1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMFeatures.h" 10 #include "ARMBaseInstrInfo.h" 11 #include "Utils/ARMBaseInfo.h" 12 #include "MCTargetDesc/ARMAddressingModes.h" 13 #include "MCTargetDesc/ARMBaseInfo.h" 14 #include "MCTargetDesc/ARMInstPrinter.h" 15 #include "MCTargetDesc/ARMMCExpr.h" 16 #include "MCTargetDesc/ARMMCTargetDesc.h" 17 #include "TargetInfo/ARMTargetInfo.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringSet.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/MC/MCContext.h" 31 #include "llvm/MC/MCExpr.h" 32 #include "llvm/MC/MCInst.h" 33 #include "llvm/MC/MCInstrDesc.h" 34 #include "llvm/MC/MCInstrInfo.h" 35 #include "llvm/MC/MCObjectFileInfo.h" 36 #include "llvm/MC/MCParser/MCAsmLexer.h" 37 #include "llvm/MC/MCParser/MCAsmParser.h" 38 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 39 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 40 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 41 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 42 #include "llvm/MC/MCRegisterInfo.h" 43 #include "llvm/MC/MCSection.h" 44 #include "llvm/MC/MCStreamer.h" 45 #include "llvm/MC/MCSubtargetInfo.h" 46 #include "llvm/MC/MCSymbol.h" 47 #include "llvm/MC/SubtargetFeature.h" 48 #include "llvm/Support/ARMBuildAttributes.h" 49 #include "llvm/Support/ARMEHABI.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/SMLoc.h" 56 #include "llvm/Support/TargetParser.h" 57 #include "llvm/Support/TargetRegistry.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cstddef> 62 #include <cstdint> 63 #include <iterator> 64 #include <limits> 65 #include <memory> 66 #include <string> 67 #include <utility> 68 #include <vector> 69 70 #define DEBUG_TYPE "asm-parser" 71 72 using namespace llvm; 73 74 namespace llvm { 75 extern const MCInstrDesc ARMInsts[]; 76 } // end namespace llvm 77 78 namespace { 79 80 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 81 82 static cl::opt<ImplicitItModeTy> ImplicitItMode( 83 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 84 cl::desc("Allow conditional instructions outdside of an IT block"), 85 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 86 "Accept in both ISAs, emit implicit ITs in Thumb"), 87 clEnumValN(ImplicitItModeTy::Never, "never", 88 "Warn in ARM, reject in Thumb"), 89 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 90 "Accept in ARM, reject in Thumb"), 91 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 92 "Warn in ARM, emit implicit ITs in Thumb"))); 93 94 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 95 cl::init(false)); 96 97 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 98 99 static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) { 100 // Position==0 means we're not in an IT block at all. Position==1 101 // means we want the first state bit, which is always 0 (Then). 102 // Position==2 means we want the second state bit, stored at bit 3 103 // of Mask, and so on downwards. So (5 - Position) will shift the 104 // right bit down to bit 0, including the always-0 bit at bit 4 for 105 // the mandatory initial Then. 106 return (Mask >> (5 - Position) & 1); 107 } 108 109 class UnwindContext { 110 using Locs = SmallVector<SMLoc, 4>; 111 112 MCAsmParser &Parser; 113 Locs FnStartLocs; 114 Locs CantUnwindLocs; 115 Locs PersonalityLocs; 116 Locs PersonalityIndexLocs; 117 Locs HandlerDataLocs; 118 int FPReg; 119 120 public: 121 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 122 123 bool hasFnStart() const { return !FnStartLocs.empty(); } 124 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 125 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 126 127 bool hasPersonality() const { 128 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 129 } 130 131 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 132 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 133 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 134 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 135 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 136 137 void saveFPReg(int Reg) { FPReg = Reg; } 138 int getFPReg() const { return FPReg; } 139 140 void emitFnStartLocNotes() const { 141 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 142 FI != FE; ++FI) 143 Parser.Note(*FI, ".fnstart was specified here"); 144 } 145 146 void emitCantUnwindLocNotes() const { 147 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 148 UE = CantUnwindLocs.end(); UI != UE; ++UI) 149 Parser.Note(*UI, ".cantunwind was specified here"); 150 } 151 152 void emitHandlerDataLocNotes() const { 153 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 154 HE = HandlerDataLocs.end(); HI != HE; ++HI) 155 Parser.Note(*HI, ".handlerdata was specified here"); 156 } 157 158 void emitPersonalityLocNotes() const { 159 for (Locs::const_iterator PI = PersonalityLocs.begin(), 160 PE = PersonalityLocs.end(), 161 PII = PersonalityIndexLocs.begin(), 162 PIE = PersonalityIndexLocs.end(); 163 PI != PE || PII != PIE;) { 164 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 165 Parser.Note(*PI++, ".personality was specified here"); 166 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 167 Parser.Note(*PII++, ".personalityindex was specified here"); 168 else 169 llvm_unreachable(".personality and .personalityindex cannot be " 170 "at the same location"); 171 } 172 } 173 174 void reset() { 175 FnStartLocs = Locs(); 176 CantUnwindLocs = Locs(); 177 PersonalityLocs = Locs(); 178 HandlerDataLocs = Locs(); 179 PersonalityIndexLocs = Locs(); 180 FPReg = ARM::SP; 181 } 182 }; 183 184 // Various sets of ARM instruction mnemonics which are used by the asm parser 185 class ARMMnemonicSets { 186 StringSet<> CDE; 187 StringSet<> CDEWithVPTSuffix; 188 public: 189 ARMMnemonicSets(const MCSubtargetInfo &STI); 190 191 /// Returns true iff a given mnemonic is a CDE instruction 192 bool isCDEInstr(StringRef Mnemonic) { 193 // Quick check before searching the set 194 if (!Mnemonic.startswith("cx") && !Mnemonic.startswith("vcx")) 195 return false; 196 return CDE.count(Mnemonic); 197 } 198 199 /// Returns true iff a given mnemonic is a VPT-predicable CDE instruction 200 /// (possibly with a predication suffix "e" or "t") 201 bool isVPTPredicableCDEInstr(StringRef Mnemonic) { 202 if (!Mnemonic.startswith("vcx")) 203 return false; 204 return CDEWithVPTSuffix.count(Mnemonic); 205 } 206 207 /// Returns true iff a given mnemonic is an IT-predicable CDE instruction 208 /// (possibly with a condition suffix) 209 bool isITPredicableCDEInstr(StringRef Mnemonic) { 210 if (!Mnemonic.startswith("cx")) 211 return false; 212 return Mnemonic.startswith("cx1a") || Mnemonic.startswith("cx1da") || 213 Mnemonic.startswith("cx2a") || Mnemonic.startswith("cx2da") || 214 Mnemonic.startswith("cx3a") || Mnemonic.startswith("cx3da"); 215 } 216 217 /// Return true iff a given mnemonic is an integer CDE instruction with 218 /// dual-register destination 219 bool isCDEDualRegInstr(StringRef Mnemonic) { 220 if (!Mnemonic.startswith("cx")) 221 return false; 222 return Mnemonic == "cx1d" || Mnemonic == "cx1da" || 223 Mnemonic == "cx2d" || Mnemonic == "cx2da" || 224 Mnemonic == "cx3d" || Mnemonic == "cx3da"; 225 } 226 }; 227 228 ARMMnemonicSets::ARMMnemonicSets(const MCSubtargetInfo &STI) { 229 for (StringRef Mnemonic: { "cx1", "cx1a", "cx1d", "cx1da", 230 "cx2", "cx2a", "cx2d", "cx2da", 231 "cx3", "cx3a", "cx3d", "cx3da", }) 232 CDE.insert(Mnemonic); 233 for (StringRef Mnemonic : 234 {"vcx1", "vcx1a", "vcx2", "vcx2a", "vcx3", "vcx3a"}) { 235 CDE.insert(Mnemonic); 236 CDEWithVPTSuffix.insert(Mnemonic); 237 CDEWithVPTSuffix.insert(std::string(Mnemonic) + "t"); 238 CDEWithVPTSuffix.insert(std::string(Mnemonic) + "e"); 239 } 240 } 241 242 class ARMAsmParser : public MCTargetAsmParser { 243 const MCRegisterInfo *MRI; 244 UnwindContext UC; 245 ARMMnemonicSets MS; 246 247 ARMTargetStreamer &getTargetStreamer() { 248 assert(getParser().getStreamer().getTargetStreamer() && 249 "do not have a target streamer"); 250 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 251 return static_cast<ARMTargetStreamer &>(TS); 252 } 253 254 // Map of register aliases registers via the .req directive. 255 StringMap<unsigned> RegisterReqs; 256 257 bool NextSymbolIsThumb; 258 259 bool useImplicitITThumb() const { 260 return ImplicitItMode == ImplicitItModeTy::Always || 261 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 262 } 263 264 bool useImplicitITARM() const { 265 return ImplicitItMode == ImplicitItModeTy::Always || 266 ImplicitItMode == ImplicitItModeTy::ARMOnly; 267 } 268 269 struct { 270 ARMCC::CondCodes Cond; // Condition for IT block. 271 unsigned Mask:4; // Condition mask for instructions. 272 // Starting at first 1 (from lsb). 273 // '1' condition as indicated in IT. 274 // '0' inverse of condition (else). 275 // Count of instructions in IT block is 276 // 4 - trailingzeroes(mask) 277 // Note that this does not have the same encoding 278 // as in the IT instruction, which also depends 279 // on the low bit of the condition code. 280 281 unsigned CurPosition; // Current position in parsing of IT 282 // block. In range [0,4], with 0 being the IT 283 // instruction itself. Initialized according to 284 // count of instructions in block. ~0U if no 285 // active IT block. 286 287 bool IsExplicit; // true - The IT instruction was present in the 288 // input, we should not modify it. 289 // false - The IT instruction was added 290 // implicitly, we can extend it if that 291 // would be legal. 292 } ITState; 293 294 SmallVector<MCInst, 4> PendingConditionalInsts; 295 296 void flushPendingInstructions(MCStreamer &Out) override { 297 if (!inImplicitITBlock()) { 298 assert(PendingConditionalInsts.size() == 0); 299 return; 300 } 301 302 // Emit the IT instruction 303 MCInst ITInst; 304 ITInst.setOpcode(ARM::t2IT); 305 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 306 ITInst.addOperand(MCOperand::createImm(ITState.Mask)); 307 Out.emitInstruction(ITInst, getSTI()); 308 309 // Emit the conditonal instructions 310 assert(PendingConditionalInsts.size() <= 4); 311 for (const MCInst &Inst : PendingConditionalInsts) { 312 Out.emitInstruction(Inst, getSTI()); 313 } 314 PendingConditionalInsts.clear(); 315 316 // Clear the IT state 317 ITState.Mask = 0; 318 ITState.CurPosition = ~0U; 319 } 320 321 bool inITBlock() { return ITState.CurPosition != ~0U; } 322 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 323 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 324 325 bool lastInITBlock() { 326 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 327 } 328 329 void forwardITPosition() { 330 if (!inITBlock()) return; 331 // Move to the next instruction in the IT block, if there is one. If not, 332 // mark the block as done, except for implicit IT blocks, which we leave 333 // open until we find an instruction that can't be added to it. 334 unsigned TZ = countTrailingZeros(ITState.Mask); 335 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 336 ITState.CurPosition = ~0U; // Done with the IT block after this. 337 } 338 339 // Rewind the state of the current IT block, removing the last slot from it. 340 void rewindImplicitITPosition() { 341 assert(inImplicitITBlock()); 342 assert(ITState.CurPosition > 1); 343 ITState.CurPosition--; 344 unsigned TZ = countTrailingZeros(ITState.Mask); 345 unsigned NewMask = 0; 346 NewMask |= ITState.Mask & (0xC << TZ); 347 NewMask |= 0x2 << TZ; 348 ITState.Mask = NewMask; 349 } 350 351 // Rewind the state of the current IT block, removing the last slot from it. 352 // If we were at the first slot, this closes the IT block. 353 void discardImplicitITBlock() { 354 assert(inImplicitITBlock()); 355 assert(ITState.CurPosition == 1); 356 ITState.CurPosition = ~0U; 357 } 358 359 // Return the low-subreg of a given Q register. 360 unsigned getDRegFromQReg(unsigned QReg) const { 361 return MRI->getSubReg(QReg, ARM::dsub_0); 362 } 363 364 // Get the condition code corresponding to the current IT block slot. 365 ARMCC::CondCodes currentITCond() { 366 unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition); 367 return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond; 368 } 369 370 // Invert the condition of the current IT block slot without changing any 371 // other slots in the same block. 372 void invertCurrentITCondition() { 373 if (ITState.CurPosition == 1) { 374 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 375 } else { 376 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 377 } 378 } 379 380 // Returns true if the current IT block is full (all 4 slots used). 381 bool isITBlockFull() { 382 return inITBlock() && (ITState.Mask & 1); 383 } 384 385 // Extend the current implicit IT block to have one more slot with the given 386 // condition code. 387 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 388 assert(inImplicitITBlock()); 389 assert(!isITBlockFull()); 390 assert(Cond == ITState.Cond || 391 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 392 unsigned TZ = countTrailingZeros(ITState.Mask); 393 unsigned NewMask = 0; 394 // Keep any existing condition bits. 395 NewMask |= ITState.Mask & (0xE << TZ); 396 // Insert the new condition bit. 397 NewMask |= (Cond != ITState.Cond) << TZ; 398 // Move the trailing 1 down one bit. 399 NewMask |= 1 << (TZ - 1); 400 ITState.Mask = NewMask; 401 } 402 403 // Create a new implicit IT block with a dummy condition code. 404 void startImplicitITBlock() { 405 assert(!inITBlock()); 406 ITState.Cond = ARMCC::AL; 407 ITState.Mask = 8; 408 ITState.CurPosition = 1; 409 ITState.IsExplicit = false; 410 } 411 412 // Create a new explicit IT block with the given condition and mask. 413 // The mask should be in the format used in ARMOperand and 414 // MCOperand, with a 1 implying 'e', regardless of the low bit of 415 // the condition. 416 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 417 assert(!inITBlock()); 418 ITState.Cond = Cond; 419 ITState.Mask = Mask; 420 ITState.CurPosition = 0; 421 ITState.IsExplicit = true; 422 } 423 424 struct { 425 unsigned Mask : 4; 426 unsigned CurPosition; 427 } VPTState; 428 bool inVPTBlock() { return VPTState.CurPosition != ~0U; } 429 void forwardVPTPosition() { 430 if (!inVPTBlock()) return; 431 unsigned TZ = countTrailingZeros(VPTState.Mask); 432 if (++VPTState.CurPosition == 5 - TZ) 433 VPTState.CurPosition = ~0U; 434 } 435 436 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 437 return getParser().Note(L, Msg, Range); 438 } 439 440 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 441 return getParser().Warning(L, Msg, Range); 442 } 443 444 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 445 return getParser().Error(L, Msg, Range); 446 } 447 448 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 449 unsigned ListNo, bool IsARPop = false); 450 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 451 unsigned ListNo); 452 453 int tryParseRegister(); 454 bool tryParseRegisterWithWriteBack(OperandVector &); 455 int tryParseShiftRegister(OperandVector &); 456 bool parseRegisterList(OperandVector &, bool EnforceOrder = true); 457 bool parseMemory(OperandVector &); 458 bool parseOperand(OperandVector &, StringRef Mnemonic); 459 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 460 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 461 unsigned &ShiftAmount); 462 bool parseLiteralValues(unsigned Size, SMLoc L); 463 bool parseDirectiveThumb(SMLoc L); 464 bool parseDirectiveARM(SMLoc L); 465 bool parseDirectiveThumbFunc(SMLoc L); 466 bool parseDirectiveCode(SMLoc L); 467 bool parseDirectiveSyntax(SMLoc L); 468 bool parseDirectiveReq(StringRef Name, SMLoc L); 469 bool parseDirectiveUnreq(SMLoc L); 470 bool parseDirectiveArch(SMLoc L); 471 bool parseDirectiveEabiAttr(SMLoc L); 472 bool parseDirectiveCPU(SMLoc L); 473 bool parseDirectiveFPU(SMLoc L); 474 bool parseDirectiveFnStart(SMLoc L); 475 bool parseDirectiveFnEnd(SMLoc L); 476 bool parseDirectiveCantUnwind(SMLoc L); 477 bool parseDirectivePersonality(SMLoc L); 478 bool parseDirectiveHandlerData(SMLoc L); 479 bool parseDirectiveSetFP(SMLoc L); 480 bool parseDirectivePad(SMLoc L); 481 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 482 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 483 bool parseDirectiveLtorg(SMLoc L); 484 bool parseDirectiveEven(SMLoc L); 485 bool parseDirectivePersonalityIndex(SMLoc L); 486 bool parseDirectiveUnwindRaw(SMLoc L); 487 bool parseDirectiveTLSDescSeq(SMLoc L); 488 bool parseDirectiveMovSP(SMLoc L); 489 bool parseDirectiveObjectArch(SMLoc L); 490 bool parseDirectiveArchExtension(SMLoc L); 491 bool parseDirectiveAlign(SMLoc L); 492 bool parseDirectiveThumbSet(SMLoc L); 493 494 bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken); 495 StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken, 496 unsigned &PredicationCode, 497 unsigned &VPTPredicationCode, bool &CarrySetting, 498 unsigned &ProcessorIMod, StringRef &ITMask); 499 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken, 500 StringRef FullInst, bool &CanAcceptCarrySet, 501 bool &CanAcceptPredicationCode, 502 bool &CanAcceptVPTPredicationCode); 503 504 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 505 OperandVector &Operands); 506 bool CDEConvertDualRegOperand(StringRef Mnemonic, OperandVector &Operands); 507 508 bool isThumb() const { 509 // FIXME: Can tablegen auto-generate this? 510 return getSTI().getFeatureBits()[ARM::ModeThumb]; 511 } 512 513 bool isThumbOne() const { 514 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 515 } 516 517 bool isThumbTwo() const { 518 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 519 } 520 521 bool hasThumb() const { 522 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 523 } 524 525 bool hasThumb2() const { 526 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 527 } 528 529 bool hasV6Ops() const { 530 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 531 } 532 533 bool hasV6T2Ops() const { 534 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 535 } 536 537 bool hasV6MOps() const { 538 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 539 } 540 541 bool hasV7Ops() const { 542 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 543 } 544 545 bool hasV8Ops() const { 546 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 547 } 548 549 bool hasV8MBaseline() const { 550 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 551 } 552 553 bool hasV8MMainline() const { 554 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 555 } 556 bool hasV8_1MMainline() const { 557 return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps]; 558 } 559 bool hasMVE() const { 560 return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps]; 561 } 562 bool hasMVEFloat() const { 563 return getSTI().getFeatureBits()[ARM::HasMVEFloatOps]; 564 } 565 bool hasCDE() const { 566 return getSTI().getFeatureBits()[ARM::HasCDEOps]; 567 } 568 bool has8MSecExt() const { 569 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 570 } 571 572 bool hasARM() const { 573 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 574 } 575 576 bool hasDSP() const { 577 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 578 } 579 580 bool hasD32() const { 581 return getSTI().getFeatureBits()[ARM::FeatureD32]; 582 } 583 584 bool hasV8_1aOps() const { 585 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 586 } 587 588 bool hasRAS() const { 589 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 590 } 591 592 void SwitchMode() { 593 MCSubtargetInfo &STI = copySTI(); 594 auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 595 setAvailableFeatures(FB); 596 } 597 598 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 599 600 bool isMClass() const { 601 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 602 } 603 604 /// @name Auto-generated Match Functions 605 /// { 606 607 #define GET_ASSEMBLER_HEADER 608 #include "ARMGenAsmMatcher.inc" 609 610 /// } 611 612 OperandMatchResultTy parseITCondCode(OperandVector &); 613 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 614 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 615 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 616 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 617 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &); 618 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 619 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 620 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 621 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 622 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 623 int High); 624 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 625 return parsePKHImm(O, "lsl", 0, 31); 626 } 627 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 628 return parsePKHImm(O, "asr", 1, 32); 629 } 630 OperandMatchResultTy parseSetEndImm(OperandVector &); 631 OperandMatchResultTy parseShifterImm(OperandVector &); 632 OperandMatchResultTy parseRotImm(OperandVector &); 633 OperandMatchResultTy parseModImm(OperandVector &); 634 OperandMatchResultTy parseBitfield(OperandVector &); 635 OperandMatchResultTy parsePostIdxReg(OperandVector &); 636 OperandMatchResultTy parseAM3Offset(OperandVector &); 637 OperandMatchResultTy parseFPImm(OperandVector &); 638 OperandMatchResultTy parseVectorList(OperandVector &); 639 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 640 SMLoc &EndLoc); 641 642 // Asm Match Converter Methods 643 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 644 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 645 void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &); 646 647 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 648 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 649 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 650 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 651 bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 652 bool isITBlockTerminator(MCInst &Inst) const; 653 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); 654 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, 655 bool Load, bool ARMMode, bool Writeback); 656 657 public: 658 enum ARMMatchResultTy { 659 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 660 Match_RequiresNotITBlock, 661 Match_RequiresV6, 662 Match_RequiresThumb2, 663 Match_RequiresV8, 664 Match_RequiresFlagSetting, 665 #define GET_OPERAND_DIAGNOSTIC_TYPES 666 #include "ARMGenAsmMatcher.inc" 667 668 }; 669 670 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 671 const MCInstrInfo &MII, const MCTargetOptions &Options) 672 : MCTargetAsmParser(Options, STI, MII), UC(Parser), MS(STI) { 673 MCAsmParserExtension::Initialize(Parser); 674 675 // Cache the MCRegisterInfo. 676 MRI = getContext().getRegisterInfo(); 677 678 // Initialize the set of available features. 679 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 680 681 // Add build attributes based on the selected target. 682 if (AddBuildAttributes) 683 getTargetStreamer().emitTargetAttributes(STI); 684 685 // Not in an ITBlock to start with. 686 ITState.CurPosition = ~0U; 687 688 VPTState.CurPosition = ~0U; 689 690 NextSymbolIsThumb = false; 691 } 692 693 // Implementation of the MCTargetAsmParser interface: 694 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 695 OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc, 696 SMLoc &EndLoc) override; 697 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 698 SMLoc NameLoc, OperandVector &Operands) override; 699 bool ParseDirective(AsmToken DirectiveID) override; 700 701 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 702 unsigned Kind) override; 703 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 704 705 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 706 OperandVector &Operands, MCStreamer &Out, 707 uint64_t &ErrorInfo, 708 bool MatchingInlineAsm) override; 709 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 710 SmallVectorImpl<NearMissInfo> &NearMisses, 711 bool MatchingInlineAsm, bool &EmitInITBlock, 712 MCStreamer &Out); 713 714 struct NearMissMessage { 715 SMLoc Loc; 716 SmallString<128> Message; 717 }; 718 719 const char *getCustomOperandDiag(ARMMatchResultTy MatchError); 720 721 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 722 SmallVectorImpl<NearMissMessage> &NearMissesOut, 723 SMLoc IDLoc, OperandVector &Operands); 724 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, 725 OperandVector &Operands); 726 727 void doBeforeLabelEmit(MCSymbol *Symbol) override; 728 729 void onLabelParsed(MCSymbol *Symbol) override; 730 }; 731 732 /// ARMOperand - Instances of this class represent a parsed ARM machine 733 /// operand. 734 class ARMOperand : public MCParsedAsmOperand { 735 enum KindTy { 736 k_CondCode, 737 k_VPTPred, 738 k_CCOut, 739 k_ITCondMask, 740 k_CoprocNum, 741 k_CoprocReg, 742 k_CoprocOption, 743 k_Immediate, 744 k_MemBarrierOpt, 745 k_InstSyncBarrierOpt, 746 k_TraceSyncBarrierOpt, 747 k_Memory, 748 k_PostIndexRegister, 749 k_MSRMask, 750 k_BankedReg, 751 k_ProcIFlags, 752 k_VectorIndex, 753 k_Register, 754 k_RegisterList, 755 k_RegisterListWithAPSR, 756 k_DPRRegisterList, 757 k_SPRRegisterList, 758 k_FPSRegisterListWithVPR, 759 k_FPDRegisterListWithVPR, 760 k_VectorList, 761 k_VectorListAllLanes, 762 k_VectorListIndexed, 763 k_ShiftedRegister, 764 k_ShiftedImmediate, 765 k_ShifterImmediate, 766 k_RotateImmediate, 767 k_ModifiedImmediate, 768 k_ConstantPoolImmediate, 769 k_BitfieldDescriptor, 770 k_Token, 771 } Kind; 772 773 SMLoc StartLoc, EndLoc, AlignmentLoc; 774 SmallVector<unsigned, 8> Registers; 775 776 struct CCOp { 777 ARMCC::CondCodes Val; 778 }; 779 780 struct VCCOp { 781 ARMVCC::VPTCodes Val; 782 }; 783 784 struct CopOp { 785 unsigned Val; 786 }; 787 788 struct CoprocOptionOp { 789 unsigned Val; 790 }; 791 792 struct ITMaskOp { 793 unsigned Mask:4; 794 }; 795 796 struct MBOptOp { 797 ARM_MB::MemBOpt Val; 798 }; 799 800 struct ISBOptOp { 801 ARM_ISB::InstSyncBOpt Val; 802 }; 803 804 struct TSBOptOp { 805 ARM_TSB::TraceSyncBOpt Val; 806 }; 807 808 struct IFlagsOp { 809 ARM_PROC::IFlags Val; 810 }; 811 812 struct MMaskOp { 813 unsigned Val; 814 }; 815 816 struct BankedRegOp { 817 unsigned Val; 818 }; 819 820 struct TokOp { 821 const char *Data; 822 unsigned Length; 823 }; 824 825 struct RegOp { 826 unsigned RegNum; 827 }; 828 829 // A vector register list is a sequential list of 1 to 4 registers. 830 struct VectorListOp { 831 unsigned RegNum; 832 unsigned Count; 833 unsigned LaneIndex; 834 bool isDoubleSpaced; 835 }; 836 837 struct VectorIndexOp { 838 unsigned Val; 839 }; 840 841 struct ImmOp { 842 const MCExpr *Val; 843 }; 844 845 /// Combined record for all forms of ARM address expressions. 846 struct MemoryOp { 847 unsigned BaseRegNum; 848 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 849 // was specified. 850 const MCConstantExpr *OffsetImm; // Offset immediate value 851 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 852 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 853 unsigned ShiftImm; // shift for OffsetReg. 854 unsigned Alignment; // 0 = no alignment specified 855 // n = alignment in bytes (2, 4, 8, 16, or 32) 856 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 857 }; 858 859 struct PostIdxRegOp { 860 unsigned RegNum; 861 bool isAdd; 862 ARM_AM::ShiftOpc ShiftTy; 863 unsigned ShiftImm; 864 }; 865 866 struct ShifterImmOp { 867 bool isASR; 868 unsigned Imm; 869 }; 870 871 struct RegShiftedRegOp { 872 ARM_AM::ShiftOpc ShiftTy; 873 unsigned SrcReg; 874 unsigned ShiftReg; 875 unsigned ShiftImm; 876 }; 877 878 struct RegShiftedImmOp { 879 ARM_AM::ShiftOpc ShiftTy; 880 unsigned SrcReg; 881 unsigned ShiftImm; 882 }; 883 884 struct RotImmOp { 885 unsigned Imm; 886 }; 887 888 struct ModImmOp { 889 unsigned Bits; 890 unsigned Rot; 891 }; 892 893 struct BitfieldOp { 894 unsigned LSB; 895 unsigned Width; 896 }; 897 898 union { 899 struct CCOp CC; 900 struct VCCOp VCC; 901 struct CopOp Cop; 902 struct CoprocOptionOp CoprocOption; 903 struct MBOptOp MBOpt; 904 struct ISBOptOp ISBOpt; 905 struct TSBOptOp TSBOpt; 906 struct ITMaskOp ITMask; 907 struct IFlagsOp IFlags; 908 struct MMaskOp MMask; 909 struct BankedRegOp BankedReg; 910 struct TokOp Tok; 911 struct RegOp Reg; 912 struct VectorListOp VectorList; 913 struct VectorIndexOp VectorIndex; 914 struct ImmOp Imm; 915 struct MemoryOp Memory; 916 struct PostIdxRegOp PostIdxReg; 917 struct ShifterImmOp ShifterImm; 918 struct RegShiftedRegOp RegShiftedReg; 919 struct RegShiftedImmOp RegShiftedImm; 920 struct RotImmOp RotImm; 921 struct ModImmOp ModImm; 922 struct BitfieldOp Bitfield; 923 }; 924 925 public: 926 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 927 928 /// getStartLoc - Get the location of the first token of this operand. 929 SMLoc getStartLoc() const override { return StartLoc; } 930 931 /// getEndLoc - Get the location of the last token of this operand. 932 SMLoc getEndLoc() const override { return EndLoc; } 933 934 /// getLocRange - Get the range between the first and last token of this 935 /// operand. 936 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 937 938 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 939 SMLoc getAlignmentLoc() const { 940 assert(Kind == k_Memory && "Invalid access!"); 941 return AlignmentLoc; 942 } 943 944 ARMCC::CondCodes getCondCode() const { 945 assert(Kind == k_CondCode && "Invalid access!"); 946 return CC.Val; 947 } 948 949 ARMVCC::VPTCodes getVPTPred() const { 950 assert(isVPTPred() && "Invalid access!"); 951 return VCC.Val; 952 } 953 954 unsigned getCoproc() const { 955 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 956 return Cop.Val; 957 } 958 959 StringRef getToken() const { 960 assert(Kind == k_Token && "Invalid access!"); 961 return StringRef(Tok.Data, Tok.Length); 962 } 963 964 unsigned getReg() const override { 965 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 966 return Reg.RegNum; 967 } 968 969 const SmallVectorImpl<unsigned> &getRegList() const { 970 assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR || 971 Kind == k_DPRRegisterList || Kind == k_SPRRegisterList || 972 Kind == k_FPSRegisterListWithVPR || 973 Kind == k_FPDRegisterListWithVPR) && 974 "Invalid access!"); 975 return Registers; 976 } 977 978 const MCExpr *getImm() const { 979 assert(isImm() && "Invalid access!"); 980 return Imm.Val; 981 } 982 983 const MCExpr *getConstantPoolImm() const { 984 assert(isConstantPoolImm() && "Invalid access!"); 985 return Imm.Val; 986 } 987 988 unsigned getVectorIndex() const { 989 assert(Kind == k_VectorIndex && "Invalid access!"); 990 return VectorIndex.Val; 991 } 992 993 ARM_MB::MemBOpt getMemBarrierOpt() const { 994 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 995 return MBOpt.Val; 996 } 997 998 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 999 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 1000 return ISBOpt.Val; 1001 } 1002 1003 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const { 1004 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!"); 1005 return TSBOpt.Val; 1006 } 1007 1008 ARM_PROC::IFlags getProcIFlags() const { 1009 assert(Kind == k_ProcIFlags && "Invalid access!"); 1010 return IFlags.Val; 1011 } 1012 1013 unsigned getMSRMask() const { 1014 assert(Kind == k_MSRMask && "Invalid access!"); 1015 return MMask.Val; 1016 } 1017 1018 unsigned getBankedReg() const { 1019 assert(Kind == k_BankedReg && "Invalid access!"); 1020 return BankedReg.Val; 1021 } 1022 1023 bool isCoprocNum() const { return Kind == k_CoprocNum; } 1024 bool isCoprocReg() const { return Kind == k_CoprocReg; } 1025 bool isCoprocOption() const { return Kind == k_CoprocOption; } 1026 bool isCondCode() const { return Kind == k_CondCode; } 1027 bool isVPTPred() const { return Kind == k_VPTPred; } 1028 bool isCCOut() const { return Kind == k_CCOut; } 1029 bool isITMask() const { return Kind == k_ITCondMask; } 1030 bool isITCondCode() const { return Kind == k_CondCode; } 1031 bool isImm() const override { 1032 return Kind == k_Immediate; 1033 } 1034 1035 bool isARMBranchTarget() const { 1036 if (!isImm()) return false; 1037 1038 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 1039 return CE->getValue() % 4 == 0; 1040 return true; 1041 } 1042 1043 1044 bool isThumbBranchTarget() const { 1045 if (!isImm()) return false; 1046 1047 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 1048 return CE->getValue() % 2 == 0; 1049 return true; 1050 } 1051 1052 // checks whether this operand is an unsigned offset which fits is a field 1053 // of specified width and scaled by a specific number of bits 1054 template<unsigned width, unsigned scale> 1055 bool isUnsignedOffset() const { 1056 if (!isImm()) return false; 1057 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1058 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1059 int64_t Val = CE->getValue(); 1060 int64_t Align = 1LL << scale; 1061 int64_t Max = Align * ((1LL << width) - 1); 1062 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 1063 } 1064 return false; 1065 } 1066 1067 // checks whether this operand is an signed offset which fits is a field 1068 // of specified width and scaled by a specific number of bits 1069 template<unsigned width, unsigned scale> 1070 bool isSignedOffset() const { 1071 if (!isImm()) return false; 1072 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1073 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1074 int64_t Val = CE->getValue(); 1075 int64_t Align = 1LL << scale; 1076 int64_t Max = Align * ((1LL << (width-1)) - 1); 1077 int64_t Min = -Align * (1LL << (width-1)); 1078 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 1079 } 1080 return false; 1081 } 1082 1083 // checks whether this operand is an offset suitable for the LE / 1084 // LETP instructions in Arm v8.1M 1085 bool isLEOffset() const { 1086 if (!isImm()) return false; 1087 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1088 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1089 int64_t Val = CE->getValue(); 1090 return Val < 0 && Val >= -4094 && (Val & 1) == 0; 1091 } 1092 return false; 1093 } 1094 1095 // checks whether this operand is a memory operand computed as an offset 1096 // applied to PC. the offset may have 8 bits of magnitude and is represented 1097 // with two bits of shift. textually it may be either [pc, #imm], #imm or 1098 // relocable expression... 1099 bool isThumbMemPC() const { 1100 int64_t Val = 0; 1101 if (isImm()) { 1102 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1103 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 1104 if (!CE) return false; 1105 Val = CE->getValue(); 1106 } 1107 else if (isGPRMem()) { 1108 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 1109 if(Memory.BaseRegNum != ARM::PC) return false; 1110 Val = Memory.OffsetImm->getValue(); 1111 } 1112 else return false; 1113 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 1114 } 1115 1116 bool isFPImm() const { 1117 if (!isImm()) return false; 1118 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1119 if (!CE) return false; 1120 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1121 return Val != -1; 1122 } 1123 1124 template<int64_t N, int64_t M> 1125 bool isImmediate() const { 1126 if (!isImm()) return false; 1127 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1128 if (!CE) return false; 1129 int64_t Value = CE->getValue(); 1130 return Value >= N && Value <= M; 1131 } 1132 1133 template<int64_t N, int64_t M> 1134 bool isImmediateS4() const { 1135 if (!isImm()) return false; 1136 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1137 if (!CE) return false; 1138 int64_t Value = CE->getValue(); 1139 return ((Value & 3) == 0) && Value >= N && Value <= M; 1140 } 1141 template<int64_t N, int64_t M> 1142 bool isImmediateS2() const { 1143 if (!isImm()) return false; 1144 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1145 if (!CE) return false; 1146 int64_t Value = CE->getValue(); 1147 return ((Value & 1) == 0) && Value >= N && Value <= M; 1148 } 1149 bool isFBits16() const { 1150 return isImmediate<0, 17>(); 1151 } 1152 bool isFBits32() const { 1153 return isImmediate<1, 33>(); 1154 } 1155 bool isImm8s4() const { 1156 return isImmediateS4<-1020, 1020>(); 1157 } 1158 bool isImm7s4() const { 1159 return isImmediateS4<-508, 508>(); 1160 } 1161 bool isImm7Shift0() const { 1162 return isImmediate<-127, 127>(); 1163 } 1164 bool isImm7Shift1() const { 1165 return isImmediateS2<-255, 255>(); 1166 } 1167 bool isImm7Shift2() const { 1168 return isImmediateS4<-511, 511>(); 1169 } 1170 bool isImm7() const { 1171 return isImmediate<-127, 127>(); 1172 } 1173 bool isImm0_1020s4() const { 1174 return isImmediateS4<0, 1020>(); 1175 } 1176 bool isImm0_508s4() const { 1177 return isImmediateS4<0, 508>(); 1178 } 1179 bool isImm0_508s4Neg() const { 1180 if (!isImm()) return false; 1181 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1182 if (!CE) return false; 1183 int64_t Value = -CE->getValue(); 1184 // explicitly exclude zero. we want that to use the normal 0_508 version. 1185 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 1186 } 1187 1188 bool isImm0_4095Neg() const { 1189 if (!isImm()) return false; 1190 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1191 if (!CE) return false; 1192 // isImm0_4095Neg is used with 32-bit immediates only. 1193 // 32-bit immediates are zero extended to 64-bit when parsed, 1194 // thus simple -CE->getValue() results in a big negative number, 1195 // not a small positive number as intended 1196 if ((CE->getValue() >> 32) > 0) return false; 1197 uint32_t Value = -static_cast<uint32_t>(CE->getValue()); 1198 return Value > 0 && Value < 4096; 1199 } 1200 1201 bool isImm0_7() const { 1202 return isImmediate<0, 7>(); 1203 } 1204 1205 bool isImm1_16() const { 1206 return isImmediate<1, 16>(); 1207 } 1208 1209 bool isImm1_32() const { 1210 return isImmediate<1, 32>(); 1211 } 1212 1213 bool isImm8_255() const { 1214 return isImmediate<8, 255>(); 1215 } 1216 1217 bool isImm256_65535Expr() const { 1218 if (!isImm()) return false; 1219 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1220 // If it's not a constant expression, it'll generate a fixup and be 1221 // handled later. 1222 if (!CE) return true; 1223 int64_t Value = CE->getValue(); 1224 return Value >= 256 && Value < 65536; 1225 } 1226 1227 bool isImm0_65535Expr() const { 1228 if (!isImm()) return false; 1229 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1230 // If it's not a constant expression, it'll generate a fixup and be 1231 // handled later. 1232 if (!CE) return true; 1233 int64_t Value = CE->getValue(); 1234 return Value >= 0 && Value < 65536; 1235 } 1236 1237 bool isImm24bit() const { 1238 return isImmediate<0, 0xffffff + 1>(); 1239 } 1240 1241 bool isImmThumbSR() const { 1242 return isImmediate<1, 33>(); 1243 } 1244 1245 template<int shift> 1246 bool isExpImmValue(uint64_t Value) const { 1247 uint64_t mask = (1 << shift) - 1; 1248 if ((Value & mask) != 0 || (Value >> shift) > 0xff) 1249 return false; 1250 return true; 1251 } 1252 1253 template<int shift> 1254 bool isExpImm() const { 1255 if (!isImm()) return false; 1256 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1257 if (!CE) return false; 1258 1259 return isExpImmValue<shift>(CE->getValue()); 1260 } 1261 1262 template<int shift, int size> 1263 bool isInvertedExpImm() const { 1264 if (!isImm()) return false; 1265 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1266 if (!CE) return false; 1267 1268 uint64_t OriginalValue = CE->getValue(); 1269 uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1); 1270 return isExpImmValue<shift>(InvertedValue); 1271 } 1272 1273 bool isPKHLSLImm() const { 1274 return isImmediate<0, 32>(); 1275 } 1276 1277 bool isPKHASRImm() const { 1278 return isImmediate<0, 33>(); 1279 } 1280 1281 bool isAdrLabel() const { 1282 // If we have an immediate that's not a constant, treat it as a label 1283 // reference needing a fixup. 1284 if (isImm() && !isa<MCConstantExpr>(getImm())) 1285 return true; 1286 1287 // If it is a constant, it must fit into a modified immediate encoding. 1288 if (!isImm()) return false; 1289 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1290 if (!CE) return false; 1291 int64_t Value = CE->getValue(); 1292 return (ARM_AM::getSOImmVal(Value) != -1 || 1293 ARM_AM::getSOImmVal(-Value) != -1); 1294 } 1295 1296 bool isT2SOImm() const { 1297 // If we have an immediate that's not a constant, treat it as an expression 1298 // needing a fixup. 1299 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1300 // We want to avoid matching :upper16: and :lower16: as we want these 1301 // expressions to match in isImm0_65535Expr() 1302 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1303 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1304 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1305 } 1306 if (!isImm()) return false; 1307 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1308 if (!CE) return false; 1309 int64_t Value = CE->getValue(); 1310 return ARM_AM::getT2SOImmVal(Value) != -1; 1311 } 1312 1313 bool isT2SOImmNot() const { 1314 if (!isImm()) return false; 1315 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1316 if (!CE) return false; 1317 int64_t Value = CE->getValue(); 1318 return ARM_AM::getT2SOImmVal(Value) == -1 && 1319 ARM_AM::getT2SOImmVal(~Value) != -1; 1320 } 1321 1322 bool isT2SOImmNeg() const { 1323 if (!isImm()) return false; 1324 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1325 if (!CE) return false; 1326 int64_t Value = CE->getValue(); 1327 // Only use this when not representable as a plain so_imm. 1328 return ARM_AM::getT2SOImmVal(Value) == -1 && 1329 ARM_AM::getT2SOImmVal(-Value) != -1; 1330 } 1331 1332 bool isSetEndImm() const { 1333 if (!isImm()) return false; 1334 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1335 if (!CE) return false; 1336 int64_t Value = CE->getValue(); 1337 return Value == 1 || Value == 0; 1338 } 1339 1340 bool isReg() const override { return Kind == k_Register; } 1341 bool isRegList() const { return Kind == k_RegisterList; } 1342 bool isRegListWithAPSR() const { 1343 return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList; 1344 } 1345 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1346 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1347 bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; } 1348 bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; } 1349 bool isToken() const override { return Kind == k_Token; } 1350 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1351 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1352 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; } 1353 bool isMem() const override { 1354 return isGPRMem() || isMVEMem(); 1355 } 1356 bool isMVEMem() const { 1357 if (Kind != k_Memory) 1358 return false; 1359 if (Memory.BaseRegNum && 1360 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) && 1361 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum)) 1362 return false; 1363 if (Memory.OffsetRegNum && 1364 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1365 Memory.OffsetRegNum)) 1366 return false; 1367 return true; 1368 } 1369 bool isGPRMem() const { 1370 if (Kind != k_Memory) 1371 return false; 1372 if (Memory.BaseRegNum && 1373 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) 1374 return false; 1375 if (Memory.OffsetRegNum && 1376 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) 1377 return false; 1378 return true; 1379 } 1380 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1381 bool isRegShiftedReg() const { 1382 return Kind == k_ShiftedRegister && 1383 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1384 RegShiftedReg.SrcReg) && 1385 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1386 RegShiftedReg.ShiftReg); 1387 } 1388 bool isRegShiftedImm() const { 1389 return Kind == k_ShiftedImmediate && 1390 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1391 RegShiftedImm.SrcReg); 1392 } 1393 bool isRotImm() const { return Kind == k_RotateImmediate; } 1394 1395 template<unsigned Min, unsigned Max> 1396 bool isPowerTwoInRange() const { 1397 if (!isImm()) return false; 1398 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1399 if (!CE) return false; 1400 int64_t Value = CE->getValue(); 1401 return Value > 0 && countPopulation((uint64_t)Value) == 1 && 1402 Value >= Min && Value <= Max; 1403 } 1404 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1405 1406 bool isModImmNot() const { 1407 if (!isImm()) return false; 1408 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1409 if (!CE) return false; 1410 int64_t Value = CE->getValue(); 1411 return ARM_AM::getSOImmVal(~Value) != -1; 1412 } 1413 1414 bool isModImmNeg() const { 1415 if (!isImm()) return false; 1416 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1417 if (!CE) return false; 1418 int64_t Value = CE->getValue(); 1419 return ARM_AM::getSOImmVal(Value) == -1 && 1420 ARM_AM::getSOImmVal(-Value) != -1; 1421 } 1422 1423 bool isThumbModImmNeg1_7() const { 1424 if (!isImm()) return false; 1425 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1426 if (!CE) return false; 1427 int32_t Value = -(int32_t)CE->getValue(); 1428 return 0 < Value && Value < 8; 1429 } 1430 1431 bool isThumbModImmNeg8_255() const { 1432 if (!isImm()) return false; 1433 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1434 if (!CE) return false; 1435 int32_t Value = -(int32_t)CE->getValue(); 1436 return 7 < Value && Value < 256; 1437 } 1438 1439 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1440 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1441 bool isPostIdxRegShifted() const { 1442 return Kind == k_PostIndexRegister && 1443 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); 1444 } 1445 bool isPostIdxReg() const { 1446 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; 1447 } 1448 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1449 if (!isGPRMem()) 1450 return false; 1451 // No offset of any kind. 1452 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1453 (alignOK || Memory.Alignment == Alignment); 1454 } 1455 bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const { 1456 if (!isGPRMem()) 1457 return false; 1458 1459 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1460 Memory.BaseRegNum)) 1461 return false; 1462 1463 // No offset of any kind. 1464 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1465 (alignOK || Memory.Alignment == Alignment); 1466 } 1467 bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const { 1468 if (!isGPRMem()) 1469 return false; 1470 1471 if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains( 1472 Memory.BaseRegNum)) 1473 return false; 1474 1475 // No offset of any kind. 1476 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1477 (alignOK || Memory.Alignment == Alignment); 1478 } 1479 bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const { 1480 if (!isGPRMem()) 1481 return false; 1482 1483 if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains( 1484 Memory.BaseRegNum)) 1485 return false; 1486 1487 // No offset of any kind. 1488 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1489 (alignOK || Memory.Alignment == Alignment); 1490 } 1491 bool isMemPCRelImm12() const { 1492 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1493 return false; 1494 // Base register must be PC. 1495 if (Memory.BaseRegNum != ARM::PC) 1496 return false; 1497 // Immediate offset in range [-4095, 4095]. 1498 if (!Memory.OffsetImm) return true; 1499 int64_t Val = Memory.OffsetImm->getValue(); 1500 return (Val > -4096 && Val < 4096) || 1501 (Val == std::numeric_limits<int32_t>::min()); 1502 } 1503 1504 bool isAlignedMemory() const { 1505 return isMemNoOffset(true); 1506 } 1507 1508 bool isAlignedMemoryNone() const { 1509 return isMemNoOffset(false, 0); 1510 } 1511 1512 bool isDupAlignedMemoryNone() const { 1513 return isMemNoOffset(false, 0); 1514 } 1515 1516 bool isAlignedMemory16() const { 1517 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1518 return true; 1519 return isMemNoOffset(false, 0); 1520 } 1521 1522 bool isDupAlignedMemory16() const { 1523 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1524 return true; 1525 return isMemNoOffset(false, 0); 1526 } 1527 1528 bool isAlignedMemory32() const { 1529 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1530 return true; 1531 return isMemNoOffset(false, 0); 1532 } 1533 1534 bool isDupAlignedMemory32() const { 1535 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1536 return true; 1537 return isMemNoOffset(false, 0); 1538 } 1539 1540 bool isAlignedMemory64() const { 1541 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1542 return true; 1543 return isMemNoOffset(false, 0); 1544 } 1545 1546 bool isDupAlignedMemory64() const { 1547 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1548 return true; 1549 return isMemNoOffset(false, 0); 1550 } 1551 1552 bool isAlignedMemory64or128() const { 1553 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1554 return true; 1555 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1556 return true; 1557 return isMemNoOffset(false, 0); 1558 } 1559 1560 bool isDupAlignedMemory64or128() const { 1561 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1562 return true; 1563 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1564 return true; 1565 return isMemNoOffset(false, 0); 1566 } 1567 1568 bool isAlignedMemory64or128or256() const { 1569 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1570 return true; 1571 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1572 return true; 1573 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1574 return true; 1575 return isMemNoOffset(false, 0); 1576 } 1577 1578 bool isAddrMode2() const { 1579 if (!isGPRMem() || Memory.Alignment != 0) return false; 1580 // Check for register offset. 1581 if (Memory.OffsetRegNum) return true; 1582 // Immediate offset in range [-4095, 4095]. 1583 if (!Memory.OffsetImm) return true; 1584 int64_t Val = Memory.OffsetImm->getValue(); 1585 return Val > -4096 && Val < 4096; 1586 } 1587 1588 bool isAM2OffsetImm() const { 1589 if (!isImm()) return false; 1590 // Immediate offset in range [-4095, 4095]. 1591 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1592 if (!CE) return false; 1593 int64_t Val = CE->getValue(); 1594 return (Val == std::numeric_limits<int32_t>::min()) || 1595 (Val > -4096 && Val < 4096); 1596 } 1597 1598 bool isAddrMode3() const { 1599 // If we have an immediate that's not a constant, treat it as a label 1600 // reference needing a fixup. If it is a constant, it's something else 1601 // and we reject it. 1602 if (isImm() && !isa<MCConstantExpr>(getImm())) 1603 return true; 1604 if (!isGPRMem() || Memory.Alignment != 0) return false; 1605 // No shifts are legal for AM3. 1606 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1607 // Check for register offset. 1608 if (Memory.OffsetRegNum) return true; 1609 // Immediate offset in range [-255, 255]. 1610 if (!Memory.OffsetImm) return true; 1611 int64_t Val = Memory.OffsetImm->getValue(); 1612 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we 1613 // have to check for this too. 1614 return (Val > -256 && Val < 256) || 1615 Val == std::numeric_limits<int32_t>::min(); 1616 } 1617 1618 bool isAM3Offset() const { 1619 if (isPostIdxReg()) 1620 return true; 1621 if (!isImm()) 1622 return false; 1623 // Immediate offset in range [-255, 255]. 1624 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1625 if (!CE) return false; 1626 int64_t Val = CE->getValue(); 1627 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1628 return (Val > -256 && Val < 256) || 1629 Val == std::numeric_limits<int32_t>::min(); 1630 } 1631 1632 bool isAddrMode5() const { 1633 // If we have an immediate that's not a constant, treat it as a label 1634 // reference needing a fixup. If it is a constant, it's something else 1635 // and we reject it. 1636 if (isImm() && !isa<MCConstantExpr>(getImm())) 1637 return true; 1638 if (!isGPRMem() || Memory.Alignment != 0) return false; 1639 // Check for register offset. 1640 if (Memory.OffsetRegNum) return false; 1641 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1642 if (!Memory.OffsetImm) return true; 1643 int64_t Val = Memory.OffsetImm->getValue(); 1644 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1645 Val == std::numeric_limits<int32_t>::min(); 1646 } 1647 1648 bool isAddrMode5FP16() const { 1649 // If we have an immediate that's not a constant, treat it as a label 1650 // reference needing a fixup. If it is a constant, it's something else 1651 // and we reject it. 1652 if (isImm() && !isa<MCConstantExpr>(getImm())) 1653 return true; 1654 if (!isGPRMem() || Memory.Alignment != 0) return false; 1655 // Check for register offset. 1656 if (Memory.OffsetRegNum) return false; 1657 // Immediate offset in range [-510, 510] and a multiple of 2. 1658 if (!Memory.OffsetImm) return true; 1659 int64_t Val = Memory.OffsetImm->getValue(); 1660 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || 1661 Val == std::numeric_limits<int32_t>::min(); 1662 } 1663 1664 bool isMemTBB() const { 1665 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1666 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1667 return false; 1668 return true; 1669 } 1670 1671 bool isMemTBH() const { 1672 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1673 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1674 Memory.Alignment != 0 ) 1675 return false; 1676 return true; 1677 } 1678 1679 bool isMemRegOffset() const { 1680 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1681 return false; 1682 return true; 1683 } 1684 1685 bool isT2MemRegOffset() const { 1686 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1687 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1688 return false; 1689 // Only lsl #{0, 1, 2, 3} allowed. 1690 if (Memory.ShiftType == ARM_AM::no_shift) 1691 return true; 1692 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1693 return false; 1694 return true; 1695 } 1696 1697 bool isMemThumbRR() const { 1698 // Thumb reg+reg addressing is simple. Just two registers, a base and 1699 // an offset. No shifts, negations or any other complicating factors. 1700 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1701 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1702 return false; 1703 return isARMLowRegister(Memory.BaseRegNum) && 1704 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1705 } 1706 1707 bool isMemThumbRIs4() const { 1708 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1709 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1710 return false; 1711 // Immediate offset, multiple of 4 in range [0, 124]. 1712 if (!Memory.OffsetImm) return true; 1713 int64_t Val = Memory.OffsetImm->getValue(); 1714 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1715 } 1716 1717 bool isMemThumbRIs2() const { 1718 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1719 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1720 return false; 1721 // Immediate offset, multiple of 4 in range [0, 62]. 1722 if (!Memory.OffsetImm) return true; 1723 int64_t Val = Memory.OffsetImm->getValue(); 1724 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1725 } 1726 1727 bool isMemThumbRIs1() const { 1728 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1729 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1730 return false; 1731 // Immediate offset in range [0, 31]. 1732 if (!Memory.OffsetImm) return true; 1733 int64_t Val = Memory.OffsetImm->getValue(); 1734 return Val >= 0 && Val <= 31; 1735 } 1736 1737 bool isMemThumbSPI() const { 1738 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1739 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1740 return false; 1741 // Immediate offset, multiple of 4 in range [0, 1020]. 1742 if (!Memory.OffsetImm) return true; 1743 int64_t Val = Memory.OffsetImm->getValue(); 1744 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1745 } 1746 1747 bool isMemImm8s4Offset() const { 1748 // If we have an immediate that's not a constant, treat it as a label 1749 // reference needing a fixup. If it is a constant, it's something else 1750 // and we reject it. 1751 if (isImm() && !isa<MCConstantExpr>(getImm())) 1752 return true; 1753 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1754 return false; 1755 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1756 if (!Memory.OffsetImm) return true; 1757 int64_t Val = Memory.OffsetImm->getValue(); 1758 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1759 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || 1760 Val == std::numeric_limits<int32_t>::min(); 1761 } 1762 bool isMemImm7s4Offset() const { 1763 // If we have an immediate that's not a constant, treat it as a label 1764 // reference needing a fixup. If it is a constant, it's something else 1765 // and we reject it. 1766 if (isImm() && !isa<MCConstantExpr>(getImm())) 1767 return true; 1768 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1769 !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1770 Memory.BaseRegNum)) 1771 return false; 1772 // Immediate offset a multiple of 4 in range [-508, 508]. 1773 if (!Memory.OffsetImm) return true; 1774 int64_t Val = Memory.OffsetImm->getValue(); 1775 // Special case, #-0 is INT32_MIN. 1776 return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN; 1777 } 1778 bool isMemImm0_1020s4Offset() const { 1779 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1780 return false; 1781 // Immediate offset a multiple of 4 in range [0, 1020]. 1782 if (!Memory.OffsetImm) return true; 1783 int64_t Val = Memory.OffsetImm->getValue(); 1784 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1785 } 1786 1787 bool isMemImm8Offset() const { 1788 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1789 return false; 1790 // Base reg of PC isn't allowed for these encodings. 1791 if (Memory.BaseRegNum == ARM::PC) return false; 1792 // Immediate offset in range [-255, 255]. 1793 if (!Memory.OffsetImm) return true; 1794 int64_t Val = Memory.OffsetImm->getValue(); 1795 return (Val == std::numeric_limits<int32_t>::min()) || 1796 (Val > -256 && Val < 256); 1797 } 1798 1799 template<unsigned Bits, unsigned RegClassID> 1800 bool isMemImm7ShiftedOffset() const { 1801 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1802 !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum)) 1803 return false; 1804 1805 // Expect an immediate offset equal to an element of the range 1806 // [-127, 127], shifted left by Bits. 1807 1808 if (!Memory.OffsetImm) return true; 1809 int64_t Val = Memory.OffsetImm->getValue(); 1810 1811 // INT32_MIN is a special-case value (indicating the encoding with 1812 // zero offset and the subtract bit set) 1813 if (Val == INT32_MIN) 1814 return true; 1815 1816 unsigned Divisor = 1U << Bits; 1817 1818 // Check that the low bits are zero 1819 if (Val % Divisor != 0) 1820 return false; 1821 1822 // Check that the remaining offset is within range. 1823 Val /= Divisor; 1824 return (Val >= -127 && Val <= 127); 1825 } 1826 1827 template <int shift> bool isMemRegRQOffset() const { 1828 if (!isMVEMem() || Memory.OffsetImm != 0 || Memory.Alignment != 0) 1829 return false; 1830 1831 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1832 Memory.BaseRegNum)) 1833 return false; 1834 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1835 Memory.OffsetRegNum)) 1836 return false; 1837 1838 if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift) 1839 return false; 1840 1841 if (shift > 0 && 1842 (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift)) 1843 return false; 1844 1845 return true; 1846 } 1847 1848 template <int shift> bool isMemRegQOffset() const { 1849 if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1850 return false; 1851 1852 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1853 Memory.BaseRegNum)) 1854 return false; 1855 1856 if(!Memory.OffsetImm) return true; 1857 static_assert(shift < 56, 1858 "Such that we dont shift by a value higher than 62"); 1859 int64_t Val = Memory.OffsetImm->getValue(); 1860 1861 // The value must be a multiple of (1 << shift) 1862 if ((Val & ((1U << shift) - 1)) != 0) 1863 return false; 1864 1865 // And be in the right range, depending on the amount that it is shifted 1866 // by. Shift 0, is equal to 7 unsigned bits, the sign bit is set 1867 // separately. 1868 int64_t Range = (1U << (7+shift)) - 1; 1869 return (Val == INT32_MIN) || (Val > -Range && Val < Range); 1870 } 1871 1872 bool isMemPosImm8Offset() const { 1873 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1874 return false; 1875 // Immediate offset in range [0, 255]. 1876 if (!Memory.OffsetImm) return true; 1877 int64_t Val = Memory.OffsetImm->getValue(); 1878 return Val >= 0 && Val < 256; 1879 } 1880 1881 bool isMemNegImm8Offset() const { 1882 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1883 return false; 1884 // Base reg of PC isn't allowed for these encodings. 1885 if (Memory.BaseRegNum == ARM::PC) return false; 1886 // Immediate offset in range [-255, -1]. 1887 if (!Memory.OffsetImm) return false; 1888 int64_t Val = Memory.OffsetImm->getValue(); 1889 return (Val == std::numeric_limits<int32_t>::min()) || 1890 (Val > -256 && Val < 0); 1891 } 1892 1893 bool isMemUImm12Offset() const { 1894 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1895 return false; 1896 // Immediate offset in range [0, 4095]. 1897 if (!Memory.OffsetImm) return true; 1898 int64_t Val = Memory.OffsetImm->getValue(); 1899 return (Val >= 0 && Val < 4096); 1900 } 1901 1902 bool isMemImm12Offset() const { 1903 // If we have an immediate that's not a constant, treat it as a label 1904 // reference needing a fixup. If it is a constant, it's something else 1905 // and we reject it. 1906 1907 if (isImm() && !isa<MCConstantExpr>(getImm())) 1908 return true; 1909 1910 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1911 return false; 1912 // Immediate offset in range [-4095, 4095]. 1913 if (!Memory.OffsetImm) return true; 1914 int64_t Val = Memory.OffsetImm->getValue(); 1915 return (Val > -4096 && Val < 4096) || 1916 (Val == std::numeric_limits<int32_t>::min()); 1917 } 1918 1919 bool isConstPoolAsmImm() const { 1920 // Delay processing of Constant Pool Immediate, this will turn into 1921 // a constant. Match no other operand 1922 return (isConstantPoolImm()); 1923 } 1924 1925 bool isPostIdxImm8() const { 1926 if (!isImm()) return false; 1927 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1928 if (!CE) return false; 1929 int64_t Val = CE->getValue(); 1930 return (Val > -256 && Val < 256) || 1931 (Val == std::numeric_limits<int32_t>::min()); 1932 } 1933 1934 bool isPostIdxImm8s4() const { 1935 if (!isImm()) return false; 1936 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1937 if (!CE) return false; 1938 int64_t Val = CE->getValue(); 1939 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1940 (Val == std::numeric_limits<int32_t>::min()); 1941 } 1942 1943 bool isMSRMask() const { return Kind == k_MSRMask; } 1944 bool isBankedReg() const { return Kind == k_BankedReg; } 1945 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1946 1947 // NEON operands. 1948 bool isSingleSpacedVectorList() const { 1949 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1950 } 1951 1952 bool isDoubleSpacedVectorList() const { 1953 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1954 } 1955 1956 bool isVecListOneD() const { 1957 if (!isSingleSpacedVectorList()) return false; 1958 return VectorList.Count == 1; 1959 } 1960 1961 bool isVecListTwoMQ() const { 1962 return isSingleSpacedVectorList() && VectorList.Count == 2 && 1963 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1964 VectorList.RegNum); 1965 } 1966 1967 bool isVecListDPair() const { 1968 if (!isSingleSpacedVectorList()) return false; 1969 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1970 .contains(VectorList.RegNum)); 1971 } 1972 1973 bool isVecListThreeD() const { 1974 if (!isSingleSpacedVectorList()) return false; 1975 return VectorList.Count == 3; 1976 } 1977 1978 bool isVecListFourD() const { 1979 if (!isSingleSpacedVectorList()) return false; 1980 return VectorList.Count == 4; 1981 } 1982 1983 bool isVecListDPairSpaced() const { 1984 if (Kind != k_VectorList) return false; 1985 if (isSingleSpacedVectorList()) return false; 1986 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1987 .contains(VectorList.RegNum)); 1988 } 1989 1990 bool isVecListThreeQ() const { 1991 if (!isDoubleSpacedVectorList()) return false; 1992 return VectorList.Count == 3; 1993 } 1994 1995 bool isVecListFourQ() const { 1996 if (!isDoubleSpacedVectorList()) return false; 1997 return VectorList.Count == 4; 1998 } 1999 2000 bool isVecListFourMQ() const { 2001 return isSingleSpacedVectorList() && VectorList.Count == 4 && 2002 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 2003 VectorList.RegNum); 2004 } 2005 2006 bool isSingleSpacedVectorAllLanes() const { 2007 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 2008 } 2009 2010 bool isDoubleSpacedVectorAllLanes() const { 2011 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 2012 } 2013 2014 bool isVecListOneDAllLanes() const { 2015 if (!isSingleSpacedVectorAllLanes()) return false; 2016 return VectorList.Count == 1; 2017 } 2018 2019 bool isVecListDPairAllLanes() const { 2020 if (!isSingleSpacedVectorAllLanes()) return false; 2021 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 2022 .contains(VectorList.RegNum)); 2023 } 2024 2025 bool isVecListDPairSpacedAllLanes() const { 2026 if (!isDoubleSpacedVectorAllLanes()) return false; 2027 return VectorList.Count == 2; 2028 } 2029 2030 bool isVecListThreeDAllLanes() const { 2031 if (!isSingleSpacedVectorAllLanes()) return false; 2032 return VectorList.Count == 3; 2033 } 2034 2035 bool isVecListThreeQAllLanes() const { 2036 if (!isDoubleSpacedVectorAllLanes()) return false; 2037 return VectorList.Count == 3; 2038 } 2039 2040 bool isVecListFourDAllLanes() const { 2041 if (!isSingleSpacedVectorAllLanes()) return false; 2042 return VectorList.Count == 4; 2043 } 2044 2045 bool isVecListFourQAllLanes() const { 2046 if (!isDoubleSpacedVectorAllLanes()) return false; 2047 return VectorList.Count == 4; 2048 } 2049 2050 bool isSingleSpacedVectorIndexed() const { 2051 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 2052 } 2053 2054 bool isDoubleSpacedVectorIndexed() const { 2055 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 2056 } 2057 2058 bool isVecListOneDByteIndexed() const { 2059 if (!isSingleSpacedVectorIndexed()) return false; 2060 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 2061 } 2062 2063 bool isVecListOneDHWordIndexed() const { 2064 if (!isSingleSpacedVectorIndexed()) return false; 2065 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 2066 } 2067 2068 bool isVecListOneDWordIndexed() const { 2069 if (!isSingleSpacedVectorIndexed()) return false; 2070 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 2071 } 2072 2073 bool isVecListTwoDByteIndexed() const { 2074 if (!isSingleSpacedVectorIndexed()) return false; 2075 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 2076 } 2077 2078 bool isVecListTwoDHWordIndexed() const { 2079 if (!isSingleSpacedVectorIndexed()) return false; 2080 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2081 } 2082 2083 bool isVecListTwoQWordIndexed() const { 2084 if (!isDoubleSpacedVectorIndexed()) return false; 2085 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2086 } 2087 2088 bool isVecListTwoQHWordIndexed() const { 2089 if (!isDoubleSpacedVectorIndexed()) return false; 2090 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2091 } 2092 2093 bool isVecListTwoDWordIndexed() const { 2094 if (!isSingleSpacedVectorIndexed()) return false; 2095 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2096 } 2097 2098 bool isVecListThreeDByteIndexed() const { 2099 if (!isSingleSpacedVectorIndexed()) return false; 2100 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 2101 } 2102 2103 bool isVecListThreeDHWordIndexed() const { 2104 if (!isSingleSpacedVectorIndexed()) return false; 2105 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2106 } 2107 2108 bool isVecListThreeQWordIndexed() const { 2109 if (!isDoubleSpacedVectorIndexed()) return false; 2110 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2111 } 2112 2113 bool isVecListThreeQHWordIndexed() const { 2114 if (!isDoubleSpacedVectorIndexed()) return false; 2115 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2116 } 2117 2118 bool isVecListThreeDWordIndexed() const { 2119 if (!isSingleSpacedVectorIndexed()) return false; 2120 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2121 } 2122 2123 bool isVecListFourDByteIndexed() const { 2124 if (!isSingleSpacedVectorIndexed()) return false; 2125 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 2126 } 2127 2128 bool isVecListFourDHWordIndexed() const { 2129 if (!isSingleSpacedVectorIndexed()) return false; 2130 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2131 } 2132 2133 bool isVecListFourQWordIndexed() const { 2134 if (!isDoubleSpacedVectorIndexed()) return false; 2135 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2136 } 2137 2138 bool isVecListFourQHWordIndexed() const { 2139 if (!isDoubleSpacedVectorIndexed()) return false; 2140 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2141 } 2142 2143 bool isVecListFourDWordIndexed() const { 2144 if (!isSingleSpacedVectorIndexed()) return false; 2145 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2146 } 2147 2148 bool isVectorIndex() const { return Kind == k_VectorIndex; } 2149 2150 template <unsigned NumLanes> 2151 bool isVectorIndexInRange() const { 2152 if (Kind != k_VectorIndex) return false; 2153 return VectorIndex.Val < NumLanes; 2154 } 2155 2156 bool isVectorIndex8() const { return isVectorIndexInRange<8>(); } 2157 bool isVectorIndex16() const { return isVectorIndexInRange<4>(); } 2158 bool isVectorIndex32() const { return isVectorIndexInRange<2>(); } 2159 bool isVectorIndex64() const { return isVectorIndexInRange<1>(); } 2160 2161 template<int PermittedValue, int OtherPermittedValue> 2162 bool isMVEPairVectorIndex() const { 2163 if (Kind != k_VectorIndex) return false; 2164 return VectorIndex.Val == PermittedValue || 2165 VectorIndex.Val == OtherPermittedValue; 2166 } 2167 2168 bool isNEONi8splat() const { 2169 if (!isImm()) return false; 2170 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2171 // Must be a constant. 2172 if (!CE) return false; 2173 int64_t Value = CE->getValue(); 2174 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 2175 // value. 2176 return Value >= 0 && Value < 256; 2177 } 2178 2179 bool isNEONi16splat() const { 2180 if (isNEONByteReplicate(2)) 2181 return false; // Leave that for bytes replication and forbid by default. 2182 if (!isImm()) 2183 return false; 2184 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2185 // Must be a constant. 2186 if (!CE) return false; 2187 unsigned Value = CE->getValue(); 2188 return ARM_AM::isNEONi16splat(Value); 2189 } 2190 2191 bool isNEONi16splatNot() const { 2192 if (!isImm()) 2193 return false; 2194 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2195 // Must be a constant. 2196 if (!CE) return false; 2197 unsigned Value = CE->getValue(); 2198 return ARM_AM::isNEONi16splat(~Value & 0xffff); 2199 } 2200 2201 bool isNEONi32splat() const { 2202 if (isNEONByteReplicate(4)) 2203 return false; // Leave that for bytes replication and forbid by default. 2204 if (!isImm()) 2205 return false; 2206 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2207 // Must be a constant. 2208 if (!CE) return false; 2209 unsigned Value = CE->getValue(); 2210 return ARM_AM::isNEONi32splat(Value); 2211 } 2212 2213 bool isNEONi32splatNot() const { 2214 if (!isImm()) 2215 return false; 2216 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2217 // Must be a constant. 2218 if (!CE) return false; 2219 unsigned Value = CE->getValue(); 2220 return ARM_AM::isNEONi32splat(~Value); 2221 } 2222 2223 static bool isValidNEONi32vmovImm(int64_t Value) { 2224 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 2225 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 2226 return ((Value & 0xffffffffffffff00) == 0) || 2227 ((Value & 0xffffffffffff00ff) == 0) || 2228 ((Value & 0xffffffffff00ffff) == 0) || 2229 ((Value & 0xffffffff00ffffff) == 0) || 2230 ((Value & 0xffffffffffff00ff) == 0xff) || 2231 ((Value & 0xffffffffff00ffff) == 0xffff); 2232 } 2233 2234 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { 2235 assert((Width == 8 || Width == 16 || Width == 32) && 2236 "Invalid element width"); 2237 assert(NumElems * Width <= 64 && "Invalid result width"); 2238 2239 if (!isImm()) 2240 return false; 2241 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2242 // Must be a constant. 2243 if (!CE) 2244 return false; 2245 int64_t Value = CE->getValue(); 2246 if (!Value) 2247 return false; // Don't bother with zero. 2248 if (Inv) 2249 Value = ~Value; 2250 2251 uint64_t Mask = (1ull << Width) - 1; 2252 uint64_t Elem = Value & Mask; 2253 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) 2254 return false; 2255 if (Width == 32 && !isValidNEONi32vmovImm(Elem)) 2256 return false; 2257 2258 for (unsigned i = 1; i < NumElems; ++i) { 2259 Value >>= Width; 2260 if ((Value & Mask) != Elem) 2261 return false; 2262 } 2263 return true; 2264 } 2265 2266 bool isNEONByteReplicate(unsigned NumBytes) const { 2267 return isNEONReplicate(8, NumBytes, false); 2268 } 2269 2270 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { 2271 assert((FromW == 8 || FromW == 16 || FromW == 32) && 2272 "Invalid source width"); 2273 assert((ToW == 16 || ToW == 32 || ToW == 64) && 2274 "Invalid destination width"); 2275 assert(FromW < ToW && "ToW is not less than FromW"); 2276 } 2277 2278 template<unsigned FromW, unsigned ToW> 2279 bool isNEONmovReplicate() const { 2280 checkNeonReplicateArgs(FromW, ToW); 2281 if (ToW == 64 && isNEONi64splat()) 2282 return false; 2283 return isNEONReplicate(FromW, ToW / FromW, false); 2284 } 2285 2286 template<unsigned FromW, unsigned ToW> 2287 bool isNEONinvReplicate() const { 2288 checkNeonReplicateArgs(FromW, ToW); 2289 return isNEONReplicate(FromW, ToW / FromW, true); 2290 } 2291 2292 bool isNEONi32vmov() const { 2293 if (isNEONByteReplicate(4)) 2294 return false; // Let it to be classified as byte-replicate case. 2295 if (!isImm()) 2296 return false; 2297 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2298 // Must be a constant. 2299 if (!CE) 2300 return false; 2301 return isValidNEONi32vmovImm(CE->getValue()); 2302 } 2303 2304 bool isNEONi32vmovNeg() const { 2305 if (!isImm()) return false; 2306 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2307 // Must be a constant. 2308 if (!CE) return false; 2309 return isValidNEONi32vmovImm(~CE->getValue()); 2310 } 2311 2312 bool isNEONi64splat() const { 2313 if (!isImm()) return false; 2314 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2315 // Must be a constant. 2316 if (!CE) return false; 2317 uint64_t Value = CE->getValue(); 2318 // i64 value with each byte being either 0 or 0xff. 2319 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 2320 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 2321 return true; 2322 } 2323 2324 template<int64_t Angle, int64_t Remainder> 2325 bool isComplexRotation() const { 2326 if (!isImm()) return false; 2327 2328 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2329 if (!CE) return false; 2330 uint64_t Value = CE->getValue(); 2331 2332 return (Value % Angle == Remainder && Value <= 270); 2333 } 2334 2335 bool isMVELongShift() const { 2336 if (!isImm()) return false; 2337 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2338 // Must be a constant. 2339 if (!CE) return false; 2340 uint64_t Value = CE->getValue(); 2341 return Value >= 1 && Value <= 32; 2342 } 2343 2344 bool isMveSaturateOp() const { 2345 if (!isImm()) return false; 2346 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2347 if (!CE) return false; 2348 uint64_t Value = CE->getValue(); 2349 return Value == 48 || Value == 64; 2350 } 2351 2352 bool isITCondCodeNoAL() const { 2353 if (!isITCondCode()) return false; 2354 ARMCC::CondCodes CC = getCondCode(); 2355 return CC != ARMCC::AL; 2356 } 2357 2358 bool isITCondCodeRestrictedI() const { 2359 if (!isITCondCode()) 2360 return false; 2361 ARMCC::CondCodes CC = getCondCode(); 2362 return CC == ARMCC::EQ || CC == ARMCC::NE; 2363 } 2364 2365 bool isITCondCodeRestrictedS() const { 2366 if (!isITCondCode()) 2367 return false; 2368 ARMCC::CondCodes CC = getCondCode(); 2369 return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE || 2370 CC == ARMCC::GE; 2371 } 2372 2373 bool isITCondCodeRestrictedU() const { 2374 if (!isITCondCode()) 2375 return false; 2376 ARMCC::CondCodes CC = getCondCode(); 2377 return CC == ARMCC::HS || CC == ARMCC::HI; 2378 } 2379 2380 bool isITCondCodeRestrictedFP() const { 2381 if (!isITCondCode()) 2382 return false; 2383 ARMCC::CondCodes CC = getCondCode(); 2384 return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT || 2385 CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE; 2386 } 2387 2388 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 2389 // Add as immediates when possible. Null MCExpr = 0. 2390 if (!Expr) 2391 Inst.addOperand(MCOperand::createImm(0)); 2392 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 2393 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2394 else 2395 Inst.addOperand(MCOperand::createExpr(Expr)); 2396 } 2397 2398 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 2399 assert(N == 1 && "Invalid number of operands!"); 2400 addExpr(Inst, getImm()); 2401 } 2402 2403 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 2404 assert(N == 1 && "Invalid number of operands!"); 2405 addExpr(Inst, getImm()); 2406 } 2407 2408 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 2409 assert(N == 2 && "Invalid number of operands!"); 2410 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2411 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 2412 Inst.addOperand(MCOperand::createReg(RegNum)); 2413 } 2414 2415 void addVPTPredNOperands(MCInst &Inst, unsigned N) const { 2416 assert(N == 2 && "Invalid number of operands!"); 2417 Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred()))); 2418 unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0; 2419 Inst.addOperand(MCOperand::createReg(RegNum)); 2420 } 2421 2422 void addVPTPredROperands(MCInst &Inst, unsigned N) const { 2423 assert(N == 3 && "Invalid number of operands!"); 2424 addVPTPredNOperands(Inst, N-1); 2425 unsigned RegNum; 2426 if (getVPTPred() == ARMVCC::None) { 2427 RegNum = 0; 2428 } else { 2429 unsigned NextOpIndex = Inst.getNumOperands(); 2430 const MCInstrDesc &MCID = ARMInsts[Inst.getOpcode()]; 2431 int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO); 2432 assert(TiedOp >= 0 && 2433 "Inactive register in vpred_r is not tied to an output!"); 2434 RegNum = Inst.getOperand(TiedOp).getReg(); 2435 } 2436 Inst.addOperand(MCOperand::createReg(RegNum)); 2437 } 2438 2439 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 2440 assert(N == 1 && "Invalid number of operands!"); 2441 Inst.addOperand(MCOperand::createImm(getCoproc())); 2442 } 2443 2444 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 2445 assert(N == 1 && "Invalid number of operands!"); 2446 Inst.addOperand(MCOperand::createImm(getCoproc())); 2447 } 2448 2449 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 2450 assert(N == 1 && "Invalid number of operands!"); 2451 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 2452 } 2453 2454 void addITMaskOperands(MCInst &Inst, unsigned N) const { 2455 assert(N == 1 && "Invalid number of operands!"); 2456 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 2457 } 2458 2459 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 2460 assert(N == 1 && "Invalid number of operands!"); 2461 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2462 } 2463 2464 void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const { 2465 assert(N == 1 && "Invalid number of operands!"); 2466 Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode())))); 2467 } 2468 2469 void addCCOutOperands(MCInst &Inst, unsigned N) const { 2470 assert(N == 1 && "Invalid number of operands!"); 2471 Inst.addOperand(MCOperand::createReg(getReg())); 2472 } 2473 2474 void addRegOperands(MCInst &Inst, unsigned N) const { 2475 assert(N == 1 && "Invalid number of operands!"); 2476 Inst.addOperand(MCOperand::createReg(getReg())); 2477 } 2478 2479 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 2480 assert(N == 3 && "Invalid number of operands!"); 2481 assert(isRegShiftedReg() && 2482 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 2483 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 2484 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 2485 Inst.addOperand(MCOperand::createImm( 2486 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 2487 } 2488 2489 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 2490 assert(N == 2 && "Invalid number of operands!"); 2491 assert(isRegShiftedImm() && 2492 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 2493 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 2494 // Shift of #32 is encoded as 0 where permitted 2495 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 2496 Inst.addOperand(MCOperand::createImm( 2497 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 2498 } 2499 2500 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 2501 assert(N == 1 && "Invalid number of operands!"); 2502 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 2503 ShifterImm.Imm)); 2504 } 2505 2506 void addRegListOperands(MCInst &Inst, unsigned N) const { 2507 assert(N == 1 && "Invalid number of operands!"); 2508 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2509 for (SmallVectorImpl<unsigned>::const_iterator 2510 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2511 Inst.addOperand(MCOperand::createReg(*I)); 2512 } 2513 2514 void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const { 2515 assert(N == 1 && "Invalid number of operands!"); 2516 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2517 for (SmallVectorImpl<unsigned>::const_iterator 2518 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2519 Inst.addOperand(MCOperand::createReg(*I)); 2520 } 2521 2522 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2523 addRegListOperands(Inst, N); 2524 } 2525 2526 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2527 addRegListOperands(Inst, N); 2528 } 2529 2530 void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2531 addRegListOperands(Inst, N); 2532 } 2533 2534 void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2535 addRegListOperands(Inst, N); 2536 } 2537 2538 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2539 assert(N == 1 && "Invalid number of operands!"); 2540 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2541 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2542 } 2543 2544 void addModImmOperands(MCInst &Inst, unsigned N) const { 2545 assert(N == 1 && "Invalid number of operands!"); 2546 2547 // Support for fixups (MCFixup) 2548 if (isImm()) 2549 return addImmOperands(Inst, N); 2550 2551 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2552 } 2553 2554 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2555 assert(N == 1 && "Invalid number of operands!"); 2556 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2557 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2558 Inst.addOperand(MCOperand::createImm(Enc)); 2559 } 2560 2561 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2562 assert(N == 1 && "Invalid number of operands!"); 2563 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2564 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2565 Inst.addOperand(MCOperand::createImm(Enc)); 2566 } 2567 2568 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 2569 assert(N == 1 && "Invalid number of operands!"); 2570 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2571 uint32_t Val = -CE->getValue(); 2572 Inst.addOperand(MCOperand::createImm(Val)); 2573 } 2574 2575 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 2576 assert(N == 1 && "Invalid number of operands!"); 2577 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2578 uint32_t Val = -CE->getValue(); 2579 Inst.addOperand(MCOperand::createImm(Val)); 2580 } 2581 2582 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2583 assert(N == 1 && "Invalid number of operands!"); 2584 // Munge the lsb/width into a bitfield mask. 2585 unsigned lsb = Bitfield.LSB; 2586 unsigned width = Bitfield.Width; 2587 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2588 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2589 (32 - (lsb + width))); 2590 Inst.addOperand(MCOperand::createImm(Mask)); 2591 } 2592 2593 void addImmOperands(MCInst &Inst, unsigned N) const { 2594 assert(N == 1 && "Invalid number of operands!"); 2595 addExpr(Inst, getImm()); 2596 } 2597 2598 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2599 assert(N == 1 && "Invalid number of operands!"); 2600 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2601 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2602 } 2603 2604 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2605 assert(N == 1 && "Invalid number of operands!"); 2606 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2607 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2608 } 2609 2610 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2611 assert(N == 1 && "Invalid number of operands!"); 2612 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2613 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2614 Inst.addOperand(MCOperand::createImm(Val)); 2615 } 2616 2617 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2618 assert(N == 1 && "Invalid number of operands!"); 2619 // FIXME: We really want to scale the value here, but the LDRD/STRD 2620 // instruction don't encode operands that way yet. 2621 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2622 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2623 } 2624 2625 void addImm7s4Operands(MCInst &Inst, unsigned N) const { 2626 assert(N == 1 && "Invalid number of operands!"); 2627 // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR 2628 // instruction don't encode operands that way yet. 2629 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2630 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2631 } 2632 2633 void addImm7Shift0Operands(MCInst &Inst, unsigned N) const { 2634 assert(N == 1 && "Invalid number of operands!"); 2635 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2636 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2637 } 2638 2639 void addImm7Shift1Operands(MCInst &Inst, unsigned N) const { 2640 assert(N == 1 && "Invalid number of operands!"); 2641 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2642 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2643 } 2644 2645 void addImm7Shift2Operands(MCInst &Inst, unsigned N) const { 2646 assert(N == 1 && "Invalid number of operands!"); 2647 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2648 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2649 } 2650 2651 void addImm7Operands(MCInst &Inst, unsigned N) const { 2652 assert(N == 1 && "Invalid number of operands!"); 2653 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2654 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2655 } 2656 2657 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2658 assert(N == 1 && "Invalid number of operands!"); 2659 // The immediate is scaled by four in the encoding and is stored 2660 // in the MCInst as such. Lop off the low two bits here. 2661 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2662 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2663 } 2664 2665 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2666 assert(N == 1 && "Invalid number of operands!"); 2667 // The immediate is scaled by four in the encoding and is stored 2668 // in the MCInst as such. Lop off the low two bits here. 2669 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2670 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2671 } 2672 2673 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2674 assert(N == 1 && "Invalid number of operands!"); 2675 // The immediate is scaled by four in the encoding and is stored 2676 // in the MCInst as such. Lop off the low two bits here. 2677 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2678 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2679 } 2680 2681 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2682 assert(N == 1 && "Invalid number of operands!"); 2683 // The constant encodes as the immediate-1, and we store in the instruction 2684 // the bits as encoded, so subtract off one here. 2685 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2686 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2687 } 2688 2689 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2690 assert(N == 1 && "Invalid number of operands!"); 2691 // The constant encodes as the immediate-1, and we store in the instruction 2692 // the bits as encoded, so subtract off one here. 2693 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2694 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2695 } 2696 2697 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2698 assert(N == 1 && "Invalid number of operands!"); 2699 // The constant encodes as the immediate, except for 32, which encodes as 2700 // zero. 2701 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2702 unsigned Imm = CE->getValue(); 2703 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2704 } 2705 2706 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2707 assert(N == 1 && "Invalid number of operands!"); 2708 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2709 // the instruction as well. 2710 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2711 int Val = CE->getValue(); 2712 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2713 } 2714 2715 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2716 assert(N == 1 && "Invalid number of operands!"); 2717 // The operand is actually a t2_so_imm, but we have its bitwise 2718 // negation in the assembly source, so twiddle it here. 2719 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2720 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2721 } 2722 2723 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2724 assert(N == 1 && "Invalid number of operands!"); 2725 // The operand is actually a t2_so_imm, but we have its 2726 // negation in the assembly source, so twiddle it here. 2727 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2728 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2729 } 2730 2731 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2732 assert(N == 1 && "Invalid number of operands!"); 2733 // The operand is actually an imm0_4095, but we have its 2734 // negation in the assembly source, so twiddle it here. 2735 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2736 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2737 } 2738 2739 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2740 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2741 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2742 return; 2743 } 2744 const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val); 2745 Inst.addOperand(MCOperand::createExpr(SR)); 2746 } 2747 2748 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2749 assert(N == 1 && "Invalid number of operands!"); 2750 if (isImm()) { 2751 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2752 if (CE) { 2753 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2754 return; 2755 } 2756 const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val); 2757 Inst.addOperand(MCOperand::createExpr(SR)); 2758 return; 2759 } 2760 2761 assert(isGPRMem() && "Unknown value type!"); 2762 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2763 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2764 } 2765 2766 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2767 assert(N == 1 && "Invalid number of operands!"); 2768 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2769 } 2770 2771 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2772 assert(N == 1 && "Invalid number of operands!"); 2773 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2774 } 2775 2776 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2777 assert(N == 1 && "Invalid number of operands!"); 2778 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt()))); 2779 } 2780 2781 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2782 assert(N == 1 && "Invalid number of operands!"); 2783 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2784 } 2785 2786 void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const { 2787 assert(N == 1 && "Invalid number of operands!"); 2788 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2789 } 2790 2791 void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const { 2792 assert(N == 1 && "Invalid number of operands!"); 2793 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2794 } 2795 2796 void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const { 2797 assert(N == 1 && "Invalid number of operands!"); 2798 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2799 } 2800 2801 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2802 assert(N == 1 && "Invalid number of operands!"); 2803 int32_t Imm = Memory.OffsetImm->getValue(); 2804 Inst.addOperand(MCOperand::createImm(Imm)); 2805 } 2806 2807 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2808 assert(N == 1 && "Invalid number of operands!"); 2809 assert(isImm() && "Not an immediate!"); 2810 2811 // If we have an immediate that's not a constant, treat it as a label 2812 // reference needing a fixup. 2813 if (!isa<MCConstantExpr>(getImm())) { 2814 Inst.addOperand(MCOperand::createExpr(getImm())); 2815 return; 2816 } 2817 2818 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2819 int Val = CE->getValue(); 2820 Inst.addOperand(MCOperand::createImm(Val)); 2821 } 2822 2823 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2824 assert(N == 2 && "Invalid number of operands!"); 2825 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2826 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2827 } 2828 2829 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2830 addAlignedMemoryOperands(Inst, N); 2831 } 2832 2833 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2834 addAlignedMemoryOperands(Inst, N); 2835 } 2836 2837 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2838 addAlignedMemoryOperands(Inst, N); 2839 } 2840 2841 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2842 addAlignedMemoryOperands(Inst, N); 2843 } 2844 2845 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2846 addAlignedMemoryOperands(Inst, N); 2847 } 2848 2849 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2850 addAlignedMemoryOperands(Inst, N); 2851 } 2852 2853 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2854 addAlignedMemoryOperands(Inst, N); 2855 } 2856 2857 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2858 addAlignedMemoryOperands(Inst, N); 2859 } 2860 2861 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2862 addAlignedMemoryOperands(Inst, N); 2863 } 2864 2865 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2866 addAlignedMemoryOperands(Inst, N); 2867 } 2868 2869 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2870 addAlignedMemoryOperands(Inst, N); 2871 } 2872 2873 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2874 assert(N == 3 && "Invalid number of operands!"); 2875 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2876 if (!Memory.OffsetRegNum) { 2877 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2878 // Special case for #-0 2879 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2880 if (Val < 0) Val = -Val; 2881 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2882 } else { 2883 // For register offset, we encode the shift type and negation flag 2884 // here. 2885 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2886 Memory.ShiftImm, Memory.ShiftType); 2887 } 2888 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2889 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2890 Inst.addOperand(MCOperand::createImm(Val)); 2891 } 2892 2893 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2894 assert(N == 2 && "Invalid number of operands!"); 2895 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2896 assert(CE && "non-constant AM2OffsetImm operand!"); 2897 int32_t Val = CE->getValue(); 2898 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2899 // Special case for #-0 2900 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2901 if (Val < 0) Val = -Val; 2902 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2903 Inst.addOperand(MCOperand::createReg(0)); 2904 Inst.addOperand(MCOperand::createImm(Val)); 2905 } 2906 2907 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2908 assert(N == 3 && "Invalid number of operands!"); 2909 // If we have an immediate that's not a constant, treat it as a label 2910 // reference needing a fixup. If it is a constant, it's something else 2911 // and we reject it. 2912 if (isImm()) { 2913 Inst.addOperand(MCOperand::createExpr(getImm())); 2914 Inst.addOperand(MCOperand::createReg(0)); 2915 Inst.addOperand(MCOperand::createImm(0)); 2916 return; 2917 } 2918 2919 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2920 if (!Memory.OffsetRegNum) { 2921 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2922 // Special case for #-0 2923 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2924 if (Val < 0) Val = -Val; 2925 Val = ARM_AM::getAM3Opc(AddSub, Val); 2926 } else { 2927 // For register offset, we encode the shift type and negation flag 2928 // here. 2929 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2930 } 2931 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2932 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2933 Inst.addOperand(MCOperand::createImm(Val)); 2934 } 2935 2936 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2937 assert(N == 2 && "Invalid number of operands!"); 2938 if (Kind == k_PostIndexRegister) { 2939 int32_t Val = 2940 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2941 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2942 Inst.addOperand(MCOperand::createImm(Val)); 2943 return; 2944 } 2945 2946 // Constant offset. 2947 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2948 int32_t Val = CE->getValue(); 2949 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2950 // Special case for #-0 2951 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2952 if (Val < 0) Val = -Val; 2953 Val = ARM_AM::getAM3Opc(AddSub, Val); 2954 Inst.addOperand(MCOperand::createReg(0)); 2955 Inst.addOperand(MCOperand::createImm(Val)); 2956 } 2957 2958 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2959 assert(N == 2 && "Invalid number of operands!"); 2960 // If we have an immediate that's not a constant, treat it as a label 2961 // reference needing a fixup. If it is a constant, it's something else 2962 // and we reject it. 2963 if (isImm()) { 2964 Inst.addOperand(MCOperand::createExpr(getImm())); 2965 Inst.addOperand(MCOperand::createImm(0)); 2966 return; 2967 } 2968 2969 // The lower two bits are always zero and as such are not encoded. 2970 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2971 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2972 // Special case for #-0 2973 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2974 if (Val < 0) Val = -Val; 2975 Val = ARM_AM::getAM5Opc(AddSub, Val); 2976 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2977 Inst.addOperand(MCOperand::createImm(Val)); 2978 } 2979 2980 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2981 assert(N == 2 && "Invalid number of operands!"); 2982 // If we have an immediate that's not a constant, treat it as a label 2983 // reference needing a fixup. If it is a constant, it's something else 2984 // and we reject it. 2985 if (isImm()) { 2986 Inst.addOperand(MCOperand::createExpr(getImm())); 2987 Inst.addOperand(MCOperand::createImm(0)); 2988 return; 2989 } 2990 2991 // The lower bit is always zero and as such is not encoded. 2992 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2993 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2994 // Special case for #-0 2995 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2996 if (Val < 0) Val = -Val; 2997 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2998 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2999 Inst.addOperand(MCOperand::createImm(Val)); 3000 } 3001 3002 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 3003 assert(N == 2 && "Invalid number of operands!"); 3004 // If we have an immediate that's not a constant, treat it as a label 3005 // reference needing a fixup. If it is a constant, it's something else 3006 // and we reject it. 3007 if (isImm()) { 3008 Inst.addOperand(MCOperand::createExpr(getImm())); 3009 Inst.addOperand(MCOperand::createImm(0)); 3010 return; 3011 } 3012 3013 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3014 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3015 Inst.addOperand(MCOperand::createImm(Val)); 3016 } 3017 3018 void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const { 3019 assert(N == 2 && "Invalid number of operands!"); 3020 // If we have an immediate that's not a constant, treat it as a label 3021 // reference needing a fixup. If it is a constant, it's something else 3022 // and we reject it. 3023 if (isImm()) { 3024 Inst.addOperand(MCOperand::createExpr(getImm())); 3025 Inst.addOperand(MCOperand::createImm(0)); 3026 return; 3027 } 3028 3029 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3030 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3031 Inst.addOperand(MCOperand::createImm(Val)); 3032 } 3033 3034 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 3035 assert(N == 2 && "Invalid number of operands!"); 3036 // The lower two bits are always zero and as such are not encoded. 3037 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 3038 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3039 Inst.addOperand(MCOperand::createImm(Val)); 3040 } 3041 3042 void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const { 3043 assert(N == 2 && "Invalid number of operands!"); 3044 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3045 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3046 Inst.addOperand(MCOperand::createImm(Val)); 3047 } 3048 3049 void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const { 3050 assert(N == 2 && "Invalid number of operands!"); 3051 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3052 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3053 } 3054 3055 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 3056 assert(N == 2 && "Invalid number of operands!"); 3057 // If this is an immediate, it's a label reference. 3058 if (isImm()) { 3059 addExpr(Inst, getImm()); 3060 Inst.addOperand(MCOperand::createImm(0)); 3061 return; 3062 } 3063 3064 // Otherwise, it's a normal memory reg+offset. 3065 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3066 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3067 Inst.addOperand(MCOperand::createImm(Val)); 3068 } 3069 3070 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 3071 assert(N == 2 && "Invalid number of operands!"); 3072 // If this is an immediate, it's a label reference. 3073 if (isImm()) { 3074 addExpr(Inst, getImm()); 3075 Inst.addOperand(MCOperand::createImm(0)); 3076 return; 3077 } 3078 3079 // Otherwise, it's a normal memory reg+offset. 3080 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3081 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3082 Inst.addOperand(MCOperand::createImm(Val)); 3083 } 3084 3085 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 3086 assert(N == 1 && "Invalid number of operands!"); 3087 // This is container for the immediate that we will create the constant 3088 // pool from 3089 addExpr(Inst, getConstantPoolImm()); 3090 } 3091 3092 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 3093 assert(N == 2 && "Invalid number of operands!"); 3094 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3095 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3096 } 3097 3098 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 3099 assert(N == 2 && "Invalid number of operands!"); 3100 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3101 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3102 } 3103 3104 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3105 assert(N == 3 && "Invalid number of operands!"); 3106 unsigned Val = 3107 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 3108 Memory.ShiftImm, Memory.ShiftType); 3109 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3110 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3111 Inst.addOperand(MCOperand::createImm(Val)); 3112 } 3113 3114 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3115 assert(N == 3 && "Invalid number of operands!"); 3116 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3117 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3118 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 3119 } 3120 3121 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 3122 assert(N == 2 && "Invalid number of operands!"); 3123 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3124 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3125 } 3126 3127 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 3128 assert(N == 2 && "Invalid number of operands!"); 3129 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 3130 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3131 Inst.addOperand(MCOperand::createImm(Val)); 3132 } 3133 3134 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 3135 assert(N == 2 && "Invalid number of operands!"); 3136 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 3137 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3138 Inst.addOperand(MCOperand::createImm(Val)); 3139 } 3140 3141 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 3142 assert(N == 2 && "Invalid number of operands!"); 3143 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 3144 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3145 Inst.addOperand(MCOperand::createImm(Val)); 3146 } 3147 3148 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 3149 assert(N == 2 && "Invalid number of operands!"); 3150 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 3151 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3152 Inst.addOperand(MCOperand::createImm(Val)); 3153 } 3154 3155 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 3156 assert(N == 1 && "Invalid number of operands!"); 3157 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3158 assert(CE && "non-constant post-idx-imm8 operand!"); 3159 int Imm = CE->getValue(); 3160 bool isAdd = Imm >= 0; 3161 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3162 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 3163 Inst.addOperand(MCOperand::createImm(Imm)); 3164 } 3165 3166 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 3167 assert(N == 1 && "Invalid number of operands!"); 3168 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3169 assert(CE && "non-constant post-idx-imm8s4 operand!"); 3170 int Imm = CE->getValue(); 3171 bool isAdd = Imm >= 0; 3172 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3173 // Immediate is scaled by 4. 3174 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 3175 Inst.addOperand(MCOperand::createImm(Imm)); 3176 } 3177 3178 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 3179 assert(N == 2 && "Invalid number of operands!"); 3180 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3181 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 3182 } 3183 3184 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 3185 assert(N == 2 && "Invalid number of operands!"); 3186 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3187 // The sign, shift type, and shift amount are encoded in a single operand 3188 // using the AM2 encoding helpers. 3189 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 3190 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 3191 PostIdxReg.ShiftTy); 3192 Inst.addOperand(MCOperand::createImm(Imm)); 3193 } 3194 3195 void addPowerTwoOperands(MCInst &Inst, unsigned N) const { 3196 assert(N == 1 && "Invalid number of operands!"); 3197 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3198 Inst.addOperand(MCOperand::createImm(CE->getValue())); 3199 } 3200 3201 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 3202 assert(N == 1 && "Invalid number of operands!"); 3203 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 3204 } 3205 3206 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 3207 assert(N == 1 && "Invalid number of operands!"); 3208 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 3209 } 3210 3211 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 3212 assert(N == 1 && "Invalid number of operands!"); 3213 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 3214 } 3215 3216 void addVecListOperands(MCInst &Inst, unsigned N) const { 3217 assert(N == 1 && "Invalid number of operands!"); 3218 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3219 } 3220 3221 void addMVEVecListOperands(MCInst &Inst, unsigned N) const { 3222 assert(N == 1 && "Invalid number of operands!"); 3223 3224 // When we come here, the VectorList field will identify a range 3225 // of q-registers by its base register and length, and it will 3226 // have already been error-checked to be the expected length of 3227 // range and contain only q-regs in the range q0-q7. So we can 3228 // count on the base register being in the range q0-q6 (for 2 3229 // regs) or q0-q4 (for 4) 3230 // 3231 // The MVE instructions taking a register range of this kind will 3232 // need an operand in the QQPR or QQQQPR class, representing the 3233 // entire range as a unit. So we must translate into that class, 3234 // by finding the index of the base register in the MQPR reg 3235 // class, and returning the super-register at the corresponding 3236 // index in the target class. 3237 3238 const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID]; 3239 const MCRegisterClass *RC_out = (VectorList.Count == 2) ? 3240 &ARMMCRegisterClasses[ARM::QQPRRegClassID] : 3241 &ARMMCRegisterClasses[ARM::QQQQPRRegClassID]; 3242 3243 unsigned I, E = RC_out->getNumRegs(); 3244 for (I = 0; I < E; I++) 3245 if (RC_in->getRegister(I) == VectorList.RegNum) 3246 break; 3247 assert(I < E && "Invalid vector list start register!"); 3248 3249 Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I))); 3250 } 3251 3252 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 3253 assert(N == 2 && "Invalid number of operands!"); 3254 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3255 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 3256 } 3257 3258 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 3259 assert(N == 1 && "Invalid number of operands!"); 3260 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3261 } 3262 3263 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 3264 assert(N == 1 && "Invalid number of operands!"); 3265 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3266 } 3267 3268 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 3269 assert(N == 1 && "Invalid number of operands!"); 3270 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3271 } 3272 3273 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { 3274 assert(N == 1 && "Invalid number of operands!"); 3275 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3276 } 3277 3278 void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const { 3279 assert(N == 1 && "Invalid number of operands!"); 3280 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3281 } 3282 3283 void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const { 3284 assert(N == 1 && "Invalid number of operands!"); 3285 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3286 } 3287 3288 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 3289 assert(N == 1 && "Invalid number of operands!"); 3290 // The immediate encodes the type of constant as well as the value. 3291 // Mask in that this is an i8 splat. 3292 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3293 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 3294 } 3295 3296 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 3297 assert(N == 1 && "Invalid number of operands!"); 3298 // The immediate encodes the type of constant as well as the value. 3299 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3300 unsigned Value = CE->getValue(); 3301 Value = ARM_AM::encodeNEONi16splat(Value); 3302 Inst.addOperand(MCOperand::createImm(Value)); 3303 } 3304 3305 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 3306 assert(N == 1 && "Invalid number of operands!"); 3307 // The immediate encodes the type of constant as well as the value. 3308 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3309 unsigned Value = CE->getValue(); 3310 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 3311 Inst.addOperand(MCOperand::createImm(Value)); 3312 } 3313 3314 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 3315 assert(N == 1 && "Invalid number of operands!"); 3316 // The immediate encodes the type of constant as well as the value. 3317 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3318 unsigned Value = CE->getValue(); 3319 Value = ARM_AM::encodeNEONi32splat(Value); 3320 Inst.addOperand(MCOperand::createImm(Value)); 3321 } 3322 3323 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 3324 assert(N == 1 && "Invalid number of operands!"); 3325 // The immediate encodes the type of constant as well as the value. 3326 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3327 unsigned Value = CE->getValue(); 3328 Value = ARM_AM::encodeNEONi32splat(~Value); 3329 Inst.addOperand(MCOperand::createImm(Value)); 3330 } 3331 3332 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { 3333 // The immediate encodes the type of constant as well as the value. 3334 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3335 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 3336 Inst.getOpcode() == ARM::VMOVv16i8) && 3337 "All instructions that wants to replicate non-zero byte " 3338 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 3339 unsigned Value = CE->getValue(); 3340 if (Inv) 3341 Value = ~Value; 3342 unsigned B = Value & 0xff; 3343 B |= 0xe00; // cmode = 0b1110 3344 Inst.addOperand(MCOperand::createImm(B)); 3345 } 3346 3347 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3348 assert(N == 1 && "Invalid number of operands!"); 3349 addNEONi8ReplicateOperands(Inst, true); 3350 } 3351 3352 static unsigned encodeNeonVMOVImmediate(unsigned Value) { 3353 if (Value >= 256 && Value <= 0xffff) 3354 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 3355 else if (Value > 0xffff && Value <= 0xffffff) 3356 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 3357 else if (Value > 0xffffff) 3358 Value = (Value >> 24) | 0x600; 3359 return Value; 3360 } 3361 3362 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 3363 assert(N == 1 && "Invalid number of operands!"); 3364 // The immediate encodes the type of constant as well as the value. 3365 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3366 unsigned Value = encodeNeonVMOVImmediate(CE->getValue()); 3367 Inst.addOperand(MCOperand::createImm(Value)); 3368 } 3369 3370 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3371 assert(N == 1 && "Invalid number of operands!"); 3372 addNEONi8ReplicateOperands(Inst, false); 3373 } 3374 3375 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { 3376 assert(N == 1 && "Invalid number of operands!"); 3377 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3378 assert((Inst.getOpcode() == ARM::VMOVv4i16 || 3379 Inst.getOpcode() == ARM::VMOVv8i16 || 3380 Inst.getOpcode() == ARM::VMVNv4i16 || 3381 Inst.getOpcode() == ARM::VMVNv8i16) && 3382 "All instructions that want to replicate non-zero half-word " 3383 "always must be replaced with V{MOV,MVN}v{4,8}i16."); 3384 uint64_t Value = CE->getValue(); 3385 unsigned Elem = Value & 0xffff; 3386 if (Elem >= 256) 3387 Elem = (Elem >> 8) | 0x200; 3388 Inst.addOperand(MCOperand::createImm(Elem)); 3389 } 3390 3391 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 3392 assert(N == 1 && "Invalid number of operands!"); 3393 // The immediate encodes the type of constant as well as the value. 3394 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3395 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue()); 3396 Inst.addOperand(MCOperand::createImm(Value)); 3397 } 3398 3399 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { 3400 assert(N == 1 && "Invalid number of operands!"); 3401 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3402 assert((Inst.getOpcode() == ARM::VMOVv2i32 || 3403 Inst.getOpcode() == ARM::VMOVv4i32 || 3404 Inst.getOpcode() == ARM::VMVNv2i32 || 3405 Inst.getOpcode() == ARM::VMVNv4i32) && 3406 "All instructions that want to replicate non-zero word " 3407 "always must be replaced with V{MOV,MVN}v{2,4}i32."); 3408 uint64_t Value = CE->getValue(); 3409 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff); 3410 Inst.addOperand(MCOperand::createImm(Elem)); 3411 } 3412 3413 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 3414 assert(N == 1 && "Invalid number of operands!"); 3415 // The immediate encodes the type of constant as well as the value. 3416 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3417 uint64_t Value = CE->getValue(); 3418 unsigned Imm = 0; 3419 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 3420 Imm |= (Value & 1) << i; 3421 } 3422 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 3423 } 3424 3425 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { 3426 assert(N == 1 && "Invalid number of operands!"); 3427 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3428 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); 3429 } 3430 3431 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { 3432 assert(N == 1 && "Invalid number of operands!"); 3433 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3434 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); 3435 } 3436 3437 void addMveSaturateOperands(MCInst &Inst, unsigned N) const { 3438 assert(N == 1 && "Invalid number of operands!"); 3439 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3440 unsigned Imm = CE->getValue(); 3441 assert((Imm == 48 || Imm == 64) && "Invalid saturate operand"); 3442 Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0)); 3443 } 3444 3445 void print(raw_ostream &OS) const override; 3446 3447 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 3448 auto Op = std::make_unique<ARMOperand>(k_ITCondMask); 3449 Op->ITMask.Mask = Mask; 3450 Op->StartLoc = S; 3451 Op->EndLoc = S; 3452 return Op; 3453 } 3454 3455 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 3456 SMLoc S) { 3457 auto Op = std::make_unique<ARMOperand>(k_CondCode); 3458 Op->CC.Val = CC; 3459 Op->StartLoc = S; 3460 Op->EndLoc = S; 3461 return Op; 3462 } 3463 3464 static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC, 3465 SMLoc S) { 3466 auto Op = std::make_unique<ARMOperand>(k_VPTPred); 3467 Op->VCC.Val = CC; 3468 Op->StartLoc = S; 3469 Op->EndLoc = S; 3470 return Op; 3471 } 3472 3473 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 3474 auto Op = std::make_unique<ARMOperand>(k_CoprocNum); 3475 Op->Cop.Val = CopVal; 3476 Op->StartLoc = S; 3477 Op->EndLoc = S; 3478 return Op; 3479 } 3480 3481 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 3482 auto Op = std::make_unique<ARMOperand>(k_CoprocReg); 3483 Op->Cop.Val = CopVal; 3484 Op->StartLoc = S; 3485 Op->EndLoc = S; 3486 return Op; 3487 } 3488 3489 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 3490 SMLoc E) { 3491 auto Op = std::make_unique<ARMOperand>(k_CoprocOption); 3492 Op->Cop.Val = Val; 3493 Op->StartLoc = S; 3494 Op->EndLoc = E; 3495 return Op; 3496 } 3497 3498 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 3499 auto Op = std::make_unique<ARMOperand>(k_CCOut); 3500 Op->Reg.RegNum = RegNum; 3501 Op->StartLoc = S; 3502 Op->EndLoc = S; 3503 return Op; 3504 } 3505 3506 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 3507 auto Op = std::make_unique<ARMOperand>(k_Token); 3508 Op->Tok.Data = Str.data(); 3509 Op->Tok.Length = Str.size(); 3510 Op->StartLoc = S; 3511 Op->EndLoc = S; 3512 return Op; 3513 } 3514 3515 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 3516 SMLoc E) { 3517 auto Op = std::make_unique<ARMOperand>(k_Register); 3518 Op->Reg.RegNum = RegNum; 3519 Op->StartLoc = S; 3520 Op->EndLoc = E; 3521 return Op; 3522 } 3523 3524 static std::unique_ptr<ARMOperand> 3525 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3526 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 3527 SMLoc E) { 3528 auto Op = std::make_unique<ARMOperand>(k_ShiftedRegister); 3529 Op->RegShiftedReg.ShiftTy = ShTy; 3530 Op->RegShiftedReg.SrcReg = SrcReg; 3531 Op->RegShiftedReg.ShiftReg = ShiftReg; 3532 Op->RegShiftedReg.ShiftImm = ShiftImm; 3533 Op->StartLoc = S; 3534 Op->EndLoc = E; 3535 return Op; 3536 } 3537 3538 static std::unique_ptr<ARMOperand> 3539 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3540 unsigned ShiftImm, SMLoc S, SMLoc E) { 3541 auto Op = std::make_unique<ARMOperand>(k_ShiftedImmediate); 3542 Op->RegShiftedImm.ShiftTy = ShTy; 3543 Op->RegShiftedImm.SrcReg = SrcReg; 3544 Op->RegShiftedImm.ShiftImm = ShiftImm; 3545 Op->StartLoc = S; 3546 Op->EndLoc = E; 3547 return Op; 3548 } 3549 3550 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 3551 SMLoc S, SMLoc E) { 3552 auto Op = std::make_unique<ARMOperand>(k_ShifterImmediate); 3553 Op->ShifterImm.isASR = isASR; 3554 Op->ShifterImm.Imm = Imm; 3555 Op->StartLoc = S; 3556 Op->EndLoc = E; 3557 return Op; 3558 } 3559 3560 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 3561 SMLoc E) { 3562 auto Op = std::make_unique<ARMOperand>(k_RotateImmediate); 3563 Op->RotImm.Imm = Imm; 3564 Op->StartLoc = S; 3565 Op->EndLoc = E; 3566 return Op; 3567 } 3568 3569 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 3570 SMLoc S, SMLoc E) { 3571 auto Op = std::make_unique<ARMOperand>(k_ModifiedImmediate); 3572 Op->ModImm.Bits = Bits; 3573 Op->ModImm.Rot = Rot; 3574 Op->StartLoc = S; 3575 Op->EndLoc = E; 3576 return Op; 3577 } 3578 3579 static std::unique_ptr<ARMOperand> 3580 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 3581 auto Op = std::make_unique<ARMOperand>(k_ConstantPoolImmediate); 3582 Op->Imm.Val = Val; 3583 Op->StartLoc = S; 3584 Op->EndLoc = E; 3585 return Op; 3586 } 3587 3588 static std::unique_ptr<ARMOperand> 3589 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 3590 auto Op = std::make_unique<ARMOperand>(k_BitfieldDescriptor); 3591 Op->Bitfield.LSB = LSB; 3592 Op->Bitfield.Width = Width; 3593 Op->StartLoc = S; 3594 Op->EndLoc = E; 3595 return Op; 3596 } 3597 3598 static std::unique_ptr<ARMOperand> 3599 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 3600 SMLoc StartLoc, SMLoc EndLoc) { 3601 assert(Regs.size() > 0 && "RegList contains no registers?"); 3602 KindTy Kind = k_RegisterList; 3603 3604 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 3605 Regs.front().second)) { 3606 if (Regs.back().second == ARM::VPR) 3607 Kind = k_FPDRegisterListWithVPR; 3608 else 3609 Kind = k_DPRRegisterList; 3610 } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 3611 Regs.front().second)) { 3612 if (Regs.back().second == ARM::VPR) 3613 Kind = k_FPSRegisterListWithVPR; 3614 else 3615 Kind = k_SPRRegisterList; 3616 } 3617 3618 if (Kind == k_RegisterList && Regs.back().second == ARM::APSR) 3619 Kind = k_RegisterListWithAPSR; 3620 3621 assert(llvm::is_sorted(Regs) && "Register list must be sorted by encoding"); 3622 3623 auto Op = std::make_unique<ARMOperand>(Kind); 3624 for (const auto &P : Regs) 3625 Op->Registers.push_back(P.second); 3626 3627 Op->StartLoc = StartLoc; 3628 Op->EndLoc = EndLoc; 3629 return Op; 3630 } 3631 3632 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 3633 unsigned Count, 3634 bool isDoubleSpaced, 3635 SMLoc S, SMLoc E) { 3636 auto Op = std::make_unique<ARMOperand>(k_VectorList); 3637 Op->VectorList.RegNum = RegNum; 3638 Op->VectorList.Count = Count; 3639 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3640 Op->StartLoc = S; 3641 Op->EndLoc = E; 3642 return Op; 3643 } 3644 3645 static std::unique_ptr<ARMOperand> 3646 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 3647 SMLoc S, SMLoc E) { 3648 auto Op = std::make_unique<ARMOperand>(k_VectorListAllLanes); 3649 Op->VectorList.RegNum = RegNum; 3650 Op->VectorList.Count = Count; 3651 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3652 Op->StartLoc = S; 3653 Op->EndLoc = E; 3654 return Op; 3655 } 3656 3657 static std::unique_ptr<ARMOperand> 3658 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 3659 bool isDoubleSpaced, SMLoc S, SMLoc E) { 3660 auto Op = std::make_unique<ARMOperand>(k_VectorListIndexed); 3661 Op->VectorList.RegNum = RegNum; 3662 Op->VectorList.Count = Count; 3663 Op->VectorList.LaneIndex = Index; 3664 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3665 Op->StartLoc = S; 3666 Op->EndLoc = E; 3667 return Op; 3668 } 3669 3670 static std::unique_ptr<ARMOperand> 3671 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 3672 auto Op = std::make_unique<ARMOperand>(k_VectorIndex); 3673 Op->VectorIndex.Val = Idx; 3674 Op->StartLoc = S; 3675 Op->EndLoc = E; 3676 return Op; 3677 } 3678 3679 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 3680 SMLoc E) { 3681 auto Op = std::make_unique<ARMOperand>(k_Immediate); 3682 Op->Imm.Val = Val; 3683 Op->StartLoc = S; 3684 Op->EndLoc = E; 3685 return Op; 3686 } 3687 3688 static std::unique_ptr<ARMOperand> 3689 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 3690 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 3691 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 3692 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 3693 auto Op = std::make_unique<ARMOperand>(k_Memory); 3694 Op->Memory.BaseRegNum = BaseRegNum; 3695 Op->Memory.OffsetImm = OffsetImm; 3696 Op->Memory.OffsetRegNum = OffsetRegNum; 3697 Op->Memory.ShiftType = ShiftType; 3698 Op->Memory.ShiftImm = ShiftImm; 3699 Op->Memory.Alignment = Alignment; 3700 Op->Memory.isNegative = isNegative; 3701 Op->StartLoc = S; 3702 Op->EndLoc = E; 3703 Op->AlignmentLoc = AlignmentLoc; 3704 return Op; 3705 } 3706 3707 static std::unique_ptr<ARMOperand> 3708 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 3709 unsigned ShiftImm, SMLoc S, SMLoc E) { 3710 auto Op = std::make_unique<ARMOperand>(k_PostIndexRegister); 3711 Op->PostIdxReg.RegNum = RegNum; 3712 Op->PostIdxReg.isAdd = isAdd; 3713 Op->PostIdxReg.ShiftTy = ShiftTy; 3714 Op->PostIdxReg.ShiftImm = ShiftImm; 3715 Op->StartLoc = S; 3716 Op->EndLoc = E; 3717 return Op; 3718 } 3719 3720 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3721 SMLoc S) { 3722 auto Op = std::make_unique<ARMOperand>(k_MemBarrierOpt); 3723 Op->MBOpt.Val = Opt; 3724 Op->StartLoc = S; 3725 Op->EndLoc = S; 3726 return Op; 3727 } 3728 3729 static std::unique_ptr<ARMOperand> 3730 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3731 auto Op = std::make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3732 Op->ISBOpt.Val = Opt; 3733 Op->StartLoc = S; 3734 Op->EndLoc = S; 3735 return Op; 3736 } 3737 3738 static std::unique_ptr<ARMOperand> 3739 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) { 3740 auto Op = std::make_unique<ARMOperand>(k_TraceSyncBarrierOpt); 3741 Op->TSBOpt.Val = Opt; 3742 Op->StartLoc = S; 3743 Op->EndLoc = S; 3744 return Op; 3745 } 3746 3747 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3748 SMLoc S) { 3749 auto Op = std::make_unique<ARMOperand>(k_ProcIFlags); 3750 Op->IFlags.Val = IFlags; 3751 Op->StartLoc = S; 3752 Op->EndLoc = S; 3753 return Op; 3754 } 3755 3756 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3757 auto Op = std::make_unique<ARMOperand>(k_MSRMask); 3758 Op->MMask.Val = MMask; 3759 Op->StartLoc = S; 3760 Op->EndLoc = S; 3761 return Op; 3762 } 3763 3764 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3765 auto Op = std::make_unique<ARMOperand>(k_BankedReg); 3766 Op->BankedReg.Val = Reg; 3767 Op->StartLoc = S; 3768 Op->EndLoc = S; 3769 return Op; 3770 } 3771 }; 3772 3773 } // end anonymous namespace. 3774 3775 void ARMOperand::print(raw_ostream &OS) const { 3776 auto RegName = [](unsigned Reg) { 3777 if (Reg) 3778 return ARMInstPrinter::getRegisterName(Reg); 3779 else 3780 return "noreg"; 3781 }; 3782 3783 switch (Kind) { 3784 case k_CondCode: 3785 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3786 break; 3787 case k_VPTPred: 3788 OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">"; 3789 break; 3790 case k_CCOut: 3791 OS << "<ccout " << RegName(getReg()) << ">"; 3792 break; 3793 case k_ITCondMask: { 3794 static const char *const MaskStr[] = { 3795 "(invalid)", "(tttt)", "(ttt)", "(ttte)", 3796 "(tt)", "(ttet)", "(tte)", "(ttee)", 3797 "(t)", "(tett)", "(tet)", "(tete)", 3798 "(te)", "(teet)", "(tee)", "(teee)", 3799 }; 3800 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3801 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3802 break; 3803 } 3804 case k_CoprocNum: 3805 OS << "<coprocessor number: " << getCoproc() << ">"; 3806 break; 3807 case k_CoprocReg: 3808 OS << "<coprocessor register: " << getCoproc() << ">"; 3809 break; 3810 case k_CoprocOption: 3811 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3812 break; 3813 case k_MSRMask: 3814 OS << "<mask: " << getMSRMask() << ">"; 3815 break; 3816 case k_BankedReg: 3817 OS << "<banked reg: " << getBankedReg() << ">"; 3818 break; 3819 case k_Immediate: 3820 OS << *getImm(); 3821 break; 3822 case k_MemBarrierOpt: 3823 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3824 break; 3825 case k_InstSyncBarrierOpt: 3826 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3827 break; 3828 case k_TraceSyncBarrierOpt: 3829 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">"; 3830 break; 3831 case k_Memory: 3832 OS << "<memory"; 3833 if (Memory.BaseRegNum) 3834 OS << " base:" << RegName(Memory.BaseRegNum); 3835 if (Memory.OffsetImm) 3836 OS << " offset-imm:" << *Memory.OffsetImm; 3837 if (Memory.OffsetRegNum) 3838 OS << " offset-reg:" << (Memory.isNegative ? "-" : "") 3839 << RegName(Memory.OffsetRegNum); 3840 if (Memory.ShiftType != ARM_AM::no_shift) { 3841 OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType); 3842 OS << " shift-imm:" << Memory.ShiftImm; 3843 } 3844 if (Memory.Alignment) 3845 OS << " alignment:" << Memory.Alignment; 3846 OS << ">"; 3847 break; 3848 case k_PostIndexRegister: 3849 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3850 << RegName(PostIdxReg.RegNum); 3851 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3852 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3853 << PostIdxReg.ShiftImm; 3854 OS << ">"; 3855 break; 3856 case k_ProcIFlags: { 3857 OS << "<ARM_PROC::"; 3858 unsigned IFlags = getProcIFlags(); 3859 for (int i=2; i >= 0; --i) 3860 if (IFlags & (1 << i)) 3861 OS << ARM_PROC::IFlagsToString(1 << i); 3862 OS << ">"; 3863 break; 3864 } 3865 case k_Register: 3866 OS << "<register " << RegName(getReg()) << ">"; 3867 break; 3868 case k_ShifterImmediate: 3869 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3870 << " #" << ShifterImm.Imm << ">"; 3871 break; 3872 case k_ShiftedRegister: 3873 OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " " 3874 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " " 3875 << RegName(RegShiftedReg.ShiftReg) << ">"; 3876 break; 3877 case k_ShiftedImmediate: 3878 OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " " 3879 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #" 3880 << RegShiftedImm.ShiftImm << ">"; 3881 break; 3882 case k_RotateImmediate: 3883 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3884 break; 3885 case k_ModifiedImmediate: 3886 OS << "<mod_imm #" << ModImm.Bits << ", #" 3887 << ModImm.Rot << ")>"; 3888 break; 3889 case k_ConstantPoolImmediate: 3890 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3891 break; 3892 case k_BitfieldDescriptor: 3893 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3894 << ", width: " << Bitfield.Width << ">"; 3895 break; 3896 case k_RegisterList: 3897 case k_RegisterListWithAPSR: 3898 case k_DPRRegisterList: 3899 case k_SPRRegisterList: 3900 case k_FPSRegisterListWithVPR: 3901 case k_FPDRegisterListWithVPR: { 3902 OS << "<register_list "; 3903 3904 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3905 for (SmallVectorImpl<unsigned>::const_iterator 3906 I = RegList.begin(), E = RegList.end(); I != E; ) { 3907 OS << RegName(*I); 3908 if (++I < E) OS << ", "; 3909 } 3910 3911 OS << ">"; 3912 break; 3913 } 3914 case k_VectorList: 3915 OS << "<vector_list " << VectorList.Count << " * " 3916 << RegName(VectorList.RegNum) << ">"; 3917 break; 3918 case k_VectorListAllLanes: 3919 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3920 << RegName(VectorList.RegNum) << ">"; 3921 break; 3922 case k_VectorListIndexed: 3923 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3924 << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">"; 3925 break; 3926 case k_Token: 3927 OS << "'" << getToken() << "'"; 3928 break; 3929 case k_VectorIndex: 3930 OS << "<vectorindex " << getVectorIndex() << ">"; 3931 break; 3932 } 3933 } 3934 3935 /// @name Auto-generated Match Functions 3936 /// { 3937 3938 static unsigned MatchRegisterName(StringRef Name); 3939 3940 /// } 3941 3942 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3943 SMLoc &StartLoc, SMLoc &EndLoc) { 3944 const AsmToken &Tok = getParser().getTok(); 3945 StartLoc = Tok.getLoc(); 3946 EndLoc = Tok.getEndLoc(); 3947 RegNo = tryParseRegister(); 3948 3949 return (RegNo == (unsigned)-1); 3950 } 3951 3952 OperandMatchResultTy ARMAsmParser::tryParseRegister(unsigned &RegNo, 3953 SMLoc &StartLoc, 3954 SMLoc &EndLoc) { 3955 if (ParseRegister(RegNo, StartLoc, EndLoc)) 3956 return MatchOperand_NoMatch; 3957 return MatchOperand_Success; 3958 } 3959 3960 /// Try to parse a register name. The token must be an Identifier when called, 3961 /// and if it is a register name the token is eaten and the register number is 3962 /// returned. Otherwise return -1. 3963 int ARMAsmParser::tryParseRegister() { 3964 MCAsmParser &Parser = getParser(); 3965 const AsmToken &Tok = Parser.getTok(); 3966 if (Tok.isNot(AsmToken::Identifier)) return -1; 3967 3968 std::string lowerCase = Tok.getString().lower(); 3969 unsigned RegNum = MatchRegisterName(lowerCase); 3970 if (!RegNum) { 3971 RegNum = StringSwitch<unsigned>(lowerCase) 3972 .Case("r13", ARM::SP) 3973 .Case("r14", ARM::LR) 3974 .Case("r15", ARM::PC) 3975 .Case("ip", ARM::R12) 3976 // Additional register name aliases for 'gas' compatibility. 3977 .Case("a1", ARM::R0) 3978 .Case("a2", ARM::R1) 3979 .Case("a3", ARM::R2) 3980 .Case("a4", ARM::R3) 3981 .Case("v1", ARM::R4) 3982 .Case("v2", ARM::R5) 3983 .Case("v3", ARM::R6) 3984 .Case("v4", ARM::R7) 3985 .Case("v5", ARM::R8) 3986 .Case("v6", ARM::R9) 3987 .Case("v7", ARM::R10) 3988 .Case("v8", ARM::R11) 3989 .Case("sb", ARM::R9) 3990 .Case("sl", ARM::R10) 3991 .Case("fp", ARM::R11) 3992 .Default(0); 3993 } 3994 if (!RegNum) { 3995 // Check for aliases registered via .req. Canonicalize to lower case. 3996 // That's more consistent since register names are case insensitive, and 3997 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3998 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3999 // If no match, return failure. 4000 if (Entry == RegisterReqs.end()) 4001 return -1; 4002 Parser.Lex(); // Eat identifier token. 4003 return Entry->getValue(); 4004 } 4005 4006 // Some FPUs only have 16 D registers, so D16-D31 are invalid 4007 if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 4008 return -1; 4009 4010 Parser.Lex(); // Eat identifier token. 4011 4012 return RegNum; 4013 } 4014 4015 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 4016 // If a recoverable error occurs, return 1. If an irrecoverable error 4017 // occurs, return -1. An irrecoverable error is one where tokens have been 4018 // consumed in the process of trying to parse the shifter (i.e., when it is 4019 // indeed a shifter operand, but malformed). 4020 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 4021 MCAsmParser &Parser = getParser(); 4022 SMLoc S = Parser.getTok().getLoc(); 4023 const AsmToken &Tok = Parser.getTok(); 4024 if (Tok.isNot(AsmToken::Identifier)) 4025 return -1; 4026 4027 std::string lowerCase = Tok.getString().lower(); 4028 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 4029 .Case("asl", ARM_AM::lsl) 4030 .Case("lsl", ARM_AM::lsl) 4031 .Case("lsr", ARM_AM::lsr) 4032 .Case("asr", ARM_AM::asr) 4033 .Case("ror", ARM_AM::ror) 4034 .Case("rrx", ARM_AM::rrx) 4035 .Default(ARM_AM::no_shift); 4036 4037 if (ShiftTy == ARM_AM::no_shift) 4038 return 1; 4039 4040 Parser.Lex(); // Eat the operator. 4041 4042 // The source register for the shift has already been added to the 4043 // operand list, so we need to pop it off and combine it into the shifted 4044 // register operand instead. 4045 std::unique_ptr<ARMOperand> PrevOp( 4046 (ARMOperand *)Operands.pop_back_val().release()); 4047 if (!PrevOp->isReg()) 4048 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 4049 int SrcReg = PrevOp->getReg(); 4050 4051 SMLoc EndLoc; 4052 int64_t Imm = 0; 4053 int ShiftReg = 0; 4054 if (ShiftTy == ARM_AM::rrx) { 4055 // RRX Doesn't have an explicit shift amount. The encoder expects 4056 // the shift register to be the same as the source register. Seems odd, 4057 // but OK. 4058 ShiftReg = SrcReg; 4059 } else { 4060 // Figure out if this is shifted by a constant or a register (for non-RRX). 4061 if (Parser.getTok().is(AsmToken::Hash) || 4062 Parser.getTok().is(AsmToken::Dollar)) { 4063 Parser.Lex(); // Eat hash. 4064 SMLoc ImmLoc = Parser.getTok().getLoc(); 4065 const MCExpr *ShiftExpr = nullptr; 4066 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 4067 Error(ImmLoc, "invalid immediate shift value"); 4068 return -1; 4069 } 4070 // The expression must be evaluatable as an immediate. 4071 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 4072 if (!CE) { 4073 Error(ImmLoc, "invalid immediate shift value"); 4074 return -1; 4075 } 4076 // Range check the immediate. 4077 // lsl, ror: 0 <= imm <= 31 4078 // lsr, asr: 0 <= imm <= 32 4079 Imm = CE->getValue(); 4080 if (Imm < 0 || 4081 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 4082 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 4083 Error(ImmLoc, "immediate shift value out of range"); 4084 return -1; 4085 } 4086 // shift by zero is a nop. Always send it through as lsl. 4087 // ('as' compatibility) 4088 if (Imm == 0) 4089 ShiftTy = ARM_AM::lsl; 4090 } else if (Parser.getTok().is(AsmToken::Identifier)) { 4091 SMLoc L = Parser.getTok().getLoc(); 4092 EndLoc = Parser.getTok().getEndLoc(); 4093 ShiftReg = tryParseRegister(); 4094 if (ShiftReg == -1) { 4095 Error(L, "expected immediate or register in shift operand"); 4096 return -1; 4097 } 4098 } else { 4099 Error(Parser.getTok().getLoc(), 4100 "expected immediate or register in shift operand"); 4101 return -1; 4102 } 4103 } 4104 4105 if (ShiftReg && ShiftTy != ARM_AM::rrx) 4106 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 4107 ShiftReg, Imm, 4108 S, EndLoc)); 4109 else 4110 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 4111 S, EndLoc)); 4112 4113 return 0; 4114 } 4115 4116 /// Try to parse a register name. The token must be an Identifier when called. 4117 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 4118 /// if there is a "writeback". 'true' if it's not a register. 4119 /// 4120 /// TODO this is likely to change to allow different register types and or to 4121 /// parse for a specific register type. 4122 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 4123 MCAsmParser &Parser = getParser(); 4124 SMLoc RegStartLoc = Parser.getTok().getLoc(); 4125 SMLoc RegEndLoc = Parser.getTok().getEndLoc(); 4126 int RegNo = tryParseRegister(); 4127 if (RegNo == -1) 4128 return true; 4129 4130 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); 4131 4132 const AsmToken &ExclaimTok = Parser.getTok(); 4133 if (ExclaimTok.is(AsmToken::Exclaim)) { 4134 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 4135 ExclaimTok.getLoc())); 4136 Parser.Lex(); // Eat exclaim token 4137 return false; 4138 } 4139 4140 // Also check for an index operand. This is only legal for vector registers, 4141 // but that'll get caught OK in operand matching, so we don't need to 4142 // explicitly filter everything else out here. 4143 if (Parser.getTok().is(AsmToken::LBrac)) { 4144 SMLoc SIdx = Parser.getTok().getLoc(); 4145 Parser.Lex(); // Eat left bracket token. 4146 4147 const MCExpr *ImmVal; 4148 if (getParser().parseExpression(ImmVal)) 4149 return true; 4150 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 4151 if (!MCE) 4152 return TokError("immediate value expected for vector index"); 4153 4154 if (Parser.getTok().isNot(AsmToken::RBrac)) 4155 return Error(Parser.getTok().getLoc(), "']' expected"); 4156 4157 SMLoc E = Parser.getTok().getEndLoc(); 4158 Parser.Lex(); // Eat right bracket token. 4159 4160 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 4161 SIdx, E, 4162 getContext())); 4163 } 4164 4165 return false; 4166 } 4167 4168 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 4169 /// instruction with a symbolic operand name. 4170 /// We accept "crN" syntax for GAS compatibility. 4171 /// <operand-name> ::= <prefix><number> 4172 /// If CoprocOp is 'c', then: 4173 /// <prefix> ::= c | cr 4174 /// If CoprocOp is 'p', then : 4175 /// <prefix> ::= p 4176 /// <number> ::= integer in range [0, 15] 4177 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 4178 // Use the same layout as the tablegen'erated register name matcher. Ugly, 4179 // but efficient. 4180 if (Name.size() < 2 || Name[0] != CoprocOp) 4181 return -1; 4182 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 4183 4184 switch (Name.size()) { 4185 default: return -1; 4186 case 1: 4187 switch (Name[0]) { 4188 default: return -1; 4189 case '0': return 0; 4190 case '1': return 1; 4191 case '2': return 2; 4192 case '3': return 3; 4193 case '4': return 4; 4194 case '5': return 5; 4195 case '6': return 6; 4196 case '7': return 7; 4197 case '8': return 8; 4198 case '9': return 9; 4199 } 4200 case 2: 4201 if (Name[0] != '1') 4202 return -1; 4203 switch (Name[1]) { 4204 default: return -1; 4205 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 4206 // However, old cores (v5/v6) did use them in that way. 4207 case '0': return 10; 4208 case '1': return 11; 4209 case '2': return 12; 4210 case '3': return 13; 4211 case '4': return 14; 4212 case '5': return 15; 4213 } 4214 } 4215 } 4216 4217 /// parseITCondCode - Try to parse a condition code for an IT instruction. 4218 OperandMatchResultTy 4219 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 4220 MCAsmParser &Parser = getParser(); 4221 SMLoc S = Parser.getTok().getLoc(); 4222 const AsmToken &Tok = Parser.getTok(); 4223 if (!Tok.is(AsmToken::Identifier)) 4224 return MatchOperand_NoMatch; 4225 unsigned CC = ARMCondCodeFromString(Tok.getString()); 4226 if (CC == ~0U) 4227 return MatchOperand_NoMatch; 4228 Parser.Lex(); // Eat the token. 4229 4230 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 4231 4232 return MatchOperand_Success; 4233 } 4234 4235 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 4236 /// token must be an Identifier when called, and if it is a coprocessor 4237 /// number, the token is eaten and the operand is added to the operand list. 4238 OperandMatchResultTy 4239 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 4240 MCAsmParser &Parser = getParser(); 4241 SMLoc S = Parser.getTok().getLoc(); 4242 const AsmToken &Tok = Parser.getTok(); 4243 if (Tok.isNot(AsmToken::Identifier)) 4244 return MatchOperand_NoMatch; 4245 4246 int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p'); 4247 if (Num == -1) 4248 return MatchOperand_NoMatch; 4249 if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits())) 4250 return MatchOperand_NoMatch; 4251 4252 Parser.Lex(); // Eat identifier token. 4253 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 4254 return MatchOperand_Success; 4255 } 4256 4257 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 4258 /// token must be an Identifier when called, and if it is a coprocessor 4259 /// number, the token is eaten and the operand is added to the operand list. 4260 OperandMatchResultTy 4261 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 4262 MCAsmParser &Parser = getParser(); 4263 SMLoc S = Parser.getTok().getLoc(); 4264 const AsmToken &Tok = Parser.getTok(); 4265 if (Tok.isNot(AsmToken::Identifier)) 4266 return MatchOperand_NoMatch; 4267 4268 int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c'); 4269 if (Reg == -1) 4270 return MatchOperand_NoMatch; 4271 4272 Parser.Lex(); // Eat identifier token. 4273 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 4274 return MatchOperand_Success; 4275 } 4276 4277 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 4278 /// coproc_option : '{' imm0_255 '}' 4279 OperandMatchResultTy 4280 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 4281 MCAsmParser &Parser = getParser(); 4282 SMLoc S = Parser.getTok().getLoc(); 4283 4284 // If this isn't a '{', this isn't a coprocessor immediate operand. 4285 if (Parser.getTok().isNot(AsmToken::LCurly)) 4286 return MatchOperand_NoMatch; 4287 Parser.Lex(); // Eat the '{' 4288 4289 const MCExpr *Expr; 4290 SMLoc Loc = Parser.getTok().getLoc(); 4291 if (getParser().parseExpression(Expr)) { 4292 Error(Loc, "illegal expression"); 4293 return MatchOperand_ParseFail; 4294 } 4295 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4296 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 4297 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 4298 return MatchOperand_ParseFail; 4299 } 4300 int Val = CE->getValue(); 4301 4302 // Check for and consume the closing '}' 4303 if (Parser.getTok().isNot(AsmToken::RCurly)) 4304 return MatchOperand_ParseFail; 4305 SMLoc E = Parser.getTok().getEndLoc(); 4306 Parser.Lex(); // Eat the '}' 4307 4308 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 4309 return MatchOperand_Success; 4310 } 4311 4312 // For register list parsing, we need to map from raw GPR register numbering 4313 // to the enumeration values. The enumeration values aren't sorted by 4314 // register number due to our using "sp", "lr" and "pc" as canonical names. 4315 static unsigned getNextRegister(unsigned Reg) { 4316 // If this is a GPR, we need to do it manually, otherwise we can rely 4317 // on the sort ordering of the enumeration since the other reg-classes 4318 // are sane. 4319 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4320 return Reg + 1; 4321 switch(Reg) { 4322 default: llvm_unreachable("Invalid GPR number!"); 4323 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 4324 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 4325 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 4326 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 4327 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 4328 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 4329 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 4330 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 4331 } 4332 } 4333 4334 // Insert an <Encoding, Register> pair in an ordered vector. Return true on 4335 // success, or false, if duplicate encoding found. 4336 static bool 4337 insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 4338 unsigned Enc, unsigned Reg) { 4339 Regs.emplace_back(Enc, Reg); 4340 for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) { 4341 if (J->first == Enc) { 4342 Regs.erase(J.base()); 4343 return false; 4344 } 4345 if (J->first < Enc) 4346 break; 4347 std::swap(*I, *J); 4348 } 4349 return true; 4350 } 4351 4352 /// Parse a register list. 4353 bool ARMAsmParser::parseRegisterList(OperandVector &Operands, 4354 bool EnforceOrder) { 4355 MCAsmParser &Parser = getParser(); 4356 if (Parser.getTok().isNot(AsmToken::LCurly)) 4357 return TokError("Token is not a Left Curly Brace"); 4358 SMLoc S = Parser.getTok().getLoc(); 4359 Parser.Lex(); // Eat '{' token. 4360 SMLoc RegLoc = Parser.getTok().getLoc(); 4361 4362 // Check the first register in the list to see what register class 4363 // this is a list of. 4364 int Reg = tryParseRegister(); 4365 if (Reg == -1) 4366 return Error(RegLoc, "register expected"); 4367 4368 // The reglist instructions have at most 16 registers, so reserve 4369 // space for that many. 4370 int EReg = 0; 4371 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 4372 4373 // Allow Q regs and just interpret them as the two D sub-registers. 4374 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4375 Reg = getDRegFromQReg(Reg); 4376 EReg = MRI->getEncodingValue(Reg); 4377 Registers.emplace_back(EReg, Reg); 4378 ++Reg; 4379 } 4380 const MCRegisterClass *RC; 4381 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4382 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 4383 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 4384 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 4385 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 4386 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 4387 else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4388 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4389 else 4390 return Error(RegLoc, "invalid register in register list"); 4391 4392 // Store the register. 4393 EReg = MRI->getEncodingValue(Reg); 4394 Registers.emplace_back(EReg, Reg); 4395 4396 // This starts immediately after the first register token in the list, 4397 // so we can see either a comma or a minus (range separator) as a legal 4398 // next token. 4399 while (Parser.getTok().is(AsmToken::Comma) || 4400 Parser.getTok().is(AsmToken::Minus)) { 4401 if (Parser.getTok().is(AsmToken::Minus)) { 4402 Parser.Lex(); // Eat the minus. 4403 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4404 int EndReg = tryParseRegister(); 4405 if (EndReg == -1) 4406 return Error(AfterMinusLoc, "register expected"); 4407 // Allow Q regs and just interpret them as the two D sub-registers. 4408 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4409 EndReg = getDRegFromQReg(EndReg) + 1; 4410 // If the register is the same as the start reg, there's nothing 4411 // more to do. 4412 if (Reg == EndReg) 4413 continue; 4414 // The register must be in the same register class as the first. 4415 if (!RC->contains(EndReg)) 4416 return Error(AfterMinusLoc, "invalid register in register list"); 4417 // Ranges must go from low to high. 4418 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 4419 return Error(AfterMinusLoc, "bad range in register list"); 4420 4421 // Add all the registers in the range to the register list. 4422 while (Reg != EndReg) { 4423 Reg = getNextRegister(Reg); 4424 EReg = MRI->getEncodingValue(Reg); 4425 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4426 Warning(AfterMinusLoc, StringRef("duplicated register (") + 4427 ARMInstPrinter::getRegisterName(Reg) + 4428 ") in register list"); 4429 } 4430 } 4431 continue; 4432 } 4433 Parser.Lex(); // Eat the comma. 4434 RegLoc = Parser.getTok().getLoc(); 4435 int OldReg = Reg; 4436 const AsmToken RegTok = Parser.getTok(); 4437 Reg = tryParseRegister(); 4438 if (Reg == -1) 4439 return Error(RegLoc, "register expected"); 4440 // Allow Q regs and just interpret them as the two D sub-registers. 4441 bool isQReg = false; 4442 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4443 Reg = getDRegFromQReg(Reg); 4444 isQReg = true; 4445 } 4446 if (!RC->contains(Reg) && 4447 RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() && 4448 ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) { 4449 // switch the register classes, as GPRwithAPSRnospRegClassID is a partial 4450 // subset of GPRRegClassId except it contains APSR as well. 4451 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4452 } 4453 if (Reg == ARM::VPR && 4454 (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] || 4455 RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] || 4456 RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) { 4457 RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID]; 4458 EReg = MRI->getEncodingValue(Reg); 4459 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4460 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4461 ") in register list"); 4462 } 4463 continue; 4464 } 4465 // The register must be in the same register class as the first. 4466 if (!RC->contains(Reg)) 4467 return Error(RegLoc, "invalid register in register list"); 4468 // In most cases, the list must be monotonically increasing. An 4469 // exception is CLRM, which is order-independent anyway, so 4470 // there's no potential for confusion if you write clrm {r2,r1} 4471 // instead of clrm {r1,r2}. 4472 if (EnforceOrder && 4473 MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 4474 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4475 Warning(RegLoc, "register list not in ascending order"); 4476 else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4477 return Error(RegLoc, "register list not in ascending order"); 4478 } 4479 // VFP register lists must also be contiguous. 4480 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 4481 RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] && 4482 Reg != OldReg + 1) 4483 return Error(RegLoc, "non-contiguous register range"); 4484 EReg = MRI->getEncodingValue(Reg); 4485 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4486 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4487 ") in register list"); 4488 } 4489 if (isQReg) { 4490 EReg = MRI->getEncodingValue(++Reg); 4491 Registers.emplace_back(EReg, Reg); 4492 } 4493 } 4494 4495 if (Parser.getTok().isNot(AsmToken::RCurly)) 4496 return Error(Parser.getTok().getLoc(), "'}' expected"); 4497 SMLoc E = Parser.getTok().getEndLoc(); 4498 Parser.Lex(); // Eat '}' token. 4499 4500 // Push the register list operand. 4501 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 4502 4503 // The ARM system instruction variants for LDM/STM have a '^' token here. 4504 if (Parser.getTok().is(AsmToken::Caret)) { 4505 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 4506 Parser.Lex(); // Eat '^' token. 4507 } 4508 4509 return false; 4510 } 4511 4512 // Helper function to parse the lane index for vector lists. 4513 OperandMatchResultTy ARMAsmParser:: 4514 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 4515 MCAsmParser &Parser = getParser(); 4516 Index = 0; // Always return a defined index value. 4517 if (Parser.getTok().is(AsmToken::LBrac)) { 4518 Parser.Lex(); // Eat the '['. 4519 if (Parser.getTok().is(AsmToken::RBrac)) { 4520 // "Dn[]" is the 'all lanes' syntax. 4521 LaneKind = AllLanes; 4522 EndLoc = Parser.getTok().getEndLoc(); 4523 Parser.Lex(); // Eat the ']'. 4524 return MatchOperand_Success; 4525 } 4526 4527 // There's an optional '#' token here. Normally there wouldn't be, but 4528 // inline assemble puts one in, and it's friendly to accept that. 4529 if (Parser.getTok().is(AsmToken::Hash)) 4530 Parser.Lex(); // Eat '#' or '$'. 4531 4532 const MCExpr *LaneIndex; 4533 SMLoc Loc = Parser.getTok().getLoc(); 4534 if (getParser().parseExpression(LaneIndex)) { 4535 Error(Loc, "illegal expression"); 4536 return MatchOperand_ParseFail; 4537 } 4538 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 4539 if (!CE) { 4540 Error(Loc, "lane index must be empty or an integer"); 4541 return MatchOperand_ParseFail; 4542 } 4543 if (Parser.getTok().isNot(AsmToken::RBrac)) { 4544 Error(Parser.getTok().getLoc(), "']' expected"); 4545 return MatchOperand_ParseFail; 4546 } 4547 EndLoc = Parser.getTok().getEndLoc(); 4548 Parser.Lex(); // Eat the ']'. 4549 int64_t Val = CE->getValue(); 4550 4551 // FIXME: Make this range check context sensitive for .8, .16, .32. 4552 if (Val < 0 || Val > 7) { 4553 Error(Parser.getTok().getLoc(), "lane index out of range"); 4554 return MatchOperand_ParseFail; 4555 } 4556 Index = Val; 4557 LaneKind = IndexedLane; 4558 return MatchOperand_Success; 4559 } 4560 LaneKind = NoLanes; 4561 return MatchOperand_Success; 4562 } 4563 4564 // parse a vector register list 4565 OperandMatchResultTy 4566 ARMAsmParser::parseVectorList(OperandVector &Operands) { 4567 MCAsmParser &Parser = getParser(); 4568 VectorLaneTy LaneKind; 4569 unsigned LaneIndex; 4570 SMLoc S = Parser.getTok().getLoc(); 4571 // As an extension (to match gas), support a plain D register or Q register 4572 // (without encosing curly braces) as a single or double entry list, 4573 // respectively. 4574 if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) { 4575 SMLoc E = Parser.getTok().getEndLoc(); 4576 int Reg = tryParseRegister(); 4577 if (Reg == -1) 4578 return MatchOperand_NoMatch; 4579 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 4580 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4581 if (Res != MatchOperand_Success) 4582 return Res; 4583 switch (LaneKind) { 4584 case NoLanes: 4585 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 4586 break; 4587 case AllLanes: 4588 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 4589 S, E)); 4590 break; 4591 case IndexedLane: 4592 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 4593 LaneIndex, 4594 false, S, E)); 4595 break; 4596 } 4597 return MatchOperand_Success; 4598 } 4599 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4600 Reg = getDRegFromQReg(Reg); 4601 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4602 if (Res != MatchOperand_Success) 4603 return Res; 4604 switch (LaneKind) { 4605 case NoLanes: 4606 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4607 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4608 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 4609 break; 4610 case AllLanes: 4611 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4612 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4613 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 4614 S, E)); 4615 break; 4616 case IndexedLane: 4617 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 4618 LaneIndex, 4619 false, S, E)); 4620 break; 4621 } 4622 return MatchOperand_Success; 4623 } 4624 Error(S, "vector register expected"); 4625 return MatchOperand_ParseFail; 4626 } 4627 4628 if (Parser.getTok().isNot(AsmToken::LCurly)) 4629 return MatchOperand_NoMatch; 4630 4631 Parser.Lex(); // Eat '{' token. 4632 SMLoc RegLoc = Parser.getTok().getLoc(); 4633 4634 int Reg = tryParseRegister(); 4635 if (Reg == -1) { 4636 Error(RegLoc, "register expected"); 4637 return MatchOperand_ParseFail; 4638 } 4639 unsigned Count = 1; 4640 int Spacing = 0; 4641 unsigned FirstReg = Reg; 4642 4643 if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4644 Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected"); 4645 return MatchOperand_ParseFail; 4646 } 4647 // The list is of D registers, but we also allow Q regs and just interpret 4648 // them as the two D sub-registers. 4649 else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4650 FirstReg = Reg = getDRegFromQReg(Reg); 4651 Spacing = 1; // double-spacing requires explicit D registers, otherwise 4652 // it's ambiguous with four-register single spaced. 4653 ++Reg; 4654 ++Count; 4655 } 4656 4657 SMLoc E; 4658 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 4659 return MatchOperand_ParseFail; 4660 4661 while (Parser.getTok().is(AsmToken::Comma) || 4662 Parser.getTok().is(AsmToken::Minus)) { 4663 if (Parser.getTok().is(AsmToken::Minus)) { 4664 if (!Spacing) 4665 Spacing = 1; // Register range implies a single spaced list. 4666 else if (Spacing == 2) { 4667 Error(Parser.getTok().getLoc(), 4668 "sequential registers in double spaced list"); 4669 return MatchOperand_ParseFail; 4670 } 4671 Parser.Lex(); // Eat the minus. 4672 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4673 int EndReg = tryParseRegister(); 4674 if (EndReg == -1) { 4675 Error(AfterMinusLoc, "register expected"); 4676 return MatchOperand_ParseFail; 4677 } 4678 // Allow Q regs and just interpret them as the two D sub-registers. 4679 if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4680 EndReg = getDRegFromQReg(EndReg) + 1; 4681 // If the register is the same as the start reg, there's nothing 4682 // more to do. 4683 if (Reg == EndReg) 4684 continue; 4685 // The register must be in the same register class as the first. 4686 if ((hasMVE() && 4687 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) || 4688 (!hasMVE() && 4689 !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) { 4690 Error(AfterMinusLoc, "invalid register in register list"); 4691 return MatchOperand_ParseFail; 4692 } 4693 // Ranges must go from low to high. 4694 if (Reg > EndReg) { 4695 Error(AfterMinusLoc, "bad range in register list"); 4696 return MatchOperand_ParseFail; 4697 } 4698 // Parse the lane specifier if present. 4699 VectorLaneTy NextLaneKind; 4700 unsigned NextLaneIndex; 4701 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4702 MatchOperand_Success) 4703 return MatchOperand_ParseFail; 4704 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4705 Error(AfterMinusLoc, "mismatched lane index in register list"); 4706 return MatchOperand_ParseFail; 4707 } 4708 4709 // Add all the registers in the range to the register list. 4710 Count += EndReg - Reg; 4711 Reg = EndReg; 4712 continue; 4713 } 4714 Parser.Lex(); // Eat the comma. 4715 RegLoc = Parser.getTok().getLoc(); 4716 int OldReg = Reg; 4717 Reg = tryParseRegister(); 4718 if (Reg == -1) { 4719 Error(RegLoc, "register expected"); 4720 return MatchOperand_ParseFail; 4721 } 4722 4723 if (hasMVE()) { 4724 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4725 Error(RegLoc, "vector register in range Q0-Q7 expected"); 4726 return MatchOperand_ParseFail; 4727 } 4728 Spacing = 1; 4729 } 4730 // vector register lists must be contiguous. 4731 // It's OK to use the enumeration values directly here rather, as the 4732 // VFP register classes have the enum sorted properly. 4733 // 4734 // The list is of D registers, but we also allow Q regs and just interpret 4735 // them as the two D sub-registers. 4736 else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4737 if (!Spacing) 4738 Spacing = 1; // Register range implies a single spaced list. 4739 else if (Spacing == 2) { 4740 Error(RegLoc, 4741 "invalid register in double-spaced list (must be 'D' register')"); 4742 return MatchOperand_ParseFail; 4743 } 4744 Reg = getDRegFromQReg(Reg); 4745 if (Reg != OldReg + 1) { 4746 Error(RegLoc, "non-contiguous register range"); 4747 return MatchOperand_ParseFail; 4748 } 4749 ++Reg; 4750 Count += 2; 4751 // Parse the lane specifier if present. 4752 VectorLaneTy NextLaneKind; 4753 unsigned NextLaneIndex; 4754 SMLoc LaneLoc = Parser.getTok().getLoc(); 4755 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4756 MatchOperand_Success) 4757 return MatchOperand_ParseFail; 4758 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4759 Error(LaneLoc, "mismatched lane index in register list"); 4760 return MatchOperand_ParseFail; 4761 } 4762 continue; 4763 } 4764 // Normal D register. 4765 // Figure out the register spacing (single or double) of the list if 4766 // we don't know it already. 4767 if (!Spacing) 4768 Spacing = 1 + (Reg == OldReg + 2); 4769 4770 // Just check that it's contiguous and keep going. 4771 if (Reg != OldReg + Spacing) { 4772 Error(RegLoc, "non-contiguous register range"); 4773 return MatchOperand_ParseFail; 4774 } 4775 ++Count; 4776 // Parse the lane specifier if present. 4777 VectorLaneTy NextLaneKind; 4778 unsigned NextLaneIndex; 4779 SMLoc EndLoc = Parser.getTok().getLoc(); 4780 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 4781 return MatchOperand_ParseFail; 4782 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4783 Error(EndLoc, "mismatched lane index in register list"); 4784 return MatchOperand_ParseFail; 4785 } 4786 } 4787 4788 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4789 Error(Parser.getTok().getLoc(), "'}' expected"); 4790 return MatchOperand_ParseFail; 4791 } 4792 E = Parser.getTok().getEndLoc(); 4793 Parser.Lex(); // Eat '}' token. 4794 4795 switch (LaneKind) { 4796 case NoLanes: 4797 case AllLanes: { 4798 // Two-register operands have been converted to the 4799 // composite register classes. 4800 if (Count == 2 && !hasMVE()) { 4801 const MCRegisterClass *RC = (Spacing == 1) ? 4802 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4803 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4804 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4805 } 4806 auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList : 4807 ARMOperand::CreateVectorListAllLanes); 4808 Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E)); 4809 break; 4810 } 4811 case IndexedLane: 4812 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4813 LaneIndex, 4814 (Spacing == 2), 4815 S, E)); 4816 break; 4817 } 4818 return MatchOperand_Success; 4819 } 4820 4821 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4822 OperandMatchResultTy 4823 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4824 MCAsmParser &Parser = getParser(); 4825 SMLoc S = Parser.getTok().getLoc(); 4826 const AsmToken &Tok = Parser.getTok(); 4827 unsigned Opt; 4828 4829 if (Tok.is(AsmToken::Identifier)) { 4830 StringRef OptStr = Tok.getString(); 4831 4832 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4833 .Case("sy", ARM_MB::SY) 4834 .Case("st", ARM_MB::ST) 4835 .Case("ld", ARM_MB::LD) 4836 .Case("sh", ARM_MB::ISH) 4837 .Case("ish", ARM_MB::ISH) 4838 .Case("shst", ARM_MB::ISHST) 4839 .Case("ishst", ARM_MB::ISHST) 4840 .Case("ishld", ARM_MB::ISHLD) 4841 .Case("nsh", ARM_MB::NSH) 4842 .Case("un", ARM_MB::NSH) 4843 .Case("nshst", ARM_MB::NSHST) 4844 .Case("nshld", ARM_MB::NSHLD) 4845 .Case("unst", ARM_MB::NSHST) 4846 .Case("osh", ARM_MB::OSH) 4847 .Case("oshst", ARM_MB::OSHST) 4848 .Case("oshld", ARM_MB::OSHLD) 4849 .Default(~0U); 4850 4851 // ishld, oshld, nshld and ld are only available from ARMv8. 4852 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4853 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4854 Opt = ~0U; 4855 4856 if (Opt == ~0U) 4857 return MatchOperand_NoMatch; 4858 4859 Parser.Lex(); // Eat identifier token. 4860 } else if (Tok.is(AsmToken::Hash) || 4861 Tok.is(AsmToken::Dollar) || 4862 Tok.is(AsmToken::Integer)) { 4863 if (Parser.getTok().isNot(AsmToken::Integer)) 4864 Parser.Lex(); // Eat '#' or '$'. 4865 SMLoc Loc = Parser.getTok().getLoc(); 4866 4867 const MCExpr *MemBarrierID; 4868 if (getParser().parseExpression(MemBarrierID)) { 4869 Error(Loc, "illegal expression"); 4870 return MatchOperand_ParseFail; 4871 } 4872 4873 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4874 if (!CE) { 4875 Error(Loc, "constant expression expected"); 4876 return MatchOperand_ParseFail; 4877 } 4878 4879 int Val = CE->getValue(); 4880 if (Val & ~0xf) { 4881 Error(Loc, "immediate value out of range"); 4882 return MatchOperand_ParseFail; 4883 } 4884 4885 Opt = ARM_MB::RESERVED_0 + Val; 4886 } else 4887 return MatchOperand_ParseFail; 4888 4889 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 4890 return MatchOperand_Success; 4891 } 4892 4893 OperandMatchResultTy 4894 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) { 4895 MCAsmParser &Parser = getParser(); 4896 SMLoc S = Parser.getTok().getLoc(); 4897 const AsmToken &Tok = Parser.getTok(); 4898 4899 if (Tok.isNot(AsmToken::Identifier)) 4900 return MatchOperand_NoMatch; 4901 4902 if (!Tok.getString().equals_lower("csync")) 4903 return MatchOperand_NoMatch; 4904 4905 Parser.Lex(); // Eat identifier token. 4906 4907 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S)); 4908 return MatchOperand_Success; 4909 } 4910 4911 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 4912 OperandMatchResultTy 4913 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 4914 MCAsmParser &Parser = getParser(); 4915 SMLoc S = Parser.getTok().getLoc(); 4916 const AsmToken &Tok = Parser.getTok(); 4917 unsigned Opt; 4918 4919 if (Tok.is(AsmToken::Identifier)) { 4920 StringRef OptStr = Tok.getString(); 4921 4922 if (OptStr.equals_lower("sy")) 4923 Opt = ARM_ISB::SY; 4924 else 4925 return MatchOperand_NoMatch; 4926 4927 Parser.Lex(); // Eat identifier token. 4928 } else if (Tok.is(AsmToken::Hash) || 4929 Tok.is(AsmToken::Dollar) || 4930 Tok.is(AsmToken::Integer)) { 4931 if (Parser.getTok().isNot(AsmToken::Integer)) 4932 Parser.Lex(); // Eat '#' or '$'. 4933 SMLoc Loc = Parser.getTok().getLoc(); 4934 4935 const MCExpr *ISBarrierID; 4936 if (getParser().parseExpression(ISBarrierID)) { 4937 Error(Loc, "illegal expression"); 4938 return MatchOperand_ParseFail; 4939 } 4940 4941 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4942 if (!CE) { 4943 Error(Loc, "constant expression expected"); 4944 return MatchOperand_ParseFail; 4945 } 4946 4947 int Val = CE->getValue(); 4948 if (Val & ~0xf) { 4949 Error(Loc, "immediate value out of range"); 4950 return MatchOperand_ParseFail; 4951 } 4952 4953 Opt = ARM_ISB::RESERVED_0 + Val; 4954 } else 4955 return MatchOperand_ParseFail; 4956 4957 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4958 (ARM_ISB::InstSyncBOpt)Opt, S)); 4959 return MatchOperand_Success; 4960 } 4961 4962 4963 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4964 OperandMatchResultTy 4965 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4966 MCAsmParser &Parser = getParser(); 4967 SMLoc S = Parser.getTok().getLoc(); 4968 const AsmToken &Tok = Parser.getTok(); 4969 if (!Tok.is(AsmToken::Identifier)) 4970 return MatchOperand_NoMatch; 4971 StringRef IFlagsStr = Tok.getString(); 4972 4973 // An iflags string of "none" is interpreted to mean that none of the AIF 4974 // bits are set. Not a terribly useful instruction, but a valid encoding. 4975 unsigned IFlags = 0; 4976 if (IFlagsStr != "none") { 4977 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4978 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) 4979 .Case("a", ARM_PROC::A) 4980 .Case("i", ARM_PROC::I) 4981 .Case("f", ARM_PROC::F) 4982 .Default(~0U); 4983 4984 // If some specific iflag is already set, it means that some letter is 4985 // present more than once, this is not acceptable. 4986 if (Flag == ~0U || (IFlags & Flag)) 4987 return MatchOperand_NoMatch; 4988 4989 IFlags |= Flag; 4990 } 4991 } 4992 4993 Parser.Lex(); // Eat identifier token. 4994 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4995 return MatchOperand_Success; 4996 } 4997 4998 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4999 OperandMatchResultTy 5000 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 5001 MCAsmParser &Parser = getParser(); 5002 SMLoc S = Parser.getTok().getLoc(); 5003 const AsmToken &Tok = Parser.getTok(); 5004 5005 if (Tok.is(AsmToken::Integer)) { 5006 int64_t Val = Tok.getIntVal(); 5007 if (Val > 255 || Val < 0) { 5008 return MatchOperand_NoMatch; 5009 } 5010 unsigned SYSmvalue = Val & 0xFF; 5011 Parser.Lex(); 5012 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 5013 return MatchOperand_Success; 5014 } 5015 5016 if (!Tok.is(AsmToken::Identifier)) 5017 return MatchOperand_NoMatch; 5018 StringRef Mask = Tok.getString(); 5019 5020 if (isMClass()) { 5021 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 5022 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 5023 return MatchOperand_NoMatch; 5024 5025 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 5026 5027 Parser.Lex(); // Eat identifier token. 5028 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 5029 return MatchOperand_Success; 5030 } 5031 5032 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 5033 size_t Start = 0, Next = Mask.find('_'); 5034 StringRef Flags = ""; 5035 std::string SpecReg = Mask.slice(Start, Next).lower(); 5036 if (Next != StringRef::npos) 5037 Flags = Mask.slice(Next+1, Mask.size()); 5038 5039 // FlagsVal contains the complete mask: 5040 // 3-0: Mask 5041 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 5042 unsigned FlagsVal = 0; 5043 5044 if (SpecReg == "apsr") { 5045 FlagsVal = StringSwitch<unsigned>(Flags) 5046 .Case("nzcvq", 0x8) // same as CPSR_f 5047 .Case("g", 0x4) // same as CPSR_s 5048 .Case("nzcvqg", 0xc) // same as CPSR_fs 5049 .Default(~0U); 5050 5051 if (FlagsVal == ~0U) { 5052 if (!Flags.empty()) 5053 return MatchOperand_NoMatch; 5054 else 5055 FlagsVal = 8; // No flag 5056 } 5057 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 5058 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 5059 if (Flags == "all" || Flags == "") 5060 Flags = "fc"; 5061 for (int i = 0, e = Flags.size(); i != e; ++i) { 5062 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 5063 .Case("c", 1) 5064 .Case("x", 2) 5065 .Case("s", 4) 5066 .Case("f", 8) 5067 .Default(~0U); 5068 5069 // If some specific flag is already set, it means that some letter is 5070 // present more than once, this is not acceptable. 5071 if (Flag == ~0U || (FlagsVal & Flag)) 5072 return MatchOperand_NoMatch; 5073 FlagsVal |= Flag; 5074 } 5075 } else // No match for special register. 5076 return MatchOperand_NoMatch; 5077 5078 // Special register without flags is NOT equivalent to "fc" flags. 5079 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 5080 // two lines would enable gas compatibility at the expense of breaking 5081 // round-tripping. 5082 // 5083 // if (!FlagsVal) 5084 // FlagsVal = 0x9; 5085 5086 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 5087 if (SpecReg == "spsr") 5088 FlagsVal |= 16; 5089 5090 Parser.Lex(); // Eat identifier token. 5091 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 5092 return MatchOperand_Success; 5093 } 5094 5095 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 5096 /// use in the MRS/MSR instructions added to support virtualization. 5097 OperandMatchResultTy 5098 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 5099 MCAsmParser &Parser = getParser(); 5100 SMLoc S = Parser.getTok().getLoc(); 5101 const AsmToken &Tok = Parser.getTok(); 5102 if (!Tok.is(AsmToken::Identifier)) 5103 return MatchOperand_NoMatch; 5104 StringRef RegName = Tok.getString(); 5105 5106 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); 5107 if (!TheReg) 5108 return MatchOperand_NoMatch; 5109 unsigned Encoding = TheReg->Encoding; 5110 5111 Parser.Lex(); // Eat identifier token. 5112 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 5113 return MatchOperand_Success; 5114 } 5115 5116 OperandMatchResultTy 5117 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 5118 int High) { 5119 MCAsmParser &Parser = getParser(); 5120 const AsmToken &Tok = Parser.getTok(); 5121 if (Tok.isNot(AsmToken::Identifier)) { 5122 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5123 return MatchOperand_ParseFail; 5124 } 5125 StringRef ShiftName = Tok.getString(); 5126 std::string LowerOp = Op.lower(); 5127 std::string UpperOp = Op.upper(); 5128 if (ShiftName != LowerOp && ShiftName != UpperOp) { 5129 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5130 return MatchOperand_ParseFail; 5131 } 5132 Parser.Lex(); // Eat shift type token. 5133 5134 // There must be a '#' and a shift amount. 5135 if (Parser.getTok().isNot(AsmToken::Hash) && 5136 Parser.getTok().isNot(AsmToken::Dollar)) { 5137 Error(Parser.getTok().getLoc(), "'#' expected"); 5138 return MatchOperand_ParseFail; 5139 } 5140 Parser.Lex(); // Eat hash token. 5141 5142 const MCExpr *ShiftAmount; 5143 SMLoc Loc = Parser.getTok().getLoc(); 5144 SMLoc EndLoc; 5145 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5146 Error(Loc, "illegal expression"); 5147 return MatchOperand_ParseFail; 5148 } 5149 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5150 if (!CE) { 5151 Error(Loc, "constant expression expected"); 5152 return MatchOperand_ParseFail; 5153 } 5154 int Val = CE->getValue(); 5155 if (Val < Low || Val > High) { 5156 Error(Loc, "immediate value out of range"); 5157 return MatchOperand_ParseFail; 5158 } 5159 5160 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 5161 5162 return MatchOperand_Success; 5163 } 5164 5165 OperandMatchResultTy 5166 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 5167 MCAsmParser &Parser = getParser(); 5168 const AsmToken &Tok = Parser.getTok(); 5169 SMLoc S = Tok.getLoc(); 5170 if (Tok.isNot(AsmToken::Identifier)) { 5171 Error(S, "'be' or 'le' operand expected"); 5172 return MatchOperand_ParseFail; 5173 } 5174 int Val = StringSwitch<int>(Tok.getString().lower()) 5175 .Case("be", 1) 5176 .Case("le", 0) 5177 .Default(-1); 5178 Parser.Lex(); // Eat the token. 5179 5180 if (Val == -1) { 5181 Error(S, "'be' or 'le' operand expected"); 5182 return MatchOperand_ParseFail; 5183 } 5184 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 5185 getContext()), 5186 S, Tok.getEndLoc())); 5187 return MatchOperand_Success; 5188 } 5189 5190 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 5191 /// instructions. Legal values are: 5192 /// lsl #n 'n' in [0,31] 5193 /// asr #n 'n' in [1,32] 5194 /// n == 32 encoded as n == 0. 5195 OperandMatchResultTy 5196 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 5197 MCAsmParser &Parser = getParser(); 5198 const AsmToken &Tok = Parser.getTok(); 5199 SMLoc S = Tok.getLoc(); 5200 if (Tok.isNot(AsmToken::Identifier)) { 5201 Error(S, "shift operator 'asr' or 'lsl' expected"); 5202 return MatchOperand_ParseFail; 5203 } 5204 StringRef ShiftName = Tok.getString(); 5205 bool isASR; 5206 if (ShiftName == "lsl" || ShiftName == "LSL") 5207 isASR = false; 5208 else if (ShiftName == "asr" || ShiftName == "ASR") 5209 isASR = true; 5210 else { 5211 Error(S, "shift operator 'asr' or 'lsl' expected"); 5212 return MatchOperand_ParseFail; 5213 } 5214 Parser.Lex(); // Eat the operator. 5215 5216 // A '#' and a shift amount. 5217 if (Parser.getTok().isNot(AsmToken::Hash) && 5218 Parser.getTok().isNot(AsmToken::Dollar)) { 5219 Error(Parser.getTok().getLoc(), "'#' expected"); 5220 return MatchOperand_ParseFail; 5221 } 5222 Parser.Lex(); // Eat hash token. 5223 SMLoc ExLoc = Parser.getTok().getLoc(); 5224 5225 const MCExpr *ShiftAmount; 5226 SMLoc EndLoc; 5227 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5228 Error(ExLoc, "malformed shift expression"); 5229 return MatchOperand_ParseFail; 5230 } 5231 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5232 if (!CE) { 5233 Error(ExLoc, "shift amount must be an immediate"); 5234 return MatchOperand_ParseFail; 5235 } 5236 5237 int64_t Val = CE->getValue(); 5238 if (isASR) { 5239 // Shift amount must be in [1,32] 5240 if (Val < 1 || Val > 32) { 5241 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 5242 return MatchOperand_ParseFail; 5243 } 5244 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 5245 if (isThumb() && Val == 32) { 5246 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 5247 return MatchOperand_ParseFail; 5248 } 5249 if (Val == 32) Val = 0; 5250 } else { 5251 // Shift amount must be in [1,32] 5252 if (Val < 0 || Val > 31) { 5253 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 5254 return MatchOperand_ParseFail; 5255 } 5256 } 5257 5258 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 5259 5260 return MatchOperand_Success; 5261 } 5262 5263 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 5264 /// of instructions. Legal values are: 5265 /// ror #n 'n' in {0, 8, 16, 24} 5266 OperandMatchResultTy 5267 ARMAsmParser::parseRotImm(OperandVector &Operands) { 5268 MCAsmParser &Parser = getParser(); 5269 const AsmToken &Tok = Parser.getTok(); 5270 SMLoc S = Tok.getLoc(); 5271 if (Tok.isNot(AsmToken::Identifier)) 5272 return MatchOperand_NoMatch; 5273 StringRef ShiftName = Tok.getString(); 5274 if (ShiftName != "ror" && ShiftName != "ROR") 5275 return MatchOperand_NoMatch; 5276 Parser.Lex(); // Eat the operator. 5277 5278 // A '#' and a rotate amount. 5279 if (Parser.getTok().isNot(AsmToken::Hash) && 5280 Parser.getTok().isNot(AsmToken::Dollar)) { 5281 Error(Parser.getTok().getLoc(), "'#' expected"); 5282 return MatchOperand_ParseFail; 5283 } 5284 Parser.Lex(); // Eat hash token. 5285 SMLoc ExLoc = Parser.getTok().getLoc(); 5286 5287 const MCExpr *ShiftAmount; 5288 SMLoc EndLoc; 5289 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5290 Error(ExLoc, "malformed rotate expression"); 5291 return MatchOperand_ParseFail; 5292 } 5293 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5294 if (!CE) { 5295 Error(ExLoc, "rotate amount must be an immediate"); 5296 return MatchOperand_ParseFail; 5297 } 5298 5299 int64_t Val = CE->getValue(); 5300 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 5301 // normally, zero is represented in asm by omitting the rotate operand 5302 // entirely. 5303 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 5304 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 5305 return MatchOperand_ParseFail; 5306 } 5307 5308 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 5309 5310 return MatchOperand_Success; 5311 } 5312 5313 OperandMatchResultTy 5314 ARMAsmParser::parseModImm(OperandVector &Operands) { 5315 MCAsmParser &Parser = getParser(); 5316 MCAsmLexer &Lexer = getLexer(); 5317 int64_t Imm1, Imm2; 5318 5319 SMLoc S = Parser.getTok().getLoc(); 5320 5321 // 1) A mod_imm operand can appear in the place of a register name: 5322 // add r0, #mod_imm 5323 // add r0, r0, #mod_imm 5324 // to correctly handle the latter, we bail out as soon as we see an 5325 // identifier. 5326 // 5327 // 2) Similarly, we do not want to parse into complex operands: 5328 // mov r0, #mod_imm 5329 // mov r0, :lower16:(_foo) 5330 if (Parser.getTok().is(AsmToken::Identifier) || 5331 Parser.getTok().is(AsmToken::Colon)) 5332 return MatchOperand_NoMatch; 5333 5334 // Hash (dollar) is optional as per the ARMARM 5335 if (Parser.getTok().is(AsmToken::Hash) || 5336 Parser.getTok().is(AsmToken::Dollar)) { 5337 // Avoid parsing into complex operands (#:) 5338 if (Lexer.peekTok().is(AsmToken::Colon)) 5339 return MatchOperand_NoMatch; 5340 5341 // Eat the hash (dollar) 5342 Parser.Lex(); 5343 } 5344 5345 SMLoc Sx1, Ex1; 5346 Sx1 = Parser.getTok().getLoc(); 5347 const MCExpr *Imm1Exp; 5348 if (getParser().parseExpression(Imm1Exp, Ex1)) { 5349 Error(Sx1, "malformed expression"); 5350 return MatchOperand_ParseFail; 5351 } 5352 5353 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 5354 5355 if (CE) { 5356 // Immediate must fit within 32-bits 5357 Imm1 = CE->getValue(); 5358 int Enc = ARM_AM::getSOImmVal(Imm1); 5359 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 5360 // We have a match! 5361 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 5362 (Enc & 0xF00) >> 7, 5363 Sx1, Ex1)); 5364 return MatchOperand_Success; 5365 } 5366 5367 // We have parsed an immediate which is not for us, fallback to a plain 5368 // immediate. This can happen for instruction aliases. For an example, 5369 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 5370 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 5371 // instruction with a mod_imm operand. The alias is defined such that the 5372 // parser method is shared, that's why we have to do this here. 5373 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 5374 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5375 return MatchOperand_Success; 5376 } 5377 } else { 5378 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 5379 // MCFixup). Fallback to a plain immediate. 5380 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5381 return MatchOperand_Success; 5382 } 5383 5384 // From this point onward, we expect the input to be a (#bits, #rot) pair 5385 if (Parser.getTok().isNot(AsmToken::Comma)) { 5386 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 5387 return MatchOperand_ParseFail; 5388 } 5389 5390 if (Imm1 & ~0xFF) { 5391 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 5392 return MatchOperand_ParseFail; 5393 } 5394 5395 // Eat the comma 5396 Parser.Lex(); 5397 5398 // Repeat for #rot 5399 SMLoc Sx2, Ex2; 5400 Sx2 = Parser.getTok().getLoc(); 5401 5402 // Eat the optional hash (dollar) 5403 if (Parser.getTok().is(AsmToken::Hash) || 5404 Parser.getTok().is(AsmToken::Dollar)) 5405 Parser.Lex(); 5406 5407 const MCExpr *Imm2Exp; 5408 if (getParser().parseExpression(Imm2Exp, Ex2)) { 5409 Error(Sx2, "malformed expression"); 5410 return MatchOperand_ParseFail; 5411 } 5412 5413 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 5414 5415 if (CE) { 5416 Imm2 = CE->getValue(); 5417 if (!(Imm2 & ~0x1E)) { 5418 // We have a match! 5419 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 5420 return MatchOperand_Success; 5421 } 5422 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 5423 return MatchOperand_ParseFail; 5424 } else { 5425 Error(Sx2, "constant expression expected"); 5426 return MatchOperand_ParseFail; 5427 } 5428 } 5429 5430 OperandMatchResultTy 5431 ARMAsmParser::parseBitfield(OperandVector &Operands) { 5432 MCAsmParser &Parser = getParser(); 5433 SMLoc S = Parser.getTok().getLoc(); 5434 // The bitfield descriptor is really two operands, the LSB and the width. 5435 if (Parser.getTok().isNot(AsmToken::Hash) && 5436 Parser.getTok().isNot(AsmToken::Dollar)) { 5437 Error(Parser.getTok().getLoc(), "'#' expected"); 5438 return MatchOperand_ParseFail; 5439 } 5440 Parser.Lex(); // Eat hash token. 5441 5442 const MCExpr *LSBExpr; 5443 SMLoc E = Parser.getTok().getLoc(); 5444 if (getParser().parseExpression(LSBExpr)) { 5445 Error(E, "malformed immediate expression"); 5446 return MatchOperand_ParseFail; 5447 } 5448 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 5449 if (!CE) { 5450 Error(E, "'lsb' operand must be an immediate"); 5451 return MatchOperand_ParseFail; 5452 } 5453 5454 int64_t LSB = CE->getValue(); 5455 // The LSB must be in the range [0,31] 5456 if (LSB < 0 || LSB > 31) { 5457 Error(E, "'lsb' operand must be in the range [0,31]"); 5458 return MatchOperand_ParseFail; 5459 } 5460 E = Parser.getTok().getLoc(); 5461 5462 // Expect another immediate operand. 5463 if (Parser.getTok().isNot(AsmToken::Comma)) { 5464 Error(Parser.getTok().getLoc(), "too few operands"); 5465 return MatchOperand_ParseFail; 5466 } 5467 Parser.Lex(); // Eat hash token. 5468 if (Parser.getTok().isNot(AsmToken::Hash) && 5469 Parser.getTok().isNot(AsmToken::Dollar)) { 5470 Error(Parser.getTok().getLoc(), "'#' expected"); 5471 return MatchOperand_ParseFail; 5472 } 5473 Parser.Lex(); // Eat hash token. 5474 5475 const MCExpr *WidthExpr; 5476 SMLoc EndLoc; 5477 if (getParser().parseExpression(WidthExpr, EndLoc)) { 5478 Error(E, "malformed immediate expression"); 5479 return MatchOperand_ParseFail; 5480 } 5481 CE = dyn_cast<MCConstantExpr>(WidthExpr); 5482 if (!CE) { 5483 Error(E, "'width' operand must be an immediate"); 5484 return MatchOperand_ParseFail; 5485 } 5486 5487 int64_t Width = CE->getValue(); 5488 // The LSB must be in the range [1,32-lsb] 5489 if (Width < 1 || Width > 32 - LSB) { 5490 Error(E, "'width' operand must be in the range [1,32-lsb]"); 5491 return MatchOperand_ParseFail; 5492 } 5493 5494 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 5495 5496 return MatchOperand_Success; 5497 } 5498 5499 OperandMatchResultTy 5500 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 5501 // Check for a post-index addressing register operand. Specifically: 5502 // postidx_reg := '+' register {, shift} 5503 // | '-' register {, shift} 5504 // | register {, shift} 5505 5506 // This method must return MatchOperand_NoMatch without consuming any tokens 5507 // in the case where there is no match, as other alternatives take other 5508 // parse methods. 5509 MCAsmParser &Parser = getParser(); 5510 AsmToken Tok = Parser.getTok(); 5511 SMLoc S = Tok.getLoc(); 5512 bool haveEaten = false; 5513 bool isAdd = true; 5514 if (Tok.is(AsmToken::Plus)) { 5515 Parser.Lex(); // Eat the '+' token. 5516 haveEaten = true; 5517 } else if (Tok.is(AsmToken::Minus)) { 5518 Parser.Lex(); // Eat the '-' token. 5519 isAdd = false; 5520 haveEaten = true; 5521 } 5522 5523 SMLoc E = Parser.getTok().getEndLoc(); 5524 int Reg = tryParseRegister(); 5525 if (Reg == -1) { 5526 if (!haveEaten) 5527 return MatchOperand_NoMatch; 5528 Error(Parser.getTok().getLoc(), "register expected"); 5529 return MatchOperand_ParseFail; 5530 } 5531 5532 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 5533 unsigned ShiftImm = 0; 5534 if (Parser.getTok().is(AsmToken::Comma)) { 5535 Parser.Lex(); // Eat the ','. 5536 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 5537 return MatchOperand_ParseFail; 5538 5539 // FIXME: Only approximates end...may include intervening whitespace. 5540 E = Parser.getTok().getLoc(); 5541 } 5542 5543 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 5544 ShiftImm, S, E)); 5545 5546 return MatchOperand_Success; 5547 } 5548 5549 OperandMatchResultTy 5550 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 5551 // Check for a post-index addressing register operand. Specifically: 5552 // am3offset := '+' register 5553 // | '-' register 5554 // | register 5555 // | # imm 5556 // | # + imm 5557 // | # - imm 5558 5559 // This method must return MatchOperand_NoMatch without consuming any tokens 5560 // in the case where there is no match, as other alternatives take other 5561 // parse methods. 5562 MCAsmParser &Parser = getParser(); 5563 AsmToken Tok = Parser.getTok(); 5564 SMLoc S = Tok.getLoc(); 5565 5566 // Do immediates first, as we always parse those if we have a '#'. 5567 if (Parser.getTok().is(AsmToken::Hash) || 5568 Parser.getTok().is(AsmToken::Dollar)) { 5569 Parser.Lex(); // Eat '#' or '$'. 5570 // Explicitly look for a '-', as we need to encode negative zero 5571 // differently. 5572 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5573 const MCExpr *Offset; 5574 SMLoc E; 5575 if (getParser().parseExpression(Offset, E)) 5576 return MatchOperand_ParseFail; 5577 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5578 if (!CE) { 5579 Error(S, "constant expression expected"); 5580 return MatchOperand_ParseFail; 5581 } 5582 // Negative zero is encoded as the flag value 5583 // std::numeric_limits<int32_t>::min(). 5584 int32_t Val = CE->getValue(); 5585 if (isNegative && Val == 0) 5586 Val = std::numeric_limits<int32_t>::min(); 5587 5588 Operands.push_back( 5589 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 5590 5591 return MatchOperand_Success; 5592 } 5593 5594 bool haveEaten = false; 5595 bool isAdd = true; 5596 if (Tok.is(AsmToken::Plus)) { 5597 Parser.Lex(); // Eat the '+' token. 5598 haveEaten = true; 5599 } else if (Tok.is(AsmToken::Minus)) { 5600 Parser.Lex(); // Eat the '-' token. 5601 isAdd = false; 5602 haveEaten = true; 5603 } 5604 5605 Tok = Parser.getTok(); 5606 int Reg = tryParseRegister(); 5607 if (Reg == -1) { 5608 if (!haveEaten) 5609 return MatchOperand_NoMatch; 5610 Error(Tok.getLoc(), "register expected"); 5611 return MatchOperand_ParseFail; 5612 } 5613 5614 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 5615 0, S, Tok.getEndLoc())); 5616 5617 return MatchOperand_Success; 5618 } 5619 5620 /// Convert parsed operands to MCInst. Needed here because this instruction 5621 /// only has two register operands, but multiplication is commutative so 5622 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 5623 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 5624 const OperandVector &Operands) { 5625 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 5626 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 5627 // If we have a three-operand form, make sure to set Rn to be the operand 5628 // that isn't the same as Rd. 5629 unsigned RegOp = 4; 5630 if (Operands.size() == 6 && 5631 ((ARMOperand &)*Operands[4]).getReg() == 5632 ((ARMOperand &)*Operands[3]).getReg()) 5633 RegOp = 5; 5634 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 5635 Inst.addOperand(Inst.getOperand(0)); 5636 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 5637 } 5638 5639 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 5640 const OperandVector &Operands) { 5641 int CondOp = -1, ImmOp = -1; 5642 switch(Inst.getOpcode()) { 5643 case ARM::tB: 5644 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 5645 5646 case ARM::t2B: 5647 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 5648 5649 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 5650 } 5651 // first decide whether or not the branch should be conditional 5652 // by looking at it's location relative to an IT block 5653 if(inITBlock()) { 5654 // inside an IT block we cannot have any conditional branches. any 5655 // such instructions needs to be converted to unconditional form 5656 switch(Inst.getOpcode()) { 5657 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 5658 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 5659 } 5660 } else { 5661 // outside IT blocks we can only have unconditional branches with AL 5662 // condition code or conditional branches with non-AL condition code 5663 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 5664 switch(Inst.getOpcode()) { 5665 case ARM::tB: 5666 case ARM::tBcc: 5667 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 5668 break; 5669 case ARM::t2B: 5670 case ARM::t2Bcc: 5671 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 5672 break; 5673 } 5674 } 5675 5676 // now decide on encoding size based on branch target range 5677 switch(Inst.getOpcode()) { 5678 // classify tB as either t2B or t1B based on range of immediate operand 5679 case ARM::tB: { 5680 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5681 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 5682 Inst.setOpcode(ARM::t2B); 5683 break; 5684 } 5685 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 5686 case ARM::tBcc: { 5687 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5688 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 5689 Inst.setOpcode(ARM::t2Bcc); 5690 break; 5691 } 5692 } 5693 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 5694 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 5695 } 5696 5697 void ARMAsmParser::cvtMVEVMOVQtoDReg( 5698 MCInst &Inst, const OperandVector &Operands) { 5699 5700 // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2 5701 assert(Operands.size() == 8); 5702 5703 ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt 5704 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2 5705 ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd 5706 ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx 5707 // skip second copy of Qd in Operands[6] 5708 ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2 5709 ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code 5710 } 5711 5712 /// Parse an ARM memory expression, return false if successful else return true 5713 /// or an error. The first token must be a '[' when called. 5714 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 5715 MCAsmParser &Parser = getParser(); 5716 SMLoc S, E; 5717 if (Parser.getTok().isNot(AsmToken::LBrac)) 5718 return TokError("Token is not a Left Bracket"); 5719 S = Parser.getTok().getLoc(); 5720 Parser.Lex(); // Eat left bracket token. 5721 5722 const AsmToken &BaseRegTok = Parser.getTok(); 5723 int BaseRegNum = tryParseRegister(); 5724 if (BaseRegNum == -1) 5725 return Error(BaseRegTok.getLoc(), "register expected"); 5726 5727 // The next token must either be a comma, a colon or a closing bracket. 5728 const AsmToken &Tok = Parser.getTok(); 5729 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5730 !Tok.is(AsmToken::RBrac)) 5731 return Error(Tok.getLoc(), "malformed memory operand"); 5732 5733 if (Tok.is(AsmToken::RBrac)) { 5734 E = Tok.getEndLoc(); 5735 Parser.Lex(); // Eat right bracket token. 5736 5737 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5738 ARM_AM::no_shift, 0, 0, false, 5739 S, E)); 5740 5741 // If there's a pre-indexing writeback marker, '!', just add it as a token 5742 // operand. It's rather odd, but syntactically valid. 5743 if (Parser.getTok().is(AsmToken::Exclaim)) { 5744 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5745 Parser.Lex(); // Eat the '!'. 5746 } 5747 5748 return false; 5749 } 5750 5751 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5752 "Lost colon or comma in memory operand?!"); 5753 if (Tok.is(AsmToken::Comma)) { 5754 Parser.Lex(); // Eat the comma. 5755 } 5756 5757 // If we have a ':', it's an alignment specifier. 5758 if (Parser.getTok().is(AsmToken::Colon)) { 5759 Parser.Lex(); // Eat the ':'. 5760 E = Parser.getTok().getLoc(); 5761 SMLoc AlignmentLoc = Tok.getLoc(); 5762 5763 const MCExpr *Expr; 5764 if (getParser().parseExpression(Expr)) 5765 return true; 5766 5767 // The expression has to be a constant. Memory references with relocations 5768 // don't come through here, as they use the <label> forms of the relevant 5769 // instructions. 5770 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5771 if (!CE) 5772 return Error (E, "constant expression expected"); 5773 5774 unsigned Align = 0; 5775 switch (CE->getValue()) { 5776 default: 5777 return Error(E, 5778 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5779 case 16: Align = 2; break; 5780 case 32: Align = 4; break; 5781 case 64: Align = 8; break; 5782 case 128: Align = 16; break; 5783 case 256: Align = 32; break; 5784 } 5785 5786 // Now we should have the closing ']' 5787 if (Parser.getTok().isNot(AsmToken::RBrac)) 5788 return Error(Parser.getTok().getLoc(), "']' expected"); 5789 E = Parser.getTok().getEndLoc(); 5790 Parser.Lex(); // Eat right bracket token. 5791 5792 // Don't worry about range checking the value here. That's handled by 5793 // the is*() predicates. 5794 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5795 ARM_AM::no_shift, 0, Align, 5796 false, S, E, AlignmentLoc)); 5797 5798 // If there's a pre-indexing writeback marker, '!', just add it as a token 5799 // operand. 5800 if (Parser.getTok().is(AsmToken::Exclaim)) { 5801 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5802 Parser.Lex(); // Eat the '!'. 5803 } 5804 5805 return false; 5806 } 5807 5808 // If we have a '#' or '$', it's an immediate offset, else assume it's a 5809 // register offset. Be friendly and also accept a plain integer or expression 5810 // (without a leading hash) for gas compatibility. 5811 if (Parser.getTok().is(AsmToken::Hash) || 5812 Parser.getTok().is(AsmToken::Dollar) || 5813 Parser.getTok().is(AsmToken::LParen) || 5814 Parser.getTok().is(AsmToken::Integer)) { 5815 if (Parser.getTok().is(AsmToken::Hash) || 5816 Parser.getTok().is(AsmToken::Dollar)) 5817 Parser.Lex(); // Eat '#' or '$' 5818 E = Parser.getTok().getLoc(); 5819 5820 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5821 const MCExpr *Offset; 5822 if (getParser().parseExpression(Offset)) 5823 return true; 5824 5825 // The expression has to be a constant. Memory references with relocations 5826 // don't come through here, as they use the <label> forms of the relevant 5827 // instructions. 5828 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5829 if (!CE) 5830 return Error (E, "constant expression expected"); 5831 5832 // If the constant was #-0, represent it as 5833 // std::numeric_limits<int32_t>::min(). 5834 int32_t Val = CE->getValue(); 5835 if (isNegative && Val == 0) 5836 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5837 getContext()); 5838 5839 // Now we should have the closing ']' 5840 if (Parser.getTok().isNot(AsmToken::RBrac)) 5841 return Error(Parser.getTok().getLoc(), "']' expected"); 5842 E = Parser.getTok().getEndLoc(); 5843 Parser.Lex(); // Eat right bracket token. 5844 5845 // Don't worry about range checking the value here. That's handled by 5846 // the is*() predicates. 5847 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 5848 ARM_AM::no_shift, 0, 0, 5849 false, S, E)); 5850 5851 // If there's a pre-indexing writeback marker, '!', just add it as a token 5852 // operand. 5853 if (Parser.getTok().is(AsmToken::Exclaim)) { 5854 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5855 Parser.Lex(); // Eat the '!'. 5856 } 5857 5858 return false; 5859 } 5860 5861 // The register offset is optionally preceded by a '+' or '-' 5862 bool isNegative = false; 5863 if (Parser.getTok().is(AsmToken::Minus)) { 5864 isNegative = true; 5865 Parser.Lex(); // Eat the '-'. 5866 } else if (Parser.getTok().is(AsmToken::Plus)) { 5867 // Nothing to do. 5868 Parser.Lex(); // Eat the '+'. 5869 } 5870 5871 E = Parser.getTok().getLoc(); 5872 int OffsetRegNum = tryParseRegister(); 5873 if (OffsetRegNum == -1) 5874 return Error(E, "register expected"); 5875 5876 // If there's a shift operator, handle it. 5877 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5878 unsigned ShiftImm = 0; 5879 if (Parser.getTok().is(AsmToken::Comma)) { 5880 Parser.Lex(); // Eat the ','. 5881 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5882 return true; 5883 } 5884 5885 // Now we should have the closing ']' 5886 if (Parser.getTok().isNot(AsmToken::RBrac)) 5887 return Error(Parser.getTok().getLoc(), "']' expected"); 5888 E = Parser.getTok().getEndLoc(); 5889 Parser.Lex(); // Eat right bracket token. 5890 5891 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5892 ShiftType, ShiftImm, 0, isNegative, 5893 S, E)); 5894 5895 // If there's a pre-indexing writeback marker, '!', just add it as a token 5896 // operand. 5897 if (Parser.getTok().is(AsmToken::Exclaim)) { 5898 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5899 Parser.Lex(); // Eat the '!'. 5900 } 5901 5902 return false; 5903 } 5904 5905 /// parseMemRegOffsetShift - one of these two: 5906 /// ( lsl | lsr | asr | ror ) , # shift_amount 5907 /// rrx 5908 /// return true if it parses a shift otherwise it returns false. 5909 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5910 unsigned &Amount) { 5911 MCAsmParser &Parser = getParser(); 5912 SMLoc Loc = Parser.getTok().getLoc(); 5913 const AsmToken &Tok = Parser.getTok(); 5914 if (Tok.isNot(AsmToken::Identifier)) 5915 return Error(Loc, "illegal shift operator"); 5916 StringRef ShiftName = Tok.getString(); 5917 if (ShiftName == "lsl" || ShiftName == "LSL" || 5918 ShiftName == "asl" || ShiftName == "ASL") 5919 St = ARM_AM::lsl; 5920 else if (ShiftName == "lsr" || ShiftName == "LSR") 5921 St = ARM_AM::lsr; 5922 else if (ShiftName == "asr" || ShiftName == "ASR") 5923 St = ARM_AM::asr; 5924 else if (ShiftName == "ror" || ShiftName == "ROR") 5925 St = ARM_AM::ror; 5926 else if (ShiftName == "rrx" || ShiftName == "RRX") 5927 St = ARM_AM::rrx; 5928 else if (ShiftName == "uxtw" || ShiftName == "UXTW") 5929 St = ARM_AM::uxtw; 5930 else 5931 return Error(Loc, "illegal shift operator"); 5932 Parser.Lex(); // Eat shift type token. 5933 5934 // rrx stands alone. 5935 Amount = 0; 5936 if (St != ARM_AM::rrx) { 5937 Loc = Parser.getTok().getLoc(); 5938 // A '#' and a shift amount. 5939 const AsmToken &HashTok = Parser.getTok(); 5940 if (HashTok.isNot(AsmToken::Hash) && 5941 HashTok.isNot(AsmToken::Dollar)) 5942 return Error(HashTok.getLoc(), "'#' expected"); 5943 Parser.Lex(); // Eat hash token. 5944 5945 const MCExpr *Expr; 5946 if (getParser().parseExpression(Expr)) 5947 return true; 5948 // Range check the immediate. 5949 // lsl, ror: 0 <= imm <= 31 5950 // lsr, asr: 0 <= imm <= 32 5951 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5952 if (!CE) 5953 return Error(Loc, "shift amount must be an immediate"); 5954 int64_t Imm = CE->getValue(); 5955 if (Imm < 0 || 5956 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5957 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5958 return Error(Loc, "immediate shift value out of range"); 5959 // If <ShiftTy> #0, turn it into a no_shift. 5960 if (Imm == 0) 5961 St = ARM_AM::lsl; 5962 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5963 if (Imm == 32) 5964 Imm = 0; 5965 Amount = Imm; 5966 } 5967 5968 return false; 5969 } 5970 5971 /// parseFPImm - A floating point immediate expression operand. 5972 OperandMatchResultTy 5973 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5974 MCAsmParser &Parser = getParser(); 5975 // Anything that can accept a floating point constant as an operand 5976 // needs to go through here, as the regular parseExpression is 5977 // integer only. 5978 // 5979 // This routine still creates a generic Immediate operand, containing 5980 // a bitcast of the 64-bit floating point value. The various operands 5981 // that accept floats can check whether the value is valid for them 5982 // via the standard is*() predicates. 5983 5984 SMLoc S = Parser.getTok().getLoc(); 5985 5986 if (Parser.getTok().isNot(AsmToken::Hash) && 5987 Parser.getTok().isNot(AsmToken::Dollar)) 5988 return MatchOperand_NoMatch; 5989 5990 // Disambiguate the VMOV forms that can accept an FP immediate. 5991 // vmov.f32 <sreg>, #imm 5992 // vmov.f64 <dreg>, #imm 5993 // vmov.f32 <dreg>, #imm @ vector f32x2 5994 // vmov.f32 <qreg>, #imm @ vector f32x4 5995 // 5996 // There are also the NEON VMOV instructions which expect an 5997 // integer constant. Make sure we don't try to parse an FPImm 5998 // for these: 5999 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 6000 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 6001 bool isVmovf = TyOp.isToken() && 6002 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 6003 TyOp.getToken() == ".f16"); 6004 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 6005 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 6006 Mnemonic.getToken() == "fconsts"); 6007 if (!(isVmovf || isFconst)) 6008 return MatchOperand_NoMatch; 6009 6010 Parser.Lex(); // Eat '#' or '$'. 6011 6012 // Handle negation, as that still comes through as a separate token. 6013 bool isNegative = false; 6014 if (Parser.getTok().is(AsmToken::Minus)) { 6015 isNegative = true; 6016 Parser.Lex(); 6017 } 6018 const AsmToken &Tok = Parser.getTok(); 6019 SMLoc Loc = Tok.getLoc(); 6020 if (Tok.is(AsmToken::Real) && isVmovf) { 6021 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 6022 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 6023 // If we had a '-' in front, toggle the sign bit. 6024 IntVal ^= (uint64_t)isNegative << 31; 6025 Parser.Lex(); // Eat the token. 6026 Operands.push_back(ARMOperand::CreateImm( 6027 MCConstantExpr::create(IntVal, getContext()), 6028 S, Parser.getTok().getLoc())); 6029 return MatchOperand_Success; 6030 } 6031 // Also handle plain integers. Instructions which allow floating point 6032 // immediates also allow a raw encoded 8-bit value. 6033 if (Tok.is(AsmToken::Integer) && isFconst) { 6034 int64_t Val = Tok.getIntVal(); 6035 Parser.Lex(); // Eat the token. 6036 if (Val > 255 || Val < 0) { 6037 Error(Loc, "encoded floating point value out of range"); 6038 return MatchOperand_ParseFail; 6039 } 6040 float RealVal = ARM_AM::getFPImmFloat(Val); 6041 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 6042 6043 Operands.push_back(ARMOperand::CreateImm( 6044 MCConstantExpr::create(Val, getContext()), S, 6045 Parser.getTok().getLoc())); 6046 return MatchOperand_Success; 6047 } 6048 6049 Error(Loc, "invalid floating point immediate"); 6050 return MatchOperand_ParseFail; 6051 } 6052 6053 /// Parse a arm instruction operand. For now this parses the operand regardless 6054 /// of the mnemonic. 6055 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 6056 MCAsmParser &Parser = getParser(); 6057 SMLoc S, E; 6058 6059 // Check if the current operand has a custom associated parser, if so, try to 6060 // custom parse the operand, or fallback to the general approach. 6061 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 6062 if (ResTy == MatchOperand_Success) 6063 return false; 6064 // If there wasn't a custom match, try the generic matcher below. Otherwise, 6065 // there was a match, but an error occurred, in which case, just return that 6066 // the operand parsing failed. 6067 if (ResTy == MatchOperand_ParseFail) 6068 return true; 6069 6070 switch (getLexer().getKind()) { 6071 default: 6072 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 6073 return true; 6074 case AsmToken::Identifier: { 6075 // If we've seen a branch mnemonic, the next operand must be a label. This 6076 // is true even if the label is a register name. So "br r1" means branch to 6077 // label "r1". 6078 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 6079 if (!ExpectLabel) { 6080 if (!tryParseRegisterWithWriteBack(Operands)) 6081 return false; 6082 int Res = tryParseShiftRegister(Operands); 6083 if (Res == 0) // success 6084 return false; 6085 else if (Res == -1) // irrecoverable error 6086 return true; 6087 // If this is VMRS, check for the apsr_nzcv operand. 6088 if (Mnemonic == "vmrs" && 6089 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 6090 S = Parser.getTok().getLoc(); 6091 Parser.Lex(); 6092 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 6093 return false; 6094 } 6095 } 6096 6097 // Fall though for the Identifier case that is not a register or a 6098 // special name. 6099 LLVM_FALLTHROUGH; 6100 } 6101 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 6102 case AsmToken::Integer: // things like 1f and 2b as a branch targets 6103 case AsmToken::String: // quoted label names. 6104 case AsmToken::Dot: { // . as a branch target 6105 // This was not a register so parse other operands that start with an 6106 // identifier (like labels) as expressions and create them as immediates. 6107 const MCExpr *IdVal; 6108 S = Parser.getTok().getLoc(); 6109 if (getParser().parseExpression(IdVal)) 6110 return true; 6111 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6112 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 6113 return false; 6114 } 6115 case AsmToken::LBrac: 6116 return parseMemory(Operands); 6117 case AsmToken::LCurly: 6118 return parseRegisterList(Operands, !Mnemonic.startswith("clr")); 6119 case AsmToken::Dollar: 6120 case AsmToken::Hash: { 6121 // #42 -> immediate 6122 // $ 42 -> immediate 6123 // $foo -> symbol name 6124 // $42 -> symbol name 6125 S = Parser.getTok().getLoc(); 6126 6127 // Favor the interpretation of $-prefixed operands as symbol names. 6128 // Cases where immediates are explicitly expected are handled by their 6129 // specific ParseMethod implementations. 6130 auto AdjacentToken = getLexer().peekTok(/*ShouldSkipSpace=*/false); 6131 bool ExpectIdentifier = Parser.getTok().is(AsmToken::Dollar) && 6132 (AdjacentToken.is(AsmToken::Identifier) || 6133 AdjacentToken.is(AsmToken::Integer)); 6134 if (!ExpectIdentifier) { 6135 // Token is not part of identifier. Drop leading $ or # before parsing 6136 // expression. 6137 Parser.Lex(); 6138 } 6139 6140 if (Parser.getTok().isNot(AsmToken::Colon)) { 6141 bool IsNegative = Parser.getTok().is(AsmToken::Minus); 6142 const MCExpr *ImmVal; 6143 if (getParser().parseExpression(ImmVal)) 6144 return true; 6145 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 6146 if (CE) { 6147 int32_t Val = CE->getValue(); 6148 if (IsNegative && Val == 0) 6149 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 6150 getContext()); 6151 } 6152 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6153 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 6154 6155 // There can be a trailing '!' on operands that we want as a separate 6156 // '!' Token operand. Handle that here. For example, the compatibility 6157 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 6158 if (Parser.getTok().is(AsmToken::Exclaim)) { 6159 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 6160 Parser.getTok().getLoc())); 6161 Parser.Lex(); // Eat exclaim token 6162 } 6163 return false; 6164 } 6165 // w/ a ':' after the '#', it's just like a plain ':'. 6166 LLVM_FALLTHROUGH; 6167 } 6168 case AsmToken::Colon: { 6169 S = Parser.getTok().getLoc(); 6170 // ":lower16:" and ":upper16:" expression prefixes 6171 // FIXME: Check it's an expression prefix, 6172 // e.g. (FOO - :lower16:BAR) isn't legal. 6173 ARMMCExpr::VariantKind RefKind; 6174 if (parsePrefix(RefKind)) 6175 return true; 6176 6177 const MCExpr *SubExprVal; 6178 if (getParser().parseExpression(SubExprVal)) 6179 return true; 6180 6181 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 6182 getContext()); 6183 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6184 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 6185 return false; 6186 } 6187 case AsmToken::Equal: { 6188 S = Parser.getTok().getLoc(); 6189 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 6190 return Error(S, "unexpected token in operand"); 6191 Parser.Lex(); // Eat '=' 6192 const MCExpr *SubExprVal; 6193 if (getParser().parseExpression(SubExprVal)) 6194 return true; 6195 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6196 6197 // execute-only: we assume that assembly programmers know what they are 6198 // doing and allow literal pool creation here 6199 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 6200 return false; 6201 } 6202 } 6203 } 6204 6205 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 6206 // :lower16: and :upper16:. 6207 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 6208 MCAsmParser &Parser = getParser(); 6209 RefKind = ARMMCExpr::VK_ARM_None; 6210 6211 // consume an optional '#' (GNU compatibility) 6212 if (getLexer().is(AsmToken::Hash)) 6213 Parser.Lex(); 6214 6215 // :lower16: and :upper16: modifiers 6216 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 6217 Parser.Lex(); // Eat ':' 6218 6219 if (getLexer().isNot(AsmToken::Identifier)) { 6220 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 6221 return true; 6222 } 6223 6224 enum { 6225 COFF = (1 << MCObjectFileInfo::IsCOFF), 6226 ELF = (1 << MCObjectFileInfo::IsELF), 6227 MACHO = (1 << MCObjectFileInfo::IsMachO), 6228 WASM = (1 << MCObjectFileInfo::IsWasm), 6229 }; 6230 static const struct PrefixEntry { 6231 const char *Spelling; 6232 ARMMCExpr::VariantKind VariantKind; 6233 uint8_t SupportedFormats; 6234 } PrefixEntries[] = { 6235 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 6236 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 6237 }; 6238 6239 StringRef IDVal = Parser.getTok().getIdentifier(); 6240 6241 const auto &Prefix = 6242 llvm::find_if(PrefixEntries, [&IDVal](const PrefixEntry &PE) { 6243 return PE.Spelling == IDVal; 6244 }); 6245 if (Prefix == std::end(PrefixEntries)) { 6246 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 6247 return true; 6248 } 6249 6250 uint8_t CurrentFormat; 6251 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 6252 case MCObjectFileInfo::IsMachO: 6253 CurrentFormat = MACHO; 6254 break; 6255 case MCObjectFileInfo::IsELF: 6256 CurrentFormat = ELF; 6257 break; 6258 case MCObjectFileInfo::IsCOFF: 6259 CurrentFormat = COFF; 6260 break; 6261 case MCObjectFileInfo::IsWasm: 6262 CurrentFormat = WASM; 6263 break; 6264 case MCObjectFileInfo::IsXCOFF: 6265 llvm_unreachable("unexpected object format"); 6266 break; 6267 } 6268 6269 if (~Prefix->SupportedFormats & CurrentFormat) { 6270 Error(Parser.getTok().getLoc(), 6271 "cannot represent relocation in the current file format"); 6272 return true; 6273 } 6274 6275 RefKind = Prefix->VariantKind; 6276 Parser.Lex(); 6277 6278 if (getLexer().isNot(AsmToken::Colon)) { 6279 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 6280 return true; 6281 } 6282 Parser.Lex(); // Eat the last ':' 6283 6284 return false; 6285 } 6286 6287 /// Given a mnemonic, split out possible predication code and carry 6288 /// setting letters to form a canonical mnemonic and flags. 6289 // 6290 // FIXME: Would be nice to autogen this. 6291 // FIXME: This is a bit of a maze of special cases. 6292 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 6293 StringRef ExtraToken, 6294 unsigned &PredicationCode, 6295 unsigned &VPTPredicationCode, 6296 bool &CarrySetting, 6297 unsigned &ProcessorIMod, 6298 StringRef &ITMask) { 6299 PredicationCode = ARMCC::AL; 6300 VPTPredicationCode = ARMVCC::None; 6301 CarrySetting = false; 6302 ProcessorIMod = 0; 6303 6304 // Ignore some mnemonics we know aren't predicated forms. 6305 // 6306 // FIXME: Would be nice to autogen this. 6307 if ((Mnemonic == "movs" && isThumb()) || 6308 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 6309 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 6310 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 6311 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 6312 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 6313 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 6314 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 6315 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 6316 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 6317 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 6318 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 6319 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 6320 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 6321 Mnemonic == "bxns" || Mnemonic == "blxns" || 6322 Mnemonic == "vdot" || Mnemonic == "vmmla" || 6323 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6324 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6325 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6326 Mnemonic == "wls" || Mnemonic == "le" || Mnemonic == "dls" || 6327 Mnemonic == "csel" || Mnemonic == "csinc" || 6328 Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" || 6329 Mnemonic == "cinv" || Mnemonic == "cneg" || Mnemonic == "cset" || 6330 Mnemonic == "csetm") 6331 return Mnemonic; 6332 6333 // First, split out any predication code. Ignore mnemonics we know aren't 6334 // predicated but do have a carry-set and so weren't caught above. 6335 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 6336 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 6337 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 6338 Mnemonic != "sbcs" && Mnemonic != "rscs" && 6339 !(hasMVE() && 6340 (Mnemonic == "vmine" || 6341 Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" || 6342 Mnemonic == "vrshle" || Mnemonic == "vrshlt" || 6343 Mnemonic == "vmvne" || Mnemonic == "vorne" || 6344 Mnemonic == "vnege" || Mnemonic == "vnegt" || 6345 Mnemonic == "vmule" || Mnemonic == "vmult" || 6346 Mnemonic == "vrintne" || 6347 Mnemonic == "vcmult" || Mnemonic == "vcmule" || 6348 Mnemonic == "vpsele" || Mnemonic == "vpselt" || 6349 Mnemonic.startswith("vq")))) { 6350 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); 6351 if (CC != ~0U) { 6352 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 6353 PredicationCode = CC; 6354 } 6355 } 6356 6357 // Next, determine if we have a carry setting bit. We explicitly ignore all 6358 // the instructions we know end in 's'. 6359 if (Mnemonic.endswith("s") && 6360 !(Mnemonic == "cps" || Mnemonic == "mls" || 6361 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 6362 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 6363 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 6364 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 6365 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 6366 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 6367 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 6368 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 6369 Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" || 6370 Mnemonic == "vmlas" || 6371 (Mnemonic == "movs" && isThumb()))) { 6372 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 6373 CarrySetting = true; 6374 } 6375 6376 // The "cps" instruction can have a interrupt mode operand which is glued into 6377 // the mnemonic. Check if this is the case, split it and parse the imod op 6378 if (Mnemonic.startswith("cps")) { 6379 // Split out any imod code. 6380 unsigned IMod = 6381 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 6382 .Case("ie", ARM_PROC::IE) 6383 .Case("id", ARM_PROC::ID) 6384 .Default(~0U); 6385 if (IMod != ~0U) { 6386 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 6387 ProcessorIMod = IMod; 6388 } 6389 } 6390 6391 if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" && 6392 Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" && 6393 Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" && 6394 Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" && 6395 Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" && 6396 Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" && 6397 Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") { 6398 unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1)); 6399 if (CC != ~0U) { 6400 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1); 6401 VPTPredicationCode = CC; 6402 } 6403 return Mnemonic; 6404 } 6405 6406 // The "it" instruction has the condition mask on the end of the mnemonic. 6407 if (Mnemonic.startswith("it")) { 6408 ITMask = Mnemonic.slice(2, Mnemonic.size()); 6409 Mnemonic = Mnemonic.slice(0, 2); 6410 } 6411 6412 if (Mnemonic.startswith("vpst")) { 6413 ITMask = Mnemonic.slice(4, Mnemonic.size()); 6414 Mnemonic = Mnemonic.slice(0, 4); 6415 } 6416 else if (Mnemonic.startswith("vpt")) { 6417 ITMask = Mnemonic.slice(3, Mnemonic.size()); 6418 Mnemonic = Mnemonic.slice(0, 3); 6419 } 6420 6421 return Mnemonic; 6422 } 6423 6424 /// Given a canonical mnemonic, determine if the instruction ever allows 6425 /// inclusion of carry set or predication code operands. 6426 // 6427 // FIXME: It would be nice to autogen this. 6428 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, 6429 StringRef ExtraToken, 6430 StringRef FullInst, 6431 bool &CanAcceptCarrySet, 6432 bool &CanAcceptPredicationCode, 6433 bool &CanAcceptVPTPredicationCode) { 6434 CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken); 6435 6436 CanAcceptCarrySet = 6437 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6438 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 6439 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 6440 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 6441 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 6442 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 6443 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 6444 (!isThumb() && 6445 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 6446 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 6447 6448 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 6449 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 6450 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 6451 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 6452 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 6453 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 6454 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 6455 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 6456 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 6457 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 6458 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 6459 Mnemonic == "vmovx" || Mnemonic == "vins" || 6460 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6461 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6462 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6463 Mnemonic == "vfmat" || Mnemonic == "vfmab" || 6464 Mnemonic == "vdot" || Mnemonic == "vmmla" || 6465 Mnemonic == "sb" || Mnemonic == "ssbb" || 6466 Mnemonic == "pssbb" || Mnemonic == "vsmmla" || 6467 Mnemonic == "vummla" || Mnemonic == "vusmmla" || 6468 Mnemonic == "vusdot" || Mnemonic == "vsudot" || 6469 Mnemonic == "bfcsel" || Mnemonic == "wls" || 6470 Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" || 6471 Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" || 6472 Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" || 6473 Mnemonic == "cset" || Mnemonic == "csetm" || 6474 Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") || 6475 (hasCDE() && MS.isCDEInstr(Mnemonic) && 6476 !MS.isITPredicableCDEInstr(Mnemonic)) || 6477 (hasMVE() && 6478 (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") || 6479 Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") || 6480 Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") || 6481 Mnemonic.startswith("letp")))) { 6482 // These mnemonics are never predicable 6483 CanAcceptPredicationCode = false; 6484 } else if (!isThumb()) { 6485 // Some instructions are only predicable in Thumb mode 6486 CanAcceptPredicationCode = 6487 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 6488 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 6489 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && 6490 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && 6491 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && 6492 Mnemonic != "stc2" && Mnemonic != "stc2l" && 6493 Mnemonic != "tsb" && 6494 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); 6495 } else if (isThumbOne()) { 6496 if (hasV6MOps()) 6497 CanAcceptPredicationCode = Mnemonic != "movs"; 6498 else 6499 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 6500 } else 6501 CanAcceptPredicationCode = true; 6502 } 6503 6504 // Some Thumb instructions have two operand forms that are not 6505 // available as three operand, convert to two operand form if possible. 6506 // 6507 // FIXME: We would really like to be able to tablegen'erate this. 6508 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 6509 bool CarrySetting, 6510 OperandVector &Operands) { 6511 if (Operands.size() != 6) 6512 return; 6513 6514 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6515 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 6516 if (!Op3.isReg() || !Op4.isReg()) 6517 return; 6518 6519 auto Op3Reg = Op3.getReg(); 6520 auto Op4Reg = Op4.getReg(); 6521 6522 // For most Thumb2 cases we just generate the 3 operand form and reduce 6523 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 6524 // won't accept SP or PC so we do the transformation here taking care 6525 // with immediate range in the 'add sp, sp #imm' case. 6526 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 6527 if (isThumbTwo()) { 6528 if (Mnemonic != "add") 6529 return; 6530 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 6531 (Op5.isReg() && Op5.getReg() == ARM::PC); 6532 if (!TryTransform) { 6533 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 6534 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 6535 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 6536 Op5.isImm() && !Op5.isImm0_508s4()); 6537 } 6538 if (!TryTransform) 6539 return; 6540 } else if (!isThumbOne()) 6541 return; 6542 6543 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 6544 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6545 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 6546 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 6547 return; 6548 6549 // If first 2 operands of a 3 operand instruction are the same 6550 // then transform to 2 operand version of the same instruction 6551 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 6552 bool Transform = Op3Reg == Op4Reg; 6553 6554 // For communtative operations, we might be able to transform if we swap 6555 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 6556 // as tADDrsp. 6557 const ARMOperand *LastOp = &Op5; 6558 bool Swap = false; 6559 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 6560 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 6561 Mnemonic == "and" || Mnemonic == "eor" || 6562 Mnemonic == "adc" || Mnemonic == "orr")) { 6563 Swap = true; 6564 LastOp = &Op4; 6565 Transform = true; 6566 } 6567 6568 // If both registers are the same then remove one of them from 6569 // the operand list, with certain exceptions. 6570 if (Transform) { 6571 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 6572 // 2 operand forms don't exist. 6573 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 6574 LastOp->isReg()) 6575 Transform = false; 6576 6577 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 6578 // 3-bits because the ARMARM says not to. 6579 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 6580 Transform = false; 6581 } 6582 6583 if (Transform) { 6584 if (Swap) 6585 std::swap(Op4, Op5); 6586 Operands.erase(Operands.begin() + 3); 6587 } 6588 } 6589 6590 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 6591 OperandVector &Operands) { 6592 // FIXME: This is all horribly hacky. We really need a better way to deal 6593 // with optional operands like this in the matcher table. 6594 6595 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 6596 // another does not. Specifically, the MOVW instruction does not. So we 6597 // special case it here and remove the defaulted (non-setting) cc_out 6598 // operand if that's the instruction we're trying to match. 6599 // 6600 // We do this as post-processing of the explicit operands rather than just 6601 // conditionally adding the cc_out in the first place because we need 6602 // to check the type of the parsed immediate operand. 6603 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 6604 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 6605 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 6606 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6607 return true; 6608 6609 // Register-register 'add' for thumb does not have a cc_out operand 6610 // when there are only two register operands. 6611 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 6612 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6613 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6614 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6615 return true; 6616 // Register-register 'add' for thumb does not have a cc_out operand 6617 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 6618 // have to check the immediate range here since Thumb2 has a variant 6619 // that can handle a different range and has a cc_out operand. 6620 if (((isThumb() && Mnemonic == "add") || 6621 (isThumbTwo() && Mnemonic == "sub")) && 6622 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6623 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6624 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 6625 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6626 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 6627 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 6628 return true; 6629 // For Thumb2, add/sub immediate does not have a cc_out operand for the 6630 // imm0_4095 variant. That's the least-preferred variant when 6631 // selecting via the generic "add" mnemonic, so to know that we 6632 // should remove the cc_out operand, we have to explicitly check that 6633 // it's not one of the other variants. Ugh. 6634 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 6635 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6636 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6637 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6638 // Nest conditions rather than one big 'if' statement for readability. 6639 // 6640 // If both registers are low, we're in an IT block, and the immediate is 6641 // in range, we should use encoding T1 instead, which has a cc_out. 6642 if (inITBlock() && 6643 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 6644 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 6645 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 6646 return false; 6647 // Check against T3. If the second register is the PC, this is an 6648 // alternate form of ADR, which uses encoding T4, so check for that too. 6649 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 6650 (static_cast<ARMOperand &>(*Operands[5]).isT2SOImm() || 6651 static_cast<ARMOperand &>(*Operands[5]).isT2SOImmNeg())) 6652 return false; 6653 6654 // Otherwise, we use encoding T4, which does not have a cc_out 6655 // operand. 6656 return true; 6657 } 6658 6659 // The thumb2 multiply instruction doesn't have a CCOut register, so 6660 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 6661 // use the 16-bit encoding or not. 6662 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 6663 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6664 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6665 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6666 static_cast<ARMOperand &>(*Operands[5]).isReg() && 6667 // If the registers aren't low regs, the destination reg isn't the 6668 // same as one of the source regs, or the cc_out operand is zero 6669 // outside of an IT block, we have to use the 32-bit encoding, so 6670 // remove the cc_out operand. 6671 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6672 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6673 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 6674 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 6675 static_cast<ARMOperand &>(*Operands[5]).getReg() && 6676 static_cast<ARMOperand &>(*Operands[3]).getReg() != 6677 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 6678 return true; 6679 6680 // Also check the 'mul' syntax variant that doesn't specify an explicit 6681 // destination register. 6682 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 6683 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6684 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6685 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6686 // If the registers aren't low regs or the cc_out operand is zero 6687 // outside of an IT block, we have to use the 32-bit encoding, so 6688 // remove the cc_out operand. 6689 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6690 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6691 !inITBlock())) 6692 return true; 6693 6694 // Register-register 'add/sub' for thumb does not have a cc_out operand 6695 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 6696 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 6697 // right, this will result in better diagnostics (which operand is off) 6698 // anyway. 6699 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 6700 (Operands.size() == 5 || Operands.size() == 6) && 6701 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6702 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 6703 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6704 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 6705 (Operands.size() == 6 && 6706 static_cast<ARMOperand &>(*Operands[5]).isImm()))) { 6707 // Thumb2 (add|sub){s}{p}.w GPRnopc, sp, #{T2SOImm} has cc_out 6708 return (!(isThumbTwo() && 6709 (static_cast<ARMOperand &>(*Operands[4]).isT2SOImm() || 6710 static_cast<ARMOperand &>(*Operands[4]).isT2SOImmNeg()))); 6711 } 6712 // Fixme: Should join all the thumb+thumb2 (add|sub) in a single if case 6713 // Thumb2 ADD r0, #4095 -> ADDW r0, r0, #4095 (T4) 6714 // Thumb2 SUB r0, #4095 -> SUBW r0, r0, #4095 6715 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 6716 (Operands.size() == 5) && 6717 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6718 static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::SP && 6719 static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::PC && 6720 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6721 static_cast<ARMOperand &>(*Operands[4]).isImm()) { 6722 const ARMOperand &IMM = static_cast<ARMOperand &>(*Operands[4]); 6723 if (IMM.isT2SOImm() || IMM.isT2SOImmNeg()) 6724 return false; // add.w / sub.w 6725 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IMM.getImm())) { 6726 const int64_t Value = CE->getValue(); 6727 // Thumb1 imm8 sub / add 6728 if ((Value < ((1 << 7) - 1) << 2) && inITBlock() && (!(Value & 3)) && 6729 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg())) 6730 return false; 6731 return true; // Thumb2 T4 addw / subw 6732 } 6733 } 6734 return false; 6735 } 6736 6737 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 6738 OperandVector &Operands) { 6739 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON 6740 unsigned RegIdx = 3; 6741 if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) || 6742 Mnemonic == "vrintr") && 6743 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 6744 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 6745 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6746 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 6747 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 6748 RegIdx = 4; 6749 6750 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 6751 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6752 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 6753 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6754 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 6755 return true; 6756 } 6757 return false; 6758 } 6759 6760 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic, 6761 OperandVector &Operands) { 6762 if (!hasMVE() || Operands.size() < 3) 6763 return true; 6764 6765 if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") || 6766 Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4")) 6767 return true; 6768 6769 if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot")) 6770 return false; 6771 6772 if (Mnemonic.startswith("vmov") && 6773 !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") || 6774 Mnemonic.startswith("vmovx"))) { 6775 for (auto &Operand : Operands) { 6776 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6777 ((*Operand).isReg() && 6778 (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 6779 (*Operand).getReg()) || 6780 ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6781 (*Operand).getReg())))) { 6782 return true; 6783 } 6784 } 6785 return false; 6786 } else { 6787 for (auto &Operand : Operands) { 6788 // We check the larger class QPR instead of just the legal class 6789 // MQPR, to more accurately report errors when using Q registers 6790 // outside of the allowed range. 6791 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6792 (Operand->isReg() && 6793 (ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6794 Operand->getReg())))) 6795 return false; 6796 } 6797 return true; 6798 } 6799 } 6800 6801 static bool isDataTypeToken(StringRef Tok) { 6802 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 6803 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 6804 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 6805 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 6806 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 6807 Tok == ".f" || Tok == ".d"; 6808 } 6809 6810 // FIXME: This bit should probably be handled via an explicit match class 6811 // in the .td files that matches the suffix instead of having it be 6812 // a literal string token the way it is now. 6813 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 6814 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 6815 } 6816 6817 static void applyMnemonicAliases(StringRef &Mnemonic, 6818 const FeatureBitset &Features, 6819 unsigned VariantID); 6820 6821 // The GNU assembler has aliases of ldrd and strd with the second register 6822 // omitted. We don't have a way to do that in tablegen, so fix it up here. 6823 // 6824 // We have to be careful to not emit an invalid Rt2 here, because the rest of 6825 // the assembly parser could then generate confusing diagnostics refering to 6826 // it. If we do find anything that prevents us from doing the transformation we 6827 // bail out, and let the assembly parser report an error on the instruction as 6828 // it is written. 6829 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, 6830 OperandVector &Operands) { 6831 if (Mnemonic != "ldrd" && Mnemonic != "strd") 6832 return; 6833 if (Operands.size() < 4) 6834 return; 6835 6836 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6837 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6838 6839 if (!Op2.isReg()) 6840 return; 6841 if (!Op3.isGPRMem()) 6842 return; 6843 6844 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); 6845 if (!GPR.contains(Op2.getReg())) 6846 return; 6847 6848 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); 6849 if (!isThumb() && (RtEncoding & 1)) { 6850 // In ARM mode, the registers must be from an aligned pair, this 6851 // restriction does not apply in Thumb mode. 6852 return; 6853 } 6854 if (Op2.getReg() == ARM::PC) 6855 return; 6856 unsigned PairedReg = GPR.getRegister(RtEncoding + 1); 6857 if (!PairedReg || PairedReg == ARM::PC || 6858 (PairedReg == ARM::SP && !hasV8Ops())) 6859 return; 6860 6861 Operands.insert( 6862 Operands.begin() + 3, 6863 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6864 } 6865 6866 // Dual-register instruction have the following syntax: 6867 // <mnemonic> <predicate>? <coproc>, <Rdest>, <Rdest+1>, <Rsrc>, ..., #imm 6868 // This function tries to remove <Rdest+1> and replace <Rdest> with a pair 6869 // operand. If the conversion fails an error is diagnosed, and the function 6870 // returns true. 6871 bool ARMAsmParser::CDEConvertDualRegOperand(StringRef Mnemonic, 6872 OperandVector &Operands) { 6873 assert(MS.isCDEDualRegInstr(Mnemonic)); 6874 bool isPredicable = 6875 Mnemonic == "cx1da" || Mnemonic == "cx2da" || Mnemonic == "cx3da"; 6876 size_t NumPredOps = isPredicable ? 1 : 0; 6877 6878 if (Operands.size() <= 3 + NumPredOps) 6879 return false; 6880 6881 StringRef Op2Diag( 6882 "operand must be an even-numbered register in the range [r0, r10]"); 6883 6884 const MCParsedAsmOperand &Op2 = *Operands[2 + NumPredOps]; 6885 if (!Op2.isReg()) 6886 return Error(Op2.getStartLoc(), Op2Diag); 6887 6888 unsigned RNext; 6889 unsigned RPair; 6890 switch (Op2.getReg()) { 6891 default: 6892 return Error(Op2.getStartLoc(), Op2Diag); 6893 case ARM::R0: 6894 RNext = ARM::R1; 6895 RPair = ARM::R0_R1; 6896 break; 6897 case ARM::R2: 6898 RNext = ARM::R3; 6899 RPair = ARM::R2_R3; 6900 break; 6901 case ARM::R4: 6902 RNext = ARM::R5; 6903 RPair = ARM::R4_R5; 6904 break; 6905 case ARM::R6: 6906 RNext = ARM::R7; 6907 RPair = ARM::R6_R7; 6908 break; 6909 case ARM::R8: 6910 RNext = ARM::R9; 6911 RPair = ARM::R8_R9; 6912 break; 6913 case ARM::R10: 6914 RNext = ARM::R11; 6915 RPair = ARM::R10_R11; 6916 break; 6917 } 6918 6919 const MCParsedAsmOperand &Op3 = *Operands[3 + NumPredOps]; 6920 if (!Op3.isReg() || Op3.getReg() != RNext) 6921 return Error(Op3.getStartLoc(), "operand must be a consecutive register"); 6922 6923 Operands.erase(Operands.begin() + 3 + NumPredOps); 6924 Operands[2 + NumPredOps] = 6925 ARMOperand::CreateReg(RPair, Op2.getStartLoc(), Op2.getEndLoc()); 6926 return false; 6927 } 6928 6929 /// Parse an arm instruction mnemonic followed by its operands. 6930 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 6931 SMLoc NameLoc, OperandVector &Operands) { 6932 MCAsmParser &Parser = getParser(); 6933 6934 // Apply mnemonic aliases before doing anything else, as the destination 6935 // mnemonic may include suffices and we want to handle them normally. 6936 // The generic tblgen'erated code does this later, at the start of 6937 // MatchInstructionImpl(), but that's too late for aliases that include 6938 // any sort of suffix. 6939 const FeatureBitset &AvailableFeatures = getAvailableFeatures(); 6940 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 6941 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 6942 6943 // First check for the ARM-specific .req directive. 6944 if (Parser.getTok().is(AsmToken::Identifier) && 6945 Parser.getTok().getIdentifier().lower() == ".req") { 6946 parseDirectiveReq(Name, NameLoc); 6947 // We always return 'error' for this, as we're done with this 6948 // statement and don't need to match the 'instruction." 6949 return true; 6950 } 6951 6952 // Create the leading tokens for the mnemonic, split by '.' characters. 6953 size_t Start = 0, Next = Name.find('.'); 6954 StringRef Mnemonic = Name.slice(Start, Next); 6955 StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1)); 6956 6957 // Split out the predication code and carry setting flag from the mnemonic. 6958 unsigned PredicationCode; 6959 unsigned VPTPredicationCode; 6960 unsigned ProcessorIMod; 6961 bool CarrySetting; 6962 StringRef ITMask; 6963 Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode, 6964 CarrySetting, ProcessorIMod, ITMask); 6965 6966 // In Thumb1, only the branch (B) instruction can be predicated. 6967 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 6968 return Error(NameLoc, "conditional execution not supported in Thumb1"); 6969 } 6970 6971 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 6972 6973 // Handle the mask for IT and VPT instructions. In ARMOperand and 6974 // MCOperand, this is stored in a format independent of the 6975 // condition code: the lowest set bit indicates the end of the 6976 // encoding, and above that, a 1 bit indicates 'else', and an 0 6977 // indicates 'then'. E.g. 6978 // IT -> 1000 6979 // ITx -> x100 (ITT -> 0100, ITE -> 1100) 6980 // ITxy -> xy10 (e.g. ITET -> 1010) 6981 // ITxyz -> xyz1 (e.g. ITEET -> 1101) 6982 // Note: See the ARM::PredBlockMask enum in 6983 // /lib/Target/ARM/Utils/ARMBaseInfo.h 6984 if (Mnemonic == "it" || Mnemonic.startswith("vpt") || 6985 Mnemonic.startswith("vpst")) { 6986 SMLoc Loc = Mnemonic == "it" ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) : 6987 Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) : 6988 SMLoc::getFromPointer(NameLoc.getPointer() + 4); 6989 if (ITMask.size() > 3) { 6990 if (Mnemonic == "it") 6991 return Error(Loc, "too many conditions on IT instruction"); 6992 return Error(Loc, "too many conditions on VPT instruction"); 6993 } 6994 unsigned Mask = 8; 6995 for (unsigned i = ITMask.size(); i != 0; --i) { 6996 char pos = ITMask[i - 1]; 6997 if (pos != 't' && pos != 'e') { 6998 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 6999 } 7000 Mask >>= 1; 7001 if (ITMask[i - 1] == 'e') 7002 Mask |= 8; 7003 } 7004 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 7005 } 7006 7007 // FIXME: This is all a pretty gross hack. We should automatically handle 7008 // optional operands like this via tblgen. 7009 7010 // Next, add the CCOut and ConditionCode operands, if needed. 7011 // 7012 // For mnemonics which can ever incorporate a carry setting bit or predication 7013 // code, our matching model involves us always generating CCOut and 7014 // ConditionCode operands to match the mnemonic "as written" and then we let 7015 // the matcher deal with finding the right instruction or generating an 7016 // appropriate error. 7017 bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode; 7018 getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet, 7019 CanAcceptPredicationCode, CanAcceptVPTPredicationCode); 7020 7021 // If we had a carry-set on an instruction that can't do that, issue an 7022 // error. 7023 if (!CanAcceptCarrySet && CarrySetting) { 7024 return Error(NameLoc, "instruction '" + Mnemonic + 7025 "' can not set flags, but 's' suffix specified"); 7026 } 7027 // If we had a predication code on an instruction that can't do that, issue an 7028 // error. 7029 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 7030 return Error(NameLoc, "instruction '" + Mnemonic + 7031 "' is not predicable, but condition code specified"); 7032 } 7033 7034 // If we had a VPT predication code on an instruction that can't do that, issue an 7035 // error. 7036 if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) { 7037 return Error(NameLoc, "instruction '" + Mnemonic + 7038 "' is not VPT predicable, but VPT code T/E is specified"); 7039 } 7040 7041 // Add the carry setting operand, if necessary. 7042 if (CanAcceptCarrySet) { 7043 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 7044 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 7045 Loc)); 7046 } 7047 7048 // Add the predication code operand, if necessary. 7049 if (CanAcceptPredicationCode) { 7050 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 7051 CarrySetting); 7052 Operands.push_back(ARMOperand::CreateCondCode( 7053 ARMCC::CondCodes(PredicationCode), Loc)); 7054 } 7055 7056 // Add the VPT predication code operand, if necessary. 7057 // FIXME: We don't add them for the instructions filtered below as these can 7058 // have custom operands which need special parsing. This parsing requires 7059 // the operand to be in the same place in the OperandVector as their 7060 // definition in tblgen. Since these instructions may also have the 7061 // scalar predication operand we do not add the vector one and leave until 7062 // now to fix it up. 7063 if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" && 7064 !Mnemonic.startswith("vcmp") && 7065 !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" && 7066 Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) { 7067 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 7068 CarrySetting); 7069 Operands.push_back(ARMOperand::CreateVPTPred( 7070 ARMVCC::VPTCodes(VPTPredicationCode), Loc)); 7071 } 7072 7073 // Add the processor imod operand, if necessary. 7074 if (ProcessorIMod) { 7075 Operands.push_back(ARMOperand::CreateImm( 7076 MCConstantExpr::create(ProcessorIMod, getContext()), 7077 NameLoc, NameLoc)); 7078 } else if (Mnemonic == "cps" && isMClass()) { 7079 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 7080 } 7081 7082 // Add the remaining tokens in the mnemonic. 7083 while (Next != StringRef::npos) { 7084 Start = Next; 7085 Next = Name.find('.', Start + 1); 7086 ExtraToken = Name.slice(Start, Next); 7087 7088 // Some NEON instructions have an optional datatype suffix that is 7089 // completely ignored. Check for that. 7090 if (isDataTypeToken(ExtraToken) && 7091 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 7092 continue; 7093 7094 // For for ARM mode generate an error if the .n qualifier is used. 7095 if (ExtraToken == ".n" && !isThumb()) { 7096 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 7097 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 7098 "arm mode"); 7099 } 7100 7101 // The .n qualifier is always discarded as that is what the tables 7102 // and matcher expect. In ARM mode the .w qualifier has no effect, 7103 // so discard it to avoid errors that can be caused by the matcher. 7104 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 7105 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 7106 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 7107 } 7108 } 7109 7110 // Read the remaining operands. 7111 if (getLexer().isNot(AsmToken::EndOfStatement)) { 7112 // Read the first operand. 7113 if (parseOperand(Operands, Mnemonic)) { 7114 return true; 7115 } 7116 7117 while (parseOptionalToken(AsmToken::Comma)) { 7118 // Parse and remember the operand. 7119 if (parseOperand(Operands, Mnemonic)) { 7120 return true; 7121 } 7122 } 7123 } 7124 7125 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 7126 return true; 7127 7128 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 7129 7130 if (hasCDE() && MS.isCDEInstr(Mnemonic)) { 7131 // Dual-register instructions use even-odd register pairs as their 7132 // destination operand, in assembly such pair is spelled as two 7133 // consecutive registers, without any special syntax. ConvertDualRegOperand 7134 // tries to convert such operand into register pair, e.g. r2, r3 -> r2_r3. 7135 // It returns true, if an error message has been emitted. If the function 7136 // returns false, the function either succeeded or an error (e.g. missing 7137 // operand) will be diagnosed elsewhere. 7138 if (MS.isCDEDualRegInstr(Mnemonic)) { 7139 bool GotError = CDEConvertDualRegOperand(Mnemonic, Operands); 7140 if (GotError) 7141 return GotError; 7142 } 7143 } 7144 7145 // Some instructions, mostly Thumb, have forms for the same mnemonic that 7146 // do and don't have a cc_out optional-def operand. With some spot-checks 7147 // of the operand list, we can figure out which variant we're trying to 7148 // parse and adjust accordingly before actually matching. We shouldn't ever 7149 // try to remove a cc_out operand that was explicitly set on the 7150 // mnemonic, of course (CarrySetting == true). Reason number #317 the 7151 // table driven matcher doesn't fit well with the ARM instruction set. 7152 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 7153 Operands.erase(Operands.begin() + 1); 7154 7155 // Some instructions have the same mnemonic, but don't always 7156 // have a predicate. Distinguish them here and delete the 7157 // appropriate predicate if needed. This could be either the scalar 7158 // predication code or the vector predication code. 7159 if (PredicationCode == ARMCC::AL && 7160 shouldOmitPredicateOperand(Mnemonic, Operands)) 7161 Operands.erase(Operands.begin() + 1); 7162 7163 7164 if (hasMVE()) { 7165 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) && 7166 Mnemonic == "vmov" && PredicationCode == ARMCC::LT) { 7167 // Very nasty hack to deal with the vector predicated variant of vmovlt 7168 // the scalar predicated vmov with condition 'lt'. We can not tell them 7169 // apart until we have parsed their operands. 7170 Operands.erase(Operands.begin() + 1); 7171 Operands.erase(Operands.begin()); 7172 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7173 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7174 Mnemonic.size() - 1 + CarrySetting); 7175 Operands.insert(Operands.begin(), 7176 ARMOperand::CreateVPTPred(ARMVCC::None, PLoc)); 7177 Operands.insert(Operands.begin(), 7178 ARMOperand::CreateToken(StringRef("vmovlt"), MLoc)); 7179 } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE && 7180 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7181 // Another nasty hack to deal with the ambiguity between vcvt with scalar 7182 // predication 'ne' and vcvtn with vector predication 'e'. As above we 7183 // can only distinguish between the two after we have parsed their 7184 // operands. 7185 Operands.erase(Operands.begin() + 1); 7186 Operands.erase(Operands.begin()); 7187 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7188 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7189 Mnemonic.size() - 1 + CarrySetting); 7190 Operands.insert(Operands.begin(), 7191 ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc)); 7192 Operands.insert(Operands.begin(), 7193 ARMOperand::CreateToken(StringRef("vcvtn"), MLoc)); 7194 } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT && 7195 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7196 // Another hack, this time to distinguish between scalar predicated vmul 7197 // with 'lt' predication code and the vector instruction vmullt with 7198 // vector predication code "none" 7199 Operands.erase(Operands.begin() + 1); 7200 Operands.erase(Operands.begin()); 7201 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7202 Operands.insert(Operands.begin(), 7203 ARMOperand::CreateToken(StringRef("vmullt"), MLoc)); 7204 } 7205 // For vmov and vcmp, as mentioned earlier, we did not add the vector 7206 // predication code, since these may contain operands that require 7207 // special parsing. So now we have to see if they require vector 7208 // predication and replace the scalar one with the vector predication 7209 // operand if that is the case. 7210 else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") || 7211 (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") && 7212 !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") && 7213 !Mnemonic.startswith("vcvtm"))) { 7214 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7215 // We could not split the vector predicate off vcvt because it might 7216 // have been the scalar vcvtt instruction. Now we know its a vector 7217 // instruction, we still need to check whether its the vector 7218 // predicated vcvt with 'Then' predication or the vector vcvtt. We can 7219 // distinguish the two based on the suffixes, if it is any of 7220 // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt. 7221 if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) { 7222 auto Sz1 = static_cast<ARMOperand &>(*Operands[2]); 7223 auto Sz2 = static_cast<ARMOperand &>(*Operands[3]); 7224 if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") && 7225 Sz2.isToken() && Sz2.getToken().startswith(".f"))) { 7226 Operands.erase(Operands.begin()); 7227 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7228 VPTPredicationCode = ARMVCC::Then; 7229 7230 Mnemonic = Mnemonic.substr(0, 4); 7231 Operands.insert(Operands.begin(), 7232 ARMOperand::CreateToken(Mnemonic, MLoc)); 7233 } 7234 } 7235 Operands.erase(Operands.begin() + 1); 7236 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7237 Mnemonic.size() + CarrySetting); 7238 Operands.insert(Operands.begin() + 1, 7239 ARMOperand::CreateVPTPred( 7240 ARMVCC::VPTCodes(VPTPredicationCode), PLoc)); 7241 } 7242 } else if (CanAcceptVPTPredicationCode) { 7243 // For all other instructions, make sure only one of the two 7244 // predication operands is left behind, depending on whether we should 7245 // use the vector predication. 7246 if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7247 if (CanAcceptPredicationCode) 7248 Operands.erase(Operands.begin() + 2); 7249 else 7250 Operands.erase(Operands.begin() + 1); 7251 } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) { 7252 Operands.erase(Operands.begin() + 1); 7253 } 7254 } 7255 } 7256 7257 if (VPTPredicationCode != ARMVCC::None) { 7258 bool usedVPTPredicationCode = false; 7259 for (unsigned I = 1; I < Operands.size(); ++I) 7260 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7261 usedVPTPredicationCode = true; 7262 if (!usedVPTPredicationCode) { 7263 // If we have a VPT predication code and we haven't just turned it 7264 // into an operand, then it was a mistake for splitMnemonic to 7265 // separate it from the rest of the mnemonic in the first place, 7266 // and this may lead to wrong disassembly (e.g. scalar floating 7267 // point VCMPE is actually a different instruction from VCMP, so 7268 // we mustn't treat them the same). In that situation, glue it 7269 // back on. 7270 Mnemonic = Name.slice(0, Mnemonic.size() + 1); 7271 Operands.erase(Operands.begin()); 7272 Operands.insert(Operands.begin(), 7273 ARMOperand::CreateToken(Mnemonic, NameLoc)); 7274 } 7275 } 7276 7277 // ARM mode 'blx' need special handling, as the register operand version 7278 // is predicable, but the label operand version is not. So, we can't rely 7279 // on the Mnemonic based checking to correctly figure out when to put 7280 // a k_CondCode operand in the list. If we're trying to match the label 7281 // version, remove the k_CondCode operand here. 7282 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 7283 static_cast<ARMOperand &>(*Operands[2]).isImm()) 7284 Operands.erase(Operands.begin() + 1); 7285 7286 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 7287 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 7288 // a single GPRPair reg operand is used in the .td file to replace the two 7289 // GPRs. However, when parsing from asm, the two GRPs cannot be 7290 // automatically 7291 // expressed as a GPRPair, so we have to manually merge them. 7292 // FIXME: We would really like to be able to tablegen'erate this. 7293 if (!isThumb() && Operands.size() > 4 && 7294 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 7295 Mnemonic == "stlexd")) { 7296 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 7297 unsigned Idx = isLoad ? 2 : 3; 7298 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 7299 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 7300 7301 const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID); 7302 // Adjust only if Op1 and Op2 are GPRs. 7303 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 7304 MRC.contains(Op2.getReg())) { 7305 unsigned Reg1 = Op1.getReg(); 7306 unsigned Reg2 = Op2.getReg(); 7307 unsigned Rt = MRI->getEncodingValue(Reg1); 7308 unsigned Rt2 = MRI->getEncodingValue(Reg2); 7309 7310 // Rt2 must be Rt + 1 and Rt must be even. 7311 if (Rt + 1 != Rt2 || (Rt & 1)) { 7312 return Error(Op2.getStartLoc(), 7313 isLoad ? "destination operands must be sequential" 7314 : "source operands must be sequential"); 7315 } 7316 unsigned NewReg = MRI->getMatchingSuperReg( 7317 Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID))); 7318 Operands[Idx] = 7319 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 7320 Operands.erase(Operands.begin() + Idx + 1); 7321 } 7322 } 7323 7324 // GNU Assembler extension (compatibility). 7325 fixupGNULDRDAlias(Mnemonic, Operands); 7326 7327 // FIXME: As said above, this is all a pretty gross hack. This instruction 7328 // does not fit with other "subs" and tblgen. 7329 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 7330 // so the Mnemonic is the original name "subs" and delete the predicate 7331 // operand so it will match the table entry. 7332 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 7333 static_cast<ARMOperand &>(*Operands[3]).isReg() && 7334 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 7335 static_cast<ARMOperand &>(*Operands[4]).isReg() && 7336 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 7337 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 7338 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 7339 Operands.erase(Operands.begin() + 1); 7340 } 7341 return false; 7342 } 7343 7344 // Validate context-sensitive operand constraints. 7345 7346 // return 'true' if register list contains non-low GPR registers, 7347 // 'false' otherwise. If Reg is in the register list or is HiReg, set 7348 // 'containsReg' to true. 7349 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 7350 unsigned Reg, unsigned HiReg, 7351 bool &containsReg) { 7352 containsReg = false; 7353 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 7354 unsigned OpReg = Inst.getOperand(i).getReg(); 7355 if (OpReg == Reg) 7356 containsReg = true; 7357 // Anything other than a low register isn't legal here. 7358 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 7359 return true; 7360 } 7361 return false; 7362 } 7363 7364 // Check if the specified regisgter is in the register list of the inst, 7365 // starting at the indicated operand number. 7366 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 7367 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 7368 unsigned OpReg = Inst.getOperand(i).getReg(); 7369 if (OpReg == Reg) 7370 return true; 7371 } 7372 return false; 7373 } 7374 7375 // Return true if instruction has the interesting property of being 7376 // allowed in IT blocks, but not being predicable. 7377 static bool instIsBreakpoint(const MCInst &Inst) { 7378 return Inst.getOpcode() == ARM::tBKPT || 7379 Inst.getOpcode() == ARM::BKPT || 7380 Inst.getOpcode() == ARM::tHLT || 7381 Inst.getOpcode() == ARM::HLT; 7382 } 7383 7384 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 7385 const OperandVector &Operands, 7386 unsigned ListNo, bool IsARPop) { 7387 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7388 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7389 7390 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7391 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 7392 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7393 7394 if (!IsARPop && ListContainsSP) 7395 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7396 "SP may not be in the register list"); 7397 else if (ListContainsPC && ListContainsLR) 7398 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7399 "PC and LR may not be in the register list simultaneously"); 7400 return false; 7401 } 7402 7403 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 7404 const OperandVector &Operands, 7405 unsigned ListNo) { 7406 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7407 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7408 7409 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7410 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7411 7412 if (ListContainsSP && ListContainsPC) 7413 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7414 "SP and PC may not be in the register list"); 7415 else if (ListContainsSP) 7416 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7417 "SP may not be in the register list"); 7418 else if (ListContainsPC) 7419 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7420 "PC may not be in the register list"); 7421 return false; 7422 } 7423 7424 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst, 7425 const OperandVector &Operands, 7426 bool Load, bool ARMMode, bool Writeback) { 7427 unsigned RtIndex = Load || !Writeback ? 0 : 1; 7428 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg()); 7429 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg()); 7430 7431 if (ARMMode) { 7432 // Rt can't be R14. 7433 if (Rt == 14) 7434 return Error(Operands[3]->getStartLoc(), 7435 "Rt can't be R14"); 7436 7437 // Rt must be even-numbered. 7438 if ((Rt & 1) == 1) 7439 return Error(Operands[3]->getStartLoc(), 7440 "Rt must be even-numbered"); 7441 7442 // Rt2 must be Rt + 1. 7443 if (Rt2 != Rt + 1) { 7444 if (Load) 7445 return Error(Operands[3]->getStartLoc(), 7446 "destination operands must be sequential"); 7447 else 7448 return Error(Operands[3]->getStartLoc(), 7449 "source operands must be sequential"); 7450 } 7451 7452 // FIXME: Diagnose m == 15 7453 // FIXME: Diagnose ldrd with m == t || m == t2. 7454 } 7455 7456 if (!ARMMode && Load) { 7457 if (Rt2 == Rt) 7458 return Error(Operands[3]->getStartLoc(), 7459 "destination operands can't be identical"); 7460 } 7461 7462 if (Writeback) { 7463 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 7464 7465 if (Rn == Rt || Rn == Rt2) { 7466 if (Load) 7467 return Error(Operands[3]->getStartLoc(), 7468 "base register needs to be different from destination " 7469 "registers"); 7470 else 7471 return Error(Operands[3]->getStartLoc(), 7472 "source register and base register can't be identical"); 7473 } 7474 7475 // FIXME: Diagnose ldrd/strd with writeback and n == 15. 7476 // (Except the immediate form of ldrd?) 7477 } 7478 7479 return false; 7480 } 7481 7482 static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) { 7483 for (unsigned i = 0; i < MCID.NumOperands; ++i) { 7484 if (ARM::isVpred(MCID.OpInfo[i].OperandType)) 7485 return i; 7486 } 7487 return -1; 7488 } 7489 7490 static bool isVectorPredicable(const MCInstrDesc &MCID) { 7491 return findFirstVectorPredOperandIdx(MCID) != -1; 7492 } 7493 7494 // FIXME: We would really like to be able to tablegen'erate this. 7495 bool ARMAsmParser::validateInstruction(MCInst &Inst, 7496 const OperandVector &Operands) { 7497 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 7498 SMLoc Loc = Operands[0]->getStartLoc(); 7499 7500 // Check the IT block state first. 7501 // NOTE: BKPT and HLT instructions have the interesting property of being 7502 // allowed in IT blocks, but not being predicable. They just always execute. 7503 if (inITBlock() && !instIsBreakpoint(Inst)) { 7504 // The instruction must be predicable. 7505 if (!MCID.isPredicable()) 7506 return Error(Loc, "instructions in IT block must be predicable"); 7507 ARMCC::CondCodes Cond = ARMCC::CondCodes( 7508 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm()); 7509 if (Cond != currentITCond()) { 7510 // Find the condition code Operand to get its SMLoc information. 7511 SMLoc CondLoc; 7512 for (unsigned I = 1; I < Operands.size(); ++I) 7513 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 7514 CondLoc = Operands[I]->getStartLoc(); 7515 return Error(CondLoc, "incorrect condition in IT block; got '" + 7516 StringRef(ARMCondCodeToString(Cond)) + 7517 "', but expected '" + 7518 ARMCondCodeToString(currentITCond()) + "'"); 7519 } 7520 // Check for non-'al' condition codes outside of the IT block. 7521 } else if (isThumbTwo() && MCID.isPredicable() && 7522 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7523 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 7524 Inst.getOpcode() != ARM::t2Bcc && 7525 Inst.getOpcode() != ARM::t2BFic) { 7526 return Error(Loc, "predicated instructions must be in IT block"); 7527 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 7528 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7529 ARMCC::AL) { 7530 return Warning(Loc, "predicated instructions should be in IT block"); 7531 } else if (!MCID.isPredicable()) { 7532 // Check the instruction doesn't have a predicate operand anyway 7533 // that it's not allowed to use. Sometimes this happens in order 7534 // to keep instructions the same shape even though one cannot 7535 // legally be predicated, e.g. vmul.f16 vs vmul.f32. 7536 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 7537 if (MCID.OpInfo[i].isPredicate()) { 7538 if (Inst.getOperand(i).getImm() != ARMCC::AL) 7539 return Error(Loc, "instruction is not predicable"); 7540 break; 7541 } 7542 } 7543 } 7544 7545 // PC-setting instructions in an IT block, but not the last instruction of 7546 // the block, are UNPREDICTABLE. 7547 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 7548 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 7549 } 7550 7551 if (inVPTBlock() && !instIsBreakpoint(Inst)) { 7552 unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition); 7553 if (!isVectorPredicable(MCID)) 7554 return Error(Loc, "instruction in VPT block must be predicable"); 7555 unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm(); 7556 unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then; 7557 if (Pred != VPTPred) { 7558 SMLoc PredLoc; 7559 for (unsigned I = 1; I < Operands.size(); ++I) 7560 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7561 PredLoc = Operands[I]->getStartLoc(); 7562 return Error(PredLoc, "incorrect predication in VPT block; got '" + 7563 StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) + 7564 "', but expected '" + 7565 ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'"); 7566 } 7567 } 7568 else if (isVectorPredicable(MCID) && 7569 Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() != 7570 ARMVCC::None) 7571 return Error(Loc, "VPT predicated instructions must be in VPT block"); 7572 7573 const unsigned Opcode = Inst.getOpcode(); 7574 switch (Opcode) { 7575 case ARM::t2IT: { 7576 // Encoding is unpredictable if it ever results in a notional 'NV' 7577 // predicate. Since we don't parse 'NV' directly this means an 'AL' 7578 // predicate with an "else" mask bit. 7579 unsigned Cond = Inst.getOperand(0).getImm(); 7580 unsigned Mask = Inst.getOperand(1).getImm(); 7581 7582 // Conditions only allowing a 't' are those with no set bit except 7583 // the lowest-order one that indicates the end of the sequence. In 7584 // other words, powers of 2. 7585 if (Cond == ARMCC::AL && countPopulation(Mask) != 1) 7586 return Error(Loc, "unpredictable IT predicate sequence"); 7587 break; 7588 } 7589 case ARM::LDRD: 7590 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7591 /*Writeback*/false)) 7592 return true; 7593 break; 7594 case ARM::LDRD_PRE: 7595 case ARM::LDRD_POST: 7596 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7597 /*Writeback*/true)) 7598 return true; 7599 break; 7600 case ARM::t2LDRDi8: 7601 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7602 /*Writeback*/false)) 7603 return true; 7604 break; 7605 case ARM::t2LDRD_PRE: 7606 case ARM::t2LDRD_POST: 7607 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7608 /*Writeback*/true)) 7609 return true; 7610 break; 7611 case ARM::t2BXJ: { 7612 const unsigned RmReg = Inst.getOperand(0).getReg(); 7613 // Rm = SP is no longer unpredictable in v8-A 7614 if (RmReg == ARM::SP && !hasV8Ops()) 7615 return Error(Operands[2]->getStartLoc(), 7616 "r13 (SP) is an unpredictable operand to BXJ"); 7617 return false; 7618 } 7619 case ARM::STRD: 7620 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7621 /*Writeback*/false)) 7622 return true; 7623 break; 7624 case ARM::STRD_PRE: 7625 case ARM::STRD_POST: 7626 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7627 /*Writeback*/true)) 7628 return true; 7629 break; 7630 case ARM::t2STRD_PRE: 7631 case ARM::t2STRD_POST: 7632 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false, 7633 /*Writeback*/true)) 7634 return true; 7635 break; 7636 case ARM::STR_PRE_IMM: 7637 case ARM::STR_PRE_REG: 7638 case ARM::t2STR_PRE: 7639 case ARM::STR_POST_IMM: 7640 case ARM::STR_POST_REG: 7641 case ARM::t2STR_POST: 7642 case ARM::STRH_PRE: 7643 case ARM::t2STRH_PRE: 7644 case ARM::STRH_POST: 7645 case ARM::t2STRH_POST: 7646 case ARM::STRB_PRE_IMM: 7647 case ARM::STRB_PRE_REG: 7648 case ARM::t2STRB_PRE: 7649 case ARM::STRB_POST_IMM: 7650 case ARM::STRB_POST_REG: 7651 case ARM::t2STRB_POST: { 7652 // Rt must be different from Rn. 7653 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 7654 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7655 7656 if (Rt == Rn) 7657 return Error(Operands[3]->getStartLoc(), 7658 "source register and base register can't be identical"); 7659 return false; 7660 } 7661 case ARM::LDR_PRE_IMM: 7662 case ARM::LDR_PRE_REG: 7663 case ARM::t2LDR_PRE: 7664 case ARM::LDR_POST_IMM: 7665 case ARM::LDR_POST_REG: 7666 case ARM::t2LDR_POST: 7667 case ARM::LDRH_PRE: 7668 case ARM::t2LDRH_PRE: 7669 case ARM::LDRH_POST: 7670 case ARM::t2LDRH_POST: 7671 case ARM::LDRSH_PRE: 7672 case ARM::t2LDRSH_PRE: 7673 case ARM::LDRSH_POST: 7674 case ARM::t2LDRSH_POST: 7675 case ARM::LDRB_PRE_IMM: 7676 case ARM::LDRB_PRE_REG: 7677 case ARM::t2LDRB_PRE: 7678 case ARM::LDRB_POST_IMM: 7679 case ARM::LDRB_POST_REG: 7680 case ARM::t2LDRB_POST: 7681 case ARM::LDRSB_PRE: 7682 case ARM::t2LDRSB_PRE: 7683 case ARM::LDRSB_POST: 7684 case ARM::t2LDRSB_POST: { 7685 // Rt must be different from Rn. 7686 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 7687 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7688 7689 if (Rt == Rn) 7690 return Error(Operands[3]->getStartLoc(), 7691 "destination register and base register can't be identical"); 7692 return false; 7693 } 7694 7695 case ARM::MVE_VLDRBU8_rq: 7696 case ARM::MVE_VLDRBU16_rq: 7697 case ARM::MVE_VLDRBS16_rq: 7698 case ARM::MVE_VLDRBU32_rq: 7699 case ARM::MVE_VLDRBS32_rq: 7700 case ARM::MVE_VLDRHU16_rq: 7701 case ARM::MVE_VLDRHU16_rq_u: 7702 case ARM::MVE_VLDRHU32_rq: 7703 case ARM::MVE_VLDRHU32_rq_u: 7704 case ARM::MVE_VLDRHS32_rq: 7705 case ARM::MVE_VLDRHS32_rq_u: 7706 case ARM::MVE_VLDRWU32_rq: 7707 case ARM::MVE_VLDRWU32_rq_u: 7708 case ARM::MVE_VLDRDU64_rq: 7709 case ARM::MVE_VLDRDU64_rq_u: 7710 case ARM::MVE_VLDRWU32_qi: 7711 case ARM::MVE_VLDRWU32_qi_pre: 7712 case ARM::MVE_VLDRDU64_qi: 7713 case ARM::MVE_VLDRDU64_qi_pre: { 7714 // Qd must be different from Qm. 7715 unsigned QdIdx = 0, QmIdx = 2; 7716 bool QmIsPointer = false; 7717 switch (Opcode) { 7718 case ARM::MVE_VLDRWU32_qi: 7719 case ARM::MVE_VLDRDU64_qi: 7720 QmIdx = 1; 7721 QmIsPointer = true; 7722 break; 7723 case ARM::MVE_VLDRWU32_qi_pre: 7724 case ARM::MVE_VLDRDU64_qi_pre: 7725 QdIdx = 1; 7726 QmIsPointer = true; 7727 break; 7728 } 7729 7730 const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg()); 7731 const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg()); 7732 7733 if (Qd == Qm) { 7734 return Error(Operands[3]->getStartLoc(), 7735 Twine("destination vector register and vector ") + 7736 (QmIsPointer ? "pointer" : "offset") + 7737 " register can't be identical"); 7738 } 7739 return false; 7740 } 7741 7742 case ARM::SBFX: 7743 case ARM::t2SBFX: 7744 case ARM::UBFX: 7745 case ARM::t2UBFX: { 7746 // Width must be in range [1, 32-lsb]. 7747 unsigned LSB = Inst.getOperand(2).getImm(); 7748 unsigned Widthm1 = Inst.getOperand(3).getImm(); 7749 if (Widthm1 >= 32 - LSB) 7750 return Error(Operands[5]->getStartLoc(), 7751 "bitfield width must be in range [1,32-lsb]"); 7752 return false; 7753 } 7754 // Notionally handles ARM::tLDMIA_UPD too. 7755 case ARM::tLDMIA: { 7756 // If we're parsing Thumb2, the .w variant is available and handles 7757 // most cases that are normally illegal for a Thumb1 LDM instruction. 7758 // We'll make the transformation in processInstruction() if necessary. 7759 // 7760 // Thumb LDM instructions are writeback iff the base register is not 7761 // in the register list. 7762 unsigned Rn = Inst.getOperand(0).getReg(); 7763 bool HasWritebackToken = 7764 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 7765 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 7766 bool ListContainsBase; 7767 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 7768 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 7769 "registers must be in range r0-r7"); 7770 // If we should have writeback, then there should be a '!' token. 7771 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 7772 return Error(Operands[2]->getStartLoc(), 7773 "writeback operator '!' expected"); 7774 // If we should not have writeback, there must not be a '!'. This is 7775 // true even for the 32-bit wide encodings. 7776 if (ListContainsBase && HasWritebackToken) 7777 return Error(Operands[3]->getStartLoc(), 7778 "writeback operator '!' not allowed when base register " 7779 "in register list"); 7780 7781 if (validatetLDMRegList(Inst, Operands, 3)) 7782 return true; 7783 break; 7784 } 7785 case ARM::LDMIA_UPD: 7786 case ARM::LDMDB_UPD: 7787 case ARM::LDMIB_UPD: 7788 case ARM::LDMDA_UPD: 7789 // ARM variants loading and updating the same register are only officially 7790 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 7791 if (!hasV7Ops()) 7792 break; 7793 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7794 return Error(Operands.back()->getStartLoc(), 7795 "writeback register not allowed in register list"); 7796 break; 7797 case ARM::t2LDMIA: 7798 case ARM::t2LDMDB: 7799 if (validatetLDMRegList(Inst, Operands, 3)) 7800 return true; 7801 break; 7802 case ARM::t2STMIA: 7803 case ARM::t2STMDB: 7804 if (validatetSTMRegList(Inst, Operands, 3)) 7805 return true; 7806 break; 7807 case ARM::t2LDMIA_UPD: 7808 case ARM::t2LDMDB_UPD: 7809 case ARM::t2STMIA_UPD: 7810 case ARM::t2STMDB_UPD: 7811 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7812 return Error(Operands.back()->getStartLoc(), 7813 "writeback register not allowed in register list"); 7814 7815 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 7816 if (validatetLDMRegList(Inst, Operands, 3)) 7817 return true; 7818 } else { 7819 if (validatetSTMRegList(Inst, Operands, 3)) 7820 return true; 7821 } 7822 break; 7823 7824 case ARM::sysLDMIA_UPD: 7825 case ARM::sysLDMDA_UPD: 7826 case ARM::sysLDMDB_UPD: 7827 case ARM::sysLDMIB_UPD: 7828 if (!listContainsReg(Inst, 3, ARM::PC)) 7829 return Error(Operands[4]->getStartLoc(), 7830 "writeback register only allowed on system LDM " 7831 "if PC in register-list"); 7832 break; 7833 case ARM::sysSTMIA_UPD: 7834 case ARM::sysSTMDA_UPD: 7835 case ARM::sysSTMDB_UPD: 7836 case ARM::sysSTMIB_UPD: 7837 return Error(Operands[2]->getStartLoc(), 7838 "system STM cannot have writeback register"); 7839 case ARM::tMUL: 7840 // The second source operand must be the same register as the destination 7841 // operand. 7842 // 7843 // In this case, we must directly check the parsed operands because the 7844 // cvtThumbMultiply() function is written in such a way that it guarantees 7845 // this first statement is always true for the new Inst. Essentially, the 7846 // destination is unconditionally copied into the second source operand 7847 // without checking to see if it matches what we actually parsed. 7848 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 7849 ((ARMOperand &)*Operands[5]).getReg()) && 7850 (((ARMOperand &)*Operands[3]).getReg() != 7851 ((ARMOperand &)*Operands[4]).getReg())) { 7852 return Error(Operands[3]->getStartLoc(), 7853 "destination register must match source register"); 7854 } 7855 break; 7856 7857 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 7858 // so only issue a diagnostic for thumb1. The instructions will be 7859 // switched to the t2 encodings in processInstruction() if necessary. 7860 case ARM::tPOP: { 7861 bool ListContainsBase; 7862 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 7863 !isThumbTwo()) 7864 return Error(Operands[2]->getStartLoc(), 7865 "registers must be in range r0-r7 or pc"); 7866 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 7867 return true; 7868 break; 7869 } 7870 case ARM::tPUSH: { 7871 bool ListContainsBase; 7872 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 7873 !isThumbTwo()) 7874 return Error(Operands[2]->getStartLoc(), 7875 "registers must be in range r0-r7 or lr"); 7876 if (validatetSTMRegList(Inst, Operands, 2)) 7877 return true; 7878 break; 7879 } 7880 case ARM::tSTMIA_UPD: { 7881 bool ListContainsBase, InvalidLowList; 7882 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 7883 0, ListContainsBase); 7884 if (InvalidLowList && !isThumbTwo()) 7885 return Error(Operands[4]->getStartLoc(), 7886 "registers must be in range r0-r7"); 7887 7888 // This would be converted to a 32-bit stm, but that's not valid if the 7889 // writeback register is in the list. 7890 if (InvalidLowList && ListContainsBase) 7891 return Error(Operands[4]->getStartLoc(), 7892 "writeback operator '!' not allowed when base register " 7893 "in register list"); 7894 7895 if (validatetSTMRegList(Inst, Operands, 4)) 7896 return true; 7897 break; 7898 } 7899 case ARM::tADDrSP: 7900 // If the non-SP source operand and the destination operand are not the 7901 // same, we need thumb2 (for the wide encoding), or we have an error. 7902 if (!isThumbTwo() && 7903 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 7904 return Error(Operands[4]->getStartLoc(), 7905 "source register must be the same as destination"); 7906 } 7907 break; 7908 7909 case ARM::t2ADDrr: 7910 case ARM::t2ADDrs: 7911 case ARM::t2SUBrr: 7912 case ARM::t2SUBrs: 7913 if (Inst.getOperand(0).getReg() == ARM::SP && 7914 Inst.getOperand(1).getReg() != ARM::SP) 7915 return Error(Operands[4]->getStartLoc(), 7916 "source register must be sp if destination is sp"); 7917 break; 7918 7919 // Final range checking for Thumb unconditional branch instructions. 7920 case ARM::tB: 7921 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 7922 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7923 break; 7924 case ARM::t2B: { 7925 int op = (Operands[2]->isImm()) ? 2 : 3; 7926 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 7927 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 7928 break; 7929 } 7930 // Final range checking for Thumb conditional branch instructions. 7931 case ARM::tBcc: 7932 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 7933 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7934 break; 7935 case ARM::t2Bcc: { 7936 int Op = (Operands[2]->isImm()) ? 2 : 3; 7937 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 7938 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 7939 break; 7940 } 7941 case ARM::tCBZ: 7942 case ARM::tCBNZ: { 7943 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 7944 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7945 break; 7946 } 7947 case ARM::MOVi16: 7948 case ARM::MOVTi16: 7949 case ARM::t2MOVi16: 7950 case ARM::t2MOVTi16: 7951 { 7952 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 7953 // especially when we turn it into a movw and the expression <symbol> does 7954 // not have a :lower16: or :upper16 as part of the expression. We don't 7955 // want the behavior of silently truncating, which can be unexpected and 7956 // lead to bugs that are difficult to find since this is an easy mistake 7957 // to make. 7958 int i = (Operands[3]->isImm()) ? 3 : 4; 7959 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 7960 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 7961 if (CE) break; 7962 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 7963 if (!E) break; 7964 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 7965 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 7966 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 7967 return Error( 7968 Op.getStartLoc(), 7969 "immediate expression for mov requires :lower16: or :upper16"); 7970 break; 7971 } 7972 case ARM::HINT: 7973 case ARM::t2HINT: { 7974 unsigned Imm8 = Inst.getOperand(0).getImm(); 7975 unsigned Pred = Inst.getOperand(1).getImm(); 7976 // ESB is not predicable (pred must be AL). Without the RAS extension, this 7977 // behaves as any other unallocated hint. 7978 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) 7979 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 7980 "predicable, but condition " 7981 "code specified"); 7982 if (Imm8 == 0x14 && Pred != ARMCC::AL) 7983 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not " 7984 "predicable, but condition " 7985 "code specified"); 7986 break; 7987 } 7988 case ARM::t2BFi: 7989 case ARM::t2BFr: 7990 case ARM::t2BFLi: 7991 case ARM::t2BFLr: { 7992 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() || 7993 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 7994 return Error(Operands[2]->getStartLoc(), 7995 "branch location out of range or not a multiple of 2"); 7996 7997 if (Opcode == ARM::t2BFi) { 7998 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>()) 7999 return Error(Operands[3]->getStartLoc(), 8000 "branch target out of range or not a multiple of 2"); 8001 } else if (Opcode == ARM::t2BFLi) { 8002 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>()) 8003 return Error(Operands[3]->getStartLoc(), 8004 "branch target out of range or not a multiple of 2"); 8005 } 8006 break; 8007 } 8008 case ARM::t2BFic: { 8009 if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() || 8010 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 8011 return Error(Operands[1]->getStartLoc(), 8012 "branch location out of range or not a multiple of 2"); 8013 8014 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>()) 8015 return Error(Operands[2]->getStartLoc(), 8016 "branch target out of range or not a multiple of 2"); 8017 8018 assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() && 8019 "branch location and else branch target should either both be " 8020 "immediates or both labels"); 8021 8022 if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) { 8023 int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm(); 8024 if (Diff != 4 && Diff != 2) 8025 return Error( 8026 Operands[3]->getStartLoc(), 8027 "else branch target must be 2 or 4 greater than the branch location"); 8028 } 8029 break; 8030 } 8031 case ARM::t2CLRM: { 8032 for (unsigned i = 2; i < Inst.getNumOperands(); i++) { 8033 if (Inst.getOperand(i).isReg() && 8034 !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains( 8035 Inst.getOperand(i).getReg())) { 8036 return Error(Operands[2]->getStartLoc(), 8037 "invalid register in register list. Valid registers are " 8038 "r0-r12, lr/r14 and APSR."); 8039 } 8040 } 8041 break; 8042 } 8043 case ARM::DSB: 8044 case ARM::t2DSB: { 8045 8046 if (Inst.getNumOperands() < 2) 8047 break; 8048 8049 unsigned Option = Inst.getOperand(0).getImm(); 8050 unsigned Pred = Inst.getOperand(1).getImm(); 8051 8052 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL). 8053 if (Option == 0 && Pred != ARMCC::AL) 8054 return Error(Operands[1]->getStartLoc(), 8055 "instruction 'ssbb' is not predicable, but condition code " 8056 "specified"); 8057 if (Option == 4 && Pred != ARMCC::AL) 8058 return Error(Operands[1]->getStartLoc(), 8059 "instruction 'pssbb' is not predicable, but condition code " 8060 "specified"); 8061 break; 8062 } 8063 case ARM::VMOVRRS: { 8064 // Source registers must be sequential. 8065 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 8066 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 8067 if (Sm1 != Sm + 1) 8068 return Error(Operands[5]->getStartLoc(), 8069 "source operands must be sequential"); 8070 break; 8071 } 8072 case ARM::VMOVSRR: { 8073 // Destination registers must be sequential. 8074 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 8075 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 8076 if (Sm1 != Sm + 1) 8077 return Error(Operands[3]->getStartLoc(), 8078 "destination operands must be sequential"); 8079 break; 8080 } 8081 case ARM::VLDMDIA: 8082 case ARM::VSTMDIA: { 8083 ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]); 8084 auto &RegList = Op.getRegList(); 8085 if (RegList.size() < 1 || RegList.size() > 16) 8086 return Error(Operands[3]->getStartLoc(), 8087 "list of registers must be at least 1 and at most 16"); 8088 break; 8089 } 8090 case ARM::MVE_VQDMULLs32bh: 8091 case ARM::MVE_VQDMULLs32th: 8092 case ARM::MVE_VCMULf32: 8093 case ARM::MVE_VMULLBs32: 8094 case ARM::MVE_VMULLTs32: 8095 case ARM::MVE_VMULLBu32: 8096 case ARM::MVE_VMULLTu32: { 8097 if (Operands[3]->getReg() == Operands[4]->getReg()) { 8098 return Error (Operands[3]->getStartLoc(), 8099 "Qd register and Qn register can't be identical"); 8100 } 8101 if (Operands[3]->getReg() == Operands[5]->getReg()) { 8102 return Error (Operands[3]->getStartLoc(), 8103 "Qd register and Qm register can't be identical"); 8104 } 8105 break; 8106 } 8107 case ARM::MVE_VMOV_rr_q: { 8108 if (Operands[4]->getReg() != Operands[6]->getReg()) 8109 return Error (Operands[4]->getStartLoc(), "Q-registers must be the same"); 8110 if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() != 8111 static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2) 8112 return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 8113 break; 8114 } 8115 case ARM::MVE_VMOV_q_rr: { 8116 if (Operands[2]->getReg() != Operands[4]->getReg()) 8117 return Error (Operands[2]->getStartLoc(), "Q-registers must be the same"); 8118 if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() != 8119 static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2) 8120 return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 8121 break; 8122 } 8123 case ARM::UMAAL: 8124 case ARM::UMLAL: 8125 case ARM::UMULL: 8126 case ARM::t2UMAAL: 8127 case ARM::t2UMLAL: 8128 case ARM::t2UMULL: 8129 case ARM::SMLAL: 8130 case ARM::SMLALBB: 8131 case ARM::SMLALBT: 8132 case ARM::SMLALD: 8133 case ARM::SMLALDX: 8134 case ARM::SMLALTB: 8135 case ARM::SMLALTT: 8136 case ARM::SMLSLD: 8137 case ARM::SMLSLDX: 8138 case ARM::SMULL: 8139 case ARM::t2SMLAL: 8140 case ARM::t2SMLALBB: 8141 case ARM::t2SMLALBT: 8142 case ARM::t2SMLALD: 8143 case ARM::t2SMLALDX: 8144 case ARM::t2SMLALTB: 8145 case ARM::t2SMLALTT: 8146 case ARM::t2SMLSLD: 8147 case ARM::t2SMLSLDX: 8148 case ARM::t2SMULL: { 8149 unsigned RdHi = Inst.getOperand(0).getReg(); 8150 unsigned RdLo = Inst.getOperand(1).getReg(); 8151 if(RdHi == RdLo) { 8152 return Error(Loc, 8153 "unpredictable instruction, RdHi and RdLo must be different"); 8154 } 8155 break; 8156 } 8157 8158 case ARM::CDE_CX1: 8159 case ARM::CDE_CX1A: 8160 case ARM::CDE_CX1D: 8161 case ARM::CDE_CX1DA: 8162 case ARM::CDE_CX2: 8163 case ARM::CDE_CX2A: 8164 case ARM::CDE_CX2D: 8165 case ARM::CDE_CX2DA: 8166 case ARM::CDE_CX3: 8167 case ARM::CDE_CX3A: 8168 case ARM::CDE_CX3D: 8169 case ARM::CDE_CX3DA: 8170 case ARM::CDE_VCX1_vec: 8171 case ARM::CDE_VCX1_fpsp: 8172 case ARM::CDE_VCX1_fpdp: 8173 case ARM::CDE_VCX1A_vec: 8174 case ARM::CDE_VCX1A_fpsp: 8175 case ARM::CDE_VCX1A_fpdp: 8176 case ARM::CDE_VCX2_vec: 8177 case ARM::CDE_VCX2_fpsp: 8178 case ARM::CDE_VCX2_fpdp: 8179 case ARM::CDE_VCX2A_vec: 8180 case ARM::CDE_VCX2A_fpsp: 8181 case ARM::CDE_VCX2A_fpdp: 8182 case ARM::CDE_VCX3_vec: 8183 case ARM::CDE_VCX3_fpsp: 8184 case ARM::CDE_VCX3_fpdp: 8185 case ARM::CDE_VCX3A_vec: 8186 case ARM::CDE_VCX3A_fpsp: 8187 case ARM::CDE_VCX3A_fpdp: { 8188 assert(Inst.getOperand(1).isImm() && 8189 "CDE operand 1 must be a coprocessor ID"); 8190 int64_t Coproc = Inst.getOperand(1).getImm(); 8191 if (Coproc < 8 && !ARM::isCDECoproc(Coproc, *STI)) 8192 return Error(Operands[1]->getStartLoc(), 8193 "coprocessor must be configured as CDE"); 8194 else if (Coproc >= 8) 8195 return Error(Operands[1]->getStartLoc(), 8196 "coprocessor must be in the range [p0, p7]"); 8197 break; 8198 } 8199 8200 case ARM::t2CDP: 8201 case ARM::t2CDP2: 8202 case ARM::t2LDC2L_OFFSET: 8203 case ARM::t2LDC2L_OPTION: 8204 case ARM::t2LDC2L_POST: 8205 case ARM::t2LDC2L_PRE: 8206 case ARM::t2LDC2_OFFSET: 8207 case ARM::t2LDC2_OPTION: 8208 case ARM::t2LDC2_POST: 8209 case ARM::t2LDC2_PRE: 8210 case ARM::t2LDCL_OFFSET: 8211 case ARM::t2LDCL_OPTION: 8212 case ARM::t2LDCL_POST: 8213 case ARM::t2LDCL_PRE: 8214 case ARM::t2LDC_OFFSET: 8215 case ARM::t2LDC_OPTION: 8216 case ARM::t2LDC_POST: 8217 case ARM::t2LDC_PRE: 8218 case ARM::t2MCR: 8219 case ARM::t2MCR2: 8220 case ARM::t2MCRR: 8221 case ARM::t2MCRR2: 8222 case ARM::t2MRC: 8223 case ARM::t2MRC2: 8224 case ARM::t2MRRC: 8225 case ARM::t2MRRC2: 8226 case ARM::t2STC2L_OFFSET: 8227 case ARM::t2STC2L_OPTION: 8228 case ARM::t2STC2L_POST: 8229 case ARM::t2STC2L_PRE: 8230 case ARM::t2STC2_OFFSET: 8231 case ARM::t2STC2_OPTION: 8232 case ARM::t2STC2_POST: 8233 case ARM::t2STC2_PRE: 8234 case ARM::t2STCL_OFFSET: 8235 case ARM::t2STCL_OPTION: 8236 case ARM::t2STCL_POST: 8237 case ARM::t2STCL_PRE: 8238 case ARM::t2STC_OFFSET: 8239 case ARM::t2STC_OPTION: 8240 case ARM::t2STC_POST: 8241 case ARM::t2STC_PRE: { 8242 unsigned Opcode = Inst.getOpcode(); 8243 // Inst.getOperand indexes operands in the (oops ...) and (iops ...) dags, 8244 // CopInd is the index of the coprocessor operand. 8245 size_t CopInd = 0; 8246 if (Opcode == ARM::t2MRRC || Opcode == ARM::t2MRRC2) 8247 CopInd = 2; 8248 else if (Opcode == ARM::t2MRC || Opcode == ARM::t2MRC2) 8249 CopInd = 1; 8250 assert(Inst.getOperand(CopInd).isImm() && 8251 "Operand must be a coprocessor ID"); 8252 int64_t Coproc = Inst.getOperand(CopInd).getImm(); 8253 // Operands[2] is the coprocessor operand at syntactic level 8254 if (ARM::isCDECoproc(Coproc, *STI)) 8255 return Error(Operands[2]->getStartLoc(), 8256 "coprocessor must be configured as GCP"); 8257 break; 8258 } 8259 } 8260 8261 return false; 8262 } 8263 8264 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 8265 switch(Opc) { 8266 default: llvm_unreachable("unexpected opcode!"); 8267 // VST1LN 8268 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 8269 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 8270 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 8271 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 8272 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 8273 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 8274 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 8275 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 8276 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 8277 8278 // VST2LN 8279 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 8280 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 8281 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 8282 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 8283 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 8284 8285 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 8286 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 8287 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 8288 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 8289 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 8290 8291 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 8292 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 8293 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 8294 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 8295 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 8296 8297 // VST3LN 8298 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 8299 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 8300 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 8301 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 8302 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 8303 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 8304 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 8305 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 8306 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 8307 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 8308 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 8309 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 8310 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 8311 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 8312 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 8313 8314 // VST3 8315 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 8316 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 8317 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 8318 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 8319 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 8320 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 8321 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 8322 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 8323 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 8324 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 8325 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 8326 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 8327 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 8328 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 8329 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 8330 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 8331 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 8332 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 8333 8334 // VST4LN 8335 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 8336 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 8337 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 8338 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 8339 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 8340 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 8341 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 8342 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 8343 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 8344 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 8345 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 8346 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 8347 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 8348 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 8349 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 8350 8351 // VST4 8352 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8353 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8354 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8355 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8356 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8357 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8358 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8359 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8360 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8361 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8362 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8363 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8364 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 8365 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 8366 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 8367 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 8368 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 8369 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 8370 } 8371 } 8372 8373 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 8374 switch(Opc) { 8375 default: llvm_unreachable("unexpected opcode!"); 8376 // VLD1LN 8377 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8378 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8379 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8380 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8381 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8382 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8383 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 8384 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 8385 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 8386 8387 // VLD2LN 8388 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8389 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8390 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8391 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 8392 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8393 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8394 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8395 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8396 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 8397 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8398 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 8399 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 8400 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 8401 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 8402 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 8403 8404 // VLD3DUP 8405 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8406 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8407 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8408 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 8409 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8410 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8411 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8412 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8413 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8414 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 8415 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8416 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8417 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 8418 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 8419 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 8420 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 8421 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 8422 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 8423 8424 // VLD3LN 8425 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8426 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8427 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8428 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 8429 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8430 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8431 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8432 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8433 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 8434 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8435 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 8436 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 8437 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 8438 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 8439 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 8440 8441 // VLD3 8442 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8443 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8444 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8445 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8446 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8447 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8448 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8449 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8450 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8451 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8452 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8453 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8454 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 8455 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 8456 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 8457 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 8458 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 8459 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 8460 8461 // VLD4LN 8462 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8463 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8464 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8465 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8466 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8467 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8468 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8469 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8470 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8471 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8472 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 8473 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 8474 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 8475 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 8476 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 8477 8478 // VLD4DUP 8479 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8480 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8481 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8482 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 8483 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 8484 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8485 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8486 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8487 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8488 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 8489 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 8490 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8491 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 8492 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 8493 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 8494 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 8495 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 8496 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 8497 8498 // VLD4 8499 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8500 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8501 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8502 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8503 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8504 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8505 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8506 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8507 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8508 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8509 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8510 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8511 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 8512 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 8513 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 8514 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 8515 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 8516 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 8517 } 8518 } 8519 8520 bool ARMAsmParser::processInstruction(MCInst &Inst, 8521 const OperandVector &Operands, 8522 MCStreamer &Out) { 8523 // Check if we have the wide qualifier, because if it's present we 8524 // must avoid selecting a 16-bit thumb instruction. 8525 bool HasWideQualifier = false; 8526 for (auto &Op : Operands) { 8527 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 8528 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 8529 HasWideQualifier = true; 8530 break; 8531 } 8532 } 8533 8534 switch (Inst.getOpcode()) { 8535 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 8536 case ARM::LDRT_POST: 8537 case ARM::LDRBT_POST: { 8538 const unsigned Opcode = 8539 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 8540 : ARM::LDRBT_POST_IMM; 8541 MCInst TmpInst; 8542 TmpInst.setOpcode(Opcode); 8543 TmpInst.addOperand(Inst.getOperand(0)); 8544 TmpInst.addOperand(Inst.getOperand(1)); 8545 TmpInst.addOperand(Inst.getOperand(1)); 8546 TmpInst.addOperand(MCOperand::createReg(0)); 8547 TmpInst.addOperand(MCOperand::createImm(0)); 8548 TmpInst.addOperand(Inst.getOperand(2)); 8549 TmpInst.addOperand(Inst.getOperand(3)); 8550 Inst = TmpInst; 8551 return true; 8552 } 8553 // Alias for 'ldr{sb,h,sh}t Rt, [Rn] {, #imm}' for ommitted immediate. 8554 case ARM::LDRSBTii: 8555 case ARM::LDRHTii: 8556 case ARM::LDRSHTii: { 8557 MCInst TmpInst; 8558 8559 if (Inst.getOpcode() == ARM::LDRSBTii) 8560 TmpInst.setOpcode(ARM::LDRSBTi); 8561 else if (Inst.getOpcode() == ARM::LDRHTii) 8562 TmpInst.setOpcode(ARM::LDRHTi); 8563 else if (Inst.getOpcode() == ARM::LDRSHTii) 8564 TmpInst.setOpcode(ARM::LDRSHTi); 8565 TmpInst.addOperand(Inst.getOperand(0)); 8566 TmpInst.addOperand(Inst.getOperand(1)); 8567 TmpInst.addOperand(Inst.getOperand(1)); 8568 TmpInst.addOperand(MCOperand::createImm(256)); 8569 TmpInst.addOperand(Inst.getOperand(2)); 8570 Inst = TmpInst; 8571 return true; 8572 } 8573 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 8574 case ARM::STRT_POST: 8575 case ARM::STRBT_POST: { 8576 const unsigned Opcode = 8577 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 8578 : ARM::STRBT_POST_IMM; 8579 MCInst TmpInst; 8580 TmpInst.setOpcode(Opcode); 8581 TmpInst.addOperand(Inst.getOperand(1)); 8582 TmpInst.addOperand(Inst.getOperand(0)); 8583 TmpInst.addOperand(Inst.getOperand(1)); 8584 TmpInst.addOperand(MCOperand::createReg(0)); 8585 TmpInst.addOperand(MCOperand::createImm(0)); 8586 TmpInst.addOperand(Inst.getOperand(2)); 8587 TmpInst.addOperand(Inst.getOperand(3)); 8588 Inst = TmpInst; 8589 return true; 8590 } 8591 // Alias for alternate form of 'ADR Rd, #imm' instruction. 8592 case ARM::ADDri: { 8593 if (Inst.getOperand(1).getReg() != ARM::PC || 8594 Inst.getOperand(5).getReg() != 0 || 8595 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 8596 return false; 8597 MCInst TmpInst; 8598 TmpInst.setOpcode(ARM::ADR); 8599 TmpInst.addOperand(Inst.getOperand(0)); 8600 if (Inst.getOperand(2).isImm()) { 8601 // Immediate (mod_imm) will be in its encoded form, we must unencode it 8602 // before passing it to the ADR instruction. 8603 unsigned Enc = Inst.getOperand(2).getImm(); 8604 TmpInst.addOperand(MCOperand::createImm( 8605 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 8606 } else { 8607 // Turn PC-relative expression into absolute expression. 8608 // Reading PC provides the start of the current instruction + 8 and 8609 // the transform to adr is biased by that. 8610 MCSymbol *Dot = getContext().createTempSymbol(); 8611 Out.emitLabel(Dot); 8612 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 8613 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 8614 MCSymbolRefExpr::VK_None, 8615 getContext()); 8616 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 8617 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 8618 getContext()); 8619 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 8620 getContext()); 8621 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 8622 } 8623 TmpInst.addOperand(Inst.getOperand(3)); 8624 TmpInst.addOperand(Inst.getOperand(4)); 8625 Inst = TmpInst; 8626 return true; 8627 } 8628 // Aliases for alternate PC+imm syntax of LDR instructions. 8629 case ARM::t2LDRpcrel: 8630 // Select the narrow version if the immediate will fit. 8631 if (Inst.getOperand(1).getImm() > 0 && 8632 Inst.getOperand(1).getImm() <= 0xff && 8633 !HasWideQualifier) 8634 Inst.setOpcode(ARM::tLDRpci); 8635 else 8636 Inst.setOpcode(ARM::t2LDRpci); 8637 return true; 8638 case ARM::t2LDRBpcrel: 8639 Inst.setOpcode(ARM::t2LDRBpci); 8640 return true; 8641 case ARM::t2LDRHpcrel: 8642 Inst.setOpcode(ARM::t2LDRHpci); 8643 return true; 8644 case ARM::t2LDRSBpcrel: 8645 Inst.setOpcode(ARM::t2LDRSBpci); 8646 return true; 8647 case ARM::t2LDRSHpcrel: 8648 Inst.setOpcode(ARM::t2LDRSHpci); 8649 return true; 8650 case ARM::LDRConstPool: 8651 case ARM::tLDRConstPool: 8652 case ARM::t2LDRConstPool: { 8653 // Pseudo instruction ldr rt, =immediate is converted to a 8654 // MOV rt, immediate if immediate is known and representable 8655 // otherwise we create a constant pool entry that we load from. 8656 MCInst TmpInst; 8657 if (Inst.getOpcode() == ARM::LDRConstPool) 8658 TmpInst.setOpcode(ARM::LDRi12); 8659 else if (Inst.getOpcode() == ARM::tLDRConstPool) 8660 TmpInst.setOpcode(ARM::tLDRpci); 8661 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 8662 TmpInst.setOpcode(ARM::t2LDRpci); 8663 const ARMOperand &PoolOperand = 8664 (HasWideQualifier ? 8665 static_cast<ARMOperand &>(*Operands[4]) : 8666 static_cast<ARMOperand &>(*Operands[3])); 8667 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 8668 // If SubExprVal is a constant we may be able to use a MOV 8669 if (isa<MCConstantExpr>(SubExprVal) && 8670 Inst.getOperand(0).getReg() != ARM::PC && 8671 Inst.getOperand(0).getReg() != ARM::SP) { 8672 int64_t Value = 8673 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 8674 bool UseMov = true; 8675 bool MovHasS = true; 8676 if (Inst.getOpcode() == ARM::LDRConstPool) { 8677 // ARM Constant 8678 if (ARM_AM::getSOImmVal(Value) != -1) { 8679 Value = ARM_AM::getSOImmVal(Value); 8680 TmpInst.setOpcode(ARM::MOVi); 8681 } 8682 else if (ARM_AM::getSOImmVal(~Value) != -1) { 8683 Value = ARM_AM::getSOImmVal(~Value); 8684 TmpInst.setOpcode(ARM::MVNi); 8685 } 8686 else if (hasV6T2Ops() && 8687 Value >=0 && Value < 65536) { 8688 TmpInst.setOpcode(ARM::MOVi16); 8689 MovHasS = false; 8690 } 8691 else 8692 UseMov = false; 8693 } 8694 else { 8695 // Thumb/Thumb2 Constant 8696 if (hasThumb2() && 8697 ARM_AM::getT2SOImmVal(Value) != -1) 8698 TmpInst.setOpcode(ARM::t2MOVi); 8699 else if (hasThumb2() && 8700 ARM_AM::getT2SOImmVal(~Value) != -1) { 8701 TmpInst.setOpcode(ARM::t2MVNi); 8702 Value = ~Value; 8703 } 8704 else if (hasV8MBaseline() && 8705 Value >=0 && Value < 65536) { 8706 TmpInst.setOpcode(ARM::t2MOVi16); 8707 MovHasS = false; 8708 } 8709 else 8710 UseMov = false; 8711 } 8712 if (UseMov) { 8713 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8714 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 8715 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8716 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8717 if (MovHasS) 8718 TmpInst.addOperand(MCOperand::createReg(0)); // S 8719 Inst = TmpInst; 8720 return true; 8721 } 8722 } 8723 // No opportunity to use MOV/MVN create constant pool 8724 const MCExpr *CPLoc = 8725 getTargetStreamer().addConstantPoolEntry(SubExprVal, 8726 PoolOperand.getStartLoc()); 8727 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8728 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 8729 if (TmpInst.getOpcode() == ARM::LDRi12) 8730 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 8731 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8732 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8733 Inst = TmpInst; 8734 return true; 8735 } 8736 // Handle NEON VST complex aliases. 8737 case ARM::VST1LNdWB_register_Asm_8: 8738 case ARM::VST1LNdWB_register_Asm_16: 8739 case ARM::VST1LNdWB_register_Asm_32: { 8740 MCInst TmpInst; 8741 // Shuffle the operands around so the lane index operand is in the 8742 // right place. 8743 unsigned Spacing; 8744 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8745 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8746 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8747 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8748 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8749 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8750 TmpInst.addOperand(Inst.getOperand(1)); // lane 8751 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8752 TmpInst.addOperand(Inst.getOperand(6)); 8753 Inst = TmpInst; 8754 return true; 8755 } 8756 8757 case ARM::VST2LNdWB_register_Asm_8: 8758 case ARM::VST2LNdWB_register_Asm_16: 8759 case ARM::VST2LNdWB_register_Asm_32: 8760 case ARM::VST2LNqWB_register_Asm_16: 8761 case ARM::VST2LNqWB_register_Asm_32: { 8762 MCInst TmpInst; 8763 // Shuffle the operands around so the lane index operand is in the 8764 // right place. 8765 unsigned Spacing; 8766 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8767 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8768 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8769 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8770 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8771 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8772 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8773 Spacing)); 8774 TmpInst.addOperand(Inst.getOperand(1)); // lane 8775 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8776 TmpInst.addOperand(Inst.getOperand(6)); 8777 Inst = TmpInst; 8778 return true; 8779 } 8780 8781 case ARM::VST3LNdWB_register_Asm_8: 8782 case ARM::VST3LNdWB_register_Asm_16: 8783 case ARM::VST3LNdWB_register_Asm_32: 8784 case ARM::VST3LNqWB_register_Asm_16: 8785 case ARM::VST3LNqWB_register_Asm_32: { 8786 MCInst TmpInst; 8787 // Shuffle the operands around so the lane index operand is in the 8788 // right place. 8789 unsigned Spacing; 8790 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8791 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8792 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8793 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8794 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8795 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8796 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8797 Spacing)); 8798 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8799 Spacing * 2)); 8800 TmpInst.addOperand(Inst.getOperand(1)); // lane 8801 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8802 TmpInst.addOperand(Inst.getOperand(6)); 8803 Inst = TmpInst; 8804 return true; 8805 } 8806 8807 case ARM::VST4LNdWB_register_Asm_8: 8808 case ARM::VST4LNdWB_register_Asm_16: 8809 case ARM::VST4LNdWB_register_Asm_32: 8810 case ARM::VST4LNqWB_register_Asm_16: 8811 case ARM::VST4LNqWB_register_Asm_32: { 8812 MCInst TmpInst; 8813 // Shuffle the operands around so the lane index operand is in the 8814 // right place. 8815 unsigned Spacing; 8816 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8817 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8818 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8819 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8820 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8821 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8822 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8823 Spacing)); 8824 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8825 Spacing * 2)); 8826 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8827 Spacing * 3)); 8828 TmpInst.addOperand(Inst.getOperand(1)); // lane 8829 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8830 TmpInst.addOperand(Inst.getOperand(6)); 8831 Inst = TmpInst; 8832 return true; 8833 } 8834 8835 case ARM::VST1LNdWB_fixed_Asm_8: 8836 case ARM::VST1LNdWB_fixed_Asm_16: 8837 case ARM::VST1LNdWB_fixed_Asm_32: { 8838 MCInst TmpInst; 8839 // Shuffle the operands around so the lane index operand is in the 8840 // right place. 8841 unsigned Spacing; 8842 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8843 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8844 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8845 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8846 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8847 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8848 TmpInst.addOperand(Inst.getOperand(1)); // lane 8849 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8850 TmpInst.addOperand(Inst.getOperand(5)); 8851 Inst = TmpInst; 8852 return true; 8853 } 8854 8855 case ARM::VST2LNdWB_fixed_Asm_8: 8856 case ARM::VST2LNdWB_fixed_Asm_16: 8857 case ARM::VST2LNdWB_fixed_Asm_32: 8858 case ARM::VST2LNqWB_fixed_Asm_16: 8859 case ARM::VST2LNqWB_fixed_Asm_32: { 8860 MCInst TmpInst; 8861 // Shuffle the operands around so the lane index operand is in the 8862 // right place. 8863 unsigned Spacing; 8864 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8865 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8866 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8867 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8868 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8869 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8870 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8871 Spacing)); 8872 TmpInst.addOperand(Inst.getOperand(1)); // lane 8873 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8874 TmpInst.addOperand(Inst.getOperand(5)); 8875 Inst = TmpInst; 8876 return true; 8877 } 8878 8879 case ARM::VST3LNdWB_fixed_Asm_8: 8880 case ARM::VST3LNdWB_fixed_Asm_16: 8881 case ARM::VST3LNdWB_fixed_Asm_32: 8882 case ARM::VST3LNqWB_fixed_Asm_16: 8883 case ARM::VST3LNqWB_fixed_Asm_32: { 8884 MCInst TmpInst; 8885 // Shuffle the operands around so the lane index operand is in the 8886 // right place. 8887 unsigned Spacing; 8888 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8889 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8890 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8891 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8892 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8893 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8894 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8895 Spacing)); 8896 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8897 Spacing * 2)); 8898 TmpInst.addOperand(Inst.getOperand(1)); // lane 8899 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8900 TmpInst.addOperand(Inst.getOperand(5)); 8901 Inst = TmpInst; 8902 return true; 8903 } 8904 8905 case ARM::VST4LNdWB_fixed_Asm_8: 8906 case ARM::VST4LNdWB_fixed_Asm_16: 8907 case ARM::VST4LNdWB_fixed_Asm_32: 8908 case ARM::VST4LNqWB_fixed_Asm_16: 8909 case ARM::VST4LNqWB_fixed_Asm_32: { 8910 MCInst TmpInst; 8911 // Shuffle the operands around so the lane index operand is in the 8912 // right place. 8913 unsigned Spacing; 8914 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8915 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8916 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8917 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8918 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8919 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8920 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8921 Spacing)); 8922 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8923 Spacing * 2)); 8924 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8925 Spacing * 3)); 8926 TmpInst.addOperand(Inst.getOperand(1)); // lane 8927 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8928 TmpInst.addOperand(Inst.getOperand(5)); 8929 Inst = TmpInst; 8930 return true; 8931 } 8932 8933 case ARM::VST1LNdAsm_8: 8934 case ARM::VST1LNdAsm_16: 8935 case ARM::VST1LNdAsm_32: { 8936 MCInst TmpInst; 8937 // Shuffle the operands around so the lane index operand is in the 8938 // right place. 8939 unsigned Spacing; 8940 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8941 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8942 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8943 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8944 TmpInst.addOperand(Inst.getOperand(1)); // lane 8945 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8946 TmpInst.addOperand(Inst.getOperand(5)); 8947 Inst = TmpInst; 8948 return true; 8949 } 8950 8951 case ARM::VST2LNdAsm_8: 8952 case ARM::VST2LNdAsm_16: 8953 case ARM::VST2LNdAsm_32: 8954 case ARM::VST2LNqAsm_16: 8955 case ARM::VST2LNqAsm_32: { 8956 MCInst TmpInst; 8957 // Shuffle the operands around so the lane index operand is in the 8958 // right place. 8959 unsigned Spacing; 8960 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8961 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8962 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8963 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8964 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8965 Spacing)); 8966 TmpInst.addOperand(Inst.getOperand(1)); // lane 8967 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8968 TmpInst.addOperand(Inst.getOperand(5)); 8969 Inst = TmpInst; 8970 return true; 8971 } 8972 8973 case ARM::VST3LNdAsm_8: 8974 case ARM::VST3LNdAsm_16: 8975 case ARM::VST3LNdAsm_32: 8976 case ARM::VST3LNqAsm_16: 8977 case ARM::VST3LNqAsm_32: { 8978 MCInst TmpInst; 8979 // Shuffle the operands around so the lane index operand is in the 8980 // right place. 8981 unsigned Spacing; 8982 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8983 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8984 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8985 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8986 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8987 Spacing)); 8988 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8989 Spacing * 2)); 8990 TmpInst.addOperand(Inst.getOperand(1)); // lane 8991 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8992 TmpInst.addOperand(Inst.getOperand(5)); 8993 Inst = TmpInst; 8994 return true; 8995 } 8996 8997 case ARM::VST4LNdAsm_8: 8998 case ARM::VST4LNdAsm_16: 8999 case ARM::VST4LNdAsm_32: 9000 case ARM::VST4LNqAsm_16: 9001 case ARM::VST4LNqAsm_32: { 9002 MCInst TmpInst; 9003 // Shuffle the operands around so the lane index operand is in the 9004 // right place. 9005 unsigned Spacing; 9006 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9007 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9008 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9009 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9010 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9011 Spacing)); 9012 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9013 Spacing * 2)); 9014 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9015 Spacing * 3)); 9016 TmpInst.addOperand(Inst.getOperand(1)); // lane 9017 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9018 TmpInst.addOperand(Inst.getOperand(5)); 9019 Inst = TmpInst; 9020 return true; 9021 } 9022 9023 // Handle NEON VLD complex aliases. 9024 case ARM::VLD1LNdWB_register_Asm_8: 9025 case ARM::VLD1LNdWB_register_Asm_16: 9026 case ARM::VLD1LNdWB_register_Asm_32: { 9027 MCInst TmpInst; 9028 // Shuffle the operands around so the lane index operand is in the 9029 // right place. 9030 unsigned Spacing; 9031 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9032 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9033 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9034 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9035 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9036 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9037 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9038 TmpInst.addOperand(Inst.getOperand(1)); // lane 9039 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9040 TmpInst.addOperand(Inst.getOperand(6)); 9041 Inst = TmpInst; 9042 return true; 9043 } 9044 9045 case ARM::VLD2LNdWB_register_Asm_8: 9046 case ARM::VLD2LNdWB_register_Asm_16: 9047 case ARM::VLD2LNdWB_register_Asm_32: 9048 case ARM::VLD2LNqWB_register_Asm_16: 9049 case ARM::VLD2LNqWB_register_Asm_32: { 9050 MCInst TmpInst; 9051 // Shuffle the operands around so the lane index operand is in the 9052 // right place. 9053 unsigned Spacing; 9054 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9055 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9056 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9057 Spacing)); 9058 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9059 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9060 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9061 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9062 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9063 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9064 Spacing)); 9065 TmpInst.addOperand(Inst.getOperand(1)); // lane 9066 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9067 TmpInst.addOperand(Inst.getOperand(6)); 9068 Inst = TmpInst; 9069 return true; 9070 } 9071 9072 case ARM::VLD3LNdWB_register_Asm_8: 9073 case ARM::VLD3LNdWB_register_Asm_16: 9074 case ARM::VLD3LNdWB_register_Asm_32: 9075 case ARM::VLD3LNqWB_register_Asm_16: 9076 case ARM::VLD3LNqWB_register_Asm_32: { 9077 MCInst TmpInst; 9078 // Shuffle the operands around so the lane index operand is in the 9079 // right place. 9080 unsigned Spacing; 9081 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9082 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9083 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9084 Spacing)); 9085 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9086 Spacing * 2)); 9087 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9088 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9089 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9090 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9091 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9092 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9093 Spacing)); 9094 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9095 Spacing * 2)); 9096 TmpInst.addOperand(Inst.getOperand(1)); // lane 9097 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9098 TmpInst.addOperand(Inst.getOperand(6)); 9099 Inst = TmpInst; 9100 return true; 9101 } 9102 9103 case ARM::VLD4LNdWB_register_Asm_8: 9104 case ARM::VLD4LNdWB_register_Asm_16: 9105 case ARM::VLD4LNdWB_register_Asm_32: 9106 case ARM::VLD4LNqWB_register_Asm_16: 9107 case ARM::VLD4LNqWB_register_Asm_32: { 9108 MCInst TmpInst; 9109 // Shuffle the operands around so the lane index operand is in the 9110 // right place. 9111 unsigned Spacing; 9112 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9113 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9114 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9115 Spacing)); 9116 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9117 Spacing * 2)); 9118 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9119 Spacing * 3)); 9120 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9121 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9122 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9123 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9124 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9125 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9126 Spacing)); 9127 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9128 Spacing * 2)); 9129 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9130 Spacing * 3)); 9131 TmpInst.addOperand(Inst.getOperand(1)); // lane 9132 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9133 TmpInst.addOperand(Inst.getOperand(6)); 9134 Inst = TmpInst; 9135 return true; 9136 } 9137 9138 case ARM::VLD1LNdWB_fixed_Asm_8: 9139 case ARM::VLD1LNdWB_fixed_Asm_16: 9140 case ARM::VLD1LNdWB_fixed_Asm_32: { 9141 MCInst TmpInst; 9142 // Shuffle the operands around so the lane index operand is in the 9143 // right place. 9144 unsigned Spacing; 9145 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9146 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9147 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9148 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9149 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9150 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9151 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9152 TmpInst.addOperand(Inst.getOperand(1)); // lane 9153 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9154 TmpInst.addOperand(Inst.getOperand(5)); 9155 Inst = TmpInst; 9156 return true; 9157 } 9158 9159 case ARM::VLD2LNdWB_fixed_Asm_8: 9160 case ARM::VLD2LNdWB_fixed_Asm_16: 9161 case ARM::VLD2LNdWB_fixed_Asm_32: 9162 case ARM::VLD2LNqWB_fixed_Asm_16: 9163 case ARM::VLD2LNqWB_fixed_Asm_32: { 9164 MCInst TmpInst; 9165 // Shuffle the operands around so the lane index operand is in the 9166 // right place. 9167 unsigned Spacing; 9168 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9169 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9170 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9171 Spacing)); 9172 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9173 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9174 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9175 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9176 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9177 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9178 Spacing)); 9179 TmpInst.addOperand(Inst.getOperand(1)); // lane 9180 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9181 TmpInst.addOperand(Inst.getOperand(5)); 9182 Inst = TmpInst; 9183 return true; 9184 } 9185 9186 case ARM::VLD3LNdWB_fixed_Asm_8: 9187 case ARM::VLD3LNdWB_fixed_Asm_16: 9188 case ARM::VLD3LNdWB_fixed_Asm_32: 9189 case ARM::VLD3LNqWB_fixed_Asm_16: 9190 case ARM::VLD3LNqWB_fixed_Asm_32: { 9191 MCInst TmpInst; 9192 // Shuffle the operands around so the lane index operand is in the 9193 // right place. 9194 unsigned Spacing; 9195 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9196 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9197 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9198 Spacing)); 9199 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9200 Spacing * 2)); 9201 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9202 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9203 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9204 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9205 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9206 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9207 Spacing)); 9208 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9209 Spacing * 2)); 9210 TmpInst.addOperand(Inst.getOperand(1)); // lane 9211 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9212 TmpInst.addOperand(Inst.getOperand(5)); 9213 Inst = TmpInst; 9214 return true; 9215 } 9216 9217 case ARM::VLD4LNdWB_fixed_Asm_8: 9218 case ARM::VLD4LNdWB_fixed_Asm_16: 9219 case ARM::VLD4LNdWB_fixed_Asm_32: 9220 case ARM::VLD4LNqWB_fixed_Asm_16: 9221 case ARM::VLD4LNqWB_fixed_Asm_32: { 9222 MCInst TmpInst; 9223 // Shuffle the operands around so the lane index operand is in the 9224 // right place. 9225 unsigned Spacing; 9226 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9227 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9228 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9229 Spacing)); 9230 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9231 Spacing * 2)); 9232 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9233 Spacing * 3)); 9234 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9235 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9236 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9237 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9238 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9239 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9240 Spacing)); 9241 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9242 Spacing * 2)); 9243 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9244 Spacing * 3)); 9245 TmpInst.addOperand(Inst.getOperand(1)); // lane 9246 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9247 TmpInst.addOperand(Inst.getOperand(5)); 9248 Inst = TmpInst; 9249 return true; 9250 } 9251 9252 case ARM::VLD1LNdAsm_8: 9253 case ARM::VLD1LNdAsm_16: 9254 case ARM::VLD1LNdAsm_32: { 9255 MCInst TmpInst; 9256 // Shuffle the operands around so the lane index operand is in the 9257 // right place. 9258 unsigned Spacing; 9259 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9260 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9261 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9262 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9263 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9264 TmpInst.addOperand(Inst.getOperand(1)); // lane 9265 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9266 TmpInst.addOperand(Inst.getOperand(5)); 9267 Inst = TmpInst; 9268 return true; 9269 } 9270 9271 case ARM::VLD2LNdAsm_8: 9272 case ARM::VLD2LNdAsm_16: 9273 case ARM::VLD2LNdAsm_32: 9274 case ARM::VLD2LNqAsm_16: 9275 case ARM::VLD2LNqAsm_32: { 9276 MCInst TmpInst; 9277 // Shuffle the operands around so the lane index operand is in the 9278 // right place. 9279 unsigned Spacing; 9280 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9281 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9282 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9283 Spacing)); 9284 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9285 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9286 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9287 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9288 Spacing)); 9289 TmpInst.addOperand(Inst.getOperand(1)); // lane 9290 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9291 TmpInst.addOperand(Inst.getOperand(5)); 9292 Inst = TmpInst; 9293 return true; 9294 } 9295 9296 case ARM::VLD3LNdAsm_8: 9297 case ARM::VLD3LNdAsm_16: 9298 case ARM::VLD3LNdAsm_32: 9299 case ARM::VLD3LNqAsm_16: 9300 case ARM::VLD3LNqAsm_32: { 9301 MCInst TmpInst; 9302 // Shuffle the operands around so the lane index operand is in the 9303 // right place. 9304 unsigned Spacing; 9305 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9306 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9307 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9308 Spacing)); 9309 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9310 Spacing * 2)); 9311 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9312 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9313 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9314 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9315 Spacing)); 9316 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9317 Spacing * 2)); 9318 TmpInst.addOperand(Inst.getOperand(1)); // lane 9319 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9320 TmpInst.addOperand(Inst.getOperand(5)); 9321 Inst = TmpInst; 9322 return true; 9323 } 9324 9325 case ARM::VLD4LNdAsm_8: 9326 case ARM::VLD4LNdAsm_16: 9327 case ARM::VLD4LNdAsm_32: 9328 case ARM::VLD4LNqAsm_16: 9329 case ARM::VLD4LNqAsm_32: { 9330 MCInst TmpInst; 9331 // Shuffle the operands around so the lane index operand is in the 9332 // right place. 9333 unsigned Spacing; 9334 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9335 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9336 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9337 Spacing)); 9338 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9339 Spacing * 2)); 9340 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9341 Spacing * 3)); 9342 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9343 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9344 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9345 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9346 Spacing)); 9347 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9348 Spacing * 2)); 9349 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9350 Spacing * 3)); 9351 TmpInst.addOperand(Inst.getOperand(1)); // lane 9352 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9353 TmpInst.addOperand(Inst.getOperand(5)); 9354 Inst = TmpInst; 9355 return true; 9356 } 9357 9358 // VLD3DUP single 3-element structure to all lanes instructions. 9359 case ARM::VLD3DUPdAsm_8: 9360 case ARM::VLD3DUPdAsm_16: 9361 case ARM::VLD3DUPdAsm_32: 9362 case ARM::VLD3DUPqAsm_8: 9363 case ARM::VLD3DUPqAsm_16: 9364 case ARM::VLD3DUPqAsm_32: { 9365 MCInst TmpInst; 9366 unsigned Spacing; 9367 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9368 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9369 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9370 Spacing)); 9371 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9372 Spacing * 2)); 9373 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9374 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9375 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9376 TmpInst.addOperand(Inst.getOperand(4)); 9377 Inst = TmpInst; 9378 return true; 9379 } 9380 9381 case ARM::VLD3DUPdWB_fixed_Asm_8: 9382 case ARM::VLD3DUPdWB_fixed_Asm_16: 9383 case ARM::VLD3DUPdWB_fixed_Asm_32: 9384 case ARM::VLD3DUPqWB_fixed_Asm_8: 9385 case ARM::VLD3DUPqWB_fixed_Asm_16: 9386 case ARM::VLD3DUPqWB_fixed_Asm_32: { 9387 MCInst TmpInst; 9388 unsigned Spacing; 9389 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9390 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9391 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9392 Spacing)); 9393 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9394 Spacing * 2)); 9395 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9396 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9397 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9398 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9399 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9400 TmpInst.addOperand(Inst.getOperand(4)); 9401 Inst = TmpInst; 9402 return true; 9403 } 9404 9405 case ARM::VLD3DUPdWB_register_Asm_8: 9406 case ARM::VLD3DUPdWB_register_Asm_16: 9407 case ARM::VLD3DUPdWB_register_Asm_32: 9408 case ARM::VLD3DUPqWB_register_Asm_8: 9409 case ARM::VLD3DUPqWB_register_Asm_16: 9410 case ARM::VLD3DUPqWB_register_Asm_32: { 9411 MCInst TmpInst; 9412 unsigned Spacing; 9413 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9414 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9415 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9416 Spacing)); 9417 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9418 Spacing * 2)); 9419 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9420 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9421 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9422 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9423 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9424 TmpInst.addOperand(Inst.getOperand(5)); 9425 Inst = TmpInst; 9426 return true; 9427 } 9428 9429 // VLD3 multiple 3-element structure instructions. 9430 case ARM::VLD3dAsm_8: 9431 case ARM::VLD3dAsm_16: 9432 case ARM::VLD3dAsm_32: 9433 case ARM::VLD3qAsm_8: 9434 case ARM::VLD3qAsm_16: 9435 case ARM::VLD3qAsm_32: { 9436 MCInst TmpInst; 9437 unsigned Spacing; 9438 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9439 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9440 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9441 Spacing)); 9442 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9443 Spacing * 2)); 9444 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9445 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9446 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9447 TmpInst.addOperand(Inst.getOperand(4)); 9448 Inst = TmpInst; 9449 return true; 9450 } 9451 9452 case ARM::VLD3dWB_fixed_Asm_8: 9453 case ARM::VLD3dWB_fixed_Asm_16: 9454 case ARM::VLD3dWB_fixed_Asm_32: 9455 case ARM::VLD3qWB_fixed_Asm_8: 9456 case ARM::VLD3qWB_fixed_Asm_16: 9457 case ARM::VLD3qWB_fixed_Asm_32: { 9458 MCInst TmpInst; 9459 unsigned Spacing; 9460 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9461 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9462 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9463 Spacing)); 9464 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9465 Spacing * 2)); 9466 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9467 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9468 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9469 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9470 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9471 TmpInst.addOperand(Inst.getOperand(4)); 9472 Inst = TmpInst; 9473 return true; 9474 } 9475 9476 case ARM::VLD3dWB_register_Asm_8: 9477 case ARM::VLD3dWB_register_Asm_16: 9478 case ARM::VLD3dWB_register_Asm_32: 9479 case ARM::VLD3qWB_register_Asm_8: 9480 case ARM::VLD3qWB_register_Asm_16: 9481 case ARM::VLD3qWB_register_Asm_32: { 9482 MCInst TmpInst; 9483 unsigned Spacing; 9484 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9485 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9486 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9487 Spacing)); 9488 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9489 Spacing * 2)); 9490 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9491 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9492 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9493 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9494 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9495 TmpInst.addOperand(Inst.getOperand(5)); 9496 Inst = TmpInst; 9497 return true; 9498 } 9499 9500 // VLD4DUP single 3-element structure to all lanes instructions. 9501 case ARM::VLD4DUPdAsm_8: 9502 case ARM::VLD4DUPdAsm_16: 9503 case ARM::VLD4DUPdAsm_32: 9504 case ARM::VLD4DUPqAsm_8: 9505 case ARM::VLD4DUPqAsm_16: 9506 case ARM::VLD4DUPqAsm_32: { 9507 MCInst TmpInst; 9508 unsigned Spacing; 9509 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9510 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9511 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9512 Spacing)); 9513 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9514 Spacing * 2)); 9515 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9516 Spacing * 3)); 9517 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9518 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9519 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9520 TmpInst.addOperand(Inst.getOperand(4)); 9521 Inst = TmpInst; 9522 return true; 9523 } 9524 9525 case ARM::VLD4DUPdWB_fixed_Asm_8: 9526 case ARM::VLD4DUPdWB_fixed_Asm_16: 9527 case ARM::VLD4DUPdWB_fixed_Asm_32: 9528 case ARM::VLD4DUPqWB_fixed_Asm_8: 9529 case ARM::VLD4DUPqWB_fixed_Asm_16: 9530 case ARM::VLD4DUPqWB_fixed_Asm_32: { 9531 MCInst TmpInst; 9532 unsigned Spacing; 9533 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9534 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9535 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9536 Spacing)); 9537 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9538 Spacing * 2)); 9539 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9540 Spacing * 3)); 9541 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9542 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9543 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9544 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9545 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9546 TmpInst.addOperand(Inst.getOperand(4)); 9547 Inst = TmpInst; 9548 return true; 9549 } 9550 9551 case ARM::VLD4DUPdWB_register_Asm_8: 9552 case ARM::VLD4DUPdWB_register_Asm_16: 9553 case ARM::VLD4DUPdWB_register_Asm_32: 9554 case ARM::VLD4DUPqWB_register_Asm_8: 9555 case ARM::VLD4DUPqWB_register_Asm_16: 9556 case ARM::VLD4DUPqWB_register_Asm_32: { 9557 MCInst TmpInst; 9558 unsigned Spacing; 9559 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9560 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9561 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9562 Spacing)); 9563 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9564 Spacing * 2)); 9565 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9566 Spacing * 3)); 9567 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9568 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9569 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9570 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9571 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9572 TmpInst.addOperand(Inst.getOperand(5)); 9573 Inst = TmpInst; 9574 return true; 9575 } 9576 9577 // VLD4 multiple 4-element structure instructions. 9578 case ARM::VLD4dAsm_8: 9579 case ARM::VLD4dAsm_16: 9580 case ARM::VLD4dAsm_32: 9581 case ARM::VLD4qAsm_8: 9582 case ARM::VLD4qAsm_16: 9583 case ARM::VLD4qAsm_32: { 9584 MCInst TmpInst; 9585 unsigned Spacing; 9586 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9587 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9588 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9589 Spacing)); 9590 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9591 Spacing * 2)); 9592 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9593 Spacing * 3)); 9594 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9595 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9596 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9597 TmpInst.addOperand(Inst.getOperand(4)); 9598 Inst = TmpInst; 9599 return true; 9600 } 9601 9602 case ARM::VLD4dWB_fixed_Asm_8: 9603 case ARM::VLD4dWB_fixed_Asm_16: 9604 case ARM::VLD4dWB_fixed_Asm_32: 9605 case ARM::VLD4qWB_fixed_Asm_8: 9606 case ARM::VLD4qWB_fixed_Asm_16: 9607 case ARM::VLD4qWB_fixed_Asm_32: { 9608 MCInst TmpInst; 9609 unsigned Spacing; 9610 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9611 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9612 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9613 Spacing)); 9614 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9615 Spacing * 2)); 9616 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9617 Spacing * 3)); 9618 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9619 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9620 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9621 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9622 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9623 TmpInst.addOperand(Inst.getOperand(4)); 9624 Inst = TmpInst; 9625 return true; 9626 } 9627 9628 case ARM::VLD4dWB_register_Asm_8: 9629 case ARM::VLD4dWB_register_Asm_16: 9630 case ARM::VLD4dWB_register_Asm_32: 9631 case ARM::VLD4qWB_register_Asm_8: 9632 case ARM::VLD4qWB_register_Asm_16: 9633 case ARM::VLD4qWB_register_Asm_32: { 9634 MCInst TmpInst; 9635 unsigned Spacing; 9636 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9637 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9638 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9639 Spacing)); 9640 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9641 Spacing * 2)); 9642 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9643 Spacing * 3)); 9644 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9645 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9646 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9647 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9648 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9649 TmpInst.addOperand(Inst.getOperand(5)); 9650 Inst = TmpInst; 9651 return true; 9652 } 9653 9654 // VST3 multiple 3-element structure instructions. 9655 case ARM::VST3dAsm_8: 9656 case ARM::VST3dAsm_16: 9657 case ARM::VST3dAsm_32: 9658 case ARM::VST3qAsm_8: 9659 case ARM::VST3qAsm_16: 9660 case ARM::VST3qAsm_32: { 9661 MCInst TmpInst; 9662 unsigned Spacing; 9663 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9664 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9665 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9666 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9667 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9668 Spacing)); 9669 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9670 Spacing * 2)); 9671 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9672 TmpInst.addOperand(Inst.getOperand(4)); 9673 Inst = TmpInst; 9674 return true; 9675 } 9676 9677 case ARM::VST3dWB_fixed_Asm_8: 9678 case ARM::VST3dWB_fixed_Asm_16: 9679 case ARM::VST3dWB_fixed_Asm_32: 9680 case ARM::VST3qWB_fixed_Asm_8: 9681 case ARM::VST3qWB_fixed_Asm_16: 9682 case ARM::VST3qWB_fixed_Asm_32: { 9683 MCInst TmpInst; 9684 unsigned Spacing; 9685 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9686 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9687 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9688 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9689 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9690 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9691 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9692 Spacing)); 9693 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9694 Spacing * 2)); 9695 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9696 TmpInst.addOperand(Inst.getOperand(4)); 9697 Inst = TmpInst; 9698 return true; 9699 } 9700 9701 case ARM::VST3dWB_register_Asm_8: 9702 case ARM::VST3dWB_register_Asm_16: 9703 case ARM::VST3dWB_register_Asm_32: 9704 case ARM::VST3qWB_register_Asm_8: 9705 case ARM::VST3qWB_register_Asm_16: 9706 case ARM::VST3qWB_register_Asm_32: { 9707 MCInst TmpInst; 9708 unsigned Spacing; 9709 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9710 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9711 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9712 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9713 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9714 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9715 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9716 Spacing)); 9717 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9718 Spacing * 2)); 9719 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9720 TmpInst.addOperand(Inst.getOperand(5)); 9721 Inst = TmpInst; 9722 return true; 9723 } 9724 9725 // VST4 multiple 3-element structure instructions. 9726 case ARM::VST4dAsm_8: 9727 case ARM::VST4dAsm_16: 9728 case ARM::VST4dAsm_32: 9729 case ARM::VST4qAsm_8: 9730 case ARM::VST4qAsm_16: 9731 case ARM::VST4qAsm_32: { 9732 MCInst TmpInst; 9733 unsigned Spacing; 9734 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9735 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9736 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9737 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9738 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9739 Spacing)); 9740 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9741 Spacing * 2)); 9742 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9743 Spacing * 3)); 9744 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9745 TmpInst.addOperand(Inst.getOperand(4)); 9746 Inst = TmpInst; 9747 return true; 9748 } 9749 9750 case ARM::VST4dWB_fixed_Asm_8: 9751 case ARM::VST4dWB_fixed_Asm_16: 9752 case ARM::VST4dWB_fixed_Asm_32: 9753 case ARM::VST4qWB_fixed_Asm_8: 9754 case ARM::VST4qWB_fixed_Asm_16: 9755 case ARM::VST4qWB_fixed_Asm_32: { 9756 MCInst TmpInst; 9757 unsigned Spacing; 9758 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9759 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9760 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9761 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9762 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9763 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9764 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9765 Spacing)); 9766 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9767 Spacing * 2)); 9768 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9769 Spacing * 3)); 9770 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9771 TmpInst.addOperand(Inst.getOperand(4)); 9772 Inst = TmpInst; 9773 return true; 9774 } 9775 9776 case ARM::VST4dWB_register_Asm_8: 9777 case ARM::VST4dWB_register_Asm_16: 9778 case ARM::VST4dWB_register_Asm_32: 9779 case ARM::VST4qWB_register_Asm_8: 9780 case ARM::VST4qWB_register_Asm_16: 9781 case ARM::VST4qWB_register_Asm_32: { 9782 MCInst TmpInst; 9783 unsigned Spacing; 9784 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9785 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9786 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9787 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9788 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9789 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9790 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9791 Spacing)); 9792 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9793 Spacing * 2)); 9794 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9795 Spacing * 3)); 9796 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9797 TmpInst.addOperand(Inst.getOperand(5)); 9798 Inst = TmpInst; 9799 return true; 9800 } 9801 9802 // Handle encoding choice for the shift-immediate instructions. 9803 case ARM::t2LSLri: 9804 case ARM::t2LSRri: 9805 case ARM::t2ASRri: 9806 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9807 isARMLowRegister(Inst.getOperand(1).getReg()) && 9808 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9809 !HasWideQualifier) { 9810 unsigned NewOpc; 9811 switch (Inst.getOpcode()) { 9812 default: llvm_unreachable("unexpected opcode"); 9813 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 9814 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 9815 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 9816 } 9817 // The Thumb1 operands aren't in the same order. Awesome, eh? 9818 MCInst TmpInst; 9819 TmpInst.setOpcode(NewOpc); 9820 TmpInst.addOperand(Inst.getOperand(0)); 9821 TmpInst.addOperand(Inst.getOperand(5)); 9822 TmpInst.addOperand(Inst.getOperand(1)); 9823 TmpInst.addOperand(Inst.getOperand(2)); 9824 TmpInst.addOperand(Inst.getOperand(3)); 9825 TmpInst.addOperand(Inst.getOperand(4)); 9826 Inst = TmpInst; 9827 return true; 9828 } 9829 return false; 9830 9831 // Handle the Thumb2 mode MOV complex aliases. 9832 case ARM::t2MOVsr: 9833 case ARM::t2MOVSsr: { 9834 // Which instruction to expand to depends on the CCOut operand and 9835 // whether we're in an IT block if the register operands are low 9836 // registers. 9837 bool isNarrow = false; 9838 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9839 isARMLowRegister(Inst.getOperand(1).getReg()) && 9840 isARMLowRegister(Inst.getOperand(2).getReg()) && 9841 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 9842 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 9843 !HasWideQualifier) 9844 isNarrow = true; 9845 MCInst TmpInst; 9846 unsigned newOpc; 9847 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 9848 default: llvm_unreachable("unexpected opcode!"); 9849 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 9850 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 9851 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 9852 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 9853 } 9854 TmpInst.setOpcode(newOpc); 9855 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9856 if (isNarrow) 9857 TmpInst.addOperand(MCOperand::createReg( 9858 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 9859 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9860 TmpInst.addOperand(Inst.getOperand(2)); // Rm 9861 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9862 TmpInst.addOperand(Inst.getOperand(5)); 9863 if (!isNarrow) 9864 TmpInst.addOperand(MCOperand::createReg( 9865 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 9866 Inst = TmpInst; 9867 return true; 9868 } 9869 case ARM::t2MOVsi: 9870 case ARM::t2MOVSsi: { 9871 // Which instruction to expand to depends on the CCOut operand and 9872 // whether we're in an IT block if the register operands are low 9873 // registers. 9874 bool isNarrow = false; 9875 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9876 isARMLowRegister(Inst.getOperand(1).getReg()) && 9877 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 9878 !HasWideQualifier) 9879 isNarrow = true; 9880 MCInst TmpInst; 9881 unsigned newOpc; 9882 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 9883 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 9884 bool isMov = false; 9885 // MOV rd, rm, LSL #0 is actually a MOV instruction 9886 if (Shift == ARM_AM::lsl && Amount == 0) { 9887 isMov = true; 9888 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 9889 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 9890 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 9891 // instead. 9892 if (inITBlock()) { 9893 isNarrow = false; 9894 } 9895 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 9896 } else { 9897 switch(Shift) { 9898 default: llvm_unreachable("unexpected opcode!"); 9899 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 9900 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 9901 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 9902 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 9903 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 9904 } 9905 } 9906 if (Amount == 32) Amount = 0; 9907 TmpInst.setOpcode(newOpc); 9908 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9909 if (isNarrow && !isMov) 9910 TmpInst.addOperand(MCOperand::createReg( 9911 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 9912 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9913 if (newOpc != ARM::t2RRX && !isMov) 9914 TmpInst.addOperand(MCOperand::createImm(Amount)); 9915 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9916 TmpInst.addOperand(Inst.getOperand(4)); 9917 if (!isNarrow) 9918 TmpInst.addOperand(MCOperand::createReg( 9919 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 9920 Inst = TmpInst; 9921 return true; 9922 } 9923 // Handle the ARM mode MOV complex aliases. 9924 case ARM::ASRr: 9925 case ARM::LSRr: 9926 case ARM::LSLr: 9927 case ARM::RORr: { 9928 ARM_AM::ShiftOpc ShiftTy; 9929 switch(Inst.getOpcode()) { 9930 default: llvm_unreachable("unexpected opcode!"); 9931 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 9932 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 9933 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 9934 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 9935 } 9936 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 9937 MCInst TmpInst; 9938 TmpInst.setOpcode(ARM::MOVsr); 9939 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9940 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9941 TmpInst.addOperand(Inst.getOperand(2)); // Rm 9942 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9943 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9944 TmpInst.addOperand(Inst.getOperand(4)); 9945 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 9946 Inst = TmpInst; 9947 return true; 9948 } 9949 case ARM::ASRi: 9950 case ARM::LSRi: 9951 case ARM::LSLi: 9952 case ARM::RORi: { 9953 ARM_AM::ShiftOpc ShiftTy; 9954 switch(Inst.getOpcode()) { 9955 default: llvm_unreachable("unexpected opcode!"); 9956 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 9957 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 9958 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 9959 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 9960 } 9961 // A shift by zero is a plain MOVr, not a MOVsi. 9962 unsigned Amt = Inst.getOperand(2).getImm(); 9963 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 9964 // A shift by 32 should be encoded as 0 when permitted 9965 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 9966 Amt = 0; 9967 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 9968 MCInst TmpInst; 9969 TmpInst.setOpcode(Opc); 9970 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9971 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9972 if (Opc == ARM::MOVsi) 9973 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9974 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9975 TmpInst.addOperand(Inst.getOperand(4)); 9976 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 9977 Inst = TmpInst; 9978 return true; 9979 } 9980 case ARM::RRXi: { 9981 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 9982 MCInst TmpInst; 9983 TmpInst.setOpcode(ARM::MOVsi); 9984 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9985 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9986 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9987 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9988 TmpInst.addOperand(Inst.getOperand(3)); 9989 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 9990 Inst = TmpInst; 9991 return true; 9992 } 9993 case ARM::t2LDMIA_UPD: { 9994 // If this is a load of a single register, then we should use 9995 // a post-indexed LDR instruction instead, per the ARM ARM. 9996 if (Inst.getNumOperands() != 5) 9997 return false; 9998 MCInst TmpInst; 9999 TmpInst.setOpcode(ARM::t2LDR_POST); 10000 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10001 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10002 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10003 TmpInst.addOperand(MCOperand::createImm(4)); 10004 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10005 TmpInst.addOperand(Inst.getOperand(3)); 10006 Inst = TmpInst; 10007 return true; 10008 } 10009 case ARM::t2STMDB_UPD: { 10010 // If this is a store of a single register, then we should use 10011 // a pre-indexed STR instruction instead, per the ARM ARM. 10012 if (Inst.getNumOperands() != 5) 10013 return false; 10014 MCInst TmpInst; 10015 TmpInst.setOpcode(ARM::t2STR_PRE); 10016 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10017 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10018 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10019 TmpInst.addOperand(MCOperand::createImm(-4)); 10020 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10021 TmpInst.addOperand(Inst.getOperand(3)); 10022 Inst = TmpInst; 10023 return true; 10024 } 10025 case ARM::LDMIA_UPD: 10026 // If this is a load of a single register via a 'pop', then we should use 10027 // a post-indexed LDR instruction instead, per the ARM ARM. 10028 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 10029 Inst.getNumOperands() == 5) { 10030 MCInst TmpInst; 10031 TmpInst.setOpcode(ARM::LDR_POST_IMM); 10032 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10033 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10034 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10035 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 10036 TmpInst.addOperand(MCOperand::createImm(4)); 10037 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10038 TmpInst.addOperand(Inst.getOperand(3)); 10039 Inst = TmpInst; 10040 return true; 10041 } 10042 break; 10043 case ARM::STMDB_UPD: 10044 // If this is a store of a single register via a 'push', then we should use 10045 // a pre-indexed STR instruction instead, per the ARM ARM. 10046 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 10047 Inst.getNumOperands() == 5) { 10048 MCInst TmpInst; 10049 TmpInst.setOpcode(ARM::STR_PRE_IMM); 10050 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10051 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10052 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 10053 TmpInst.addOperand(MCOperand::createImm(-4)); 10054 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10055 TmpInst.addOperand(Inst.getOperand(3)); 10056 Inst = TmpInst; 10057 } 10058 break; 10059 case ARM::t2ADDri12: 10060 case ARM::t2SUBri12: 10061 case ARM::t2ADDspImm12: 10062 case ARM::t2SUBspImm12: { 10063 // If the immediate fits for encoding T3 and the generic 10064 // mnemonic was used, encoding T3 is preferred. 10065 const StringRef Token = static_cast<ARMOperand &>(*Operands[0]).getToken(); 10066 if ((Token != "add" && Token != "sub") || 10067 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 10068 break; 10069 switch (Inst.getOpcode()) { 10070 case ARM::t2ADDri12: 10071 Inst.setOpcode(ARM::t2ADDri); 10072 break; 10073 case ARM::t2SUBri12: 10074 Inst.setOpcode(ARM::t2SUBri); 10075 break; 10076 case ARM::t2ADDspImm12: 10077 Inst.setOpcode(ARM::t2ADDspImm); 10078 break; 10079 case ARM::t2SUBspImm12: 10080 Inst.setOpcode(ARM::t2SUBspImm); 10081 break; 10082 } 10083 10084 Inst.addOperand(MCOperand::createReg(0)); // cc_out 10085 return true; 10086 } 10087 case ARM::tADDi8: 10088 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 10089 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 10090 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 10091 // to encoding T1 if <Rd> is omitted." 10092 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 10093 Inst.setOpcode(ARM::tADDi3); 10094 return true; 10095 } 10096 break; 10097 case ARM::tSUBi8: 10098 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 10099 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 10100 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 10101 // to encoding T1 if <Rd> is omitted." 10102 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 10103 Inst.setOpcode(ARM::tSUBi3); 10104 return true; 10105 } 10106 break; 10107 case ARM::t2ADDri: 10108 case ARM::t2SUBri: { 10109 // If the destination and first source operand are the same, and 10110 // the flags are compatible with the current IT status, use encoding T2 10111 // instead of T3. For compatibility with the system 'as'. Make sure the 10112 // wide encoding wasn't explicit. 10113 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 10114 !isARMLowRegister(Inst.getOperand(0).getReg()) || 10115 (Inst.getOperand(2).isImm() && 10116 (unsigned)Inst.getOperand(2).getImm() > 255) || 10117 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 10118 HasWideQualifier) 10119 break; 10120 MCInst TmpInst; 10121 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 10122 ARM::tADDi8 : ARM::tSUBi8); 10123 TmpInst.addOperand(Inst.getOperand(0)); 10124 TmpInst.addOperand(Inst.getOperand(5)); 10125 TmpInst.addOperand(Inst.getOperand(0)); 10126 TmpInst.addOperand(Inst.getOperand(2)); 10127 TmpInst.addOperand(Inst.getOperand(3)); 10128 TmpInst.addOperand(Inst.getOperand(4)); 10129 Inst = TmpInst; 10130 return true; 10131 } 10132 case ARM::t2ADDspImm: 10133 case ARM::t2SUBspImm: { 10134 // Prefer T1 encoding if possible 10135 if (Inst.getOperand(5).getReg() != 0 || HasWideQualifier) 10136 break; 10137 unsigned V = Inst.getOperand(2).getImm(); 10138 if (V & 3 || V > ((1 << 7) - 1) << 2) 10139 break; 10140 MCInst TmpInst; 10141 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDspImm ? ARM::tADDspi 10142 : ARM::tSUBspi); 10143 TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // destination reg 10144 TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // source reg 10145 TmpInst.addOperand(MCOperand::createImm(V / 4)); // immediate 10146 TmpInst.addOperand(Inst.getOperand(3)); // pred 10147 TmpInst.addOperand(Inst.getOperand(4)); 10148 Inst = TmpInst; 10149 return true; 10150 } 10151 case ARM::t2ADDrr: { 10152 // If the destination and first source operand are the same, and 10153 // there's no setting of the flags, use encoding T2 instead of T3. 10154 // Note that this is only for ADD, not SUB. This mirrors the system 10155 // 'as' behaviour. Also take advantage of ADD being commutative. 10156 // Make sure the wide encoding wasn't explicit. 10157 bool Swap = false; 10158 auto DestReg = Inst.getOperand(0).getReg(); 10159 bool Transform = DestReg == Inst.getOperand(1).getReg(); 10160 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 10161 Transform = true; 10162 Swap = true; 10163 } 10164 if (!Transform || 10165 Inst.getOperand(5).getReg() != 0 || 10166 HasWideQualifier) 10167 break; 10168 MCInst TmpInst; 10169 TmpInst.setOpcode(ARM::tADDhirr); 10170 TmpInst.addOperand(Inst.getOperand(0)); 10171 TmpInst.addOperand(Inst.getOperand(0)); 10172 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 10173 TmpInst.addOperand(Inst.getOperand(3)); 10174 TmpInst.addOperand(Inst.getOperand(4)); 10175 Inst = TmpInst; 10176 return true; 10177 } 10178 case ARM::tADDrSP: 10179 // If the non-SP source operand and the destination operand are not the 10180 // same, we need to use the 32-bit encoding if it's available. 10181 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 10182 Inst.setOpcode(ARM::t2ADDrr); 10183 Inst.addOperand(MCOperand::createReg(0)); // cc_out 10184 return true; 10185 } 10186 break; 10187 case ARM::tB: 10188 // A Thumb conditional branch outside of an IT block is a tBcc. 10189 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 10190 Inst.setOpcode(ARM::tBcc); 10191 return true; 10192 } 10193 break; 10194 case ARM::t2B: 10195 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 10196 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 10197 Inst.setOpcode(ARM::t2Bcc); 10198 return true; 10199 } 10200 break; 10201 case ARM::t2Bcc: 10202 // If the conditional is AL or we're in an IT block, we really want t2B. 10203 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 10204 Inst.setOpcode(ARM::t2B); 10205 return true; 10206 } 10207 break; 10208 case ARM::tBcc: 10209 // If the conditional is AL, we really want tB. 10210 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 10211 Inst.setOpcode(ARM::tB); 10212 return true; 10213 } 10214 break; 10215 case ARM::tLDMIA: { 10216 // If the register list contains any high registers, or if the writeback 10217 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 10218 // instead if we're in Thumb2. Otherwise, this should have generated 10219 // an error in validateInstruction(). 10220 unsigned Rn = Inst.getOperand(0).getReg(); 10221 bool hasWritebackToken = 10222 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 10223 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 10224 bool listContainsBase; 10225 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 10226 (!listContainsBase && !hasWritebackToken) || 10227 (listContainsBase && hasWritebackToken)) { 10228 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 10229 assert(isThumbTwo()); 10230 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 10231 // If we're switching to the updating version, we need to insert 10232 // the writeback tied operand. 10233 if (hasWritebackToken) 10234 Inst.insert(Inst.begin(), 10235 MCOperand::createReg(Inst.getOperand(0).getReg())); 10236 return true; 10237 } 10238 break; 10239 } 10240 case ARM::tSTMIA_UPD: { 10241 // If the register list contains any high registers, we need to use 10242 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 10243 // should have generated an error in validateInstruction(). 10244 unsigned Rn = Inst.getOperand(0).getReg(); 10245 bool listContainsBase; 10246 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 10247 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 10248 assert(isThumbTwo()); 10249 Inst.setOpcode(ARM::t2STMIA_UPD); 10250 return true; 10251 } 10252 break; 10253 } 10254 case ARM::tPOP: { 10255 bool listContainsBase; 10256 // If the register list contains any high registers, we need to use 10257 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 10258 // should have generated an error in validateInstruction(). 10259 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 10260 return false; 10261 assert(isThumbTwo()); 10262 Inst.setOpcode(ARM::t2LDMIA_UPD); 10263 // Add the base register and writeback operands. 10264 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10265 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10266 return true; 10267 } 10268 case ARM::tPUSH: { 10269 bool listContainsBase; 10270 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 10271 return false; 10272 assert(isThumbTwo()); 10273 Inst.setOpcode(ARM::t2STMDB_UPD); 10274 // Add the base register and writeback operands. 10275 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10276 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10277 return true; 10278 } 10279 case ARM::t2MOVi: 10280 // If we can use the 16-bit encoding and the user didn't explicitly 10281 // request the 32-bit variant, transform it here. 10282 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10283 (Inst.getOperand(1).isImm() && 10284 (unsigned)Inst.getOperand(1).getImm() <= 255) && 10285 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10286 !HasWideQualifier) { 10287 // The operands aren't in the same order for tMOVi8... 10288 MCInst TmpInst; 10289 TmpInst.setOpcode(ARM::tMOVi8); 10290 TmpInst.addOperand(Inst.getOperand(0)); 10291 TmpInst.addOperand(Inst.getOperand(4)); 10292 TmpInst.addOperand(Inst.getOperand(1)); 10293 TmpInst.addOperand(Inst.getOperand(2)); 10294 TmpInst.addOperand(Inst.getOperand(3)); 10295 Inst = TmpInst; 10296 return true; 10297 } 10298 break; 10299 10300 case ARM::t2MOVr: 10301 // If we can use the 16-bit encoding and the user didn't explicitly 10302 // request the 32-bit variant, transform it here. 10303 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10304 isARMLowRegister(Inst.getOperand(1).getReg()) && 10305 Inst.getOperand(2).getImm() == ARMCC::AL && 10306 Inst.getOperand(4).getReg() == ARM::CPSR && 10307 !HasWideQualifier) { 10308 // The operands aren't the same for tMOV[S]r... (no cc_out) 10309 MCInst TmpInst; 10310 unsigned Op = Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr; 10311 TmpInst.setOpcode(Op); 10312 TmpInst.addOperand(Inst.getOperand(0)); 10313 TmpInst.addOperand(Inst.getOperand(1)); 10314 if (Op == ARM::tMOVr) { 10315 TmpInst.addOperand(Inst.getOperand(2)); 10316 TmpInst.addOperand(Inst.getOperand(3)); 10317 } 10318 Inst = TmpInst; 10319 return true; 10320 } 10321 break; 10322 10323 case ARM::t2SXTH: 10324 case ARM::t2SXTB: 10325 case ARM::t2UXTH: 10326 case ARM::t2UXTB: 10327 // If we can use the 16-bit encoding and the user didn't explicitly 10328 // request the 32-bit variant, transform it here. 10329 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10330 isARMLowRegister(Inst.getOperand(1).getReg()) && 10331 Inst.getOperand(2).getImm() == 0 && 10332 !HasWideQualifier) { 10333 unsigned NewOpc; 10334 switch (Inst.getOpcode()) { 10335 default: llvm_unreachable("Illegal opcode!"); 10336 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 10337 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 10338 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 10339 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 10340 } 10341 // The operands aren't the same for thumb1 (no rotate operand). 10342 MCInst TmpInst; 10343 TmpInst.setOpcode(NewOpc); 10344 TmpInst.addOperand(Inst.getOperand(0)); 10345 TmpInst.addOperand(Inst.getOperand(1)); 10346 TmpInst.addOperand(Inst.getOperand(3)); 10347 TmpInst.addOperand(Inst.getOperand(4)); 10348 Inst = TmpInst; 10349 return true; 10350 } 10351 break; 10352 10353 case ARM::MOVsi: { 10354 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 10355 // rrx shifts and asr/lsr of #32 is encoded as 0 10356 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 10357 return false; 10358 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 10359 // Shifting by zero is accepted as a vanilla 'MOVr' 10360 MCInst TmpInst; 10361 TmpInst.setOpcode(ARM::MOVr); 10362 TmpInst.addOperand(Inst.getOperand(0)); 10363 TmpInst.addOperand(Inst.getOperand(1)); 10364 TmpInst.addOperand(Inst.getOperand(3)); 10365 TmpInst.addOperand(Inst.getOperand(4)); 10366 TmpInst.addOperand(Inst.getOperand(5)); 10367 Inst = TmpInst; 10368 return true; 10369 } 10370 return false; 10371 } 10372 case ARM::ANDrsi: 10373 case ARM::ORRrsi: 10374 case ARM::EORrsi: 10375 case ARM::BICrsi: 10376 case ARM::SUBrsi: 10377 case ARM::ADDrsi: { 10378 unsigned newOpc; 10379 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 10380 if (SOpc == ARM_AM::rrx) return false; 10381 switch (Inst.getOpcode()) { 10382 default: llvm_unreachable("unexpected opcode!"); 10383 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 10384 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 10385 case ARM::EORrsi: newOpc = ARM::EORrr; break; 10386 case ARM::BICrsi: newOpc = ARM::BICrr; break; 10387 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 10388 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 10389 } 10390 // If the shift is by zero, use the non-shifted instruction definition. 10391 // The exception is for right shifts, where 0 == 32 10392 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 10393 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 10394 MCInst TmpInst; 10395 TmpInst.setOpcode(newOpc); 10396 TmpInst.addOperand(Inst.getOperand(0)); 10397 TmpInst.addOperand(Inst.getOperand(1)); 10398 TmpInst.addOperand(Inst.getOperand(2)); 10399 TmpInst.addOperand(Inst.getOperand(4)); 10400 TmpInst.addOperand(Inst.getOperand(5)); 10401 TmpInst.addOperand(Inst.getOperand(6)); 10402 Inst = TmpInst; 10403 return true; 10404 } 10405 return false; 10406 } 10407 case ARM::ITasm: 10408 case ARM::t2IT: { 10409 // Set up the IT block state according to the IT instruction we just 10410 // matched. 10411 assert(!inITBlock() && "nested IT blocks?!"); 10412 startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()), 10413 Inst.getOperand(1).getImm()); 10414 break; 10415 } 10416 case ARM::t2LSLrr: 10417 case ARM::t2LSRrr: 10418 case ARM::t2ASRrr: 10419 case ARM::t2SBCrr: 10420 case ARM::t2RORrr: 10421 case ARM::t2BICrr: 10422 // Assemblers should use the narrow encodings of these instructions when permissible. 10423 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10424 isARMLowRegister(Inst.getOperand(2).getReg())) && 10425 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 10426 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10427 !HasWideQualifier) { 10428 unsigned NewOpc; 10429 switch (Inst.getOpcode()) { 10430 default: llvm_unreachable("unexpected opcode"); 10431 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 10432 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 10433 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 10434 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 10435 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 10436 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 10437 } 10438 MCInst TmpInst; 10439 TmpInst.setOpcode(NewOpc); 10440 TmpInst.addOperand(Inst.getOperand(0)); 10441 TmpInst.addOperand(Inst.getOperand(5)); 10442 TmpInst.addOperand(Inst.getOperand(1)); 10443 TmpInst.addOperand(Inst.getOperand(2)); 10444 TmpInst.addOperand(Inst.getOperand(3)); 10445 TmpInst.addOperand(Inst.getOperand(4)); 10446 Inst = TmpInst; 10447 return true; 10448 } 10449 return false; 10450 10451 case ARM::t2ANDrr: 10452 case ARM::t2EORrr: 10453 case ARM::t2ADCrr: 10454 case ARM::t2ORRrr: 10455 // Assemblers should use the narrow encodings of these instructions when permissible. 10456 // These instructions are special in that they are commutable, so shorter encodings 10457 // are available more often. 10458 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10459 isARMLowRegister(Inst.getOperand(2).getReg())) && 10460 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 10461 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 10462 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10463 !HasWideQualifier) { 10464 unsigned NewOpc; 10465 switch (Inst.getOpcode()) { 10466 default: llvm_unreachable("unexpected opcode"); 10467 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 10468 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 10469 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 10470 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 10471 } 10472 MCInst TmpInst; 10473 TmpInst.setOpcode(NewOpc); 10474 TmpInst.addOperand(Inst.getOperand(0)); 10475 TmpInst.addOperand(Inst.getOperand(5)); 10476 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 10477 TmpInst.addOperand(Inst.getOperand(1)); 10478 TmpInst.addOperand(Inst.getOperand(2)); 10479 } else { 10480 TmpInst.addOperand(Inst.getOperand(2)); 10481 TmpInst.addOperand(Inst.getOperand(1)); 10482 } 10483 TmpInst.addOperand(Inst.getOperand(3)); 10484 TmpInst.addOperand(Inst.getOperand(4)); 10485 Inst = TmpInst; 10486 return true; 10487 } 10488 return false; 10489 case ARM::MVE_VPST: 10490 case ARM::MVE_VPTv16i8: 10491 case ARM::MVE_VPTv8i16: 10492 case ARM::MVE_VPTv4i32: 10493 case ARM::MVE_VPTv16u8: 10494 case ARM::MVE_VPTv8u16: 10495 case ARM::MVE_VPTv4u32: 10496 case ARM::MVE_VPTv16s8: 10497 case ARM::MVE_VPTv8s16: 10498 case ARM::MVE_VPTv4s32: 10499 case ARM::MVE_VPTv4f32: 10500 case ARM::MVE_VPTv8f16: 10501 case ARM::MVE_VPTv16i8r: 10502 case ARM::MVE_VPTv8i16r: 10503 case ARM::MVE_VPTv4i32r: 10504 case ARM::MVE_VPTv16u8r: 10505 case ARM::MVE_VPTv8u16r: 10506 case ARM::MVE_VPTv4u32r: 10507 case ARM::MVE_VPTv16s8r: 10508 case ARM::MVE_VPTv8s16r: 10509 case ARM::MVE_VPTv4s32r: 10510 case ARM::MVE_VPTv4f32r: 10511 case ARM::MVE_VPTv8f16r: { 10512 assert(!inVPTBlock() && "Nested VPT blocks are not allowed"); 10513 MCOperand &MO = Inst.getOperand(0); 10514 VPTState.Mask = MO.getImm(); 10515 VPTState.CurPosition = 0; 10516 break; 10517 } 10518 } 10519 return false; 10520 } 10521 10522 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 10523 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 10524 // suffix depending on whether they're in an IT block or not. 10525 unsigned Opc = Inst.getOpcode(); 10526 const MCInstrDesc &MCID = MII.get(Opc); 10527 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 10528 assert(MCID.hasOptionalDef() && 10529 "optionally flag setting instruction missing optional def operand"); 10530 assert(MCID.NumOperands == Inst.getNumOperands() && 10531 "operand count mismatch!"); 10532 // Find the optional-def operand (cc_out). 10533 unsigned OpNo; 10534 for (OpNo = 0; 10535 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 10536 ++OpNo) 10537 ; 10538 // If we're parsing Thumb1, reject it completely. 10539 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 10540 return Match_RequiresFlagSetting; 10541 // If we're parsing Thumb2, which form is legal depends on whether we're 10542 // in an IT block. 10543 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 10544 !inITBlock()) 10545 return Match_RequiresITBlock; 10546 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 10547 inITBlock()) 10548 return Match_RequiresNotITBlock; 10549 // LSL with zero immediate is not allowed in an IT block 10550 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 10551 return Match_RequiresNotITBlock; 10552 } else if (isThumbOne()) { 10553 // Some high-register supporting Thumb1 encodings only allow both registers 10554 // to be from r0-r7 when in Thumb2. 10555 if (Opc == ARM::tADDhirr && !hasV6MOps() && 10556 isARMLowRegister(Inst.getOperand(1).getReg()) && 10557 isARMLowRegister(Inst.getOperand(2).getReg())) 10558 return Match_RequiresThumb2; 10559 // Others only require ARMv6 or later. 10560 else if (Opc == ARM::tMOVr && !hasV6Ops() && 10561 isARMLowRegister(Inst.getOperand(0).getReg()) && 10562 isARMLowRegister(Inst.getOperand(1).getReg())) 10563 return Match_RequiresV6; 10564 } 10565 10566 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 10567 // than the loop below can handle, so it uses the GPRnopc register class and 10568 // we do SP handling here. 10569 if (Opc == ARM::t2MOVr && !hasV8Ops()) 10570 { 10571 // SP as both source and destination is not allowed 10572 if (Inst.getOperand(0).getReg() == ARM::SP && 10573 Inst.getOperand(1).getReg() == ARM::SP) 10574 return Match_RequiresV8; 10575 // When flags-setting SP as either source or destination is not allowed 10576 if (Inst.getOperand(4).getReg() == ARM::CPSR && 10577 (Inst.getOperand(0).getReg() == ARM::SP || 10578 Inst.getOperand(1).getReg() == ARM::SP)) 10579 return Match_RequiresV8; 10580 } 10581 10582 switch (Inst.getOpcode()) { 10583 case ARM::VMRS: 10584 case ARM::VMSR: 10585 case ARM::VMRS_FPCXTS: 10586 case ARM::VMRS_FPCXTNS: 10587 case ARM::VMSR_FPCXTS: 10588 case ARM::VMSR_FPCXTNS: 10589 case ARM::VMRS_FPSCR_NZCVQC: 10590 case ARM::VMSR_FPSCR_NZCVQC: 10591 case ARM::FMSTAT: 10592 case ARM::VMRS_VPR: 10593 case ARM::VMRS_P0: 10594 case ARM::VMSR_VPR: 10595 case ARM::VMSR_P0: 10596 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of 10597 // ARMv8-A. 10598 if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP && 10599 (isThumb() && !hasV8Ops())) 10600 return Match_InvalidOperand; 10601 break; 10602 case ARM::t2TBB: 10603 case ARM::t2TBH: 10604 // Rn = sp is only allowed with ARMv8-A 10605 if (!hasV8Ops() && (Inst.getOperand(0).getReg() == ARM::SP)) 10606 return Match_RequiresV8; 10607 break; 10608 default: 10609 break; 10610 } 10611 10612 for (unsigned I = 0; I < MCID.NumOperands; ++I) 10613 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 10614 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 10615 const auto &Op = Inst.getOperand(I); 10616 if (!Op.isReg()) { 10617 // This can happen in awkward cases with tied operands, e.g. a 10618 // writeback load/store with a complex addressing mode in 10619 // which there's an output operand corresponding to the 10620 // updated written-back base register: the Tablegen-generated 10621 // AsmMatcher will have written a placeholder operand to that 10622 // slot in the form of an immediate 0, because it can't 10623 // generate the register part of the complex addressing-mode 10624 // operand ahead of time. 10625 continue; 10626 } 10627 10628 unsigned Reg = Op.getReg(); 10629 if ((Reg == ARM::SP) && !hasV8Ops()) 10630 return Match_RequiresV8; 10631 else if (Reg == ARM::PC) 10632 return Match_InvalidOperand; 10633 } 10634 10635 return Match_Success; 10636 } 10637 10638 namespace llvm { 10639 10640 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 10641 return true; // In an assembly source, no need to second-guess 10642 } 10643 10644 } // end namespace llvm 10645 10646 // Returns true if Inst is unpredictable if it is in and IT block, but is not 10647 // the last instruction in the block. 10648 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 10649 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10650 10651 // All branch & call instructions terminate IT blocks with the exception of 10652 // SVC. 10653 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || 10654 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) 10655 return true; 10656 10657 // Any arithmetic instruction which writes to the PC also terminates the IT 10658 // block. 10659 if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI)) 10660 return true; 10661 10662 return false; 10663 } 10664 10665 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 10666 SmallVectorImpl<NearMissInfo> &NearMisses, 10667 bool MatchingInlineAsm, 10668 bool &EmitInITBlock, 10669 MCStreamer &Out) { 10670 // If we can't use an implicit IT block here, just match as normal. 10671 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 10672 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10673 10674 // Try to match the instruction in an extension of the current IT block (if 10675 // there is one). 10676 if (inImplicitITBlock()) { 10677 extendImplicitITBlock(ITState.Cond); 10678 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10679 Match_Success) { 10680 // The match succeded, but we still have to check that the instruction is 10681 // valid in this implicit IT block. 10682 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10683 if (MCID.isPredicable()) { 10684 ARMCC::CondCodes InstCond = 10685 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10686 .getImm(); 10687 ARMCC::CondCodes ITCond = currentITCond(); 10688 if (InstCond == ITCond) { 10689 EmitInITBlock = true; 10690 return Match_Success; 10691 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 10692 invertCurrentITCondition(); 10693 EmitInITBlock = true; 10694 return Match_Success; 10695 } 10696 } 10697 } 10698 rewindImplicitITPosition(); 10699 } 10700 10701 // Finish the current IT block, and try to match outside any IT block. 10702 flushPendingInstructions(Out); 10703 unsigned PlainMatchResult = 10704 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10705 if (PlainMatchResult == Match_Success) { 10706 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10707 if (MCID.isPredicable()) { 10708 ARMCC::CondCodes InstCond = 10709 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10710 .getImm(); 10711 // Some forms of the branch instruction have their own condition code 10712 // fields, so can be conditionally executed without an IT block. 10713 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 10714 EmitInITBlock = false; 10715 return Match_Success; 10716 } 10717 if (InstCond == ARMCC::AL) { 10718 EmitInITBlock = false; 10719 return Match_Success; 10720 } 10721 } else { 10722 EmitInITBlock = false; 10723 return Match_Success; 10724 } 10725 } 10726 10727 // Try to match in a new IT block. The matcher doesn't check the actual 10728 // condition, so we create an IT block with a dummy condition, and fix it up 10729 // once we know the actual condition. 10730 startImplicitITBlock(); 10731 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10732 Match_Success) { 10733 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10734 if (MCID.isPredicable()) { 10735 ITState.Cond = 10736 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10737 .getImm(); 10738 EmitInITBlock = true; 10739 return Match_Success; 10740 } 10741 } 10742 discardImplicitITBlock(); 10743 10744 // If none of these succeed, return the error we got when trying to match 10745 // outside any IT blocks. 10746 EmitInITBlock = false; 10747 return PlainMatchResult; 10748 } 10749 10750 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, 10751 unsigned VariantID = 0); 10752 10753 static const char *getSubtargetFeatureName(uint64_t Val); 10754 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 10755 OperandVector &Operands, 10756 MCStreamer &Out, uint64_t &ErrorInfo, 10757 bool MatchingInlineAsm) { 10758 MCInst Inst; 10759 unsigned MatchResult; 10760 bool PendConditionalInstruction = false; 10761 10762 SmallVector<NearMissInfo, 4> NearMisses; 10763 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, 10764 PendConditionalInstruction, Out); 10765 10766 switch (MatchResult) { 10767 case Match_Success: 10768 LLVM_DEBUG(dbgs() << "Parsed as: "; 10769 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10770 dbgs() << "\n"); 10771 10772 // Context sensitive operand constraints aren't handled by the matcher, 10773 // so check them here. 10774 if (validateInstruction(Inst, Operands)) { 10775 // Still progress the IT block, otherwise one wrong condition causes 10776 // nasty cascading errors. 10777 forwardITPosition(); 10778 forwardVPTPosition(); 10779 return true; 10780 } 10781 10782 { // processInstruction() updates inITBlock state, we need to save it away 10783 bool wasInITBlock = inITBlock(); 10784 10785 // Some instructions need post-processing to, for example, tweak which 10786 // encoding is selected. Loop on it while changes happen so the 10787 // individual transformations can chain off each other. E.g., 10788 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 10789 while (processInstruction(Inst, Operands, Out)) 10790 LLVM_DEBUG(dbgs() << "Changed to: "; 10791 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10792 dbgs() << "\n"); 10793 10794 // Only after the instruction is fully processed, we can validate it 10795 if (wasInITBlock && hasV8Ops() && isThumb() && 10796 !isV8EligibleForIT(&Inst)) { 10797 Warning(IDLoc, "deprecated instruction in IT block"); 10798 } 10799 } 10800 10801 // Only move forward at the very end so that everything in validate 10802 // and process gets a consistent answer about whether we're in an IT 10803 // block. 10804 forwardITPosition(); 10805 forwardVPTPosition(); 10806 10807 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 10808 // doesn't actually encode. 10809 if (Inst.getOpcode() == ARM::ITasm) 10810 return false; 10811 10812 Inst.setLoc(IDLoc); 10813 if (PendConditionalInstruction) { 10814 PendingConditionalInsts.push_back(Inst); 10815 if (isITBlockFull() || isITBlockTerminator(Inst)) 10816 flushPendingInstructions(Out); 10817 } else { 10818 Out.emitInstruction(Inst, getSTI()); 10819 } 10820 return false; 10821 case Match_NearMisses: 10822 ReportNearMisses(NearMisses, IDLoc, Operands); 10823 return true; 10824 case Match_MnemonicFail: { 10825 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 10826 std::string Suggestion = ARMMnemonicSpellCheck( 10827 ((ARMOperand &)*Operands[0]).getToken(), FBS); 10828 return Error(IDLoc, "invalid instruction" + Suggestion, 10829 ((ARMOperand &)*Operands[0]).getLocRange()); 10830 } 10831 } 10832 10833 llvm_unreachable("Implement any new match types added!"); 10834 } 10835 10836 /// parseDirective parses the arm specific directives 10837 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 10838 const MCObjectFileInfo::Environment Format = 10839 getContext().getObjectFileInfo()->getObjectFileType(); 10840 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 10841 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 10842 10843 std::string IDVal = DirectiveID.getIdentifier().lower(); 10844 if (IDVal == ".word") 10845 parseLiteralValues(4, DirectiveID.getLoc()); 10846 else if (IDVal == ".short" || IDVal == ".hword") 10847 parseLiteralValues(2, DirectiveID.getLoc()); 10848 else if (IDVal == ".thumb") 10849 parseDirectiveThumb(DirectiveID.getLoc()); 10850 else if (IDVal == ".arm") 10851 parseDirectiveARM(DirectiveID.getLoc()); 10852 else if (IDVal == ".thumb_func") 10853 parseDirectiveThumbFunc(DirectiveID.getLoc()); 10854 else if (IDVal == ".code") 10855 parseDirectiveCode(DirectiveID.getLoc()); 10856 else if (IDVal == ".syntax") 10857 parseDirectiveSyntax(DirectiveID.getLoc()); 10858 else if (IDVal == ".unreq") 10859 parseDirectiveUnreq(DirectiveID.getLoc()); 10860 else if (IDVal == ".fnend") 10861 parseDirectiveFnEnd(DirectiveID.getLoc()); 10862 else if (IDVal == ".cantunwind") 10863 parseDirectiveCantUnwind(DirectiveID.getLoc()); 10864 else if (IDVal == ".personality") 10865 parseDirectivePersonality(DirectiveID.getLoc()); 10866 else if (IDVal == ".handlerdata") 10867 parseDirectiveHandlerData(DirectiveID.getLoc()); 10868 else if (IDVal == ".setfp") 10869 parseDirectiveSetFP(DirectiveID.getLoc()); 10870 else if (IDVal == ".pad") 10871 parseDirectivePad(DirectiveID.getLoc()); 10872 else if (IDVal == ".save") 10873 parseDirectiveRegSave(DirectiveID.getLoc(), false); 10874 else if (IDVal == ".vsave") 10875 parseDirectiveRegSave(DirectiveID.getLoc(), true); 10876 else if (IDVal == ".ltorg" || IDVal == ".pool") 10877 parseDirectiveLtorg(DirectiveID.getLoc()); 10878 else if (IDVal == ".even") 10879 parseDirectiveEven(DirectiveID.getLoc()); 10880 else if (IDVal == ".personalityindex") 10881 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 10882 else if (IDVal == ".unwind_raw") 10883 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 10884 else if (IDVal == ".movsp") 10885 parseDirectiveMovSP(DirectiveID.getLoc()); 10886 else if (IDVal == ".arch_extension") 10887 parseDirectiveArchExtension(DirectiveID.getLoc()); 10888 else if (IDVal == ".align") 10889 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 10890 else if (IDVal == ".thumb_set") 10891 parseDirectiveThumbSet(DirectiveID.getLoc()); 10892 else if (IDVal == ".inst") 10893 parseDirectiveInst(DirectiveID.getLoc()); 10894 else if (IDVal == ".inst.n") 10895 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 10896 else if (IDVal == ".inst.w") 10897 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 10898 else if (!IsMachO && !IsCOFF) { 10899 if (IDVal == ".arch") 10900 parseDirectiveArch(DirectiveID.getLoc()); 10901 else if (IDVal == ".cpu") 10902 parseDirectiveCPU(DirectiveID.getLoc()); 10903 else if (IDVal == ".eabi_attribute") 10904 parseDirectiveEabiAttr(DirectiveID.getLoc()); 10905 else if (IDVal == ".fpu") 10906 parseDirectiveFPU(DirectiveID.getLoc()); 10907 else if (IDVal == ".fnstart") 10908 parseDirectiveFnStart(DirectiveID.getLoc()); 10909 else if (IDVal == ".object_arch") 10910 parseDirectiveObjectArch(DirectiveID.getLoc()); 10911 else if (IDVal == ".tlsdescseq") 10912 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 10913 else 10914 return true; 10915 } else 10916 return true; 10917 return false; 10918 } 10919 10920 /// parseLiteralValues 10921 /// ::= .hword expression [, expression]* 10922 /// ::= .short expression [, expression]* 10923 /// ::= .word expression [, expression]* 10924 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 10925 auto parseOne = [&]() -> bool { 10926 const MCExpr *Value; 10927 if (getParser().parseExpression(Value)) 10928 return true; 10929 getParser().getStreamer().emitValue(Value, Size, L); 10930 return false; 10931 }; 10932 return (parseMany(parseOne)); 10933 } 10934 10935 /// parseDirectiveThumb 10936 /// ::= .thumb 10937 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 10938 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 10939 check(!hasThumb(), L, "target does not support Thumb mode")) 10940 return true; 10941 10942 if (!isThumb()) 10943 SwitchMode(); 10944 10945 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16); 10946 return false; 10947 } 10948 10949 /// parseDirectiveARM 10950 /// ::= .arm 10951 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 10952 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 10953 check(!hasARM(), L, "target does not support ARM mode")) 10954 return true; 10955 10956 if (isThumb()) 10957 SwitchMode(); 10958 getParser().getStreamer().emitAssemblerFlag(MCAF_Code32); 10959 return false; 10960 } 10961 10962 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) { 10963 // We need to flush the current implicit IT block on a label, because it is 10964 // not legal to branch into an IT block. 10965 flushPendingInstructions(getStreamer()); 10966 } 10967 10968 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 10969 if (NextSymbolIsThumb) { 10970 getParser().getStreamer().emitThumbFunc(Symbol); 10971 NextSymbolIsThumb = false; 10972 } 10973 } 10974 10975 /// parseDirectiveThumbFunc 10976 /// ::= .thumbfunc symbol_name 10977 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 10978 MCAsmParser &Parser = getParser(); 10979 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 10980 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 10981 10982 // Darwin asm has (optionally) function name after .thumb_func direction 10983 // ELF doesn't 10984 10985 if (IsMachO) { 10986 if (Parser.getTok().is(AsmToken::Identifier) || 10987 Parser.getTok().is(AsmToken::String)) { 10988 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 10989 Parser.getTok().getIdentifier()); 10990 getParser().getStreamer().emitThumbFunc(Func); 10991 Parser.Lex(); 10992 if (parseToken(AsmToken::EndOfStatement, 10993 "unexpected token in '.thumb_func' directive")) 10994 return true; 10995 return false; 10996 } 10997 } 10998 10999 if (parseToken(AsmToken::EndOfStatement, 11000 "unexpected token in '.thumb_func' directive")) 11001 return true; 11002 11003 NextSymbolIsThumb = true; 11004 return false; 11005 } 11006 11007 /// parseDirectiveSyntax 11008 /// ::= .syntax unified | divided 11009 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 11010 MCAsmParser &Parser = getParser(); 11011 const AsmToken &Tok = Parser.getTok(); 11012 if (Tok.isNot(AsmToken::Identifier)) { 11013 Error(L, "unexpected token in .syntax directive"); 11014 return false; 11015 } 11016 11017 StringRef Mode = Tok.getString(); 11018 Parser.Lex(); 11019 if (check(Mode == "divided" || Mode == "DIVIDED", L, 11020 "'.syntax divided' arm assembly not supported") || 11021 check(Mode != "unified" && Mode != "UNIFIED", L, 11022 "unrecognized syntax mode in .syntax directive") || 11023 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11024 return true; 11025 11026 // TODO tell the MC streamer the mode 11027 // getParser().getStreamer().Emit???(); 11028 return false; 11029 } 11030 11031 /// parseDirectiveCode 11032 /// ::= .code 16 | 32 11033 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 11034 MCAsmParser &Parser = getParser(); 11035 const AsmToken &Tok = Parser.getTok(); 11036 if (Tok.isNot(AsmToken::Integer)) 11037 return Error(L, "unexpected token in .code directive"); 11038 int64_t Val = Parser.getTok().getIntVal(); 11039 if (Val != 16 && Val != 32) { 11040 Error(L, "invalid operand to .code directive"); 11041 return false; 11042 } 11043 Parser.Lex(); 11044 11045 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11046 return true; 11047 11048 if (Val == 16) { 11049 if (!hasThumb()) 11050 return Error(L, "target does not support Thumb mode"); 11051 11052 if (!isThumb()) 11053 SwitchMode(); 11054 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16); 11055 } else { 11056 if (!hasARM()) 11057 return Error(L, "target does not support ARM mode"); 11058 11059 if (isThumb()) 11060 SwitchMode(); 11061 getParser().getStreamer().emitAssemblerFlag(MCAF_Code32); 11062 } 11063 11064 return false; 11065 } 11066 11067 /// parseDirectiveReq 11068 /// ::= name .req registername 11069 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 11070 MCAsmParser &Parser = getParser(); 11071 Parser.Lex(); // Eat the '.req' token. 11072 unsigned Reg; 11073 SMLoc SRegLoc, ERegLoc; 11074 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 11075 "register name expected") || 11076 parseToken(AsmToken::EndOfStatement, 11077 "unexpected input in .req directive.")) 11078 return true; 11079 11080 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 11081 return Error(SRegLoc, 11082 "redefinition of '" + Name + "' does not match original."); 11083 11084 return false; 11085 } 11086 11087 /// parseDirectiveUneq 11088 /// ::= .unreq registername 11089 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 11090 MCAsmParser &Parser = getParser(); 11091 if (Parser.getTok().isNot(AsmToken::Identifier)) 11092 return Error(L, "unexpected input in .unreq directive."); 11093 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 11094 Parser.Lex(); // Eat the identifier. 11095 if (parseToken(AsmToken::EndOfStatement, 11096 "unexpected input in '.unreq' directive")) 11097 return true; 11098 return false; 11099 } 11100 11101 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 11102 // before, if supported by the new target, or emit mapping symbols for the mode 11103 // switch. 11104 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 11105 if (WasThumb != isThumb()) { 11106 if (WasThumb && hasThumb()) { 11107 // Stay in Thumb mode 11108 SwitchMode(); 11109 } else if (!WasThumb && hasARM()) { 11110 // Stay in ARM mode 11111 SwitchMode(); 11112 } else { 11113 // Mode switch forced, because the new arch doesn't support the old mode. 11114 getParser().getStreamer().emitAssemblerFlag(isThumb() ? MCAF_Code16 11115 : MCAF_Code32); 11116 // Warn about the implcit mode switch. GAS does not switch modes here, 11117 // but instead stays in the old mode, reporting an error on any following 11118 // instructions as the mode does not exist on the target. 11119 Warning(Loc, Twine("new target does not support ") + 11120 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 11121 (!WasThumb ? "thumb" : "arm") + " mode"); 11122 } 11123 } 11124 } 11125 11126 /// parseDirectiveArch 11127 /// ::= .arch token 11128 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 11129 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 11130 ARM::ArchKind ID = ARM::parseArch(Arch); 11131 11132 if (ID == ARM::ArchKind::INVALID) 11133 return Error(L, "Unknown arch name"); 11134 11135 bool WasThumb = isThumb(); 11136 Triple T; 11137 MCSubtargetInfo &STI = copySTI(); 11138 STI.setDefaultFeatures("", /*TuneCPU*/ "", 11139 ("+" + ARM::getArchName(ID)).str()); 11140 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 11141 FixModeAfterArchChange(WasThumb, L); 11142 11143 getTargetStreamer().emitArch(ID); 11144 return false; 11145 } 11146 11147 /// parseDirectiveEabiAttr 11148 /// ::= .eabi_attribute int, int [, "str"] 11149 /// ::= .eabi_attribute Tag_name, int [, "str"] 11150 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 11151 MCAsmParser &Parser = getParser(); 11152 int64_t Tag; 11153 SMLoc TagLoc; 11154 TagLoc = Parser.getTok().getLoc(); 11155 if (Parser.getTok().is(AsmToken::Identifier)) { 11156 StringRef Name = Parser.getTok().getIdentifier(); 11157 Optional<unsigned> Ret = 11158 ELFAttrs::attrTypeFromString(Name, ARMBuildAttrs::ARMAttributeTags); 11159 if (!Ret.hasValue()) { 11160 Error(TagLoc, "attribute name not recognised: " + Name); 11161 return false; 11162 } 11163 Tag = Ret.getValue(); 11164 Parser.Lex(); 11165 } else { 11166 const MCExpr *AttrExpr; 11167 11168 TagLoc = Parser.getTok().getLoc(); 11169 if (Parser.parseExpression(AttrExpr)) 11170 return true; 11171 11172 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 11173 if (check(!CE, TagLoc, "expected numeric constant")) 11174 return true; 11175 11176 Tag = CE->getValue(); 11177 } 11178 11179 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 11180 return true; 11181 11182 StringRef StringValue = ""; 11183 bool IsStringValue = false; 11184 11185 int64_t IntegerValue = 0; 11186 bool IsIntegerValue = false; 11187 11188 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 11189 IsStringValue = true; 11190 else if (Tag == ARMBuildAttrs::compatibility) { 11191 IsStringValue = true; 11192 IsIntegerValue = true; 11193 } else if (Tag < 32 || Tag % 2 == 0) 11194 IsIntegerValue = true; 11195 else if (Tag % 2 == 1) 11196 IsStringValue = true; 11197 else 11198 llvm_unreachable("invalid tag type"); 11199 11200 if (IsIntegerValue) { 11201 const MCExpr *ValueExpr; 11202 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 11203 if (Parser.parseExpression(ValueExpr)) 11204 return true; 11205 11206 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 11207 if (!CE) 11208 return Error(ValueExprLoc, "expected numeric constant"); 11209 IntegerValue = CE->getValue(); 11210 } 11211 11212 if (Tag == ARMBuildAttrs::compatibility) { 11213 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 11214 return true; 11215 } 11216 11217 if (IsStringValue) { 11218 if (Parser.getTok().isNot(AsmToken::String)) 11219 return Error(Parser.getTok().getLoc(), "bad string constant"); 11220 11221 StringValue = Parser.getTok().getStringContents(); 11222 Parser.Lex(); 11223 } 11224 11225 if (Parser.parseToken(AsmToken::EndOfStatement, 11226 "unexpected token in '.eabi_attribute' directive")) 11227 return true; 11228 11229 if (IsIntegerValue && IsStringValue) { 11230 assert(Tag == ARMBuildAttrs::compatibility); 11231 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 11232 } else if (IsIntegerValue) 11233 getTargetStreamer().emitAttribute(Tag, IntegerValue); 11234 else if (IsStringValue) 11235 getTargetStreamer().emitTextAttribute(Tag, StringValue); 11236 return false; 11237 } 11238 11239 /// parseDirectiveCPU 11240 /// ::= .cpu str 11241 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 11242 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 11243 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 11244 11245 // FIXME: This is using table-gen data, but should be moved to 11246 // ARMTargetParser once that is table-gen'd. 11247 if (!getSTI().isCPUStringValid(CPU)) 11248 return Error(L, "Unknown CPU name"); 11249 11250 bool WasThumb = isThumb(); 11251 MCSubtargetInfo &STI = copySTI(); 11252 STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, ""); 11253 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 11254 FixModeAfterArchChange(WasThumb, L); 11255 11256 return false; 11257 } 11258 11259 /// parseDirectiveFPU 11260 /// ::= .fpu str 11261 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 11262 SMLoc FPUNameLoc = getTok().getLoc(); 11263 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 11264 11265 unsigned ID = ARM::parseFPU(FPU); 11266 std::vector<StringRef> Features; 11267 if (!ARM::getFPUFeatures(ID, Features)) 11268 return Error(FPUNameLoc, "Unknown FPU name"); 11269 11270 MCSubtargetInfo &STI = copySTI(); 11271 for (auto Feature : Features) 11272 STI.ApplyFeatureFlag(Feature); 11273 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 11274 11275 getTargetStreamer().emitFPU(ID); 11276 return false; 11277 } 11278 11279 /// parseDirectiveFnStart 11280 /// ::= .fnstart 11281 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 11282 if (parseToken(AsmToken::EndOfStatement, 11283 "unexpected token in '.fnstart' directive")) 11284 return true; 11285 11286 if (UC.hasFnStart()) { 11287 Error(L, ".fnstart starts before the end of previous one"); 11288 UC.emitFnStartLocNotes(); 11289 return true; 11290 } 11291 11292 // Reset the unwind directives parser state 11293 UC.reset(); 11294 11295 getTargetStreamer().emitFnStart(); 11296 11297 UC.recordFnStart(L); 11298 return false; 11299 } 11300 11301 /// parseDirectiveFnEnd 11302 /// ::= .fnend 11303 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 11304 if (parseToken(AsmToken::EndOfStatement, 11305 "unexpected token in '.fnend' directive")) 11306 return true; 11307 // Check the ordering of unwind directives 11308 if (!UC.hasFnStart()) 11309 return Error(L, ".fnstart must precede .fnend directive"); 11310 11311 // Reset the unwind directives parser state 11312 getTargetStreamer().emitFnEnd(); 11313 11314 UC.reset(); 11315 return false; 11316 } 11317 11318 /// parseDirectiveCantUnwind 11319 /// ::= .cantunwind 11320 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 11321 if (parseToken(AsmToken::EndOfStatement, 11322 "unexpected token in '.cantunwind' directive")) 11323 return true; 11324 11325 UC.recordCantUnwind(L); 11326 // Check the ordering of unwind directives 11327 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 11328 return true; 11329 11330 if (UC.hasHandlerData()) { 11331 Error(L, ".cantunwind can't be used with .handlerdata directive"); 11332 UC.emitHandlerDataLocNotes(); 11333 return true; 11334 } 11335 if (UC.hasPersonality()) { 11336 Error(L, ".cantunwind can't be used with .personality directive"); 11337 UC.emitPersonalityLocNotes(); 11338 return true; 11339 } 11340 11341 getTargetStreamer().emitCantUnwind(); 11342 return false; 11343 } 11344 11345 /// parseDirectivePersonality 11346 /// ::= .personality name 11347 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 11348 MCAsmParser &Parser = getParser(); 11349 bool HasExistingPersonality = UC.hasPersonality(); 11350 11351 // Parse the name of the personality routine 11352 if (Parser.getTok().isNot(AsmToken::Identifier)) 11353 return Error(L, "unexpected input in .personality directive."); 11354 StringRef Name(Parser.getTok().getIdentifier()); 11355 Parser.Lex(); 11356 11357 if (parseToken(AsmToken::EndOfStatement, 11358 "unexpected token in '.personality' directive")) 11359 return true; 11360 11361 UC.recordPersonality(L); 11362 11363 // Check the ordering of unwind directives 11364 if (!UC.hasFnStart()) 11365 return Error(L, ".fnstart must precede .personality directive"); 11366 if (UC.cantUnwind()) { 11367 Error(L, ".personality can't be used with .cantunwind directive"); 11368 UC.emitCantUnwindLocNotes(); 11369 return true; 11370 } 11371 if (UC.hasHandlerData()) { 11372 Error(L, ".personality must precede .handlerdata directive"); 11373 UC.emitHandlerDataLocNotes(); 11374 return true; 11375 } 11376 if (HasExistingPersonality) { 11377 Error(L, "multiple personality directives"); 11378 UC.emitPersonalityLocNotes(); 11379 return true; 11380 } 11381 11382 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 11383 getTargetStreamer().emitPersonality(PR); 11384 return false; 11385 } 11386 11387 /// parseDirectiveHandlerData 11388 /// ::= .handlerdata 11389 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 11390 if (parseToken(AsmToken::EndOfStatement, 11391 "unexpected token in '.handlerdata' directive")) 11392 return true; 11393 11394 UC.recordHandlerData(L); 11395 // Check the ordering of unwind directives 11396 if (!UC.hasFnStart()) 11397 return Error(L, ".fnstart must precede .personality directive"); 11398 if (UC.cantUnwind()) { 11399 Error(L, ".handlerdata can't be used with .cantunwind directive"); 11400 UC.emitCantUnwindLocNotes(); 11401 return true; 11402 } 11403 11404 getTargetStreamer().emitHandlerData(); 11405 return false; 11406 } 11407 11408 /// parseDirectiveSetFP 11409 /// ::= .setfp fpreg, spreg [, offset] 11410 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 11411 MCAsmParser &Parser = getParser(); 11412 // Check the ordering of unwind directives 11413 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 11414 check(UC.hasHandlerData(), L, 11415 ".setfp must precede .handlerdata directive")) 11416 return true; 11417 11418 // Parse fpreg 11419 SMLoc FPRegLoc = Parser.getTok().getLoc(); 11420 int FPReg = tryParseRegister(); 11421 11422 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 11423 Parser.parseToken(AsmToken::Comma, "comma expected")) 11424 return true; 11425 11426 // Parse spreg 11427 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11428 int SPReg = tryParseRegister(); 11429 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 11430 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 11431 "register should be either $sp or the latest fp register")) 11432 return true; 11433 11434 // Update the frame pointer register 11435 UC.saveFPReg(FPReg); 11436 11437 // Parse offset 11438 int64_t Offset = 0; 11439 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11440 if (Parser.getTok().isNot(AsmToken::Hash) && 11441 Parser.getTok().isNot(AsmToken::Dollar)) 11442 return Error(Parser.getTok().getLoc(), "'#' expected"); 11443 Parser.Lex(); // skip hash token. 11444 11445 const MCExpr *OffsetExpr; 11446 SMLoc ExLoc = Parser.getTok().getLoc(); 11447 SMLoc EndLoc; 11448 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11449 return Error(ExLoc, "malformed setfp offset"); 11450 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11451 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 11452 return true; 11453 Offset = CE->getValue(); 11454 } 11455 11456 if (Parser.parseToken(AsmToken::EndOfStatement)) 11457 return true; 11458 11459 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 11460 static_cast<unsigned>(SPReg), Offset); 11461 return false; 11462 } 11463 11464 /// parseDirective 11465 /// ::= .pad offset 11466 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 11467 MCAsmParser &Parser = getParser(); 11468 // Check the ordering of unwind directives 11469 if (!UC.hasFnStart()) 11470 return Error(L, ".fnstart must precede .pad directive"); 11471 if (UC.hasHandlerData()) 11472 return Error(L, ".pad must precede .handlerdata directive"); 11473 11474 // Parse the offset 11475 if (Parser.getTok().isNot(AsmToken::Hash) && 11476 Parser.getTok().isNot(AsmToken::Dollar)) 11477 return Error(Parser.getTok().getLoc(), "'#' expected"); 11478 Parser.Lex(); // skip hash token. 11479 11480 const MCExpr *OffsetExpr; 11481 SMLoc ExLoc = Parser.getTok().getLoc(); 11482 SMLoc EndLoc; 11483 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11484 return Error(ExLoc, "malformed pad offset"); 11485 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11486 if (!CE) 11487 return Error(ExLoc, "pad offset must be an immediate"); 11488 11489 if (parseToken(AsmToken::EndOfStatement, 11490 "unexpected token in '.pad' directive")) 11491 return true; 11492 11493 getTargetStreamer().emitPad(CE->getValue()); 11494 return false; 11495 } 11496 11497 /// parseDirectiveRegSave 11498 /// ::= .save { registers } 11499 /// ::= .vsave { registers } 11500 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 11501 // Check the ordering of unwind directives 11502 if (!UC.hasFnStart()) 11503 return Error(L, ".fnstart must precede .save or .vsave directives"); 11504 if (UC.hasHandlerData()) 11505 return Error(L, ".save or .vsave must precede .handlerdata directive"); 11506 11507 // RAII object to make sure parsed operands are deleted. 11508 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 11509 11510 // Parse the register list 11511 if (parseRegisterList(Operands) || 11512 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11513 return true; 11514 ARMOperand &Op = (ARMOperand &)*Operands[0]; 11515 if (!IsVector && !Op.isRegList()) 11516 return Error(L, ".save expects GPR registers"); 11517 if (IsVector && !Op.isDPRRegList()) 11518 return Error(L, ".vsave expects DPR registers"); 11519 11520 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 11521 return false; 11522 } 11523 11524 /// parseDirectiveInst 11525 /// ::= .inst opcode [, ...] 11526 /// ::= .inst.n opcode [, ...] 11527 /// ::= .inst.w opcode [, ...] 11528 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 11529 int Width = 4; 11530 11531 if (isThumb()) { 11532 switch (Suffix) { 11533 case 'n': 11534 Width = 2; 11535 break; 11536 case 'w': 11537 break; 11538 default: 11539 Width = 0; 11540 break; 11541 } 11542 } else { 11543 if (Suffix) 11544 return Error(Loc, "width suffixes are invalid in ARM mode"); 11545 } 11546 11547 auto parseOne = [&]() -> bool { 11548 const MCExpr *Expr; 11549 if (getParser().parseExpression(Expr)) 11550 return true; 11551 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 11552 if (!Value) { 11553 return Error(Loc, "expected constant expression"); 11554 } 11555 11556 char CurSuffix = Suffix; 11557 switch (Width) { 11558 case 2: 11559 if (Value->getValue() > 0xffff) 11560 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 11561 break; 11562 case 4: 11563 if (Value->getValue() > 0xffffffff) 11564 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 11565 " operand is too big"); 11566 break; 11567 case 0: 11568 // Thumb mode, no width indicated. Guess from the opcode, if possible. 11569 if (Value->getValue() < 0xe800) 11570 CurSuffix = 'n'; 11571 else if (Value->getValue() >= 0xe8000000) 11572 CurSuffix = 'w'; 11573 else 11574 return Error(Loc, "cannot determine Thumb instruction size, " 11575 "use inst.n/inst.w instead"); 11576 break; 11577 default: 11578 llvm_unreachable("only supported widths are 2 and 4"); 11579 } 11580 11581 getTargetStreamer().emitInst(Value->getValue(), CurSuffix); 11582 return false; 11583 }; 11584 11585 if (parseOptionalToken(AsmToken::EndOfStatement)) 11586 return Error(Loc, "expected expression following directive"); 11587 if (parseMany(parseOne)) 11588 return true; 11589 return false; 11590 } 11591 11592 /// parseDirectiveLtorg 11593 /// ::= .ltorg | .pool 11594 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 11595 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11596 return true; 11597 getTargetStreamer().emitCurrentConstantPool(); 11598 return false; 11599 } 11600 11601 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 11602 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11603 11604 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11605 return true; 11606 11607 if (!Section) { 11608 getStreamer().InitSections(false); 11609 Section = getStreamer().getCurrentSectionOnly(); 11610 } 11611 11612 assert(Section && "must have section to emit alignment"); 11613 if (Section->UseCodeAlign()) 11614 getStreamer().emitCodeAlignment(2); 11615 else 11616 getStreamer().emitValueToAlignment(2); 11617 11618 return false; 11619 } 11620 11621 /// parseDirectivePersonalityIndex 11622 /// ::= .personalityindex index 11623 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 11624 MCAsmParser &Parser = getParser(); 11625 bool HasExistingPersonality = UC.hasPersonality(); 11626 11627 const MCExpr *IndexExpression; 11628 SMLoc IndexLoc = Parser.getTok().getLoc(); 11629 if (Parser.parseExpression(IndexExpression) || 11630 parseToken(AsmToken::EndOfStatement, 11631 "unexpected token in '.personalityindex' directive")) { 11632 return true; 11633 } 11634 11635 UC.recordPersonalityIndex(L); 11636 11637 if (!UC.hasFnStart()) { 11638 return Error(L, ".fnstart must precede .personalityindex directive"); 11639 } 11640 if (UC.cantUnwind()) { 11641 Error(L, ".personalityindex cannot be used with .cantunwind"); 11642 UC.emitCantUnwindLocNotes(); 11643 return true; 11644 } 11645 if (UC.hasHandlerData()) { 11646 Error(L, ".personalityindex must precede .handlerdata directive"); 11647 UC.emitHandlerDataLocNotes(); 11648 return true; 11649 } 11650 if (HasExistingPersonality) { 11651 Error(L, "multiple personality directives"); 11652 UC.emitPersonalityLocNotes(); 11653 return true; 11654 } 11655 11656 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 11657 if (!CE) 11658 return Error(IndexLoc, "index must be a constant number"); 11659 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 11660 return Error(IndexLoc, 11661 "personality routine index should be in range [0-3]"); 11662 11663 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 11664 return false; 11665 } 11666 11667 /// parseDirectiveUnwindRaw 11668 /// ::= .unwind_raw offset, opcode [, opcode...] 11669 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 11670 MCAsmParser &Parser = getParser(); 11671 int64_t StackOffset; 11672 const MCExpr *OffsetExpr; 11673 SMLoc OffsetLoc = getLexer().getLoc(); 11674 11675 if (!UC.hasFnStart()) 11676 return Error(L, ".fnstart must precede .unwind_raw directives"); 11677 if (getParser().parseExpression(OffsetExpr)) 11678 return Error(OffsetLoc, "expected expression"); 11679 11680 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11681 if (!CE) 11682 return Error(OffsetLoc, "offset must be a constant"); 11683 11684 StackOffset = CE->getValue(); 11685 11686 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 11687 return true; 11688 11689 SmallVector<uint8_t, 16> Opcodes; 11690 11691 auto parseOne = [&]() -> bool { 11692 const MCExpr *OE = nullptr; 11693 SMLoc OpcodeLoc = getLexer().getLoc(); 11694 if (check(getLexer().is(AsmToken::EndOfStatement) || 11695 Parser.parseExpression(OE), 11696 OpcodeLoc, "expected opcode expression")) 11697 return true; 11698 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 11699 if (!OC) 11700 return Error(OpcodeLoc, "opcode value must be a constant"); 11701 const int64_t Opcode = OC->getValue(); 11702 if (Opcode & ~0xff) 11703 return Error(OpcodeLoc, "invalid opcode"); 11704 Opcodes.push_back(uint8_t(Opcode)); 11705 return false; 11706 }; 11707 11708 // Must have at least 1 element 11709 SMLoc OpcodeLoc = getLexer().getLoc(); 11710 if (parseOptionalToken(AsmToken::EndOfStatement)) 11711 return Error(OpcodeLoc, "expected opcode expression"); 11712 if (parseMany(parseOne)) 11713 return true; 11714 11715 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 11716 return false; 11717 } 11718 11719 /// parseDirectiveTLSDescSeq 11720 /// ::= .tlsdescseq tls-variable 11721 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 11722 MCAsmParser &Parser = getParser(); 11723 11724 if (getLexer().isNot(AsmToken::Identifier)) 11725 return TokError("expected variable after '.tlsdescseq' directive"); 11726 11727 const MCSymbolRefExpr *SRE = 11728 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 11729 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 11730 Lex(); 11731 11732 if (parseToken(AsmToken::EndOfStatement, 11733 "unexpected token in '.tlsdescseq' directive")) 11734 return true; 11735 11736 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 11737 return false; 11738 } 11739 11740 /// parseDirectiveMovSP 11741 /// ::= .movsp reg [, #offset] 11742 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 11743 MCAsmParser &Parser = getParser(); 11744 if (!UC.hasFnStart()) 11745 return Error(L, ".fnstart must precede .movsp directives"); 11746 if (UC.getFPReg() != ARM::SP) 11747 return Error(L, "unexpected .movsp directive"); 11748 11749 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11750 int SPReg = tryParseRegister(); 11751 if (SPReg == -1) 11752 return Error(SPRegLoc, "register expected"); 11753 if (SPReg == ARM::SP || SPReg == ARM::PC) 11754 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 11755 11756 int64_t Offset = 0; 11757 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11758 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 11759 return true; 11760 11761 const MCExpr *OffsetExpr; 11762 SMLoc OffsetLoc = Parser.getTok().getLoc(); 11763 11764 if (Parser.parseExpression(OffsetExpr)) 11765 return Error(OffsetLoc, "malformed offset expression"); 11766 11767 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11768 if (!CE) 11769 return Error(OffsetLoc, "offset must be an immediate constant"); 11770 11771 Offset = CE->getValue(); 11772 } 11773 11774 if (parseToken(AsmToken::EndOfStatement, 11775 "unexpected token in '.movsp' directive")) 11776 return true; 11777 11778 getTargetStreamer().emitMovSP(SPReg, Offset); 11779 UC.saveFPReg(SPReg); 11780 11781 return false; 11782 } 11783 11784 /// parseDirectiveObjectArch 11785 /// ::= .object_arch name 11786 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 11787 MCAsmParser &Parser = getParser(); 11788 if (getLexer().isNot(AsmToken::Identifier)) 11789 return Error(getLexer().getLoc(), "unexpected token"); 11790 11791 StringRef Arch = Parser.getTok().getString(); 11792 SMLoc ArchLoc = Parser.getTok().getLoc(); 11793 Lex(); 11794 11795 ARM::ArchKind ID = ARM::parseArch(Arch); 11796 11797 if (ID == ARM::ArchKind::INVALID) 11798 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 11799 if (parseToken(AsmToken::EndOfStatement)) 11800 return true; 11801 11802 getTargetStreamer().emitObjectArch(ID); 11803 return false; 11804 } 11805 11806 /// parseDirectiveAlign 11807 /// ::= .align 11808 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 11809 // NOTE: if this is not the end of the statement, fall back to the target 11810 // agnostic handling for this directive which will correctly handle this. 11811 if (parseOptionalToken(AsmToken::EndOfStatement)) { 11812 // '.align' is target specifically handled to mean 2**2 byte alignment. 11813 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11814 assert(Section && "must have section to emit alignment"); 11815 if (Section->UseCodeAlign()) 11816 getStreamer().emitCodeAlignment(4, 0); 11817 else 11818 getStreamer().emitValueToAlignment(4, 0, 1, 0); 11819 return false; 11820 } 11821 return true; 11822 } 11823 11824 /// parseDirectiveThumbSet 11825 /// ::= .thumb_set name, value 11826 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 11827 MCAsmParser &Parser = getParser(); 11828 11829 StringRef Name; 11830 if (check(Parser.parseIdentifier(Name), 11831 "expected identifier after '.thumb_set'") || 11832 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 11833 return true; 11834 11835 MCSymbol *Sym; 11836 const MCExpr *Value; 11837 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 11838 Parser, Sym, Value)) 11839 return true; 11840 11841 getTargetStreamer().emitThumbSet(Sym, Value); 11842 return false; 11843 } 11844 11845 /// Force static initialization. 11846 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmParser() { 11847 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 11848 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 11849 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 11850 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 11851 } 11852 11853 #define GET_REGISTER_MATCHER 11854 #define GET_SUBTARGET_FEATURE_NAME 11855 #define GET_MATCHER_IMPLEMENTATION 11856 #define GET_MNEMONIC_SPELL_CHECKER 11857 #include "ARMGenAsmMatcher.inc" 11858 11859 // Some diagnostics need to vary with subtarget features, so they are handled 11860 // here. For example, the DPR class has either 16 or 32 registers, depending 11861 // on the FPU available. 11862 const char * 11863 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { 11864 switch (MatchError) { 11865 // rGPR contains sp starting with ARMv8. 11866 case Match_rGPR: 11867 return hasV8Ops() ? "operand must be a register in range [r0, r14]" 11868 : "operand must be a register in range [r0, r12] or r14"; 11869 // DPR contains 16 registers for some FPUs, and 32 for others. 11870 case Match_DPR: 11871 return hasD32() ? "operand must be a register in range [d0, d31]" 11872 : "operand must be a register in range [d0, d15]"; 11873 case Match_DPR_RegList: 11874 return hasD32() ? "operand must be a list of registers in range [d0, d31]" 11875 : "operand must be a list of registers in range [d0, d15]"; 11876 11877 // For all other diags, use the static string from tablegen. 11878 default: 11879 return getMatchKindDiag(MatchError); 11880 } 11881 } 11882 11883 // Process the list of near-misses, throwing away ones we don't want to report 11884 // to the user, and converting the rest to a source location and string that 11885 // should be reported. 11886 void 11887 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 11888 SmallVectorImpl<NearMissMessage> &NearMissesOut, 11889 SMLoc IDLoc, OperandVector &Operands) { 11890 // TODO: If operand didn't match, sub in a dummy one and run target 11891 // predicate, so that we can avoid reporting near-misses that are invalid? 11892 // TODO: Many operand types dont have SuperClasses set, so we report 11893 // redundant ones. 11894 // TODO: Some operands are superclasses of registers (e.g. 11895 // MCK_RegShiftedImm), we don't have any way to represent that currently. 11896 // TODO: This is not all ARM-specific, can some of it be factored out? 11897 11898 // Record some information about near-misses that we have already seen, so 11899 // that we can avoid reporting redundant ones. For example, if there are 11900 // variants of an instruction that take 8- and 16-bit immediates, we want 11901 // to only report the widest one. 11902 std::multimap<unsigned, unsigned> OperandMissesSeen; 11903 SmallSet<FeatureBitset, 4> FeatureMissesSeen; 11904 bool ReportedTooFewOperands = false; 11905 11906 // Process the near-misses in reverse order, so that we see more general ones 11907 // first, and so can avoid emitting more specific ones. 11908 for (NearMissInfo &I : reverse(NearMissesIn)) { 11909 switch (I.getKind()) { 11910 case NearMissInfo::NearMissOperand: { 11911 SMLoc OperandLoc = 11912 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); 11913 const char *OperandDiag = 11914 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); 11915 11916 // If we have already emitted a message for a superclass, don't also report 11917 // the sub-class. We consider all operand classes that we don't have a 11918 // specialised diagnostic for to be equal for the propose of this check, 11919 // so that we don't report the generic error multiple times on the same 11920 // operand. 11921 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; 11922 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); 11923 if (std::any_of(PrevReports.first, PrevReports.second, 11924 [DupCheckMatchClass]( 11925 const std::pair<unsigned, unsigned> Pair) { 11926 if (DupCheckMatchClass == ~0U || Pair.second == ~0U) 11927 return Pair.second == DupCheckMatchClass; 11928 else 11929 return isSubclass((MatchClassKind)DupCheckMatchClass, 11930 (MatchClassKind)Pair.second); 11931 })) 11932 break; 11933 OperandMissesSeen.insert( 11934 std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); 11935 11936 NearMissMessage Message; 11937 Message.Loc = OperandLoc; 11938 if (OperandDiag) { 11939 Message.Message = OperandDiag; 11940 } else if (I.getOperandClass() == InvalidMatchClass) { 11941 Message.Message = "too many operands for instruction"; 11942 } else { 11943 Message.Message = "invalid operand for instruction"; 11944 LLVM_DEBUG( 11945 dbgs() << "Missing diagnostic string for operand class " 11946 << getMatchClassName((MatchClassKind)I.getOperandClass()) 11947 << I.getOperandClass() << ", error " << I.getOperandError() 11948 << ", opcode " << MII.getName(I.getOpcode()) << "\n"); 11949 } 11950 NearMissesOut.emplace_back(Message); 11951 break; 11952 } 11953 case NearMissInfo::NearMissFeature: { 11954 const FeatureBitset &MissingFeatures = I.getFeatures(); 11955 // Don't report the same set of features twice. 11956 if (FeatureMissesSeen.count(MissingFeatures)) 11957 break; 11958 FeatureMissesSeen.insert(MissingFeatures); 11959 11960 // Special case: don't report a feature set which includes arm-mode for 11961 // targets that don't have ARM mode. 11962 if (MissingFeatures.test(Feature_IsARMBit) && !hasARM()) 11963 break; 11964 // Don't report any near-misses that both require switching instruction 11965 // set, and adding other subtarget features. 11966 if (isThumb() && MissingFeatures.test(Feature_IsARMBit) && 11967 MissingFeatures.count() > 1) 11968 break; 11969 if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) && 11970 MissingFeatures.count() > 1) 11971 break; 11972 if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) && 11973 (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit, 11974 Feature_IsThumbBit})).any()) 11975 break; 11976 if (isMClass() && MissingFeatures.test(Feature_HasNEONBit)) 11977 break; 11978 11979 NearMissMessage Message; 11980 Message.Loc = IDLoc; 11981 raw_svector_ostream OS(Message.Message); 11982 11983 OS << "instruction requires:"; 11984 for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) 11985 if (MissingFeatures.test(i)) 11986 OS << ' ' << getSubtargetFeatureName(i); 11987 11988 NearMissesOut.emplace_back(Message); 11989 11990 break; 11991 } 11992 case NearMissInfo::NearMissPredicate: { 11993 NearMissMessage Message; 11994 Message.Loc = IDLoc; 11995 switch (I.getPredicateError()) { 11996 case Match_RequiresNotITBlock: 11997 Message.Message = "flag setting instruction only valid outside IT block"; 11998 break; 11999 case Match_RequiresITBlock: 12000 Message.Message = "instruction only valid inside IT block"; 12001 break; 12002 case Match_RequiresV6: 12003 Message.Message = "instruction variant requires ARMv6 or later"; 12004 break; 12005 case Match_RequiresThumb2: 12006 Message.Message = "instruction variant requires Thumb2"; 12007 break; 12008 case Match_RequiresV8: 12009 Message.Message = "instruction variant requires ARMv8 or later"; 12010 break; 12011 case Match_RequiresFlagSetting: 12012 Message.Message = "no flag-preserving variant of this instruction available"; 12013 break; 12014 case Match_InvalidOperand: 12015 Message.Message = "invalid operand for instruction"; 12016 break; 12017 default: 12018 llvm_unreachable("Unhandled target predicate error"); 12019 break; 12020 } 12021 NearMissesOut.emplace_back(Message); 12022 break; 12023 } 12024 case NearMissInfo::NearMissTooFewOperands: { 12025 if (!ReportedTooFewOperands) { 12026 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); 12027 NearMissesOut.emplace_back(NearMissMessage{ 12028 EndLoc, StringRef("too few operands for instruction")}); 12029 ReportedTooFewOperands = true; 12030 } 12031 break; 12032 } 12033 case NearMissInfo::NoNearMiss: 12034 // This should never leave the matcher. 12035 llvm_unreachable("not a near-miss"); 12036 break; 12037 } 12038 } 12039 } 12040 12041 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, 12042 SMLoc IDLoc, OperandVector &Operands) { 12043 SmallVector<NearMissMessage, 4> Messages; 12044 FilterNearMisses(NearMisses, Messages, IDLoc, Operands); 12045 12046 if (Messages.size() == 0) { 12047 // No near-misses were found, so the best we can do is "invalid 12048 // instruction". 12049 Error(IDLoc, "invalid instruction"); 12050 } else if (Messages.size() == 1) { 12051 // One near miss was found, report it as the sole error. 12052 Error(Messages[0].Loc, Messages[0].Message); 12053 } else { 12054 // More than one near miss, so report a generic "invalid instruction" 12055 // error, followed by notes for each of the near-misses. 12056 Error(IDLoc, "invalid instruction, any one of the following would fix this:"); 12057 for (auto &M : Messages) { 12058 Note(M.Loc, M.Message); 12059 } 12060 } 12061 } 12062 12063 /// parseDirectiveArchExtension 12064 /// ::= .arch_extension [no]feature 12065 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 12066 // FIXME: This structure should be moved inside ARMTargetParser 12067 // when we start to table-generate them, and we can use the ARM 12068 // flags below, that were generated by table-gen. 12069 static const struct { 12070 const uint64_t Kind; 12071 const FeatureBitset ArchCheck; 12072 const FeatureBitset Features; 12073 } Extensions[] = { 12074 { ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC} }, 12075 { ARM::AEK_CRYPTO, {Feature_HasV8Bit}, 12076 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 12077 { ARM::AEK_FP, {Feature_HasV8Bit}, 12078 {ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8} }, 12079 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), 12080 {Feature_HasV7Bit, Feature_IsNotMClassBit}, 12081 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} }, 12082 { ARM::AEK_MP, {Feature_HasV7Bit, Feature_IsNotMClassBit}, 12083 {ARM::FeatureMP} }, 12084 { ARM::AEK_SIMD, {Feature_HasV8Bit}, 12085 {ARM::FeatureNEON, ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8} }, 12086 { ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone} }, 12087 // FIXME: Only available in A-class, isel not predicated 12088 { ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization} }, 12089 { ARM::AEK_FP16, {Feature_HasV8_2aBit}, 12090 {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 12091 { ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS} }, 12092 { ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB} }, 12093 // FIXME: Unsupported extensions. 12094 { ARM::AEK_OS, {}, {} }, 12095 { ARM::AEK_IWMMXT, {}, {} }, 12096 { ARM::AEK_IWMMXT2, {}, {} }, 12097 { ARM::AEK_MAVERICK, {}, {} }, 12098 { ARM::AEK_XSCALE, {}, {} }, 12099 }; 12100 12101 MCAsmParser &Parser = getParser(); 12102 12103 if (getLexer().isNot(AsmToken::Identifier)) 12104 return Error(getLexer().getLoc(), "expected architecture extension name"); 12105 12106 StringRef Name = Parser.getTok().getString(); 12107 SMLoc ExtLoc = Parser.getTok().getLoc(); 12108 Lex(); 12109 12110 if (parseToken(AsmToken::EndOfStatement, 12111 "unexpected token in '.arch_extension' directive")) 12112 return true; 12113 12114 bool EnableFeature = true; 12115 if (Name.startswith_lower("no")) { 12116 EnableFeature = false; 12117 Name = Name.substr(2); 12118 } 12119 uint64_t FeatureKind = ARM::parseArchExt(Name); 12120 if (FeatureKind == ARM::AEK_INVALID) 12121 return Error(ExtLoc, "unknown architectural extension: " + Name); 12122 12123 for (const auto &Extension : Extensions) { 12124 if (Extension.Kind != FeatureKind) 12125 continue; 12126 12127 if (Extension.Features.none()) 12128 return Error(ExtLoc, "unsupported architectural extension: " + Name); 12129 12130 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 12131 return Error(ExtLoc, "architectural extension '" + Name + 12132 "' is not " 12133 "allowed for the current base architecture"); 12134 12135 MCSubtargetInfo &STI = copySTI(); 12136 if (EnableFeature) { 12137 STI.SetFeatureBitsTransitively(Extension.Features); 12138 } else { 12139 STI.ClearFeatureBitsTransitively(Extension.Features); 12140 } 12141 FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits()); 12142 setAvailableFeatures(Features); 12143 return false; 12144 } 12145 12146 return Error(ExtLoc, "unknown architectural extension: " + Name); 12147 } 12148 12149 // Define this matcher function after the auto-generated include so we 12150 // have the match class enum definitions. 12151 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 12152 unsigned Kind) { 12153 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 12154 // If the kind is a token for a literal immediate, check if our asm 12155 // operand matches. This is for InstAliases which have a fixed-value 12156 // immediate in the syntax. 12157 switch (Kind) { 12158 default: break; 12159 case MCK__HASH_0: 12160 if (Op.isImm()) 12161 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 12162 if (CE->getValue() == 0) 12163 return Match_Success; 12164 break; 12165 case MCK__HASH_8: 12166 if (Op.isImm()) 12167 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 12168 if (CE->getValue() == 8) 12169 return Match_Success; 12170 break; 12171 case MCK__HASH_16: 12172 if (Op.isImm()) 12173 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 12174 if (CE->getValue() == 16) 12175 return Match_Success; 12176 break; 12177 case MCK_ModImm: 12178 if (Op.isImm()) { 12179 const MCExpr *SOExpr = Op.getImm(); 12180 int64_t Value; 12181 if (!SOExpr->evaluateAsAbsolute(Value)) 12182 return Match_Success; 12183 assert((Value >= std::numeric_limits<int32_t>::min() && 12184 Value <= std::numeric_limits<uint32_t>::max()) && 12185 "expression value must be representable in 32 bits"); 12186 } 12187 break; 12188 case MCK_rGPR: 12189 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 12190 return Match_Success; 12191 return Match_rGPR; 12192 case MCK_GPRPair: 12193 if (Op.isReg() && 12194 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 12195 return Match_Success; 12196 break; 12197 } 12198 return Match_InvalidOperand; 12199 } 12200 12201 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic, 12202 StringRef ExtraToken) { 12203 if (!hasMVE()) 12204 return false; 12205 12206 return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") || 12207 Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") || 12208 Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") || 12209 Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") || 12210 Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") || 12211 Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") || 12212 Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") || 12213 Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") || 12214 Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") || 12215 Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") || 12216 Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") || 12217 Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") || 12218 Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") || 12219 Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") || 12220 Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") || 12221 Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") || 12222 Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") || 12223 Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") || 12224 Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") || 12225 Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") || 12226 Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") || 12227 Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") || 12228 Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") || 12229 Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") || 12230 Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") || 12231 Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") || 12232 Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") || 12233 Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") || 12234 Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") || 12235 Mnemonic.startswith("vqabs") || 12236 (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") || 12237 Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") || 12238 Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") || 12239 Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") || 12240 Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") || 12241 Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") || 12242 Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") || 12243 Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") || 12244 Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") || 12245 Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") || 12246 Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") || 12247 Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") || 12248 Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") || 12249 Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") || 12250 Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") || 12251 Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") || 12252 Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") || 12253 Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") || 12254 Mnemonic.startswith("vldrb") || 12255 (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") || 12256 (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") || 12257 Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") || 12258 Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") || 12259 Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") || 12260 Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") || 12261 Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") || 12262 Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") || 12263 Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") || 12264 Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") || 12265 Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") || 12266 Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") || 12267 Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") || 12268 Mnemonic.startswith("vcvt") || 12269 MS.isVPTPredicableCDEInstr(Mnemonic) || 12270 (Mnemonic.startswith("vmov") && 12271 !(ExtraToken == ".f16" || ExtraToken == ".32" || 12272 ExtraToken == ".16" || ExtraToken == ".8")); 12273 } 12274