 2603 2604 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2605 assert(N == 1 && "Invalid number of operands!"); 2606 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2607 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2608 } 2609 2610 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2611 assert(N == 1 && "Invalid number of operands!"); 2612 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2613 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2614 Inst.addOperand(MCOperand::createImm(Val)); 2615 } 2616 2617 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2618 assert(N == 1 && "Invalid number of operands!"); 2619 // FIXME: We really want to scale the value here, but the LDRD/STRD 2620 // instruction don't encode operands that way yet. 2621 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2622 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2623 } 2624 2625 void addImm7s4Operands(MCInst &Inst, unsigned N) const { 2626 assert(N == 1 && "Invalid number of operands!"); 2627 // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR 2628 // instruction don't encode operands that way yet. 2629 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2630 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2631 } 2632 2633 void addImm7Shift0Operands(MCInst &Inst, unsigned N) const { 2634 assert(N == 1 && "Invalid number of operands!"); 2635 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2636 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2637 } 2638 2639 void addImm7Shift1Operands(MCInst &Inst, unsigned N) const { 2640 assert(N == 1 && "Invalid number of operands!"); 2641 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2642 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2643 } 2644 2645 void addImm7Shift2Operands(MCInst &Inst, unsigned N) const { 2646 assert(N == 1 && "Invalid number of operands!"); 2647 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2648 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2649 } 2650 2651 void addImm7Operands(MCInst &Inst, unsigned N) const { 2652 assert(N == 1 && "Invalid number of operands!"); 2653 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2654 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2655 } 2656 2657 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2658 assert(N == 1 && "Invalid number of operands!"); 2659 // The immediate is scaled by four in the encoding and is stored 2660 // in the MCInst as such. Lop off the low two bits here. 2661 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2662 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2663 } 2664 2665 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2666 assert(N == 1 && "Invalid number of operands!"); 2667 // The immediate is scaled by four in the encoding and is stored 2668 // in the MCInst as such. Lop off the low two bits here. 2669 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2670 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2671 } 2672 2673 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2674 assert(N == 1 && "Invalid number of operands!"); 2675 // The immediate is scaled by four in the encoding and is stored 2676 // in the MCInst as such. Lop off the low two bits here. 2677 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2678 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2679 } 2680 2681 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2682 assert(N == 1 && "Invalid number of operands!"); 2683 // The constant encodes as the immediate-1, and we store in the instruction 2684 // the bits as encoded, so subtract off one here. 2685 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2686 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2687 } 2688 2689 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2690 assert(N == 1 && "Invalid number of operands!"); 2691 // The constant encodes as the immediate-1, and we store in the instruction 2692 // the bits as encoded, so subtract off one here. 2693 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2694 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2695 } 2696 2697 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2698 assert(N == 1 && "Invalid number of operands!"); 2699 // The constant encodes as the immediate, except for 32, which encodes as 2700 // zero. 2701 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2702 unsigned Imm = CE->getValue(); 2703 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2704 } 2705 2706 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2707 assert(N == 1 && "Invalid number of operands!"); 2708 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2709 // the instruction as well. 2710 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2711 int Val = CE->getValue(); 2712 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2713 } 2714 2715 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2716 assert(N == 1 && "Invalid number of operands!"); 2717 // The operand is actually a t2_so_imm, but we have its bitwise 2718 // negation in the assembly source, so twiddle it here. 2719 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2720 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2721 } 2722 2723 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2724 assert(N == 1 && "Invalid number of operands!"); 2725 // The operand is actually a t2_so_imm, but we have its 2726 // negation in the assembly source, so twiddle it here. 2727 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2728 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2729 } 2730 2731 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2732 assert(N == 1 && "Invalid number of operands!"); 2733 // The operand is actually an imm0_4095, but we have its 2734 // negation in the assembly source, so twiddle it here. 2735 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2736 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2737 } 2738 2739 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2740 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2741 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2742 return; 2743 } 2744 const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val); 2745 Inst.addOperand(MCOperand::createExpr(SR)); 2746 } 2747 2748 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2749 assert(N == 1 && "Invalid number of operands!"); 2750 if (isImm()) { 2751 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2752 if (CE) { 2753 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2754 return; 2755 } 2756 const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val); 2757 Inst.addOperand(MCOperand::createExpr(SR)); 2758 return; 2759 } 2760 2761 assert(isGPRMem() && "Unknown value type!"); 2762 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2763 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2764 } 2765 2766 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2767 assert(N == 1 && "Invalid number of operands!"); 2768 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2769 } 2770 2771 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2772 assert(N == 1 && "Invalid number of operands!"); 2773 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2774 } 2775 2776 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2777 assert(N == 1 && "Invalid number of operands!"); 2778 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt()))); 2779 } 2780 2781 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2782 assert(N == 1 && "Invalid number of operands!"); 2783 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2784 } 2785 2786 void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const { 2787 assert(N == 1 && "Invalid number of operands!"); 2788 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2789 } 2790 2791 void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const { 2792 assert(N == 1 && "Invalid number of operands!"); 2793 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2794 } 2795 2796 void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const { 2797 assert(N == 1 && "Invalid number of operands!"); 2798 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2799 } 2800 2801 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2802 assert(N == 1 && "Invalid number of operands!"); 2803 int32_t Imm = Memory.OffsetImm->getValue(); 2804 Inst.addOperand(MCOperand::createImm(Imm)); 2805 } 2806 2807 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2808 assert(N == 1 && "Invalid number of operands!"); 2809 assert(isImm() && "Not an immediate!"); 2810 2811 // If we have an immediate that's not a constant, treat it as a label 2812 // reference needing a fixup. 2813 if (!isa<MCConstantExpr>(getImm())) { 2814 Inst.addOperand(MCOperand::createExpr(getImm())); 2815 return; 2816 } 2817 2818 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2819 int Val = CE->getValue(); 2820 Inst.addOperand(MCOperand::createImm(Val)); 2821 } 2822 2823 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2824 assert(N == 2 && "Invalid number of operands!"); 2825 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2826 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2827 } 2828 2829 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2830 addAlignedMemoryOperands(Inst, N); 2831 } 2832 2833 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2834 addAlignedMemoryOperands(Inst, N); 2835 } 2836 2837 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2838 addAlignedMemoryOperands(Inst, N); 2839 } 2840 2841 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2842 addAlignedMemoryOperands(Inst, N); 2843 } 2844 2845 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2846 addAlignedMemoryOperands(Inst, N); 2847 } 2848 2849 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2850 addAlignedMemoryOperands(Inst, N); 2851 } 2852 2853 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2854 addAlignedMemoryOperands(Inst, N); 2855 } 2856 2857 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2858 addAlignedMemoryOperands(Inst, N); 2859 } 2860 2861 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2862 addAlignedMemoryOperands(Inst, N); 2863 } 2864 2865 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2866 addAlignedMemoryOperands(Inst, N); 2867 } 2868 2869 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2870 addAlignedMemoryOperands(Inst, N); 2871 } 2872 2873 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2874 assert(N == 3 && "Invalid number of operands!"); 2875 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2876 if (!Memory.OffsetRegNum) { 2877 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2878 // Special case for #-0 2879 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2880 if (Val < 0) Val = -Val; 2881 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2882 } else { 2883 // For register offset, we encode the shift type and negation flag 2884 // here. 2885 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2886 Memory.ShiftImm, Memory.ShiftType); 2887 } 2888 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2889 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2890 Inst.addOperand(MCOperand::createImm(Val)); 2891 } 2892 2893 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2894 assert(N == 2 && "Invalid number of operands!"); 2895 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2896 assert(CE && "non-constant AM2OffsetImm operand!"); 2897 int32_t Val = CE->getValue(); 2898 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2899 // Special case for #-0 2900 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2901 if (Val < 0) Val = -Val; 2902 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2903 Inst.addOperand(MCOperand::createReg(0)); 2904 Inst.addOperand(MCOperand::createImm(Val)); 2905 } 2906 2907 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2908 assert(N == 3 && "Invalid number of operands!"); 2909 // If we have an immediate that's not a constant, treat it as a label 2910 // reference needing a fixup. If it is a constant, it's something else 2911 // and we reject it. 2912 if (isImm()) { 2913 Inst.addOperand(MCOperand::createExpr(getImm())); 2914 Inst.addOperand(MCOperand::createReg(0)); 2915 Inst.addOperand(MCOperand::createImm(0)); 2916 return; 2917 } 2918 2919 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2920 if (!Memory.OffsetRegNum) { 2921 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2922 // Special case for #-0 2923 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2924 if (Val < 0) Val = -Val; 2925 Val = ARM_AM::getAM3Opc(AddSub, Val); 2926 } else { 2927 // For register offset, we encode the shift type and negation flag 2928 // here. 2929 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2930 } 2931 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2932 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2933 Inst.addOperand(MCOperand::createImm(Val)); 2934 } 2935 2936 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2937 assert(N == 2 && "Invalid number of operands!"); 2938 if (Kind == k_PostIndexRegister) { 2939 int32_t Val = 2940 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2941 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2942 Inst.addOperand(MCOperand::createImm(Val)); 2943 return; 2944 } 2945 2946 // Constant offset. 2947 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2948 int32_t Val = CE->getValue(); 2949 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2950 // Special case for #-0 2951 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2952 if (Val < 0) Val = -Val; 2953 Val = ARM_AM::getAM3Opc(AddSub, Val); 2954 Inst.addOperand(MCOperand::createReg(0)); 2955 Inst.addOperand(MCOperand::createImm(Val)); 2956 } 2957 2958 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2959 assert(N == 2 && "Invalid number of operands!"); 2960 // If we have an immediate that's not a constant, treat it as a label 2961 // reference needing a fixup. If it is a constant, it's something else 2962 // and we reject it. 2963 if (isImm()) { 2964 Inst.addOperand(MCOperand::createExpr(getImm())); 2965 Inst.addOperand(MCOperand::createImm(0)); 2966 return; 2967 } 2968 2969 // The lower two bits are always zero and as such are not encoded. 2970 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2971 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2972 // Special case for #-0 2973 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2974 if (Val < 0) Val = -Val; 2975 Val = ARM_AM::getAM5Opc(AddSub, Val); 2976 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2977 Inst.addOperand(MCOperand::createImm(Val)); 2978 } 2979 2980 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2981 assert(N == 2 && "Invalid number of operands!"); 2982 // If we have an immediate that's not a constant, treat it as a label 2983 // reference needing a fixup. If it is a constant, it's something else 2984 // and we reject it. 2985 if (isImm()) { 2986 Inst.addOperand(MCOperand::createExpr(getImm())); 2987 Inst.addOperand(MCOperand::createImm(0)); 2988 return; 2989 } 2990 2991 // The lower bit is always zero and as such is not encoded. 2992 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2993 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2994 // Special case for #-0 2995 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2996 if (Val < 0) Val = -Val; 2997 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2998 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2999 Inst.addOperand(MCOperand::createImm(Val)); 3000 } 3001 3002 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 3003 assert(N == 2 && "Invalid number of operands!"); 3004 // If we have an immediate that's not a constant, treat it as a label 3005 // reference needing a fixup. If it is a constant, it's something else 3006 // and we reject it. 3007 if (isImm()) { 3008 Inst.addOperand(MCOperand::createExpr(getImm())); 3009 Inst.addOperand(MCOperand::createImm(0)); 3010 return; 3011 } 3012 3013 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3014 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3015 Inst.addOperand(MCOperand::createImm(Val)); 3016 } 3017 3018 void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const { 3019 assert(N == 2 && "Invalid number of operands!"); 3020 // If we have an immediate that's not a constant, treat it as a label 3021 // reference needing a fixup. If it is a constant, it's something else 3022 // and we reject it. 3023 if (isImm()) { 3024 Inst.addOperand(MCOperand::createExpr(getImm())); 3025 Inst.addOperand(MCOperand::createImm(0)); 3026 return; 3027 } 3028 3029 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3030 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3031 Inst.addOperand(MCOperand::createImm(Val)); 3032 } 3033 3034 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 3035 assert(N == 2 && "Invalid number of operands!"); 3036 // The lower two bits are always zero and as such are not encoded. 3037 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 3038 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3039 Inst.addOperand(MCOperand::createImm(Val)); 3040 } 3041 3042 void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const { 3043 assert(N == 2 && "Invalid number of operands!"); 3044 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3045 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3046 Inst.addOperand(MCOperand::createImm(Val)); 3047 } 3048 3049 void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const { 3050 assert(N == 2 && "Invalid number of operands!"); 3051 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3052 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3053 } 3054 3055 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 3056 assert(N == 2 && "Invalid number of operands!"); 3057 // If this is an immediate, it's a label reference. 3058 if (isImm()) { 3059 addExpr(Inst, getImm()); 3060 Inst.addOperand(MCOperand::createImm(0)); 3061 return; 3062 } 3063 3064 // Otherwise, it's a normal memory reg+offset. 3065 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3066 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3067 Inst.addOperand(MCOperand::createImm(Val)); 3068 } 3069 3070 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 3071 assert(N == 2 && "Invalid number of operands!"); 3072 // If this is an immediate, it's a label reference. 3073 if (isImm()) { 3074 addExpr(Inst, getImm()); 3075 Inst.addOperand(MCOperand::createImm(0)); 3076 return; 3077 } 3078 3079 // Otherwise, it's a normal memory reg+offset. 3080 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3081 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3082 Inst.addOperand(MCOperand::createImm(Val)); 3083 } 3084 3085 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 3086 assert(N == 1 && "Invalid number of operands!"); 3087 // This is container for the immediate that we will create the constant 3088 // pool from 3089 addExpr(Inst, getConstantPoolImm()); 3090 return; 3091 } 3092 3093 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 3094 assert(N == 2 && "Invalid number of operands!"); 3095 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3096 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3097 } 3098 3099 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 3100 assert(N == 2 && "Invalid number of operands!"); 3101 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3102 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3103 } 3104 3105 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3106 assert(N == 3 && "Invalid number of operands!"); 3107 unsigned Val = 3108 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 3109 Memory.ShiftImm, Memory.ShiftType); 3110 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3111 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3112 Inst.addOperand(MCOperand::createImm(Val)); 3113 } 3114 3115 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3116 assert(N == 3 && "Invalid number of operands!"); 3117 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3118 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3119 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 3120 } 3121 3122 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 3123 assert(N == 2 && "Invalid number of operands!"); 3124 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3125 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3126 } 3127 3128 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 3129 assert(N == 2 && "Invalid number of operands!"); 3130 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 3131 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3132 Inst.addOperand(MCOperand::createImm(Val)); 3133 } 3134 3135 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 3136 assert(N == 2 && "Invalid number of operands!"); 3137 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 3138 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3139 Inst.addOperand(MCOperand::createImm(Val)); 3140 } 3141 3142 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 3143 assert(N == 2 && "Invalid number of operands!"); 3144 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 3145 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3146 Inst.addOperand(MCOperand::createImm(Val)); 3147 } 3148 3149 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 3150 assert(N == 2 && "Invalid number of operands!"); 3151 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 3152 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3153 Inst.addOperand(MCOperand::createImm(Val)); 3154 } 3155 3156 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 3157 assert(N == 1 && "Invalid number of operands!"); 3158 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3159 assert(CE && "non-constant post-idx-imm8 operand!"); 3160 int Imm = CE->getValue(); 3161 bool isAdd = Imm >= 0; 3162 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3163 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 3164 Inst.addOperand(MCOperand::createImm(Imm)); 3165 } 3166 3167 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 3168 assert(N == 1 && "Invalid number of operands!"); 3169 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3170 assert(CE && "non-constant post-idx-imm8s4 operand!"); 3171 int Imm = CE->getValue(); 3172 bool isAdd = Imm >= 0; 3173 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3174 // Immediate is scaled by 4. 3175 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 3176 Inst.addOperand(MCOperand::createImm(Imm)); 3177 } 3178 3179 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 3180 assert(N == 2 && "Invalid number of operands!"); 3181 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3182 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 3183 } 3184 3185 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 3186 assert(N == 2 && "Invalid number of operands!"); 3187 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3188 // The sign, shift type, and shift amount are encoded in a single operand 3189 // using the AM2 encoding helpers. 3190 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 3191 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 3192 PostIdxReg.ShiftTy); 3193 Inst.addOperand(MCOperand::createImm(Imm)); 3194 } 3195 3196 void addPowerTwoOperands(MCInst &Inst, unsigned N) const { 3197 assert(N == 1 && "Invalid number of operands!"); 3198 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3199 Inst.addOperand(MCOperand::createImm(CE->getValue())); 3200 } 3201 3202 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 3203 assert(N == 1 && "Invalid number of operands!"); 3204 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 3205 } 3206 3207 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 3208 assert(N == 1 && "Invalid number of operands!"); 3209 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 3210 } 3211 3212 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 3213 assert(N == 1 && "Invalid number of operands!"); 3214 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 3215 } 3216 3217 void addVecListOperands(MCInst &Inst, unsigned N) const { 3218 assert(N == 1 && "Invalid number of operands!"); 3219 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3220 } 3221 3222 void addMVEVecListOperands(MCInst &Inst, unsigned N) const { 3223 assert(N == 1 && "Invalid number of operands!"); 3224 3225 // When we come here, the VectorList field will identify a range 3226 // of q-registers by its base register and length, and it will 3227 // have already been error-checked to be the expected length of 3228 // range and contain only q-regs in the range q0-q7. So we can 3229 // count on the base register being in the range q0-q6 (for 2 3230 // regs) or q0-q4 (for 4) 3231 // 3232 // The MVE instructions taking a register range of this kind will 3233 // need an operand in the QQPR or QQQQPR class, representing the 3234 // entire range as a unit. So we must translate into that class, 3235 // by finding the index of the base register in the MQPR reg 3236 // class, and returning the super-register at the corresponding 3237 // index in the target class. 3238 3239 const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID]; 3240 const MCRegisterClass *RC_out = (VectorList.Count == 2) ? 3241 &ARMMCRegisterClasses[ARM::QQPRRegClassID] : 3242 &ARMMCRegisterClasses[ARM::QQQQPRRegClassID]; 3243 3244 unsigned I, E = RC_out->getNumRegs(); 3245 for (I = 0; I < E; I++) 3246 if (RC_in->getRegister(I) == VectorList.RegNum) 3247 break; 3248 assert(I < E && "Invalid vector list start register!"); 3249 3250 Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I))); 3251 } 3252 3253 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 3254 assert(N == 2 && "Invalid number of operands!"); 3255 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3256 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 3257 } 3258 3259 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 3260 assert(N == 1 && "Invalid number of operands!"); 3261 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3262 } 3263 3264 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 3265 assert(N == 1 && "Invalid number of operands!"); 3266 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3267 } 3268 3269 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 3270 assert(N == 1 && "Invalid number of operands!"); 3271 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3272 } 3273 3274 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { 3275 assert(N == 1 && "Invalid number of operands!"); 3276 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3277 } 3278 3279 void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const { 3280 assert(N == 1 && "Invalid number of operands!"); 3281 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3282 } 3283 3284 void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const { 3285 assert(N == 1 && "Invalid number of operands!"); 3286 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3287 } 3288 3289 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 3290 assert(N == 1 && "Invalid number of operands!"); 3291 // The immediate encodes the type of constant as well as the value. 3292 // Mask in that this is an i8 splat. 3293 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3294 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 3295 } 3296 3297 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 3298 assert(N == 1 && "Invalid number of operands!"); 3299 // The immediate encodes the type of constant as well as the value. 3300 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3301 unsigned Value = CE->getValue(); 3302 Value = ARM_AM::encodeNEONi16splat(Value); 3303 Inst.addOperand(MCOperand::createImm(Value)); 3304 } 3305 3306 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 3307 assert(N == 1 && "Invalid number of operands!"); 3308 // The immediate encodes the type of constant as well as the value. 3309 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3310 unsigned Value = CE->getValue(); 3311 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 3312 Inst.addOperand(MCOperand::createImm(Value)); 3313 } 3314 3315 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 3316 assert(N == 1 && "Invalid number of operands!"); 3317 // The immediate encodes the type of constant as well as the value. 3318 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3319 unsigned Value = CE->getValue(); 3320 Value = ARM_AM::encodeNEONi32splat(Value); 3321 Inst.addOperand(MCOperand::createImm(Value)); 3322 } 3323 3324 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 3325 assert(N == 1 && "Invalid number of operands!"); 3326 // The immediate encodes the type of constant as well as the value. 3327 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3328 unsigned Value = CE->getValue(); 3329 Value = ARM_AM::encodeNEONi32splat(~Value); 3330 Inst.addOperand(MCOperand::createImm(Value)); 3331 } 3332 3333 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { 3334 // The immediate encodes the type of constant as well as the value. 3335 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3336 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 3337 Inst.getOpcode() == ARM::VMOVv16i8) && 3338 "All instructions that wants to replicate non-zero byte " 3339 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 3340 unsigned Value = CE->getValue(); 3341 if (Inv) 3342 Value = ~Value; 3343 unsigned B = Value & 0xff; 3344 B |= 0xe00; // cmode = 0b1110 3345 Inst.addOperand(MCOperand::createImm(B)); 3346 } 3347 3348 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3349 assert(N == 1 && "Invalid number of operands!"); 3350 addNEONi8ReplicateOperands(Inst, true); 3351 } 3352 3353 static unsigned encodeNeonVMOVImmediate(unsigned Value) { 3354 if (Value >= 256 && Value <= 0xffff) 3355 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 3356 else if (Value > 0xffff && Value <= 0xffffff) 3357 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 3358 else if (Value > 0xffffff) 3359 Value = (Value >> 24) | 0x600; 3360 return Value; 3361 } 3362 3363 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 3364 assert(N == 1 && "Invalid number of operands!"); 3365 // The immediate encodes the type of constant as well as the value. 3366 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3367 unsigned Value = encodeNeonVMOVImmediate(CE->getValue()); 3368 Inst.addOperand(MCOperand::createImm(Value)); 3369 } 3370 3371 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3372 assert(N == 1 && "Invalid number of operands!"); 3373 addNEONi8ReplicateOperands(Inst, false); 3374 } 3375 3376 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { 3377 assert(N == 1 && "Invalid number of operands!"); 3378 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3379 assert((Inst.getOpcode() == ARM::VMOVv4i16 || 3380 Inst.getOpcode() == ARM::VMOVv8i16 || 3381 Inst.getOpcode() == ARM::VMVNv4i16 || 3382 Inst.getOpcode() == ARM::VMVNv8i16) && 3383 "All instructions that want to replicate non-zero half-word " 3384 "always must be replaced with V{MOV,MVN}v{4,8}i16."); 3385 uint64_t Value = CE->getValue(); 3386 unsigned Elem = Value & 0xffff; 3387 if (Elem >= 256) 3388 Elem = (Elem >> 8) | 0x200; 3389 Inst.addOperand(MCOperand::createImm(Elem)); 3390 } 3391 3392 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 3393 assert(N == 1 && "Invalid number of operands!"); 3394 // The immediate encodes the type of constant as well as the value. 3395 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3396 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue()); 3397 Inst.addOperand(MCOperand::createImm(Value)); 3398 } 3399 3400 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { 3401 assert(N == 1 && "Invalid number of operands!"); 3402 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3403 assert((Inst.getOpcode() == ARM::VMOVv2i32 || 3404 Inst.getOpcode() == ARM::VMOVv4i32 || 3405 Inst.getOpcode() == ARM::VMVNv2i32 || 3406 Inst.getOpcode() == ARM::VMVNv4i32) && 3407 "All instructions that want to replicate non-zero word " 3408 "always must be replaced with V{MOV,MVN}v{2,4}i32."); 3409 uint64_t Value = CE->getValue(); 3410 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff); 3411 Inst.addOperand(MCOperand::createImm(Elem)); 3412 } 3413 3414 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 3415 assert(N == 1 && "Invalid number of operands!"); 3416 // The immediate encodes the type of constant as well as the value. 3417 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3418 uint64_t Value = CE->getValue(); 3419 unsigned Imm = 0; 3420 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 3421 Imm |= (Value & 1) << i; 3422 } 3423 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 3424 } 3425 3426 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { 3427 assert(N == 1 && "Invalid number of operands!"); 3428 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3429 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); 3430 } 3431 3432 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { 3433 assert(N == 1 && "Invalid number of operands!"); 3434 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3435 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); 3436 } 3437 3438 void addMveSaturateOperands(MCInst &Inst, unsigned N) const { 3439 assert(N == 1 && "Invalid number of operands!"); 3440 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3441 unsigned Imm = CE->getValue(); 3442 assert((Imm == 48 || Imm == 64) && "Invalid saturate operand"); 3443 Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0)); 3444 } 3445 3446 void print(raw_ostream &OS) const override; 3447 3448 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 3449 auto Op = std::make_unique<ARMOperand>(k_ITCondMask); 3450 Op->ITMask.Mask = Mask; 3451 Op->StartLoc = S; 3452 Op->EndLoc = S; 3453 return Op; 3454 } 3455 3456 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 3457 SMLoc S) { 3458 auto Op = std::make_unique<ARMOperand>(k_CondCode); 3459 Op->CC.Val = CC; 3460 Op->StartLoc = S; 3461 Op->EndLoc = S; 3462 return Op; 3463 } 3464 3465 static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC, 3466 SMLoc S) { 3467 auto Op = std::make_unique<ARMOperand>(k_VPTPred); 3468 Op->VCC.Val = CC; 3469 Op->StartLoc = S; 3470 Op->EndLoc = S; 3471 return Op; 3472 } 3473 3474 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 3475 auto Op = std::make_unique<ARMOperand>(k_CoprocNum); 3476 Op->Cop.Val = CopVal; 3477 Op->StartLoc = S; 3478 Op->EndLoc = S; 3479 return Op; 3480 } 3481 3482 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 3483 auto Op = std::make_unique<ARMOperand>(k_CoprocReg); 3484 Op->Cop.Val = CopVal; 3485 Op->StartLoc = S; 3486 Op->EndLoc = S; 3487 return Op; 3488 } 3489 3490 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 3491 SMLoc E) { 3492 auto Op = std::make_unique<ARMOperand>(k_CoprocOption); 3493 Op->Cop.Val = Val; 3494 Op->StartLoc = S; 3495 Op->EndLoc = E; 3496 return Op; 3497 } 3498 3499 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 3500 auto Op = std::make_unique<ARMOperand>(k_CCOut); 3501 Op->Reg.RegNum = RegNum; 3502 Op->StartLoc = S; 3503 Op->EndLoc = S; 3504 return Op; 3505 } 3506 3507 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 3508 auto Op = std::make_unique<ARMOperand>(k_Token); 3509 Op->Tok.Data = Str.data(); 3510 Op->Tok.Length = Str.size(); 3511 Op->StartLoc = S; 3512 Op->EndLoc = S; 3513 return Op; 3514 } 3515 3516 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 3517 SMLoc E) { 3518 auto Op = std::make_unique<ARMOperand>(k_Register); 3519 Op->Reg.RegNum = RegNum; 3520 Op->StartLoc = S; 3521 Op->EndLoc = E; 3522 return Op; 3523 } 3524 3525 static std::unique_ptr<ARMOperand> 3526 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3527 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 3528 SMLoc E) { 3529 auto Op = std::make_unique<ARMOperand>(k_ShiftedRegister); 3530 Op->RegShiftedReg.ShiftTy = ShTy; 3531 Op->RegShiftedReg.SrcReg = SrcReg; 3532 Op->RegShiftedReg.ShiftReg = ShiftReg; 3533 Op->RegShiftedReg.ShiftImm = ShiftImm; 3534 Op->StartLoc = S; 3535 Op->EndLoc = E; 3536 return Op; 3537 } 3538 3539 static std::unique_ptr<ARMOperand> 3540 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3541 unsigned ShiftImm, SMLoc S, SMLoc E) { 3542 auto Op = std::make_unique<ARMOperand>(k_ShiftedImmediate); 3543 Op->RegShiftedImm.ShiftTy = ShTy; 3544 Op->RegShiftedImm.SrcReg = SrcReg; 3545 Op->RegShiftedImm.ShiftImm = ShiftImm; 3546 Op->StartLoc = S; 3547 Op->EndLoc = E; 3548 return Op; 3549 } 3550 3551 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 3552 SMLoc S, SMLoc E) { 3553 auto Op = std::make_unique<ARMOperand>(k_ShifterImmediate); 3554 Op->ShifterImm.isASR = isASR; 3555 Op->ShifterImm.Imm = Imm; 3556 Op->StartLoc = S; 3557 Op->EndLoc = E; 3558 return Op; 3559 } 3560 3561 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 3562 SMLoc E) { 3563 auto Op = std::make_unique<ARMOperand>(k_RotateImmediate); 3564 Op->RotImm.Imm = Imm; 3565 Op->StartLoc = S; 3566 Op->EndLoc = E; 3567 return Op; 3568 } 3569 3570 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 3571 SMLoc S, SMLoc E) { 3572 auto Op = std::make_unique<ARMOperand>(k_ModifiedImmediate); 3573 Op->ModImm.Bits = Bits; 3574 Op->ModImm.Rot = Rot; 3575 Op->StartLoc = S; 3576 Op->EndLoc = E; 3577 return Op; 3578 } 3579 3580 static std::unique_ptr<ARMOperand> 3581 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 3582 auto Op = std::make_unique<ARMOperand>(k_ConstantPoolImmediate); 3583 Op->Imm.Val = Val; 3584 Op->StartLoc = S; 3585 Op->EndLoc = E; 3586 return Op; 3587 } 3588 3589 static std::unique_ptr<ARMOperand> 3590 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 3591 auto Op = std::make_unique<ARMOperand>(k_BitfieldDescriptor); 3592 Op->Bitfield.LSB = LSB; 3593 Op->Bitfield.Width = Width; 3594 Op->StartLoc = S; 3595 Op->EndLoc = E; 3596 return Op; 3597 } 3598 3599 static std::unique_ptr<ARMOperand> 3600 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 3601 SMLoc StartLoc, SMLoc EndLoc) { 3602 assert(Regs.size() > 0 && "RegList contains no registers?"); 3603 KindTy Kind = k_RegisterList; 3604 3605 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 3606 Regs.front().second)) { 3607 if (Regs.back().second == ARM::VPR) 3608 Kind = k_FPDRegisterListWithVPR; 3609 else 3610 Kind = k_DPRRegisterList; 3611 } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 3612 Regs.front().second)) { 3613 if (Regs.back().second == ARM::VPR) 3614 Kind = k_FPSRegisterListWithVPR; 3615 else 3616 Kind = k_SPRRegisterList; 3617 } 3618 3619 if (Kind == k_RegisterList && Regs.back().second == ARM::APSR) 3620 Kind = k_RegisterListWithAPSR; 3621 3622 assert(llvm::is_sorted(Regs) && "Register list must be sorted by encoding"); 3623 3624 auto Op = std::make_unique<ARMOperand>(Kind); 3625 for (const auto &P : Regs) 3626 Op->Registers.push_back(P.second); 3627 3628 Op->StartLoc = StartLoc; 3629 Op->EndLoc = EndLoc; 3630 return Op; 3631 } 3632 3633 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 3634 unsigned Count, 3635 bool isDoubleSpaced, 3636 SMLoc S, SMLoc E) { 3637 auto Op = std::make_unique<ARMOperand>(k_VectorList); 3638 Op->VectorList.RegNum = RegNum; 3639 Op->VectorList.Count = Count; 3640 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3641 Op->StartLoc = S; 3642 Op->EndLoc = E; 3643 return Op; 3644 } 3645 3646 static std::unique_ptr<ARMOperand> 3647 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 3648 SMLoc S, SMLoc E) { 3649 auto Op = std::make_unique<ARMOperand>(k_VectorListAllLanes); 3650 Op->VectorList.RegNum = RegNum; 3651 Op->VectorList.Count = Count; 3652 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3653 Op->StartLoc = S; 3654 Op->EndLoc = E; 3655 return Op; 3656 } 3657 3658 static std::unique_ptr<ARMOperand> 3659 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 3660 bool isDoubleSpaced, SMLoc S, SMLoc E) { 3661 auto Op = std::make_unique<ARMOperand>(k_VectorListIndexed); 3662 Op->VectorList.RegNum = RegNum; 3663 Op->VectorList.Count = Count; 3664 Op->VectorList.LaneIndex = Index; 3665 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3666 Op->StartLoc = S; 3667 Op->EndLoc = E; 3668 return Op; 3669 } 3670 3671 static std::unique_ptr<ARMOperand> 3672 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 3673 auto Op = std::make_unique<ARMOperand>(k_VectorIndex); 3674 Op->VectorIndex.Val = Idx; 3675 Op->StartLoc = S; 3676 Op->EndLoc = E; 3677 return Op; 3678 } 3679 3680 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 3681 SMLoc E) { 3682 auto Op = std::make_unique<ARMOperand>(k_Immediate); 3683 Op->Imm.Val = Val; 3684 Op->StartLoc = S; 3685 Op->EndLoc = E; 3686 return Op; 3687 } 3688 3689 static std::unique_ptr<ARMOperand> 3690 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 3691 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 3692 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 3693 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 3694 auto Op = std::make_unique<ARMOperand>(k_Memory); 3695 Op->Memory.BaseRegNum = BaseRegNum; 3696 Op->Memory.OffsetImm = OffsetImm; 3697 Op->Memory.OffsetRegNum = OffsetRegNum; 3698 Op->Memory.ShiftType = ShiftType; 3699 Op->Memory.ShiftImm = ShiftImm; 3700 Op->Memory.Alignment = Alignment; 3701 Op->Memory.isNegative = isNegative; 3702 Op->StartLoc = S; 3703 Op->EndLoc = E; 3704 Op->AlignmentLoc = AlignmentLoc; 3705 return Op; 3706 } 3707 3708 static std::unique_ptr<ARMOperand> 3709 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 3710 unsigned ShiftImm, SMLoc S, SMLoc E) { 3711 auto Op = std::make_unique<ARMOperand>(k_PostIndexRegister); 3712 Op->PostIdxReg.RegNum = RegNum; 3713 Op->PostIdxReg.isAdd = isAdd; 3714 Op->PostIdxReg.ShiftTy = ShiftTy; 3715 Op->PostIdxReg.ShiftImm = ShiftImm; 3716 Op->StartLoc = S; 3717 Op->EndLoc = E; 3718 return Op; 3719 } 3720 3721 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3722 SMLoc S) { 3723 auto Op = std::make_unique<ARMOperand>(k_MemBarrierOpt); 3724 Op->MBOpt.Val = Opt; 3725 Op->StartLoc = S; 3726 Op->EndLoc = S; 3727 return Op; 3728 } 3729 3730 static std::unique_ptr<ARMOperand> 3731 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3732 auto Op = std::make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3733 Op->ISBOpt.Val = Opt; 3734 Op->StartLoc = S; 3735 Op->EndLoc = S; 3736 return Op; 3737 } 3738 3739 static std::unique_ptr<ARMOperand> 3740 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) { 3741 auto Op = std::make_unique<ARMOperand>(k_TraceSyncBarrierOpt); 3742 Op->TSBOpt.Val = Opt; 3743 Op->StartLoc = S; 3744 Op->EndLoc = S; 3745 return Op; 3746 } 3747 3748 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3749 SMLoc S) { 3750 auto Op = std::make_unique<ARMOperand>(k_ProcIFlags); 3751 Op->IFlags.Val = IFlags; 3752 Op->StartLoc = S; 3753 Op->EndLoc = S; 3754 return Op; 3755 } 3756 3757 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3758 auto Op = std::make_unique<ARMOperand>(k_MSRMask); 3759 Op->MMask.Val = MMask; 3760 Op->StartLoc = S; 3761 Op->EndLoc = S; 3762 return Op; 3763 } 3764 3765 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3766 auto Op = std::make_unique<ARMOperand>(k_BankedReg); 3767 Op->BankedReg.Val = Reg; 3768 Op->StartLoc = S; 3769 Op->EndLoc = S; 3770 return Op; 3771 } 3772 }; 3773 3774 } // end anonymous namespace. 3775 3776 void ARMOperand::print(raw_ostream &OS) const { 3777 auto RegName = [](unsigned Reg) { 3778 if (Reg) 3779 return ARMInstPrinter::getRegisterName(Reg); 3780 else 3781 return "noreg"; 3782 }; 3783 3784 switch (Kind) { 3785 case k_CondCode: 3786 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3787 break; 3788 case k_VPTPred: 3789 OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">"; 3790 break; 3791 case k_CCOut: 3792 OS << "<ccout " << RegName(getReg()) << ">"; 3793 break; 3794 case k_ITCondMask: { 3795 static const char *const MaskStr[] = { 3796 "(invalid)", "(tttt)", "(ttt)", "(ttte)", 3797 "(tt)", "(ttet)", "(tte)", "(ttee)", 3798 "(t)", "(tett)", "(tet)", "(tete)", 3799 "(te)", "(teet)", "(tee)", "(teee)", 3800 }; 3801 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3802 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3803 break; 3804 } 3805 case k_CoprocNum: 3806 OS << "<coprocessor number: " << getCoproc() << ">"; 3807 break; 3808 case k_CoprocReg: 3809 OS << "<coprocessor register: " << getCoproc() << ">"; 3810 break; 3811 case k_CoprocOption: 3812 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3813 break; 3814 case k_MSRMask: 3815 OS << "<mask: " << getMSRMask() << ">"; 3816 break; 3817 case k_BankedReg: 3818 OS << "<banked reg: " << getBankedReg() << ">"; 3819 break; 3820 case k_Immediate: 3821 OS << *getImm(); 3822 break; 3823 case k_MemBarrierOpt: 3824 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3825 break; 3826 case k_InstSyncBarrierOpt: 3827 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3828 break; 3829 case k_TraceSyncBarrierOpt: 3830 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">"; 3831 break; 3832 case k_Memory: 3833 OS << "<memory"; 3834 if (Memory.BaseRegNum) 3835 OS << " base:" << RegName(Memory.BaseRegNum); 3836 if (Memory.OffsetImm) 3837 OS << " offset-imm:" << *Memory.OffsetImm; 3838 if (Memory.OffsetRegNum) 3839 OS << " offset-reg:" << (Memory.isNegative ? "-" : "") 3840 << RegName(Memory.OffsetRegNum); 3841 if (Memory.ShiftType != ARM_AM::no_shift) { 3842 OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType); 3843 OS << " shift-imm:" << Memory.ShiftImm; 3844 } 3845 if (Memory.Alignment) 3846 OS << " alignment:" << Memory.Alignment; 3847 OS << ">"; 3848 break; 3849 case k_PostIndexRegister: 3850 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3851 << RegName(PostIdxReg.RegNum); 3852 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3853 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3854 << PostIdxReg.ShiftImm; 3855 OS << ">"; 3856 break; 3857 case k_ProcIFlags: { 3858 OS << "<ARM_PROC::"; 3859 unsigned IFlags = getProcIFlags(); 3860 for (int i=2; i >= 0; --i) 3861 if (IFlags & (1 << i)) 3862 OS << ARM_PROC::IFlagsToString(1 << i); 3863 OS << ">"; 3864 break; 3865 } 3866 case k_Register: 3867 OS << "<register " << RegName(getReg()) << ">"; 3868 break; 3869 case k_ShifterImmediate: 3870 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3871 << " #" << ShifterImm.Imm << ">"; 3872 break; 3873 case k_ShiftedRegister: 3874 OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " " 3875 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " " 3876 << RegName(RegShiftedReg.ShiftReg) << ">"; 3877 break; 3878 case k_ShiftedImmediate: 3879 OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " " 3880 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #" 3881 << RegShiftedImm.ShiftImm << ">"; 3882 break; 3883 case k_RotateImmediate: 3884 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3885 break; 3886 case k_ModifiedImmediate: 3887 OS << "<mod_imm #" << ModImm.Bits << ", #" 3888 << ModImm.Rot << ")>"; 3889 break; 3890 case k_ConstantPoolImmediate: 3891 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3892 break; 3893 case k_BitfieldDescriptor: 3894 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3895 << ", width: " << Bitfield.Width << ">"; 3896 break; 3897 case k_RegisterList: 3898 case k_RegisterListWithAPSR: 3899 case k_DPRRegisterList: 3900 case k_SPRRegisterList: 3901 case k_FPSRegisterListWithVPR: 3902 case k_FPDRegisterListWithVPR: { 3903 OS << "<register_list "; 3904 3905 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3906 for (SmallVectorImpl<unsigned>::const_iterator 3907 I = RegList.begin(), E = RegList.end(); I != E; ) { 3908 OS << RegName(*I); 3909 if (++I < E) OS << ", "; 3910 } 3911 3912 OS << ">"; 3913 break; 3914 } 3915 case k_VectorList: 3916 OS << "<vector_list " << VectorList.Count << " * " 3917 << RegName(VectorList.RegNum) << ">"; 3918 break; 3919 case k_VectorListAllLanes: 3920 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3921 << RegName(VectorList.RegNum) << ">"; 3922 break; 3923 case k_VectorListIndexed: 3924 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3925 << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">"; 3926 break; 3927 case k_Token: 3928 OS << "'" << getToken() << "'"; 3929 break; 3930 case k_VectorIndex: 3931 OS << "<vectorindex " << getVectorIndex() << ">"; 3932 break; 3933 } 3934 } 3935 3936 /// @name Auto-generated Match Functions 3937 /// { 3938 3939 static unsigned MatchRegisterName(StringRef Name); 3940 3941 /// } 3942 3943 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3944 SMLoc &StartLoc, SMLoc &EndLoc) { 3945 const AsmToken &Tok = getParser().getTok(); 3946 StartLoc = Tok.getLoc(); 3947 EndLoc = Tok.getEndLoc(); 3948 RegNo = tryParseRegister(); 3949 3950 return (RegNo == (unsigned)-1); 3951 } 3952 3953 OperandMatchResultTy ARMAsmParser::tryParseRegister(unsigned &RegNo, 3954 SMLoc &StartLoc, 3955 SMLoc &EndLoc) { 3956 if (ParseRegister(RegNo, StartLoc, EndLoc)) 3957 return MatchOperand_NoMatch; 3958 return MatchOperand_Success; 3959 } 3960 3961 /// Try to parse a register name. The token must be an Identifier when called, 3962 /// and if it is a register name the token is eaten and the register number is 3963 /// returned. Otherwise return -1. 3964 int ARMAsmParser::tryParseRegister() { 3965 MCAsmParser &Parser = getParser(); 3966 const AsmToken &Tok = Parser.getTok(); 3967 if (Tok.isNot(AsmToken::Identifier)) return -1; 3968 3969 std::string lowerCase = Tok.getString().lower(); 3970 unsigned RegNum = MatchRegisterName(lowerCase); 3971 if (!RegNum) { 3972 RegNum = StringSwitch<unsigned>(lowerCase) 3973 .Case("r13", ARM::SP) 3974 .Case("r14", ARM::LR) 3975 .Case("r15", ARM::PC) 3976 .Case("ip", ARM::R12) 3977 // Additional register name aliases for 'gas' compatibility. 3978 .Case("a1", ARM::R0) 3979 .Case("a2", ARM::R1) 3980 .Case("a3", ARM::R2) 3981 .Case("a4", ARM::R3) 3982 .Case("v1", ARM::R4) 3983 .Case("v2", ARM::R5) 3984 .Case("v3", ARM::R6) 3985 .Case("v4", ARM::R7) 3986 .Case("v5", ARM::R8) 3987 .Case("v6", ARM::R9) 3988 .Case("v7", ARM::R10) 3989 .Case("v8", ARM::R11) 3990 .Case("sb", ARM::R9) 3991 .Case("sl", ARM::R10) 3992 .Case("fp", ARM::R11) 3993 .Default(0); 3994 } 3995 if (!RegNum) { 3996 // Check for aliases registered via .req. Canonicalize to lower case. 3997 // That's more consistent since register names are case insensitive, and 3998 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3999 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 4000 // If no match, return failure. 4001 if (Entry == RegisterReqs.end()) 4002 return -1; 4003 Parser.Lex(); // Eat identifier token. 4004 return Entry->getValue(); 4005 } 4006 4007 // Some FPUs only have 16 D registers, so D16-D31 are invalid 4008 if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 4009 return -1; 4010 4011 Parser.Lex(); // Eat identifier token. 4012 4013 return RegNum; 4014 } 4015 4016 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 4017 // If a recoverable error occurs, return 1. If an irrecoverable error 4018 // occurs, return -1. An irrecoverable error is one where tokens have been 4019 // consumed in the process of trying to parse the shifter (i.e., when it is 4020 // indeed a shifter operand, but malformed). 4021 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 4022 MCAsmParser &Parser = getParser(); 4023 SMLoc S = Parser.getTok().getLoc(); 4024 const AsmToken &Tok = Parser.getTok(); 4025 if (Tok.isNot(AsmToken::Identifier)) 4026 return -1; 4027 4028 std::string lowerCase = Tok.getString().lower(); 4029 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 4030 .Case("asl", ARM_AM::lsl) 4031 .Case("lsl", ARM_AM::lsl) 4032 .Case("lsr", ARM_AM::lsr) 4033 .Case("asr", ARM_AM::asr) 4034 .Case("ror", ARM_AM::ror) 4035 .Case("rrx", ARM_AM::rrx) 4036 .Default(ARM_AM::no_shift); 4037 4038 if (ShiftTy == ARM_AM::no_shift) 4039 return 1; 4040 4041 Parser.Lex(); // Eat the operator. 4042 4043 // The source register for the shift has already been added to the 4044 // operand list, so we need to pop it off and combine it into the shifted 4045 // register operand instead. 4046 std::unique_ptr<ARMOperand> PrevOp( 4047 (ARMOperand *)Operands.pop_back_val().release()); 4048 if (!PrevOp->isReg()) 4049 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 4050 int SrcReg = PrevOp->getReg(); 4051 4052 SMLoc EndLoc; 4053 int64_t Imm = 0; 4054 int ShiftReg = 0; 4055 if (ShiftTy == ARM_AM::rrx) { 4056 // RRX Doesn't have an explicit shift amount. The encoder expects 4057 // the shift register to be the same as the source register. Seems odd, 4058 // but OK. 4059 ShiftReg = SrcReg; 4060 } else { 4061 // Figure out if this is shifted by a constant or a register (for non-RRX). 4062 if (Parser.getTok().is(AsmToken::Hash) || 4063 Parser.getTok().is(AsmToken::Dollar)) { 4064 Parser.Lex(); // Eat hash. 4065 SMLoc ImmLoc = Parser.getTok().getLoc(); 4066 const MCExpr *ShiftExpr = nullptr; 4067 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 4068 Error(ImmLoc, "invalid immediate shift value"); 4069 return -1; 4070 } 4071 // The expression must be evaluatable as an immediate. 4072 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 4073 if (!CE) { 4074 Error(ImmLoc, "invalid immediate shift value"); 4075 return -1; 4076 } 4077 // Range check the immediate. 4078 // lsl, ror: 0 <= imm <= 31 4079 // lsr, asr: 0 <= imm <= 32 4080 Imm = CE->getValue(); 4081 if (Imm < 0 || 4082 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 4083 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 4084 Error(ImmLoc, "immediate shift value out of range"); 4085 return -1; 4086 } 4087 // shift by zero is a nop. Always send it through as lsl. 4088 // ('as' compatibility) 4089 if (Imm == 0) 4090 ShiftTy = ARM_AM::lsl; 4091 } else if (Parser.getTok().is(AsmToken::Identifier)) { 4092 SMLoc L = Parser.getTok().getLoc(); 4093 EndLoc = Parser.getTok().getEndLoc(); 4094 ShiftReg = tryParseRegister(); 4095 if (ShiftReg == -1) { 4096 Error(L, "expected immediate or register in shift operand"); 4097 return -1; 4098 } 4099 } else { 4100 Error(Parser.getTok().getLoc(), 4101 "expected immediate or register in shift operand"); 4102 return -1; 4103 } 4104 } 4105 4106 if (ShiftReg && ShiftTy != ARM_AM::rrx) 4107 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 4108 ShiftReg, Imm, 4109 S, EndLoc)); 4110 else 4111 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 4112 S, EndLoc)); 4113 4114 return 0; 4115 } 4116 4117 /// Try to parse a register name. The token must be an Identifier when called. 4118 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 4119 /// if there is a "writeback". 'true' if it's not a register. 4120 /// 4121 /// TODO this is likely to change to allow different register types and or to 4122 /// parse for a specific register type. 4123 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 4124 MCAsmParser &Parser = getParser(); 4125 SMLoc RegStartLoc = Parser.getTok().getLoc(); 4126 SMLoc RegEndLoc = Parser.getTok().getEndLoc(); 4127 int RegNo = tryParseRegister(); 4128 if (RegNo == -1) 4129 return true; 4130 4131 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); 4132 4133 const AsmToken &ExclaimTok = Parser.getTok(); 4134 if (ExclaimTok.is(AsmToken::Exclaim)) { 4135 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 4136 ExclaimTok.getLoc())); 4137 Parser.Lex(); // Eat exclaim token 4138 return false; 4139 } 4140 4141 // Also check for an index operand. This is only legal for vector registers, 4142 // but that'll get caught OK in operand matching, so we don't need to 4143 // explicitly filter everything else out here. 4144 if (Parser.getTok().is(AsmToken::LBrac)) { 4145 SMLoc SIdx = Parser.getTok().getLoc(); 4146 Parser.Lex(); // Eat left bracket token. 4147 4148 const MCExpr *ImmVal; 4149 if (getParser().parseExpression(ImmVal)) 4150 return true; 4151 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 4152 if (!MCE) 4153 return TokError("immediate value expected for vector index"); 4154 4155 if (Parser.getTok().isNot(AsmToken::RBrac)) 4156 return Error(Parser.getTok().getLoc(), "']' expected"); 4157 4158 SMLoc E = Parser.getTok().getEndLoc(); 4159 Parser.Lex(); // Eat right bracket token. 4160 4161 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 4162 SIdx, E, 4163 getContext())); 4164 } 4165 4166 return false; 4167 } 4168 4169 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 4170 /// instruction with a symbolic operand name. 4171 /// We accept "crN" syntax for GAS compatibility. 4172 /// <operand-name> ::= <prefix><number> 4173 /// If CoprocOp is 'c', then: 4174 /// <prefix> ::= c | cr 4175 /// If CoprocOp is 'p', then : 4176 /// <prefix> ::= p 4177 /// <number> ::= integer in range [0, 15] 4178 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 4179 // Use the same layout as the tablegen'erated register name matcher. Ugly, 4180 // but efficient. 4181 if (Name.size() < 2 || Name[0] != CoprocOp) 4182 return -1; 4183 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 4184 4185 switch (Name.size()) { 4186 default: return -1; 4187 case 1: 4188 switch (Name[0]) { 4189 default: return -1; 4190 case '0': return 0; 4191 case '1': return 1; 4192 case '2': return 2; 4193 case '3': return 3; 4194 case '4': return 4; 4195 case '5': return 5; 4196 case '6': return 6; 4197 case '7': return 7; 4198 case '8': return 8; 4199 case '9': return 9; 4200 } 4201 case 2: 4202 if (Name[0] != '1') 4203 return -1; 4204 switch (Name[1]) { 4205 default: return -1; 4206 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 4207 // However, old cores (v5/v6) did use them in that way. 4208 case '0': return 10; 4209 case '1': return 11; 4210 case '2': return 12; 4211 case '3': return 13; 4212 case '4': return 14; 4213 case '5': return 15; 4214 } 4215 } 4216 } 4217 4218 /// parseITCondCode - Try to parse a condition code for an IT instruction. 4219 OperandMatchResultTy 4220 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 4221 MCAsmParser &Parser = getParser(); 4222 SMLoc S = Parser.getTok().getLoc(); 4223 const AsmToken &Tok = Parser.getTok(); 4224 if (!Tok.is(AsmToken::Identifier)) 4225 return MatchOperand_NoMatch; 4226 unsigned CC = ARMCondCodeFromString(Tok.getString()); 4227 if (CC == ~0U) 4228 return MatchOperand_NoMatch; 4229 Parser.Lex(); // Eat the token. 4230 4231 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 4232 4233 return MatchOperand_Success; 4234 } 4235 4236 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 4237 /// token must be an Identifier when called, and if it is a coprocessor 4238 /// number, the token is eaten and the operand is added to the operand list. 4239 OperandMatchResultTy 4240 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 4241 MCAsmParser &Parser = getParser(); 4242 SMLoc S = Parser.getTok().getLoc(); 4243 const AsmToken &Tok = Parser.getTok(); 4244 if (Tok.isNot(AsmToken::Identifier)) 4245 return MatchOperand_NoMatch; 4246 4247 int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p'); 4248 if (Num == -1) 4249 return MatchOperand_NoMatch; 4250 if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits())) 4251 return MatchOperand_NoMatch; 4252 4253 Parser.Lex(); // Eat identifier token. 4254 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 4255 return MatchOperand_Success; 4256 } 4257 4258 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 4259 /// token must be an Identifier when called, and if it is a coprocessor 4260 /// number, the token is eaten and the operand is added to the operand list. 4261 OperandMatchResultTy 4262 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 4263 MCAsmParser &Parser = getParser(); 4264 SMLoc S = Parser.getTok().getLoc(); 4265 const AsmToken &Tok = Parser.getTok(); 4266 if (Tok.isNot(AsmToken::Identifier)) 4267 return MatchOperand_NoMatch; 4268 4269 int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c'); 4270 if (Reg == -1) 4271 return MatchOperand_NoMatch; 4272 4273 Parser.Lex(); // Eat identifier token. 4274 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 4275 return MatchOperand_Success; 4276 } 4277 4278 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 4279 /// coproc_option : '{' imm0_255 '}' 4280 OperandMatchResultTy 4281 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 4282 MCAsmParser &Parser = getParser(); 4283 SMLoc S = Parser.getTok().getLoc(); 4284 4285 // If this isn't a '{', this isn't a coprocessor immediate operand. 4286 if (Parser.getTok().isNot(AsmToken::LCurly)) 4287 return MatchOperand_NoMatch; 4288 Parser.Lex(); // Eat the '{' 4289 4290 const MCExpr *Expr; 4291 SMLoc Loc = Parser.getTok().getLoc(); 4292 if (getParser().parseExpression(Expr)) { 4293 Error(Loc, "illegal expression"); 4294 return MatchOperand_ParseFail; 4295 } 4296 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4297 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 4298 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 4299 return MatchOperand_ParseFail; 4300 } 4301 int Val = CE->getValue(); 4302 4303 // Check for and consume the closing '}' 4304 if (Parser.getTok().isNot(AsmToken::RCurly)) 4305 return MatchOperand_ParseFail; 4306 SMLoc E = Parser.getTok().getEndLoc(); 4307 Parser.Lex(); // Eat the '}' 4308 4309 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 4310 return MatchOperand_Success; 4311 } 4312 4313 // For register list parsing, we need to map from raw GPR register numbering 4314 // to the enumeration values. The enumeration values aren't sorted by 4315 // register number due to our using "sp", "lr" and "pc" as canonical names. 4316 static unsigned getNextRegister(unsigned Reg) { 4317 // If this is a GPR, we need to do it manually, otherwise we can rely 4318 // on the sort ordering of the enumeration since the other reg-classes 4319 // are sane. 4320 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4321 return Reg + 1; 4322 switch(Reg) { 4323 default: llvm_unreachable("Invalid GPR number!"); 4324 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 4325 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 4326 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 4327 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 4328 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 4329 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 4330 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 4331 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 4332 } 4333 } 4334 4335 // Insert an <Encoding, Register> pair in an ordered vector. Return true on 4336 // success, or false, if duplicate encoding found. 4337 static bool 4338 insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 4339 unsigned Enc, unsigned Reg) { 4340 Regs.emplace_back(Enc, Reg); 4341 for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) { 4342 if (J->first == Enc) { 4343 Regs.erase(J.base()); 4344 return false; 4345 } 4346 if (J->first < Enc) 4347 break; 4348 std::swap(*I, *J); 4349 } 4350 return true; 4351 } 4352 4353 /// Parse a register list. 4354 bool ARMAsmParser::parseRegisterList(OperandVector &Operands, 4355 bool EnforceOrder) { 4356 MCAsmParser &Parser = getParser(); 4357 if (Parser.getTok().isNot(AsmToken::LCurly)) 4358 return TokError("Token is not a Left Curly Brace"); 4359 SMLoc S = Parser.getTok().getLoc(); 4360 Parser.Lex(); // Eat '{' token. 4361 SMLoc RegLoc = Parser.getTok().getLoc(); 4362 4363 // Check the first register in the list to see what register class 4364 // this is a list of. 4365 int Reg = tryParseRegister(); 4366 if (Reg == -1) 4367 return Error(RegLoc, "register expected"); 4368 4369 // The reglist instructions have at most 16 registers, so reserve 4370 // space for that many. 4371 int EReg = 0; 4372 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 4373 4374 // Allow Q regs and just interpret them as the two D sub-registers. 4375 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4376 Reg = getDRegFromQReg(Reg); 4377 EReg = MRI->getEncodingValue(Reg); 4378 Registers.emplace_back(EReg, Reg); 4379 ++Reg; 4380 } 4381 const MCRegisterClass *RC; 4382 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4383 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 4384 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 4385 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 4386 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 4387 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 4388 else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4389 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4390 else 4391 return Error(RegLoc, "invalid register in register list"); 4392 4393 // Store the register. 4394 EReg = MRI->getEncodingValue(Reg); 4395 Registers.emplace_back(EReg, Reg); 4396 4397 // This starts immediately after the first register token in the list, 4398 // so we can see either a comma or a minus (range separator) as a legal 4399 // next token. 4400 while (Parser.getTok().is(AsmToken::Comma) || 4401 Parser.getTok().is(AsmToken::Minus)) { 4402 if (Parser.getTok().is(AsmToken::Minus)) { 4403 Parser.Lex(); // Eat the minus. 4404 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4405 int EndReg = tryParseRegister(); 4406 if (EndReg == -1) 4407 return Error(AfterMinusLoc, "register expected"); 4408 // Allow Q regs and just interpret them as the two D sub-registers. 4409 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4410 EndReg = getDRegFromQReg(EndReg) + 1; 4411 // If the register is the same as the start reg, there's nothing 4412 // more to do. 4413 if (Reg == EndReg) 4414 continue; 4415 // The register must be in the same register class as the first. 4416 if (!RC->contains(EndReg)) 4417 return Error(AfterMinusLoc, "invalid register in register list"); 4418 // Ranges must go from low to high. 4419 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 4420 return Error(AfterMinusLoc, "bad range in register list"); 4421 4422 // Add all the registers in the range to the register list. 4423 while (Reg != EndReg) { 4424 Reg = getNextRegister(Reg); 4425 EReg = MRI->getEncodingValue(Reg); 4426 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4427 Warning(AfterMinusLoc, StringRef("duplicated register (") + 4428 ARMInstPrinter::getRegisterName(Reg) + 4429 ") in register list"); 4430 } 4431 } 4432 continue; 4433 } 4434 Parser.Lex(); // Eat the comma. 4435 RegLoc = Parser.getTok().getLoc(); 4436 int OldReg = Reg; 4437 const AsmToken RegTok = Parser.getTok(); 4438 Reg = tryParseRegister(); 4439 if (Reg == -1) 4440 return Error(RegLoc, "register expected"); 4441 // Allow Q regs and just interpret them as the two D sub-registers. 4442 bool isQReg = false; 4443 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4444 Reg = getDRegFromQReg(Reg); 4445 isQReg = true; 4446 } 4447 if (!RC->contains(Reg) && 4448 RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() && 4449 ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) { 4450 // switch the register classes, as GPRwithAPSRnospRegClassID is a partial 4451 // subset of GPRRegClassId except it contains APSR as well. 4452 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4453 } 4454 if (Reg == ARM::VPR && 4455 (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] || 4456 RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] || 4457 RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) { 4458 RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID]; 4459 EReg = MRI->getEncodingValue(Reg); 4460 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4461 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4462 ") in register list"); 4463 } 4464 continue; 4465 } 4466 // The register must be in the same register class as the first. 4467 if (!RC->contains(Reg)) 4468 return Error(RegLoc, "invalid register in register list"); 4469 // In most cases, the list must be monotonically increasing. An 4470 // exception is CLRM, which is order-independent anyway, so 4471 // there's no potential for confusion if you write clrm {r2,r1} 4472 // instead of clrm {r1,r2}. 4473 if (EnforceOrder && 4474 MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 4475 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4476 Warning(RegLoc, "register list not in ascending order"); 4477 else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4478 return Error(RegLoc, "register list not in ascending order"); 4479 } 4480 // VFP register lists must also be contiguous. 4481 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 4482 RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] && 4483 Reg != OldReg + 1) 4484 return Error(RegLoc, "non-contiguous register range"); 4485 EReg = MRI->getEncodingValue(Reg); 4486 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4487 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4488 ") in register list"); 4489 } 4490 if (isQReg) { 4491 EReg = MRI->getEncodingValue(++Reg); 4492 Registers.emplace_back(EReg, Reg); 4493 } 4494 } 4495 4496 if (Parser.getTok().isNot(AsmToken::RCurly)) 4497 return Error(Parser.getTok().getLoc(), "'}' expected"); 4498 SMLoc E = Parser.getTok().getEndLoc(); 4499 Parser.Lex(); // Eat '}' token. 4500 4501 // Push the register list operand. 4502 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 4503 4504 // The ARM system instruction variants for LDM/STM have a '^' token here. 4505 if (Parser.getTok().is(AsmToken::Caret)) { 4506 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 4507 Parser.Lex(); // Eat '^' token. 4508 } 4509 4510 return false; 4511 } 4512 4513 // Helper function to parse the lane index for vector lists. 4514 OperandMatchResultTy ARMAsmParser:: 4515 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 4516 MCAsmParser &Parser = getParser(); 4517 Index = 0; // Always return a defined index value. 4518 if (Parser.getTok().is(AsmToken::LBrac)) { 4519 Parser.Lex(); // Eat the '['. 4520 if (Parser.getTok().is(AsmToken::RBrac)) { 4521 // "Dn[]" is the 'all lanes' syntax. 4522 LaneKind = AllLanes; 4523 EndLoc = Parser.getTok().getEndLoc(); 4524 Parser.Lex(); // Eat the ']'. 4525 return MatchOperand_Success; 4526 } 4527 4528 // There's an optional '#' token here. Normally there wouldn't be, but 4529 // inline assemble puts one in, and it's friendly to accept that. 4530 if (Parser.getTok().is(AsmToken::Hash)) 4531 Parser.Lex(); // Eat '#' or '$'. 4532 4533 const MCExpr *LaneIndex; 4534 SMLoc Loc = Parser.getTok().getLoc(); 4535 if (getParser().parseExpression(LaneIndex)) { 4536 Error(Loc, "illegal expression"); 4537 return MatchOperand_ParseFail; 4538 } 4539 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 4540 if (!CE) { 4541 Error(Loc, "lane index must be empty or an integer"); 4542 return MatchOperand_ParseFail; 4543 } 4544 if (Parser.getTok().isNot(AsmToken::RBrac)) { 4545 Error(Parser.getTok().getLoc(), "']' expected"); 4546 return MatchOperand_ParseFail; 4547 } 4548 EndLoc = Parser.getTok().getEndLoc(); 4549 Parser.Lex(); // Eat the ']'. 4550 int64_t Val = CE->getValue(); 4551 4552 // FIXME: Make this range check context sensitive for .8, .16, .32. 4553 if (Val < 0 || Val > 7) { 4554 Error(Parser.getTok().getLoc(), "lane index out of range"); 4555 return MatchOperand_ParseFail; 4556 } 4557 Index = Val; 4558 LaneKind = IndexedLane; 4559 return MatchOperand_Success; 4560 } 4561 LaneKind = NoLanes; 4562 return MatchOperand_Success; 4563 } 4564 4565 // parse a vector register list 4566 OperandMatchResultTy 4567 ARMAsmParser::parseVectorList(OperandVector &Operands) { 4568 MCAsmParser &Parser = getParser(); 4569 VectorLaneTy LaneKind; 4570 unsigned LaneIndex; 4571 SMLoc S = Parser.getTok().getLoc(); 4572 // As an extension (to match gas), support a plain D register or Q register 4573 // (without encosing curly braces) as a single or double entry list, 4574 // respectively. 4575 if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) { 4576 SMLoc E = Parser.getTok().getEndLoc(); 4577 int Reg = tryParseRegister(); 4578 if (Reg == -1) 4579 return MatchOperand_NoMatch; 4580 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 4581 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4582 if (Res != MatchOperand_Success) 4583 return Res; 4584 switch (LaneKind) { 4585 case NoLanes: 4586 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 4587 break; 4588 case AllLanes: 4589 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 4590 S, E)); 4591 break; 4592 case IndexedLane: 4593 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 4594 LaneIndex, 4595 false, S, E)); 4596 break; 4597 } 4598 return MatchOperand_Success; 4599 } 4600 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4601 Reg = getDRegFromQReg(Reg); 4602 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4603 if (Res != MatchOperand_Success) 4604 return Res; 4605 switch (LaneKind) { 4606 case NoLanes: 4607 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4608 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4609 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 4610 break; 4611 case AllLanes: 4612 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4613 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4614 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 4615 S, E)); 4616 break; 4617 case IndexedLane: 4618 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 4619 LaneIndex, 4620 false, S, E)); 4621 break; 4622 } 4623 return MatchOperand_Success; 4624 } 4625 Error(S, "vector register expected"); 4626 return MatchOperand_ParseFail; 4627 } 4628 4629 if (Parser.getTok().isNot(AsmToken::LCurly)) 4630 return MatchOperand_NoMatch; 4631 4632 Parser.Lex(); // Eat '{' token. 4633 SMLoc RegLoc = Parser.getTok().getLoc(); 4634 4635 int Reg = tryParseRegister(); 4636 if (Reg == -1) { 4637 Error(RegLoc, "register expected"); 4638 return MatchOperand_ParseFail; 4639 } 4640 unsigned Count = 1; 4641 int Spacing = 0; 4642 unsigned FirstReg = Reg; 4643 4644 if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4645 Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected"); 4646 return MatchOperand_ParseFail; 4647 } 4648 // The list is of D registers, but we also allow Q regs and just interpret 4649 // them as the two D sub-registers. 4650 else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4651 FirstReg = Reg = getDRegFromQReg(Reg); 4652 Spacing = 1; // double-spacing requires explicit D registers, otherwise 4653 // it's ambiguous with four-register single spaced. 4654 ++Reg; 4655 ++Count; 4656 } 4657 4658 SMLoc E; 4659 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 4660 return MatchOperand_ParseFail; 4661 4662 while (Parser.getTok().is(AsmToken::Comma) || 4663 Parser.getTok().is(AsmToken::Minus)) { 4664 if (Parser.getTok().is(AsmToken::Minus)) { 4665 if (!Spacing) 4666 Spacing = 1; // Register range implies a single spaced list. 4667 else if (Spacing == 2) { 4668 Error(Parser.getTok().getLoc(), 4669 "sequential registers in double spaced list"); 4670 return MatchOperand_ParseFail; 4671 } 4672 Parser.Lex(); // Eat the minus. 4673 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4674 int EndReg = tryParseRegister(); 4675 if (EndReg == -1) { 4676 Error(AfterMinusLoc, "register expected"); 4677 return MatchOperand_ParseFail; 4678 } 4679 // Allow Q regs and just interpret them as the two D sub-registers. 4680 if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4681 EndReg = getDRegFromQReg(EndReg) + 1; 4682 // If the register is the same as the start reg, there's nothing 4683 // more to do. 4684 if (Reg == EndReg) 4685 continue; 4686 // The register must be in the same register class as the first. 4687 if ((hasMVE() && 4688 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) || 4689 (!hasMVE() && 4690 !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) { 4691 Error(AfterMinusLoc, "invalid register in register list"); 4692 return MatchOperand_ParseFail; 4693 } 4694 // Ranges must go from low to high. 4695 if (Reg > EndReg) { 4696 Error(AfterMinusLoc, "bad range in register list"); 4697 return MatchOperand_ParseFail; 4698 } 4699 // Parse the lane specifier if present. 4700 VectorLaneTy NextLaneKind; 4701 unsigned NextLaneIndex; 4702 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4703 MatchOperand_Success) 4704 return MatchOperand_ParseFail; 4705 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4706 Error(AfterMinusLoc, "mismatched lane index in register list"); 4707 return MatchOperand_ParseFail; 4708 } 4709 4710 // Add all the registers in the range to the register list. 4711 Count += EndReg - Reg; 4712 Reg = EndReg; 4713 continue; 4714 } 4715 Parser.Lex(); // Eat the comma. 4716 RegLoc = Parser.getTok().getLoc(); 4717 int OldReg = Reg; 4718 Reg = tryParseRegister(); 4719 if (Reg == -1) { 4720 Error(RegLoc, "register expected"); 4721 return MatchOperand_ParseFail; 4722 } 4723 4724 if (hasMVE()) { 4725 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4726 Error(RegLoc, "vector register in range Q0-Q7 expected"); 4727 return MatchOperand_ParseFail; 4728 } 4729 Spacing = 1; 4730 } 4731 // vector register lists must be contiguous. 4732 // It's OK to use the enumeration values directly here rather, as the 4733 // VFP register classes have the enum sorted properly. 4734 // 4735 // The list is of D registers, but we also allow Q regs and just interpret 4736 // them as the two D sub-registers. 4737 else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4738 if (!Spacing) 4739 Spacing = 1; // Register range implies a single spaced list. 4740 else if (Spacing == 2) { 4741 Error(RegLoc, 4742 "invalid register in double-spaced list (must be 'D' register')"); 4743 return MatchOperand_ParseFail; 4744 } 4745 Reg = getDRegFromQReg(Reg); 4746 if (Reg != OldReg + 1) { 4747 Error(RegLoc, "non-contiguous register range"); 4748 return MatchOperand_ParseFail; 4749 } 4750 ++Reg; 4751 Count += 2; 4752 // Parse the lane specifier if present. 4753 VectorLaneTy NextLaneKind; 4754 unsigned NextLaneIndex; 4755 SMLoc LaneLoc = Parser.getTok().getLoc(); 4756 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4757 MatchOperand_Success) 4758 return MatchOperand_ParseFail; 4759 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4760 Error(LaneLoc, "mismatched lane index in register list"); 4761 return MatchOperand_ParseFail; 4762 } 4763 continue; 4764 } 4765 // Normal D register. 4766 // Figure out the register spacing (single or double) of the list if 4767 // we don't know it already. 4768 if (!Spacing) 4769 Spacing = 1 + (Reg == OldReg + 2); 4770 4771 // Just check that it's contiguous and keep going. 4772 if (Reg != OldReg + Spacing) { 4773 Error(RegLoc, "non-contiguous register range"); 4774 return MatchOperand_ParseFail; 4775 } 4776 ++Count; 4777 // Parse the lane specifier if present. 4778 VectorLaneTy NextLaneKind; 4779 unsigned NextLaneIndex; 4780 SMLoc EndLoc = Parser.getTok().getLoc(); 4781 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 4782 return MatchOperand_ParseFail; 4783 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4784 Error(EndLoc, "mismatched lane index in register list"); 4785 return MatchOperand_ParseFail; 4786 } 4787 } 4788 4789 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4790 Error(Parser.getTok().getLoc(), "'}' expected"); 4791 return MatchOperand_ParseFail; 4792 } 4793 E = Parser.getTok().getEndLoc(); 4794 Parser.Lex(); // Eat '}' token. 4795 4796 switch (LaneKind) { 4797 case NoLanes: 4798 case AllLanes: { 4799 // Two-register operands have been converted to the 4800 // composite register classes. 4801 if (Count == 2 && !hasMVE()) { 4802 const MCRegisterClass *RC = (Spacing == 1) ? 4803 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4804 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4805 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4806 } 4807 auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList : 4808 ARMOperand::CreateVectorListAllLanes); 4809 Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E)); 4810 break; 4811 } 4812 case IndexedLane: 4813 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4814 LaneIndex, 4815 (Spacing == 2), 4816 S, E)); 4817 break; 4818 } 4819 return MatchOperand_Success; 4820 } 4821 4822 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4823 OperandMatchResultTy 4824 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4825 MCAsmParser &Parser = getParser(); 4826 SMLoc S = Parser.getTok().getLoc(); 4827 const AsmToken &Tok = Parser.getTok(); 4828 unsigned Opt; 4829 4830 if (Tok.is(AsmToken::Identifier)) { 4831 StringRef OptStr = Tok.getString(); 4832 4833 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4834 .Case("sy", ARM_MB::SY) 4835 .Case("st", ARM_MB::ST) 4836 .Case("ld", ARM_MB::LD) 4837 .Case("sh", ARM_MB::ISH) 4838 .Case("ish", ARM_MB::ISH) 4839 .Case("shst", ARM_MB::ISHST) 4840 .Case("ishst", ARM_MB::ISHST) 4841 .Case("ishld", ARM_MB::ISHLD) 4842 .Case("nsh", ARM_MB::NSH) 4843 .Case("un", ARM_MB::NSH) 4844 .Case("nshst", ARM_MB::NSHST) 4845 .Case("nshld", ARM_MB::NSHLD) 4846 .Case("unst", ARM_MB::NSHST) 4847 .Case("osh", ARM_MB::OSH) 4848 .Case("oshst", ARM_MB::OSHST) 4849 .Case("oshld", ARM_MB::OSHLD) 4850 .Default(~0U); 4851 4852 // ishld, oshld, nshld and ld are only available from ARMv8. 4853 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4854 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4855 Opt = ~0U; 4856 4857 if (Opt == ~0U) 4858 return MatchOperand_NoMatch; 4859 4860 Parser.Lex(); // Eat identifier token. 4861 } else if (Tok.is(AsmToken::Hash) || 4862 Tok.is(AsmToken::Dollar) || 4863 Tok.is(AsmToken::Integer)) { 4864 if (Parser.getTok().isNot(AsmToken::Integer)) 4865 Parser.Lex(); // Eat '#' or '$'. 4866 SMLoc Loc = Parser.getTok().getLoc(); 4867 4868 const MCExpr *MemBarrierID; 4869 if (getParser().parseExpression(MemBarrierID)) { 4870 Error(Loc, "illegal expression"); 4871 return MatchOperand_ParseFail; 4872 } 4873 4874 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4875 if (!CE) { 4876 Error(Loc, "constant expression expected"); 4877 return MatchOperand_ParseFail; 4878 } 4879 4880 int Val = CE->getValue(); 4881 if (Val & ~0xf) { 4882 Error(Loc, "immediate value out of range"); 4883 return MatchOperand_ParseFail; 4884 } 4885 4886 Opt = ARM_MB::RESERVED_0 + Val; 4887 } else 4888 return MatchOperand_ParseFail; 4889 4890 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 4891 return MatchOperand_Success; 4892 } 4893 4894 OperandMatchResultTy 4895 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) { 4896 MCAsmParser &Parser = getParser(); 4897 SMLoc S = Parser.getTok().getLoc(); 4898 const AsmToken &Tok = Parser.getTok(); 4899 4900 if (Tok.isNot(AsmToken::Identifier)) 4901 return MatchOperand_NoMatch; 4902 4903 if (!Tok.getString().equals_lower("csync")) 4904 return MatchOperand_NoMatch; 4905 4906 Parser.Lex(); // Eat identifier token. 4907 4908 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S)); 4909 return MatchOperand_Success; 4910 } 4911 4912 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 4913 OperandMatchResultTy 4914 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 4915 MCAsmParser &Parser = getParser(); 4916 SMLoc S = Parser.getTok().getLoc(); 4917 const AsmToken &Tok = Parser.getTok(); 4918 unsigned Opt; 4919 4920 if (Tok.is(AsmToken::Identifier)) { 4921 StringRef OptStr = Tok.getString(); 4922 4923 if (OptStr.equals_lower("sy")) 4924 Opt = ARM_ISB::SY; 4925 else 4926 return MatchOperand_NoMatch; 4927 4928 Parser.Lex(); // Eat identifier token. 4929 } else if (Tok.is(AsmToken::Hash) || 4930 Tok.is(AsmToken::Dollar) || 4931 Tok.is(AsmToken::Integer)) { 4932 if (Parser.getTok().isNot(AsmToken::Integer)) 4933 Parser.Lex(); // Eat '#' or '$'. 4934 SMLoc Loc = Parser.getTok().getLoc(); 4935 4936 const MCExpr *ISBarrierID; 4937 if (getParser().parseExpression(ISBarrierID)) { 4938 Error(Loc, "illegal expression"); 4939 return MatchOperand_ParseFail; 4940 } 4941 4942 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4943 if (!CE) { 4944 Error(Loc, "constant expression expected"); 4945 return MatchOperand_ParseFail; 4946 } 4947 4948 int Val = CE->getValue(); 4949 if (Val & ~0xf) { 4950 Error(Loc, "immediate value out of range"); 4951 return MatchOperand_ParseFail; 4952 } 4953 4954 Opt = ARM_ISB::RESERVED_0 + Val; 4955 } else 4956 return MatchOperand_ParseFail; 4957 4958 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4959 (ARM_ISB::InstSyncBOpt)Opt, S)); 4960 return MatchOperand_Success; 4961 } 4962 4963 4964 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4965 OperandMatchResultTy 4966 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4967 MCAsmParser &Parser = getParser(); 4968 SMLoc S = Parser.getTok().getLoc(); 4969 const AsmToken &Tok = Parser.getTok(); 4970 if (!Tok.is(AsmToken::Identifier)) 4971 return MatchOperand_NoMatch; 4972 StringRef IFlagsStr = Tok.getString(); 4973 4974 // An iflags string of "none" is interpreted to mean that none of the AIF 4975 // bits are set. Not a terribly useful instruction, but a valid encoding. 4976 unsigned IFlags = 0; 4977 if (IFlagsStr != "none") { 4978 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4979 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) 4980 .Case("a", ARM_PROC::A) 4981 .Case("i", ARM_PROC::I) 4982 .Case("f", ARM_PROC::F) 4983 .Default(~0U); 4984 4985 // If some specific iflag is already set, it means that some letter is 4986 // present more than once, this is not acceptable. 4987 if (Flag == ~0U || (IFlags & Flag)) 4988 return MatchOperand_NoMatch; 4989 4990 IFlags |= Flag; 4991 } 4992 } 4993 4994 Parser.Lex(); // Eat identifier token. 4995 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4996 return MatchOperand_Success; 4997 } 4998 4999 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 5000 OperandMatchResultTy 5001 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 5002 MCAsmParser &Parser = getParser(); 5003 SMLoc S = Parser.getTok().getLoc(); 5004 const AsmToken &Tok = Parser.getTok(); 5005 5006 if (Tok.is(AsmToken::Integer)) { 5007 int64_t Val = Tok.getIntVal(); 5008 if (Val > 255 || Val < 0) { 5009 return MatchOperand_NoMatch; 5010 } 5011 unsigned SYSmvalue = Val & 0xFF; 5012 Parser.Lex(); 5013 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 5014 return MatchOperand_Success; 5015 } 5016 5017 if (!Tok.is(AsmToken::Identifier)) 5018 return MatchOperand_NoMatch; 5019 StringRef Mask = Tok.getString(); 5020 5021 if (isMClass()) { 5022 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 5023 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 5024 return MatchOperand_NoMatch; 5025 5026 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 5027 5028 Parser.Lex(); // Eat identifier token. 5029 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 5030 return MatchOperand_Success; 5031 } 5032 5033 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 5034 size_t Start = 0, Next = Mask.find('_'); 5035 StringRef Flags = ""; 5036 std::string SpecReg = Mask.slice(Start, Next).lower(); 5037 if (Next != StringRef::npos) 5038 Flags = Mask.slice(Next+1, Mask.size()); 5039 5040 // FlagsVal contains the complete mask: 5041 // 3-0: Mask 5042 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 5043 unsigned FlagsVal = 0; 5044 5045 if (SpecReg == "apsr") { 5046 FlagsVal = StringSwitch<unsigned>(Flags) 5047 .Case("nzcvq", 0x8) // same as CPSR_f 5048 .Case("g", 0x4) // same as CPSR_s 5049 .Case("nzcvqg", 0xc) // same as CPSR_fs 5050 .Default(~0U); 5051 5052 if (FlagsVal == ~0U) { 5053 if (!Flags.empty()) 5054 return MatchOperand_NoMatch; 5055 else 5056 FlagsVal = 8; // No flag 5057 } 5058 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 5059 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 5060 if (Flags == "all" || Flags == "") 5061 Flags = "fc"; 5062 for (int i = 0, e = Flags.size(); i != e; ++i) { 5063 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 5064 .Case("c", 1) 5065 .Case("x", 2) 5066 .Case("s", 4) 5067 .Case("f", 8) 5068 .Default(~0U); 5069 5070 // If some specific flag is already set, it means that some letter is 5071 // present more than once, this is not acceptable. 5072 if (Flag == ~0U || (FlagsVal & Flag)) 5073 return MatchOperand_NoMatch; 5074 FlagsVal |= Flag; 5075 } 5076 } else // No match for special register. 5077 return MatchOperand_NoMatch; 5078 5079 // Special register without flags is NOT equivalent to "fc" flags. 5080 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 5081 // two lines would enable gas compatibility at the expense of breaking 5082 // round-tripping. 5083 // 5084 // if (!FlagsVal) 5085 // FlagsVal = 0x9; 5086 5087 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 5088 if (SpecReg == "spsr") 5089 FlagsVal |= 16; 5090 5091 Parser.Lex(); // Eat identifier token. 5092 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 5093 return MatchOperand_Success; 5094 } 5095 5096 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 5097 /// use in the MRS/MSR instructions added to support virtualization. 5098 OperandMatchResultTy 5099 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 5100 MCAsmParser &Parser = getParser(); 5101 SMLoc S = Parser.getTok().getLoc(); 5102 const AsmToken &Tok = Parser.getTok(); 5103 if (!Tok.is(AsmToken::Identifier)) 5104 return MatchOperand_NoMatch; 5105 StringRef RegName = Tok.getString(); 5106 5107 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); 5108 if (!TheReg) 5109 return MatchOperand_NoMatch; 5110 unsigned Encoding = TheReg->Encoding; 5111 5112 Parser.Lex(); // Eat identifier token. 5113 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 5114 return MatchOperand_Success; 5115 } 5116 5117 OperandMatchResultTy 5118 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 5119 int High) { 5120 MCAsmParser &Parser = getParser(); 5121 const AsmToken &Tok = Parser.getTok(); 5122 if (Tok.isNot(AsmToken::Identifier)) { 5123 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5124 return MatchOperand_ParseFail; 5125 } 5126 StringRef ShiftName = Tok.getString(); 5127 std::string LowerOp = Op.lower(); 5128 std::string UpperOp = Op.upper(); 5129 if (ShiftName != LowerOp && ShiftName != UpperOp) { 5130 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5131 return MatchOperand_ParseFail; 5132 } 5133 Parser.Lex(); // Eat shift type token. 5134 5135 // There must be a '#' and a shift amount. 5136 if (Parser.getTok().isNot(AsmToken::Hash) && 5137 Parser.getTok().isNot(AsmToken::Dollar)) { 5138 Error(Parser.getTok().getLoc(), "'#' expected"); 5139 return MatchOperand_ParseFail; 5140 } 5141 Parser.Lex(); // Eat hash token. 5142 5143 const MCExpr *ShiftAmount; 5144 SMLoc Loc = Parser.getTok().getLoc(); 5145 SMLoc EndLoc; 5146 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5147 Error(Loc, "illegal expression"); 5148 return MatchOperand_ParseFail; 5149 } 5150 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5151 if (!CE) { 5152 Error(Loc, "constant expression expected"); 5153 return MatchOperand_ParseFail; 5154 } 5155 int Val = CE->getValue(); 5156 if (Val < Low || Val > High) { 5157 Error(Loc, "immediate value out of range"); 5158 return MatchOperand_ParseFail; 5159 } 5160 5161 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 5162 5163 return MatchOperand_Success; 5164 } 5165 5166 OperandMatchResultTy 5167 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 5168 MCAsmParser &Parser = getParser(); 5169 const AsmToken &Tok = Parser.getTok(); 5170 SMLoc S = Tok.getLoc(); 5171 if (Tok.isNot(AsmToken::Identifier)) { 5172 Error(S, "'be' or 'le' operand expected"); 5173 return MatchOperand_ParseFail; 5174 } 5175 int Val = StringSwitch<int>(Tok.getString().lower()) 5176 .Case("be", 1) 5177 .Case("le", 0) 5178 .Default(-1); 5179 Parser.Lex(); // Eat the token. 5180 5181 if (Val == -1) { 5182 Error(S, "'be' or 'le' operand expected"); 5183 return MatchOperand_ParseFail; 5184 } 5185 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 5186 getContext()), 5187 S, Tok.getEndLoc())); 5188 return MatchOperand_Success; 5189 } 5190 5191 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 5192 /// instructions. Legal values are: 5193 /// lsl #n 'n' in [0,31] 5194 /// asr #n 'n' in [1,32] 5195 /// n == 32 encoded as n == 0. 5196 OperandMatchResultTy 5197 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 5198 MCAsmParser &Parser = getParser(); 5199 const AsmToken &Tok = Parser.getTok(); 5200 SMLoc S = Tok.getLoc(); 5201 if (Tok.isNot(AsmToken::Identifier)) { 5202 Error(S, "shift operator 'asr' or 'lsl' expected"); 5203 return MatchOperand_ParseFail; 5204 } 5205 StringRef ShiftName = Tok.getString(); 5206 bool isASR; 5207 if (ShiftName == "lsl" || ShiftName == "LSL") 5208 isASR = false; 5209 else if (ShiftName == "asr" || ShiftName == "ASR") 5210 isASR = true; 5211 else { 5212 Error(S, "shift operator 'asr' or 'lsl' expected"); 5213 return MatchOperand_ParseFail; 5214 } 5215 Parser.Lex(); // Eat the operator. 5216 5217 // A '#' and a shift amount. 5218 if (Parser.getTok().isNot(AsmToken::Hash) && 5219 Parser.getTok().isNot(AsmToken::Dollar)) { 5220 Error(Parser.getTok().getLoc(), "'#' expected"); 5221 return MatchOperand_ParseFail; 5222 } 5223 Parser.Lex(); // Eat hash token. 5224 SMLoc ExLoc = Parser.getTok().getLoc(); 5225 5226 const MCExpr *ShiftAmount; 5227 SMLoc EndLoc; 5228 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5229 Error(ExLoc, "malformed shift expression"); 5230 return MatchOperand_ParseFail; 5231 } 5232 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5233 if (!CE) { 5234 Error(ExLoc, "shift amount must be an immediate"); 5235 return MatchOperand_ParseFail; 5236 } 5237 5238 int64_t Val = CE->getValue(); 5239 if (isASR) { 5240 // Shift amount must be in [1,32] 5241 if (Val < 1 || Val > 32) { 5242 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 5243 return MatchOperand_ParseFail; 5244 } 5245 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 5246 if (isThumb() && Val == 32) { 5247 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 5248 return MatchOperand_ParseFail; 5249 } 5250 if (Val == 32) Val = 0; 5251 } else { 5252 // Shift amount must be in [1,32] 5253 if (Val < 0 || Val > 31) { 5254 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 5255 return MatchOperand_ParseFail; 5256 } 5257 } 5258 5259 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 5260 5261 return MatchOperand_Success; 5262 } 5263 5264 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 5265 /// of instructions. Legal values are: 5266 /// ror #n 'n' in {0, 8, 16, 24} 5267 OperandMatchResultTy 5268 ARMAsmParser::parseRotImm(OperandVector &Operands) { 5269 MCAsmParser &Parser = getParser(); 5270 const AsmToken &Tok = Parser.getTok(); 5271 SMLoc S = Tok.getLoc(); 5272 if (Tok.isNot(AsmToken::Identifier)) 5273 return MatchOperand_NoMatch; 5274 StringRef ShiftName = Tok.getString(); 5275 if (ShiftName != "ror" && ShiftName != "ROR") 5276 return MatchOperand_NoMatch; 5277 Parser.Lex(); // Eat the operator. 5278 5279 // A '#' and a rotate amount. 5280 if (Parser.getTok().isNot(AsmToken::Hash) && 5281 Parser.getTok().isNot(AsmToken::Dollar)) { 5282 Error(Parser.getTok().getLoc(), "'#' expected"); 5283 return MatchOperand_ParseFail; 5284 } 5285 Parser.Lex(); // Eat hash token. 5286 SMLoc ExLoc = Parser.getTok().getLoc(); 5287 5288 const MCExpr *ShiftAmount; 5289 SMLoc EndLoc; 5290 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5291 Error(ExLoc, "malformed rotate expression"); 5292 return MatchOperand_ParseFail; 5293 } 5294 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5295 if (!CE) { 5296 Error(ExLoc, "rotate amount must be an immediate"); 5297 return MatchOperand_ParseFail; 5298 } 5299 5300 int64_t Val = CE->getValue(); 5301 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 5302 // normally, zero is represented in asm by omitting the rotate operand 5303 // entirely. 5304 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 5305 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 5306 return MatchOperand_ParseFail; 5307 } 5308 5309 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 5310 5311 return MatchOperand_Success; 5312 } 5313 5314 OperandMatchResultTy 5315 ARMAsmParser::parseModImm(OperandVector &Operands) { 5316 MCAsmParser &Parser = getParser(); 5317 MCAsmLexer &Lexer = getLexer(); 5318 int64_t Imm1, Imm2; 5319 5320 SMLoc S = Parser.getTok().getLoc(); 5321 5322 // 1) A mod_imm operand can appear in the place of a register name: 5323 // add r0, #mod_imm 5324 // add r0, r0, #mod_imm 5325 // to correctly handle the latter, we bail out as soon as we see an 5326 // identifier. 5327 // 5328 // 2) Similarly, we do not want to parse into complex operands: 5329 // mov r0, #mod_imm 5330 // mov r0, :lower16:(_foo) 5331 if (Parser.getTok().is(AsmToken::Identifier) || 5332 Parser.getTok().is(AsmToken::Colon)) 5333 return MatchOperand_NoMatch; 5334 5335 // Hash (dollar) is optional as per the ARMARM 5336 if (Parser.getTok().is(AsmToken::Hash) || 5337 Parser.getTok().is(AsmToken::Dollar)) { 5338 // Avoid parsing into complex operands (#:) 5339 if (Lexer.peekTok().is(AsmToken::Colon)) 5340 return MatchOperand_NoMatch; 5341 5342 // Eat the hash (dollar) 5343 Parser.Lex(); 5344 } 5345 5346 SMLoc Sx1, Ex1; 5347 Sx1 = Parser.getTok().getLoc(); 5348 const MCExpr *Imm1Exp; 5349 if (getParser().parseExpression(Imm1Exp, Ex1)) { 5350 Error(Sx1, "malformed expression"); 5351 return MatchOperand_ParseFail; 5352 } 5353 5354 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 5355 5356 if (CE) { 5357 // Immediate must fit within 32-bits 5358 Imm1 = CE->getValue(); 5359 int Enc = ARM_AM::getSOImmVal(Imm1); 5360 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 5361 // We have a match! 5362 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 5363 (Enc & 0xF00) >> 7, 5364 Sx1, Ex1)); 5365 return MatchOperand_Success; 5366 } 5367 5368 // We have parsed an immediate which is not for us, fallback to a plain 5369 // immediate. This can happen for instruction aliases. For an example, 5370 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 5371 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 5372 // instruction with a mod_imm operand. The alias is defined such that the 5373 // parser method is shared, that's why we have to do this here. 5374 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 5375 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5376 return MatchOperand_Success; 5377 } 5378 } else { 5379 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 5380 // MCFixup). Fallback to a plain immediate. 5381 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5382 return MatchOperand_Success; 5383 } 5384 5385 // From this point onward, we expect the input to be a (#bits, #rot) pair 5386 if (Parser.getTok().isNot(AsmToken::Comma)) { 5387 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 5388 return MatchOperand_ParseFail; 5389 } 5390 5391 if (Imm1 & ~0xFF) { 5392 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 5393 return MatchOperand_ParseFail; 5394 } 5395 5396 // Eat the comma 5397 Parser.Lex(); 5398 5399 // Repeat for #rot 5400 SMLoc Sx2, Ex2; 5401 Sx2 = Parser.getTok().getLoc(); 5402 5403 // Eat the optional hash (dollar) 5404 if (Parser.getTok().is(AsmToken::Hash) || 5405 Parser.getTok().is(AsmToken::Dollar)) 5406 Parser.Lex(); 5407 5408 const MCExpr *Imm2Exp; 5409 if (getParser().parseExpression(Imm2Exp, Ex2)) { 5410 Error(Sx2, "malformed expression"); 5411 return MatchOperand_ParseFail; 5412 } 5413 5414 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 5415 5416 if (CE) { 5417 Imm2 = CE->getValue(); 5418 if (!(Imm2 & ~0x1E)) { 5419 // We have a match! 5420 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 5421 return MatchOperand_Success; 5422 } 5423 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 5424 return MatchOperand_ParseFail; 5425 } else { 5426 Error(Sx2, "constant expression expected"); 5427 return MatchOperand_ParseFail; 5428 } 5429 } 5430 5431 OperandMatchResultTy 5432 ARMAsmParser::parseBitfield(OperandVector &Operands) { 5433 MCAsmParser &Parser = getParser(); 5434 SMLoc S = Parser.getTok().getLoc(); 5435 // The bitfield descriptor is really two operands, the LSB and the width. 5436 if (Parser.getTok().isNot(AsmToken::Hash) && 5437 Parser.getTok().isNot(AsmToken::Dollar)) { 5438 Error(Parser.getTok().getLoc(), "'#' expected"); 5439 return MatchOperand_ParseFail; 5440 } 5441 Parser.Lex(); // Eat hash token. 5442 5443 const MCExpr *LSBExpr; 5444 SMLoc E = Parser.getTok().getLoc(); 5445 if (getParser().parseExpression(LSBExpr)) { 5446 Error(E, "malformed immediate expression"); 5447 return MatchOperand_ParseFail; 5448 } 5449 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 5450 if (!CE) { 5451 Error(E, "'lsb' operand must be an immediate"); 5452 return MatchOperand_ParseFail; 5453 } 5454 5455 int64_t LSB = CE->getValue(); 5456 // The LSB must be in the range [0,31] 5457 if (LSB < 0 || LSB > 31) { 5458 Error(E, "'lsb' operand must be in the range [0,31]"); 5459 return MatchOperand_ParseFail; 5460 } 5461 E = Parser.getTok().getLoc(); 5462 5463 // Expect another immediate operand. 5464 if (Parser.getTok().isNot(AsmToken::Comma)) { 5465 Error(Parser.getTok().getLoc(), "too few operands"); 5466 return MatchOperand_ParseFail; 5467 } 5468 Parser.Lex(); // Eat hash token. 5469 if (Parser.getTok().isNot(AsmToken::Hash) && 5470 Parser.getTok().isNot(AsmToken::Dollar)) { 5471 Error(Parser.getTok().getLoc(), "'#' expected"); 5472 return MatchOperand_ParseFail; 5473 } 5474 Parser.Lex(); // Eat hash token. 5475 5476 const MCExpr *WidthExpr; 5477 SMLoc EndLoc; 5478 if (getParser().parseExpression(WidthExpr, EndLoc)) { 5479 Error(E, "malformed immediate expression"); 5480 return MatchOperand_ParseFail; 5481 } 5482 CE = dyn_cast<MCConstantExpr>(WidthExpr); 5483 if (!CE) { 5484 Error(E, "'width' operand must be an immediate"); 5485 return MatchOperand_ParseFail; 5486 } 5487 5488 int64_t Width = CE->getValue(); 5489 // The LSB must be in the range [1,32-lsb] 5490 if (Width < 1 || Width > 32 - LSB) { 5491 Error(E, "'width' operand must be in the range [1,32-lsb]"); 5492 return MatchOperand_ParseFail; 5493 } 5494 5495 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 5496 5497 return MatchOperand_Success; 5498 } 5499 5500 OperandMatchResultTy 5501 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 5502 // Check for a post-index addressing register operand. Specifically: 5503 // postidx_reg := '+' register {, shift} 5504 // | '-' register {, shift} 5505 // | register {, shift} 5506 5507 // This method must return MatchOperand_NoMatch without consuming any tokens 5508 // in the case where there is no match, as other alternatives take other 5509 // parse methods. 5510 MCAsmParser &Parser = getParser(); 5511 AsmToken Tok = Parser.getTok(); 5512 SMLoc S = Tok.getLoc(); 5513 bool haveEaten = false; 5514 bool isAdd = true; 5515 if (Tok.is(AsmToken::Plus)) { 5516 Parser.Lex(); // Eat the '+' token. 5517 haveEaten = true; 5518 } else if (Tok.is(AsmToken::Minus)) { 5519 Parser.Lex(); // Eat the '-' token. 5520 isAdd = false; 5521 haveEaten = true; 5522 } 5523 5524 SMLoc E = Parser.getTok().getEndLoc(); 5525 int Reg = tryParseRegister(); 5526 if (Reg == -1) { 5527 if (!haveEaten) 5528 return MatchOperand_NoMatch; 5529 Error(Parser.getTok().getLoc(), "register expected"); 5530 return MatchOperand_ParseFail; 5531 } 5532 5533 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 5534 unsigned ShiftImm = 0; 5535 if (Parser.getTok().is(AsmToken::Comma)) { 5536 Parser.Lex(); // Eat the ','. 5537 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 5538 return MatchOperand_ParseFail; 5539 5540 // FIXME: Only approximates end...may include intervening whitespace. 5541 E = Parser.getTok().getLoc(); 5542 } 5543 5544 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 5545 ShiftImm, S, E)); 5546 5547 return MatchOperand_Success; 5548 } 5549 5550 OperandMatchResultTy 5551 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 5552 // Check for a post-index addressing register operand. Specifically: 5553 // am3offset := '+' register 5554 // | '-' register 5555 // | register 5556 // | # imm 5557 // | # + imm 5558 // | # - imm 5559 5560 // This method must return MatchOperand_NoMatch without consuming any tokens 5561 // in the case where there is no match, as other alternatives take other 5562 // parse methods. 5563 MCAsmParser &Parser = getParser(); 5564 AsmToken Tok = Parser.getTok(); 5565 SMLoc S = Tok.getLoc(); 5566 5567 // Do immediates first, as we always parse those if we have a '#'. 5568 if (Parser.getTok().is(AsmToken::Hash) || 5569 Parser.getTok().is(AsmToken::Dollar)) { 5570 Parser.Lex(); // Eat '#' or '$'. 5571 // Explicitly look for a '-', as we need to encode negative zero 5572 // differently. 5573 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5574 const MCExpr *Offset; 5575 SMLoc E; 5576 if (getParser().parseExpression(Offset, E)) 5577 return MatchOperand_ParseFail; 5578 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5579 if (!CE) { 5580 Error(S, "constant expression expected"); 5581 return MatchOperand_ParseFail; 5582 } 5583 // Negative zero is encoded as the flag value 5584 // std::numeric_limits<int32_t>::min(). 5585 int32_t Val = CE->getValue(); 5586 if (isNegative && Val == 0) 5587 Val = std::numeric_limits<int32_t>::min(); 5588 5589 Operands.push_back( 5590 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 5591 5592 return MatchOperand_Success; 5593 } 5594 5595 bool haveEaten = false; 5596 bool isAdd = true; 5597 if (Tok.is(AsmToken::Plus)) { 5598 Parser.Lex(); // Eat the '+' token. 5599 haveEaten = true; 5600 } else if (Tok.is(AsmToken::Minus)) { 5601 Parser.Lex(); // Eat the '-' token. 5602 isAdd = false; 5603 haveEaten = true; 5604 } 5605 5606 Tok = Parser.getTok(); 5607 int Reg = tryParseRegister(); 5608 if (Reg == -1) { 5609 if (!haveEaten) 5610 return MatchOperand_NoMatch; 5611 Error(Tok.getLoc(), "register expected"); 5612 return MatchOperand_ParseFail; 5613 } 5614 5615 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 5616 0, S, Tok.getEndLoc())); 5617 5618 return MatchOperand_Success; 5619 } 5620 5621 /// Convert parsed operands to MCInst. Needed here because this instruction 5622 /// only has two register operands, but multiplication is commutative so 5623 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 5624 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 5625 const OperandVector &Operands) { 5626 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 5627 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 5628 // If we have a three-operand form, make sure to set Rn to be the operand 5629 // that isn't the same as Rd. 5630 unsigned RegOp = 4; 5631 if (Operands.size() == 6 && 5632 ((ARMOperand &)*Operands[4]).getReg() == 5633 ((ARMOperand &)*Operands[3]).getReg()) 5634 RegOp = 5; 5635 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 5636 Inst.addOperand(Inst.getOperand(0)); 5637 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 5638 } 5639 5640 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 5641 const OperandVector &Operands) { 5642 int CondOp = -1, ImmOp = -1; 5643 switch(Inst.getOpcode()) { 5644 case ARM::tB: 5645 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 5646 5647 case ARM::t2B: 5648 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 5649 5650 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 5651 } 5652 // first decide whether or not the branch should be conditional 5653 // by looking at it's location relative to an IT block 5654 if(inITBlock()) { 5655 // inside an IT block we cannot have any conditional branches. any 5656 // such instructions needs to be converted to unconditional form 5657 switch(Inst.getOpcode()) { 5658 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 5659 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 5660 } 5661 } else { 5662 // outside IT blocks we can only have unconditional branches with AL 5663 // condition code or conditional branches with non-AL condition code 5664 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 5665 switch(Inst.getOpcode()) { 5666 case ARM::tB: 5667 case ARM::tBcc: 5668 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 5669 break; 5670 case ARM::t2B: 5671 case ARM::t2Bcc: 5672 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 5673 break; 5674 } 5675 } 5676 5677 // now decide on encoding size based on branch target range 5678 switch(Inst.getOpcode()) { 5679 // classify tB as either t2B or t1B based on range of immediate operand 5680 case ARM::tB: { 5681 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5682 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 5683 Inst.setOpcode(ARM::t2B); 5684 break; 5685 } 5686 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 5687 case ARM::tBcc: { 5688 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5689 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 5690 Inst.setOpcode(ARM::t2Bcc); 5691 break; 5692 } 5693 } 5694 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 5695 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 5696 } 5697 5698 void ARMAsmParser::cvtMVEVMOVQtoDReg( 5699 MCInst &Inst, const OperandVector &Operands) { 5700 5701 // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2 5702 assert(Operands.size() == 8); 5703 5704 ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt 5705 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2 5706 ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd 5707 ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx 5708 // skip second copy of Qd in Operands[6] 5709 ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2 5710 ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code 5711 } 5712 5713 /// Parse an ARM memory expression, return false if successful else return true 5714 /// or an error. The first token must be a '[' when called. 5715 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 5716 MCAsmParser &Parser = getParser(); 5717 SMLoc S, E; 5718 if (Parser.getTok().isNot(AsmToken::LBrac)) 5719 return TokError("Token is not a Left Bracket"); 5720 S = Parser.getTok().getLoc(); 5721 Parser.Lex(); // Eat left bracket token. 5722 5723 const AsmToken &BaseRegTok = Parser.getTok(); 5724 int BaseRegNum = tryParseRegister(); 5725 if (BaseRegNum == -1) 5726 return Error(BaseRegTok.getLoc(), "register expected"); 5727 5728 // The next token must either be a comma, a colon or a closing bracket. 5729 const AsmToken &Tok = Parser.getTok(); 5730 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5731 !Tok.is(AsmToken::RBrac)) 5732 return Error(Tok.getLoc(), "malformed memory operand"); 5733 5734 if (Tok.is(AsmToken::RBrac)) { 5735 E = Tok.getEndLoc(); 5736 Parser.Lex(); // Eat right bracket token. 5737 5738 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5739 ARM_AM::no_shift, 0, 0, false, 5740 S, E)); 5741 5742 // If there's a pre-indexing writeback marker, '!', just add it as a token 5743 // operand. It's rather odd, but syntactically valid. 5744 if (Parser.getTok().is(AsmToken::Exclaim)) { 5745 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5746 Parser.Lex(); // Eat the '!'. 5747 } 5748 5749 return false; 5750 } 5751 5752 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5753 "Lost colon or comma in memory operand?!"); 5754 if (Tok.is(AsmToken::Comma)) { 5755 Parser.Lex(); // Eat the comma. 5756 } 5757 5758 // If we have a ':', it's an alignment specifier. 5759 if (Parser.getTok().is(AsmToken::Colon)) { 5760 Parser.Lex(); // Eat the ':'. 5761 E = Parser.getTok().getLoc(); 5762 SMLoc AlignmentLoc = Tok.getLoc(); 5763 5764 const MCExpr *Expr; 5765 if (getParser().parseExpression(Expr)) 5766 return true; 5767 5768 // The expression has to be a constant. Memory references with relocations 5769 // don't come through here, as they use the <label> forms of the relevant 5770 // instructions. 5771 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5772 if (!CE) 5773 return Error (E, "constant expression expected"); 5774 5775 unsigned Align = 0; 5776 switch (CE->getValue()) { 5777 default: 5778 return Error(E, 5779 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5780 case 16: Align = 2; break; 5781 case 32: Align = 4; break; 5782 case 64: Align = 8; break; 5783 case 128: Align = 16; break; 5784 case 256: Align = 32; break; 5785 } 5786 5787 // Now we should have the closing ']' 5788 if (Parser.getTok().isNot(AsmToken::RBrac)) 5789 return Error(Parser.getTok().getLoc(), "']' expected"); 5790 E = Parser.getTok().getEndLoc(); 5791 Parser.Lex(); // Eat right bracket token. 5792 5793 // Don't worry about range checking the value here. That's handled by 5794 // the is*() predicates. 5795 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5796 ARM_AM::no_shift, 0, Align, 5797 false, S, E, AlignmentLoc)); 5798 5799 // If there's a pre-indexing writeback marker, '!', just add it as a token 5800 // operand. 5801 if (Parser.getTok().is(AsmToken::Exclaim)) { 5802 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5803 Parser.Lex(); // Eat the '!'. 5804 } 5805 5806 return false; 5807 } 5808 5809 // If we have a '#' or '$', it's an immediate offset, else assume it's a 5810 // register offset. Be friendly and also accept a plain integer or expression 5811 // (without a leading hash) for gas compatibility. 5812 if (Parser.getTok().is(AsmToken::Hash) || 5813 Parser.getTok().is(AsmToken::Dollar) || 5814 Parser.getTok().is(AsmToken::LParen) || 5815 Parser.getTok().is(AsmToken::Integer)) { 5816 if (Parser.getTok().is(AsmToken::Hash) || 5817 Parser.getTok().is(AsmToken::Dollar)) 5818 Parser.Lex(); // Eat '#' or '$' 5819 E = Parser.getTok().getLoc(); 5820 5821 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5822 const MCExpr *Offset; 5823 if (getParser().parseExpression(Offset)) 5824 return true; 5825 5826 // The expression has to be a constant. Memory references with relocations 5827 // don't come through here, as they use the <label> forms of the relevant 5828 // instructions. 5829 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5830 if (!CE) 5831 return Error (E, "constant expression expected"); 5832 5833 // If the constant was #-0, represent it as 5834 // std::numeric_limits<int32_t>::min(). 5835 int32_t Val = CE->getValue(); 5836 if (isNegative && Val == 0) 5837 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5838 getContext()); 5839 5840 // Now we should have the closing ']' 5841 if (Parser.getTok().isNot(AsmToken::RBrac)) 5842 return Error(Parser.getTok().getLoc(), "']' expected"); 5843 E = Parser.getTok().getEndLoc(); 5844 Parser.Lex(); // Eat right bracket token. 5845 5846 // Don't worry about range checking the value here. That's handled by 5847 // the is*() predicates. 5848 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 5849 ARM_AM::no_shift, 0, 0, 5850 false, S, E)); 5851 5852 // If there's a pre-indexing writeback marker, '!', just add it as a token 5853 // operand. 5854 if (Parser.getTok().is(AsmToken::Exclaim)) { 5855 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5856 Parser.Lex(); // Eat the '!'. 5857 } 5858 5859 return false; 5860 } 5861 5862 // The register offset is optionally preceded by a '+' or '-' 5863 bool isNegative = false; 5864 if (Parser.getTok().is(AsmToken::Minus)) { 5865 isNegative = true; 5866 Parser.Lex(); // Eat the '-'. 5867 } else if (Parser.getTok().is(AsmToken::Plus)) { 5868 // Nothing to do. 5869 Parser.Lex(); // Eat the '+'. 5870 } 5871 5872 E = Parser.getTok().getLoc(); 5873 int OffsetRegNum = tryParseRegister(); 5874 if (OffsetRegNum == -1) 5875 return Error(E, "register expected"); 5876 5877 // If there's a shift operator, handle it. 5878 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5879 unsigned ShiftImm = 0; 5880 if (Parser.getTok().is(AsmToken::Comma)) { 5881 Parser.Lex(); // Eat the ','. 5882 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5883 return true; 5884 } 5885 5886 // Now we should have the closing ']' 5887 if (Parser.getTok().isNot(AsmToken::RBrac)) 5888 return Error(Parser.getTok().getLoc(), "']' expected"); 5889 E = Parser.getTok().getEndLoc(); 5890 Parser.Lex(); // Eat right bracket token. 5891 5892 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5893 ShiftType, ShiftImm, 0, isNegative, 5894 S, E)); 5895 5896 // If there's a pre-indexing writeback marker, '!', just add it as a token 5897 // operand. 5898 if (Parser.getTok().is(AsmToken::Exclaim)) { 5899 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5900 Parser.Lex(); // Eat the '!'. 5901 } 5902 5903 return false; 5904 } 5905 5906 /// parseMemRegOffsetShift - one of these two: 5907 /// ( lsl | lsr | asr | ror ) , # shift_amount 5908 /// rrx 5909 /// return true if it parses a shift otherwise it returns false. 5910 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5911 unsigned &Amount) { 5912 MCAsmParser &Parser = getParser(); 5913 SMLoc Loc = Parser.getTok().getLoc(); 5914 const AsmToken &Tok = Parser.getTok(); 5915 if (Tok.isNot(AsmToken::Identifier)) 5916 return Error(Loc, "illegal shift operator"); 5917 StringRef ShiftName = Tok.getString(); 5918 if (ShiftName == "lsl" || ShiftName == "LSL" || 5919 ShiftName == "asl" || ShiftName == "ASL") 5920 St = ARM_AM::lsl; 5921 else if (ShiftName == "lsr" || ShiftName == "LSR") 5922 St = ARM_AM::lsr; 5923 else if (ShiftName == "asr" || ShiftName == "ASR") 5924 St = ARM_AM::asr; 5925 else if (ShiftName == "ror" || ShiftName == "ROR") 5926 St = ARM_AM::ror; 5927 else if (ShiftName == "rrx" || ShiftName == "RRX") 5928 St = ARM_AM::rrx; 5929 else if (ShiftName == "uxtw" || ShiftName == "UXTW") 5930 St = ARM_AM::uxtw; 5931 else 5932 return Error(Loc, "illegal shift operator"); 5933 Parser.Lex(); // Eat shift type token. 5934 5935 // rrx stands alone. 5936 Amount = 0; 5937 if (St != ARM_AM::rrx) { 5938 Loc = Parser.getTok().getLoc(); 5939 // A '#' and a shift amount. 5940 const AsmToken &HashTok = Parser.getTok(); 5941 if (HashTok.isNot(AsmToken::Hash) && 5942 HashTok.isNot(AsmToken::Dollar)) 5943 return Error(HashTok.getLoc(), "'#' expected"); 5944 Parser.Lex(); // Eat hash token. 5945 5946 const MCExpr *Expr; 5947 if (getParser().parseExpression(Expr)) 5948 return true; 5949 // Range check the immediate. 5950 // lsl, ror: 0 <= imm <= 31 5951 // lsr, asr: 0 <= imm <= 32 5952 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5953 if (!CE) 5954 return Error(Loc, "shift amount must be an immediate"); 5955 int64_t Imm = CE->getValue(); 5956 if (Imm < 0 || 5957 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5958 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5959 return Error(Loc, "immediate shift value out of range"); 5960 // If <ShiftTy> #0, turn it into a no_shift. 5961 if (Imm == 0) 5962 St = ARM_AM::lsl; 5963 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5964 if (Imm == 32) 5965 Imm = 0; 5966 Amount = Imm; 5967 } 5968 5969 return false; 5970 } 5971 5972 /// parseFPImm - A floating point immediate expression operand. 5973 OperandMatchResultTy 5974 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5975 MCAsmParser &Parser = getParser(); 5976 // Anything that can accept a floating point constant as an operand 5977 // needs to go through here, as the regular parseExpression is 5978 // integer only. 5979 // 5980 // This routine still creates a generic Immediate operand, containing 5981 // a bitcast of the 64-bit floating point value. The various operands 5982 // that accept floats can check whether the value is valid for them 5983 // via the standard is*() predicates. 5984 5985 SMLoc S = Parser.getTok().getLoc(); 5986 5987 if (Parser.getTok().isNot(AsmToken::Hash) && 5988 Parser.getTok().isNot(AsmToken::Dollar)) 5989 return MatchOperand_NoMatch; 5990 5991 // Disambiguate the VMOV forms that can accept an FP immediate. 5992 // vmov.f32 <sreg>, #imm 5993 // vmov.f64 <dreg>, #imm 5994 // vmov.f32 <dreg>, #imm @ vector f32x2 5995 // vmov.f32 <qreg>, #imm @ vector f32x4 5996 // 5997 // There are also the NEON VMOV instructions which expect an 5998 // integer constant. Make sure we don't try to parse an FPImm 5999 // for these: 6000 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 6001 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 6002 bool isVmovf = TyOp.isToken() && 6003 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 6004 TyOp.getToken() == ".f16"); 6005 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 6006 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 6007 Mnemonic.getToken() == "fconsts"); 6008 if (!(isVmovf || isFconst)) 6009 return MatchOperand_NoMatch; 6010 6011 Parser.Lex(); // Eat '#' or '$'. 6012 6013 // Handle negation, as that still comes through as a separate token. 6014 bool isNegative = false; 6015 if (Parser.getTok().is(AsmToken::Minus)) { 6016 isNegative = true; 6017 Parser.Lex(); 6018 } 6019 const AsmToken &Tok = Parser.getTok(); 6020 SMLoc Loc = Tok.getLoc(); 6021 if (Tok.is(AsmToken::Real) && isVmovf) { 6022 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 6023 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 6024 // If we had a '-' in front, toggle the sign bit. 6025 IntVal ^= (uint64_t)isNegative << 31; 6026 Parser.Lex(); // Eat the token. 6027 Operands.push_back(ARMOperand::CreateImm( 6028 MCConstantExpr::create(IntVal, getContext()), 6029 S, Parser.getTok().getLoc())); 6030 return MatchOperand_Success; 6031 } 6032 // Also handle plain integers. Instructions which allow floating point 6033 // immediates also allow a raw encoded 8-bit value. 6034 if (Tok.is(AsmToken::Integer) && isFconst) { 6035 int64_t Val = Tok.getIntVal(); 6036 Parser.Lex(); // Eat the token. 6037 if (Val > 255 || Val < 0) { 6038 Error(Loc, "encoded floating point value out of range"); 6039 return MatchOperand_ParseFail; 6040 } 6041 float RealVal = ARM_AM::getFPImmFloat(Val); 6042 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 6043 6044 Operands.push_back(ARMOperand::CreateImm( 6045 MCConstantExpr::create(Val, getContext()), S, 6046 Parser.getTok().getLoc())); 6047 return MatchOperand_Success; 6048 } 6049 6050 Error(Loc, "invalid floating point immediate"); 6051 return MatchOperand_ParseFail; 6052 } 6053 6054 /// Parse a arm instruction operand. For now this parses the operand regardless 6055 /// of the mnemonic. 6056 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 6057 MCAsmParser &Parser = getParser(); 6058 SMLoc S, E; 6059 6060 // Check if the current operand has a custom associated parser, if so, try to 6061 // custom parse the operand, or fallback to the general approach. 6062 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 6063 if (ResTy == MatchOperand_Success) 6064 return false; 6065 // If there wasn't a custom match, try the generic matcher below. Otherwise, 6066 // there was a match, but an error occurred, in which case, just return that 6067 // the operand parsing failed. 6068 if (ResTy == MatchOperand_ParseFail) 6069 return true; 6070 6071 switch (getLexer().getKind()) { 6072 default: 6073 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 6074 return true; 6075 case AsmToken::Identifier: { 6076 // If we've seen a branch mnemonic, the next operand must be a label. This 6077 // is true even if the label is a register name. So "br r1" means branch to 6078 // label "r1". 6079 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 6080 if (!ExpectLabel) { 6081 if (!tryParseRegisterWithWriteBack(Operands)) 6082 return false; 6083 int Res = tryParseShiftRegister(Operands); 6084 if (Res == 0) // success 6085 return false; 6086 else if (Res == -1) // irrecoverable error 6087 return true; 6088 // If this is VMRS, check for the apsr_nzcv operand. 6089 if (Mnemonic == "vmrs" && 6090 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 6091 S = Parser.getTok().getLoc(); 6092 Parser.Lex(); 6093 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 6094 return false; 6095 } 6096 } 6097 6098 // Fall though for the Identifier case that is not a register or a 6099 // special name. 6100 LLVM_FALLTHROUGH; 6101 } 6102 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 6103 case AsmToken::Integer: // things like 1f and 2b as a branch targets 6104 case AsmToken::String: // quoted label names. 6105 case AsmToken::Dot: { // . as a branch target 6106 // This was not a register so parse other operands that start with an 6107 // identifier (like labels) as expressions and create them as immediates. 6108 const MCExpr *IdVal; 6109 S = Parser.getTok().getLoc(); 6110 if (getParser().parseExpression(IdVal)) 6111 return true; 6112 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6113 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 6114 return false; 6115 } 6116 case AsmToken::LBrac: 6117 return parseMemory(Operands); 6118 case AsmToken::LCurly: 6119 return parseRegisterList(Operands, !Mnemonic.startswith("clr")); 6120 case AsmToken::Dollar: 6121 case AsmToken::Hash: { 6122 // #42 -> immediate 6123 // $ 42 -> immediate 6124 // $foo -> symbol name 6125 // $42 -> symbol name 6126 S = Parser.getTok().getLoc(); 6127 6128 // Favor the interpretation of $-prefixed operands as symbol names. 6129 // Cases where immediates are explicitly expected are handled by their 6130 // specific ParseMethod implementations. 6131 auto AdjacentToken = getLexer().peekTok(/*ShouldSkipSpace=*/false); 6132 bool ExpectIdentifier = Parser.getTok().is(AsmToken::Dollar) && 6133 (AdjacentToken.is(AsmToken::Identifier) || 6134 AdjacentToken.is(AsmToken::Integer)); 6135 if (!ExpectIdentifier) { 6136 // Token is not part of identifier. Drop leading $ or # before parsing 6137 // expression. 6138 Parser.Lex(); 6139 } 6140 6141 if (Parser.getTok().isNot(AsmToken::Colon)) { 6142 bool IsNegative = Parser.getTok().is(AsmToken::Minus); 6143 const MCExpr *ImmVal; 6144 if (getParser().parseExpression(ImmVal)) 6145 return true; 6146 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 6147 if (CE) { 6148 int32_t Val = CE->getValue(); 6149 if (IsNegative && Val == 0) 6150 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 6151 getContext()); 6152 } 6153 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6154 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 6155 6156 // There can be a trailing '!' on operands that we want as a separate 6157 // '!' Token operand. Handle that here. For example, the compatibility 6158 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 6159 if (Parser.getTok().is(AsmToken::Exclaim)) { 6160 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 6161 Parser.getTok().getLoc())); 6162 Parser.Lex(); // Eat exclaim token 6163 } 6164 return false; 6165 } 6166 // w/ a ':' after the '#', it's just like a plain ':'. 6167 LLVM_FALLTHROUGH; 6168 } 6169 case AsmToken::Colon: { 6170 S = Parser.getTok().getLoc(); 6171 // ":lower16:" and ":upper16:" expression prefixes 6172 // FIXME: Check it's an expression prefix, 6173 // e.g. (FOO - :lower16:BAR) isn't legal. 6174 ARMMCExpr::VariantKind RefKind; 6175 if (parsePrefix(RefKind)) 6176 return true; 6177 6178 const MCExpr *SubExprVal; 6179 if (getParser().parseExpression(SubExprVal)) 6180 return true; 6181 6182 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 6183 getContext()); 6184 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6185 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 6186 return false; 6187 } 6188 case AsmToken::Equal: { 6189 S = Parser.getTok().getLoc(); 6190 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 6191 return Error(S, "unexpected token in operand"); 6192 Parser.Lex(); // Eat '=' 6193 const MCExpr *SubExprVal; 6194 if (getParser().parseExpression(SubExprVal)) 6195 return true; 6196 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6197 6198 // execute-only: we assume that assembly programmers know what they are 6199 // doing and allow literal pool creation here 6200 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 6201 return false; 6202 } 6203 } 6204 } 6205 6206 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 6207 // :lower16: and :upper16:. 6208 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 6209 MCAsmParser &Parser = getParser(); 6210 RefKind = ARMMCExpr::VK_ARM_None; 6211 6212 // consume an optional '#' (GNU compatibility) 6213 if (getLexer().is(AsmToken::Hash)) 6214 Parser.Lex(); 6215 6216 // :lower16: and :upper16: modifiers 6217 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 6218 Parser.Lex(); // Eat ':' 6219 6220 if (getLexer().isNot(AsmToken::Identifier)) { 6221 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 6222 return true; 6223 } 6224 6225 enum { 6226 COFF = (1 << MCObjectFileInfo::IsCOFF), 6227 ELF = (1 << MCObjectFileInfo::IsELF), 6228 MACHO = (1 << MCObjectFileInfo::IsMachO), 6229 WASM = (1 << MCObjectFileInfo::IsWasm), 6230 }; 6231 static const struct PrefixEntry { 6232 const char *Spelling; 6233 ARMMCExpr::VariantKind VariantKind; 6234 uint8_t SupportedFormats; 6235 } PrefixEntries[] = { 6236 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 6237 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 6238 }; 6239 6240 StringRef IDVal = Parser.getTok().getIdentifier(); 6241 6242 const auto &Prefix = 6243 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 6244 [&IDVal](const PrefixEntry &PE) { 6245 return PE.Spelling == IDVal; 6246 }); 6247 if (Prefix == std::end(PrefixEntries)) { 6248 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 6249 return true; 6250 } 6251 6252 uint8_t CurrentFormat; 6253 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 6254 case MCObjectFileInfo::IsMachO: 6255 CurrentFormat = MACHO; 6256 break; 6257 case MCObjectFileInfo::IsELF: 6258 CurrentFormat = ELF; 6259 break; 6260 case MCObjectFileInfo::IsCOFF: 6261 CurrentFormat = COFF; 6262 break; 6263 case MCObjectFileInfo::IsWasm: 6264 CurrentFormat = WASM; 6265 break; 6266 case MCObjectFileInfo::IsXCOFF: 6267 llvm_unreachable("unexpected object format"); 6268 break; 6269 } 6270 6271 if (~Prefix->SupportedFormats & CurrentFormat) { 6272 Error(Parser.getTok().getLoc(), 6273 "cannot represent relocation in the current file format"); 6274 return true; 6275 } 6276 6277 RefKind = Prefix->VariantKind; 6278 Parser.Lex(); 6279 6280 if (getLexer().isNot(AsmToken::Colon)) { 6281 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 6282 return true; 6283 } 6284 Parser.Lex(); // Eat the last ':' 6285 6286 return false; 6287 } 6288 6289 /// Given a mnemonic, split out possible predication code and carry 6290 /// setting letters to form a canonical mnemonic and flags. 6291 // 6292 // FIXME: Would be nice to autogen this. 6293 // FIXME: This is a bit of a maze of special cases. 6294 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 6295 StringRef ExtraToken, 6296 unsigned &PredicationCode, 6297 unsigned &VPTPredicationCode, 6298 bool &CarrySetting, 6299 unsigned &ProcessorIMod, 6300 StringRef &ITMask) { 6301 PredicationCode = ARMCC::AL; 6302 VPTPredicationCode = ARMVCC::None; 6303 CarrySetting = false; 6304 ProcessorIMod = 0; 6305 6306 // Ignore some mnemonics we know aren't predicated forms. 6307 // 6308 // FIXME: Would be nice to autogen this. 6309 if ((Mnemonic == "movs" && isThumb()) || 6310 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 6311 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 6312 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 6313 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 6314 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 6315 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 6316 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 6317 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 6318 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 6319 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 6320 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 6321 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 6322 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 6323 Mnemonic == "bxns" || Mnemonic == "blxns" || 6324 Mnemonic == "vdot" || Mnemonic == "vmmla" || 6325 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6326 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6327 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6328 Mnemonic == "wls" || Mnemonic == "le" || Mnemonic == "dls" || 6329 Mnemonic == "csel" || Mnemonic == "csinc" || 6330 Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" || 6331 Mnemonic == "cinv" || Mnemonic == "cneg" || Mnemonic == "cset" || 6332 Mnemonic == "csetm") 6333 return Mnemonic; 6334 6335 // First, split out any predication code. Ignore mnemonics we know aren't 6336 // predicated but do have a carry-set and so weren't caught above. 6337 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 6338 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 6339 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 6340 Mnemonic != "sbcs" && Mnemonic != "rscs" && 6341 !(hasMVE() && 6342 (Mnemonic == "vmine" || 6343 Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" || 6344 Mnemonic == "vrshle" || Mnemonic == "vrshlt" || 6345 Mnemonic == "vmvne" || Mnemonic == "vorne" || 6346 Mnemonic == "vnege" || Mnemonic == "vnegt" || 6347 Mnemonic == "vmule" || Mnemonic == "vmult" || 6348 Mnemonic == "vrintne" || 6349 Mnemonic == "vcmult" || Mnemonic == "vcmule" || 6350 Mnemonic == "vpsele" || Mnemonic == "vpselt" || 6351 Mnemonic.startswith("vq")))) { 6352 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); 6353 if (CC != ~0U) { 6354 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 6355 PredicationCode = CC; 6356 } 6357 } 6358 6359 // Next, determine if we have a carry setting bit. We explicitly ignore all 6360 // the instructions we know end in 's'. 6361 if (Mnemonic.endswith("s") && 6362 !(Mnemonic == "cps" || Mnemonic == "mls" || 6363 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 6364 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 6365 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 6366 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 6367 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 6368 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 6369 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 6370 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 6371 Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" || 6372 Mnemonic == "vmlas" || 6373 (Mnemonic == "movs" && isThumb()))) { 6374 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 6375 CarrySetting = true; 6376 } 6377 6378 // The "cps" instruction can have a interrupt mode operand which is glued into 6379 // the mnemonic. Check if this is the case, split it and parse the imod op 6380 if (Mnemonic.startswith("cps")) { 6381 // Split out any imod code. 6382 unsigned IMod = 6383 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 6384 .Case("ie", ARM_PROC::IE) 6385 .Case("id", ARM_PROC::ID) 6386 .Default(~0U); 6387 if (IMod != ~0U) { 6388 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 6389 ProcessorIMod = IMod; 6390 } 6391 } 6392 6393 if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" && 6394 Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" && 6395 Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" && 6396 Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" && 6397 Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" && 6398 Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" && 6399 Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") { 6400 unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1)); 6401 if (CC != ~0U) { 6402 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1); 6403 VPTPredicationCode = CC; 6404 } 6405 return Mnemonic; 6406 } 6407 6408 // The "it" instruction has the condition mask on the end of the mnemonic. 6409 if (Mnemonic.startswith("it")) { 6410 ITMask = Mnemonic.slice(2, Mnemonic.size()); 6411 Mnemonic = Mnemonic.slice(0, 2); 6412 } 6413 6414 if (Mnemonic.startswith("vpst")) { 6415 ITMask = Mnemonic.slice(4, Mnemonic.size()); 6416 Mnemonic = Mnemonic.slice(0, 4); 6417 } 6418 else if (Mnemonic.startswith("vpt")) { 6419 ITMask = Mnemonic.slice(3, Mnemonic.size()); 6420 Mnemonic = Mnemonic.slice(0, 3); 6421 } 6422 6423 return Mnemonic; 6424 } 6425 6426 /// Given a canonical mnemonic, determine if the instruction ever allows 6427 /// inclusion of carry set or predication code operands. 6428 // 6429 // FIXME: It would be nice to autogen this. 6430 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, 6431 StringRef ExtraToken, 6432 StringRef FullInst, 6433 bool &CanAcceptCarrySet, 6434 bool &CanAcceptPredicationCode, 6435 bool &CanAcceptVPTPredicationCode) { 6436 CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken); 6437 6438 CanAcceptCarrySet = 6439 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6440 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 6441 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 6442 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 6443 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 6444 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 6445 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 6446 (!isThumb() && 6447 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 6448 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 6449 6450 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 6451 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 6452 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 6453 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 6454 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 6455 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 6456 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 6457 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 6458 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 6459 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 6460 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 6461 Mnemonic == "vmovx" || Mnemonic == "vins" || 6462 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6463 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6464 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6465 Mnemonic == "vfmat" || Mnemonic == "vfmab" || 6466 Mnemonic == "vdot" || Mnemonic == "vmmla" || 6467 Mnemonic == "sb" || Mnemonic == "ssbb" || 6468 Mnemonic == "pssbb" || Mnemonic == "vsmmla" || 6469 Mnemonic == "vummla" || Mnemonic == "vusmmla" || 6470 Mnemonic == "vusdot" || Mnemonic == "vsudot" || 6471 Mnemonic == "bfcsel" || Mnemonic == "wls" || 6472 Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" || 6473 Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" || 6474 Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" || 6475 Mnemonic == "cset" || Mnemonic == "csetm" || 6476 Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") || 6477 (hasCDE() && MS.isCDEInstr(Mnemonic) && 6478 !MS.isITPredicableCDEInstr(Mnemonic)) || 6479 (hasMVE() && 6480 (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") || 6481 Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") || 6482 Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") || 6483 Mnemonic.startswith("letp")))) { 6484 // These mnemonics are never predicable 6485 CanAcceptPredicationCode = false; 6486 } else if (!isThumb()) { 6487 // Some instructions are only predicable in Thumb mode 6488 CanAcceptPredicationCode = 6489 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 6490 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 6491 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && 6492 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && 6493 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && 6494 Mnemonic != "stc2" && Mnemonic != "stc2l" && 6495 Mnemonic != "tsb" && 6496 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); 6497 } else if (isThumbOne()) { 6498 if (hasV6MOps()) 6499 CanAcceptPredicationCode = Mnemonic != "movs"; 6500 else 6501 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 6502 } else 6503 CanAcceptPredicationCode = true; 6504 } 6505 6506 // Some Thumb instructions have two operand forms that are not 6507 // available as three operand, convert to two operand form if possible. 6508 // 6509 // FIXME: We would really like to be able to tablegen'erate this. 6510 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 6511 bool CarrySetting, 6512 OperandVector &Operands) { 6513 if (Operands.size() != 6) 6514 return; 6515 6516 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6517 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 6518 if (!Op3.isReg() || !Op4.isReg()) 6519 return; 6520 6521 auto Op3Reg = Op3.getReg(); 6522 auto Op4Reg = Op4.getReg(); 6523 6524 // For most Thumb2 cases we just generate the 3 operand form and reduce 6525 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 6526 // won't accept SP or PC so we do the transformation here taking care 6527 // with immediate range in the 'add sp, sp #imm' case. 6528 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 6529 if (isThumbTwo()) { 6530 if (Mnemonic != "add") 6531 return; 6532 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 6533 (Op5.isReg() && Op5.getReg() == ARM::PC); 6534 if (!TryTransform) { 6535 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 6536 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 6537 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 6538 Op5.isImm() && !Op5.isImm0_508s4()); 6539 } 6540 if (!TryTransform) 6541 return; 6542 } else if (!isThumbOne()) 6543 return; 6544 6545 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 6546 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6547 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 6548 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 6549 return; 6550 6551 // If first 2 operands of a 3 operand instruction are the same 6552 // then transform to 2 operand version of the same instruction 6553 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 6554 bool Transform = Op3Reg == Op4Reg; 6555 6556 // For communtative operations, we might be able to transform if we swap 6557 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 6558 // as tADDrsp. 6559 const ARMOperand *LastOp = &Op5; 6560 bool Swap = false; 6561 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 6562 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 6563 Mnemonic == "and" || Mnemonic == "eor" || 6564 Mnemonic == "adc" || Mnemonic == "orr")) { 6565 Swap = true; 6566 LastOp = &Op4; 6567 Transform = true; 6568 } 6569 6570 // If both registers are the same then remove one of them from 6571 // the operand list, with certain exceptions. 6572 if (Transform) { 6573 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 6574 // 2 operand forms don't exist. 6575 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 6576 LastOp->isReg()) 6577 Transform = false; 6578 6579 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 6580 // 3-bits because the ARMARM says not to. 6581 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 6582 Transform = false; 6583 } 6584 6585 if (Transform) { 6586 if (Swap) 6587 std::swap(Op4, Op5); 6588 Operands.erase(Operands.begin() + 3); 6589 } 6590 } 6591 6592 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 6593 OperandVector &Operands) { 6594 // FIXME: This is all horribly hacky. We really need a better way to deal 6595 // with optional operands like this in the matcher table. 6596 6597 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 6598 // another does not. Specifically, the MOVW instruction does not. So we 6599 // special case it here and remove the defaulted (non-setting) cc_out 6600 // operand if that's the instruction we're trying to match. 6601 // 6602 // We do this as post-processing of the explicit operands rather than just 6603 // conditionally adding the cc_out in the first place because we need 6604 // to check the type of the parsed immediate operand. 6605 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 6606 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 6607 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 6608 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6609 return true; 6610 6611 // Register-register 'add' for thumb does not have a cc_out operand 6612 // when there are only two register operands. 6613 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 6614 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6615 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6616 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6617 return true; 6618 // Register-register 'add' for thumb does not have a cc_out operand 6619 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 6620 // have to check the immediate range here since Thumb2 has a variant 6621 // that can handle a different range and has a cc_out operand. 6622 if (((isThumb() && Mnemonic == "add") || 6623 (isThumbTwo() && Mnemonic == "sub")) && 6624 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6625 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6626 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 6627 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6628 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 6629 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 6630 return true; 6631 // For Thumb2, add/sub immediate does not have a cc_out operand for the 6632 // imm0_4095 variant. That's the least-preferred variant when 6633 // selecting via the generic "add" mnemonic, so to know that we 6634 // should remove the cc_out operand, we have to explicitly check that 6635 // it's not one of the other variants. Ugh. 6636 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 6637 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6638 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6639 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6640 // Nest conditions rather than one big 'if' statement for readability. 6641 // 6642 // If both registers are low, we're in an IT block, and the immediate is 6643 // in range, we should use encoding T1 instead, which has a cc_out. 6644 if (inITBlock() && 6645 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 6646 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 6647 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 6648 return false; 6649 // Check against T3. If the second register is the PC, this is an 6650 // alternate form of ADR, which uses encoding T4, so check for that too. 6651 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 6652 (static_cast<ARMOperand &>(*Operands[5]).isT2SOImm() || 6653 static_cast<ARMOperand &>(*Operands[5]).isT2SOImmNeg())) 6654 return false; 6655 6656 // Otherwise, we use encoding T4, which does not have a cc_out 6657 // operand. 6658 return true; 6659 } 6660 6661 // The thumb2 multiply instruction doesn't have a CCOut register, so 6662 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 6663 // use the 16-bit encoding or not. 6664 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 6665 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6666 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6667 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6668 static_cast<ARMOperand &>(*Operands[5]).isReg() && 6669 // If the registers aren't low regs, the destination reg isn't the 6670 // same as one of the source regs, or the cc_out operand is zero 6671 // outside of an IT block, we have to use the 32-bit encoding, so 6672 // remove the cc_out operand. 6673 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6674 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6675 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 6676 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 6677 static_cast<ARMOperand &>(*Operands[5]).getReg() && 6678 static_cast<ARMOperand &>(*Operands[3]).getReg() != 6679 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 6680 return true; 6681 6682 // Also check the 'mul' syntax variant that doesn't specify an explicit 6683 // destination register. 6684 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 6685 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6686 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6687 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6688 // If the registers aren't low regs or the cc_out operand is zero 6689 // outside of an IT block, we have to use the 32-bit encoding, so 6690 // remove the cc_out operand. 6691 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6692 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6693 !inITBlock())) 6694 return true; 6695 6696 // Register-register 'add/sub' for thumb does not have a cc_out operand 6697 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 6698 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 6699 // right, this will result in better diagnostics (which operand is off) 6700 // anyway. 6701 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 6702 (Operands.size() == 5 || Operands.size() == 6) && 6703 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6704 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 6705 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6706 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 6707 (Operands.size() == 6 && 6708 static_cast<ARMOperand &>(*Operands[5]).isImm()))) { 6709 // Thumb2 (add|sub){s}{p}.w GPRnopc, sp, #{T2SOImm} has cc_out 6710 return (!(isThumbTwo() && 6711 (static_cast<ARMOperand &>(*Operands[4]).isT2SOImm() || 6712 static_cast<ARMOperand &>(*Operands[4]).isT2SOImmNeg()))); 6713 } 6714 // Fixme: Should join all the thumb+thumb2 (add|sub) in a single if case 6715 // Thumb2 ADD r0, #4095 -> ADDW r0, r0, #4095 (T4) 6716 // Thumb2 SUB r0, #4095 -> SUBW r0, r0, #4095 6717 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 6718 (Operands.size() == 5) && 6719 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6720 static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::SP && 6721 static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::PC && 6722 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6723 static_cast<ARMOperand &>(*Operands[4]).isImm()) { 6724 const ARMOperand &IMM = static_cast<ARMOperand &>(*Operands[4]); 6725 if (IMM.isT2SOImm() || IMM.isT2SOImmNeg()) 6726 return false; // add.w / sub.w 6727 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IMM.getImm())) { 6728 const int64_t Value = CE->getValue(); 6729 // Thumb1 imm8 sub / add 6730 if ((Value < ((1 << 7) - 1) << 2) && inITBlock() && (!(Value & 3)) && 6731 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg())) 6732 return false; 6733 return true; // Thumb2 T4 addw / subw 6734 } 6735 } 6736 return false; 6737 } 6738 6739 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 6740 OperandVector &Operands) { 6741 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON 6742 unsigned RegIdx = 3; 6743 if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) || 6744 Mnemonic == "vrintr") && 6745 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 6746 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 6747 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6748 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 6749 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 6750 RegIdx = 4; 6751 6752 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 6753 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6754 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 6755 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6756 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 6757 return true; 6758 } 6759 return false; 6760 } 6761 6762 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic, 6763 OperandVector &Operands) { 6764 if (!hasMVE() || Operands.size() < 3) 6765 return true; 6766 6767 if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") || 6768 Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4")) 6769 return true; 6770 6771 if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot")) 6772 return false; 6773 6774 if (Mnemonic.startswith("vmov") && 6775 !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") || 6776 Mnemonic.startswith("vmovx"))) { 6777 for (auto &Operand : Operands) { 6778 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6779 ((*Operand).isReg() && 6780 (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 6781 (*Operand).getReg()) || 6782 ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6783 (*Operand).getReg())))) { 6784 return true; 6785 } 6786 } 6787 return false; 6788 } else { 6789 for (auto &Operand : Operands) { 6790 // We check the larger class QPR instead of just the legal class 6791 // MQPR, to more accurately report errors when using Q registers 6792 // outside of the allowed range. 6793 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6794 (Operand->isReg() && 6795 (ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6796 Operand->getReg())))) 6797 return false; 6798 } 6799 return true; 6800 } 6801 } 6802 6803 static bool isDataTypeToken(StringRef Tok) { 6804 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 6805 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 6806 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 6807 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 6808 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 6809 Tok == ".f" || Tok == ".d"; 6810 } 6811 6812 // FIXME: This bit should probably be handled via an explicit match class 6813 // in the .td files that matches the suffix instead of having it be 6814 // a literal string token the way it is now. 6815 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 6816 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 6817 } 6818 6819 static void applyMnemonicAliases(StringRef &Mnemonic, 6820 const FeatureBitset &Features, 6821 unsigned VariantID); 6822 6823 // The GNU assembler has aliases of ldrd and strd with the second register 6824 // omitted. We don't have a way to do that in tablegen, so fix it up here. 6825 // 6826 // We have to be careful to not emit an invalid Rt2 here, because the rest of 6827 // the assembly parser could then generate confusing diagnostics refering to 6828 // it. If we do find anything that prevents us from doing the transformation we 6829 // bail out, and let the assembly parser report an error on the instruction as 6830 // it is written. 6831 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, 6832 OperandVector &Operands) { 6833 if (Mnemonic != "ldrd" && Mnemonic != "strd") 6834 return; 6835 if (Operands.size() < 4) 6836 return; 6837 6838 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6839 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6840 6841 if (!Op2.isReg()) 6842 return; 6843 if (!Op3.isGPRMem()) 6844 return; 6845 6846 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); 6847 if (!GPR.contains(Op2.getReg())) 6848 return; 6849 6850 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); 6851 if (!isThumb() && (RtEncoding & 1)) { 6852 // In ARM mode, the registers must be from an aligned pair, this 6853 // restriction does not apply in Thumb mode. 6854 return; 6855 } 6856 if (Op2.getReg() == ARM::PC) 6857 return; 6858 unsigned PairedReg = GPR.getRegister(RtEncoding + 1); 6859 if (!PairedReg || PairedReg == ARM::PC || 6860 (PairedReg == ARM::SP && !hasV8Ops())) 6861 return; 6862 6863 Operands.insert( 6864 Operands.begin() + 3, 6865 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6866 } 6867 6868 // Dual-register instruction have the following syntax: 6869 // <mnemonic> <predicate>? <coproc>, <Rdest>, <Rdest+1>, <Rsrc>, ..., #imm 6870 // This function tries to remove <Rdest+1> and replace <Rdest> with a pair 6871 // operand. If the conversion fails an error is diagnosed, and the function 6872 // returns true. 6873 bool ARMAsmParser::CDEConvertDualRegOperand(StringRef Mnemonic, 6874 OperandVector &Operands) { 6875 assert(MS.isCDEDualRegInstr(Mnemonic)); 6876 bool isPredicable = 6877 Mnemonic == "cx1da" || Mnemonic == "cx2da" || Mnemonic == "cx3da"; 6878 size_t NumPredOps = isPredicable ? 1 : 0; 6879 6880 if (Operands.size() <= 3 + NumPredOps) 6881 return false; 6882 6883 StringRef Op2Diag( 6884 "operand must be an even-numbered register in the range [r0, r10]"); 6885 6886 const MCParsedAsmOperand &Op2 = *Operands[2 + NumPredOps]; 6887 if (!Op2.isReg()) 6888 return Error(Op2.getStartLoc(), Op2Diag); 6889 6890 unsigned RNext; 6891 unsigned RPair; 6892 switch (Op2.getReg()) { 6893 default: 6894 return Error(Op2.getStartLoc(), Op2Diag); 6895 case ARM::R0: 6896 RNext = ARM::R1; 6897 RPair = ARM::R0_R1; 6898 break; 6899 case ARM::R2: 6900 RNext = ARM::R3; 6901 RPair = ARM::R2_R3; 6902 break; 6903 case ARM::R4: 6904 RNext = ARM::R5; 6905 RPair = ARM::R4_R5; 6906 break; 6907 case ARM::R6: 6908 RNext = ARM::R7; 6909 RPair = ARM::R6_R7; 6910 break; 6911 case ARM::R8: 6912 RNext = ARM::R9; 6913 RPair = ARM::R8_R9; 6914 break; 6915 case ARM::R10: 6916 RNext = ARM::R11; 6917 RPair = ARM::R10_R11; 6918 break; 6919 } 6920 6921 const MCParsedAsmOperand &Op3 = *Operands[3 + NumPredOps]; 6922 if (!Op3.isReg() || Op3.getReg() != RNext) 6923 return Error(Op3.getStartLoc(), "operand must be a consecutive register"); 6924 6925 Operands.erase(Operands.begin() + 3 + NumPredOps); 6926 Operands[2 + NumPredOps] = 6927 ARMOperand::CreateReg(RPair, Op2.getStartLoc(), Op2.getEndLoc()); 6928 return false; 6929 } 6930 6931 /// Parse an arm instruction mnemonic followed by its operands. 6932 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 6933 SMLoc NameLoc, OperandVector &Operands) { 6934 MCAsmParser &Parser = getParser(); 6935 6936 // Apply mnemonic aliases before doing anything else, as the destination 6937 // mnemonic may include suffices and we want to handle them normally. 6938 // The generic tblgen'erated code does this later, at the start of 6939 // MatchInstructionImpl(), but that's too late for aliases that include 6940 // any sort of suffix. 6941 const FeatureBitset &AvailableFeatures = getAvailableFeatures(); 6942 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 6943 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 6944 6945 // First check for the ARM-specific .req directive. 6946 if (Parser.getTok().is(AsmToken::Identifier) && 6947 Parser.getTok().getIdentifier().lower() == ".req") { 6948 parseDirectiveReq(Name, NameLoc); 6949 // We always return 'error' for this, as we're done with this 6950 // statement and don't need to match the 'instruction." 6951 return true; 6952 } 6953 6954 // Create the leading tokens for the mnemonic, split by '.' characters. 6955 size_t Start = 0, Next = Name.find('.'); 6956 StringRef Mnemonic = Name.slice(Start, Next); 6957 StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1)); 6958 6959 // Split out the predication code and carry setting flag from the mnemonic. 6960 unsigned PredicationCode; 6961 unsigned VPTPredicationCode; 6962 unsigned ProcessorIMod; 6963 bool CarrySetting; 6964 StringRef ITMask; 6965 Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode, 6966 CarrySetting, ProcessorIMod, ITMask); 6967 6968 // In Thumb1, only the branch (B) instruction can be predicated. 6969 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 6970 return Error(NameLoc, "conditional execution not supported in Thumb1"); 6971 } 6972 6973 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 6974 6975 // Handle the mask for IT and VPT instructions. In ARMOperand and 6976 // MCOperand, this is stored in a format independent of the 6977 // condition code: the lowest set bit indicates the end of the 6978 // encoding, and above that, a 1 bit indicates 'else', and an 0 6979 // indicates 'then'. E.g. 6980 // IT -> 1000 6981 // ITx -> x100 (ITT -> 0100, ITE -> 1100) 6982 // ITxy -> xy10 (e.g. ITET -> 1010) 6983 // ITxyz -> xyz1 (e.g. ITEET -> 1101) 6984 // Note: See the ARM::PredBlockMask enum in 6985 // /lib/Target/ARM/Utils/ARMBaseInfo.h 6986 if (Mnemonic == "it" || Mnemonic.startswith("vpt") || 6987 Mnemonic.startswith("vpst")) { 6988 SMLoc Loc = Mnemonic == "it" ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) : 6989 Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) : 6990 SMLoc::getFromPointer(NameLoc.getPointer() + 4); 6991 if (ITMask.size() > 3) { 6992 if (Mnemonic == "it") 6993 return Error(Loc, "too many conditions on IT instruction"); 6994 return Error(Loc, "too many conditions on VPT instruction"); 6995 } 6996 unsigned Mask = 8; 6997 for (unsigned i = ITMask.size(); i != 0; --i) { 6998 char pos = ITMask[i - 1]; 6999 if (pos != 't' && pos != 'e') { 7000 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 7001 } 7002 Mask >>= 1; 7003 if (ITMask[i - 1] == 'e') 7004 Mask |= 8; 7005 } 7006 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 7007 } 7008 7009 // FIXME: This is all a pretty gross hack. We should automatically handle 7010 // optional operands like this via tblgen. 7011 7012 // Next, add the CCOut and ConditionCode operands, if needed. 7013 // 7014 // For mnemonics which can ever incorporate a carry setting bit or predication 7015 // code, our matching model involves us always generating CCOut and 7016 // ConditionCode operands to match the mnemonic "as written" and then we let 7017 // the matcher deal with finding the right instruction or generating an 7018 // appropriate error. 7019 bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode; 7020 getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet, 7021 CanAcceptPredicationCode, CanAcceptVPTPredicationCode); 7022 7023 // If we had a carry-set on an instruction that can't do that, issue an 7024 // error. 7025 if (!CanAcceptCarrySet && CarrySetting) { 7026 return Error(NameLoc, "instruction '" + Mnemonic + 7027 "' can not set flags, but 's' suffix specified"); 7028 } 7029 // If we had a predication code on an instruction that can't do that, issue an 7030 // error. 7031 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 7032 return Error(NameLoc, "instruction '" + Mnemonic + 7033 "' is not predicable, but condition code specified"); 7034 } 7035 7036 // If we had a VPT predication code on an instruction that can't do that, issue an 7037 // error. 7038 if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) { 7039 return Error(NameLoc, "instruction '" + Mnemonic + 7040 "' is not VPT predicable, but VPT code T/E is specified"); 7041 } 7042 7043 // Add the carry setting operand, if necessary. 7044 if (CanAcceptCarrySet) { 7045 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 7046 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 7047 Loc)); 7048 } 7049 7050 // Add the predication code operand, if necessary. 7051 if (CanAcceptPredicationCode) { 7052 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 7053 CarrySetting); 7054 Operands.push_back(ARMOperand::CreateCondCode( 7055 ARMCC::CondCodes(PredicationCode), Loc)); 7056 } 7057 7058 // Add the VPT predication code operand, if necessary. 7059 // FIXME: We don't add them for the instructions filtered below as these can 7060 // have custom operands which need special parsing. This parsing requires 7061 // the operand to be in the same place in the OperandVector as their 7062 // definition in tblgen. Since these instructions may also have the 7063 // scalar predication operand we do not add the vector one and leave until 7064 // now to fix it up. 7065 if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" && 7066 !Mnemonic.startswith("vcmp") && 7067 !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" && 7068 Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) { 7069 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 7070 CarrySetting); 7071 Operands.push_back(ARMOperand::CreateVPTPred( 7072 ARMVCC::VPTCodes(VPTPredicationCode), Loc)); 7073 } 7074 7075 // Add the processor imod operand, if necessary. 7076 if (ProcessorIMod) { 7077 Operands.push_back(ARMOperand::CreateImm( 7078 MCConstantExpr::create(ProcessorIMod, getContext()), 7079 NameLoc, NameLoc)); 7080 } else if (Mnemonic == "cps" && isMClass()) { 7081 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 7082 } 7083 7084 // Add the remaining tokens in the mnemonic. 7085 while (Next != StringRef::npos) { 7086 Start = Next; 7087 Next = Name.find('.', Start + 1); 7088 ExtraToken = Name.slice(Start, Next); 7089 7090 // Some NEON instructions have an optional datatype suffix that is 7091 // completely ignored. Check for that. 7092 if (isDataTypeToken(ExtraToken) && 7093 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 7094 continue; 7095 7096 // For for ARM mode generate an error if the .n qualifier is used. 7097 if (ExtraToken == ".n" && !isThumb()) { 7098 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 7099 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 7100 "arm mode"); 7101 } 7102 7103 // The .n qualifier is always discarded as that is what the tables 7104 // and matcher expect. In ARM mode the .w qualifier has no effect, 7105 // so discard it to avoid errors that can be caused by the matcher. 7106 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 7107 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 7108 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 7109 } 7110 } 7111 7112 // Read the remaining operands. 7113 if (getLexer().isNot(AsmToken::EndOfStatement)) { 7114 // Read the first operand. 7115 if (parseOperand(Operands, Mnemonic)) { 7116 return true; 7117 } 7118 7119 while (parseOptionalToken(AsmToken::Comma)) { 7120 // Parse and remember the operand. 7121 if (parseOperand(Operands, Mnemonic)) { 7122 return true; 7123 } 7124 } 7125 } 7126 7127 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 7128 return true; 7129 7130 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 7131 7132 if (hasCDE() && MS.isCDEInstr(Mnemonic)) { 7133 // Dual-register instructions use even-odd register pairs as their 7134 // destination operand, in assembly such pair is spelled as two 7135 // consecutive registers, without any special syntax. ConvertDualRegOperand 7136 // tries to convert such operand into register pair, e.g. r2, r3 -> r2_r3. 7137 // It returns true, if an error message has been emitted. If the function 7138 // returns false, the function either succeeded or an error (e.g. missing 7139 // operand) will be diagnosed elsewhere. 7140 if (MS.isCDEDualRegInstr(Mnemonic)) { 7141 bool GotError = CDEConvertDualRegOperand(Mnemonic, Operands); 7142 if (GotError) 7143 return GotError; 7144 } 7145 } 7146 7147 // Some instructions, mostly Thumb, have forms for the same mnemonic that 7148 // do and don't have a cc_out optional-def operand. With some spot-checks 7149 // of the operand list, we can figure out which variant we're trying to 7150 // parse and adjust accordingly before actually matching. We shouldn't ever 7151 // try to remove a cc_out operand that was explicitly set on the 7152 // mnemonic, of course (CarrySetting == true). Reason number #317 the 7153 // table driven matcher doesn't fit well with the ARM instruction set. 7154 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 7155 Operands.erase(Operands.begin() + 1); 7156 7157 // Some instructions have the same mnemonic, but don't always 7158 // have a predicate. Distinguish them here and delete the 7159 // appropriate predicate if needed. This could be either the scalar 7160 // predication code or the vector predication code. 7161 if (PredicationCode == ARMCC::AL && 7162 shouldOmitPredicateOperand(Mnemonic, Operands)) 7163 Operands.erase(Operands.begin() + 1); 7164 7165 7166 if (hasMVE()) { 7167 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) && 7168 Mnemonic == "vmov" && PredicationCode == ARMCC::LT) { 7169 // Very nasty hack to deal with the vector predicated variant of vmovlt 7170 // the scalar predicated vmov with condition 'lt'. We can not tell them 7171 // apart until we have parsed their operands. 7172 Operands.erase(Operands.begin() + 1); 7173 Operands.erase(Operands.begin()); 7174 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7175 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7176 Mnemonic.size() - 1 + CarrySetting); 7177 Operands.insert(Operands.begin(), 7178 ARMOperand::CreateVPTPred(ARMVCC::None, PLoc)); 7179 Operands.insert(Operands.begin(), 7180 ARMOperand::CreateToken(StringRef("vmovlt"), MLoc)); 7181 } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE && 7182 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7183 // Another nasty hack to deal with the ambiguity between vcvt with scalar 7184 // predication 'ne' and vcvtn with vector predication 'e'. As above we 7185 // can only distinguish between the two after we have parsed their 7186 // operands. 7187 Operands.erase(Operands.begin() + 1); 7188 Operands.erase(Operands.begin()); 7189 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7190 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7191 Mnemonic.size() - 1 + CarrySetting); 7192 Operands.insert(Operands.begin(), 7193 ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc)); 7194 Operands.insert(Operands.begin(), 7195 ARMOperand::CreateToken(StringRef("vcvtn"), MLoc)); 7196 } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT && 7197 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7198 // Another hack, this time to distinguish between scalar predicated vmul 7199 // with 'lt' predication code and the vector instruction vmullt with 7200 // vector predication code "none" 7201 Operands.erase(Operands.begin() + 1); 7202 Operands.erase(Operands.begin()); 7203 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7204 Operands.insert(Operands.begin(), 7205 ARMOperand::CreateToken(StringRef("vmullt"), MLoc)); 7206 } 7207 // For vmov and vcmp, as mentioned earlier, we did not add the vector 7208 // predication code, since these may contain operands that require 7209 // special parsing. So now we have to see if they require vector 7210 // predication and replace the scalar one with the vector predication 7211 // operand if that is the case. 7212 else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") || 7213 (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") && 7214 !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") && 7215 !Mnemonic.startswith("vcvtm"))) { 7216 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7217 // We could not split the vector predicate off vcvt because it might 7218 // have been the scalar vcvtt instruction. Now we know its a vector 7219 // instruction, we still need to check whether its the vector 7220 // predicated vcvt with 'Then' predication or the vector vcvtt. We can 7221 // distinguish the two based on the suffixes, if it is any of 7222 // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt. 7223 if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) { 7224 auto Sz1 = static_cast<ARMOperand &>(*Operands[2]); 7225 auto Sz2 = static_cast<ARMOperand &>(*Operands[3]); 7226 if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") && 7227 Sz2.isToken() && Sz2.getToken().startswith(".f"))) { 7228 Operands.erase(Operands.begin()); 7229 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7230 VPTPredicationCode = ARMVCC::Then; 7231 7232 Mnemonic = Mnemonic.substr(0, 4); 7233 Operands.insert(Operands.begin(), 7234 ARMOperand::CreateToken(Mnemonic, MLoc)); 7235 } 7236 } 7237 Operands.erase(Operands.begin() + 1); 7238 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7239 Mnemonic.size() + CarrySetting); 7240 Operands.insert(Operands.begin() + 1, 7241 ARMOperand::CreateVPTPred( 7242 ARMVCC::VPTCodes(VPTPredicationCode), PLoc)); 7243 } 7244 } else if (CanAcceptVPTPredicationCode) { 7245 // For all other instructions, make sure only one of the two 7246 // predication operands is left behind, depending on whether we should 7247 // use the vector predication. 7248 if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7249 if (CanAcceptPredicationCode) 7250 Operands.erase(Operands.begin() + 2); 7251 else 7252 Operands.erase(Operands.begin() + 1); 7253 } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) { 7254 Operands.erase(Operands.begin() + 1); 7255 } 7256 } 7257 } 7258 7259 if (VPTPredicationCode != ARMVCC::None) { 7260 bool usedVPTPredicationCode = false; 7261 for (unsigned I = 1; I < Operands.size(); ++I) 7262 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7263 usedVPTPredicationCode = true; 7264 if (!usedVPTPredicationCode) { 7265 // If we have a VPT predication code and we haven't just turned it 7266 // into an operand, then it was a mistake for splitMnemonic to 7267 // separate it from the rest of the mnemonic in the first place, 7268 // and this may lead to wrong disassembly (e.g. scalar floating 7269 // point VCMPE is actually a different instruction from VCMP, so 7270 // we mustn't treat them the same). In that situation, glue it 7271 // back on. 7272 Mnemonic = Name.slice(0, Mnemonic.size() + 1); 7273 Operands.erase(Operands.begin()); 7274 Operands.insert(Operands.begin(), 7275 ARMOperand::CreateToken(Mnemonic, NameLoc)); 7276 } 7277 } 7278 7279 // ARM mode 'blx' need special handling, as the register operand version 7280 // is predicable, but the label operand version is not. So, we can't rely 7281 // on the Mnemonic based checking to correctly figure out when to put 7282 // a k_CondCode operand in the list. If we're trying to match the label 7283 // version, remove the k_CondCode operand here. 7284 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 7285 static_cast<ARMOperand &>(*Operands[2]).isImm()) 7286 Operands.erase(Operands.begin() + 1); 7287 7288 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 7289 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 7290 // a single GPRPair reg operand is used in the .td file to replace the two 7291 // GPRs. However, when parsing from asm, the two GRPs cannot be 7292 // automatically 7293 // expressed as a GPRPair, so we have to manually merge them. 7294 // FIXME: We would really like to be able to tablegen'erate this. 7295 if (!isThumb() && Operands.size() > 4 && 7296 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 7297 Mnemonic == "stlexd")) { 7298 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 7299 unsigned Idx = isLoad ? 2 : 3; 7300 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 7301 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 7302 7303 const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID); 7304 // Adjust only if Op1 and Op2 are GPRs. 7305 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 7306 MRC.contains(Op2.getReg())) { 7307 unsigned Reg1 = Op1.getReg(); 7308 unsigned Reg2 = Op2.getReg(); 7309 unsigned Rt = MRI->getEncodingValue(Reg1); 7310 unsigned Rt2 = MRI->getEncodingValue(Reg2); 7311 7312 // Rt2 must be Rt + 1 and Rt must be even. 7313 if (Rt + 1 != Rt2 || (Rt & 1)) { 7314 return Error(Op2.getStartLoc(), 7315 isLoad ? "destination operands must be sequential" 7316 : "source operands must be sequential"); 7317 } 7318 unsigned NewReg = MRI->getMatchingSuperReg( 7319 Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID))); 7320 Operands[Idx] = 7321 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 7322 Operands.erase(Operands.begin() + Idx + 1); 7323 } 7324 } 7325 7326 // GNU Assembler extension (compatibility). 7327 fixupGNULDRDAlias(Mnemonic, Operands); 7328 7329 // FIXME: As said above, this is all a pretty gross hack. This instruction 7330 // does not fit with other "subs" and tblgen. 7331 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 7332 // so the Mnemonic is the original name "subs" and delete the predicate 7333 // operand so it will match the table entry. 7334 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 7335 static_cast<ARMOperand &>(*Operands[3]).isReg() && 7336 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 7337 static_cast<ARMOperand &>(*Operands[4]).isReg() && 7338 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 7339 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 7340 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 7341 Operands.erase(Operands.begin() + 1); 7342 } 7343 return false; 7344 } 7345 7346 // Validate context-sensitive operand constraints. 7347 7348 // return 'true' if register list contains non-low GPR registers, 7349 // 'false' otherwise. If Reg is in the register list or is HiReg, set 7350 // 'containsReg' to true. 7351 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 7352 unsigned Reg, unsigned HiReg, 7353 bool &containsReg) { 7354 containsReg = false; 7355 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 7356 unsigned OpReg = Inst.getOperand(i).getReg(); 7357 if (OpReg == Reg) 7358 containsReg = true; 7359 // Anything other than a low register isn't legal here. 7360 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 7361 return true; 7362 } 7363 return false; 7364 } 7365 7366 // Check if the specified regisgter is in the register list of the inst, 7367 // starting at the indicated operand number. 7368 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 7369 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 7370 unsigned OpReg = Inst.getOperand(i).getReg(); 7371 if (OpReg == Reg) 7372 return true; 7373 } 7374 return false; 7375 } 7376 7377 // Return true if instruction has the interesting property of being 7378 // allowed in IT blocks, but not being predicable. 7379 static bool instIsBreakpoint(const MCInst &Inst) { 7380 return Inst.getOpcode() == ARM::tBKPT || 7381 Inst.getOpcode() == ARM::BKPT || 7382 Inst.getOpcode() == ARM::tHLT || 7383 Inst.getOpcode() == ARM::HLT; 7384 } 7385 7386 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 7387 const OperandVector &Operands, 7388 unsigned ListNo, bool IsARPop) { 7389 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7390 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7391 7392 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7393 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 7394 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7395 7396 if (!IsARPop && ListContainsSP) 7397 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7398 "SP may not be in the register list"); 7399 else if (ListContainsPC && ListContainsLR) 7400 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7401 "PC and LR may not be in the register list simultaneously"); 7402 return false; 7403 } 7404 7405 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 7406 const OperandVector &Operands, 7407 unsigned ListNo) { 7408 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7409 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7410 7411 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7412 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7413 7414 if (ListContainsSP && ListContainsPC) 7415 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7416 "SP and PC may not be in the register list"); 7417 else if (ListContainsSP) 7418 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7419 "SP may not be in the register list"); 7420 else if (ListContainsPC) 7421 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7422 "PC may not be in the register list"); 7423 return false; 7424 } 7425 7426 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst, 7427 const OperandVector &Operands, 7428 bool Load, bool ARMMode, bool Writeback) { 7429 unsigned RtIndex = Load || !Writeback ? 0 : 1; 7430 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg()); 7431 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg()); 7432 7433 if (ARMMode) { 7434 // Rt can't be R14. 7435 if (Rt == 14) 7436 return Error(Operands[3]->getStartLoc(), 7437 "Rt can't be R14"); 7438 7439 // Rt must be even-numbered. 7440 if ((Rt & 1) == 1) 7441 return Error(Operands[3]->getStartLoc(), 7442 "Rt must be even-numbered"); 7443 7444 // Rt2 must be Rt + 1. 7445 if (Rt2 != Rt + 1) { 7446 if (Load) 7447 return Error(Operands[3]->getStartLoc(), 7448 "destination operands must be sequential"); 7449 else 7450 return Error(Operands[3]->getStartLoc(), 7451 "source operands must be sequential"); 7452 } 7453 7454 // FIXME: Diagnose m == 15 7455 // FIXME: Diagnose ldrd with m == t || m == t2. 7456 } 7457 7458 if (!ARMMode && Load) { 7459 if (Rt2 == Rt) 7460 return Error(Operands[3]->getStartLoc(), 7461 "destination operands can't be identical"); 7462 } 7463 7464 if (Writeback) { 7465 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 7466 7467 if (Rn == Rt || Rn == Rt2) { 7468 if (Load) 7469 return Error(Operands[3]->getStartLoc(), 7470 "base register needs to be different from destination " 7471 "registers"); 7472 else 7473 return Error(Operands[3]->getStartLoc(), 7474 "source register and base register can't be identical"); 7475 } 7476 7477 // FIXME: Diagnose ldrd/strd with writeback and n == 15. 7478 // (Except the immediate form of ldrd?) 7479 } 7480 7481 return false; 7482 } 7483 7484 static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) { 7485 for (unsigned i = 0; i < MCID.NumOperands; ++i) { 7486 if (ARM::isVpred(MCID.OpInfo[i].OperandType)) 7487 return i; 7488 } 7489 return -1; 7490 } 7491 7492 static bool isVectorPredicable(const MCInstrDesc &MCID) { 7493 return findFirstVectorPredOperandIdx(MCID) != -1; 7494 } 7495 7496 // FIXME: We would really like to be able to tablegen'erate this. 7497 bool ARMAsmParser::validateInstruction(MCInst &Inst, 7498 const OperandVector &Operands) { 7499 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 7500 SMLoc Loc = Operands[0]->getStartLoc(); 7501 7502 // Check the IT block state first. 7503 // NOTE: BKPT and HLT instructions have the interesting property of being 7504 // allowed in IT blocks, but not being predicable. They just always execute. 7505 if (inITBlock() && !instIsBreakpoint(Inst)) { 7506 // The instruction must be predicable. 7507 if (!MCID.isPredicable()) 7508 return Error(Loc, "instructions in IT block must be predicable"); 7509 ARMCC::CondCodes Cond = ARMCC::CondCodes( 7510 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm()); 7511 if (Cond != currentITCond()) { 7512 // Find the condition code Operand to get its SMLoc information. 7513 SMLoc CondLoc; 7514 for (unsigned I = 1; I < Operands.size(); ++I) 7515 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 7516 CondLoc = Operands[I]->getStartLoc(); 7517 return Error(CondLoc, "incorrect condition in IT block; got '" + 7518 StringRef(ARMCondCodeToString(Cond)) + 7519 "', but expected '" + 7520 ARMCondCodeToString(currentITCond()) + "'"); 7521 } 7522 // Check for non-'al' condition codes outside of the IT block. 7523 } else if (isThumbTwo() && MCID.isPredicable() && 7524 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7525 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 7526 Inst.getOpcode() != ARM::t2Bcc && 7527 Inst.getOpcode() != ARM::t2BFic) { 7528 return Error(Loc, "predicated instructions must be in IT block"); 7529 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 7530 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7531 ARMCC::AL) { 7532 return Warning(Loc, "predicated instructions should be in IT block"); 7533 } else if (!MCID.isPredicable()) { 7534 // Check the instruction doesn't have a predicate operand anyway 7535 // that it's not allowed to use. Sometimes this happens in order 7536 // to keep instructions the same shape even though one cannot 7537 // legally be predicated, e.g. vmul.f16 vs vmul.f32. 7538 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 7539 if (MCID.OpInfo[i].isPredicate()) { 7540 if (Inst.getOperand(i).getImm() != ARMCC::AL) 7541 return Error(Loc, "instruction is not predicable"); 7542 break; 7543 } 7544 } 7545 } 7546 7547 // PC-setting instructions in an IT block, but not the last instruction of 7548 // the block, are UNPREDICTABLE. 7549 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 7550 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 7551 } 7552 7553 if (inVPTBlock() && !instIsBreakpoint(Inst)) { 7554 unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition); 7555 if (!isVectorPredicable(MCID)) 7556 return Error(Loc, "instruction in VPT block must be predicable"); 7557 unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm(); 7558 unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then; 7559 if (Pred != VPTPred) { 7560 SMLoc PredLoc; 7561 for (unsigned I = 1; I < Operands.size(); ++I) 7562 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7563 PredLoc = Operands[I]->getStartLoc(); 7564 return Error(PredLoc, "incorrect predication in VPT block; got '" + 7565 StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) + 7566 "', but expected '" + 7567 ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'"); 7568 } 7569 } 7570 else if (isVectorPredicable(MCID) && 7571 Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() != 7572 ARMVCC::None) 7573 return Error(Loc, "VPT predicated instructions must be in VPT block"); 7574 7575 const unsigned Opcode = Inst.getOpcode(); 7576 switch (Opcode) { 7577 case ARM::t2IT: { 7578 // Encoding is unpredictable if it ever results in a notional 'NV' 7579 // predicate. Since we don't parse 'NV' directly this means an 'AL' 7580 // predicate with an "else" mask bit. 7581 unsigned Cond = Inst.getOperand(0).getImm(); 7582 unsigned Mask = Inst.getOperand(1).getImm(); 7583 7584 // Conditions only allowing a 't' are those with no set bit except 7585 // the lowest-order one that indicates the end of the sequence. In 7586 // other words, powers of 2. 7587 if (Cond == ARMCC::AL && countPopulation(Mask) != 1) 7588 return Error(Loc, "unpredictable IT predicate sequence"); 7589 break; 7590 } 7591 case ARM::LDRD: 7592 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7593 /*Writeback*/false)) 7594 return true; 7595 break; 7596 case ARM::LDRD_PRE: 7597 case ARM::LDRD_POST: 7598 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7599 /*Writeback*/true)) 7600 return true; 7601 break; 7602 case ARM::t2LDRDi8: 7603 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7604 /*Writeback*/false)) 7605 return true; 7606 break; 7607 case ARM::t2LDRD_PRE: 7608 case ARM::t2LDRD_POST: 7609 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7610 /*Writeback*/true)) 7611 return true; 7612 break; 7613 case ARM::t2BXJ: { 7614 const unsigned RmReg = Inst.getOperand(0).getReg(); 7615 // Rm = SP is no longer unpredictable in v8-A 7616 if (RmReg == ARM::SP && !hasV8Ops()) 7617 return Error(Operands[2]->getStartLoc(), 7618 "r13 (SP) is an unpredictable operand to BXJ"); 7619 return false; 7620 } 7621 case ARM::STRD: 7622 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7623 /*Writeback*/false)) 7624 return true; 7625 break; 7626 case ARM::STRD_PRE: 7627 case ARM::STRD_POST: 7628 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7629 /*Writeback*/true)) 7630 return true; 7631 break; 7632 case ARM::t2STRD_PRE: 7633 case ARM::t2STRD_POST: 7634 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false, 7635 /*Writeback*/true)) 7636 return true; 7637 break; 7638 case ARM::STR_PRE_IMM: 7639 case ARM::STR_PRE_REG: 7640 case ARM::t2STR_PRE: 7641 case ARM::STR_POST_IMM: 7642 case ARM::STR_POST_REG: 7643 case ARM::t2STR_POST: 7644 case ARM::STRH_PRE: 7645 case ARM::t2STRH_PRE: 7646 case ARM::STRH_POST: 7647 case ARM::t2STRH_POST: 7648 case ARM::STRB_PRE_IMM: 7649 case ARM::STRB_PRE_REG: 7650 case ARM::t2STRB_PRE: 7651 case ARM::STRB_POST_IMM: 7652 case ARM::STRB_POST_REG: 7653 case ARM::t2STRB_POST: { 7654 // Rt must be different from Rn. 7655 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 7656 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7657 7658 if (Rt == Rn) 7659 return Error(Operands[3]->getStartLoc(), 7660 "source register and base register can't be identical"); 7661 return false; 7662 } 7663 case ARM::LDR_PRE_IMM: 7664 case ARM::LDR_PRE_REG: 7665 case ARM::t2LDR_PRE: 7666 case ARM::LDR_POST_IMM: 7667 case ARM::LDR_POST_REG: 7668 case ARM::t2LDR_POST: 7669 case ARM::LDRH_PRE: 7670 case ARM::t2LDRH_PRE: 7671 case ARM::LDRH_POST: 7672 case ARM::t2LDRH_POST: 7673 case ARM::LDRSH_PRE: 7674 case ARM::t2LDRSH_PRE: 7675 case ARM::LDRSH_POST: 7676 case ARM::t2LDRSH_POST: 7677 case ARM::LDRB_PRE_IMM: 7678 case ARM::LDRB_PRE_REG: 7679 case ARM::t2LDRB_PRE: 7680 case ARM::LDRB_POST_IMM: 7681 case ARM::LDRB_POST_REG: 7682 case ARM::t2LDRB_POST: 7683 case ARM::LDRSB_PRE: 7684 case ARM::t2LDRSB_PRE: 7685 case ARM::LDRSB_POST: 7686 case ARM::t2LDRSB_POST: { 7687 // Rt must be different from Rn. 7688 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 7689 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7690 7691 if (Rt == Rn) 7692 return Error(Operands[3]->getStartLoc(), 7693 "destination register and base register can't be identical"); 7694 return false; 7695 } 7696 7697 case ARM::MVE_VLDRBU8_rq: 7698 case ARM::MVE_VLDRBU16_rq: 7699 case ARM::MVE_VLDRBS16_rq: 7700 case ARM::MVE_VLDRBU32_rq: 7701 case ARM::MVE_VLDRBS32_rq: 7702 case ARM::MVE_VLDRHU16_rq: 7703 case ARM::MVE_VLDRHU16_rq_u: 7704 case ARM::MVE_VLDRHU32_rq: 7705 case ARM::MVE_VLDRHU32_rq_u: 7706 case ARM::MVE_VLDRHS32_rq: 7707 case ARM::MVE_VLDRHS32_rq_u: 7708 case ARM::MVE_VLDRWU32_rq: 7709 case ARM::MVE_VLDRWU32_rq_u: 7710 case ARM::MVE_VLDRDU64_rq: 7711 case ARM::MVE_VLDRDU64_rq_u: 7712 case ARM::MVE_VLDRWU32_qi: 7713 case ARM::MVE_VLDRWU32_qi_pre: 7714 case ARM::MVE_VLDRDU64_qi: 7715 case ARM::MVE_VLDRDU64_qi_pre: { 7716 // Qd must be different from Qm. 7717 unsigned QdIdx = 0, QmIdx = 2; 7718 bool QmIsPointer = false; 7719 switch (Opcode) { 7720 case ARM::MVE_VLDRWU32_qi: 7721 case ARM::MVE_VLDRDU64_qi: 7722 QmIdx = 1; 7723 QmIsPointer = true; 7724 break; 7725 case ARM::MVE_VLDRWU32_qi_pre: 7726 case ARM::MVE_VLDRDU64_qi_pre: 7727 QdIdx = 1; 7728 QmIsPointer = true; 7729 break; 7730 } 7731 7732 const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg()); 7733 const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg()); 7734 7735 if (Qd == Qm) { 7736 return Error(Operands[3]->getStartLoc(), 7737 Twine("destination vector register and vector ") + 7738 (QmIsPointer ? "pointer" : "offset") + 7739 " register can't be identical"); 7740 } 7741 return false; 7742 } 7743 7744 case ARM::SBFX: 7745 case ARM::t2SBFX: 7746 case ARM::UBFX: 7747 case ARM::t2UBFX: { 7748 // Width must be in range [1, 32-lsb]. 7749 unsigned LSB = Inst.getOperand(2).getImm(); 7750 unsigned Widthm1 = Inst.getOperand(3).getImm(); 7751 if (Widthm1 >= 32 - LSB) 7752 return Error(Operands[5]->getStartLoc(), 7753 "bitfield width must be in range [1,32-lsb]"); 7754 return false; 7755 } 7756 // Notionally handles ARM::tLDMIA_UPD too. 7757 case ARM::tLDMIA: { 7758 // If we're parsing Thumb2, the .w variant is available and handles 7759 // most cases that are normally illegal for a Thumb1 LDM instruction. 7760 // We'll make the transformation in processInstruction() if necessary. 7761 // 7762 // Thumb LDM instructions are writeback iff the base register is not 7763 // in the register list. 7764 unsigned Rn = Inst.getOperand(0).getReg(); 7765 bool HasWritebackToken = 7766 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 7767 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 7768 bool ListContainsBase; 7769 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 7770 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 7771 "registers must be in range r0-r7"); 7772 // If we should have writeback, then there should be a '!' token. 7773 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 7774 return Error(Operands[2]->getStartLoc(), 7775 "writeback operator '!' expected"); 7776 // If we should not have writeback, there must not be a '!'. This is 7777 // true even for the 32-bit wide encodings. 7778 if (ListContainsBase && HasWritebackToken) 7779 return Error(Operands[3]->getStartLoc(), 7780 "writeback operator '!' not allowed when base register " 7781 "in register list"); 7782 7783 if (validatetLDMRegList(Inst, Operands, 3)) 7784 return true; 7785 break; 7786 } 7787 case ARM::LDMIA_UPD: 7788 case ARM::LDMDB_UPD: 7789 case ARM::LDMIB_UPD: 7790 case ARM::LDMDA_UPD: 7791 // ARM variants loading and updating the same register are only officially 7792 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 7793 if (!hasV7Ops()) 7794 break; 7795 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7796 return Error(Operands.back()->getStartLoc(), 7797 "writeback register not allowed in register list"); 7798 break; 7799 case ARM::t2LDMIA: 7800 case ARM::t2LDMDB: 7801 if (validatetLDMRegList(Inst, Operands, 3)) 7802 return true; 7803 break; 7804 case ARM::t2STMIA: 7805 case ARM::t2STMDB: 7806 if (validatetSTMRegList(Inst, Operands, 3)) 7807 return true; 7808 break; 7809 case ARM::t2LDMIA_UPD: 7810 case ARM::t2LDMDB_UPD: 7811 case ARM::t2STMIA_UPD: 7812 case ARM::t2STMDB_UPD: 7813 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7814 return Error(Operands.back()->getStartLoc(), 7815 "writeback register not allowed in register list"); 7816 7817 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 7818 if (validatetLDMRegList(Inst, Operands, 3)) 7819 return true; 7820 } else { 7821 if (validatetSTMRegList(Inst, Operands, 3)) 7822 return true; 7823 } 7824 break; 7825 7826 case ARM::sysLDMIA_UPD: 7827 case ARM::sysLDMDA_UPD: 7828 case ARM::sysLDMDB_UPD: 7829 case ARM::sysLDMIB_UPD: 7830 if (!listContainsReg(Inst, 3, ARM::PC)) 7831 return Error(Operands[4]->getStartLoc(), 7832 "writeback register only allowed on system LDM " 7833 "if PC in register-list"); 7834 break; 7835 case ARM::sysSTMIA_UPD: 7836 case ARM::sysSTMDA_UPD: 7837 case ARM::sysSTMDB_UPD: 7838 case ARM::sysSTMIB_UPD: 7839 return Error(Operands[2]->getStartLoc(), 7840 "system STM cannot have writeback register"); 7841 case ARM::tMUL: 7842 // The second source operand must be the same register as the destination 7843 // operand. 7844 // 7845 // In this case, we must directly check the parsed operands because the 7846 // cvtThumbMultiply() function is written in such a way that it guarantees 7847 // this first statement is always true for the new Inst. Essentially, the 7848 // destination is unconditionally copied into the second source operand 7849 // without checking to see if it matches what we actually parsed. 7850 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 7851 ((ARMOperand &)*Operands[5]).getReg()) && 7852 (((ARMOperand &)*Operands[3]).getReg() != 7853 ((ARMOperand &)*Operands[4]).getReg())) { 7854 return Error(Operands[3]->getStartLoc(), 7855 "destination register must match source register"); 7856 } 7857 break; 7858 7859 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 7860 // so only issue a diagnostic for thumb1. The instructions will be 7861 // switched to the t2 encodings in processInstruction() if necessary. 7862 case ARM::tPOP: { 7863 bool ListContainsBase; 7864 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 7865 !isThumbTwo()) 7866 return Error(Operands[2]->getStartLoc(), 7867 "registers must be in range r0-r7 or pc"); 7868 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 7869 return true; 7870 break; 7871 } 7872 case ARM::tPUSH: { 7873 bool ListContainsBase; 7874 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 7875 !isThumbTwo()) 7876 return Error(Operands[2]->getStartLoc(), 7877 "registers must be in range r0-r7 or lr"); 7878 if (validatetSTMRegList(Inst, Operands, 2)) 7879 return true; 7880 break; 7881 } 7882 case ARM::tSTMIA_UPD: { 7883 bool ListContainsBase, InvalidLowList; 7884 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 7885 0, ListContainsBase); 7886 if (InvalidLowList && !isThumbTwo()) 7887 return Error(Operands[4]->getStartLoc(), 7888 "registers must be in range r0-r7"); 7889 7890 // This would be converted to a 32-bit stm, but that's not valid if the 7891 // writeback register is in the list. 7892 if (InvalidLowList && ListContainsBase) 7893 return Error(Operands[4]->getStartLoc(), 7894 "writeback operator '!' not allowed when base register " 7895 "in register list"); 7896 7897 if (validatetSTMRegList(Inst, Operands, 4)) 7898 return true; 7899 break; 7900 } 7901 case ARM::tADDrSP: 7902 // If the non-SP source operand and the destination operand are not the 7903 // same, we need thumb2 (for the wide encoding), or we have an error. 7904 if (!isThumbTwo() && 7905 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 7906 return Error(Operands[4]->getStartLoc(), 7907 "source register must be the same as destination"); 7908 } 7909 break; 7910 7911 case ARM::t2ADDrr: 7912 case ARM::t2ADDrs: 7913 case ARM::t2SUBrr: 7914 case ARM::t2SUBrs: 7915 if (Inst.getOperand(0).getReg() == ARM::SP && 7916 Inst.getOperand(1).getReg() != ARM::SP) 7917 return Error(Operands[4]->getStartLoc(), 7918 "source register must be sp if destination is sp"); 7919 break; 7920 7921 // Final range checking for Thumb unconditional branch instructions. 7922 case ARM::tB: 7923 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 7924 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7925 break; 7926 case ARM::t2B: { 7927 int op = (Operands[2]->isImm()) ? 2 : 3; 7928 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 7929 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 7930 break; 7931 } 7932 // Final range checking for Thumb conditional branch instructions. 7933 case ARM::tBcc: 7934 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 7935 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7936 break; 7937 case ARM::t2Bcc: { 7938 int Op = (Operands[2]->isImm()) ? 2 : 3; 7939 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 7940 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 7941 break; 7942 } 7943 case ARM::tCBZ: 7944 case ARM::tCBNZ: { 7945 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 7946 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7947 break; 7948 } 7949 case ARM::MOVi16: 7950 case ARM::MOVTi16: 7951 case ARM::t2MOVi16: 7952 case ARM::t2MOVTi16: 7953 { 7954 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 7955 // especially when we turn it into a movw and the expression <symbol> does 7956 // not have a :lower16: or :upper16 as part of the expression. We don't 7957 // want the behavior of silently truncating, which can be unexpected and 7958 // lead to bugs that are difficult to find since this is an easy mistake 7959 // to make. 7960 int i = (Operands[3]->isImm()) ? 3 : 4; 7961 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 7962 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 7963 if (CE) break; 7964 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 7965 if (!E) break; 7966 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 7967 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 7968 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 7969 return Error( 7970 Op.getStartLoc(), 7971 "immediate expression for mov requires :lower16: or :upper16"); 7972 break; 7973 } 7974 case ARM::HINT: 7975 case ARM::t2HINT: { 7976 unsigned Imm8 = Inst.getOperand(0).getImm(); 7977 unsigned Pred = Inst.getOperand(1).getImm(); 7978 // ESB is not predicable (pred must be AL). Without the RAS extension, this 7979 // behaves as any other unallocated hint. 7980 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) 7981 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 7982 "predicable, but condition " 7983 "code specified"); 7984 if (Imm8 == 0x14 && Pred != ARMCC::AL) 7985 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not " 7986 "predicable, but condition " 7987 "code specified"); 7988 break; 7989 } 7990 case ARM::t2BFi: 7991 case ARM::t2BFr: 7992 case ARM::t2BFLi: 7993 case ARM::t2BFLr: { 7994 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() || 7995 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 7996 return Error(Operands[2]->getStartLoc(), 7997 "branch location out of range or not a multiple of 2"); 7998 7999 if (Opcode == ARM::t2BFi) { 8000 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>()) 8001 return Error(Operands[3]->getStartLoc(), 8002 "branch target out of range or not a multiple of 2"); 8003 } else if (Opcode == ARM::t2BFLi) { 8004 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>()) 8005 return Error(Operands[3]->getStartLoc(), 8006 "branch target out of range or not a multiple of 2"); 8007 } 8008 break; 8009 } 8010 case ARM::t2BFic: { 8011 if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() || 8012 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 8013 return Error(Operands[1]->getStartLoc(), 8014 "branch location out of range or not a multiple of 2"); 8015 8016 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>()) 8017 return Error(Operands[2]->getStartLoc(), 8018 "branch target out of range or not a multiple of 2"); 8019 8020 assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() && 8021 "branch location and else branch target should either both be " 8022 "immediates or both labels"); 8023 8024 if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) { 8025 int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm(); 8026 if (Diff != 4 && Diff != 2) 8027 return Error( 8028 Operands[3]->getStartLoc(), 8029 "else branch target must be 2 or 4 greater than the branch location"); 8030 } 8031 break; 8032 } 8033 case ARM::t2CLRM: { 8034 for (unsigned i = 2; i < Inst.getNumOperands(); i++) { 8035 if (Inst.getOperand(i).isReg() && 8036 !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains( 8037 Inst.getOperand(i).getReg())) { 8038 return Error(Operands[2]->getStartLoc(), 8039 "invalid register in register list. Valid registers are " 8040 "r0-r12, lr/r14 and APSR."); 8041 } 8042 } 8043 break; 8044 } 8045 case ARM::DSB: 8046 case ARM::t2DSB: { 8047 8048 if (Inst.getNumOperands() < 2) 8049 break; 8050 8051 unsigned Option = Inst.getOperand(0).getImm(); 8052 unsigned Pred = Inst.getOperand(1).getImm(); 8053 8054 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL). 8055 if (Option == 0 && Pred != ARMCC::AL) 8056 return Error(Operands[1]->getStartLoc(), 8057 "instruction 'ssbb' is not predicable, but condition code " 8058 "specified"); 8059 if (Option == 4 && Pred != ARMCC::AL) 8060 return Error(Operands[1]->getStartLoc(), 8061 "instruction 'pssbb' is not predicable, but condition code " 8062 "specified"); 8063 break; 8064 } 8065 case ARM::VMOVRRS: { 8066 // Source registers must be sequential. 8067 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 8068 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 8069 if (Sm1 != Sm + 1) 8070 return Error(Operands[5]->getStartLoc(), 8071 "source operands must be sequential"); 8072 break; 8073 } 8074 case ARM::VMOVSRR: { 8075 // Destination registers must be sequential. 8076 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 8077 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 8078 if (Sm1 != Sm + 1) 8079 return Error(Operands[3]->getStartLoc(), 8080 "destination operands must be sequential"); 8081 break; 8082 } 8083 case ARM::VLDMDIA: 8084 case ARM::VSTMDIA: { 8085 ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]); 8086 auto &RegList = Op.getRegList(); 8087 if (RegList.size() < 1 || RegList.size() > 16) 8088 return Error(Operands[3]->getStartLoc(), 8089 "list of registers must be at least 1 and at most 16"); 8090 break; 8091 } 8092 case ARM::MVE_VQDMULLs32bh: 8093 case ARM::MVE_VQDMULLs32th: 8094 case ARM::MVE_VCMULf32: 8095 case ARM::MVE_VMULLBs32: 8096 case ARM::MVE_VMULLTs32: 8097 case ARM::MVE_VMULLBu32: 8098 case ARM::MVE_VMULLTu32: { 8099 if (Operands[3]->getReg() == Operands[4]->getReg()) { 8100 return Error (Operands[3]->getStartLoc(), 8101 "Qd register and Qn register can't be identical"); 8102 } 8103 if (Operands[3]->getReg() == Operands[5]->getReg()) { 8104 return Error (Operands[3]->getStartLoc(), 8105 "Qd register and Qm register can't be identical"); 8106 } 8107 break; 8108 } 8109 case ARM::MVE_VMOV_rr_q: { 8110 if (Operands[4]->getReg() != Operands[6]->getReg()) 8111 return Error (Operands[4]->getStartLoc(), "Q-registers must be the same"); 8112 if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() != 8113 static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2) 8114 return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 8115 break; 8116 } 8117 case ARM::MVE_VMOV_q_rr: { 8118 if (Operands[2]->getReg() != Operands[4]->getReg()) 8119 return Error (Operands[2]->getStartLoc(), "Q-registers must be the same"); 8120 if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() != 8121 static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2) 8122 return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 8123 break; 8124 } 8125 case ARM::UMAAL: 8126 case ARM::UMLAL: 8127 case ARM::UMULL: 8128 case ARM::t2UMAAL: 8129 case ARM::t2UMLAL: 8130 case ARM::t2UMULL: 8131 case ARM::SMLAL: 8132 case ARM::SMLALBB: 8133 case ARM::SMLALBT: 8134 case ARM::SMLALD: 8135 case ARM::SMLALDX: 8136 case ARM::SMLALTB: 8137 case ARM::SMLALTT: 8138 case ARM::SMLSLD: 8139 case ARM::SMLSLDX: 8140 case ARM::SMULL: 8141 case ARM::t2SMLAL: 8142 case ARM::t2SMLALBB: 8143 case ARM::t2SMLALBT: 8144 case ARM::t2SMLALD: 8145 case ARM::t2SMLALDX: 8146 case ARM::t2SMLALTB: 8147 case ARM::t2SMLALTT: 8148 case ARM::t2SMLSLD: 8149 case ARM::t2SMLSLDX: 8150 case ARM::t2SMULL: { 8151 unsigned RdHi = Inst.getOperand(0).getReg(); 8152 unsigned RdLo = Inst.getOperand(1).getReg(); 8153 if(RdHi == RdLo) { 8154 return Error(Loc, 8155 "unpredictable instruction, RdHi and RdLo must be different"); 8156 } 8157 break; 8158 } 8159 8160 case ARM::CDE_CX1: 8161 case ARM::CDE_CX1A: 8162 case ARM::CDE_CX1D: 8163 case ARM::CDE_CX1DA: 8164 case ARM::CDE_CX2: 8165 case ARM::CDE_CX2A: 8166 case ARM::CDE_CX2D: 8167 case ARM::CDE_CX2DA: 8168 case ARM::CDE_CX3: 8169 case ARM::CDE_CX3A: 8170 case ARM::CDE_CX3D: 8171 case ARM::CDE_CX3DA: 8172 case ARM::CDE_VCX1_vec: 8173 case ARM::CDE_VCX1_fpsp: 8174 case ARM::CDE_VCX1_fpdp: 8175 case ARM::CDE_VCX1A_vec: 8176 case ARM::CDE_VCX1A_fpsp: 8177 case ARM::CDE_VCX1A_fpdp: 8178 case ARM::CDE_VCX2_vec: 8179 case ARM::CDE_VCX2_fpsp: 8180 case ARM::CDE_VCX2_fpdp: 8181 case ARM::CDE_VCX2A_vec: 8182 case ARM::CDE_VCX2A_fpsp: 8183 case ARM::CDE_VCX2A_fpdp: 8184 case ARM::CDE_VCX3_vec: 8185 case ARM::CDE_VCX3_fpsp: 8186 case ARM::CDE_VCX3_fpdp: 8187 case ARM::CDE_VCX3A_vec: 8188 case ARM::CDE_VCX3A_fpsp: 8189 case ARM::CDE_VCX3A_fpdp: { 8190 assert(Inst.getOperand(1).isImm() && 8191 "CDE operand 1 must be a coprocessor ID"); 8192 int64_t Coproc = Inst.getOperand(1).getImm(); 8193 if (Coproc < 8 && !ARM::isCDECoproc(Coproc, *STI)) 8194 return Error(Operands[1]->getStartLoc(), 8195 "coprocessor must be configured as CDE"); 8196 else if (Coproc >= 8) 8197 return Error(Operands[1]->getStartLoc(), 8198 "coprocessor must be in the range [p0, p7]"); 8199 break; 8200 } 8201 8202 case ARM::t2CDP: 8203 case ARM::t2CDP2: 8204 case ARM::t2LDC2L_OFFSET: 8205 case ARM::t2LDC2L_OPTION: 8206 case ARM::t2LDC2L_POST: 8207 case ARM::t2LDC2L_PRE: 8208 case ARM::t2LDC2_OFFSET: 8209 case ARM::t2LDC2_OPTION: 8210 case ARM::t2LDC2_POST: 8211 case ARM::t2LDC2_PRE: 8212 case ARM::t2LDCL_OFFSET: 8213 case ARM::t2LDCL_OPTION: 8214 case ARM::t2LDCL_POST: 8215 case ARM::t2LDCL_PRE: 8216 case ARM::t2LDC_OFFSET: 8217 case ARM::t2LDC_OPTION: 8218 case ARM::t2LDC_POST: 8219 case ARM::t2LDC_PRE: 8220 case ARM::t2MCR: 8221 case ARM::t2MCR2: 8222 case ARM::t2MCRR: 8223 case ARM::t2MCRR2: 8224 case ARM::t2MRC: 8225 case ARM::t2MRC2: 8226 case ARM::t2MRRC: 8227 case ARM::t2MRRC2: 8228 case ARM::t2STC2L_OFFSET: 8229 case ARM::t2STC2L_OPTION: 8230 case ARM::t2STC2L_POST: 8231 case ARM::t2STC2L_PRE: 8232 case ARM::t2STC2_OFFSET: 8233 case ARM::t2STC2_OPTION: 8234 case ARM::t2STC2_POST: 8235 case ARM::t2STC2_PRE: 8236 case ARM::t2STCL_OFFSET: 8237 case ARM::t2STCL_OPTION: 8238 case ARM::t2STCL_POST: 8239 case ARM::t2STCL_PRE: 8240 case ARM::t2STC_OFFSET: 8241 case ARM::t2STC_OPTION: 8242 case ARM::t2STC_POST: 8243 case ARM::t2STC_PRE: { 8244 unsigned Opcode = Inst.getOpcode(); 8245 // Inst.getOperand indexes operands in the (oops ...) and (iops ...) dags, 8246 // CopInd is the index of the coprocessor operand. 8247 size_t CopInd = 0; 8248 if (Opcode == ARM::t2MRRC || Opcode == ARM::t2MRRC2) 8249 CopInd = 2; 8250 else if (Opcode == ARM::t2MRC || Opcode == ARM::t2MRC2) 8251 CopInd = 1; 8252 assert(Inst.getOperand(CopInd).isImm() && 8253 "Operand must be a coprocessor ID"); 8254 int64_t Coproc = Inst.getOperand(CopInd).getImm(); 8255 // Operands[2] is the coprocessor operand at syntactic level 8256 if (ARM::isCDECoproc(Coproc, *STI)) 8257 return Error(Operands[2]->getStartLoc(), 8258 "coprocessor must be configured as GCP"); 8259 break; 8260 } 8261 } 8262 8263 return false; 8264 } 8265 8266 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 8267 switch(Opc) { 8268 default: llvm_unreachable("unexpected opcode!"); 8269 // VST1LN 8270 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 8271 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 8272 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 8273 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 8274 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 8275 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 8276 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 8277 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 8278 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 8279 8280 // VST2LN 8281 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 8282 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 8283 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 8284 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 8285 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 8286 8287 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 8288 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 8289 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 8290 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 8291 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 8292 8293 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 8294 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 8295 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 8296 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 8297 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 8298 8299 // VST3LN 8300 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 8301 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 8302 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 8303 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 8304 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 8305 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 8306 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 8307 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 8308 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 8309 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 8310 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 8311 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 8312 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 8313 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 8314 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 8315 8316 // VST3 8317 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 8318 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 8319 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 8320 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 8321 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 8322 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 8323 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 8324 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 8325 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 8326 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 8327 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 8328 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 8329 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 8330 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 8331 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 8332 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 8333 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 8334 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 8335 8336 // VST4LN 8337 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 8338 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 8339 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 8340 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 8341 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 8342 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 8343 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 8344 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 8345 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 8346 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 8347 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 8348 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 8349 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 8350 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 8351 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 8352 8353 // VST4 8354 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8355 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8356 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8357 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8358 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8359 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8360 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8361 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8362 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8363 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8364 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8365 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8366 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 8367 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 8368 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 8369 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 8370 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 8371 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 8372 } 8373 } 8374 8375 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 8376 switch(Opc) { 8377 default: llvm_unreachable("unexpected opcode!"); 8378 // VLD1LN 8379 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8380 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8381 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8382 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8383 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8384 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8385 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 8386 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 8387 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 8388 8389 // VLD2LN 8390 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8391 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8392 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8393 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 8394 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8395 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8396 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8397 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8398 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 8399 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8400 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 8401 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 8402 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 8403 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 8404 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 8405 8406 // VLD3DUP 8407 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8408 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8409 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8410 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 8411 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8412 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8413 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8414 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8415 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8416 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 8417 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8418 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8419 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 8420 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 8421 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 8422 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 8423 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 8424 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 8425 8426 // VLD3LN 8427 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8428 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8429 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8430 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 8431 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8432 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8433 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8434 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8435 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 8436 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8437 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 8438 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 8439 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 8440 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 8441 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 8442 8443 // VLD3 8444 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8445 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8446 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8447 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8448 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8449 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8450 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8451 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8452 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8453 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8454 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8455 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8456 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 8457 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 8458 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 8459 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 8460 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 8461 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 8462 8463 // VLD4LN 8464 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8465 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8466 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8467 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8468 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8469 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8470 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8471 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8472 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8473 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8474 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 8475 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 8476 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 8477 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 8478 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 8479 8480 // VLD4DUP 8481 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8482 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8483 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8484 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 8485 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 8486 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8487 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8488 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8489 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8490 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 8491 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 8492 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8493 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 8494 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 8495 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 8496 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 8497 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 8498 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 8499 8500 // VLD4 8501 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8502 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8503 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8504 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8505 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8506 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8507 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8508 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8509 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8510 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8511 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8512 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8513 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 8514 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 8515 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 8516 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 8517 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 8518 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 8519 } 8520 } 8521 8522 bool ARMAsmParser::processInstruction(MCInst &Inst, 8523 const OperandVector &Operands, 8524 MCStreamer &Out) { 8525 // Check if we have the wide qualifier, because if it's present we 8526 // must avoid selecting a 16-bit thumb instruction. 8527 bool HasWideQualifier = false; 8528 for (auto &Op : Operands) { 8529 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 8530 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 8531 HasWideQualifier = true; 8532 break; 8533 } 8534 } 8535 8536 switch (Inst.getOpcode()) { 8537 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 8538 case ARM::LDRT_POST: 8539 case ARM::LDRBT_POST: { 8540 const unsigned Opcode = 8541 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 8542 : ARM::LDRBT_POST_IMM; 8543 MCInst TmpInst; 8544 TmpInst.setOpcode(Opcode); 8545 TmpInst.addOperand(Inst.getOperand(0)); 8546 TmpInst.addOperand(Inst.getOperand(1)); 8547 TmpInst.addOperand(Inst.getOperand(1)); 8548 TmpInst.addOperand(MCOperand::createReg(0)); 8549 TmpInst.addOperand(MCOperand::createImm(0)); 8550 TmpInst.addOperand(Inst.getOperand(2)); 8551 TmpInst.addOperand(Inst.getOperand(3)); 8552 Inst = TmpInst; 8553 return true; 8554 } 8555 // Alias for 'ldr{sb,h,sh}t Rt, [Rn] {, #imm}' for ommitted immediate. 8556 case ARM::LDRSBTii: 8557 case ARM::LDRHTii: 8558 case ARM::LDRSHTii: { 8559 MCInst TmpInst; 8560 8561 if (Inst.getOpcode() == ARM::LDRSBTii) 8562 TmpInst.setOpcode(ARM::LDRSBTi); 8563 else if (Inst.getOpcode() == ARM::LDRHTii) 8564 TmpInst.setOpcode(ARM::LDRHTi); 8565 else if (Inst.getOpcode() == ARM::LDRSHTii) 8566 TmpInst.setOpcode(ARM::LDRSHTi); 8567 TmpInst.addOperand(Inst.getOperand(0)); 8568 TmpInst.addOperand(Inst.getOperand(1)); 8569 TmpInst.addOperand(Inst.getOperand(1)); 8570 TmpInst.addOperand(MCOperand::createImm(256)); 8571 TmpInst.addOperand(Inst.getOperand(2)); 8572 Inst = TmpInst; 8573 return true; 8574 } 8575 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 8576 case ARM::STRT_POST: 8577 case ARM::STRBT_POST: { 8578 const unsigned Opcode = 8579 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 8580 : ARM::STRBT_POST_IMM; 8581 MCInst TmpInst; 8582 TmpInst.setOpcode(Opcode); 8583 TmpInst.addOperand(Inst.getOperand(1)); 8584 TmpInst.addOperand(Inst.getOperand(0)); 8585 TmpInst.addOperand(Inst.getOperand(1)); 8586 TmpInst.addOperand(MCOperand::createReg(0)); 8587 TmpInst.addOperand(MCOperand::createImm(0)); 8588 TmpInst.addOperand(Inst.getOperand(2)); 8589 TmpInst.addOperand(Inst.getOperand(3)); 8590 Inst = TmpInst; 8591 return true; 8592 } 8593 // Alias for alternate form of 'ADR Rd, #imm' instruction. 8594 case ARM::ADDri: { 8595 if (Inst.getOperand(1).getReg() != ARM::PC || 8596 Inst.getOperand(5).getReg() != 0 || 8597 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 8598 return false; 8599 MCInst TmpInst; 8600 TmpInst.setOpcode(ARM::ADR); 8601 TmpInst.addOperand(Inst.getOperand(0)); 8602 if (Inst.getOperand(2).isImm()) { 8603 // Immediate (mod_imm) will be in its encoded form, we must unencode it 8604 // before passing it to the ADR instruction. 8605 unsigned Enc = Inst.getOperand(2).getImm(); 8606 TmpInst.addOperand(MCOperand::createImm( 8607 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 8608 } else { 8609 // Turn PC-relative expression into absolute expression. 8610 // Reading PC provides the start of the current instruction + 8 and 8611 // the transform to adr is biased by that. 8612 MCSymbol *Dot = getContext().createTempSymbol(); 8613 Out.emitLabel(Dot); 8614 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 8615 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 8616 MCSymbolRefExpr::VK_None, 8617 getContext()); 8618 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 8619 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 8620 getContext()); 8621 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 8622 getContext()); 8623 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 8624 } 8625 TmpInst.addOperand(Inst.getOperand(3)); 8626 TmpInst.addOperand(Inst.getOperand(4)); 8627 Inst = TmpInst; 8628 return true; 8629 } 8630 // Aliases for alternate PC+imm syntax of LDR instructions. 8631 case ARM::t2LDRpcrel: 8632 // Select the narrow version if the immediate will fit. 8633 if (Inst.getOperand(1).getImm() > 0 && 8634 Inst.getOperand(1).getImm() <= 0xff && 8635 !HasWideQualifier) 8636 Inst.setOpcode(ARM::tLDRpci); 8637 else 8638 Inst.setOpcode(ARM::t2LDRpci); 8639 return true; 8640 case ARM::t2LDRBpcrel: 8641 Inst.setOpcode(ARM::t2LDRBpci); 8642 return true; 8643 case ARM::t2LDRHpcrel: 8644 Inst.setOpcode(ARM::t2LDRHpci); 8645 return true; 8646 case ARM::t2LDRSBpcrel: 8647 Inst.setOpcode(ARM::t2LDRSBpci); 8648 return true; 8649 case ARM::t2LDRSHpcrel: 8650 Inst.setOpcode(ARM::t2LDRSHpci); 8651 return true; 8652 case ARM::LDRConstPool: 8653 case ARM::tLDRConstPool: 8654 case ARM::t2LDRConstPool: { 8655 // Pseudo instruction ldr rt, =immediate is converted to a 8656 // MOV rt, immediate if immediate is known and representable 8657 // otherwise we create a constant pool entry that we load from. 8658 MCInst TmpInst; 8659 if (Inst.getOpcode() == ARM::LDRConstPool) 8660 TmpInst.setOpcode(ARM::LDRi12); 8661 else if (Inst.getOpcode() == ARM::tLDRConstPool) 8662 TmpInst.setOpcode(ARM::tLDRpci); 8663 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 8664 TmpInst.setOpcode(ARM::t2LDRpci); 8665 const ARMOperand &PoolOperand = 8666 (HasWideQualifier ? 8667 static_cast<ARMOperand &>(*Operands[4]) : 8668 static_cast<ARMOperand &>(*Operands[3])); 8669 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 8670 // If SubExprVal is a constant we may be able to use a MOV 8671 if (isa<MCConstantExpr>(SubExprVal) && 8672 Inst.getOperand(0).getReg() != ARM::PC && 8673 Inst.getOperand(0).getReg() != ARM::SP) { 8674 int64_t Value = 8675 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 8676 bool UseMov = true; 8677 bool MovHasS = true; 8678 if (Inst.getOpcode() == ARM::LDRConstPool) { 8679 // ARM Constant 8680 if (ARM_AM::getSOImmVal(Value) != -1) { 8681 Value = ARM_AM::getSOImmVal(Value); 8682 TmpInst.setOpcode(ARM::MOVi); 8683 } 8684 else if (ARM_AM::getSOImmVal(~Value) != -1) { 8685 Value = ARM_AM::getSOImmVal(~Value); 8686 TmpInst.setOpcode(ARM::MVNi); 8687 } 8688 else if (hasV6T2Ops() && 8689 Value >=0 && Value < 65536) { 8690 TmpInst.setOpcode(ARM::MOVi16); 8691 MovHasS = false; 8692 } 8693 else 8694 UseMov = false; 8695 } 8696 else { 8697 // Thumb/Thumb2 Constant 8698 if (hasThumb2() && 8699 ARM_AM::getT2SOImmVal(Value) != -1) 8700 TmpInst.setOpcode(ARM::t2MOVi); 8701 else if (hasThumb2() && 8702 ARM_AM::getT2SOImmVal(~Value) != -1) { 8703 TmpInst.setOpcode(ARM::t2MVNi); 8704 Value = ~Value; 8705 } 8706 else if (hasV8MBaseline() && 8707 Value >=0 && Value < 65536) { 8708 TmpInst.setOpcode(ARM::t2MOVi16); 8709 MovHasS = false; 8710 } 8711 else 8712 UseMov = false; 8713 } 8714 if (UseMov) { 8715 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8716 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 8717 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8718 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8719 if (MovHasS) 8720 TmpInst.addOperand(MCOperand::createReg(0)); // S 8721 Inst = TmpInst; 8722 return true; 8723 } 8724 } 8725 // No opportunity to use MOV/MVN create constant pool 8726 const MCExpr *CPLoc = 8727 getTargetStreamer().addConstantPoolEntry(SubExprVal, 8728 PoolOperand.getStartLoc()); 8729 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8730 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 8731 if (TmpInst.getOpcode() == ARM::LDRi12) 8732 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 8733 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8734 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8735 Inst = TmpInst; 8736 return true; 8737 } 8738 // Handle NEON VST complex aliases. 8739 case ARM::VST1LNdWB_register_Asm_8: 8740 case ARM::VST1LNdWB_register_Asm_16: 8741 case ARM::VST1LNdWB_register_Asm_32: { 8742 MCInst TmpInst; 8743 // Shuffle the operands around so the lane index operand is in the 8744 // right place. 8745 unsigned Spacing; 8746 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8747 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8748 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8749 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8750 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8751 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8752 TmpInst.addOperand(Inst.getOperand(1)); // lane 8753 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8754 TmpInst.addOperand(Inst.getOperand(6)); 8755 Inst = TmpInst; 8756 return true; 8757 } 8758 8759 case ARM::VST2LNdWB_register_Asm_8: 8760 case ARM::VST2LNdWB_register_Asm_16: 8761 case ARM::VST2LNdWB_register_Asm_32: 8762 case ARM::VST2LNqWB_register_Asm_16: 8763 case ARM::VST2LNqWB_register_Asm_32: { 8764 MCInst TmpInst; 8765 // Shuffle the operands around so the lane index operand is in the 8766 // right place. 8767 unsigned Spacing; 8768 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8769 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8770 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8771 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8772 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8773 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8774 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8775 Spacing)); 8776 TmpInst.addOperand(Inst.getOperand(1)); // lane 8777 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8778 TmpInst.addOperand(Inst.getOperand(6)); 8779 Inst = TmpInst; 8780 return true; 8781 } 8782 8783 case ARM::VST3LNdWB_register_Asm_8: 8784 case ARM::VST3LNdWB_register_Asm_16: 8785 case ARM::VST3LNdWB_register_Asm_32: 8786 case ARM::VST3LNqWB_register_Asm_16: 8787 case ARM::VST3LNqWB_register_Asm_32: { 8788 MCInst TmpInst; 8789 // Shuffle the operands around so the lane index operand is in the 8790 // right place. 8791 unsigned Spacing; 8792 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8793 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8794 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8795 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8796 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8797 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8798 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8799 Spacing)); 8800 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8801 Spacing * 2)); 8802 TmpInst.addOperand(Inst.getOperand(1)); // lane 8803 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8804 TmpInst.addOperand(Inst.getOperand(6)); 8805 Inst = TmpInst; 8806 return true; 8807 } 8808 8809 case ARM::VST4LNdWB_register_Asm_8: 8810 case ARM::VST4LNdWB_register_Asm_16: 8811 case ARM::VST4LNdWB_register_Asm_32: 8812 case ARM::VST4LNqWB_register_Asm_16: 8813 case ARM::VST4LNqWB_register_Asm_32: { 8814 MCInst TmpInst; 8815 // Shuffle the operands around so the lane index operand is in the 8816 // right place. 8817 unsigned Spacing; 8818 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8819 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8820 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8821 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8822 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8823 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8824 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8825 Spacing)); 8826 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8827 Spacing * 2)); 8828 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8829 Spacing * 3)); 8830 TmpInst.addOperand(Inst.getOperand(1)); // lane 8831 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8832 TmpInst.addOperand(Inst.getOperand(6)); 8833 Inst = TmpInst; 8834 return true; 8835 } 8836 8837 case ARM::VST1LNdWB_fixed_Asm_8: 8838 case ARM::VST1LNdWB_fixed_Asm_16: 8839 case ARM::VST1LNdWB_fixed_Asm_32: { 8840 MCInst TmpInst; 8841 // Shuffle the operands around so the lane index operand is in the 8842 // right place. 8843 unsigned Spacing; 8844 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8845 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8846 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8847 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8848 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8849 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8850 TmpInst.addOperand(Inst.getOperand(1)); // lane 8851 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8852 TmpInst.addOperand(Inst.getOperand(5)); 8853 Inst = TmpInst; 8854 return true; 8855 } 8856 8857 case ARM::VST2LNdWB_fixed_Asm_8: 8858 case ARM::VST2LNdWB_fixed_Asm_16: 8859 case ARM::VST2LNdWB_fixed_Asm_32: 8860 case ARM::VST2LNqWB_fixed_Asm_16: 8861 case ARM::VST2LNqWB_fixed_Asm_32: { 8862 MCInst TmpInst; 8863 // Shuffle the operands around so the lane index operand is in the 8864 // right place. 8865 unsigned Spacing; 8866 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8867 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8868 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8869 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8870 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8871 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8872 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8873 Spacing)); 8874 TmpInst.addOperand(Inst.getOperand(1)); // lane 8875 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8876 TmpInst.addOperand(Inst.getOperand(5)); 8877 Inst = TmpInst; 8878 return true; 8879 } 8880 8881 case ARM::VST3LNdWB_fixed_Asm_8: 8882 case ARM::VST3LNdWB_fixed_Asm_16: 8883 case ARM::VST3LNdWB_fixed_Asm_32: 8884 case ARM::VST3LNqWB_fixed_Asm_16: 8885 case ARM::VST3LNqWB_fixed_Asm_32: { 8886 MCInst TmpInst; 8887 // Shuffle the operands around so the lane index operand is in the 8888 // right place. 8889 unsigned Spacing; 8890 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8891 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8892 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8893 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8894 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8895 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8896 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8897 Spacing)); 8898 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8899 Spacing * 2)); 8900 TmpInst.addOperand(Inst.getOperand(1)); // lane 8901 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8902 TmpInst.addOperand(Inst.getOperand(5)); 8903 Inst = TmpInst; 8904 return true; 8905 } 8906 8907 case ARM::VST4LNdWB_fixed_Asm_8: 8908 case ARM::VST4LNdWB_fixed_Asm_16: 8909 case ARM::VST4LNdWB_fixed_Asm_32: 8910 case ARM::VST4LNqWB_fixed_Asm_16: 8911 case ARM::VST4LNqWB_fixed_Asm_32: { 8912 MCInst TmpInst; 8913 // Shuffle the operands around so the lane index operand is in the 8914 // right place. 8915 unsigned Spacing; 8916 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8917 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8918 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8919 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8920 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8921 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8922 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8923 Spacing)); 8924 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8925 Spacing * 2)); 8926 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8927 Spacing * 3)); 8928 TmpInst.addOperand(Inst.getOperand(1)); // lane 8929 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8930 TmpInst.addOperand(Inst.getOperand(5)); 8931 Inst = TmpInst; 8932 return true; 8933 } 8934 8935 case ARM::VST1LNdAsm_8: 8936 case ARM::VST1LNdAsm_16: 8937 case ARM::VST1LNdAsm_32: { 8938 MCInst TmpInst; 8939 // Shuffle the operands around so the lane index operand is in the 8940 // right place. 8941 unsigned Spacing; 8942 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8943 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8944 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8945 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8946 TmpInst.addOperand(Inst.getOperand(1)); // lane 8947 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8948 TmpInst.addOperand(Inst.getOperand(5)); 8949 Inst = TmpInst; 8950 return true; 8951 } 8952 8953 case ARM::VST2LNdAsm_8: 8954 case ARM::VST2LNdAsm_16: 8955 case ARM::VST2LNdAsm_32: 8956 case ARM::VST2LNqAsm_16: 8957 case ARM::VST2LNqAsm_32: { 8958 MCInst TmpInst; 8959 // Shuffle the operands around so the lane index operand is in the 8960 // right place. 8961 unsigned Spacing; 8962 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8963 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8964 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8965 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8966 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8967 Spacing)); 8968 TmpInst.addOperand(Inst.getOperand(1)); // lane 8969 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8970 TmpInst.addOperand(Inst.getOperand(5)); 8971 Inst = TmpInst; 8972 return true; 8973 } 8974 8975 case ARM::VST3LNdAsm_8: 8976 case ARM::VST3LNdAsm_16: 8977 case ARM::VST3LNdAsm_32: 8978 case ARM::VST3LNqAsm_16: 8979 case ARM::VST3LNqAsm_32: { 8980 MCInst TmpInst; 8981 // Shuffle the operands around so the lane index operand is in the 8982 // right place. 8983 unsigned Spacing; 8984 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8985 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8986 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8987 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8988 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8989 Spacing)); 8990 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8991 Spacing * 2)); 8992 TmpInst.addOperand(Inst.getOperand(1)); // lane 8993 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8994 TmpInst.addOperand(Inst.getOperand(5)); 8995 Inst = TmpInst; 8996 return true; 8997 } 8998 8999 case ARM::VST4LNdAsm_8: 9000 case ARM::VST4LNdAsm_16: 9001 case ARM::VST4LNdAsm_32: 9002 case ARM::VST4LNqAsm_16: 9003 case ARM::VST4LNqAsm_32: { 9004 MCInst TmpInst; 9005 // Shuffle the operands around so the lane index operand is in the 9006 // right place. 9007 unsigned Spacing; 9008 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9009 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9010 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9011 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9012 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9013 Spacing)); 9014 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9015 Spacing * 2)); 9016 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9017 Spacing * 3)); 9018 TmpInst.addOperand(Inst.getOperand(1)); // lane 9019 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9020 TmpInst.addOperand(Inst.getOperand(5)); 9021 Inst = TmpInst; 9022 return true; 9023 } 9024 9025 // Handle NEON VLD complex aliases. 9026 case ARM::VLD1LNdWB_register_Asm_8: 9027 case ARM::VLD1LNdWB_register_Asm_16: 9028 case ARM::VLD1LNdWB_register_Asm_32: { 9029 MCInst TmpInst; 9030 // Shuffle the operands around so the lane index operand is in the 9031 // right place. 9032 unsigned Spacing; 9033 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9034 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9035 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9036 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9037 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9038 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9039 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9040 TmpInst.addOperand(Inst.getOperand(1)); // lane 9041 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9042 TmpInst.addOperand(Inst.getOperand(6)); 9043 Inst = TmpInst; 9044 return true; 9045 } 9046 9047 case ARM::VLD2LNdWB_register_Asm_8: 9048 case ARM::VLD2LNdWB_register_Asm_16: 9049 case ARM::VLD2LNdWB_register_Asm_32: 9050 case ARM::VLD2LNqWB_register_Asm_16: 9051 case ARM::VLD2LNqWB_register_Asm_32: { 9052 MCInst TmpInst; 9053 // Shuffle the operands around so the lane index operand is in the 9054 // right place. 9055 unsigned Spacing; 9056 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9057 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9058 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9059 Spacing)); 9060 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9061 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9062 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9063 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9064 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9065 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9066 Spacing)); 9067 TmpInst.addOperand(Inst.getOperand(1)); // lane 9068 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9069 TmpInst.addOperand(Inst.getOperand(6)); 9070 Inst = TmpInst; 9071 return true; 9072 } 9073 9074 case ARM::VLD3LNdWB_register_Asm_8: 9075 case ARM::VLD3LNdWB_register_Asm_16: 9076 case ARM::VLD3LNdWB_register_Asm_32: 9077 case ARM::VLD3LNqWB_register_Asm_16: 9078 case ARM::VLD3LNqWB_register_Asm_32: { 9079 MCInst TmpInst; 9080 // Shuffle the operands around so the lane index operand is in the 9081 // right place. 9082 unsigned Spacing; 9083 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9084 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9085 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9086 Spacing)); 9087 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9088 Spacing * 2)); 9089 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9090 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9091 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9092 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9093 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9094 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9095 Spacing)); 9096 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9097 Spacing * 2)); 9098 TmpInst.addOperand(Inst.getOperand(1)); // lane 9099 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9100 TmpInst.addOperand(Inst.getOperand(6)); 9101 Inst = TmpInst; 9102 return true; 9103 } 9104 9105 case ARM::VLD4LNdWB_register_Asm_8: 9106 case ARM::VLD4LNdWB_register_Asm_16: 9107 case ARM::VLD4LNdWB_register_Asm_32: 9108 case ARM::VLD4LNqWB_register_Asm_16: 9109 case ARM::VLD4LNqWB_register_Asm_32: { 9110 MCInst TmpInst; 9111 // Shuffle the operands around so the lane index operand is in the 9112 // right place. 9113 unsigned Spacing; 9114 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9115 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9116 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9117 Spacing)); 9118 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9119 Spacing * 2)); 9120 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9121 Spacing * 3)); 9122 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9123 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9124 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9125 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9126 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9127 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9128 Spacing)); 9129 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9130 Spacing * 2)); 9131 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9132 Spacing * 3)); 9133 TmpInst.addOperand(Inst.getOperand(1)); // lane 9134 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9135 TmpInst.addOperand(Inst.getOperand(6)); 9136 Inst = TmpInst; 9137 return true; 9138 } 9139 9140 case ARM::VLD1LNdWB_fixed_Asm_8: 9141 case ARM::VLD1LNdWB_fixed_Asm_16: 9142 case ARM::VLD1LNdWB_fixed_Asm_32: { 9143 MCInst TmpInst; 9144 // Shuffle the operands around so the lane index operand is in the 9145 // right place. 9146 unsigned Spacing; 9147 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9148 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9149 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9150 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9151 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9152 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9153 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9154 TmpInst.addOperand(Inst.getOperand(1)); // lane 9155 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9156 TmpInst.addOperand(Inst.getOperand(5)); 9157 Inst = TmpInst; 9158 return true; 9159 } 9160 9161 case ARM::VLD2LNdWB_fixed_Asm_8: 9162 case ARM::VLD2LNdWB_fixed_Asm_16: 9163 case ARM::VLD2LNdWB_fixed_Asm_32: 9164 case ARM::VLD2LNqWB_fixed_Asm_16: 9165 case ARM::VLD2LNqWB_fixed_Asm_32: { 9166 MCInst TmpInst; 9167 // Shuffle the operands around so the lane index operand is in the 9168 // right place. 9169 unsigned Spacing; 9170 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9171 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9172 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9173 Spacing)); 9174 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9175 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9176 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9177 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9178 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9179 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9180 Spacing)); 9181 TmpInst.addOperand(Inst.getOperand(1)); // lane 9182 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9183 TmpInst.addOperand(Inst.getOperand(5)); 9184 Inst = TmpInst; 9185 return true; 9186 } 9187 9188 case ARM::VLD3LNdWB_fixed_Asm_8: 9189 case ARM::VLD3LNdWB_fixed_Asm_16: 9190 case ARM::VLD3LNdWB_fixed_Asm_32: 9191 case ARM::VLD3LNqWB_fixed_Asm_16: 9192 case ARM::VLD3LNqWB_fixed_Asm_32: { 9193 MCInst TmpInst; 9194 // Shuffle the operands around so the lane index operand is in the 9195 // right place. 9196 unsigned Spacing; 9197 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9198 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9199 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9200 Spacing)); 9201 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9202 Spacing * 2)); 9203 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9204 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9205 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9206 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9207 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9208 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9209 Spacing)); 9210 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9211 Spacing * 2)); 9212 TmpInst.addOperand(Inst.getOperand(1)); // lane 9213 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9214 TmpInst.addOperand(Inst.getOperand(5)); 9215 Inst = TmpInst; 9216 return true; 9217 } 9218 9219 case ARM::VLD4LNdWB_fixed_Asm_8: 9220 case ARM::VLD4LNdWB_fixed_Asm_16: 9221 case ARM::VLD4LNdWB_fixed_Asm_32: 9222 case ARM::VLD4LNqWB_fixed_Asm_16: 9223 case ARM::VLD4LNqWB_fixed_Asm_32: { 9224 MCInst TmpInst; 9225 // Shuffle the operands around so the lane index operand is in the 9226 // right place. 9227 unsigned Spacing; 9228 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9229 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9230 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9231 Spacing)); 9232 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9233 Spacing * 2)); 9234 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9235 Spacing * 3)); 9236 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9237 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9238 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9239 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9240 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9241 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9242 Spacing)); 9243 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9244 Spacing * 2)); 9245 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9246 Spacing * 3)); 9247 TmpInst.addOperand(Inst.getOperand(1)); // lane 9248 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9249 TmpInst.addOperand(Inst.getOperand(5)); 9250 Inst = TmpInst; 9251 return true; 9252 } 9253 9254 case ARM::VLD1LNdAsm_8: 9255 case ARM::VLD1LNdAsm_16: 9256 case ARM::VLD1LNdAsm_32: { 9257 MCInst TmpInst; 9258 // Shuffle the operands around so the lane index operand is in the 9259 // right place. 9260 unsigned Spacing; 9261 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9262 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9263 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9264 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9265 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9266 TmpInst.addOperand(Inst.getOperand(1)); // lane 9267 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9268 TmpInst.addOperand(Inst.getOperand(5)); 9269 Inst = TmpInst; 9270 return true; 9271 } 9272 9273 case ARM::VLD2LNdAsm_8: 9274 case ARM::VLD2LNdAsm_16: 9275 case ARM::VLD2LNdAsm_32: 9276 case ARM::VLD2LNqAsm_16: 9277 case ARM::VLD2LNqAsm_32: { 9278 MCInst TmpInst; 9279 // Shuffle the operands around so the lane index operand is in the 9280 // right place. 9281 unsigned Spacing; 9282 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9283 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9284 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9285 Spacing)); 9286 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9287 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9288 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9289 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9290 Spacing)); 9291 TmpInst.addOperand(Inst.getOperand(1)); // lane 9292 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9293 TmpInst.addOperand(Inst.getOperand(5)); 9294 Inst = TmpInst; 9295 return true; 9296 } 9297 9298 case ARM::VLD3LNdAsm_8: 9299 case ARM::VLD3LNdAsm_16: 9300 case ARM::VLD3LNdAsm_32: 9301 case ARM::VLD3LNqAsm_16: 9302 case ARM::VLD3LNqAsm_32: { 9303 MCInst TmpInst; 9304 // Shuffle the operands around so the lane index operand is in the 9305 // right place. 9306 unsigned Spacing; 9307 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9308 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9309 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9310 Spacing)); 9311 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9312 Spacing * 2)); 9313 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9314 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9315 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9316 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9317 Spacing)); 9318 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9319 Spacing * 2)); 9320 TmpInst.addOperand(Inst.getOperand(1)); // lane 9321 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9322 TmpInst.addOperand(Inst.getOperand(5)); 9323 Inst = TmpInst; 9324 return true; 9325 } 9326 9327 case ARM::VLD4LNdAsm_8: 9328 case ARM::VLD4LNdAsm_16: 9329 case ARM::VLD4LNdAsm_32: 9330 case ARM::VLD4LNqAsm_16: 9331 case ARM::VLD4LNqAsm_32: { 9332 MCInst TmpInst; 9333 // Shuffle the operands around so the lane index operand is in the 9334 // right place. 9335 unsigned Spacing; 9336 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9337 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9338 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9339 Spacing)); 9340 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9341 Spacing * 2)); 9342 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9343 Spacing * 3)); 9344 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9345 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9346 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9347 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9348 Spacing)); 9349 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9350 Spacing * 2)); 9351 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9352 Spacing * 3)); 9353 TmpInst.addOperand(Inst.getOperand(1)); // lane 9354 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9355 TmpInst.addOperand(Inst.getOperand(5)); 9356 Inst = TmpInst; 9357 return true; 9358 } 9359 9360 // VLD3DUP single 3-element structure to all lanes instructions. 9361 case ARM::VLD3DUPdAsm_8: 9362 case ARM::VLD3DUPdAsm_16: 9363 case ARM::VLD3DUPdAsm_32: 9364 case ARM::VLD3DUPqAsm_8: 9365 case ARM::VLD3DUPqAsm_16: 9366 case ARM::VLD3DUPqAsm_32: { 9367 MCInst TmpInst; 9368 unsigned Spacing; 9369 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9370 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9371 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9372 Spacing)); 9373 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9374 Spacing * 2)); 9375 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9376 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9377 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9378 TmpInst.addOperand(Inst.getOperand(4)); 9379 Inst = TmpInst; 9380 return true; 9381 } 9382 9383 case ARM::VLD3DUPdWB_fixed_Asm_8: 9384 case ARM::VLD3DUPdWB_fixed_Asm_16: 9385 case ARM::VLD3DUPdWB_fixed_Asm_32: 9386 case ARM::VLD3DUPqWB_fixed_Asm_8: 9387 case ARM::VLD3DUPqWB_fixed_Asm_16: 9388 case ARM::VLD3DUPqWB_fixed_Asm_32: { 9389 MCInst TmpInst; 9390 unsigned Spacing; 9391 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9392 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9393 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9394 Spacing)); 9395 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9396 Spacing * 2)); 9397 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9398 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9399 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9400 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9401 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9402 TmpInst.addOperand(Inst.getOperand(4)); 9403 Inst = TmpInst; 9404 return true; 9405 } 9406 9407 case ARM::VLD3DUPdWB_register_Asm_8: 9408 case ARM::VLD3DUPdWB_register_Asm_16: 9409 case ARM::VLD3DUPdWB_register_Asm_32: 9410 case ARM::VLD3DUPqWB_register_Asm_8: 9411 case ARM::VLD3DUPqWB_register_Asm_16: 9412 case ARM::VLD3DUPqWB_register_Asm_32: { 9413 MCInst TmpInst; 9414 unsigned Spacing; 9415 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9416 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9417 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9418 Spacing)); 9419 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9420 Spacing * 2)); 9421 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9422 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9423 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9424 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9425 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9426 TmpInst.addOperand(Inst.getOperand(5)); 9427 Inst = TmpInst; 9428 return true; 9429 } 9430 9431 // VLD3 multiple 3-element structure instructions. 9432 case ARM::VLD3dAsm_8: 9433 case ARM::VLD3dAsm_16: 9434 case ARM::VLD3dAsm_32: 9435 case ARM::VLD3qAsm_8: 9436 case ARM::VLD3qAsm_16: 9437 case ARM::VLD3qAsm_32: { 9438 MCInst TmpInst; 9439 unsigned Spacing; 9440 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9441 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9442 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9443 Spacing)); 9444 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9445 Spacing * 2)); 9446 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9447 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9448 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9449 TmpInst.addOperand(Inst.getOperand(4)); 9450 Inst = TmpInst; 9451 return true; 9452 } 9453 9454 case ARM::VLD3dWB_fixed_Asm_8: 9455 case ARM::VLD3dWB_fixed_Asm_16: 9456 case ARM::VLD3dWB_fixed_Asm_32: 9457 case ARM::VLD3qWB_fixed_Asm_8: 9458 case ARM::VLD3qWB_fixed_Asm_16: 9459 case ARM::VLD3qWB_fixed_Asm_32: { 9460 MCInst TmpInst; 9461 unsigned Spacing; 9462 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9463 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9464 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9465 Spacing)); 9466 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9467 Spacing * 2)); 9468 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9469 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9470 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9471 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9472 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9473 TmpInst.addOperand(Inst.getOperand(4)); 9474 Inst = TmpInst; 9475 return true; 9476 } 9477 9478 case ARM::VLD3dWB_register_Asm_8: 9479 case ARM::VLD3dWB_register_Asm_16: 9480 case ARM::VLD3dWB_register_Asm_32: 9481 case ARM::VLD3qWB_register_Asm_8: 9482 case ARM::VLD3qWB_register_Asm_16: 9483 case ARM::VLD3qWB_register_Asm_32: { 9484 MCInst TmpInst; 9485 unsigned Spacing; 9486 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9487 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9488 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9489 Spacing)); 9490 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9491 Spacing * 2)); 9492 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9493 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9494 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9495 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9496 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9497 TmpInst.addOperand(Inst.getOperand(5)); 9498 Inst = TmpInst; 9499 return true; 9500 } 9501 9502 // VLD4DUP single 3-element structure to all lanes instructions. 9503 case ARM::VLD4DUPdAsm_8: 9504 case ARM::VLD4DUPdAsm_16: 9505 case ARM::VLD4DUPdAsm_32: 9506 case ARM::VLD4DUPqAsm_8: 9507 case ARM::VLD4DUPqAsm_16: 9508 case ARM::VLD4DUPqAsm_32: { 9509 MCInst TmpInst; 9510 unsigned Spacing; 9511 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9512 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9513 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9514 Spacing)); 9515 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9516 Spacing * 2)); 9517 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9518 Spacing * 3)); 9519 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9520 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9521 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9522 TmpInst.addOperand(Inst.getOperand(4)); 9523 Inst = TmpInst; 9524 return true; 9525 } 9526 9527 case ARM::VLD4DUPdWB_fixed_Asm_8: 9528 case ARM::VLD4DUPdWB_fixed_Asm_16: 9529 case ARM::VLD4DUPdWB_fixed_Asm_32: 9530 case ARM::VLD4DUPqWB_fixed_Asm_8: 9531 case ARM::VLD4DUPqWB_fixed_Asm_16: 9532 case ARM::VLD4DUPqWB_fixed_Asm_32: { 9533 MCInst TmpInst; 9534 unsigned Spacing; 9535 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9536 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9537 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9538 Spacing)); 9539 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9540 Spacing * 2)); 9541 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9542 Spacing * 3)); 9543 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9544 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9545 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9546 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9547 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9548 TmpInst.addOperand(Inst.getOperand(4)); 9549 Inst = TmpInst; 9550 return true; 9551 } 9552 9553 case ARM::VLD4DUPdWB_register_Asm_8: 9554 case ARM::VLD4DUPdWB_register_Asm_16: 9555 case ARM::VLD4DUPdWB_register_Asm_32: 9556 case ARM::VLD4DUPqWB_register_Asm_8: 9557 case ARM::VLD4DUPqWB_register_Asm_16: 9558 case ARM::VLD4DUPqWB_register_Asm_32: { 9559 MCInst TmpInst; 9560 unsigned Spacing; 9561 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9562 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9563 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9564 Spacing)); 9565 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9566 Spacing * 2)); 9567 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9568 Spacing * 3)); 9569 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9570 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9571 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9572 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9573 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9574 TmpInst.addOperand(Inst.getOperand(5)); 9575 Inst = TmpInst; 9576 return true; 9577 } 9578 9579 // VLD4 multiple 4-element structure instructions. 9580 case ARM::VLD4dAsm_8: 9581 case ARM::VLD4dAsm_16: 9582 case ARM::VLD4dAsm_32: 9583 case ARM::VLD4qAsm_8: 9584 case ARM::VLD4qAsm_16: 9585 case ARM::VLD4qAsm_32: { 9586 MCInst TmpInst; 9587 unsigned Spacing; 9588 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9589 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9590 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9591 Spacing)); 9592 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9593 Spacing * 2)); 9594 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9595 Spacing * 3)); 9596 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9597 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9598 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9599 TmpInst.addOperand(Inst.getOperand(4)); 9600 Inst = TmpInst; 9601 return true; 9602 } 9603 9604 case ARM::VLD4dWB_fixed_Asm_8: 9605 case ARM::VLD4dWB_fixed_Asm_16: 9606 case ARM::VLD4dWB_fixed_Asm_32: 9607 case ARM::VLD4qWB_fixed_Asm_8: 9608 case ARM::VLD4qWB_fixed_Asm_16: 9609 case ARM::VLD4qWB_fixed_Asm_32: { 9610 MCInst TmpInst; 9611 unsigned Spacing; 9612 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9613 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9614 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9615 Spacing)); 9616 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9617 Spacing * 2)); 9618 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9619 Spacing * 3)); 9620 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9621 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9622 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9623 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9624 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9625 TmpInst.addOperand(Inst.getOperand(4)); 9626 Inst = TmpInst; 9627 return true; 9628 } 9629 9630 case ARM::VLD4dWB_register_Asm_8: 9631 case ARM::VLD4dWB_register_Asm_16: 9632 case ARM::VLD4dWB_register_Asm_32: 9633 case ARM::VLD4qWB_register_Asm_8: 9634 case ARM::VLD4qWB_register_Asm_16: 9635 case ARM::VLD4qWB_register_Asm_32: { 9636 MCInst TmpInst; 9637 unsigned Spacing; 9638 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9639 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9640 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9641 Spacing)); 9642 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9643 Spacing * 2)); 9644 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9645 Spacing * 3)); 9646 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9647 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9648 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9649 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9650 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9651 TmpInst.addOperand(Inst.getOperand(5)); 9652 Inst = TmpInst; 9653 return true; 9654 } 9655 9656 // VST3 multiple 3-element structure instructions. 9657 case ARM::VST3dAsm_8: 9658 case ARM::VST3dAsm_16: 9659 case ARM::VST3dAsm_32: 9660 case ARM::VST3qAsm_8: 9661 case ARM::VST3qAsm_16: 9662 case ARM::VST3qAsm_32: { 9663 MCInst TmpInst; 9664 unsigned Spacing; 9665 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9666 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9667 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9668 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9669 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9670 Spacing)); 9671 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9672 Spacing * 2)); 9673 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9674 TmpInst.addOperand(Inst.getOperand(4)); 9675 Inst = TmpInst; 9676 return true; 9677 } 9678 9679 case ARM::VST3dWB_fixed_Asm_8: 9680 case ARM::VST3dWB_fixed_Asm_16: 9681 case ARM::VST3dWB_fixed_Asm_32: 9682 case ARM::VST3qWB_fixed_Asm_8: 9683 case ARM::VST3qWB_fixed_Asm_16: 9684 case ARM::VST3qWB_fixed_Asm_32: { 9685 MCInst TmpInst; 9686 unsigned Spacing; 9687 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9688 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9689 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9690 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9691 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9692 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9693 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9694 Spacing)); 9695 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9696 Spacing * 2)); 9697 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9698 TmpInst.addOperand(Inst.getOperand(4)); 9699 Inst = TmpInst; 9700 return true; 9701 } 9702 9703 case ARM::VST3dWB_register_Asm_8: 9704 case ARM::VST3dWB_register_Asm_16: 9705 case ARM::VST3dWB_register_Asm_32: 9706 case ARM::VST3qWB_register_Asm_8: 9707 case ARM::VST3qWB_register_Asm_16: 9708 case ARM::VST3qWB_register_Asm_32: { 9709 MCInst TmpInst; 9710 unsigned Spacing; 9711 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9712 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9713 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9714 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9715 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9716 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9717 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9718 Spacing)); 9719 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9720 Spacing * 2)); 9721 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9722 TmpInst.addOperand(Inst.getOperand(5)); 9723 Inst = TmpInst; 9724 return true; 9725 } 9726 9727 // VST4 multiple 3-element structure instructions. 9728 case ARM::VST4dAsm_8: 9729 case ARM::VST4dAsm_16: 9730 case ARM::VST4dAsm_32: 9731 case ARM::VST4qAsm_8: 9732 case ARM::VST4qAsm_16: 9733 case ARM::VST4qAsm_32: { 9734 MCInst TmpInst; 9735 unsigned Spacing; 9736 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9737 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9738 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9739 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9740 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9741 Spacing)); 9742 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9743 Spacing * 2)); 9744 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9745 Spacing * 3)); 9746 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9747 TmpInst.addOperand(Inst.getOperand(4)); 9748 Inst = TmpInst; 9749 return true; 9750 } 9751 9752 case ARM::VST4dWB_fixed_Asm_8: 9753 case ARM::VST4dWB_fixed_Asm_16: 9754 case ARM::VST4dWB_fixed_Asm_32: 9755 case ARM::VST4qWB_fixed_Asm_8: 9756 case ARM::VST4qWB_fixed_Asm_16: 9757 case ARM::VST4qWB_fixed_Asm_32: { 9758 MCInst TmpInst; 9759 unsigned Spacing; 9760 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9761 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9762 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9763 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9764 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9765 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9766 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9767 Spacing)); 9768 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9769 Spacing * 2)); 9770 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9771 Spacing * 3)); 9772 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9773 TmpInst.addOperand(Inst.getOperand(4)); 9774 Inst = TmpInst; 9775 return true; 9776 } 9777 9778 case ARM::VST4dWB_register_Asm_8: 9779 case ARM::VST4dWB_register_Asm_16: 9780 case ARM::VST4dWB_register_Asm_32: 9781 case ARM::VST4qWB_register_Asm_8: 9782 case ARM::VST4qWB_register_Asm_16: 9783 case ARM::VST4qWB_register_Asm_32: { 9784 MCInst TmpInst; 9785 unsigned Spacing; 9786 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9787 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9788 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9789 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9790 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9791 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9792 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9793 Spacing)); 9794 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9795 Spacing * 2)); 9796 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9797 Spacing * 3)); 9798 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9799 TmpInst.addOperand(Inst.getOperand(5)); 9800 Inst = TmpInst; 9801 return true; 9802 } 9803 9804 // Handle encoding choice for the shift-immediate instructions. 9805 case ARM::t2LSLri: 9806 case ARM::t2LSRri: 9807 case ARM::t2ASRri: 9808 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9809 isARMLowRegister(Inst.getOperand(1).getReg()) && 9810 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9811 !HasWideQualifier) { 9812 unsigned NewOpc; 9813 switch (Inst.getOpcode()) { 9814 default: llvm_unreachable("unexpected opcode"); 9815 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 9816 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 9817 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 9818 } 9819 // The Thumb1 operands aren't in the same order. Awesome, eh? 9820 MCInst TmpInst; 9821 TmpInst.setOpcode(NewOpc); 9822 TmpInst.addOperand(Inst.getOperand(0)); 9823 TmpInst.addOperand(Inst.getOperand(5)); 9824 TmpInst.addOperand(Inst.getOperand(1)); 9825 TmpInst.addOperand(Inst.getOperand(2)); 9826 TmpInst.addOperand(Inst.getOperand(3)); 9827 TmpInst.addOperand(Inst.getOperand(4)); 9828 Inst = TmpInst; 9829 return true; 9830 } 9831 return false; 9832 9833 // Handle the Thumb2 mode MOV complex aliases. 9834 case ARM::t2MOVsr: 9835 case ARM::t2MOVSsr: { 9836 // Which instruction to expand to depends on the CCOut operand and 9837 // whether we're in an IT block if the register operands are low 9838 // registers. 9839 bool isNarrow = false; 9840 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9841 isARMLowRegister(Inst.getOperand(1).getReg()) && 9842 isARMLowRegister(Inst.getOperand(2).getReg()) && 9843 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 9844 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 9845 !HasWideQualifier) 9846 isNarrow = true; 9847 MCInst TmpInst; 9848 unsigned newOpc; 9849 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 9850 default: llvm_unreachable("unexpected opcode!"); 9851 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 9852 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 9853 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 9854 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 9855 } 9856 TmpInst.setOpcode(newOpc); 9857 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9858 if (isNarrow) 9859 TmpInst.addOperand(MCOperand::createReg( 9860 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 9861 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9862 TmpInst.addOperand(Inst.getOperand(2)); // Rm 9863 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9864 TmpInst.addOperand(Inst.getOperand(5)); 9865 if (!isNarrow) 9866 TmpInst.addOperand(MCOperand::createReg( 9867 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 9868 Inst = TmpInst; 9869 return true; 9870 } 9871 case ARM::t2MOVsi: 9872 case ARM::t2MOVSsi: { 9873 // Which instruction to expand to depends on the CCOut operand and 9874 // whether we're in an IT block if the register operands are low 9875 // registers. 9876 bool isNarrow = false; 9877 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9878 isARMLowRegister(Inst.getOperand(1).getReg()) && 9879 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 9880 !HasWideQualifier) 9881 isNarrow = true; 9882 MCInst TmpInst; 9883 unsigned newOpc; 9884 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 9885 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 9886 bool isMov = false; 9887 // MOV rd, rm, LSL #0 is actually a MOV instruction 9888 if (Shift == ARM_AM::lsl && Amount == 0) { 9889 isMov = true; 9890 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 9891 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 9892 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 9893 // instead. 9894 if (inITBlock()) { 9895 isNarrow = false; 9896 } 9897 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 9898 } else { 9899 switch(Shift) { 9900 default: llvm_unreachable("unexpected opcode!"); 9901 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 9902 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 9903 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 9904 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 9905 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 9906 } 9907 } 9908 if (Amount == 32) Amount = 0; 9909 TmpInst.setOpcode(newOpc); 9910 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9911 if (isNarrow && !isMov) 9912 TmpInst.addOperand(MCOperand::createReg( 9913 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 9914 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9915 if (newOpc != ARM::t2RRX && !isMov) 9916 TmpInst.addOperand(MCOperand::createImm(Amount)); 9917 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9918 TmpInst.addOperand(Inst.getOperand(4)); 9919 if (!isNarrow) 9920 TmpInst.addOperand(MCOperand::createReg( 9921 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 9922 Inst = TmpInst; 9923 return true; 9924 } 9925 // Handle the ARM mode MOV complex aliases. 9926 case ARM::ASRr: 9927 case ARM::LSRr: 9928 case ARM::LSLr: 9929 case ARM::RORr: { 9930 ARM_AM::ShiftOpc ShiftTy; 9931 switch(Inst.getOpcode()) { 9932 default: llvm_unreachable("unexpected opcode!"); 9933 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 9934 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 9935 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 9936 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 9937 } 9938 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 9939 MCInst TmpInst; 9940 TmpInst.setOpcode(ARM::MOVsr); 9941 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9942 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9943 TmpInst.addOperand(Inst.getOperand(2)); // Rm 9944 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9945 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9946 TmpInst.addOperand(Inst.getOperand(4)); 9947 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 9948 Inst = TmpInst; 9949 return true; 9950 } 9951 case ARM::ASRi: 9952 case ARM::LSRi: 9953 case ARM::LSLi: 9954 case ARM::RORi: { 9955 ARM_AM::ShiftOpc ShiftTy; 9956 switch(Inst.getOpcode()) { 9957 default: llvm_unreachable("unexpected opcode!"); 9958 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 9959 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 9960 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 9961 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 9962 } 9963 // A shift by zero is a plain MOVr, not a MOVsi. 9964 unsigned Amt = Inst.getOperand(2).getImm(); 9965 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 9966 // A shift by 32 should be encoded as 0 when permitted 9967 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 9968 Amt = 0; 9969 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 9970 MCInst TmpInst; 9971 TmpInst.setOpcode(Opc); 9972 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9973 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9974 if (Opc == ARM::MOVsi) 9975 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9976 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9977 TmpInst.addOperand(Inst.getOperand(4)); 9978 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 9979 Inst = TmpInst; 9980 return true; 9981 } 9982 case ARM::RRXi: { 9983 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 9984 MCInst TmpInst; 9985 TmpInst.setOpcode(ARM::MOVsi); 9986 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9987 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9988 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9989 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9990 TmpInst.addOperand(Inst.getOperand(3)); 9991 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 9992 Inst = TmpInst; 9993 return true; 9994 } 9995 case ARM::t2LDMIA_UPD: { 9996 // If this is a load of a single register, then we should use 9997 // a post-indexed LDR instruction instead, per the ARM ARM. 9998 if (Inst.getNumOperands() != 5) 9999 return false; 10000 MCInst TmpInst; 10001 TmpInst.setOpcode(ARM::t2LDR_POST); 10002 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10003 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10004 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10005 TmpInst.addOperand(MCOperand::createImm(4)); 10006 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10007 TmpInst.addOperand(Inst.getOperand(3)); 10008 Inst = TmpInst; 10009 return true; 10010 } 10011 case ARM::t2STMDB_UPD: { 10012 // If this is a store of a single register, then we should use 10013 // a pre-indexed STR instruction instead, per the ARM ARM. 10014 if (Inst.getNumOperands() != 5) 10015 return false; 10016 MCInst TmpInst; 10017 TmpInst.setOpcode(ARM::t2STR_PRE); 10018 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10019 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10020 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10021 TmpInst.addOperand(MCOperand::createImm(-4)); 10022 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10023 TmpInst.addOperand(Inst.getOperand(3)); 10024 Inst = TmpInst; 10025 return true; 10026 } 10027 case ARM::LDMIA_UPD: 10028 // If this is a load of a single register via a 'pop', then we should use 10029 // a post-indexed LDR instruction instead, per the ARM ARM. 10030 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 10031 Inst.getNumOperands() == 5) { 10032 MCInst TmpInst; 10033 TmpInst.setOpcode(ARM::LDR_POST_IMM); 10034 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10035 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10036 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10037 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 10038 TmpInst.addOperand(MCOperand::createImm(4)); 10039 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10040 TmpInst.addOperand(Inst.getOperand(3)); 10041 Inst = TmpInst; 10042 return true; 10043 } 10044 break; 10045 case ARM::STMDB_UPD: 10046 // If this is a store of a single register via a 'push', then we should use 10047 // a pre-indexed STR instruction instead, per the ARM ARM. 10048 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 10049 Inst.getNumOperands() == 5) { 10050 MCInst TmpInst; 10051 TmpInst.setOpcode(ARM::STR_PRE_IMM); 10052 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10053 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10054 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 10055 TmpInst.addOperand(MCOperand::createImm(-4)); 10056 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10057 TmpInst.addOperand(Inst.getOperand(3)); 10058 Inst = TmpInst; 10059 } 10060 break; 10061 case ARM::t2ADDri12: 10062 case ARM::t2SUBri12: 10063 case ARM::t2ADDspImm12: 10064 case ARM::t2SUBspImm12: { 10065 // If the immediate fits for encoding T3 and the generic 10066 // mnemonic was used, encoding T3 is preferred. 10067 const StringRef Token = static_cast<ARMOperand &>(*Operands[0]).getToken(); 10068 if ((Token != "add" && Token != "sub") || 10069 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 10070 break; 10071 switch (Inst.getOpcode()) { 10072 case ARM::t2ADDri12: 10073 Inst.setOpcode(ARM::t2ADDri); 10074 break; 10075 case ARM::t2SUBri12: 10076 Inst.setOpcode(ARM::t2SUBri); 10077 break; 10078 case ARM::t2ADDspImm12: 10079 Inst.setOpcode(ARM::t2ADDspImm); 10080 break; 10081 case ARM::t2SUBspImm12: 10082 Inst.setOpcode(ARM::t2SUBspImm); 10083 break; 10084 } 10085 10086 Inst.addOperand(MCOperand::createReg(0)); // cc_out 10087 return true; 10088 } 10089 case ARM::tADDi8: 10090 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 10091 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 10092 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 10093 // to encoding T1 if <Rd> is omitted." 10094 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 10095 Inst.setOpcode(ARM::tADDi3); 10096 return true; 10097 } 10098 break; 10099 case ARM::tSUBi8: 10100 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 10101 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 10102 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 10103 // to encoding T1 if <Rd> is omitted." 10104 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 10105 Inst.setOpcode(ARM::tSUBi3); 10106 return true; 10107 } 10108 break; 10109 case ARM::t2ADDri: 10110 case ARM::t2SUBri: { 10111 // If the destination and first source operand are the same, and 10112 // the flags are compatible with the current IT status, use encoding T2 10113 // instead of T3. For compatibility with the system 'as'. Make sure the 10114 // wide encoding wasn't explicit. 10115 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 10116 !isARMLowRegister(Inst.getOperand(0).getReg()) || 10117 (Inst.getOperand(2).isImm() && 10118 (unsigned)Inst.getOperand(2).getImm() > 255) || 10119 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 10120 HasWideQualifier) 10121 break; 10122 MCInst TmpInst; 10123 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 10124 ARM::tADDi8 : ARM::tSUBi8); 10125 TmpInst.addOperand(Inst.getOperand(0)); 10126 TmpInst.addOperand(Inst.getOperand(5)); 10127 TmpInst.addOperand(Inst.getOperand(0)); 10128 TmpInst.addOperand(Inst.getOperand(2)); 10129 TmpInst.addOperand(Inst.getOperand(3)); 10130 TmpInst.addOperand(Inst.getOperand(4)); 10131 Inst = TmpInst; 10132 return true; 10133 } 10134 case ARM::t2ADDspImm: 10135 case ARM::t2SUBspImm: { 10136 // Prefer T1 encoding if possible 10137 if (Inst.getOperand(5).getReg() != 0 || HasWideQualifier) 10138 break; 10139 unsigned V = Inst.getOperand(2).getImm(); 10140 if (V & 3 || V > ((1 << 7) - 1) << 2) 10141 break; 10142 MCInst TmpInst; 10143 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDspImm ? ARM::tADDspi 10144 : ARM::tSUBspi); 10145 TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // destination reg 10146 TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // source reg 10147 TmpInst.addOperand(MCOperand::createImm(V / 4)); // immediate 10148 TmpInst.addOperand(Inst.getOperand(3)); // pred 10149 TmpInst.addOperand(Inst.getOperand(4)); 10150 Inst = TmpInst; 10151 return true; 10152 } 10153 case ARM::t2ADDrr: { 10154 // If the destination and first source operand are the same, and 10155 // there's no setting of the flags, use encoding T2 instead of T3. 10156 // Note that this is only for ADD, not SUB. This mirrors the system 10157 // 'as' behaviour. Also take advantage of ADD being commutative. 10158 // Make sure the wide encoding wasn't explicit. 10159 bool Swap = false; 10160 auto DestReg = Inst.getOperand(0).getReg(); 10161 bool Transform = DestReg == Inst.getOperand(1).getReg(); 10162 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 10163 Transform = true; 10164 Swap = true; 10165 } 10166 if (!Transform || 10167 Inst.getOperand(5).getReg() != 0 || 10168 HasWideQualifier) 10169 break; 10170 MCInst TmpInst; 10171 TmpInst.setOpcode(ARM::tADDhirr); 10172 TmpInst.addOperand(Inst.getOperand(0)); 10173 TmpInst.addOperand(Inst.getOperand(0)); 10174 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 10175 TmpInst.addOperand(Inst.getOperand(3)); 10176 TmpInst.addOperand(Inst.getOperand(4)); 10177 Inst = TmpInst; 10178 return true; 10179 } 10180 case ARM::tADDrSP: 10181 // If the non-SP source operand and the destination operand are not the 10182 // same, we need to use the 32-bit encoding if it's available. 10183 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 10184 Inst.setOpcode(ARM::t2ADDrr); 10185 Inst.addOperand(MCOperand::createReg(0)); // cc_out 10186 return true; 10187 } 10188 break; 10189 case ARM::tB: 10190 // A Thumb conditional branch outside of an IT block is a tBcc. 10191 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 10192 Inst.setOpcode(ARM::tBcc); 10193 return true; 10194 } 10195 break; 10196 case ARM::t2B: 10197 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 10198 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 10199 Inst.setOpcode(ARM::t2Bcc); 10200 return true; 10201 } 10202 break; 10203 case ARM::t2Bcc: 10204 // If the conditional is AL or we're in an IT block, we really want t2B. 10205 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 10206 Inst.setOpcode(ARM::t2B); 10207 return true; 10208 } 10209 break; 10210 case ARM::tBcc: 10211 // If the conditional is AL, we really want tB. 10212 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 10213 Inst.setOpcode(ARM::tB); 10214 return true; 10215 } 10216 break; 10217 case ARM::tLDMIA: { 10218 // If the register list contains any high registers, or if the writeback 10219 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 10220 // instead if we're in Thumb2. Otherwise, this should have generated 10221 // an error in validateInstruction(). 10222 unsigned Rn = Inst.getOperand(0).getReg(); 10223 bool hasWritebackToken = 10224 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 10225 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 10226 bool listContainsBase; 10227 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 10228 (!listContainsBase && !hasWritebackToken) || 10229 (listContainsBase && hasWritebackToken)) { 10230 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 10231 assert(isThumbTwo()); 10232 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 10233 // If we're switching to the updating version, we need to insert 10234 // the writeback tied operand. 10235 if (hasWritebackToken) 10236 Inst.insert(Inst.begin(), 10237 MCOperand::createReg(Inst.getOperand(0).getReg())); 10238 return true; 10239 } 10240 break; 10241 } 10242 case ARM::tSTMIA_UPD: { 10243 // If the register list contains any high registers, we need to use 10244 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 10245 // should have generated an error in validateInstruction(). 10246 unsigned Rn = Inst.getOperand(0).getReg(); 10247 bool listContainsBase; 10248 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 10249 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 10250 assert(isThumbTwo()); 10251 Inst.setOpcode(ARM::t2STMIA_UPD); 10252 return true; 10253 } 10254 break; 10255 } 10256 case ARM::tPOP: { 10257 bool listContainsBase; 10258 // If the register list contains any high registers, we need to use 10259 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 10260 // should have generated an error in validateInstruction(). 10261 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 10262 return false; 10263 assert(isThumbTwo()); 10264 Inst.setOpcode(ARM::t2LDMIA_UPD); 10265 // Add the base register and writeback operands. 10266 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10267 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10268 return true; 10269 } 10270 case ARM::tPUSH: { 10271 bool listContainsBase; 10272 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 10273 return false; 10274 assert(isThumbTwo()); 10275 Inst.setOpcode(ARM::t2STMDB_UPD); 10276 // Add the base register and writeback operands. 10277 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10278 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10279 return true; 10280 } 10281 case ARM::t2MOVi: 10282 // If we can use the 16-bit encoding and the user didn't explicitly 10283 // request the 32-bit variant, transform it here. 10284 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10285 (Inst.getOperand(1).isImm() && 10286 (unsigned)Inst.getOperand(1).getImm() <= 255) && 10287 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10288 !HasWideQualifier) { 10289 // The operands aren't in the same order for tMOVi8... 10290 MCInst TmpInst; 10291 TmpInst.setOpcode(ARM::tMOVi8); 10292 TmpInst.addOperand(Inst.getOperand(0)); 10293 TmpInst.addOperand(Inst.getOperand(4)); 10294 TmpInst.addOperand(Inst.getOperand(1)); 10295 TmpInst.addOperand(Inst.getOperand(2)); 10296 TmpInst.addOperand(Inst.getOperand(3)); 10297 Inst = TmpInst; 10298 return true; 10299 } 10300 break; 10301 10302 case ARM::t2MOVr: 10303 // If we can use the 16-bit encoding and the user didn't explicitly 10304 // request the 32-bit variant, transform it here. 10305 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10306 isARMLowRegister(Inst.getOperand(1).getReg()) && 10307 Inst.getOperand(2).getImm() == ARMCC::AL && 10308 Inst.getOperand(4).getReg() == ARM::CPSR && 10309 !HasWideQualifier) { 10310 // The operands aren't the same for tMOV[S]r... (no cc_out) 10311 MCInst TmpInst; 10312 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 10313 TmpInst.addOperand(Inst.getOperand(0)); 10314 TmpInst.addOperand(Inst.getOperand(1)); 10315 TmpInst.addOperand(Inst.getOperand(2)); 10316 TmpInst.addOperand(Inst.getOperand(3)); 10317 Inst = TmpInst; 10318 return true; 10319 } 10320 break; 10321 10322 case ARM::t2SXTH: 10323 case ARM::t2SXTB: 10324 case ARM::t2UXTH: 10325 case ARM::t2UXTB: 10326 // If we can use the 16-bit encoding and the user didn't explicitly 10327 // request the 32-bit variant, transform it here. 10328 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10329 isARMLowRegister(Inst.getOperand(1).getReg()) && 10330 Inst.getOperand(2).getImm() == 0 && 10331 !HasWideQualifier) { 10332 unsigned NewOpc; 10333 switch (Inst.getOpcode()) { 10334 default: llvm_unreachable("Illegal opcode!"); 10335 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 10336 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 10337 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 10338 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 10339 } 10340 // The operands aren't the same for thumb1 (no rotate operand). 10341 MCInst TmpInst; 10342 TmpInst.setOpcode(NewOpc); 10343 TmpInst.addOperand(Inst.getOperand(0)); 10344 TmpInst.addOperand(Inst.getOperand(1)); 10345 TmpInst.addOperand(Inst.getOperand(3)); 10346 TmpInst.addOperand(Inst.getOperand(4)); 10347 Inst = TmpInst; 10348 return true; 10349 } 10350 break; 10351 10352 case ARM::MOVsi: { 10353 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 10354 // rrx shifts and asr/lsr of #32 is encoded as 0 10355 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 10356 return false; 10357 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 10358 // Shifting by zero is accepted as a vanilla 'MOVr' 10359 MCInst TmpInst; 10360 TmpInst.setOpcode(ARM::MOVr); 10361 TmpInst.addOperand(Inst.getOperand(0)); 10362 TmpInst.addOperand(Inst.getOperand(1)); 10363 TmpInst.addOperand(Inst.getOperand(3)); 10364 TmpInst.addOperand(Inst.getOperand(4)); 10365 TmpInst.addOperand(Inst.getOperand(5)); 10366 Inst = TmpInst; 10367 return true; 10368 } 10369 return false; 10370 } 10371 case ARM::ANDrsi: 10372 case ARM::ORRrsi: 10373 case ARM::EORrsi: 10374 case ARM::BICrsi: 10375 case ARM::SUBrsi: 10376 case ARM::ADDrsi: { 10377 unsigned newOpc; 10378 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 10379 if (SOpc == ARM_AM::rrx) return false; 10380 switch (Inst.getOpcode()) { 10381 default: llvm_unreachable("unexpected opcode!"); 10382 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 10383 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 10384 case ARM::EORrsi: newOpc = ARM::EORrr; break; 10385 case ARM::BICrsi: newOpc = ARM::BICrr; break; 10386 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 10387 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 10388 } 10389 // If the shift is by zero, use the non-shifted instruction definition. 10390 // The exception is for right shifts, where 0 == 32 10391 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 10392 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 10393 MCInst TmpInst; 10394 TmpInst.setOpcode(newOpc); 10395 TmpInst.addOperand(Inst.getOperand(0)); 10396 TmpInst.addOperand(Inst.getOperand(1)); 10397 TmpInst.addOperand(Inst.getOperand(2)); 10398 TmpInst.addOperand(Inst.getOperand(4)); 10399 TmpInst.addOperand(Inst.getOperand(5)); 10400 TmpInst.addOperand(Inst.getOperand(6)); 10401 Inst = TmpInst; 10402 return true; 10403 } 10404 return false; 10405 } 10406 case ARM::ITasm: 10407 case ARM::t2IT: { 10408 // Set up the IT block state according to the IT instruction we just 10409 // matched. 10410 assert(!inITBlock() && "nested IT blocks?!"); 10411 startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()), 10412 Inst.getOperand(1).getImm()); 10413 break; 10414 } 10415 case ARM::t2LSLrr: 10416 case ARM::t2LSRrr: 10417 case ARM::t2ASRrr: 10418 case ARM::t2SBCrr: 10419 case ARM::t2RORrr: 10420 case ARM::t2BICrr: 10421 // Assemblers should use the narrow encodings of these instructions when permissible. 10422 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10423 isARMLowRegister(Inst.getOperand(2).getReg())) && 10424 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 10425 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10426 !HasWideQualifier) { 10427 unsigned NewOpc; 10428 switch (Inst.getOpcode()) { 10429 default: llvm_unreachable("unexpected opcode"); 10430 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 10431 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 10432 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 10433 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 10434 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 10435 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 10436 } 10437 MCInst TmpInst; 10438 TmpInst.setOpcode(NewOpc); 10439 TmpInst.addOperand(Inst.getOperand(0)); 10440 TmpInst.addOperand(Inst.getOperand(5)); 10441 TmpInst.addOperand(Inst.getOperand(1)); 10442 TmpInst.addOperand(Inst.getOperand(2)); 10443 TmpInst.addOperand(Inst.getOperand(3)); 10444 TmpInst.addOperand(Inst.getOperand(4)); 10445 Inst = TmpInst; 10446 return true; 10447 } 10448 return false; 10449 10450 case ARM::t2ANDrr: 10451 case ARM::t2EORrr: 10452 case ARM::t2ADCrr: 10453 case ARM::t2ORRrr: 10454 // Assemblers should use the narrow encodings of these instructions when permissible. 10455 // These instructions are special in that they are commutable, so shorter encodings 10456 // are available more often. 10457 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10458 isARMLowRegister(Inst.getOperand(2).getReg())) && 10459 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 10460 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 10461 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10462 !HasWideQualifier) { 10463 unsigned NewOpc; 10464 switch (Inst.getOpcode()) { 10465 default: llvm_unreachable("unexpected opcode"); 10466 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 10467 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 10468 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 10469 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 10470 } 10471 MCInst TmpInst; 10472 TmpInst.setOpcode(NewOpc); 10473 TmpInst.addOperand(Inst.getOperand(0)); 10474 TmpInst.addOperand(Inst.getOperand(5)); 10475 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 10476 TmpInst.addOperand(Inst.getOperand(1)); 10477 TmpInst.addOperand(Inst.getOperand(2)); 10478 } else { 10479 TmpInst.addOperand(Inst.getOperand(2)); 10480 TmpInst.addOperand(Inst.getOperand(1)); 10481 } 10482 TmpInst.addOperand(Inst.getOperand(3)); 10483 TmpInst.addOperand(Inst.getOperand(4)); 10484 Inst = TmpInst; 10485 return true; 10486 } 10487 return false; 10488 case ARM::MVE_VPST: 10489 case ARM::MVE_VPTv16i8: 10490 case ARM::MVE_VPTv8i16: 10491 case ARM::MVE_VPTv4i32: 10492 case ARM::MVE_VPTv16u8: 10493 case ARM::MVE_VPTv8u16: 10494 case ARM::MVE_VPTv4u32: 10495 case ARM::MVE_VPTv16s8: 10496 case ARM::MVE_VPTv8s16: 10497 case ARM::MVE_VPTv4s32: 10498 case ARM::MVE_VPTv4f32: 10499 case ARM::MVE_VPTv8f16: 10500 case ARM::MVE_VPTv16i8r: 10501 case ARM::MVE_VPTv8i16r: 10502 case ARM::MVE_VPTv4i32r: 10503 case ARM::MVE_VPTv16u8r: 10504 case ARM::MVE_VPTv8u16r: 10505 case ARM::MVE_VPTv4u32r: 10506 case ARM::MVE_VPTv16s8r: 10507 case ARM::MVE_VPTv8s16r: 10508 case ARM::MVE_VPTv4s32r: 10509 case ARM::MVE_VPTv4f32r: 10510 case ARM::MVE_VPTv8f16r: { 10511 assert(!inVPTBlock() && "Nested VPT blocks are not allowed"); 10512 MCOperand &MO = Inst.getOperand(0); 10513 VPTState.Mask = MO.getImm(); 10514 VPTState.CurPosition = 0; 10515 break; 10516 } 10517 } 10518 return false; 10519 } 10520 10521 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 10522 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 10523 // suffix depending on whether they're in an IT block or not. 10524 unsigned Opc = Inst.getOpcode(); 10525 const MCInstrDesc &MCID = MII.get(Opc); 10526 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 10527 assert(MCID.hasOptionalDef() && 10528 "optionally flag setting instruction missing optional def operand"); 10529 assert(MCID.NumOperands == Inst.getNumOperands() && 10530 "operand count mismatch!"); 10531 // Find the optional-def operand (cc_out). 10532 unsigned OpNo; 10533 for (OpNo = 0; 10534 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 10535 ++OpNo) 10536 ; 10537 // If we're parsing Thumb1, reject it completely. 10538 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 10539 return Match_RequiresFlagSetting; 10540 // If we're parsing Thumb2, which form is legal depends on whether we're 10541 // in an IT block. 10542 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 10543 !inITBlock()) 10544 return Match_RequiresITBlock; 10545 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 10546 inITBlock()) 10547 return Match_RequiresNotITBlock; 10548 // LSL with zero immediate is not allowed in an IT block 10549 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 10550 return Match_RequiresNotITBlock; 10551 } else if (isThumbOne()) { 10552 // Some high-register supporting Thumb1 encodings only allow both registers 10553 // to be from r0-r7 when in Thumb2. 10554 if (Opc == ARM::tADDhirr && !hasV6MOps() && 10555 isARMLowRegister(Inst.getOperand(1).getReg()) && 10556 isARMLowRegister(Inst.getOperand(2).getReg())) 10557 return Match_RequiresThumb2; 10558 // Others only require ARMv6 or later. 10559 else if (Opc == ARM::tMOVr && !hasV6Ops() && 10560 isARMLowRegister(Inst.getOperand(0).getReg()) && 10561 isARMLowRegister(Inst.getOperand(1).getReg())) 10562 return Match_RequiresV6; 10563 } 10564 10565 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 10566 // than the loop below can handle, so it uses the GPRnopc register class and 10567 // we do SP handling here. 10568 if (Opc == ARM::t2MOVr && !hasV8Ops()) 10569 { 10570 // SP as both source and destination is not allowed 10571 if (Inst.getOperand(0).getReg() == ARM::SP && 10572 Inst.getOperand(1).getReg() == ARM::SP) 10573 return Match_RequiresV8; 10574 // When flags-setting SP as either source or destination is not allowed 10575 if (Inst.getOperand(4).getReg() == ARM::CPSR && 10576 (Inst.getOperand(0).getReg() == ARM::SP || 10577 Inst.getOperand(1).getReg() == ARM::SP)) 10578 return Match_RequiresV8; 10579 } 10580 10581 switch (Inst.getOpcode()) { 10582 case ARM::VMRS: 10583 case ARM::VMSR: 10584 case ARM::VMRS_FPCXTS: 10585 case ARM::VMRS_FPCXTNS: 10586 case ARM::VMSR_FPCXTS: 10587 case ARM::VMSR_FPCXTNS: 10588 case ARM::VMRS_FPSCR_NZCVQC: 10589 case ARM::VMSR_FPSCR_NZCVQC: 10590 case ARM::FMSTAT: 10591 case ARM::VMRS_VPR: 10592 case ARM::VMRS_P0: 10593 case ARM::VMSR_VPR: 10594 case ARM::VMSR_P0: 10595 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of 10596 // ARMv8-A. 10597 if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP && 10598 (isThumb() && !hasV8Ops())) 10599 return Match_InvalidOperand; 10600 break; 10601 default: 10602 break; 10603 } 10604 10605 for (unsigned I = 0; I < MCID.NumOperands; ++I) 10606 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 10607 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 10608 const auto &Op = Inst.getOperand(I); 10609 if (!Op.isReg()) { 10610 // This can happen in awkward cases with tied operands, e.g. a 10611 // writeback load/store with a complex addressing mode in 10612 // which there's an output operand corresponding to the 10613 // updated written-back base register: the Tablegen-generated 10614 // AsmMatcher will have written a placeholder operand to that 10615 // slot in the form of an immediate 0, because it can't 10616 // generate the register part of the complex addressing-mode 10617 // operand ahead of time. 10618 continue; 10619 } 10620 10621 unsigned Reg = Op.getReg(); 10622 if ((Reg == ARM::SP) && !hasV8Ops()) 10623 return Match_RequiresV8; 10624 else if (Reg == ARM::PC) 10625 return Match_InvalidOperand; 10626 } 10627 10628 return Match_Success; 10629 } 10630 10631 namespace llvm { 10632 10633 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 10634 return true; // In an assembly source, no need to second-guess 10635 } 10636 10637 } // end namespace llvm 10638 10639 // Returns true if Inst is unpredictable if it is in and IT block, but is not 10640 // the last instruction in the block. 10641 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 10642 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10643 10644 // All branch & call instructions terminate IT blocks with the exception of 10645 // SVC. 10646 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || 10647 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) 10648 return true; 10649 10650 // Any arithmetic instruction which writes to the PC also terminates the IT 10651 // block. 10652 if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI)) 10653 return true; 10654 10655 return false; 10656 } 10657 10658 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 10659 SmallVectorImpl<NearMissInfo> &NearMisses, 10660 bool MatchingInlineAsm, 10661 bool &EmitInITBlock, 10662 MCStreamer &Out) { 10663 // If we can't use an implicit IT block here, just match as normal. 10664 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 10665 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10666 10667 // Try to match the instruction in an extension of the current IT block (if 10668 // there is one). 10669 if (inImplicitITBlock()) { 10670 extendImplicitITBlock(ITState.Cond); 10671 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10672 Match_Success) { 10673 // The match succeded, but we still have to check that the instruction is 10674 // valid in this implicit IT block. 10675 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10676 if (MCID.isPredicable()) { 10677 ARMCC::CondCodes InstCond = 10678 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10679 .getImm(); 10680 ARMCC::CondCodes ITCond = currentITCond(); 10681 if (InstCond == ITCond) { 10682 EmitInITBlock = true; 10683 return Match_Success; 10684 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 10685 invertCurrentITCondition(); 10686 EmitInITBlock = true; 10687 return Match_Success; 10688 } 10689 } 10690 } 10691 rewindImplicitITPosition(); 10692 } 10693 10694 // Finish the current IT block, and try to match outside any IT block. 10695 flushPendingInstructions(Out); 10696 unsigned PlainMatchResult = 10697 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10698 if (PlainMatchResult == Match_Success) { 10699 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10700 if (MCID.isPredicable()) { 10701 ARMCC::CondCodes InstCond = 10702 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10703 .getImm(); 10704 // Some forms of the branch instruction have their own condition code 10705 // fields, so can be conditionally executed without an IT block. 10706 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 10707 EmitInITBlock = false; 10708 return Match_Success; 10709 } 10710 if (InstCond == ARMCC::AL) { 10711 EmitInITBlock = false; 10712 return Match_Success; 10713 } 10714 } else { 10715 EmitInITBlock = false; 10716 return Match_Success; 10717 } 10718 } 10719 10720 // Try to match in a new IT block. The matcher doesn't check the actual 10721 // condition, so we create an IT block with a dummy condition, and fix it up 10722 // once we know the actual condition. 10723 startImplicitITBlock(); 10724 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10725 Match_Success) { 10726 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10727 if (MCID.isPredicable()) { 10728 ITState.Cond = 10729 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10730 .getImm(); 10731 EmitInITBlock = true; 10732 return Match_Success; 10733 } 10734 } 10735 discardImplicitITBlock(); 10736 10737 // If none of these succeed, return the error we got when trying to match 10738 // outside any IT blocks. 10739 EmitInITBlock = false; 10740 return PlainMatchResult; 10741 } 10742 10743 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, 10744 unsigned VariantID = 0); 10745 10746 static const char *getSubtargetFeatureName(uint64_t Val); 10747 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 10748 OperandVector &Operands, 10749 MCStreamer &Out, uint64_t &ErrorInfo, 10750 bool MatchingInlineAsm) { 10751 MCInst Inst; 10752 unsigned MatchResult; 10753 bool PendConditionalInstruction = false; 10754 10755 SmallVector<NearMissInfo, 4> NearMisses; 10756 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, 10757 PendConditionalInstruction, Out); 10758 10759 switch (MatchResult) { 10760 case Match_Success: 10761 LLVM_DEBUG(dbgs() << "Parsed as: "; 10762 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10763 dbgs() << "\n"); 10764 10765 // Context sensitive operand constraints aren't handled by the matcher, 10766 // so check them here. 10767 if (validateInstruction(Inst, Operands)) { 10768 // Still progress the IT block, otherwise one wrong condition causes 10769 // nasty cascading errors. 10770 forwardITPosition(); 10771 forwardVPTPosition(); 10772 return true; 10773 } 10774 10775 { // processInstruction() updates inITBlock state, we need to save it away 10776 bool wasInITBlock = inITBlock(); 10777 10778 // Some instructions need post-processing to, for example, tweak which 10779 // encoding is selected. Loop on it while changes happen so the 10780 // individual transformations can chain off each other. E.g., 10781 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 10782 while (processInstruction(Inst, Operands, Out)) 10783 LLVM_DEBUG(dbgs() << "Changed to: "; 10784 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10785 dbgs() << "\n"); 10786 10787 // Only after the instruction is fully processed, we can validate it 10788 if (wasInITBlock && hasV8Ops() && isThumb() && 10789 !isV8EligibleForIT(&Inst)) { 10790 Warning(IDLoc, "deprecated instruction in IT block"); 10791 } 10792 } 10793 10794 // Only move forward at the very end so that everything in validate 10795 // and process gets a consistent answer about whether we're in an IT 10796 // block. 10797 forwardITPosition(); 10798 forwardVPTPosition(); 10799 10800 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 10801 // doesn't actually encode. 10802 if (Inst.getOpcode() == ARM::ITasm) 10803 return false; 10804 10805 Inst.setLoc(IDLoc); 10806 if (PendConditionalInstruction) { 10807 PendingConditionalInsts.push_back(Inst); 10808 if (isITBlockFull() || isITBlockTerminator(Inst)) 10809 flushPendingInstructions(Out); 10810 } else { 10811 Out.emitInstruction(Inst, getSTI()); 10812 } 10813 return false; 10814 case Match_NearMisses: 10815 ReportNearMisses(NearMisses, IDLoc, Operands); 10816 return true; 10817 case Match_MnemonicFail: { 10818 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 10819 std::string Suggestion = ARMMnemonicSpellCheck( 10820 ((ARMOperand &)*Operands[0]).getToken(), FBS); 10821 return Error(IDLoc, "invalid instruction" + Suggestion, 10822 ((ARMOperand &)*Operands[0]).getLocRange()); 10823 } 10824 } 10825 10826 llvm_unreachable("Implement any new match types added!"); 10827 } 10828 10829 /// parseDirective parses the arm specific directives 10830 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 10831 const MCObjectFileInfo::Environment Format = 10832 getContext().getObjectFileInfo()->getObjectFileType(); 10833 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 10834 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 10835 10836 std::string IDVal = DirectiveID.getIdentifier().lower(); 10837 if (IDVal == ".word") 10838 parseLiteralValues(4, DirectiveID.getLoc()); 10839 else if (IDVal == ".short" || IDVal == ".hword") 10840 parseLiteralValues(2, DirectiveID.getLoc()); 10841 else if (IDVal == ".thumb") 10842 parseDirectiveThumb(DirectiveID.getLoc()); 10843 else if (IDVal == ".arm") 10844 parseDirectiveARM(DirectiveID.getLoc()); 10845 else if (IDVal == ".thumb_func") 10846 parseDirectiveThumbFunc(DirectiveID.getLoc()); 10847 else if (IDVal == ".code") 10848 parseDirectiveCode(DirectiveID.getLoc()); 10849 else if (IDVal == ".syntax") 10850 parseDirectiveSyntax(DirectiveID.getLoc()); 10851 else if (IDVal == ".unreq") 10852 parseDirectiveUnreq(DirectiveID.getLoc()); 10853 else if (IDVal == ".fnend") 10854 parseDirectiveFnEnd(DirectiveID.getLoc()); 10855 else if (IDVal == ".cantunwind") 10856 parseDirectiveCantUnwind(DirectiveID.getLoc()); 10857 else if (IDVal == ".personality") 10858 parseDirectivePersonality(DirectiveID.getLoc()); 10859 else if (IDVal == ".handlerdata") 10860 parseDirectiveHandlerData(DirectiveID.getLoc()); 10861 else if (IDVal == ".setfp") 10862 parseDirectiveSetFP(DirectiveID.getLoc()); 10863 else if (IDVal == ".pad") 10864 parseDirectivePad(DirectiveID.getLoc()); 10865 else if (IDVal == ".save") 10866 parseDirectiveRegSave(DirectiveID.getLoc(), false); 10867 else if (IDVal == ".vsave") 10868 parseDirectiveRegSave(DirectiveID.getLoc(), true); 10869 else if (IDVal == ".ltorg" || IDVal == ".pool") 10870 parseDirectiveLtorg(DirectiveID.getLoc()); 10871 else if (IDVal == ".even") 10872 parseDirectiveEven(DirectiveID.getLoc()); 10873 else if (IDVal == ".personalityindex") 10874 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 10875 else if (IDVal == ".unwind_raw") 10876 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 10877 else if (IDVal == ".movsp") 10878 parseDirectiveMovSP(DirectiveID.getLoc()); 10879 else if (IDVal == ".arch_extension") 10880 parseDirectiveArchExtension(DirectiveID.getLoc()); 10881 else if (IDVal == ".align") 10882 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 10883 else if (IDVal == ".thumb_set") 10884 parseDirectiveThumbSet(DirectiveID.getLoc()); 10885 else if (IDVal == ".inst") 10886 parseDirectiveInst(DirectiveID.getLoc()); 10887 else if (IDVal == ".inst.n") 10888 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 10889 else if (IDVal == ".inst.w") 10890 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 10891 else if (!IsMachO && !IsCOFF) { 10892 if (IDVal == ".arch") 10893 parseDirectiveArch(DirectiveID.getLoc()); 10894 else if (IDVal == ".cpu") 10895 parseDirectiveCPU(DirectiveID.getLoc()); 10896 else if (IDVal == ".eabi_attribute") 10897 parseDirectiveEabiAttr(DirectiveID.getLoc()); 10898 else if (IDVal == ".fpu") 10899 parseDirectiveFPU(DirectiveID.getLoc()); 10900 else if (IDVal == ".fnstart") 10901 parseDirectiveFnStart(DirectiveID.getLoc()); 10902 else if (IDVal == ".object_arch") 10903 parseDirectiveObjectArch(DirectiveID.getLoc()); 10904 else if (IDVal == ".tlsdescseq") 10905 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 10906 else 10907 return true; 10908 } else 10909 return true; 10910 return false; 10911 } 10912 10913 /// parseLiteralValues 10914 /// ::= .hword expression [, expression]* 10915 /// ::= .short expression [, expression]* 10916 /// ::= .word expression [, expression]* 10917 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 10918 auto parseOne = [&]() -> bool { 10919 const MCExpr *Value; 10920 if (getParser().parseExpression(Value)) 10921 return true; 10922 getParser().getStreamer().emitValue(Value, Size, L); 10923 return false; 10924 }; 10925 return (parseMany(parseOne)); 10926 } 10927 10928 /// parseDirectiveThumb 10929 /// ::= .thumb 10930 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 10931 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 10932 check(!hasThumb(), L, "target does not support Thumb mode")) 10933 return true; 10934 10935 if (!isThumb()) 10936 SwitchMode(); 10937 10938 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16); 10939 return false; 10940 } 10941 10942 /// parseDirectiveARM 10943 /// ::= .arm 10944 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 10945 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 10946 check(!hasARM(), L, "target does not support ARM mode")) 10947 return true; 10948 10949 if (isThumb()) 10950 SwitchMode(); 10951 getParser().getStreamer().emitAssemblerFlag(MCAF_Code32); 10952 return false; 10953 } 10954 10955 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) { 10956 // We need to flush the current implicit IT block on a label, because it is 10957 // not legal to branch into an IT block. 10958 flushPendingInstructions(getStreamer()); 10959 } 10960 10961 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 10962 if (NextSymbolIsThumb) { 10963 getParser().getStreamer().emitThumbFunc(Symbol); 10964 NextSymbolIsThumb = false; 10965 } 10966 } 10967 10968 /// parseDirectiveThumbFunc 10969 /// ::= .thumbfunc symbol_name 10970 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 10971 MCAsmParser &Parser = getParser(); 10972 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 10973 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 10974 10975 // Darwin asm has (optionally) function name after .thumb_func direction 10976 // ELF doesn't 10977 10978 if (IsMachO) { 10979 if (Parser.getTok().is(AsmToken::Identifier) || 10980 Parser.getTok().is(AsmToken::String)) { 10981 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 10982 Parser.getTok().getIdentifier()); 10983 getParser().getStreamer().emitThumbFunc(Func); 10984 Parser.Lex(); 10985 if (parseToken(AsmToken::EndOfStatement, 10986 "unexpected token in '.thumb_func' directive")) 10987 return true; 10988 return false; 10989 } 10990 } 10991 10992 if (parseToken(AsmToken::EndOfStatement, 10993 "unexpected token in '.thumb_func' directive")) 10994 return true; 10995 10996 NextSymbolIsThumb = true; 10997 return false; 10998 } 10999 11000 /// parseDirectiveSyntax 11001 /// ::= .syntax unified | divided 11002 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 11003 MCAsmParser &Parser = getParser(); 11004 const AsmToken &Tok = Parser.getTok(); 11005 if (Tok.isNot(AsmToken::Identifier)) { 11006 Error(L, "unexpected token in .syntax directive"); 11007 return false; 11008 } 11009 11010 StringRef Mode = Tok.getString(); 11011 Parser.Lex(); 11012 if (check(Mode == "divided" || Mode == "DIVIDED", L, 11013 "'.syntax divided' arm assembly not supported") || 11014 check(Mode != "unified" && Mode != "UNIFIED", L, 11015 "unrecognized syntax mode in .syntax directive") || 11016 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11017 return true; 11018 11019 // TODO tell the MC streamer the mode 11020 // getParser().getStreamer().Emit???(); 11021 return false; 11022 } 11023 11024 /// parseDirectiveCode 11025 /// ::= .code 16 | 32 11026 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 11027 MCAsmParser &Parser = getParser(); 11028 const AsmToken &Tok = Parser.getTok(); 11029 if (Tok.isNot(AsmToken::Integer)) 11030 return Error(L, "unexpected token in .code directive"); 11031 int64_t Val = Parser.getTok().getIntVal(); 11032 if (Val != 16 && Val != 32) { 11033 Error(L, "invalid operand to .code directive"); 11034 return false; 11035 } 11036 Parser.Lex(); 11037 11038 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11039 return true; 11040 11041 if (Val == 16) { 11042 if (!hasThumb()) 11043 return Error(L, "target does not support Thumb mode"); 11044 11045 if (!isThumb()) 11046 SwitchMode(); 11047 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16); 11048 } else { 11049 if (!hasARM()) 11050 return Error(L, "target does not support ARM mode"); 11051 11052 if (isThumb()) 11053 SwitchMode(); 11054 getParser().getStreamer().emitAssemblerFlag(MCAF_Code32); 11055 } 11056 11057 return false; 11058 } 11059 11060 /// parseDirectiveReq 11061 /// ::= name .req registername 11062 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 11063 MCAsmParser &Parser = getParser(); 11064 Parser.Lex(); // Eat the '.req' token. 11065 unsigned Reg; 11066 SMLoc SRegLoc, ERegLoc; 11067 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 11068 "register name expected") || 11069 parseToken(AsmToken::EndOfStatement, 11070 "unexpected input in .req directive.")) 11071 return true; 11072 11073 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 11074 return Error(SRegLoc, 11075 "redefinition of '" + Name + "' does not match original."); 11076 11077 return false; 11078 } 11079 11080 /// parseDirectiveUneq 11081 /// ::= .unreq registername 11082 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 11083 MCAsmParser &Parser = getParser(); 11084 if (Parser.getTok().isNot(AsmToken::Identifier)) 11085 return Error(L, "unexpected input in .unreq directive."); 11086 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 11087 Parser.Lex(); // Eat the identifier. 11088 if (parseToken(AsmToken::EndOfStatement, 11089 "unexpected input in '.unreq' directive")) 11090 return true; 11091 return false; 11092 } 11093 11094 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 11095 // before, if supported by the new target, or emit mapping symbols for the mode 11096 // switch. 11097 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 11098 if (WasThumb != isThumb()) { 11099 if (WasThumb && hasThumb()) { 11100 // Stay in Thumb mode 11101 SwitchMode(); 11102 } else if (!WasThumb && hasARM()) { 11103 // Stay in ARM mode 11104 SwitchMode(); 11105 } else { 11106 // Mode switch forced, because the new arch doesn't support the old mode. 11107 getParser().getStreamer().emitAssemblerFlag(isThumb() ? MCAF_Code16 11108 : MCAF_Code32); 11109 // Warn about the implcit mode switch. GAS does not switch modes here, 11110 // but instead stays in the old mode, reporting an error on any following 11111 // instructions as the mode does not exist on the target. 11112 Warning(Loc, Twine("new target does not support ") + 11113 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 11114 (!WasThumb ? "thumb" : "arm") + " mode"); 11115 } 11116 } 11117 } 11118 11119 /// parseDirectiveArch 11120 /// ::= .arch token 11121 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 11122 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 11123 ARM::ArchKind ID = ARM::parseArch(Arch); 11124 11125 if (ID == ARM::ArchKind::INVALID) 11126 return Error(L, "Unknown arch name"); 11127 11128 bool WasThumb = isThumb(); 11129 Triple T; 11130 MCSubtargetInfo &STI = copySTI(); 11131 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 11132 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 11133 FixModeAfterArchChange(WasThumb, L); 11134 11135 getTargetStreamer().emitArch(ID); 11136 return false; 11137 } 11138 11139 /// parseDirectiveEabiAttr 11140 /// ::= .eabi_attribute int, int [, "str"] 11141 /// ::= .eabi_attribute Tag_name, int [, "str"] 11142 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 11143 MCAsmParser &Parser = getParser(); 11144 int64_t Tag; 11145 SMLoc TagLoc; 11146 TagLoc = Parser.getTok().getLoc(); 11147 if (Parser.getTok().is(AsmToken::Identifier)) { 11148 StringRef Name = Parser.getTok().getIdentifier(); 11149 Optional<unsigned> Ret = 11150 ELFAttrs::attrTypeFromString(Name, ARMBuildAttrs::ARMAttributeTags); 11151 if (!Ret.hasValue()) { 11152 Error(TagLoc, "attribute name not recognised: " + Name); 11153 return false; 11154 } 11155 Tag = Ret.getValue(); 11156 Parser.Lex(); 11157 } else { 11158 const MCExpr *AttrExpr; 11159 11160 TagLoc = Parser.getTok().getLoc(); 11161 if (Parser.parseExpression(AttrExpr)) 11162 return true; 11163 11164 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 11165 if (check(!CE, TagLoc, "expected numeric constant")) 11166 return true; 11167 11168 Tag = CE->getValue(); 11169 } 11170 11171 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 11172 return true; 11173 11174 StringRef StringValue = ""; 11175 bool IsStringValue = false; 11176 11177 int64_t IntegerValue = 0; 11178 bool IsIntegerValue = false; 11179 11180 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 11181 IsStringValue = true; 11182 else if (Tag == ARMBuildAttrs::compatibility) { 11183 IsStringValue = true; 11184 IsIntegerValue = true; 11185 } else if (Tag < 32 || Tag % 2 == 0) 11186 IsIntegerValue = true; 11187 else if (Tag % 2 == 1) 11188 IsStringValue = true; 11189 else 11190 llvm_unreachable("invalid tag type"); 11191 11192 if (IsIntegerValue) { 11193 const MCExpr *ValueExpr; 11194 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 11195 if (Parser.parseExpression(ValueExpr)) 11196 return true; 11197 11198 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 11199 if (!CE) 11200 return Error(ValueExprLoc, "expected numeric constant"); 11201 IntegerValue = CE->getValue(); 11202 } 11203 11204 if (Tag == ARMBuildAttrs::compatibility) { 11205 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 11206 return true; 11207 } 11208 11209 if (IsStringValue) { 11210 if (Parser.getTok().isNot(AsmToken::String)) 11211 return Error(Parser.getTok().getLoc(), "bad string constant"); 11212 11213 StringValue = Parser.getTok().getStringContents(); 11214 Parser.Lex(); 11215 } 11216 11217 if (Parser.parseToken(AsmToken::EndOfStatement, 11218 "unexpected token in '.eabi_attribute' directive")) 11219 return true; 11220 11221 if (IsIntegerValue && IsStringValue) { 11222 assert(Tag == ARMBuildAttrs::compatibility); 11223 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 11224 } else if (IsIntegerValue) 11225 getTargetStreamer().emitAttribute(Tag, IntegerValue); 11226 else if (IsStringValue) 11227 getTargetStreamer().emitTextAttribute(Tag, StringValue); 11228 return false; 11229 } 11230 11231 /// parseDirectiveCPU 11232 /// ::= .cpu str 11233 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 11234 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 11235 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 11236 11237 // FIXME: This is using table-gen data, but should be moved to 11238 // ARMTargetParser once that is table-gen'd. 11239 if (!getSTI().isCPUStringValid(CPU)) 11240 return Error(L, "Unknown CPU name"); 11241 11242 bool WasThumb = isThumb(); 11243 MCSubtargetInfo &STI = copySTI(); 11244 STI.setDefaultFeatures(CPU, ""); 11245 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 11246 FixModeAfterArchChange(WasThumb, L); 11247 11248 return false; 11249 } 11250 11251 /// parseDirectiveFPU 11252 /// ::= .fpu str 11253 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 11254 SMLoc FPUNameLoc = getTok().getLoc(); 11255 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 11256 11257 unsigned ID = ARM::parseFPU(FPU); 11258 std::vector<StringRef> Features; 11259 if (!ARM::getFPUFeatures(ID, Features)) 11260 return Error(FPUNameLoc, "Unknown FPU name"); 11261 11262 MCSubtargetInfo &STI = copySTI(); 11263 for (auto Feature : Features) 11264 STI.ApplyFeatureFlag(Feature); 11265 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 11266 11267 getTargetStreamer().emitFPU(ID); 11268 return false; 11269 } 11270 11271 /// parseDirectiveFnStart 11272 /// ::= .fnstart 11273 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 11274 if (parseToken(AsmToken::EndOfStatement, 11275 "unexpected token in '.fnstart' directive")) 11276 return true; 11277 11278 if (UC.hasFnStart()) { 11279 Error(L, ".fnstart starts before the end of previous one"); 11280 UC.emitFnStartLocNotes(); 11281 return true; 11282 } 11283 11284 // Reset the unwind directives parser state 11285 UC.reset(); 11286 11287 getTargetStreamer().emitFnStart(); 11288 11289 UC.recordFnStart(L); 11290 return false; 11291 } 11292 11293 /// parseDirectiveFnEnd 11294 /// ::= .fnend 11295 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 11296 if (parseToken(AsmToken::EndOfStatement, 11297 "unexpected token in '.fnend' directive")) 11298 return true; 11299 // Check the ordering of unwind directives 11300 if (!UC.hasFnStart()) 11301 return Error(L, ".fnstart must precede .fnend directive"); 11302 11303 // Reset the unwind directives parser state 11304 getTargetStreamer().emitFnEnd(); 11305 11306 UC.reset(); 11307 return false; 11308 } 11309 11310 /// parseDirectiveCantUnwind 11311 /// ::= .cantunwind 11312 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 11313 if (parseToken(AsmToken::EndOfStatement, 11314 "unexpected token in '.cantunwind' directive")) 11315 return true; 11316 11317 UC.recordCantUnwind(L); 11318 // Check the ordering of unwind directives 11319 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 11320 return true; 11321 11322 if (UC.hasHandlerData()) { 11323 Error(L, ".cantunwind can't be used with .handlerdata directive"); 11324 UC.emitHandlerDataLocNotes(); 11325 return true; 11326 } 11327 if (UC.hasPersonality()) { 11328 Error(L, ".cantunwind can't be used with .personality directive"); 11329 UC.emitPersonalityLocNotes(); 11330 return true; 11331 } 11332 11333 getTargetStreamer().emitCantUnwind(); 11334 return false; 11335 } 11336 11337 /// parseDirectivePersonality 11338 /// ::= .personality name 11339 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 11340 MCAsmParser &Parser = getParser(); 11341 bool HasExistingPersonality = UC.hasPersonality(); 11342 11343 // Parse the name of the personality routine 11344 if (Parser.getTok().isNot(AsmToken::Identifier)) 11345 return Error(L, "unexpected input in .personality directive."); 11346 StringRef Name(Parser.getTok().getIdentifier()); 11347 Parser.Lex(); 11348 11349 if (parseToken(AsmToken::EndOfStatement, 11350 "unexpected token in '.personality' directive")) 11351 return true; 11352 11353 UC.recordPersonality(L); 11354 11355 // Check the ordering of unwind directives 11356 if (!UC.hasFnStart()) 11357 return Error(L, ".fnstart must precede .personality directive"); 11358 if (UC.cantUnwind()) { 11359 Error(L, ".personality can't be used with .cantunwind directive"); 11360 UC.emitCantUnwindLocNotes(); 11361 return true; 11362 } 11363 if (UC.hasHandlerData()) { 11364 Error(L, ".personality must precede .handlerdata directive"); 11365 UC.emitHandlerDataLocNotes(); 11366 return true; 11367 } 11368 if (HasExistingPersonality) { 11369 Error(L, "multiple personality directives"); 11370 UC.emitPersonalityLocNotes(); 11371 return true; 11372 } 11373 11374 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 11375 getTargetStreamer().emitPersonality(PR); 11376 return false; 11377 } 11378 11379 /// parseDirectiveHandlerData 11380 /// ::= .handlerdata 11381 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 11382 if (parseToken(AsmToken::EndOfStatement, 11383 "unexpected token in '.handlerdata' directive")) 11384 return true; 11385 11386 UC.recordHandlerData(L); 11387 // Check the ordering of unwind directives 11388 if (!UC.hasFnStart()) 11389 return Error(L, ".fnstart must precede .personality directive"); 11390 if (UC.cantUnwind()) { 11391 Error(L, ".handlerdata can't be used with .cantunwind directive"); 11392 UC.emitCantUnwindLocNotes(); 11393 return true; 11394 } 11395 11396 getTargetStreamer().emitHandlerData(); 11397 return false; 11398 } 11399 11400 /// parseDirectiveSetFP 11401 /// ::= .setfp fpreg, spreg [, offset] 11402 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 11403 MCAsmParser &Parser = getParser(); 11404 // Check the ordering of unwind directives 11405 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 11406 check(UC.hasHandlerData(), L, 11407 ".setfp must precede .handlerdata directive")) 11408 return true; 11409 11410 // Parse fpreg 11411 SMLoc FPRegLoc = Parser.getTok().getLoc(); 11412 int FPReg = tryParseRegister(); 11413 11414 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 11415 Parser.parseToken(AsmToken::Comma, "comma expected")) 11416 return true; 11417 11418 // Parse spreg 11419 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11420 int SPReg = tryParseRegister(); 11421 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 11422 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 11423 "register should be either $sp or the latest fp register")) 11424 return true; 11425 11426 // Update the frame pointer register 11427 UC.saveFPReg(FPReg); 11428 11429 // Parse offset 11430 int64_t Offset = 0; 11431 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11432 if (Parser.getTok().isNot(AsmToken::Hash) && 11433 Parser.getTok().isNot(AsmToken::Dollar)) 11434 return Error(Parser.getTok().getLoc(), "'#' expected"); 11435 Parser.Lex(); // skip hash token. 11436 11437 const MCExpr *OffsetExpr; 11438 SMLoc ExLoc = Parser.getTok().getLoc(); 11439 SMLoc EndLoc; 11440 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11441 return Error(ExLoc, "malformed setfp offset"); 11442 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11443 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 11444 return true; 11445 Offset = CE->getValue(); 11446 } 11447 11448 if (Parser.parseToken(AsmToken::EndOfStatement)) 11449 return true; 11450 11451 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 11452 static_cast<unsigned>(SPReg), Offset); 11453 return false; 11454 } 11455 11456 /// parseDirective 11457 /// ::= .pad offset 11458 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 11459 MCAsmParser &Parser = getParser(); 11460 // Check the ordering of unwind directives 11461 if (!UC.hasFnStart()) 11462 return Error(L, ".fnstart must precede .pad directive"); 11463 if (UC.hasHandlerData()) 11464 return Error(L, ".pad must precede .handlerdata directive"); 11465 11466 // Parse the offset 11467 if (Parser.getTok().isNot(AsmToken::Hash) && 11468 Parser.getTok().isNot(AsmToken::Dollar)) 11469 return Error(Parser.getTok().getLoc(), "'#' expected"); 11470 Parser.Lex(); // skip hash token. 11471 11472 const MCExpr *OffsetExpr; 11473 SMLoc ExLoc = Parser.getTok().getLoc(); 11474 SMLoc EndLoc; 11475 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11476 return Error(ExLoc, "malformed pad offset"); 11477 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11478 if (!CE) 11479 return Error(ExLoc, "pad offset must be an immediate"); 11480 11481 if (parseToken(AsmToken::EndOfStatement, 11482 "unexpected token in '.pad' directive")) 11483 return true; 11484 11485 getTargetStreamer().emitPad(CE->getValue()); 11486 return false; 11487 } 11488 11489 /// parseDirectiveRegSave 11490 /// ::= .save { registers } 11491 /// ::= .vsave { registers } 11492 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 11493 // Check the ordering of unwind directives 11494 if (!UC.hasFnStart()) 11495 return Error(L, ".fnstart must precede .save or .vsave directives"); 11496 if (UC.hasHandlerData()) 11497 return Error(L, ".save or .vsave must precede .handlerdata directive"); 11498 11499 // RAII object to make sure parsed operands are deleted. 11500 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 11501 11502 // Parse the register list 11503 if (parseRegisterList(Operands) || 11504 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11505 return true; 11506 ARMOperand &Op = (ARMOperand &)*Operands[0]; 11507 if (!IsVector && !Op.isRegList()) 11508 return Error(L, ".save expects GPR registers"); 11509 if (IsVector && !Op.isDPRRegList()) 11510 return Error(L, ".vsave expects DPR registers"); 11511 11512 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 11513 return false; 11514 } 11515 11516 /// parseDirectiveInst 11517 /// ::= .inst opcode [, ...] 11518 /// ::= .inst.n opcode [, ...] 11519 /// ::= .inst.w opcode [, ...] 11520 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 11521 int Width = 4; 11522 11523 if (isThumb()) { 11524 switch (Suffix) { 11525 case 'n': 11526 Width = 2; 11527 break; 11528 case 'w': 11529 break; 11530 default: 11531 Width = 0; 11532 break; 11533 } 11534 } else { 11535 if (Suffix) 11536 return Error(Loc, "width suffixes are invalid in ARM mode"); 11537 } 11538 11539 auto parseOne = [&]() -> bool { 11540 const MCExpr *Expr; 11541 if (getParser().parseExpression(Expr)) 11542 return true; 11543 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 11544 if (!Value) { 11545 return Error(Loc, "expected constant expression"); 11546 } 11547 11548 char CurSuffix = Suffix; 11549 switch (Width) { 11550 case 2: 11551 if (Value->getValue() > 0xffff) 11552 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 11553 break; 11554 case 4: 11555 if (Value->getValue() > 0xffffffff) 11556 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 11557 " operand is too big"); 11558 break; 11559 case 0: 11560 // Thumb mode, no width indicated. Guess from the opcode, if possible. 11561 if (Value->getValue() < 0xe800) 11562 CurSuffix = 'n'; 11563 else if (Value->getValue() >= 0xe8000000) 11564 CurSuffix = 'w'; 11565 else 11566 return Error(Loc, "cannot determine Thumb instruction size, " 11567 "use inst.n/inst.w instead"); 11568 break; 11569 default: 11570 llvm_unreachable("only supported widths are 2 and 4"); 11571 } 11572 11573 getTargetStreamer().emitInst(Value->getValue(), CurSuffix); 11574 return false; 11575 }; 11576 11577 if (parseOptionalToken(AsmToken::EndOfStatement)) 11578 return Error(Loc, "expected expression following directive"); 11579 if (parseMany(parseOne)) 11580 return true; 11581 return false; 11582 } 11583 11584 /// parseDirectiveLtorg 11585 /// ::= .ltorg | .pool 11586 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 11587 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11588 return true; 11589 getTargetStreamer().emitCurrentConstantPool(); 11590 return false; 11591 } 11592 11593 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 11594 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11595 11596 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11597 return true; 11598 11599 if (!Section) { 11600 getStreamer().InitSections(false); 11601 Section = getStreamer().getCurrentSectionOnly(); 11602 } 11603 11604 assert(Section && "must have section to emit alignment"); 11605 if (Section->UseCodeAlign()) 11606 getStreamer().emitCodeAlignment(2); 11607 else 11608 getStreamer().emitValueToAlignment(2); 11609 11610 return false; 11611 } 11612 11613 /// parseDirectivePersonalityIndex 11614 /// ::= .personalityindex index 11615 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 11616 MCAsmParser &Parser = getParser(); 11617 bool HasExistingPersonality = UC.hasPersonality(); 11618 11619 const MCExpr *IndexExpression; 11620 SMLoc IndexLoc = Parser.getTok().getLoc(); 11621 if (Parser.parseExpression(IndexExpression) || 11622 parseToken(AsmToken::EndOfStatement, 11623 "unexpected token in '.personalityindex' directive")) { 11624 return true; 11625 } 11626 11627 UC.recordPersonalityIndex(L); 11628 11629 if (!UC.hasFnStart()) { 11630 return Error(L, ".fnstart must precede .personalityindex directive"); 11631 } 11632 if (UC.cantUnwind()) { 11633 Error(L, ".personalityindex cannot be used with .cantunwind"); 11634 UC.emitCantUnwindLocNotes(); 11635 return true; 11636 } 11637 if (UC.hasHandlerData()) { 11638 Error(L, ".personalityindex must precede .handlerdata directive"); 11639 UC.emitHandlerDataLocNotes(); 11640 return true; 11641 } 11642 if (HasExistingPersonality) { 11643 Error(L, "multiple personality directives"); 11644 UC.emitPersonalityLocNotes(); 11645 return true; 11646 } 11647 11648 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 11649 if (!CE) 11650 return Error(IndexLoc, "index must be a constant number"); 11651 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 11652 return Error(IndexLoc, 11653 "personality routine index should be in range [0-3]"); 11654 11655 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 11656 return false; 11657 } 11658 11659 /// parseDirectiveUnwindRaw 11660 /// ::= .unwind_raw offset, opcode [, opcode...] 11661 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 11662 MCAsmParser &Parser = getParser(); 11663 int64_t StackOffset; 11664 const MCExpr *OffsetExpr; 11665 SMLoc OffsetLoc = getLexer().getLoc(); 11666 11667 if (!UC.hasFnStart()) 11668 return Error(L, ".fnstart must precede .unwind_raw directives"); 11669 if (getParser().parseExpression(OffsetExpr)) 11670 return Error(OffsetLoc, "expected expression"); 11671 11672 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11673 if (!CE) 11674 return Error(OffsetLoc, "offset must be a constant"); 11675 11676 StackOffset = CE->getValue(); 11677 11678 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 11679 return true; 11680 11681 SmallVector<uint8_t, 16> Opcodes; 11682 11683 auto parseOne = [&]() -> bool { 11684 const MCExpr *OE = nullptr; 11685 SMLoc OpcodeLoc = getLexer().getLoc(); 11686 if (check(getLexer().is(AsmToken::EndOfStatement) || 11687 Parser.parseExpression(OE), 11688 OpcodeLoc, "expected opcode expression")) 11689 return true; 11690 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 11691 if (!OC) 11692 return Error(OpcodeLoc, "opcode value must be a constant"); 11693 const int64_t Opcode = OC->getValue(); 11694 if (Opcode & ~0xff) 11695 return Error(OpcodeLoc, "invalid opcode"); 11696 Opcodes.push_back(uint8_t(Opcode)); 11697 return false; 11698 }; 11699 11700 // Must have at least 1 element 11701 SMLoc OpcodeLoc = getLexer().getLoc(); 11702 if (parseOptionalToken(AsmToken::EndOfStatement)) 11703 return Error(OpcodeLoc, "expected opcode expression"); 11704 if (parseMany(parseOne)) 11705 return true; 11706 11707 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 11708 return false; 11709 } 11710 11711 /// parseDirectiveTLSDescSeq 11712 /// ::= .tlsdescseq tls-variable 11713 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 11714 MCAsmParser &Parser = getParser(); 11715 11716 if (getLexer().isNot(AsmToken::Identifier)) 11717 return TokError("expected variable after '.tlsdescseq' directive"); 11718 11719 const MCSymbolRefExpr *SRE = 11720 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 11721 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 11722 Lex(); 11723 11724 if (parseToken(AsmToken::EndOfStatement, 11725 "unexpected token in '.tlsdescseq' directive")) 11726 return true; 11727 11728 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 11729 return false; 11730 } 11731 11732 /// parseDirectiveMovSP 11733 /// ::= .movsp reg [, #offset] 11734 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 11735 MCAsmParser &Parser = getParser(); 11736 if (!UC.hasFnStart()) 11737 return Error(L, ".fnstart must precede .movsp directives"); 11738 if (UC.getFPReg() != ARM::SP) 11739 return Error(L, "unexpected .movsp directive"); 11740 11741 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11742 int SPReg = tryParseRegister(); 11743 if (SPReg == -1) 11744 return Error(SPRegLoc, "register expected"); 11745 if (SPReg == ARM::SP || SPReg == ARM::PC) 11746 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 11747 11748 int64_t Offset = 0; 11749 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11750 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 11751 return true; 11752 11753 const MCExpr *OffsetExpr; 11754 SMLoc OffsetLoc = Parser.getTok().getLoc(); 11755 11756 if (Parser.parseExpression(OffsetExpr)) 11757 return Error(OffsetLoc, "malformed offset expression"); 11758 11759 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11760 if (!CE) 11761 return Error(OffsetLoc, "offset must be an immediate constant"); 11762 11763 Offset = CE->getValue(); 11764 } 11765 11766 if (parseToken(AsmToken::EndOfStatement, 11767 "unexpected token in '.movsp' directive")) 11768 return true; 11769 11770 getTargetStreamer().emitMovSP(SPReg, Offset); 11771 UC.saveFPReg(SPReg); 11772 11773 return false; 11774 } 11775 11776 /// parseDirectiveObjectArch 11777 /// ::= .object_arch name 11778 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 11779 MCAsmParser &Parser = getParser(); 11780 if (getLexer().isNot(AsmToken::Identifier)) 11781 return Error(getLexer().getLoc(), "unexpected token"); 11782 11783 StringRef Arch = Parser.getTok().getString(); 11784 SMLoc ArchLoc = Parser.getTok().getLoc(); 11785 Lex(); 11786 11787 ARM::ArchKind ID = ARM::parseArch(Arch); 11788 11789 if (ID == ARM::ArchKind::INVALID) 11790 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 11791 if (parseToken(AsmToken::EndOfStatement)) 11792 return true; 11793 11794 getTargetStreamer().emitObjectArch(ID); 11795 return false; 11796 } 11797 11798 /// parseDirectiveAlign 11799 /// ::= .align 11800 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 11801 // NOTE: if this is not the end of the statement, fall back to the target 11802 // agnostic handling for this directive which will correctly handle this. 11803 if (parseOptionalToken(AsmToken::EndOfStatement)) { 11804 // '.align' is target specifically handled to mean 2**2 byte alignment. 11805 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11806 assert(Section && "must have section to emit alignment"); 11807 if (Section->UseCodeAlign()) 11808 getStreamer().emitCodeAlignment(4, 0); 11809 else 11810 getStreamer().emitValueToAlignment(4, 0, 1, 0); 11811 return false; 11812 } 11813 return true; 11814 } 11815 11816 /// parseDirectiveThumbSet 11817 /// ::= .thumb_set name, value 11818 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 11819 MCAsmParser &Parser = getParser(); 11820 11821 StringRef Name; 11822 if (check(Parser.parseIdentifier(Name), 11823 "expected identifier after '.thumb_set'") || 11824 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 11825 return true; 11826 11827 MCSymbol *Sym; 11828 const MCExpr *Value; 11829 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 11830 Parser, Sym, Value)) 11831 return true; 11832 11833 getTargetStreamer().emitThumbSet(Sym, Value); 11834 return false; 11835 } 11836 11837 /// Force static initialization. 11838 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmParser() { 11839 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 11840 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 11841 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 11842 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 11843 } 11844 11845 #define GET_REGISTER_MATCHER 11846 #define GET_SUBTARGET_FEATURE_NAME 11847 #define GET_MATCHER_IMPLEMENTATION 11848 #define GET_MNEMONIC_SPELL_CHECKER 11849 #include "ARMGenAsmMatcher.inc" 11850 11851 // Some diagnostics need to vary with subtarget features, so they are handled 11852 // here. For example, the DPR class has either 16 or 32 registers, depending 11853 // on the FPU available. 11854 const char * 11855 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { 11856 switch (MatchError) { 11857 // rGPR contains sp starting with ARMv8. 11858 case Match_rGPR: 11859 return hasV8Ops() ? "operand must be a register in range [r0, r14]" 11860 : "operand must be a register in range [r0, r12] or r14"; 11861 // DPR contains 16 registers for some FPUs, and 32 for others. 11862 case Match_DPR: 11863 return hasD32() ? "operand must be a register in range [d0, d31]" 11864 : "operand must be a register in range [d0, d15]"; 11865 case Match_DPR_RegList: 11866 return hasD32() ? "operand must be a list of registers in range [d0, d31]" 11867 : "operand must be a list of registers in range [d0, d15]"; 11868 11869 // For all other diags, use the static string from tablegen. 11870 default: 11871 return getMatchKindDiag(MatchError); 11872 } 11873 } 11874 11875 // Process the list of near-misses, throwing away ones we don't want to report 11876 // to the user, and converting the rest to a source location and string that 11877 // should be reported. 11878 void 11879 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 11880 SmallVectorImpl<NearMissMessage> &NearMissesOut, 11881 SMLoc IDLoc, OperandVector &Operands) { 11882 // TODO: If operand didn't match, sub in a dummy one and run target 11883 // predicate, so that we can avoid reporting near-misses that are invalid? 11884 // TODO: Many operand types dont have SuperClasses set, so we report 11885 // redundant ones. 11886 // TODO: Some operands are superclasses of registers (e.g. 11887 // MCK_RegShiftedImm), we don't have any way to represent that currently. 11888 // TODO: This is not all ARM-specific, can some of it be factored out? 11889 11890 // Record some information about near-misses that we have already seen, so 11891 // that we can avoid reporting redundant ones. For example, if there are 11892 // variants of an instruction that take 8- and 16-bit immediates, we want 11893 // to only report the widest one. 11894 std::multimap<unsigned, unsigned> OperandMissesSeen; 11895 SmallSet<FeatureBitset, 4> FeatureMissesSeen; 11896 bool ReportedTooFewOperands = false; 11897 11898 // Process the near-misses in reverse order, so that we see more general ones 11899 // first, and so can avoid emitting more specific ones. 11900 for (NearMissInfo &I : reverse(NearMissesIn)) { 11901 switch (I.getKind()) { 11902 case NearMissInfo::NearMissOperand: { 11903 SMLoc OperandLoc = 11904 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); 11905 const char *OperandDiag = 11906 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); 11907 11908 // If we have already emitted a message for a superclass, don't also report 11909 // the sub-class. We consider all operand classes that we don't have a 11910 // specialised diagnostic for to be equal for the propose of this check, 11911 // so that we don't report the generic error multiple times on the same 11912 // operand. 11913 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; 11914 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); 11915 if (std::any_of(PrevReports.first, PrevReports.second, 11916 [DupCheckMatchClass]( 11917 const std::pair<unsigned, unsigned> Pair) { 11918 if (DupCheckMatchClass == ~0U || Pair.second == ~0U) 11919 return Pair.second == DupCheckMatchClass; 11920 else 11921 return isSubclass((MatchClassKind)DupCheckMatchClass, 11922 (MatchClassKind)Pair.second); 11923 })) 11924 break; 11925 OperandMissesSeen.insert( 11926 std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); 11927 11928 NearMissMessage Message; 11929 Message.Loc = OperandLoc; 11930 if (OperandDiag) { 11931 Message.Message = OperandDiag; 11932 } else if (I.getOperandClass() == InvalidMatchClass) { 11933 Message.Message = "too many operands for instruction"; 11934 } else { 11935 Message.Message = "invalid operand for instruction"; 11936 LLVM_DEBUG( 11937 dbgs() << "Missing diagnostic string for operand class " 11938 << getMatchClassName((MatchClassKind)I.getOperandClass()) 11939 << I.getOperandClass() << ", error " << I.getOperandError() 11940 << ", opcode " << MII.getName(I.getOpcode()) << "\n"); 11941 } 11942 NearMissesOut.emplace_back(Message); 11943 break; 11944 } 11945 case NearMissInfo::NearMissFeature: { 11946 const FeatureBitset &MissingFeatures = I.getFeatures(); 11947 // Don't report the same set of features twice. 11948 if (FeatureMissesSeen.count(MissingFeatures)) 11949 break; 11950 FeatureMissesSeen.insert(MissingFeatures); 11951 11952 // Special case: don't report a feature set which includes arm-mode for 11953 // targets that don't have ARM mode. 11954 if (MissingFeatures.test(Feature_IsARMBit) && !hasARM()) 11955 break; 11956 // Don't report any near-misses that both require switching instruction 11957 // set, and adding other subtarget features. 11958 if (isThumb() && MissingFeatures.test(Feature_IsARMBit) && 11959 MissingFeatures.count() > 1) 11960 break; 11961 if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) && 11962 MissingFeatures.count() > 1) 11963 break; 11964 if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) && 11965 (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit, 11966 Feature_IsThumbBit})).any()) 11967 break; 11968 if (isMClass() && MissingFeatures.test(Feature_HasNEONBit)) 11969 break; 11970 11971 NearMissMessage Message; 11972 Message.Loc = IDLoc; 11973 raw_svector_ostream OS(Message.Message); 11974 11975 OS << "instruction requires:"; 11976 for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) 11977 if (MissingFeatures.test(i)) 11978 OS << ' ' << getSubtargetFeatureName(i); 11979 11980 NearMissesOut.emplace_back(Message); 11981 11982 break; 11983 } 11984 case NearMissInfo::NearMissPredicate: { 11985 NearMissMessage Message; 11986 Message.Loc = IDLoc; 11987 switch (I.getPredicateError()) { 11988 case Match_RequiresNotITBlock: 11989 Message.Message = "flag setting instruction only valid outside IT block"; 11990 break; 11991 case Match_RequiresITBlock: 11992 Message.Message = "instruction only valid inside IT block"; 11993 break; 11994 case Match_RequiresV6: 11995 Message.Message = "instruction variant requires ARMv6 or later"; 11996 break; 11997 case Match_RequiresThumb2: 11998 Message.Message = "instruction variant requires Thumb2"; 11999 break; 12000 case Match_RequiresV8: 12001 Message.Message = "instruction variant requires ARMv8 or later"; 12002 break; 12003 case Match_RequiresFlagSetting: 12004 Message.Message = "no flag-preserving variant of this instruction available"; 12005 break; 12006 case Match_InvalidOperand: 12007 Message.Message = "invalid operand for instruction"; 12008 break; 12009 default: 12010 llvm_unreachable("Unhandled target predicate error"); 12011 break; 12012 } 12013 NearMissesOut.emplace_back(Message); 12014 break; 12015 } 12016 case NearMissInfo::NearMissTooFewOperands: { 12017 if (!ReportedTooFewOperands) { 12018 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); 12019 NearMissesOut.emplace_back(NearMissMessage{ 12020 EndLoc, StringRef("too few operands for instruction")}); 12021 ReportedTooFewOperands = true; 12022 } 12023 break; 12024 } 12025 case NearMissInfo::NoNearMiss: 12026 // This should never leave the matcher. 12027 llvm_unreachable("not a near-miss"); 12028 break; 12029 } 12030 } 12031 } 12032 12033 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, 12034 SMLoc IDLoc, OperandVector &Operands) { 12035 SmallVector<NearMissMessage, 4> Messages; 12036 FilterNearMisses(NearMisses, Messages, IDLoc, Operands); 12037 12038 if (Messages.size() == 0) { 12039 // No near-misses were found, so the best we can do is "invalid 12040 // instruction". 12041 Error(IDLoc, "invalid instruction"); 12042 } else if (Messages.size() == 1) { 12043 // One near miss was found, report it as the sole error. 12044 Error(Messages[0].Loc, Messages[0].Message); 12045 } else { 12046 // More than one near miss, so report a generic "invalid instruction" 12047 // error, followed by notes for each of the near-misses. 12048 Error(IDLoc, "invalid instruction, any one of the following would fix this:"); 12049 for (auto &M : Messages) { 12050 Note(M.Loc, M.Message); 12051 } 12052 } 12053 } 12054 12055 /// parseDirectiveArchExtension 12056 /// ::= .arch_extension [no]feature 12057 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 12058 // FIXME: This structure should be moved inside ARMTargetParser 12059 // when we start to table-generate them, and we can use the ARM 12060 // flags below, that were generated by table-gen. 12061 static const struct { 12062 const uint64_t Kind; 12063 const FeatureBitset ArchCheck; 12064 const FeatureBitset Features; 12065 } Extensions[] = { 12066 { ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC} }, 12067 { ARM::AEK_CRYPTO, {Feature_HasV8Bit}, 12068 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 12069 { ARM::AEK_FP, {Feature_HasV8Bit}, 12070 {ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8} }, 12071 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), 12072 {Feature_HasV7Bit, Feature_IsNotMClassBit}, 12073 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} }, 12074 { ARM::AEK_MP, {Feature_HasV7Bit, Feature_IsNotMClassBit}, 12075 {ARM::FeatureMP} }, 12076 { ARM::AEK_SIMD, {Feature_HasV8Bit}, 12077 {ARM::FeatureNEON, ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8} }, 12078 { ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone} }, 12079 // FIXME: Only available in A-class, isel not predicated 12080 { ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization} }, 12081 { ARM::AEK_FP16, {Feature_HasV8_2aBit}, 12082 {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 12083 { ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS} }, 12084 { ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB} }, 12085 // FIXME: Unsupported extensions. 12086 { ARM::AEK_OS, {}, {} }, 12087 { ARM::AEK_IWMMXT, {}, {} }, 12088 { ARM::AEK_IWMMXT2, {}, {} }, 12089 { ARM::AEK_MAVERICK, {}, {} }, 12090 { ARM::AEK_XSCALE, {}, {} }, 12091 }; 12092 12093 MCAsmParser &Parser = getParser(); 12094 12095 if (getLexer().isNot(AsmToken::Identifier)) 12096 return Error(getLexer().getLoc(), "expected architecture extension name"); 12097 12098 StringRef Name = Parser.getTok().getString(); 12099 SMLoc ExtLoc = Parser.getTok().getLoc(); 12100 Lex(); 12101 12102 if (parseToken(AsmToken::EndOfStatement, 12103 "unexpected token in '.arch_extension' directive")) 12104 return true; 12105 12106 bool EnableFeature = true; 12107 if (Name.startswith_lower("no")) { 12108 EnableFeature = false; 12109 Name = Name.substr(2); 12110 } 12111 uint64_t FeatureKind = ARM::parseArchExt(Name); 12112 if (FeatureKind == ARM::AEK_INVALID) 12113 return Error(ExtLoc, "unknown architectural extension: " + Name); 12114 12115 for (const auto &Extension : Extensions) { 12116 if (Extension.Kind != FeatureKind) 12117 continue; 12118 12119 if (Extension.Features.none()) 12120 return Error(ExtLoc, "unsupported architectural extension: " + Name); 12121 12122 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 12123 return Error(ExtLoc, "architectural extension '" + Name + 12124 "' is not " 12125 "allowed for the current base architecture"); 12126 12127 MCSubtargetInfo &STI = copySTI(); 12128 if (EnableFeature) { 12129 STI.SetFeatureBitsTransitively(Extension.Features); 12130 } else { 12131 STI.ClearFeatureBitsTransitively(Extension.Features); 12132 } 12133 FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits()); 12134 setAvailableFeatures(Features); 12135 return false; 12136 } 12137 12138 return Error(ExtLoc, "unknown architectural extension: " + Name); 12139 } 12140 12141 // Define this matcher function after the auto-generated include so we 12142 // have the match class enum definitions. 12143 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 12144 unsigned Kind) { 12145 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 12146 // If the kind is a token for a literal immediate, check if our asm 12147 // operand matches. This is for InstAliases which have a fixed-value 12148 // immediate in the syntax. 12149 switch (Kind) { 12150 default: break; 12151 case MCK__HASH_0: 12152 if (Op.isImm()) 12153 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 12154 if (CE->getValue() == 0) 12155 return Match_Success; 12156 break; 12157 case MCK__HASH_8: 12158 if (Op.isImm()) 12159 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 12160 if (CE->getValue() == 8) 12161 return Match_Success; 12162 break; 12163 case MCK__HASH_16: 12164 if (Op.isImm()) 12165 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 12166 if (CE->getValue() == 16) 12167 return Match_Success; 12168 break; 12169 case MCK_ModImm: 12170 if (Op.isImm()) { 12171 const MCExpr *SOExpr = Op.getImm(); 12172 int64_t Value; 12173 if (!SOExpr->evaluateAsAbsolute(Value)) 12174 return Match_Success; 12175 assert((Value >= std::numeric_limits<int32_t>::min() && 12176 Value <= std::numeric_limits<uint32_t>::max()) && 12177 "expression value must be representable in 32 bits"); 12178 } 12179 break; 12180 case MCK_rGPR: 12181 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 12182 return Match_Success; 12183 return Match_rGPR; 12184 case MCK_GPRPair: 12185 if (Op.isReg() && 12186 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 12187 return Match_Success; 12188 break; 12189 } 12190 return Match_InvalidOperand; 12191 } 12192 12193 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic, 12194 StringRef ExtraToken) { 12195 if (!hasMVE()) 12196 return false; 12197 12198 return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") || 12199 Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") || 12200 Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") || 12201 Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") || 12202 Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") || 12203 Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") || 12204 Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") || 12205 Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") || 12206 Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") || 12207 Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") || 12208 Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") || 12209 Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") || 12210 Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") || 12211 Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") || 12212 Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") || 12213 Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") || 12214 Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") || 12215 Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") || 12216 Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") || 12217 Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") || 12218 Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") || 12219 Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") || 12220 Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") || 12221 Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") || 12222 Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") || 12223 Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") || 12224 Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") || 12225 Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") || 12226 Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") || 12227 Mnemonic.startswith("vqabs") || 12228 (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") || 12229 Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") || 12230 Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") || 12231 Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") || 12232 Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") || 12233 Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") || 12234 Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") || 12235 Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") || 12236 Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") || 12237 Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") || 12238 Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") || 12239 Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") || 12240 Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") || 12241 Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") || 12242 Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") || 12243 Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") || 12244 Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") || 12245 Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") || 12246 Mnemonic.startswith("vldrb") || 12247 (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") || 12248 (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") || 12249 Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") || 12250 Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") || 12251 Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") || 12252 Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") || 12253 Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") || 12254 Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") || 12255 Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") || 12256 Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") || 12257 Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") || 12258 Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") || 12259 Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") || 12260 Mnemonic.startswith("vcvt") || 12261 MS.isVPTPredicableCDEInstr(Mnemonic) || 12262 (Mnemonic.startswith("vmov") && 12263 !(ExtraToken == ".f16" || ExtraToken == ".32" || 12264 ExtraToken == ".16" || ExtraToken == ".8")); 12265 } 12266