xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp (revision 9dba64be9536c28e4800e06512b7f29b43ade345)
1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ARMFeatures.h"
10 #include "ARMBaseInstrInfo.h"
11 #include "Utils/ARMBaseInfo.h"
12 #include "MCTargetDesc/ARMAddressingModes.h"
13 #include "MCTargetDesc/ARMBaseInfo.h"
14 #include "MCTargetDesc/ARMInstPrinter.h"
15 #include "MCTargetDesc/ARMMCExpr.h"
16 #include "MCTargetDesc/ARMMCTargetDesc.h"
17 #include "TargetInfo/ARMTargetInfo.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInst.h"
32 #include "llvm/MC/MCInstrDesc.h"
33 #include "llvm/MC/MCInstrInfo.h"
34 #include "llvm/MC/MCObjectFileInfo.h"
35 #include "llvm/MC/MCParser/MCAsmLexer.h"
36 #include "llvm/MC/MCParser/MCAsmParser.h"
37 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
38 #include "llvm/MC/MCParser/MCAsmParserUtils.h"
39 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
40 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSubtargetInfo.h"
45 #include "llvm/MC/MCSymbol.h"
46 #include "llvm/MC/SubtargetFeature.h"
47 #include "llvm/Support/ARMBuildAttributes.h"
48 #include "llvm/Support/ARMEHABI.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/SMLoc.h"
55 #include "llvm/Support/TargetParser.h"
56 #include "llvm/Support/TargetRegistry.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstddef>
61 #include <cstdint>
62 #include <iterator>
63 #include <limits>
64 #include <memory>
65 #include <string>
66 #include <utility>
67 #include <vector>
68 
69 #define DEBUG_TYPE "asm-parser"
70 
71 using namespace llvm;
72 
73 namespace llvm {
74 extern const MCInstrDesc ARMInsts[];
75 } // end namespace llvm
76 
77 namespace {
78 
79 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly };
80 
81 static cl::opt<ImplicitItModeTy> ImplicitItMode(
82     "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly),
83     cl::desc("Allow conditional instructions outdside of an IT block"),
84     cl::values(clEnumValN(ImplicitItModeTy::Always, "always",
85                           "Accept in both ISAs, emit implicit ITs in Thumb"),
86                clEnumValN(ImplicitItModeTy::Never, "never",
87                           "Warn in ARM, reject in Thumb"),
88                clEnumValN(ImplicitItModeTy::ARMOnly, "arm",
89                           "Accept in ARM, reject in Thumb"),
90                clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb",
91                           "Warn in ARM, emit implicit ITs in Thumb")));
92 
93 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes",
94                                         cl::init(false));
95 
96 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
97 
98 static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) {
99   // Position==0 means we're not in an IT block at all. Position==1
100   // means we want the first state bit, which is always 0 (Then).
101   // Position==2 means we want the second state bit, stored at bit 3
102   // of Mask, and so on downwards. So (5 - Position) will shift the
103   // right bit down to bit 0, including the always-0 bit at bit 4 for
104   // the mandatory initial Then.
105   return (Mask >> (5 - Position) & 1);
106 }
107 
108 class UnwindContext {
109   using Locs = SmallVector<SMLoc, 4>;
110 
111   MCAsmParser &Parser;
112   Locs FnStartLocs;
113   Locs CantUnwindLocs;
114   Locs PersonalityLocs;
115   Locs PersonalityIndexLocs;
116   Locs HandlerDataLocs;
117   int FPReg;
118 
119 public:
120   UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}
121 
122   bool hasFnStart() const { return !FnStartLocs.empty(); }
123   bool cantUnwind() const { return !CantUnwindLocs.empty(); }
124   bool hasHandlerData() const { return !HandlerDataLocs.empty(); }
125 
126   bool hasPersonality() const {
127     return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
128   }
129 
130   void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
131   void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
132   void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
133   void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
134   void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }
135 
136   void saveFPReg(int Reg) { FPReg = Reg; }
137   int getFPReg() const { return FPReg; }
138 
139   void emitFnStartLocNotes() const {
140     for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end();
141          FI != FE; ++FI)
142       Parser.Note(*FI, ".fnstart was specified here");
143   }
144 
145   void emitCantUnwindLocNotes() const {
146     for (Locs::const_iterator UI = CantUnwindLocs.begin(),
147                               UE = CantUnwindLocs.end(); UI != UE; ++UI)
148       Parser.Note(*UI, ".cantunwind was specified here");
149   }
150 
151   void emitHandlerDataLocNotes() const {
152     for (Locs::const_iterator HI = HandlerDataLocs.begin(),
153                               HE = HandlerDataLocs.end(); HI != HE; ++HI)
154       Parser.Note(*HI, ".handlerdata was specified here");
155   }
156 
157   void emitPersonalityLocNotes() const {
158     for (Locs::const_iterator PI = PersonalityLocs.begin(),
159                               PE = PersonalityLocs.end(),
160                               PII = PersonalityIndexLocs.begin(),
161                               PIE = PersonalityIndexLocs.end();
162          PI != PE || PII != PIE;) {
163       if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
164         Parser.Note(*PI++, ".personality was specified here");
165       else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
166         Parser.Note(*PII++, ".personalityindex was specified here");
167       else
168         llvm_unreachable(".personality and .personalityindex cannot be "
169                          "at the same location");
170     }
171   }
172 
173   void reset() {
174     FnStartLocs = Locs();
175     CantUnwindLocs = Locs();
176     PersonalityLocs = Locs();
177     HandlerDataLocs = Locs();
178     PersonalityIndexLocs = Locs();
179     FPReg = ARM::SP;
180   }
181 };
182 
183 
184 class ARMAsmParser : public MCTargetAsmParser {
185   const MCRegisterInfo *MRI;
186   UnwindContext UC;
187 
188   ARMTargetStreamer &getTargetStreamer() {
189     assert(getParser().getStreamer().getTargetStreamer() &&
190            "do not have a target streamer");
191     MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
192     return static_cast<ARMTargetStreamer &>(TS);
193   }
194 
195   // Map of register aliases registers via the .req directive.
196   StringMap<unsigned> RegisterReqs;
197 
198   bool NextSymbolIsThumb;
199 
200   bool useImplicitITThumb() const {
201     return ImplicitItMode == ImplicitItModeTy::Always ||
202            ImplicitItMode == ImplicitItModeTy::ThumbOnly;
203   }
204 
205   bool useImplicitITARM() const {
206     return ImplicitItMode == ImplicitItModeTy::Always ||
207            ImplicitItMode == ImplicitItModeTy::ARMOnly;
208   }
209 
210   struct {
211     ARMCC::CondCodes Cond;    // Condition for IT block.
212     unsigned Mask:4;          // Condition mask for instructions.
213                               // Starting at first 1 (from lsb).
214                               //   '1'  condition as indicated in IT.
215                               //   '0'  inverse of condition (else).
216                               // Count of instructions in IT block is
217                               // 4 - trailingzeroes(mask)
218                               // Note that this does not have the same encoding
219                               // as in the IT instruction, which also depends
220                               // on the low bit of the condition code.
221 
222     unsigned CurPosition;     // Current position in parsing of IT
223                               // block. In range [0,4], with 0 being the IT
224                               // instruction itself. Initialized according to
225                               // count of instructions in block.  ~0U if no
226                               // active IT block.
227 
228     bool IsExplicit;          // true  - The IT instruction was present in the
229                               //         input, we should not modify it.
230                               // false - The IT instruction was added
231                               //         implicitly, we can extend it if that
232                               //         would be legal.
233   } ITState;
234 
235   SmallVector<MCInst, 4> PendingConditionalInsts;
236 
237   void flushPendingInstructions(MCStreamer &Out) override {
238     if (!inImplicitITBlock()) {
239       assert(PendingConditionalInsts.size() == 0);
240       return;
241     }
242 
243     // Emit the IT instruction
244     MCInst ITInst;
245     ITInst.setOpcode(ARM::t2IT);
246     ITInst.addOperand(MCOperand::createImm(ITState.Cond));
247     ITInst.addOperand(MCOperand::createImm(ITState.Mask));
248     Out.EmitInstruction(ITInst, getSTI());
249 
250     // Emit the conditonal instructions
251     assert(PendingConditionalInsts.size() <= 4);
252     for (const MCInst &Inst : PendingConditionalInsts) {
253       Out.EmitInstruction(Inst, getSTI());
254     }
255     PendingConditionalInsts.clear();
256 
257     // Clear the IT state
258     ITState.Mask = 0;
259     ITState.CurPosition = ~0U;
260   }
261 
262   bool inITBlock() { return ITState.CurPosition != ~0U; }
263   bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; }
264   bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; }
265 
266   bool lastInITBlock() {
267     return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask);
268   }
269 
270   void forwardITPosition() {
271     if (!inITBlock()) return;
272     // Move to the next instruction in the IT block, if there is one. If not,
273     // mark the block as done, except for implicit IT blocks, which we leave
274     // open until we find an instruction that can't be added to it.
275     unsigned TZ = countTrailingZeros(ITState.Mask);
276     if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit)
277       ITState.CurPosition = ~0U; // Done with the IT block after this.
278   }
279 
280   // Rewind the state of the current IT block, removing the last slot from it.
281   void rewindImplicitITPosition() {
282     assert(inImplicitITBlock());
283     assert(ITState.CurPosition > 1);
284     ITState.CurPosition--;
285     unsigned TZ = countTrailingZeros(ITState.Mask);
286     unsigned NewMask = 0;
287     NewMask |= ITState.Mask & (0xC << TZ);
288     NewMask |= 0x2 << TZ;
289     ITState.Mask = NewMask;
290   }
291 
292   // Rewind the state of the current IT block, removing the last slot from it.
293   // If we were at the first slot, this closes the IT block.
294   void discardImplicitITBlock() {
295     assert(inImplicitITBlock());
296     assert(ITState.CurPosition == 1);
297     ITState.CurPosition = ~0U;
298   }
299 
300   // Return the low-subreg of a given Q register.
301   unsigned getDRegFromQReg(unsigned QReg) const {
302     return MRI->getSubReg(QReg, ARM::dsub_0);
303   }
304 
305   // Get the condition code corresponding to the current IT block slot.
306   ARMCC::CondCodes currentITCond() {
307     unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition);
308     return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond;
309   }
310 
311   // Invert the condition of the current IT block slot without changing any
312   // other slots in the same block.
313   void invertCurrentITCondition() {
314     if (ITState.CurPosition == 1) {
315       ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond);
316     } else {
317       ITState.Mask ^= 1 << (5 - ITState.CurPosition);
318     }
319   }
320 
321   // Returns true if the current IT block is full (all 4 slots used).
322   bool isITBlockFull() {
323     return inITBlock() && (ITState.Mask & 1);
324   }
325 
326   // Extend the current implicit IT block to have one more slot with the given
327   // condition code.
328   void extendImplicitITBlock(ARMCC::CondCodes Cond) {
329     assert(inImplicitITBlock());
330     assert(!isITBlockFull());
331     assert(Cond == ITState.Cond ||
332            Cond == ARMCC::getOppositeCondition(ITState.Cond));
333     unsigned TZ = countTrailingZeros(ITState.Mask);
334     unsigned NewMask = 0;
335     // Keep any existing condition bits.
336     NewMask |= ITState.Mask & (0xE << TZ);
337     // Insert the new condition bit.
338     NewMask |= (Cond != ITState.Cond) << TZ;
339     // Move the trailing 1 down one bit.
340     NewMask |= 1 << (TZ - 1);
341     ITState.Mask = NewMask;
342   }
343 
344   // Create a new implicit IT block with a dummy condition code.
345   void startImplicitITBlock() {
346     assert(!inITBlock());
347     ITState.Cond = ARMCC::AL;
348     ITState.Mask = 8;
349     ITState.CurPosition = 1;
350     ITState.IsExplicit = false;
351   }
352 
353   // Create a new explicit IT block with the given condition and mask.
354   // The mask should be in the format used in ARMOperand and
355   // MCOperand, with a 1 implying 'e', regardless of the low bit of
356   // the condition.
357   void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) {
358     assert(!inITBlock());
359     ITState.Cond = Cond;
360     ITState.Mask = Mask;
361     ITState.CurPosition = 0;
362     ITState.IsExplicit = true;
363   }
364 
365   struct {
366     unsigned Mask : 4;
367     unsigned CurPosition;
368   } VPTState;
369   bool inVPTBlock() { return VPTState.CurPosition != ~0U; }
370   void forwardVPTPosition() {
371     if (!inVPTBlock()) return;
372     unsigned TZ = countTrailingZeros(VPTState.Mask);
373     if (++VPTState.CurPosition == 5 - TZ)
374       VPTState.CurPosition = ~0U;
375   }
376 
377   void Note(SMLoc L, const Twine &Msg, SMRange Range = None) {
378     return getParser().Note(L, Msg, Range);
379   }
380 
381   bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) {
382     return getParser().Warning(L, Msg, Range);
383   }
384 
385   bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) {
386     return getParser().Error(L, Msg, Range);
387   }
388 
389   bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands,
390                            unsigned ListNo, bool IsARPop = false);
391   bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands,
392                            unsigned ListNo);
393 
394   int tryParseRegister();
395   bool tryParseRegisterWithWriteBack(OperandVector &);
396   int tryParseShiftRegister(OperandVector &);
397   bool parseRegisterList(OperandVector &, bool EnforceOrder = true);
398   bool parseMemory(OperandVector &);
399   bool parseOperand(OperandVector &, StringRef Mnemonic);
400   bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
401   bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
402                               unsigned &ShiftAmount);
403   bool parseLiteralValues(unsigned Size, SMLoc L);
404   bool parseDirectiveThumb(SMLoc L);
405   bool parseDirectiveARM(SMLoc L);
406   bool parseDirectiveThumbFunc(SMLoc L);
407   bool parseDirectiveCode(SMLoc L);
408   bool parseDirectiveSyntax(SMLoc L);
409   bool parseDirectiveReq(StringRef Name, SMLoc L);
410   bool parseDirectiveUnreq(SMLoc L);
411   bool parseDirectiveArch(SMLoc L);
412   bool parseDirectiveEabiAttr(SMLoc L);
413   bool parseDirectiveCPU(SMLoc L);
414   bool parseDirectiveFPU(SMLoc L);
415   bool parseDirectiveFnStart(SMLoc L);
416   bool parseDirectiveFnEnd(SMLoc L);
417   bool parseDirectiveCantUnwind(SMLoc L);
418   bool parseDirectivePersonality(SMLoc L);
419   bool parseDirectiveHandlerData(SMLoc L);
420   bool parseDirectiveSetFP(SMLoc L);
421   bool parseDirectivePad(SMLoc L);
422   bool parseDirectiveRegSave(SMLoc L, bool IsVector);
423   bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
424   bool parseDirectiveLtorg(SMLoc L);
425   bool parseDirectiveEven(SMLoc L);
426   bool parseDirectivePersonalityIndex(SMLoc L);
427   bool parseDirectiveUnwindRaw(SMLoc L);
428   bool parseDirectiveTLSDescSeq(SMLoc L);
429   bool parseDirectiveMovSP(SMLoc L);
430   bool parseDirectiveObjectArch(SMLoc L);
431   bool parseDirectiveArchExtension(SMLoc L);
432   bool parseDirectiveAlign(SMLoc L);
433   bool parseDirectiveThumbSet(SMLoc L);
434 
435   bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken);
436   StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken,
437                           unsigned &PredicationCode,
438                           unsigned &VPTPredicationCode, bool &CarrySetting,
439                           unsigned &ProcessorIMod, StringRef &ITMask);
440   void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken,
441                              StringRef FullInst, bool &CanAcceptCarrySet,
442                              bool &CanAcceptPredicationCode,
443                              bool &CanAcceptVPTPredicationCode);
444 
445   void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting,
446                                      OperandVector &Operands);
447   bool isThumb() const {
448     // FIXME: Can tablegen auto-generate this?
449     return getSTI().getFeatureBits()[ARM::ModeThumb];
450   }
451 
452   bool isThumbOne() const {
453     return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2];
454   }
455 
456   bool isThumbTwo() const {
457     return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2];
458   }
459 
460   bool hasThumb() const {
461     return getSTI().getFeatureBits()[ARM::HasV4TOps];
462   }
463 
464   bool hasThumb2() const {
465     return getSTI().getFeatureBits()[ARM::FeatureThumb2];
466   }
467 
468   bool hasV6Ops() const {
469     return getSTI().getFeatureBits()[ARM::HasV6Ops];
470   }
471 
472   bool hasV6T2Ops() const {
473     return getSTI().getFeatureBits()[ARM::HasV6T2Ops];
474   }
475 
476   bool hasV6MOps() const {
477     return getSTI().getFeatureBits()[ARM::HasV6MOps];
478   }
479 
480   bool hasV7Ops() const {
481     return getSTI().getFeatureBits()[ARM::HasV7Ops];
482   }
483 
484   bool hasV8Ops() const {
485     return getSTI().getFeatureBits()[ARM::HasV8Ops];
486   }
487 
488   bool hasV8MBaseline() const {
489     return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps];
490   }
491 
492   bool hasV8MMainline() const {
493     return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps];
494   }
495   bool hasV8_1MMainline() const {
496     return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps];
497   }
498   bool hasMVE() const {
499     return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps];
500   }
501   bool hasMVEFloat() const {
502     return getSTI().getFeatureBits()[ARM::HasMVEFloatOps];
503   }
504   bool has8MSecExt() const {
505     return getSTI().getFeatureBits()[ARM::Feature8MSecExt];
506   }
507 
508   bool hasARM() const {
509     return !getSTI().getFeatureBits()[ARM::FeatureNoARM];
510   }
511 
512   bool hasDSP() const {
513     return getSTI().getFeatureBits()[ARM::FeatureDSP];
514   }
515 
516   bool hasD32() const {
517     return getSTI().getFeatureBits()[ARM::FeatureD32];
518   }
519 
520   bool hasV8_1aOps() const {
521     return getSTI().getFeatureBits()[ARM::HasV8_1aOps];
522   }
523 
524   bool hasRAS() const {
525     return getSTI().getFeatureBits()[ARM::FeatureRAS];
526   }
527 
528   void SwitchMode() {
529     MCSubtargetInfo &STI = copySTI();
530     auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
531     setAvailableFeatures(FB);
532   }
533 
534   void FixModeAfterArchChange(bool WasThumb, SMLoc Loc);
535 
536   bool isMClass() const {
537     return getSTI().getFeatureBits()[ARM::FeatureMClass];
538   }
539 
540   /// @name Auto-generated Match Functions
541   /// {
542 
543 #define GET_ASSEMBLER_HEADER
544 #include "ARMGenAsmMatcher.inc"
545 
546   /// }
547 
548   OperandMatchResultTy parseITCondCode(OperandVector &);
549   OperandMatchResultTy parseCoprocNumOperand(OperandVector &);
550   OperandMatchResultTy parseCoprocRegOperand(OperandVector &);
551   OperandMatchResultTy parseCoprocOptionOperand(OperandVector &);
552   OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &);
553   OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &);
554   OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
555   OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
556   OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
557   OperandMatchResultTy parseBankedRegOperand(OperandVector &);
558   OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
559                                    int High);
560   OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
561     return parsePKHImm(O, "lsl", 0, 31);
562   }
563   OperandMatchResultTy parsePKHASRImm(OperandVector &O) {
564     return parsePKHImm(O, "asr", 1, 32);
565   }
566   OperandMatchResultTy parseSetEndImm(OperandVector &);
567   OperandMatchResultTy parseShifterImm(OperandVector &);
568   OperandMatchResultTy parseRotImm(OperandVector &);
569   OperandMatchResultTy parseModImm(OperandVector &);
570   OperandMatchResultTy parseBitfield(OperandVector &);
571   OperandMatchResultTy parsePostIdxReg(OperandVector &);
572   OperandMatchResultTy parseAM3Offset(OperandVector &);
573   OperandMatchResultTy parseFPImm(OperandVector &);
574   OperandMatchResultTy parseVectorList(OperandVector &);
575   OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
576                                        SMLoc &EndLoc);
577 
578   // Asm Match Converter Methods
579   void cvtThumbMultiply(MCInst &Inst, const OperandVector &);
580   void cvtThumbBranches(MCInst &Inst, const OperandVector &);
581   void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &);
582 
583   bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
584   bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out);
585   bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands);
586   bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
587   bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
588   bool isITBlockTerminator(MCInst &Inst) const;
589   void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands);
590   bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands,
591                         bool Load, bool ARMMode, bool Writeback);
592 
593 public:
594   enum ARMMatchResultTy {
595     Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
596     Match_RequiresNotITBlock,
597     Match_RequiresV6,
598     Match_RequiresThumb2,
599     Match_RequiresV8,
600     Match_RequiresFlagSetting,
601 #define GET_OPERAND_DIAGNOSTIC_TYPES
602 #include "ARMGenAsmMatcher.inc"
603 
604   };
605 
606   ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
607                const MCInstrInfo &MII, const MCTargetOptions &Options)
608     : MCTargetAsmParser(Options, STI, MII), UC(Parser) {
609     MCAsmParserExtension::Initialize(Parser);
610 
611     // Cache the MCRegisterInfo.
612     MRI = getContext().getRegisterInfo();
613 
614     // Initialize the set of available features.
615     setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
616 
617     // Add build attributes based on the selected target.
618     if (AddBuildAttributes)
619       getTargetStreamer().emitTargetAttributes(STI);
620 
621     // Not in an ITBlock to start with.
622     ITState.CurPosition = ~0U;
623 
624     VPTState.CurPosition = ~0U;
625 
626     NextSymbolIsThumb = false;
627   }
628 
629   // Implementation of the MCTargetAsmParser interface:
630   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
631   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
632                         SMLoc NameLoc, OperandVector &Operands) override;
633   bool ParseDirective(AsmToken DirectiveID) override;
634 
635   unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
636                                       unsigned Kind) override;
637   unsigned checkTargetMatchPredicate(MCInst &Inst) override;
638 
639   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
640                                OperandVector &Operands, MCStreamer &Out,
641                                uint64_t &ErrorInfo,
642                                bool MatchingInlineAsm) override;
643   unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst,
644                             SmallVectorImpl<NearMissInfo> &NearMisses,
645                             bool MatchingInlineAsm, bool &EmitInITBlock,
646                             MCStreamer &Out);
647 
648   struct NearMissMessage {
649     SMLoc Loc;
650     SmallString<128> Message;
651   };
652 
653   const char *getCustomOperandDiag(ARMMatchResultTy MatchError);
654 
655   void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
656                         SmallVectorImpl<NearMissMessage> &NearMissesOut,
657                         SMLoc IDLoc, OperandVector &Operands);
658   void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc,
659                         OperandVector &Operands);
660 
661   void doBeforeLabelEmit(MCSymbol *Symbol) override;
662 
663   void onLabelParsed(MCSymbol *Symbol) override;
664 };
665 
666 /// ARMOperand - Instances of this class represent a parsed ARM machine
667 /// operand.
668 class ARMOperand : public MCParsedAsmOperand {
669   enum KindTy {
670     k_CondCode,
671     k_VPTPred,
672     k_CCOut,
673     k_ITCondMask,
674     k_CoprocNum,
675     k_CoprocReg,
676     k_CoprocOption,
677     k_Immediate,
678     k_MemBarrierOpt,
679     k_InstSyncBarrierOpt,
680     k_TraceSyncBarrierOpt,
681     k_Memory,
682     k_PostIndexRegister,
683     k_MSRMask,
684     k_BankedReg,
685     k_ProcIFlags,
686     k_VectorIndex,
687     k_Register,
688     k_RegisterList,
689     k_RegisterListWithAPSR,
690     k_DPRRegisterList,
691     k_SPRRegisterList,
692     k_FPSRegisterListWithVPR,
693     k_FPDRegisterListWithVPR,
694     k_VectorList,
695     k_VectorListAllLanes,
696     k_VectorListIndexed,
697     k_ShiftedRegister,
698     k_ShiftedImmediate,
699     k_ShifterImmediate,
700     k_RotateImmediate,
701     k_ModifiedImmediate,
702     k_ConstantPoolImmediate,
703     k_BitfieldDescriptor,
704     k_Token,
705   } Kind;
706 
707   SMLoc StartLoc, EndLoc, AlignmentLoc;
708   SmallVector<unsigned, 8> Registers;
709 
710   struct CCOp {
711     ARMCC::CondCodes Val;
712   };
713 
714   struct VCCOp {
715     ARMVCC::VPTCodes Val;
716   };
717 
718   struct CopOp {
719     unsigned Val;
720   };
721 
722   struct CoprocOptionOp {
723     unsigned Val;
724   };
725 
726   struct ITMaskOp {
727     unsigned Mask:4;
728   };
729 
730   struct MBOptOp {
731     ARM_MB::MemBOpt Val;
732   };
733 
734   struct ISBOptOp {
735     ARM_ISB::InstSyncBOpt Val;
736   };
737 
738   struct TSBOptOp {
739     ARM_TSB::TraceSyncBOpt Val;
740   };
741 
742   struct IFlagsOp {
743     ARM_PROC::IFlags Val;
744   };
745 
746   struct MMaskOp {
747     unsigned Val;
748   };
749 
750   struct BankedRegOp {
751     unsigned Val;
752   };
753 
754   struct TokOp {
755     const char *Data;
756     unsigned Length;
757   };
758 
759   struct RegOp {
760     unsigned RegNum;
761   };
762 
763   // A vector register list is a sequential list of 1 to 4 registers.
764   struct VectorListOp {
765     unsigned RegNum;
766     unsigned Count;
767     unsigned LaneIndex;
768     bool isDoubleSpaced;
769   };
770 
771   struct VectorIndexOp {
772     unsigned Val;
773   };
774 
775   struct ImmOp {
776     const MCExpr *Val;
777   };
778 
779   /// Combined record for all forms of ARM address expressions.
780   struct MemoryOp {
781     unsigned BaseRegNum;
782     // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
783     // was specified.
784     const MCConstantExpr *OffsetImm;  // Offset immediate value
785     unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
786     ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
787     unsigned ShiftImm;        // shift for OffsetReg.
788     unsigned Alignment;       // 0 = no alignment specified
789     // n = alignment in bytes (2, 4, 8, 16, or 32)
790     unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
791   };
792 
793   struct PostIdxRegOp {
794     unsigned RegNum;
795     bool isAdd;
796     ARM_AM::ShiftOpc ShiftTy;
797     unsigned ShiftImm;
798   };
799 
800   struct ShifterImmOp {
801     bool isASR;
802     unsigned Imm;
803   };
804 
805   struct RegShiftedRegOp {
806     ARM_AM::ShiftOpc ShiftTy;
807     unsigned SrcReg;
808     unsigned ShiftReg;
809     unsigned ShiftImm;
810   };
811 
812   struct RegShiftedImmOp {
813     ARM_AM::ShiftOpc ShiftTy;
814     unsigned SrcReg;
815     unsigned ShiftImm;
816   };
817 
818   struct RotImmOp {
819     unsigned Imm;
820   };
821 
822   struct ModImmOp {
823     unsigned Bits;
824     unsigned Rot;
825   };
826 
827   struct BitfieldOp {
828     unsigned LSB;
829     unsigned Width;
830   };
831 
832   union {
833     struct CCOp CC;
834     struct VCCOp VCC;
835     struct CopOp Cop;
836     struct CoprocOptionOp CoprocOption;
837     struct MBOptOp MBOpt;
838     struct ISBOptOp ISBOpt;
839     struct TSBOptOp TSBOpt;
840     struct ITMaskOp ITMask;
841     struct IFlagsOp IFlags;
842     struct MMaskOp MMask;
843     struct BankedRegOp BankedReg;
844     struct TokOp Tok;
845     struct RegOp Reg;
846     struct VectorListOp VectorList;
847     struct VectorIndexOp VectorIndex;
848     struct ImmOp Imm;
849     struct MemoryOp Memory;
850     struct PostIdxRegOp PostIdxReg;
851     struct ShifterImmOp ShifterImm;
852     struct RegShiftedRegOp RegShiftedReg;
853     struct RegShiftedImmOp RegShiftedImm;
854     struct RotImmOp RotImm;
855     struct ModImmOp ModImm;
856     struct BitfieldOp Bitfield;
857   };
858 
859 public:
860   ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
861 
862   /// getStartLoc - Get the location of the first token of this operand.
863   SMLoc getStartLoc() const override { return StartLoc; }
864 
865   /// getEndLoc - Get the location of the last token of this operand.
866   SMLoc getEndLoc() const override { return EndLoc; }
867 
868   /// getLocRange - Get the range between the first and last token of this
869   /// operand.
870   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
871 
872   /// getAlignmentLoc - Get the location of the Alignment token of this operand.
873   SMLoc getAlignmentLoc() const {
874     assert(Kind == k_Memory && "Invalid access!");
875     return AlignmentLoc;
876   }
877 
878   ARMCC::CondCodes getCondCode() const {
879     assert(Kind == k_CondCode && "Invalid access!");
880     return CC.Val;
881   }
882 
883   ARMVCC::VPTCodes getVPTPred() const {
884     assert(isVPTPred() && "Invalid access!");
885     return VCC.Val;
886   }
887 
888   unsigned getCoproc() const {
889     assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
890     return Cop.Val;
891   }
892 
893   StringRef getToken() const {
894     assert(Kind == k_Token && "Invalid access!");
895     return StringRef(Tok.Data, Tok.Length);
896   }
897 
898   unsigned getReg() const override {
899     assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
900     return Reg.RegNum;
901   }
902 
903   const SmallVectorImpl<unsigned> &getRegList() const {
904     assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR ||
905             Kind == k_DPRRegisterList || Kind == k_SPRRegisterList ||
906             Kind == k_FPSRegisterListWithVPR ||
907             Kind == k_FPDRegisterListWithVPR) &&
908            "Invalid access!");
909     return Registers;
910   }
911 
912   const MCExpr *getImm() const {
913     assert(isImm() && "Invalid access!");
914     return Imm.Val;
915   }
916 
917   const MCExpr *getConstantPoolImm() const {
918     assert(isConstantPoolImm() && "Invalid access!");
919     return Imm.Val;
920   }
921 
922   unsigned getVectorIndex() const {
923     assert(Kind == k_VectorIndex && "Invalid access!");
924     return VectorIndex.Val;
925   }
926 
927   ARM_MB::MemBOpt getMemBarrierOpt() const {
928     assert(Kind == k_MemBarrierOpt && "Invalid access!");
929     return MBOpt.Val;
930   }
931 
932   ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
933     assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
934     return ISBOpt.Val;
935   }
936 
937   ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const {
938     assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!");
939     return TSBOpt.Val;
940   }
941 
942   ARM_PROC::IFlags getProcIFlags() const {
943     assert(Kind == k_ProcIFlags && "Invalid access!");
944     return IFlags.Val;
945   }
946 
947   unsigned getMSRMask() const {
948     assert(Kind == k_MSRMask && "Invalid access!");
949     return MMask.Val;
950   }
951 
952   unsigned getBankedReg() const {
953     assert(Kind == k_BankedReg && "Invalid access!");
954     return BankedReg.Val;
955   }
956 
957   bool isCoprocNum() const { return Kind == k_CoprocNum; }
958   bool isCoprocReg() const { return Kind == k_CoprocReg; }
959   bool isCoprocOption() const { return Kind == k_CoprocOption; }
960   bool isCondCode() const { return Kind == k_CondCode; }
961   bool isVPTPred() const { return Kind == k_VPTPred; }
962   bool isCCOut() const { return Kind == k_CCOut; }
963   bool isITMask() const { return Kind == k_ITCondMask; }
964   bool isITCondCode() const { return Kind == k_CondCode; }
965   bool isImm() const override {
966     return Kind == k_Immediate;
967   }
968 
969   bool isARMBranchTarget() const {
970     if (!isImm()) return false;
971 
972     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
973       return CE->getValue() % 4 == 0;
974     return true;
975   }
976 
977 
978   bool isThumbBranchTarget() const {
979     if (!isImm()) return false;
980 
981     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
982       return CE->getValue() % 2 == 0;
983     return true;
984   }
985 
986   // checks whether this operand is an unsigned offset which fits is a field
987   // of specified width and scaled by a specific number of bits
988   template<unsigned width, unsigned scale>
989   bool isUnsignedOffset() const {
990     if (!isImm()) return false;
991     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
992     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
993       int64_t Val = CE->getValue();
994       int64_t Align = 1LL << scale;
995       int64_t Max = Align * ((1LL << width) - 1);
996       return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
997     }
998     return false;
999   }
1000 
1001   // checks whether this operand is an signed offset which fits is a field
1002   // of specified width and scaled by a specific number of bits
1003   template<unsigned width, unsigned scale>
1004   bool isSignedOffset() const {
1005     if (!isImm()) return false;
1006     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1007     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1008       int64_t Val = CE->getValue();
1009       int64_t Align = 1LL << scale;
1010       int64_t Max = Align * ((1LL << (width-1)) - 1);
1011       int64_t Min = -Align * (1LL << (width-1));
1012       return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
1013     }
1014     return false;
1015   }
1016 
1017   // checks whether this operand is an offset suitable for the LE /
1018   // LETP instructions in Arm v8.1M
1019   bool isLEOffset() const {
1020     if (!isImm()) return false;
1021     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1022     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1023       int64_t Val = CE->getValue();
1024       return Val < 0 && Val >= -4094 && (Val & 1) == 0;
1025     }
1026     return false;
1027   }
1028 
1029   // checks whether this operand is a memory operand computed as an offset
1030   // applied to PC. the offset may have 8 bits of magnitude and is represented
1031   // with two bits of shift. textually it may be either [pc, #imm], #imm or
1032   // relocable expression...
1033   bool isThumbMemPC() const {
1034     int64_t Val = 0;
1035     if (isImm()) {
1036       if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1037       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
1038       if (!CE) return false;
1039       Val = CE->getValue();
1040     }
1041     else if (isGPRMem()) {
1042       if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
1043       if(Memory.BaseRegNum != ARM::PC) return false;
1044       Val = Memory.OffsetImm->getValue();
1045     }
1046     else return false;
1047     return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
1048   }
1049 
1050   bool isFPImm() const {
1051     if (!isImm()) return false;
1052     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1053     if (!CE) return false;
1054     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
1055     return Val != -1;
1056   }
1057 
1058   template<int64_t N, int64_t M>
1059   bool isImmediate() const {
1060     if (!isImm()) return false;
1061     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1062     if (!CE) return false;
1063     int64_t Value = CE->getValue();
1064     return Value >= N && Value <= M;
1065   }
1066 
1067   template<int64_t N, int64_t M>
1068   bool isImmediateS4() const {
1069     if (!isImm()) return false;
1070     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1071     if (!CE) return false;
1072     int64_t Value = CE->getValue();
1073     return ((Value & 3) == 0) && Value >= N && Value <= M;
1074   }
1075   template<int64_t N, int64_t M>
1076   bool isImmediateS2() const {
1077     if (!isImm()) return false;
1078     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1079     if (!CE) return false;
1080     int64_t Value = CE->getValue();
1081     return ((Value & 1) == 0) && Value >= N && Value <= M;
1082   }
1083   bool isFBits16() const {
1084     return isImmediate<0, 17>();
1085   }
1086   bool isFBits32() const {
1087     return isImmediate<1, 33>();
1088   }
1089   bool isImm8s4() const {
1090     return isImmediateS4<-1020, 1020>();
1091   }
1092   bool isImm7s4() const {
1093     return isImmediateS4<-508, 508>();
1094   }
1095   bool isImm7Shift0() const {
1096     return isImmediate<-127, 127>();
1097   }
1098   bool isImm7Shift1() const {
1099     return isImmediateS2<-255, 255>();
1100   }
1101   bool isImm7Shift2() const {
1102     return isImmediateS4<-511, 511>();
1103   }
1104   bool isImm7() const {
1105     return isImmediate<-127, 127>();
1106   }
1107   bool isImm0_1020s4() const {
1108     return isImmediateS4<0, 1020>();
1109   }
1110   bool isImm0_508s4() const {
1111     return isImmediateS4<0, 508>();
1112   }
1113   bool isImm0_508s4Neg() const {
1114     if (!isImm()) return false;
1115     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1116     if (!CE) return false;
1117     int64_t Value = -CE->getValue();
1118     // explicitly exclude zero. we want that to use the normal 0_508 version.
1119     return ((Value & 3) == 0) && Value > 0 && Value <= 508;
1120   }
1121 
1122   bool isImm0_4095Neg() const {
1123     if (!isImm()) return false;
1124     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1125     if (!CE) return false;
1126     // isImm0_4095Neg is used with 32-bit immediates only.
1127     // 32-bit immediates are zero extended to 64-bit when parsed,
1128     // thus simple -CE->getValue() results in a big negative number,
1129     // not a small positive number as intended
1130     if ((CE->getValue() >> 32) > 0) return false;
1131     uint32_t Value = -static_cast<uint32_t>(CE->getValue());
1132     return Value > 0 && Value < 4096;
1133   }
1134 
1135   bool isImm0_7() const {
1136     return isImmediate<0, 7>();
1137   }
1138 
1139   bool isImm1_16() const {
1140     return isImmediate<1, 16>();
1141   }
1142 
1143   bool isImm1_32() const {
1144     return isImmediate<1, 32>();
1145   }
1146 
1147   bool isImm8_255() const {
1148     return isImmediate<8, 255>();
1149   }
1150 
1151   bool isImm256_65535Expr() const {
1152     if (!isImm()) return false;
1153     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1154     // If it's not a constant expression, it'll generate a fixup and be
1155     // handled later.
1156     if (!CE) return true;
1157     int64_t Value = CE->getValue();
1158     return Value >= 256 && Value < 65536;
1159   }
1160 
1161   bool isImm0_65535Expr() const {
1162     if (!isImm()) return false;
1163     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1164     // If it's not a constant expression, it'll generate a fixup and be
1165     // handled later.
1166     if (!CE) return true;
1167     int64_t Value = CE->getValue();
1168     return Value >= 0 && Value < 65536;
1169   }
1170 
1171   bool isImm24bit() const {
1172     return isImmediate<0, 0xffffff + 1>();
1173   }
1174 
1175   bool isImmThumbSR() const {
1176     return isImmediate<1, 33>();
1177   }
1178 
1179   template<int shift>
1180   bool isExpImmValue(uint64_t Value) const {
1181     uint64_t mask = (1 << shift) - 1;
1182     if ((Value & mask) != 0 || (Value >> shift) > 0xff)
1183       return false;
1184     return true;
1185   }
1186 
1187   template<int shift>
1188   bool isExpImm() const {
1189     if (!isImm()) return false;
1190     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1191     if (!CE) return false;
1192 
1193     return isExpImmValue<shift>(CE->getValue());
1194   }
1195 
1196   template<int shift, int size>
1197   bool isInvertedExpImm() const {
1198     if (!isImm()) return false;
1199     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1200     if (!CE) return false;
1201 
1202     uint64_t OriginalValue = CE->getValue();
1203     uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1);
1204     return isExpImmValue<shift>(InvertedValue);
1205   }
1206 
1207   bool isPKHLSLImm() const {
1208     return isImmediate<0, 32>();
1209   }
1210 
1211   bool isPKHASRImm() const {
1212     return isImmediate<0, 33>();
1213   }
1214 
1215   bool isAdrLabel() const {
1216     // If we have an immediate that's not a constant, treat it as a label
1217     // reference needing a fixup.
1218     if (isImm() && !isa<MCConstantExpr>(getImm()))
1219       return true;
1220 
1221     // If it is a constant, it must fit into a modified immediate encoding.
1222     if (!isImm()) return false;
1223     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1224     if (!CE) return false;
1225     int64_t Value = CE->getValue();
1226     return (ARM_AM::getSOImmVal(Value) != -1 ||
1227             ARM_AM::getSOImmVal(-Value) != -1);
1228   }
1229 
1230   bool isT2SOImm() const {
1231     // If we have an immediate that's not a constant, treat it as an expression
1232     // needing a fixup.
1233     if (isImm() && !isa<MCConstantExpr>(getImm())) {
1234       // We want to avoid matching :upper16: and :lower16: as we want these
1235       // expressions to match in isImm0_65535Expr()
1236       const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm());
1237       return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
1238                              ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16));
1239     }
1240     if (!isImm()) return false;
1241     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1242     if (!CE) return false;
1243     int64_t Value = CE->getValue();
1244     return ARM_AM::getT2SOImmVal(Value) != -1;
1245   }
1246 
1247   bool isT2SOImmNot() const {
1248     if (!isImm()) return false;
1249     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1250     if (!CE) return false;
1251     int64_t Value = CE->getValue();
1252     return ARM_AM::getT2SOImmVal(Value) == -1 &&
1253       ARM_AM::getT2SOImmVal(~Value) != -1;
1254   }
1255 
1256   bool isT2SOImmNeg() const {
1257     if (!isImm()) return false;
1258     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1259     if (!CE) return false;
1260     int64_t Value = CE->getValue();
1261     // Only use this when not representable as a plain so_imm.
1262     return ARM_AM::getT2SOImmVal(Value) == -1 &&
1263       ARM_AM::getT2SOImmVal(-Value) != -1;
1264   }
1265 
1266   bool isSetEndImm() const {
1267     if (!isImm()) return false;
1268     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1269     if (!CE) return false;
1270     int64_t Value = CE->getValue();
1271     return Value == 1 || Value == 0;
1272   }
1273 
1274   bool isReg() const override { return Kind == k_Register; }
1275   bool isRegList() const { return Kind == k_RegisterList; }
1276   bool isRegListWithAPSR() const {
1277     return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList;
1278   }
1279   bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
1280   bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
1281   bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; }
1282   bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; }
1283   bool isToken() const override { return Kind == k_Token; }
1284   bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
1285   bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
1286   bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; }
1287   bool isMem() const override {
1288       return isGPRMem() || isMVEMem();
1289   }
1290   bool isMVEMem() const {
1291     if (Kind != k_Memory)
1292       return false;
1293     if (Memory.BaseRegNum &&
1294         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) &&
1295         !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum))
1296       return false;
1297     if (Memory.OffsetRegNum &&
1298         !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1299             Memory.OffsetRegNum))
1300       return false;
1301     return true;
1302   }
1303   bool isGPRMem() const {
1304     if (Kind != k_Memory)
1305       return false;
1306     if (Memory.BaseRegNum &&
1307         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum))
1308       return false;
1309     if (Memory.OffsetRegNum &&
1310         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum))
1311       return false;
1312     return true;
1313   }
1314   bool isShifterImm() const { return Kind == k_ShifterImmediate; }
1315   bool isRegShiftedReg() const {
1316     return Kind == k_ShiftedRegister &&
1317            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1318                RegShiftedReg.SrcReg) &&
1319            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1320                RegShiftedReg.ShiftReg);
1321   }
1322   bool isRegShiftedImm() const {
1323     return Kind == k_ShiftedImmediate &&
1324            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1325                RegShiftedImm.SrcReg);
1326   }
1327   bool isRotImm() const { return Kind == k_RotateImmediate; }
1328 
1329   template<unsigned Min, unsigned Max>
1330   bool isPowerTwoInRange() const {
1331     if (!isImm()) return false;
1332     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1333     if (!CE) return false;
1334     int64_t Value = CE->getValue();
1335     return Value > 0 && countPopulation((uint64_t)Value) == 1 &&
1336            Value >= Min && Value <= Max;
1337   }
1338   bool isModImm() const { return Kind == k_ModifiedImmediate; }
1339 
1340   bool isModImmNot() const {
1341     if (!isImm()) return false;
1342     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1343     if (!CE) return false;
1344     int64_t Value = CE->getValue();
1345     return ARM_AM::getSOImmVal(~Value) != -1;
1346   }
1347 
1348   bool isModImmNeg() const {
1349     if (!isImm()) return false;
1350     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1351     if (!CE) return false;
1352     int64_t Value = CE->getValue();
1353     return ARM_AM::getSOImmVal(Value) == -1 &&
1354       ARM_AM::getSOImmVal(-Value) != -1;
1355   }
1356 
1357   bool isThumbModImmNeg1_7() const {
1358     if (!isImm()) return false;
1359     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1360     if (!CE) return false;
1361     int32_t Value = -(int32_t)CE->getValue();
1362     return 0 < Value && Value < 8;
1363   }
1364 
1365   bool isThumbModImmNeg8_255() const {
1366     if (!isImm()) return false;
1367     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1368     if (!CE) return false;
1369     int32_t Value = -(int32_t)CE->getValue();
1370     return 7 < Value && Value < 256;
1371   }
1372 
1373   bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; }
1374   bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
1375   bool isPostIdxRegShifted() const {
1376     return Kind == k_PostIndexRegister &&
1377            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum);
1378   }
1379   bool isPostIdxReg() const {
1380     return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift;
1381   }
1382   bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const {
1383     if (!isGPRMem())
1384       return false;
1385     // No offset of any kind.
1386     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1387      (alignOK || Memory.Alignment == Alignment);
1388   }
1389   bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const {
1390     if (!isGPRMem())
1391       return false;
1392 
1393     if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1394             Memory.BaseRegNum))
1395       return false;
1396 
1397     // No offset of any kind.
1398     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1399      (alignOK || Memory.Alignment == Alignment);
1400   }
1401   bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const {
1402     if (!isGPRMem())
1403       return false;
1404 
1405     if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains(
1406             Memory.BaseRegNum))
1407       return false;
1408 
1409     // No offset of any kind.
1410     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1411      (alignOK || Memory.Alignment == Alignment);
1412   }
1413   bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const {
1414     if (!isGPRMem())
1415       return false;
1416 
1417     if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains(
1418             Memory.BaseRegNum))
1419       return false;
1420 
1421     // No offset of any kind.
1422     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1423      (alignOK || Memory.Alignment == Alignment);
1424   }
1425   bool isMemPCRelImm12() const {
1426     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1427       return false;
1428     // Base register must be PC.
1429     if (Memory.BaseRegNum != ARM::PC)
1430       return false;
1431     // Immediate offset in range [-4095, 4095].
1432     if (!Memory.OffsetImm) return true;
1433     int64_t Val = Memory.OffsetImm->getValue();
1434     return (Val > -4096 && Val < 4096) ||
1435            (Val == std::numeric_limits<int32_t>::min());
1436   }
1437 
1438   bool isAlignedMemory() const {
1439     return isMemNoOffset(true);
1440   }
1441 
1442   bool isAlignedMemoryNone() const {
1443     return isMemNoOffset(false, 0);
1444   }
1445 
1446   bool isDupAlignedMemoryNone() const {
1447     return isMemNoOffset(false, 0);
1448   }
1449 
1450   bool isAlignedMemory16() const {
1451     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1452       return true;
1453     return isMemNoOffset(false, 0);
1454   }
1455 
1456   bool isDupAlignedMemory16() const {
1457     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1458       return true;
1459     return isMemNoOffset(false, 0);
1460   }
1461 
1462   bool isAlignedMemory32() const {
1463     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1464       return true;
1465     return isMemNoOffset(false, 0);
1466   }
1467 
1468   bool isDupAlignedMemory32() const {
1469     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1470       return true;
1471     return isMemNoOffset(false, 0);
1472   }
1473 
1474   bool isAlignedMemory64() const {
1475     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1476       return true;
1477     return isMemNoOffset(false, 0);
1478   }
1479 
1480   bool isDupAlignedMemory64() const {
1481     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1482       return true;
1483     return isMemNoOffset(false, 0);
1484   }
1485 
1486   bool isAlignedMemory64or128() const {
1487     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1488       return true;
1489     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1490       return true;
1491     return isMemNoOffset(false, 0);
1492   }
1493 
1494   bool isDupAlignedMemory64or128() const {
1495     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1496       return true;
1497     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1498       return true;
1499     return isMemNoOffset(false, 0);
1500   }
1501 
1502   bool isAlignedMemory64or128or256() const {
1503     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1504       return true;
1505     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1506       return true;
1507     if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
1508       return true;
1509     return isMemNoOffset(false, 0);
1510   }
1511 
1512   bool isAddrMode2() const {
1513     if (!isGPRMem() || Memory.Alignment != 0) return false;
1514     // Check for register offset.
1515     if (Memory.OffsetRegNum) return true;
1516     // Immediate offset in range [-4095, 4095].
1517     if (!Memory.OffsetImm) return true;
1518     int64_t Val = Memory.OffsetImm->getValue();
1519     return Val > -4096 && Val < 4096;
1520   }
1521 
1522   bool isAM2OffsetImm() const {
1523     if (!isImm()) return false;
1524     // Immediate offset in range [-4095, 4095].
1525     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1526     if (!CE) return false;
1527     int64_t Val = CE->getValue();
1528     return (Val == std::numeric_limits<int32_t>::min()) ||
1529            (Val > -4096 && Val < 4096);
1530   }
1531 
1532   bool isAddrMode3() const {
1533     // If we have an immediate that's not a constant, treat it as a label
1534     // reference needing a fixup. If it is a constant, it's something else
1535     // and we reject it.
1536     if (isImm() && !isa<MCConstantExpr>(getImm()))
1537       return true;
1538     if (!isGPRMem() || Memory.Alignment != 0) return false;
1539     // No shifts are legal for AM3.
1540     if (Memory.ShiftType != ARM_AM::no_shift) return false;
1541     // Check for register offset.
1542     if (Memory.OffsetRegNum) return true;
1543     // Immediate offset in range [-255, 255].
1544     if (!Memory.OffsetImm) return true;
1545     int64_t Val = Memory.OffsetImm->getValue();
1546     // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we
1547     // have to check for this too.
1548     return (Val > -256 && Val < 256) ||
1549            Val == std::numeric_limits<int32_t>::min();
1550   }
1551 
1552   bool isAM3Offset() const {
1553     if (isPostIdxReg())
1554       return true;
1555     if (!isImm())
1556       return false;
1557     // Immediate offset in range [-255, 255].
1558     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1559     if (!CE) return false;
1560     int64_t Val = CE->getValue();
1561     // Special case, #-0 is std::numeric_limits<int32_t>::min().
1562     return (Val > -256 && Val < 256) ||
1563            Val == std::numeric_limits<int32_t>::min();
1564   }
1565 
1566   bool isAddrMode5() const {
1567     // If we have an immediate that's not a constant, treat it as a label
1568     // reference needing a fixup. If it is a constant, it's something else
1569     // and we reject it.
1570     if (isImm() && !isa<MCConstantExpr>(getImm()))
1571       return true;
1572     if (!isGPRMem() || Memory.Alignment != 0) return false;
1573     // Check for register offset.
1574     if (Memory.OffsetRegNum) return false;
1575     // Immediate offset in range [-1020, 1020] and a multiple of 4.
1576     if (!Memory.OffsetImm) return true;
1577     int64_t Val = Memory.OffsetImm->getValue();
1578     return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
1579       Val == std::numeric_limits<int32_t>::min();
1580   }
1581 
1582   bool isAddrMode5FP16() const {
1583     // If we have an immediate that's not a constant, treat it as a label
1584     // reference needing a fixup. If it is a constant, it's something else
1585     // and we reject it.
1586     if (isImm() && !isa<MCConstantExpr>(getImm()))
1587       return true;
1588     if (!isGPRMem() || Memory.Alignment != 0) return false;
1589     // Check for register offset.
1590     if (Memory.OffsetRegNum) return false;
1591     // Immediate offset in range [-510, 510] and a multiple of 2.
1592     if (!Memory.OffsetImm) return true;
1593     int64_t Val = Memory.OffsetImm->getValue();
1594     return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) ||
1595            Val == std::numeric_limits<int32_t>::min();
1596   }
1597 
1598   bool isMemTBB() const {
1599     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1600         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1601       return false;
1602     return true;
1603   }
1604 
1605   bool isMemTBH() const {
1606     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1607         Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
1608         Memory.Alignment != 0 )
1609       return false;
1610     return true;
1611   }
1612 
1613   bool isMemRegOffset() const {
1614     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
1615       return false;
1616     return true;
1617   }
1618 
1619   bool isT2MemRegOffset() const {
1620     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1621         Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC)
1622       return false;
1623     // Only lsl #{0, 1, 2, 3} allowed.
1624     if (Memory.ShiftType == ARM_AM::no_shift)
1625       return true;
1626     if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
1627       return false;
1628     return true;
1629   }
1630 
1631   bool isMemThumbRR() const {
1632     // Thumb reg+reg addressing is simple. Just two registers, a base and
1633     // an offset. No shifts, negations or any other complicating factors.
1634     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1635         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1636       return false;
1637     return isARMLowRegister(Memory.BaseRegNum) &&
1638       (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
1639   }
1640 
1641   bool isMemThumbRIs4() const {
1642     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1643         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1644       return false;
1645     // Immediate offset, multiple of 4 in range [0, 124].
1646     if (!Memory.OffsetImm) return true;
1647     int64_t Val = Memory.OffsetImm->getValue();
1648     return Val >= 0 && Val <= 124 && (Val % 4) == 0;
1649   }
1650 
1651   bool isMemThumbRIs2() const {
1652     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1653         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1654       return false;
1655     // Immediate offset, multiple of 4 in range [0, 62].
1656     if (!Memory.OffsetImm) return true;
1657     int64_t Val = Memory.OffsetImm->getValue();
1658     return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1659   }
1660 
1661   bool isMemThumbRIs1() const {
1662     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1663         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1664       return false;
1665     // Immediate offset in range [0, 31].
1666     if (!Memory.OffsetImm) return true;
1667     int64_t Val = Memory.OffsetImm->getValue();
1668     return Val >= 0 && Val <= 31;
1669   }
1670 
1671   bool isMemThumbSPI() const {
1672     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1673         Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1674       return false;
1675     // Immediate offset, multiple of 4 in range [0, 1020].
1676     if (!Memory.OffsetImm) return true;
1677     int64_t Val = Memory.OffsetImm->getValue();
1678     return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1679   }
1680 
1681   bool isMemImm8s4Offset() const {
1682     // If we have an immediate that's not a constant, treat it as a label
1683     // reference needing a fixup. If it is a constant, it's something else
1684     // and we reject it.
1685     if (isImm() && !isa<MCConstantExpr>(getImm()))
1686       return true;
1687     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1688       return false;
1689     // Immediate offset a multiple of 4 in range [-1020, 1020].
1690     if (!Memory.OffsetImm) return true;
1691     int64_t Val = Memory.OffsetImm->getValue();
1692     // Special case, #-0 is std::numeric_limits<int32_t>::min().
1693     return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) ||
1694            Val == std::numeric_limits<int32_t>::min();
1695   }
1696   bool isMemImm7s4Offset() const {
1697     // If we have an immediate that's not a constant, treat it as a label
1698     // reference needing a fixup. If it is a constant, it's something else
1699     // and we reject it.
1700     if (isImm() && !isa<MCConstantExpr>(getImm()))
1701       return true;
1702     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 ||
1703         !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1704             Memory.BaseRegNum))
1705       return false;
1706     // Immediate offset a multiple of 4 in range [-508, 508].
1707     if (!Memory.OffsetImm) return true;
1708     int64_t Val = Memory.OffsetImm->getValue();
1709     // Special case, #-0 is INT32_MIN.
1710     return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN;
1711   }
1712   bool isMemImm0_1020s4Offset() const {
1713     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1714       return false;
1715     // Immediate offset a multiple of 4 in range [0, 1020].
1716     if (!Memory.OffsetImm) return true;
1717     int64_t Val = Memory.OffsetImm->getValue();
1718     return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1719   }
1720 
1721   bool isMemImm8Offset() const {
1722     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1723       return false;
1724     // Base reg of PC isn't allowed for these encodings.
1725     if (Memory.BaseRegNum == ARM::PC) return false;
1726     // Immediate offset in range [-255, 255].
1727     if (!Memory.OffsetImm) return true;
1728     int64_t Val = Memory.OffsetImm->getValue();
1729     return (Val == std::numeric_limits<int32_t>::min()) ||
1730            (Val > -256 && Val < 256);
1731   }
1732 
1733   template<unsigned Bits, unsigned RegClassID>
1734   bool isMemImm7ShiftedOffset() const {
1735     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 ||
1736         !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum))
1737       return false;
1738 
1739     // Expect an immediate offset equal to an element of the range
1740     // [-127, 127], shifted left by Bits.
1741 
1742     if (!Memory.OffsetImm) return true;
1743     int64_t Val = Memory.OffsetImm->getValue();
1744 
1745     // INT32_MIN is a special-case value (indicating the encoding with
1746     // zero offset and the subtract bit set)
1747     if (Val == INT32_MIN)
1748       return true;
1749 
1750     unsigned Divisor = 1U << Bits;
1751 
1752     // Check that the low bits are zero
1753     if (Val % Divisor != 0)
1754       return false;
1755 
1756     // Check that the remaining offset is within range.
1757     Val /= Divisor;
1758     return (Val >= -127 && Val <= 127);
1759   }
1760 
1761   template <int shift> bool isMemRegRQOffset() const {
1762     if (!isMVEMem() || Memory.OffsetImm != 0 || Memory.Alignment != 0)
1763       return false;
1764 
1765     if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1766             Memory.BaseRegNum))
1767       return false;
1768     if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1769             Memory.OffsetRegNum))
1770       return false;
1771 
1772     if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift)
1773       return false;
1774 
1775     if (shift > 0 &&
1776         (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift))
1777       return false;
1778 
1779     return true;
1780   }
1781 
1782   template <int shift> bool isMemRegQOffset() const {
1783     if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1784       return false;
1785 
1786     if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1787             Memory.BaseRegNum))
1788       return false;
1789 
1790     if(!Memory.OffsetImm) return true;
1791     static_assert(shift < 56,
1792                   "Such that we dont shift by a value higher than 62");
1793     int64_t Val = Memory.OffsetImm->getValue();
1794 
1795     // The value must be a multiple of (1 << shift)
1796     if ((Val & ((1U << shift) - 1)) != 0)
1797       return false;
1798 
1799     // And be in the right range, depending on the amount that it is shifted
1800     // by.  Shift 0, is equal to 7 unsigned bits, the sign bit is set
1801     // separately.
1802     int64_t Range = (1U << (7+shift)) - 1;
1803     return (Val == INT32_MIN) || (Val > -Range && Val < Range);
1804   }
1805 
1806   bool isMemPosImm8Offset() const {
1807     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1808       return false;
1809     // Immediate offset in range [0, 255].
1810     if (!Memory.OffsetImm) return true;
1811     int64_t Val = Memory.OffsetImm->getValue();
1812     return Val >= 0 && Val < 256;
1813   }
1814 
1815   bool isMemNegImm8Offset() const {
1816     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1817       return false;
1818     // Base reg of PC isn't allowed for these encodings.
1819     if (Memory.BaseRegNum == ARM::PC) return false;
1820     // Immediate offset in range [-255, -1].
1821     if (!Memory.OffsetImm) return false;
1822     int64_t Val = Memory.OffsetImm->getValue();
1823     return (Val == std::numeric_limits<int32_t>::min()) ||
1824            (Val > -256 && Val < 0);
1825   }
1826 
1827   bool isMemUImm12Offset() const {
1828     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1829       return false;
1830     // Immediate offset in range [0, 4095].
1831     if (!Memory.OffsetImm) return true;
1832     int64_t Val = Memory.OffsetImm->getValue();
1833     return (Val >= 0 && Val < 4096);
1834   }
1835 
1836   bool isMemImm12Offset() const {
1837     // If we have an immediate that's not a constant, treat it as a label
1838     // reference needing a fixup. If it is a constant, it's something else
1839     // and we reject it.
1840 
1841     if (isImm() && !isa<MCConstantExpr>(getImm()))
1842       return true;
1843 
1844     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1845       return false;
1846     // Immediate offset in range [-4095, 4095].
1847     if (!Memory.OffsetImm) return true;
1848     int64_t Val = Memory.OffsetImm->getValue();
1849     return (Val > -4096 && Val < 4096) ||
1850            (Val == std::numeric_limits<int32_t>::min());
1851   }
1852 
1853   bool isConstPoolAsmImm() const {
1854     // Delay processing of Constant Pool Immediate, this will turn into
1855     // a constant. Match no other operand
1856     return (isConstantPoolImm());
1857   }
1858 
1859   bool isPostIdxImm8() const {
1860     if (!isImm()) return false;
1861     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1862     if (!CE) return false;
1863     int64_t Val = CE->getValue();
1864     return (Val > -256 && Val < 256) ||
1865            (Val == std::numeric_limits<int32_t>::min());
1866   }
1867 
1868   bool isPostIdxImm8s4() const {
1869     if (!isImm()) return false;
1870     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1871     if (!CE) return false;
1872     int64_t Val = CE->getValue();
1873     return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
1874            (Val == std::numeric_limits<int32_t>::min());
1875   }
1876 
1877   bool isMSRMask() const { return Kind == k_MSRMask; }
1878   bool isBankedReg() const { return Kind == k_BankedReg; }
1879   bool isProcIFlags() const { return Kind == k_ProcIFlags; }
1880 
1881   // NEON operands.
1882   bool isSingleSpacedVectorList() const {
1883     return Kind == k_VectorList && !VectorList.isDoubleSpaced;
1884   }
1885 
1886   bool isDoubleSpacedVectorList() const {
1887     return Kind == k_VectorList && VectorList.isDoubleSpaced;
1888   }
1889 
1890   bool isVecListOneD() const {
1891     if (!isSingleSpacedVectorList()) return false;
1892     return VectorList.Count == 1;
1893   }
1894 
1895   bool isVecListTwoMQ() const {
1896     return isSingleSpacedVectorList() && VectorList.Count == 2 &&
1897            ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1898                VectorList.RegNum);
1899   }
1900 
1901   bool isVecListDPair() const {
1902     if (!isSingleSpacedVectorList()) return false;
1903     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1904               .contains(VectorList.RegNum));
1905   }
1906 
1907   bool isVecListThreeD() const {
1908     if (!isSingleSpacedVectorList()) return false;
1909     return VectorList.Count == 3;
1910   }
1911 
1912   bool isVecListFourD() const {
1913     if (!isSingleSpacedVectorList()) return false;
1914     return VectorList.Count == 4;
1915   }
1916 
1917   bool isVecListDPairSpaced() const {
1918     if (Kind != k_VectorList) return false;
1919     if (isSingleSpacedVectorList()) return false;
1920     return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
1921               .contains(VectorList.RegNum));
1922   }
1923 
1924   bool isVecListThreeQ() const {
1925     if (!isDoubleSpacedVectorList()) return false;
1926     return VectorList.Count == 3;
1927   }
1928 
1929   bool isVecListFourQ() const {
1930     if (!isDoubleSpacedVectorList()) return false;
1931     return VectorList.Count == 4;
1932   }
1933 
1934   bool isVecListFourMQ() const {
1935     return isSingleSpacedVectorList() && VectorList.Count == 4 &&
1936            ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1937                VectorList.RegNum);
1938   }
1939 
1940   bool isSingleSpacedVectorAllLanes() const {
1941     return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
1942   }
1943 
1944   bool isDoubleSpacedVectorAllLanes() const {
1945     return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
1946   }
1947 
1948   bool isVecListOneDAllLanes() const {
1949     if (!isSingleSpacedVectorAllLanes()) return false;
1950     return VectorList.Count == 1;
1951   }
1952 
1953   bool isVecListDPairAllLanes() const {
1954     if (!isSingleSpacedVectorAllLanes()) return false;
1955     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1956               .contains(VectorList.RegNum));
1957   }
1958 
1959   bool isVecListDPairSpacedAllLanes() const {
1960     if (!isDoubleSpacedVectorAllLanes()) return false;
1961     return VectorList.Count == 2;
1962   }
1963 
1964   bool isVecListThreeDAllLanes() const {
1965     if (!isSingleSpacedVectorAllLanes()) return false;
1966     return VectorList.Count == 3;
1967   }
1968 
1969   bool isVecListThreeQAllLanes() const {
1970     if (!isDoubleSpacedVectorAllLanes()) return false;
1971     return VectorList.Count == 3;
1972   }
1973 
1974   bool isVecListFourDAllLanes() const {
1975     if (!isSingleSpacedVectorAllLanes()) return false;
1976     return VectorList.Count == 4;
1977   }
1978 
1979   bool isVecListFourQAllLanes() const {
1980     if (!isDoubleSpacedVectorAllLanes()) return false;
1981     return VectorList.Count == 4;
1982   }
1983 
1984   bool isSingleSpacedVectorIndexed() const {
1985     return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
1986   }
1987 
1988   bool isDoubleSpacedVectorIndexed() const {
1989     return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
1990   }
1991 
1992   bool isVecListOneDByteIndexed() const {
1993     if (!isSingleSpacedVectorIndexed()) return false;
1994     return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
1995   }
1996 
1997   bool isVecListOneDHWordIndexed() const {
1998     if (!isSingleSpacedVectorIndexed()) return false;
1999     return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
2000   }
2001 
2002   bool isVecListOneDWordIndexed() const {
2003     if (!isSingleSpacedVectorIndexed()) return false;
2004     return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
2005   }
2006 
2007   bool isVecListTwoDByteIndexed() const {
2008     if (!isSingleSpacedVectorIndexed()) return false;
2009     return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
2010   }
2011 
2012   bool isVecListTwoDHWordIndexed() const {
2013     if (!isSingleSpacedVectorIndexed()) return false;
2014     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
2015   }
2016 
2017   bool isVecListTwoQWordIndexed() const {
2018     if (!isDoubleSpacedVectorIndexed()) return false;
2019     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
2020   }
2021 
2022   bool isVecListTwoQHWordIndexed() const {
2023     if (!isDoubleSpacedVectorIndexed()) return false;
2024     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
2025   }
2026 
2027   bool isVecListTwoDWordIndexed() const {
2028     if (!isSingleSpacedVectorIndexed()) return false;
2029     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
2030   }
2031 
2032   bool isVecListThreeDByteIndexed() const {
2033     if (!isSingleSpacedVectorIndexed()) return false;
2034     return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
2035   }
2036 
2037   bool isVecListThreeDHWordIndexed() const {
2038     if (!isSingleSpacedVectorIndexed()) return false;
2039     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
2040   }
2041 
2042   bool isVecListThreeQWordIndexed() const {
2043     if (!isDoubleSpacedVectorIndexed()) return false;
2044     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
2045   }
2046 
2047   bool isVecListThreeQHWordIndexed() const {
2048     if (!isDoubleSpacedVectorIndexed()) return false;
2049     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
2050   }
2051 
2052   bool isVecListThreeDWordIndexed() const {
2053     if (!isSingleSpacedVectorIndexed()) return false;
2054     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
2055   }
2056 
2057   bool isVecListFourDByteIndexed() const {
2058     if (!isSingleSpacedVectorIndexed()) return false;
2059     return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
2060   }
2061 
2062   bool isVecListFourDHWordIndexed() const {
2063     if (!isSingleSpacedVectorIndexed()) return false;
2064     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
2065   }
2066 
2067   bool isVecListFourQWordIndexed() const {
2068     if (!isDoubleSpacedVectorIndexed()) return false;
2069     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
2070   }
2071 
2072   bool isVecListFourQHWordIndexed() const {
2073     if (!isDoubleSpacedVectorIndexed()) return false;
2074     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
2075   }
2076 
2077   bool isVecListFourDWordIndexed() const {
2078     if (!isSingleSpacedVectorIndexed()) return false;
2079     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
2080   }
2081 
2082   bool isVectorIndex() const { return Kind == k_VectorIndex; }
2083 
2084   template <unsigned NumLanes>
2085   bool isVectorIndexInRange() const {
2086     if (Kind != k_VectorIndex) return false;
2087     return VectorIndex.Val < NumLanes;
2088   }
2089 
2090   bool isVectorIndex8()  const { return isVectorIndexInRange<8>(); }
2091   bool isVectorIndex16() const { return isVectorIndexInRange<4>(); }
2092   bool isVectorIndex32() const { return isVectorIndexInRange<2>(); }
2093   bool isVectorIndex64() const { return isVectorIndexInRange<1>(); }
2094 
2095   template<int PermittedValue, int OtherPermittedValue>
2096   bool isMVEPairVectorIndex() const {
2097     if (Kind != k_VectorIndex) return false;
2098     return VectorIndex.Val == PermittedValue ||
2099            VectorIndex.Val == OtherPermittedValue;
2100   }
2101 
2102   bool isNEONi8splat() const {
2103     if (!isImm()) return false;
2104     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2105     // Must be a constant.
2106     if (!CE) return false;
2107     int64_t Value = CE->getValue();
2108     // i8 value splatted across 8 bytes. The immediate is just the 8 byte
2109     // value.
2110     return Value >= 0 && Value < 256;
2111   }
2112 
2113   bool isNEONi16splat() const {
2114     if (isNEONByteReplicate(2))
2115       return false; // Leave that for bytes replication and forbid by default.
2116     if (!isImm())
2117       return false;
2118     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2119     // Must be a constant.
2120     if (!CE) return false;
2121     unsigned Value = CE->getValue();
2122     return ARM_AM::isNEONi16splat(Value);
2123   }
2124 
2125   bool isNEONi16splatNot() const {
2126     if (!isImm())
2127       return false;
2128     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2129     // Must be a constant.
2130     if (!CE) return false;
2131     unsigned Value = CE->getValue();
2132     return ARM_AM::isNEONi16splat(~Value & 0xffff);
2133   }
2134 
2135   bool isNEONi32splat() const {
2136     if (isNEONByteReplicate(4))
2137       return false; // Leave that for bytes replication and forbid by default.
2138     if (!isImm())
2139       return false;
2140     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2141     // Must be a constant.
2142     if (!CE) return false;
2143     unsigned Value = CE->getValue();
2144     return ARM_AM::isNEONi32splat(Value);
2145   }
2146 
2147   bool isNEONi32splatNot() const {
2148     if (!isImm())
2149       return false;
2150     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2151     // Must be a constant.
2152     if (!CE) return false;
2153     unsigned Value = CE->getValue();
2154     return ARM_AM::isNEONi32splat(~Value);
2155   }
2156 
2157   static bool isValidNEONi32vmovImm(int64_t Value) {
2158     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
2159     // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
2160     return ((Value & 0xffffffffffffff00) == 0) ||
2161            ((Value & 0xffffffffffff00ff) == 0) ||
2162            ((Value & 0xffffffffff00ffff) == 0) ||
2163            ((Value & 0xffffffff00ffffff) == 0) ||
2164            ((Value & 0xffffffffffff00ff) == 0xff) ||
2165            ((Value & 0xffffffffff00ffff) == 0xffff);
2166   }
2167 
2168   bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const {
2169     assert((Width == 8 || Width == 16 || Width == 32) &&
2170            "Invalid element width");
2171     assert(NumElems * Width <= 64 && "Invalid result width");
2172 
2173     if (!isImm())
2174       return false;
2175     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2176     // Must be a constant.
2177     if (!CE)
2178       return false;
2179     int64_t Value = CE->getValue();
2180     if (!Value)
2181       return false; // Don't bother with zero.
2182     if (Inv)
2183       Value = ~Value;
2184 
2185     uint64_t Mask = (1ull << Width) - 1;
2186     uint64_t Elem = Value & Mask;
2187     if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0)
2188       return false;
2189     if (Width == 32 && !isValidNEONi32vmovImm(Elem))
2190       return false;
2191 
2192     for (unsigned i = 1; i < NumElems; ++i) {
2193       Value >>= Width;
2194       if ((Value & Mask) != Elem)
2195         return false;
2196     }
2197     return true;
2198   }
2199 
2200   bool isNEONByteReplicate(unsigned NumBytes) const {
2201     return isNEONReplicate(8, NumBytes, false);
2202   }
2203 
2204   static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) {
2205     assert((FromW == 8 || FromW == 16 || FromW == 32) &&
2206            "Invalid source width");
2207     assert((ToW == 16 || ToW == 32 || ToW == 64) &&
2208            "Invalid destination width");
2209     assert(FromW < ToW && "ToW is not less than FromW");
2210   }
2211 
2212   template<unsigned FromW, unsigned ToW>
2213   bool isNEONmovReplicate() const {
2214     checkNeonReplicateArgs(FromW, ToW);
2215     if (ToW == 64 && isNEONi64splat())
2216       return false;
2217     return isNEONReplicate(FromW, ToW / FromW, false);
2218   }
2219 
2220   template<unsigned FromW, unsigned ToW>
2221   bool isNEONinvReplicate() const {
2222     checkNeonReplicateArgs(FromW, ToW);
2223     return isNEONReplicate(FromW, ToW / FromW, true);
2224   }
2225 
2226   bool isNEONi32vmov() const {
2227     if (isNEONByteReplicate(4))
2228       return false; // Let it to be classified as byte-replicate case.
2229     if (!isImm())
2230       return false;
2231     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2232     // Must be a constant.
2233     if (!CE)
2234       return false;
2235     return isValidNEONi32vmovImm(CE->getValue());
2236   }
2237 
2238   bool isNEONi32vmovNeg() const {
2239     if (!isImm()) return false;
2240     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2241     // Must be a constant.
2242     if (!CE) return false;
2243     return isValidNEONi32vmovImm(~CE->getValue());
2244   }
2245 
2246   bool isNEONi64splat() const {
2247     if (!isImm()) return false;
2248     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2249     // Must be a constant.
2250     if (!CE) return false;
2251     uint64_t Value = CE->getValue();
2252     // i64 value with each byte being either 0 or 0xff.
2253     for (unsigned i = 0; i < 8; ++i, Value >>= 8)
2254       if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
2255     return true;
2256   }
2257 
2258   template<int64_t Angle, int64_t Remainder>
2259   bool isComplexRotation() const {
2260     if (!isImm()) return false;
2261 
2262     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2263     if (!CE) return false;
2264     uint64_t Value = CE->getValue();
2265 
2266     return (Value % Angle == Remainder && Value <= 270);
2267   }
2268 
2269   bool isMVELongShift() const {
2270     if (!isImm()) return false;
2271     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2272     // Must be a constant.
2273     if (!CE) return false;
2274     uint64_t Value = CE->getValue();
2275     return Value >= 1 && Value <= 32;
2276   }
2277 
2278   bool isMveSaturateOp() const {
2279     if (!isImm()) return false;
2280     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2281     if (!CE) return false;
2282     uint64_t Value = CE->getValue();
2283     return Value == 48 || Value == 64;
2284   }
2285 
2286   bool isITCondCodeNoAL() const {
2287     if (!isITCondCode()) return false;
2288     ARMCC::CondCodes CC = getCondCode();
2289     return CC != ARMCC::AL;
2290   }
2291 
2292   bool isITCondCodeRestrictedI() const {
2293     if (!isITCondCode())
2294       return false;
2295     ARMCC::CondCodes CC = getCondCode();
2296     return CC == ARMCC::EQ || CC == ARMCC::NE;
2297   }
2298 
2299   bool isITCondCodeRestrictedS() const {
2300     if (!isITCondCode())
2301       return false;
2302     ARMCC::CondCodes CC = getCondCode();
2303     return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE ||
2304            CC == ARMCC::GE;
2305   }
2306 
2307   bool isITCondCodeRestrictedU() const {
2308     if (!isITCondCode())
2309       return false;
2310     ARMCC::CondCodes CC = getCondCode();
2311     return CC == ARMCC::HS || CC == ARMCC::HI;
2312   }
2313 
2314   bool isITCondCodeRestrictedFP() const {
2315     if (!isITCondCode())
2316       return false;
2317     ARMCC::CondCodes CC = getCondCode();
2318     return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT ||
2319            CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE;
2320   }
2321 
2322   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
2323     // Add as immediates when possible.  Null MCExpr = 0.
2324     if (!Expr)
2325       Inst.addOperand(MCOperand::createImm(0));
2326     else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
2327       Inst.addOperand(MCOperand::createImm(CE->getValue()));
2328     else
2329       Inst.addOperand(MCOperand::createExpr(Expr));
2330   }
2331 
2332   void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const {
2333     assert(N == 1 && "Invalid number of operands!");
2334     addExpr(Inst, getImm());
2335   }
2336 
2337   void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const {
2338     assert(N == 1 && "Invalid number of operands!");
2339     addExpr(Inst, getImm());
2340   }
2341 
2342   void addCondCodeOperands(MCInst &Inst, unsigned N) const {
2343     assert(N == 2 && "Invalid number of operands!");
2344     Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2345     unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
2346     Inst.addOperand(MCOperand::createReg(RegNum));
2347   }
2348 
2349   void addVPTPredNOperands(MCInst &Inst, unsigned N) const {
2350     assert(N == 2 && "Invalid number of operands!");
2351     Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred())));
2352     unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0;
2353     Inst.addOperand(MCOperand::createReg(RegNum));
2354   }
2355 
2356   void addVPTPredROperands(MCInst &Inst, unsigned N) const {
2357     assert(N == 3 && "Invalid number of operands!");
2358     addVPTPredNOperands(Inst, N-1);
2359     unsigned RegNum;
2360     if (getVPTPred() == ARMVCC::None) {
2361       RegNum = 0;
2362     } else {
2363       unsigned NextOpIndex = Inst.getNumOperands();
2364       const MCInstrDesc &MCID = ARMInsts[Inst.getOpcode()];
2365       int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO);
2366       assert(TiedOp >= 0 &&
2367              "Inactive register in vpred_r is not tied to an output!");
2368       RegNum = Inst.getOperand(TiedOp).getReg();
2369     }
2370     Inst.addOperand(MCOperand::createReg(RegNum));
2371   }
2372 
2373   void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
2374     assert(N == 1 && "Invalid number of operands!");
2375     Inst.addOperand(MCOperand::createImm(getCoproc()));
2376   }
2377 
2378   void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
2379     assert(N == 1 && "Invalid number of operands!");
2380     Inst.addOperand(MCOperand::createImm(getCoproc()));
2381   }
2382 
2383   void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
2384     assert(N == 1 && "Invalid number of operands!");
2385     Inst.addOperand(MCOperand::createImm(CoprocOption.Val));
2386   }
2387 
2388   void addITMaskOperands(MCInst &Inst, unsigned N) const {
2389     assert(N == 1 && "Invalid number of operands!");
2390     Inst.addOperand(MCOperand::createImm(ITMask.Mask));
2391   }
2392 
2393   void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
2394     assert(N == 1 && "Invalid number of operands!");
2395     Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2396   }
2397 
2398   void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const {
2399     assert(N == 1 && "Invalid number of operands!");
2400     Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode()))));
2401   }
2402 
2403   void addCCOutOperands(MCInst &Inst, unsigned N) const {
2404     assert(N == 1 && "Invalid number of operands!");
2405     Inst.addOperand(MCOperand::createReg(getReg()));
2406   }
2407 
2408   void addRegOperands(MCInst &Inst, unsigned N) const {
2409     assert(N == 1 && "Invalid number of operands!");
2410     Inst.addOperand(MCOperand::createReg(getReg()));
2411   }
2412 
2413   void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
2414     assert(N == 3 && "Invalid number of operands!");
2415     assert(isRegShiftedReg() &&
2416            "addRegShiftedRegOperands() on non-RegShiftedReg!");
2417     Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg));
2418     Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg));
2419     Inst.addOperand(MCOperand::createImm(
2420       ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
2421   }
2422 
2423   void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
2424     assert(N == 2 && "Invalid number of operands!");
2425     assert(isRegShiftedImm() &&
2426            "addRegShiftedImmOperands() on non-RegShiftedImm!");
2427     Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg));
2428     // Shift of #32 is encoded as 0 where permitted
2429     unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
2430     Inst.addOperand(MCOperand::createImm(
2431       ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
2432   }
2433 
2434   void addShifterImmOperands(MCInst &Inst, unsigned N) const {
2435     assert(N == 1 && "Invalid number of operands!");
2436     Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) |
2437                                          ShifterImm.Imm));
2438   }
2439 
2440   void addRegListOperands(MCInst &Inst, unsigned N) const {
2441     assert(N == 1 && "Invalid number of operands!");
2442     const SmallVectorImpl<unsigned> &RegList = getRegList();
2443     for (SmallVectorImpl<unsigned>::const_iterator
2444            I = RegList.begin(), E = RegList.end(); I != E; ++I)
2445       Inst.addOperand(MCOperand::createReg(*I));
2446   }
2447 
2448   void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const {
2449     assert(N == 1 && "Invalid number of operands!");
2450     const SmallVectorImpl<unsigned> &RegList = getRegList();
2451     for (SmallVectorImpl<unsigned>::const_iterator
2452            I = RegList.begin(), E = RegList.end(); I != E; ++I)
2453       Inst.addOperand(MCOperand::createReg(*I));
2454   }
2455 
2456   void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
2457     addRegListOperands(Inst, N);
2458   }
2459 
2460   void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
2461     addRegListOperands(Inst, N);
2462   }
2463 
2464   void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const {
2465     addRegListOperands(Inst, N);
2466   }
2467 
2468   void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const {
2469     addRegListOperands(Inst, N);
2470   }
2471 
2472   void addRotImmOperands(MCInst &Inst, unsigned N) const {
2473     assert(N == 1 && "Invalid number of operands!");
2474     // Encoded as val>>3. The printer handles display as 8, 16, 24.
2475     Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3));
2476   }
2477 
2478   void addModImmOperands(MCInst &Inst, unsigned N) const {
2479     assert(N == 1 && "Invalid number of operands!");
2480 
2481     // Support for fixups (MCFixup)
2482     if (isImm())
2483       return addImmOperands(Inst, N);
2484 
2485     Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7)));
2486   }
2487 
2488   void addModImmNotOperands(MCInst &Inst, unsigned N) const {
2489     assert(N == 1 && "Invalid number of operands!");
2490     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2491     uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue());
2492     Inst.addOperand(MCOperand::createImm(Enc));
2493   }
2494 
2495   void addModImmNegOperands(MCInst &Inst, unsigned N) const {
2496     assert(N == 1 && "Invalid number of operands!");
2497     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2498     uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue());
2499     Inst.addOperand(MCOperand::createImm(Enc));
2500   }
2501 
2502   void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const {
2503     assert(N == 1 && "Invalid number of operands!");
2504     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2505     uint32_t Val = -CE->getValue();
2506     Inst.addOperand(MCOperand::createImm(Val));
2507   }
2508 
2509   void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const {
2510     assert(N == 1 && "Invalid number of operands!");
2511     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2512     uint32_t Val = -CE->getValue();
2513     Inst.addOperand(MCOperand::createImm(Val));
2514   }
2515 
2516   void addBitfieldOperands(MCInst &Inst, unsigned N) const {
2517     assert(N == 1 && "Invalid number of operands!");
2518     // Munge the lsb/width into a bitfield mask.
2519     unsigned lsb = Bitfield.LSB;
2520     unsigned width = Bitfield.Width;
2521     // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
2522     uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
2523                       (32 - (lsb + width)));
2524     Inst.addOperand(MCOperand::createImm(Mask));
2525   }
2526 
2527   void addImmOperands(MCInst &Inst, unsigned N) const {
2528     assert(N == 1 && "Invalid number of operands!");
2529     addExpr(Inst, getImm());
2530   }
2531 
2532   void addFBits16Operands(MCInst &Inst, unsigned N) const {
2533     assert(N == 1 && "Invalid number of operands!");
2534     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2535     Inst.addOperand(MCOperand::createImm(16 - CE->getValue()));
2536   }
2537 
2538   void addFBits32Operands(MCInst &Inst, unsigned N) const {
2539     assert(N == 1 && "Invalid number of operands!");
2540     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2541     Inst.addOperand(MCOperand::createImm(32 - CE->getValue()));
2542   }
2543 
2544   void addFPImmOperands(MCInst &Inst, unsigned N) const {
2545     assert(N == 1 && "Invalid number of operands!");
2546     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2547     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
2548     Inst.addOperand(MCOperand::createImm(Val));
2549   }
2550 
2551   void addImm8s4Operands(MCInst &Inst, unsigned N) const {
2552     assert(N == 1 && "Invalid number of operands!");
2553     // FIXME: We really want to scale the value here, but the LDRD/STRD
2554     // instruction don't encode operands that way yet.
2555     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2556     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2557   }
2558 
2559   void addImm7s4Operands(MCInst &Inst, unsigned N) const {
2560     assert(N == 1 && "Invalid number of operands!");
2561     // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR
2562     // instruction don't encode operands that way yet.
2563     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2564     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2565   }
2566 
2567   void addImm7Shift0Operands(MCInst &Inst, unsigned N) const {
2568     assert(N == 1 && "Invalid number of operands!");
2569     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2570     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2571   }
2572 
2573   void addImm7Shift1Operands(MCInst &Inst, unsigned N) const {
2574     assert(N == 1 && "Invalid number of operands!");
2575     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2576     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2577   }
2578 
2579   void addImm7Shift2Operands(MCInst &Inst, unsigned N) const {
2580     assert(N == 1 && "Invalid number of operands!");
2581     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2582     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2583   }
2584 
2585   void addImm7Operands(MCInst &Inst, unsigned N) const {
2586     assert(N == 1 && "Invalid number of operands!");
2587     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2588     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2589   }
2590 
2591   void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
2592     assert(N == 1 && "Invalid number of operands!");
2593     // The immediate is scaled by four in the encoding and is stored
2594     // in the MCInst as such. Lop off the low two bits here.
2595     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2596     Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2597   }
2598 
2599   void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
2600     assert(N == 1 && "Invalid number of operands!");
2601     // The immediate is scaled by four in the encoding and is stored
2602     // in the MCInst as such. Lop off the low two bits here.
2603     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2604     Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4)));
2605   }
2606 
2607   void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
2608     assert(N == 1 && "Invalid number of operands!");
2609     // The immediate is scaled by four in the encoding and is stored
2610     // in the MCInst as such. Lop off the low two bits here.
2611     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2612     Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2613   }
2614 
2615   void addImm1_16Operands(MCInst &Inst, unsigned N) const {
2616     assert(N == 1 && "Invalid number of operands!");
2617     // The constant encodes as the immediate-1, and we store in the instruction
2618     // the bits as encoded, so subtract off one here.
2619     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2620     Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2621   }
2622 
2623   void addImm1_32Operands(MCInst &Inst, unsigned N) const {
2624     assert(N == 1 && "Invalid number of operands!");
2625     // The constant encodes as the immediate-1, and we store in the instruction
2626     // the bits as encoded, so subtract off one here.
2627     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2628     Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2629   }
2630 
2631   void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
2632     assert(N == 1 && "Invalid number of operands!");
2633     // The constant encodes as the immediate, except for 32, which encodes as
2634     // zero.
2635     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2636     unsigned Imm = CE->getValue();
2637     Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm)));
2638   }
2639 
2640   void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
2641     assert(N == 1 && "Invalid number of operands!");
2642     // An ASR value of 32 encodes as 0, so that's how we want to add it to
2643     // the instruction as well.
2644     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2645     int Val = CE->getValue();
2646     Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val));
2647   }
2648 
2649   void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
2650     assert(N == 1 && "Invalid number of operands!");
2651     // The operand is actually a t2_so_imm, but we have its bitwise
2652     // negation in the assembly source, so twiddle it here.
2653     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2654     Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue()));
2655   }
2656 
2657   void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
2658     assert(N == 1 && "Invalid number of operands!");
2659     // The operand is actually a t2_so_imm, but we have its
2660     // negation in the assembly source, so twiddle it here.
2661     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2662     Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2663   }
2664 
2665   void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
2666     assert(N == 1 && "Invalid number of operands!");
2667     // The operand is actually an imm0_4095, but we have its
2668     // negation in the assembly source, so twiddle it here.
2669     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2670     Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2671   }
2672 
2673   void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
2674     if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
2675       Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2));
2676       return;
2677     }
2678     const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val);
2679     Inst.addOperand(MCOperand::createExpr(SR));
2680   }
2681 
2682   void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
2683     assert(N == 1 && "Invalid number of operands!");
2684     if (isImm()) {
2685       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2686       if (CE) {
2687         Inst.addOperand(MCOperand::createImm(CE->getValue()));
2688         return;
2689       }
2690       const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val);
2691       Inst.addOperand(MCOperand::createExpr(SR));
2692       return;
2693     }
2694 
2695     assert(isGPRMem()  && "Unknown value type!");
2696     assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
2697     Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue()));
2698   }
2699 
2700   void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
2701     assert(N == 1 && "Invalid number of operands!");
2702     Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt())));
2703   }
2704 
2705   void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2706     assert(N == 1 && "Invalid number of operands!");
2707     Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt())));
2708   }
2709 
2710   void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2711     assert(N == 1 && "Invalid number of operands!");
2712     Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt())));
2713   }
2714 
2715   void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
2716     assert(N == 1 && "Invalid number of operands!");
2717     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2718   }
2719 
2720   void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const {
2721     assert(N == 1 && "Invalid number of operands!");
2722     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2723   }
2724 
2725   void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const {
2726     assert(N == 1 && "Invalid number of operands!");
2727     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2728   }
2729 
2730   void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const {
2731     assert(N == 1 && "Invalid number of operands!");
2732     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2733   }
2734 
2735   void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
2736     assert(N == 1 && "Invalid number of operands!");
2737     int32_t Imm = Memory.OffsetImm->getValue();
2738     Inst.addOperand(MCOperand::createImm(Imm));
2739   }
2740 
2741   void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
2742     assert(N == 1 && "Invalid number of operands!");
2743     assert(isImm() && "Not an immediate!");
2744 
2745     // If we have an immediate that's not a constant, treat it as a label
2746     // reference needing a fixup.
2747     if (!isa<MCConstantExpr>(getImm())) {
2748       Inst.addOperand(MCOperand::createExpr(getImm()));
2749       return;
2750     }
2751 
2752     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2753     int Val = CE->getValue();
2754     Inst.addOperand(MCOperand::createImm(Val));
2755   }
2756 
2757   void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
2758     assert(N == 2 && "Invalid number of operands!");
2759     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2760     Inst.addOperand(MCOperand::createImm(Memory.Alignment));
2761   }
2762 
2763   void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2764     addAlignedMemoryOperands(Inst, N);
2765   }
2766 
2767   void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2768     addAlignedMemoryOperands(Inst, N);
2769   }
2770 
2771   void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2772     addAlignedMemoryOperands(Inst, N);
2773   }
2774 
2775   void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2776     addAlignedMemoryOperands(Inst, N);
2777   }
2778 
2779   void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2780     addAlignedMemoryOperands(Inst, N);
2781   }
2782 
2783   void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2784     addAlignedMemoryOperands(Inst, N);
2785   }
2786 
2787   void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2788     addAlignedMemoryOperands(Inst, N);
2789   }
2790 
2791   void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2792     addAlignedMemoryOperands(Inst, N);
2793   }
2794 
2795   void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2796     addAlignedMemoryOperands(Inst, N);
2797   }
2798 
2799   void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2800     addAlignedMemoryOperands(Inst, N);
2801   }
2802 
2803   void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const {
2804     addAlignedMemoryOperands(Inst, N);
2805   }
2806 
2807   void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
2808     assert(N == 3 && "Invalid number of operands!");
2809     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2810     if (!Memory.OffsetRegNum) {
2811       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2812       // Special case for #-0
2813       if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2814       if (Val < 0) Val = -Val;
2815       Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2816     } else {
2817       // For register offset, we encode the shift type and negation flag
2818       // here.
2819       Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2820                               Memory.ShiftImm, Memory.ShiftType);
2821     }
2822     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2823     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2824     Inst.addOperand(MCOperand::createImm(Val));
2825   }
2826 
2827   void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
2828     assert(N == 2 && "Invalid number of operands!");
2829     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2830     assert(CE && "non-constant AM2OffsetImm operand!");
2831     int32_t Val = CE->getValue();
2832     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2833     // Special case for #-0
2834     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2835     if (Val < 0) Val = -Val;
2836     Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2837     Inst.addOperand(MCOperand::createReg(0));
2838     Inst.addOperand(MCOperand::createImm(Val));
2839   }
2840 
2841   void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
2842     assert(N == 3 && "Invalid number of operands!");
2843     // If we have an immediate that's not a constant, treat it as a label
2844     // reference needing a fixup. If it is a constant, it's something else
2845     // and we reject it.
2846     if (isImm()) {
2847       Inst.addOperand(MCOperand::createExpr(getImm()));
2848       Inst.addOperand(MCOperand::createReg(0));
2849       Inst.addOperand(MCOperand::createImm(0));
2850       return;
2851     }
2852 
2853     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2854     if (!Memory.OffsetRegNum) {
2855       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2856       // Special case for #-0
2857       if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2858       if (Val < 0) Val = -Val;
2859       Val = ARM_AM::getAM3Opc(AddSub, Val);
2860     } else {
2861       // For register offset, we encode the shift type and negation flag
2862       // here.
2863       Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
2864     }
2865     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2866     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2867     Inst.addOperand(MCOperand::createImm(Val));
2868   }
2869 
2870   void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
2871     assert(N == 2 && "Invalid number of operands!");
2872     if (Kind == k_PostIndexRegister) {
2873       int32_t Val =
2874         ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
2875       Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
2876       Inst.addOperand(MCOperand::createImm(Val));
2877       return;
2878     }
2879 
2880     // Constant offset.
2881     const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
2882     int32_t Val = CE->getValue();
2883     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2884     // Special case for #-0
2885     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2886     if (Val < 0) Val = -Val;
2887     Val = ARM_AM::getAM3Opc(AddSub, Val);
2888     Inst.addOperand(MCOperand::createReg(0));
2889     Inst.addOperand(MCOperand::createImm(Val));
2890   }
2891 
2892   void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
2893     assert(N == 2 && "Invalid number of operands!");
2894     // If we have an immediate that's not a constant, treat it as a label
2895     // reference needing a fixup. If it is a constant, it's something else
2896     // and we reject it.
2897     if (isImm()) {
2898       Inst.addOperand(MCOperand::createExpr(getImm()));
2899       Inst.addOperand(MCOperand::createImm(0));
2900       return;
2901     }
2902 
2903     // The lower two bits are always zero and as such are not encoded.
2904     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2905     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2906     // Special case for #-0
2907     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2908     if (Val < 0) Val = -Val;
2909     Val = ARM_AM::getAM5Opc(AddSub, Val);
2910     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2911     Inst.addOperand(MCOperand::createImm(Val));
2912   }
2913 
2914   void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const {
2915     assert(N == 2 && "Invalid number of operands!");
2916     // If we have an immediate that's not a constant, treat it as a label
2917     // reference needing a fixup. If it is a constant, it's something else
2918     // and we reject it.
2919     if (isImm()) {
2920       Inst.addOperand(MCOperand::createExpr(getImm()));
2921       Inst.addOperand(MCOperand::createImm(0));
2922       return;
2923     }
2924 
2925     // The lower bit is always zero and as such is not encoded.
2926     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0;
2927     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2928     // Special case for #-0
2929     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2930     if (Val < 0) Val = -Val;
2931     Val = ARM_AM::getAM5FP16Opc(AddSub, Val);
2932     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2933     Inst.addOperand(MCOperand::createImm(Val));
2934   }
2935 
2936   void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
2937     assert(N == 2 && "Invalid number of operands!");
2938     // If we have an immediate that's not a constant, treat it as a label
2939     // reference needing a fixup. If it is a constant, it's something else
2940     // and we reject it.
2941     if (isImm()) {
2942       Inst.addOperand(MCOperand::createExpr(getImm()));
2943       Inst.addOperand(MCOperand::createImm(0));
2944       return;
2945     }
2946 
2947     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2948     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2949     Inst.addOperand(MCOperand::createImm(Val));
2950   }
2951 
2952   void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const {
2953     assert(N == 2 && "Invalid number of operands!");
2954     // If we have an immediate that's not a constant, treat it as a label
2955     // reference needing a fixup. If it is a constant, it's something else
2956     // and we reject it.
2957     if (isImm()) {
2958       Inst.addOperand(MCOperand::createExpr(getImm()));
2959       Inst.addOperand(MCOperand::createImm(0));
2960       return;
2961     }
2962 
2963     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2964     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2965     Inst.addOperand(MCOperand::createImm(Val));
2966   }
2967 
2968   void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
2969     assert(N == 2 && "Invalid number of operands!");
2970     // The lower two bits are always zero and as such are not encoded.
2971     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2972     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2973     Inst.addOperand(MCOperand::createImm(Val));
2974   }
2975 
2976   void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const {
2977     assert(N == 2 && "Invalid number of operands!");
2978     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2979     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2980     Inst.addOperand(MCOperand::createImm(Val));
2981   }
2982 
2983   void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const {
2984     assert(N == 2 && "Invalid number of operands!");
2985     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2986     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2987   }
2988 
2989   void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
2990     assert(N == 2 && "Invalid number of operands!");
2991     // If this is an immediate, it's a label reference.
2992     if (isImm()) {
2993       addExpr(Inst, getImm());
2994       Inst.addOperand(MCOperand::createImm(0));
2995       return;
2996     }
2997 
2998     // Otherwise, it's a normal memory reg+offset.
2999     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
3000     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3001     Inst.addOperand(MCOperand::createImm(Val));
3002   }
3003 
3004   void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
3005     assert(N == 2 && "Invalid number of operands!");
3006     // If this is an immediate, it's a label reference.
3007     if (isImm()) {
3008       addExpr(Inst, getImm());
3009       Inst.addOperand(MCOperand::createImm(0));
3010       return;
3011     }
3012 
3013     // Otherwise, it's a normal memory reg+offset.
3014     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
3015     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3016     Inst.addOperand(MCOperand::createImm(Val));
3017   }
3018 
3019   void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const {
3020     assert(N == 1 && "Invalid number of operands!");
3021     // This is container for the immediate that we will create the constant
3022     // pool from
3023     addExpr(Inst, getConstantPoolImm());
3024     return;
3025   }
3026 
3027   void addMemTBBOperands(MCInst &Inst, unsigned N) const {
3028     assert(N == 2 && "Invalid number of operands!");
3029     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3030     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3031   }
3032 
3033   void addMemTBHOperands(MCInst &Inst, unsigned N) const {
3034     assert(N == 2 && "Invalid number of operands!");
3035     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3036     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3037   }
3038 
3039   void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
3040     assert(N == 3 && "Invalid number of operands!");
3041     unsigned Val =
3042       ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
3043                         Memory.ShiftImm, Memory.ShiftType);
3044     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3045     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3046     Inst.addOperand(MCOperand::createImm(Val));
3047   }
3048 
3049   void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
3050     assert(N == 3 && "Invalid number of operands!");
3051     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3052     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3053     Inst.addOperand(MCOperand::createImm(Memory.ShiftImm));
3054   }
3055 
3056   void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
3057     assert(N == 2 && "Invalid number of operands!");
3058     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3059     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3060   }
3061 
3062   void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
3063     assert(N == 2 && "Invalid number of operands!");
3064     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
3065     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3066     Inst.addOperand(MCOperand::createImm(Val));
3067   }
3068 
3069   void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
3070     assert(N == 2 && "Invalid number of operands!");
3071     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
3072     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3073     Inst.addOperand(MCOperand::createImm(Val));
3074   }
3075 
3076   void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
3077     assert(N == 2 && "Invalid number of operands!");
3078     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
3079     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3080     Inst.addOperand(MCOperand::createImm(Val));
3081   }
3082 
3083   void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
3084     assert(N == 2 && "Invalid number of operands!");
3085     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
3086     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3087     Inst.addOperand(MCOperand::createImm(Val));
3088   }
3089 
3090   void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
3091     assert(N == 1 && "Invalid number of operands!");
3092     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3093     assert(CE && "non-constant post-idx-imm8 operand!");
3094     int Imm = CE->getValue();
3095     bool isAdd = Imm >= 0;
3096     if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
3097     Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
3098     Inst.addOperand(MCOperand::createImm(Imm));
3099   }
3100 
3101   void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
3102     assert(N == 1 && "Invalid number of operands!");
3103     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3104     assert(CE && "non-constant post-idx-imm8s4 operand!");
3105     int Imm = CE->getValue();
3106     bool isAdd = Imm >= 0;
3107     if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
3108     // Immediate is scaled by 4.
3109     Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
3110     Inst.addOperand(MCOperand::createImm(Imm));
3111   }
3112 
3113   void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
3114     assert(N == 2 && "Invalid number of operands!");
3115     Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3116     Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd));
3117   }
3118 
3119   void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
3120     assert(N == 2 && "Invalid number of operands!");
3121     Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3122     // The sign, shift type, and shift amount are encoded in a single operand
3123     // using the AM2 encoding helpers.
3124     ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
3125     unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
3126                                      PostIdxReg.ShiftTy);
3127     Inst.addOperand(MCOperand::createImm(Imm));
3128   }
3129 
3130   void addPowerTwoOperands(MCInst &Inst, unsigned N) const {
3131     assert(N == 1 && "Invalid number of operands!");
3132     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3133     Inst.addOperand(MCOperand::createImm(CE->getValue()));
3134   }
3135 
3136   void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
3137     assert(N == 1 && "Invalid number of operands!");
3138     Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask())));
3139   }
3140 
3141   void addBankedRegOperands(MCInst &Inst, unsigned N) const {
3142     assert(N == 1 && "Invalid number of operands!");
3143     Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg())));
3144   }
3145 
3146   void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
3147     assert(N == 1 && "Invalid number of operands!");
3148     Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags())));
3149   }
3150 
3151   void addVecListOperands(MCInst &Inst, unsigned N) const {
3152     assert(N == 1 && "Invalid number of operands!");
3153     Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
3154   }
3155 
3156   void addMVEVecListOperands(MCInst &Inst, unsigned N) const {
3157     assert(N == 1 && "Invalid number of operands!");
3158 
3159     // When we come here, the VectorList field will identify a range
3160     // of q-registers by its base register and length, and it will
3161     // have already been error-checked to be the expected length of
3162     // range and contain only q-regs in the range q0-q7. So we can
3163     // count on the base register being in the range q0-q6 (for 2
3164     // regs) or q0-q4 (for 4)
3165     //
3166     // The MVE instructions taking a register range of this kind will
3167     // need an operand in the QQPR or QQQQPR class, representing the
3168     // entire range as a unit. So we must translate into that class,
3169     // by finding the index of the base register in the MQPR reg
3170     // class, and returning the super-register at the corresponding
3171     // index in the target class.
3172 
3173     const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID];
3174     const MCRegisterClass *RC_out = (VectorList.Count == 2) ?
3175       &ARMMCRegisterClasses[ARM::QQPRRegClassID] :
3176       &ARMMCRegisterClasses[ARM::QQQQPRRegClassID];
3177 
3178     unsigned I, E = RC_out->getNumRegs();
3179     for (I = 0; I < E; I++)
3180       if (RC_in->getRegister(I) == VectorList.RegNum)
3181         break;
3182     assert(I < E && "Invalid vector list start register!");
3183 
3184     Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I)));
3185   }
3186 
3187   void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
3188     assert(N == 2 && "Invalid number of operands!");
3189     Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
3190     Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex));
3191   }
3192 
3193   void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
3194     assert(N == 1 && "Invalid number of operands!");
3195     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3196   }
3197 
3198   void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
3199     assert(N == 1 && "Invalid number of operands!");
3200     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3201   }
3202 
3203   void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
3204     assert(N == 1 && "Invalid number of operands!");
3205     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3206   }
3207 
3208   void addVectorIndex64Operands(MCInst &Inst, unsigned N) const {
3209     assert(N == 1 && "Invalid number of operands!");
3210     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3211   }
3212 
3213   void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const {
3214     assert(N == 1 && "Invalid number of operands!");
3215     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3216   }
3217 
3218   void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const {
3219     assert(N == 1 && "Invalid number of operands!");
3220     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3221   }
3222 
3223   void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
3224     assert(N == 1 && "Invalid number of operands!");
3225     // The immediate encodes the type of constant as well as the value.
3226     // Mask in that this is an i8 splat.
3227     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3228     Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00));
3229   }
3230 
3231   void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
3232     assert(N == 1 && "Invalid number of operands!");
3233     // The immediate encodes the type of constant as well as the value.
3234     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3235     unsigned Value = CE->getValue();
3236     Value = ARM_AM::encodeNEONi16splat(Value);
3237     Inst.addOperand(MCOperand::createImm(Value));
3238   }
3239 
3240   void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const {
3241     assert(N == 1 && "Invalid number of operands!");
3242     // The immediate encodes the type of constant as well as the value.
3243     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3244     unsigned Value = CE->getValue();
3245     Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff);
3246     Inst.addOperand(MCOperand::createImm(Value));
3247   }
3248 
3249   void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
3250     assert(N == 1 && "Invalid number of operands!");
3251     // The immediate encodes the type of constant as well as the value.
3252     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3253     unsigned Value = CE->getValue();
3254     Value = ARM_AM::encodeNEONi32splat(Value);
3255     Inst.addOperand(MCOperand::createImm(Value));
3256   }
3257 
3258   void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const {
3259     assert(N == 1 && "Invalid number of operands!");
3260     // The immediate encodes the type of constant as well as the value.
3261     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3262     unsigned Value = CE->getValue();
3263     Value = ARM_AM::encodeNEONi32splat(~Value);
3264     Inst.addOperand(MCOperand::createImm(Value));
3265   }
3266 
3267   void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const {
3268     // The immediate encodes the type of constant as well as the value.
3269     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3270     assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
3271             Inst.getOpcode() == ARM::VMOVv16i8) &&
3272           "All instructions that wants to replicate non-zero byte "
3273           "always must be replaced with VMOVv8i8 or VMOVv16i8.");
3274     unsigned Value = CE->getValue();
3275     if (Inv)
3276       Value = ~Value;
3277     unsigned B = Value & 0xff;
3278     B |= 0xe00; // cmode = 0b1110
3279     Inst.addOperand(MCOperand::createImm(B));
3280   }
3281 
3282   void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const {
3283     assert(N == 1 && "Invalid number of operands!");
3284     addNEONi8ReplicateOperands(Inst, true);
3285   }
3286 
3287   static unsigned encodeNeonVMOVImmediate(unsigned Value) {
3288     if (Value >= 256 && Value <= 0xffff)
3289       Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
3290     else if (Value > 0xffff && Value <= 0xffffff)
3291       Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
3292     else if (Value > 0xffffff)
3293       Value = (Value >> 24) | 0x600;
3294     return Value;
3295   }
3296 
3297   void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
3298     assert(N == 1 && "Invalid number of operands!");
3299     // The immediate encodes the type of constant as well as the value.
3300     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3301     unsigned Value = encodeNeonVMOVImmediate(CE->getValue());
3302     Inst.addOperand(MCOperand::createImm(Value));
3303   }
3304 
3305   void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const {
3306     assert(N == 1 && "Invalid number of operands!");
3307     addNEONi8ReplicateOperands(Inst, false);
3308   }
3309 
3310   void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const {
3311     assert(N == 1 && "Invalid number of operands!");
3312     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3313     assert((Inst.getOpcode() == ARM::VMOVv4i16 ||
3314             Inst.getOpcode() == ARM::VMOVv8i16 ||
3315             Inst.getOpcode() == ARM::VMVNv4i16 ||
3316             Inst.getOpcode() == ARM::VMVNv8i16) &&
3317           "All instructions that want to replicate non-zero half-word "
3318           "always must be replaced with V{MOV,MVN}v{4,8}i16.");
3319     uint64_t Value = CE->getValue();
3320     unsigned Elem = Value & 0xffff;
3321     if (Elem >= 256)
3322       Elem = (Elem >> 8) | 0x200;
3323     Inst.addOperand(MCOperand::createImm(Elem));
3324   }
3325 
3326   void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
3327     assert(N == 1 && "Invalid number of operands!");
3328     // The immediate encodes the type of constant as well as the value.
3329     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3330     unsigned Value = encodeNeonVMOVImmediate(~CE->getValue());
3331     Inst.addOperand(MCOperand::createImm(Value));
3332   }
3333 
3334   void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const {
3335     assert(N == 1 && "Invalid number of operands!");
3336     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3337     assert((Inst.getOpcode() == ARM::VMOVv2i32 ||
3338             Inst.getOpcode() == ARM::VMOVv4i32 ||
3339             Inst.getOpcode() == ARM::VMVNv2i32 ||
3340             Inst.getOpcode() == ARM::VMVNv4i32) &&
3341           "All instructions that want to replicate non-zero word "
3342           "always must be replaced with V{MOV,MVN}v{2,4}i32.");
3343     uint64_t Value = CE->getValue();
3344     unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff);
3345     Inst.addOperand(MCOperand::createImm(Elem));
3346   }
3347 
3348   void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
3349     assert(N == 1 && "Invalid number of operands!");
3350     // The immediate encodes the type of constant as well as the value.
3351     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3352     uint64_t Value = CE->getValue();
3353     unsigned Imm = 0;
3354     for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
3355       Imm |= (Value & 1) << i;
3356     }
3357     Inst.addOperand(MCOperand::createImm(Imm | 0x1e00));
3358   }
3359 
3360   void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const {
3361     assert(N == 1 && "Invalid number of operands!");
3362     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3363     Inst.addOperand(MCOperand::createImm(CE->getValue() / 90));
3364   }
3365 
3366   void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const {
3367     assert(N == 1 && "Invalid number of operands!");
3368     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3369     Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180));
3370   }
3371 
3372   void addMveSaturateOperands(MCInst &Inst, unsigned N) const {
3373     assert(N == 1 && "Invalid number of operands!");
3374     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3375     unsigned Imm = CE->getValue();
3376     assert((Imm == 48 || Imm == 64) && "Invalid saturate operand");
3377     Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0));
3378   }
3379 
3380   void print(raw_ostream &OS) const override;
3381 
3382   static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) {
3383     auto Op = std::make_unique<ARMOperand>(k_ITCondMask);
3384     Op->ITMask.Mask = Mask;
3385     Op->StartLoc = S;
3386     Op->EndLoc = S;
3387     return Op;
3388   }
3389 
3390   static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC,
3391                                                     SMLoc S) {
3392     auto Op = std::make_unique<ARMOperand>(k_CondCode);
3393     Op->CC.Val = CC;
3394     Op->StartLoc = S;
3395     Op->EndLoc = S;
3396     return Op;
3397   }
3398 
3399   static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC,
3400                                                    SMLoc S) {
3401     auto Op = std::make_unique<ARMOperand>(k_VPTPred);
3402     Op->VCC.Val = CC;
3403     Op->StartLoc = S;
3404     Op->EndLoc = S;
3405     return Op;
3406   }
3407 
3408   static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) {
3409     auto Op = std::make_unique<ARMOperand>(k_CoprocNum);
3410     Op->Cop.Val = CopVal;
3411     Op->StartLoc = S;
3412     Op->EndLoc = S;
3413     return Op;
3414   }
3415 
3416   static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) {
3417     auto Op = std::make_unique<ARMOperand>(k_CoprocReg);
3418     Op->Cop.Val = CopVal;
3419     Op->StartLoc = S;
3420     Op->EndLoc = S;
3421     return Op;
3422   }
3423 
3424   static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S,
3425                                                         SMLoc E) {
3426     auto Op = std::make_unique<ARMOperand>(k_CoprocOption);
3427     Op->Cop.Val = Val;
3428     Op->StartLoc = S;
3429     Op->EndLoc = E;
3430     return Op;
3431   }
3432 
3433   static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) {
3434     auto Op = std::make_unique<ARMOperand>(k_CCOut);
3435     Op->Reg.RegNum = RegNum;
3436     Op->StartLoc = S;
3437     Op->EndLoc = S;
3438     return Op;
3439   }
3440 
3441   static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) {
3442     auto Op = std::make_unique<ARMOperand>(k_Token);
3443     Op->Tok.Data = Str.data();
3444     Op->Tok.Length = Str.size();
3445     Op->StartLoc = S;
3446     Op->EndLoc = S;
3447     return Op;
3448   }
3449 
3450   static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S,
3451                                                SMLoc E) {
3452     auto Op = std::make_unique<ARMOperand>(k_Register);
3453     Op->Reg.RegNum = RegNum;
3454     Op->StartLoc = S;
3455     Op->EndLoc = E;
3456     return Op;
3457   }
3458 
3459   static std::unique_ptr<ARMOperand>
3460   CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
3461                         unsigned ShiftReg, unsigned ShiftImm, SMLoc S,
3462                         SMLoc E) {
3463     auto Op = std::make_unique<ARMOperand>(k_ShiftedRegister);
3464     Op->RegShiftedReg.ShiftTy = ShTy;
3465     Op->RegShiftedReg.SrcReg = SrcReg;
3466     Op->RegShiftedReg.ShiftReg = ShiftReg;
3467     Op->RegShiftedReg.ShiftImm = ShiftImm;
3468     Op->StartLoc = S;
3469     Op->EndLoc = E;
3470     return Op;
3471   }
3472 
3473   static std::unique_ptr<ARMOperand>
3474   CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
3475                          unsigned ShiftImm, SMLoc S, SMLoc E) {
3476     auto Op = std::make_unique<ARMOperand>(k_ShiftedImmediate);
3477     Op->RegShiftedImm.ShiftTy = ShTy;
3478     Op->RegShiftedImm.SrcReg = SrcReg;
3479     Op->RegShiftedImm.ShiftImm = ShiftImm;
3480     Op->StartLoc = S;
3481     Op->EndLoc = E;
3482     return Op;
3483   }
3484 
3485   static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm,
3486                                                       SMLoc S, SMLoc E) {
3487     auto Op = std::make_unique<ARMOperand>(k_ShifterImmediate);
3488     Op->ShifterImm.isASR = isASR;
3489     Op->ShifterImm.Imm = Imm;
3490     Op->StartLoc = S;
3491     Op->EndLoc = E;
3492     return Op;
3493   }
3494 
3495   static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S,
3496                                                   SMLoc E) {
3497     auto Op = std::make_unique<ARMOperand>(k_RotateImmediate);
3498     Op->RotImm.Imm = Imm;
3499     Op->StartLoc = S;
3500     Op->EndLoc = E;
3501     return Op;
3502   }
3503 
3504   static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot,
3505                                                   SMLoc S, SMLoc E) {
3506     auto Op = std::make_unique<ARMOperand>(k_ModifiedImmediate);
3507     Op->ModImm.Bits = Bits;
3508     Op->ModImm.Rot = Rot;
3509     Op->StartLoc = S;
3510     Op->EndLoc = E;
3511     return Op;
3512   }
3513 
3514   static std::unique_ptr<ARMOperand>
3515   CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) {
3516     auto Op = std::make_unique<ARMOperand>(k_ConstantPoolImmediate);
3517     Op->Imm.Val = Val;
3518     Op->StartLoc = S;
3519     Op->EndLoc = E;
3520     return Op;
3521   }
3522 
3523   static std::unique_ptr<ARMOperand>
3524   CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
3525     auto Op = std::make_unique<ARMOperand>(k_BitfieldDescriptor);
3526     Op->Bitfield.LSB = LSB;
3527     Op->Bitfield.Width = Width;
3528     Op->StartLoc = S;
3529     Op->EndLoc = E;
3530     return Op;
3531   }
3532 
3533   static std::unique_ptr<ARMOperand>
3534   CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
3535                 SMLoc StartLoc, SMLoc EndLoc) {
3536     assert(Regs.size() > 0 && "RegList contains no registers?");
3537     KindTy Kind = k_RegisterList;
3538 
3539     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
3540             Regs.front().second)) {
3541       if (Regs.back().second == ARM::VPR)
3542         Kind = k_FPDRegisterListWithVPR;
3543       else
3544         Kind = k_DPRRegisterList;
3545     } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(
3546                    Regs.front().second)) {
3547       if (Regs.back().second == ARM::VPR)
3548         Kind = k_FPSRegisterListWithVPR;
3549       else
3550         Kind = k_SPRRegisterList;
3551     }
3552 
3553     if (Kind == k_RegisterList && Regs.back().second == ARM::APSR)
3554       Kind = k_RegisterListWithAPSR;
3555 
3556     assert(std::is_sorted(Regs.begin(), Regs.end()) &&
3557            "Register list must be sorted by encoding");
3558 
3559     auto Op = std::make_unique<ARMOperand>(Kind);
3560     for (const auto &P : Regs)
3561       Op->Registers.push_back(P.second);
3562 
3563     Op->StartLoc = StartLoc;
3564     Op->EndLoc = EndLoc;
3565     return Op;
3566   }
3567 
3568   static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum,
3569                                                       unsigned Count,
3570                                                       bool isDoubleSpaced,
3571                                                       SMLoc S, SMLoc E) {
3572     auto Op = std::make_unique<ARMOperand>(k_VectorList);
3573     Op->VectorList.RegNum = RegNum;
3574     Op->VectorList.Count = Count;
3575     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3576     Op->StartLoc = S;
3577     Op->EndLoc = E;
3578     return Op;
3579   }
3580 
3581   static std::unique_ptr<ARMOperand>
3582   CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced,
3583                            SMLoc S, SMLoc E) {
3584     auto Op = std::make_unique<ARMOperand>(k_VectorListAllLanes);
3585     Op->VectorList.RegNum = RegNum;
3586     Op->VectorList.Count = Count;
3587     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3588     Op->StartLoc = S;
3589     Op->EndLoc = E;
3590     return Op;
3591   }
3592 
3593   static std::unique_ptr<ARMOperand>
3594   CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index,
3595                           bool isDoubleSpaced, SMLoc S, SMLoc E) {
3596     auto Op = std::make_unique<ARMOperand>(k_VectorListIndexed);
3597     Op->VectorList.RegNum = RegNum;
3598     Op->VectorList.Count = Count;
3599     Op->VectorList.LaneIndex = Index;
3600     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3601     Op->StartLoc = S;
3602     Op->EndLoc = E;
3603     return Op;
3604   }
3605 
3606   static std::unique_ptr<ARMOperand>
3607   CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
3608     auto Op = std::make_unique<ARMOperand>(k_VectorIndex);
3609     Op->VectorIndex.Val = Idx;
3610     Op->StartLoc = S;
3611     Op->EndLoc = E;
3612     return Op;
3613   }
3614 
3615   static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S,
3616                                                SMLoc E) {
3617     auto Op = std::make_unique<ARMOperand>(k_Immediate);
3618     Op->Imm.Val = Val;
3619     Op->StartLoc = S;
3620     Op->EndLoc = E;
3621     return Op;
3622   }
3623 
3624   static std::unique_ptr<ARMOperand>
3625   CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm,
3626             unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType,
3627             unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S,
3628             SMLoc E, SMLoc AlignmentLoc = SMLoc()) {
3629     auto Op = std::make_unique<ARMOperand>(k_Memory);
3630     Op->Memory.BaseRegNum = BaseRegNum;
3631     Op->Memory.OffsetImm = OffsetImm;
3632     Op->Memory.OffsetRegNum = OffsetRegNum;
3633     Op->Memory.ShiftType = ShiftType;
3634     Op->Memory.ShiftImm = ShiftImm;
3635     Op->Memory.Alignment = Alignment;
3636     Op->Memory.isNegative = isNegative;
3637     Op->StartLoc = S;
3638     Op->EndLoc = E;
3639     Op->AlignmentLoc = AlignmentLoc;
3640     return Op;
3641   }
3642 
3643   static std::unique_ptr<ARMOperand>
3644   CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy,
3645                    unsigned ShiftImm, SMLoc S, SMLoc E) {
3646     auto Op = std::make_unique<ARMOperand>(k_PostIndexRegister);
3647     Op->PostIdxReg.RegNum = RegNum;
3648     Op->PostIdxReg.isAdd = isAdd;
3649     Op->PostIdxReg.ShiftTy = ShiftTy;
3650     Op->PostIdxReg.ShiftImm = ShiftImm;
3651     Op->StartLoc = S;
3652     Op->EndLoc = E;
3653     return Op;
3654   }
3655 
3656   static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,
3657                                                          SMLoc S) {
3658     auto Op = std::make_unique<ARMOperand>(k_MemBarrierOpt);
3659     Op->MBOpt.Val = Opt;
3660     Op->StartLoc = S;
3661     Op->EndLoc = S;
3662     return Op;
3663   }
3664 
3665   static std::unique_ptr<ARMOperand>
3666   CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) {
3667     auto Op = std::make_unique<ARMOperand>(k_InstSyncBarrierOpt);
3668     Op->ISBOpt.Val = Opt;
3669     Op->StartLoc = S;
3670     Op->EndLoc = S;
3671     return Op;
3672   }
3673 
3674   static std::unique_ptr<ARMOperand>
3675   CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) {
3676     auto Op = std::make_unique<ARMOperand>(k_TraceSyncBarrierOpt);
3677     Op->TSBOpt.Val = Opt;
3678     Op->StartLoc = S;
3679     Op->EndLoc = S;
3680     return Op;
3681   }
3682 
3683   static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags,
3684                                                       SMLoc S) {
3685     auto Op = std::make_unique<ARMOperand>(k_ProcIFlags);
3686     Op->IFlags.Val = IFlags;
3687     Op->StartLoc = S;
3688     Op->EndLoc = S;
3689     return Op;
3690   }
3691 
3692   static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) {
3693     auto Op = std::make_unique<ARMOperand>(k_MSRMask);
3694     Op->MMask.Val = MMask;
3695     Op->StartLoc = S;
3696     Op->EndLoc = S;
3697     return Op;
3698   }
3699 
3700   static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) {
3701     auto Op = std::make_unique<ARMOperand>(k_BankedReg);
3702     Op->BankedReg.Val = Reg;
3703     Op->StartLoc = S;
3704     Op->EndLoc = S;
3705     return Op;
3706   }
3707 };
3708 
3709 } // end anonymous namespace.
3710 
3711 void ARMOperand::print(raw_ostream &OS) const {
3712   auto RegName = [](unsigned Reg) {
3713     if (Reg)
3714       return ARMInstPrinter::getRegisterName(Reg);
3715     else
3716       return "noreg";
3717   };
3718 
3719   switch (Kind) {
3720   case k_CondCode:
3721     OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
3722     break;
3723   case k_VPTPred:
3724     OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">";
3725     break;
3726   case k_CCOut:
3727     OS << "<ccout " << RegName(getReg()) << ">";
3728     break;
3729   case k_ITCondMask: {
3730     static const char *const MaskStr[] = {
3731       "(invalid)", "(tttt)", "(ttt)", "(ttte)",
3732       "(tt)",      "(ttet)", "(tte)", "(ttee)",
3733       "(t)",       "(tett)", "(tet)", "(tete)",
3734       "(te)",      "(teet)", "(tee)", "(teee)",
3735     };
3736     assert((ITMask.Mask & 0xf) == ITMask.Mask);
3737     OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
3738     break;
3739   }
3740   case k_CoprocNum:
3741     OS << "<coprocessor number: " << getCoproc() << ">";
3742     break;
3743   case k_CoprocReg:
3744     OS << "<coprocessor register: " << getCoproc() << ">";
3745     break;
3746   case k_CoprocOption:
3747     OS << "<coprocessor option: " << CoprocOption.Val << ">";
3748     break;
3749   case k_MSRMask:
3750     OS << "<mask: " << getMSRMask() << ">";
3751     break;
3752   case k_BankedReg:
3753     OS << "<banked reg: " << getBankedReg() << ">";
3754     break;
3755   case k_Immediate:
3756     OS << *getImm();
3757     break;
3758   case k_MemBarrierOpt:
3759     OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
3760     break;
3761   case k_InstSyncBarrierOpt:
3762     OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
3763     break;
3764   case k_TraceSyncBarrierOpt:
3765     OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">";
3766     break;
3767   case k_Memory:
3768     OS << "<memory";
3769     if (Memory.BaseRegNum)
3770       OS << " base:" << RegName(Memory.BaseRegNum);
3771     if (Memory.OffsetImm)
3772       OS << " offset-imm:" << *Memory.OffsetImm;
3773     if (Memory.OffsetRegNum)
3774       OS << " offset-reg:" << (Memory.isNegative ? "-" : "")
3775          << RegName(Memory.OffsetRegNum);
3776     if (Memory.ShiftType != ARM_AM::no_shift) {
3777       OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType);
3778       OS << " shift-imm:" << Memory.ShiftImm;
3779     }
3780     if (Memory.Alignment)
3781       OS << " alignment:" << Memory.Alignment;
3782     OS << ">";
3783     break;
3784   case k_PostIndexRegister:
3785     OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
3786        << RegName(PostIdxReg.RegNum);
3787     if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
3788       OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
3789          << PostIdxReg.ShiftImm;
3790     OS << ">";
3791     break;
3792   case k_ProcIFlags: {
3793     OS << "<ARM_PROC::";
3794     unsigned IFlags = getProcIFlags();
3795     for (int i=2; i >= 0; --i)
3796       if (IFlags & (1 << i))
3797         OS << ARM_PROC::IFlagsToString(1 << i);
3798     OS << ">";
3799     break;
3800   }
3801   case k_Register:
3802     OS << "<register " << RegName(getReg()) << ">";
3803     break;
3804   case k_ShifterImmediate:
3805     OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
3806        << " #" << ShifterImm.Imm << ">";
3807     break;
3808   case k_ShiftedRegister:
3809     OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " "
3810        << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " "
3811        << RegName(RegShiftedReg.ShiftReg) << ">";
3812     break;
3813   case k_ShiftedImmediate:
3814     OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " "
3815        << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #"
3816        << RegShiftedImm.ShiftImm << ">";
3817     break;
3818   case k_RotateImmediate:
3819     OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
3820     break;
3821   case k_ModifiedImmediate:
3822     OS << "<mod_imm #" << ModImm.Bits << ", #"
3823        <<  ModImm.Rot << ")>";
3824     break;
3825   case k_ConstantPoolImmediate:
3826     OS << "<constant_pool_imm #" << *getConstantPoolImm();
3827     break;
3828   case k_BitfieldDescriptor:
3829     OS << "<bitfield " << "lsb: " << Bitfield.LSB
3830        << ", width: " << Bitfield.Width << ">";
3831     break;
3832   case k_RegisterList:
3833   case k_RegisterListWithAPSR:
3834   case k_DPRRegisterList:
3835   case k_SPRRegisterList:
3836   case k_FPSRegisterListWithVPR:
3837   case k_FPDRegisterListWithVPR: {
3838     OS << "<register_list ";
3839 
3840     const SmallVectorImpl<unsigned> &RegList = getRegList();
3841     for (SmallVectorImpl<unsigned>::const_iterator
3842            I = RegList.begin(), E = RegList.end(); I != E; ) {
3843       OS << RegName(*I);
3844       if (++I < E) OS << ", ";
3845     }
3846 
3847     OS << ">";
3848     break;
3849   }
3850   case k_VectorList:
3851     OS << "<vector_list " << VectorList.Count << " * "
3852        << RegName(VectorList.RegNum) << ">";
3853     break;
3854   case k_VectorListAllLanes:
3855     OS << "<vector_list(all lanes) " << VectorList.Count << " * "
3856        << RegName(VectorList.RegNum) << ">";
3857     break;
3858   case k_VectorListIndexed:
3859     OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
3860        << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">";
3861     break;
3862   case k_Token:
3863     OS << "'" << getToken() << "'";
3864     break;
3865   case k_VectorIndex:
3866     OS << "<vectorindex " << getVectorIndex() << ">";
3867     break;
3868   }
3869 }
3870 
3871 /// @name Auto-generated Match Functions
3872 /// {
3873 
3874 static unsigned MatchRegisterName(StringRef Name);
3875 
3876 /// }
3877 
3878 bool ARMAsmParser::ParseRegister(unsigned &RegNo,
3879                                  SMLoc &StartLoc, SMLoc &EndLoc) {
3880   const AsmToken &Tok = getParser().getTok();
3881   StartLoc = Tok.getLoc();
3882   EndLoc = Tok.getEndLoc();
3883   RegNo = tryParseRegister();
3884 
3885   return (RegNo == (unsigned)-1);
3886 }
3887 
3888 /// Try to parse a register name.  The token must be an Identifier when called,
3889 /// and if it is a register name the token is eaten and the register number is
3890 /// returned.  Otherwise return -1.
3891 int ARMAsmParser::tryParseRegister() {
3892   MCAsmParser &Parser = getParser();
3893   const AsmToken &Tok = Parser.getTok();
3894   if (Tok.isNot(AsmToken::Identifier)) return -1;
3895 
3896   std::string lowerCase = Tok.getString().lower();
3897   unsigned RegNum = MatchRegisterName(lowerCase);
3898   if (!RegNum) {
3899     RegNum = StringSwitch<unsigned>(lowerCase)
3900       .Case("r13", ARM::SP)
3901       .Case("r14", ARM::LR)
3902       .Case("r15", ARM::PC)
3903       .Case("ip", ARM::R12)
3904       // Additional register name aliases for 'gas' compatibility.
3905       .Case("a1", ARM::R0)
3906       .Case("a2", ARM::R1)
3907       .Case("a3", ARM::R2)
3908       .Case("a4", ARM::R3)
3909       .Case("v1", ARM::R4)
3910       .Case("v2", ARM::R5)
3911       .Case("v3", ARM::R6)
3912       .Case("v4", ARM::R7)
3913       .Case("v5", ARM::R8)
3914       .Case("v6", ARM::R9)
3915       .Case("v7", ARM::R10)
3916       .Case("v8", ARM::R11)
3917       .Case("sb", ARM::R9)
3918       .Case("sl", ARM::R10)
3919       .Case("fp", ARM::R11)
3920       .Default(0);
3921   }
3922   if (!RegNum) {
3923     // Check for aliases registered via .req. Canonicalize to lower case.
3924     // That's more consistent since register names are case insensitive, and
3925     // it's how the original entry was passed in from MC/MCParser/AsmParser.
3926     StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
3927     // If no match, return failure.
3928     if (Entry == RegisterReqs.end())
3929       return -1;
3930     Parser.Lex(); // Eat identifier token.
3931     return Entry->getValue();
3932   }
3933 
3934   // Some FPUs only have 16 D registers, so D16-D31 are invalid
3935   if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31)
3936     return -1;
3937 
3938   Parser.Lex(); // Eat identifier token.
3939 
3940   return RegNum;
3941 }
3942 
3943 // Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
3944 // If a recoverable error occurs, return 1. If an irrecoverable error
3945 // occurs, return -1. An irrecoverable error is one where tokens have been
3946 // consumed in the process of trying to parse the shifter (i.e., when it is
3947 // indeed a shifter operand, but malformed).
3948 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
3949   MCAsmParser &Parser = getParser();
3950   SMLoc S = Parser.getTok().getLoc();
3951   const AsmToken &Tok = Parser.getTok();
3952   if (Tok.isNot(AsmToken::Identifier))
3953     return -1;
3954 
3955   std::string lowerCase = Tok.getString().lower();
3956   ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
3957       .Case("asl", ARM_AM::lsl)
3958       .Case("lsl", ARM_AM::lsl)
3959       .Case("lsr", ARM_AM::lsr)
3960       .Case("asr", ARM_AM::asr)
3961       .Case("ror", ARM_AM::ror)
3962       .Case("rrx", ARM_AM::rrx)
3963       .Default(ARM_AM::no_shift);
3964 
3965   if (ShiftTy == ARM_AM::no_shift)
3966     return 1;
3967 
3968   Parser.Lex(); // Eat the operator.
3969 
3970   // The source register for the shift has already been added to the
3971   // operand list, so we need to pop it off and combine it into the shifted
3972   // register operand instead.
3973   std::unique_ptr<ARMOperand> PrevOp(
3974       (ARMOperand *)Operands.pop_back_val().release());
3975   if (!PrevOp->isReg())
3976     return Error(PrevOp->getStartLoc(), "shift must be of a register");
3977   int SrcReg = PrevOp->getReg();
3978 
3979   SMLoc EndLoc;
3980   int64_t Imm = 0;
3981   int ShiftReg = 0;
3982   if (ShiftTy == ARM_AM::rrx) {
3983     // RRX Doesn't have an explicit shift amount. The encoder expects
3984     // the shift register to be the same as the source register. Seems odd,
3985     // but OK.
3986     ShiftReg = SrcReg;
3987   } else {
3988     // Figure out if this is shifted by a constant or a register (for non-RRX).
3989     if (Parser.getTok().is(AsmToken::Hash) ||
3990         Parser.getTok().is(AsmToken::Dollar)) {
3991       Parser.Lex(); // Eat hash.
3992       SMLoc ImmLoc = Parser.getTok().getLoc();
3993       const MCExpr *ShiftExpr = nullptr;
3994       if (getParser().parseExpression(ShiftExpr, EndLoc)) {
3995         Error(ImmLoc, "invalid immediate shift value");
3996         return -1;
3997       }
3998       // The expression must be evaluatable as an immediate.
3999       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
4000       if (!CE) {
4001         Error(ImmLoc, "invalid immediate shift value");
4002         return -1;
4003       }
4004       // Range check the immediate.
4005       // lsl, ror: 0 <= imm <= 31
4006       // lsr, asr: 0 <= imm <= 32
4007       Imm = CE->getValue();
4008       if (Imm < 0 ||
4009           ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
4010           ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
4011         Error(ImmLoc, "immediate shift value out of range");
4012         return -1;
4013       }
4014       // shift by zero is a nop. Always send it through as lsl.
4015       // ('as' compatibility)
4016       if (Imm == 0)
4017         ShiftTy = ARM_AM::lsl;
4018     } else if (Parser.getTok().is(AsmToken::Identifier)) {
4019       SMLoc L = Parser.getTok().getLoc();
4020       EndLoc = Parser.getTok().getEndLoc();
4021       ShiftReg = tryParseRegister();
4022       if (ShiftReg == -1) {
4023         Error(L, "expected immediate or register in shift operand");
4024         return -1;
4025       }
4026     } else {
4027       Error(Parser.getTok().getLoc(),
4028             "expected immediate or register in shift operand");
4029       return -1;
4030     }
4031   }
4032 
4033   if (ShiftReg && ShiftTy != ARM_AM::rrx)
4034     Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
4035                                                          ShiftReg, Imm,
4036                                                          S, EndLoc));
4037   else
4038     Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
4039                                                           S, EndLoc));
4040 
4041   return 0;
4042 }
4043 
4044 /// Try to parse a register name.  The token must be an Identifier when called.
4045 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
4046 /// if there is a "writeback". 'true' if it's not a register.
4047 ///
4048 /// TODO this is likely to change to allow different register types and or to
4049 /// parse for a specific register type.
4050 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
4051   MCAsmParser &Parser = getParser();
4052   SMLoc RegStartLoc = Parser.getTok().getLoc();
4053   SMLoc RegEndLoc = Parser.getTok().getEndLoc();
4054   int RegNo = tryParseRegister();
4055   if (RegNo == -1)
4056     return true;
4057 
4058   Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc));
4059 
4060   const AsmToken &ExclaimTok = Parser.getTok();
4061   if (ExclaimTok.is(AsmToken::Exclaim)) {
4062     Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
4063                                                ExclaimTok.getLoc()));
4064     Parser.Lex(); // Eat exclaim token
4065     return false;
4066   }
4067 
4068   // Also check for an index operand. This is only legal for vector registers,
4069   // but that'll get caught OK in operand matching, so we don't need to
4070   // explicitly filter everything else out here.
4071   if (Parser.getTok().is(AsmToken::LBrac)) {
4072     SMLoc SIdx = Parser.getTok().getLoc();
4073     Parser.Lex(); // Eat left bracket token.
4074 
4075     const MCExpr *ImmVal;
4076     if (getParser().parseExpression(ImmVal))
4077       return true;
4078     const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
4079     if (!MCE)
4080       return TokError("immediate value expected for vector index");
4081 
4082     if (Parser.getTok().isNot(AsmToken::RBrac))
4083       return Error(Parser.getTok().getLoc(), "']' expected");
4084 
4085     SMLoc E = Parser.getTok().getEndLoc();
4086     Parser.Lex(); // Eat right bracket token.
4087 
4088     Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
4089                                                      SIdx, E,
4090                                                      getContext()));
4091   }
4092 
4093   return false;
4094 }
4095 
4096 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
4097 /// instruction with a symbolic operand name.
4098 /// We accept "crN" syntax for GAS compatibility.
4099 /// <operand-name> ::= <prefix><number>
4100 /// If CoprocOp is 'c', then:
4101 ///   <prefix> ::= c | cr
4102 /// If CoprocOp is 'p', then :
4103 ///   <prefix> ::= p
4104 /// <number> ::= integer in range [0, 15]
4105 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
4106   // Use the same layout as the tablegen'erated register name matcher. Ugly,
4107   // but efficient.
4108   if (Name.size() < 2 || Name[0] != CoprocOp)
4109     return -1;
4110   Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front();
4111 
4112   switch (Name.size()) {
4113   default: return -1;
4114   case 1:
4115     switch (Name[0]) {
4116     default:  return -1;
4117     case '0': return 0;
4118     case '1': return 1;
4119     case '2': return 2;
4120     case '3': return 3;
4121     case '4': return 4;
4122     case '5': return 5;
4123     case '6': return 6;
4124     case '7': return 7;
4125     case '8': return 8;
4126     case '9': return 9;
4127     }
4128   case 2:
4129     if (Name[0] != '1')
4130       return -1;
4131     switch (Name[1]) {
4132     default:  return -1;
4133     // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
4134     // However, old cores (v5/v6) did use them in that way.
4135     case '0': return 10;
4136     case '1': return 11;
4137     case '2': return 12;
4138     case '3': return 13;
4139     case '4': return 14;
4140     case '5': return 15;
4141     }
4142   }
4143 }
4144 
4145 /// parseITCondCode - Try to parse a condition code for an IT instruction.
4146 OperandMatchResultTy
4147 ARMAsmParser::parseITCondCode(OperandVector &Operands) {
4148   MCAsmParser &Parser = getParser();
4149   SMLoc S = Parser.getTok().getLoc();
4150   const AsmToken &Tok = Parser.getTok();
4151   if (!Tok.is(AsmToken::Identifier))
4152     return MatchOperand_NoMatch;
4153   unsigned CC = ARMCondCodeFromString(Tok.getString());
4154   if (CC == ~0U)
4155     return MatchOperand_NoMatch;
4156   Parser.Lex(); // Eat the token.
4157 
4158   Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
4159 
4160   return MatchOperand_Success;
4161 }
4162 
4163 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
4164 /// token must be an Identifier when called, and if it is a coprocessor
4165 /// number, the token is eaten and the operand is added to the operand list.
4166 OperandMatchResultTy
4167 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
4168   MCAsmParser &Parser = getParser();
4169   SMLoc S = Parser.getTok().getLoc();
4170   const AsmToken &Tok = Parser.getTok();
4171   if (Tok.isNot(AsmToken::Identifier))
4172     return MatchOperand_NoMatch;
4173 
4174   int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p');
4175   if (Num == -1)
4176     return MatchOperand_NoMatch;
4177   if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits()))
4178     return MatchOperand_NoMatch;
4179 
4180   Parser.Lex(); // Eat identifier token.
4181   Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
4182   return MatchOperand_Success;
4183 }
4184 
4185 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
4186 /// token must be an Identifier when called, and if it is a coprocessor
4187 /// number, the token is eaten and the operand is added to the operand list.
4188 OperandMatchResultTy
4189 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
4190   MCAsmParser &Parser = getParser();
4191   SMLoc S = Parser.getTok().getLoc();
4192   const AsmToken &Tok = Parser.getTok();
4193   if (Tok.isNot(AsmToken::Identifier))
4194     return MatchOperand_NoMatch;
4195 
4196   int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c');
4197   if (Reg == -1)
4198     return MatchOperand_NoMatch;
4199 
4200   Parser.Lex(); // Eat identifier token.
4201   Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
4202   return MatchOperand_Success;
4203 }
4204 
4205 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
4206 /// coproc_option : '{' imm0_255 '}'
4207 OperandMatchResultTy
4208 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
4209   MCAsmParser &Parser = getParser();
4210   SMLoc S = Parser.getTok().getLoc();
4211 
4212   // If this isn't a '{', this isn't a coprocessor immediate operand.
4213   if (Parser.getTok().isNot(AsmToken::LCurly))
4214     return MatchOperand_NoMatch;
4215   Parser.Lex(); // Eat the '{'
4216 
4217   const MCExpr *Expr;
4218   SMLoc Loc = Parser.getTok().getLoc();
4219   if (getParser().parseExpression(Expr)) {
4220     Error(Loc, "illegal expression");
4221     return MatchOperand_ParseFail;
4222   }
4223   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4224   if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
4225     Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
4226     return MatchOperand_ParseFail;
4227   }
4228   int Val = CE->getValue();
4229 
4230   // Check for and consume the closing '}'
4231   if (Parser.getTok().isNot(AsmToken::RCurly))
4232     return MatchOperand_ParseFail;
4233   SMLoc E = Parser.getTok().getEndLoc();
4234   Parser.Lex(); // Eat the '}'
4235 
4236   Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
4237   return MatchOperand_Success;
4238 }
4239 
4240 // For register list parsing, we need to map from raw GPR register numbering
4241 // to the enumeration values. The enumeration values aren't sorted by
4242 // register number due to our using "sp", "lr" and "pc" as canonical names.
4243 static unsigned getNextRegister(unsigned Reg) {
4244   // If this is a GPR, we need to do it manually, otherwise we can rely
4245   // on the sort ordering of the enumeration since the other reg-classes
4246   // are sane.
4247   if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4248     return Reg + 1;
4249   switch(Reg) {
4250   default: llvm_unreachable("Invalid GPR number!");
4251   case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
4252   case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
4253   case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
4254   case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
4255   case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
4256   case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
4257   case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
4258   case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
4259   }
4260 }
4261 
4262 // Insert an <Encoding, Register> pair in an ordered vector. Return true on
4263 // success, or false, if duplicate encoding found.
4264 static bool
4265 insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
4266                    unsigned Enc, unsigned Reg) {
4267   Regs.emplace_back(Enc, Reg);
4268   for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) {
4269     if (J->first == Enc) {
4270       Regs.erase(J.base());
4271       return false;
4272     }
4273     if (J->first < Enc)
4274       break;
4275     std::swap(*I, *J);
4276   }
4277   return true;
4278 }
4279 
4280 /// Parse a register list.
4281 bool ARMAsmParser::parseRegisterList(OperandVector &Operands,
4282                                      bool EnforceOrder) {
4283   MCAsmParser &Parser = getParser();
4284   if (Parser.getTok().isNot(AsmToken::LCurly))
4285     return TokError("Token is not a Left Curly Brace");
4286   SMLoc S = Parser.getTok().getLoc();
4287   Parser.Lex(); // Eat '{' token.
4288   SMLoc RegLoc = Parser.getTok().getLoc();
4289 
4290   // Check the first register in the list to see what register class
4291   // this is a list of.
4292   int Reg = tryParseRegister();
4293   if (Reg == -1)
4294     return Error(RegLoc, "register expected");
4295 
4296   // The reglist instructions have at most 16 registers, so reserve
4297   // space for that many.
4298   int EReg = 0;
4299   SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
4300 
4301   // Allow Q regs and just interpret them as the two D sub-registers.
4302   if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4303     Reg = getDRegFromQReg(Reg);
4304     EReg = MRI->getEncodingValue(Reg);
4305     Registers.emplace_back(EReg, Reg);
4306     ++Reg;
4307   }
4308   const MCRegisterClass *RC;
4309   if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4310     RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
4311   else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
4312     RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
4313   else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
4314     RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
4315   else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg))
4316     RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID];
4317   else
4318     return Error(RegLoc, "invalid register in register list");
4319 
4320   // Store the register.
4321   EReg = MRI->getEncodingValue(Reg);
4322   Registers.emplace_back(EReg, Reg);
4323 
4324   // This starts immediately after the first register token in the list,
4325   // so we can see either a comma or a minus (range separator) as a legal
4326   // next token.
4327   while (Parser.getTok().is(AsmToken::Comma) ||
4328          Parser.getTok().is(AsmToken::Minus)) {
4329     if (Parser.getTok().is(AsmToken::Minus)) {
4330       Parser.Lex(); // Eat the minus.
4331       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4332       int EndReg = tryParseRegister();
4333       if (EndReg == -1)
4334         return Error(AfterMinusLoc, "register expected");
4335       // Allow Q regs and just interpret them as the two D sub-registers.
4336       if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4337         EndReg = getDRegFromQReg(EndReg) + 1;
4338       // If the register is the same as the start reg, there's nothing
4339       // more to do.
4340       if (Reg == EndReg)
4341         continue;
4342       // The register must be in the same register class as the first.
4343       if (!RC->contains(EndReg))
4344         return Error(AfterMinusLoc, "invalid register in register list");
4345       // Ranges must go from low to high.
4346       if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
4347         return Error(AfterMinusLoc, "bad range in register list");
4348 
4349       // Add all the registers in the range to the register list.
4350       while (Reg != EndReg) {
4351         Reg = getNextRegister(Reg);
4352         EReg = MRI->getEncodingValue(Reg);
4353         if (!insertNoDuplicates(Registers, EReg, Reg)) {
4354           Warning(AfterMinusLoc, StringRef("duplicated register (") +
4355                                      ARMInstPrinter::getRegisterName(Reg) +
4356                                      ") in register list");
4357         }
4358       }
4359       continue;
4360     }
4361     Parser.Lex(); // Eat the comma.
4362     RegLoc = Parser.getTok().getLoc();
4363     int OldReg = Reg;
4364     const AsmToken RegTok = Parser.getTok();
4365     Reg = tryParseRegister();
4366     if (Reg == -1)
4367       return Error(RegLoc, "register expected");
4368     // Allow Q regs and just interpret them as the two D sub-registers.
4369     bool isQReg = false;
4370     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4371       Reg = getDRegFromQReg(Reg);
4372       isQReg = true;
4373     }
4374     if (!RC->contains(Reg) &&
4375         RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() &&
4376         ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) {
4377       // switch the register classes, as GPRwithAPSRnospRegClassID is a partial
4378       // subset of GPRRegClassId except it contains APSR as well.
4379       RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID];
4380     }
4381     if (Reg == ARM::VPR &&
4382         (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] ||
4383          RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] ||
4384          RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) {
4385       RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID];
4386       EReg = MRI->getEncodingValue(Reg);
4387       if (!insertNoDuplicates(Registers, EReg, Reg)) {
4388         Warning(RegLoc, "duplicated register (" + RegTok.getString() +
4389                             ") in register list");
4390       }
4391       continue;
4392     }
4393     // The register must be in the same register class as the first.
4394     if (!RC->contains(Reg))
4395       return Error(RegLoc, "invalid register in register list");
4396     // In most cases, the list must be monotonically increasing. An
4397     // exception is CLRM, which is order-independent anyway, so
4398     // there's no potential for confusion if you write clrm {r2,r1}
4399     // instead of clrm {r1,r2}.
4400     if (EnforceOrder &&
4401         MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
4402       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4403         Warning(RegLoc, "register list not in ascending order");
4404       else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg))
4405         return Error(RegLoc, "register list not in ascending order");
4406     }
4407     // VFP register lists must also be contiguous.
4408     if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
4409         RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] &&
4410         Reg != OldReg + 1)
4411       return Error(RegLoc, "non-contiguous register range");
4412     EReg = MRI->getEncodingValue(Reg);
4413     if (!insertNoDuplicates(Registers, EReg, Reg)) {
4414       Warning(RegLoc, "duplicated register (" + RegTok.getString() +
4415                           ") in register list");
4416     }
4417     if (isQReg) {
4418       EReg = MRI->getEncodingValue(++Reg);
4419       Registers.emplace_back(EReg, Reg);
4420     }
4421   }
4422 
4423   if (Parser.getTok().isNot(AsmToken::RCurly))
4424     return Error(Parser.getTok().getLoc(), "'}' expected");
4425   SMLoc E = Parser.getTok().getEndLoc();
4426   Parser.Lex(); // Eat '}' token.
4427 
4428   // Push the register list operand.
4429   Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
4430 
4431   // The ARM system instruction variants for LDM/STM have a '^' token here.
4432   if (Parser.getTok().is(AsmToken::Caret)) {
4433     Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
4434     Parser.Lex(); // Eat '^' token.
4435   }
4436 
4437   return false;
4438 }
4439 
4440 // Helper function to parse the lane index for vector lists.
4441 OperandMatchResultTy ARMAsmParser::
4442 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
4443   MCAsmParser &Parser = getParser();
4444   Index = 0; // Always return a defined index value.
4445   if (Parser.getTok().is(AsmToken::LBrac)) {
4446     Parser.Lex(); // Eat the '['.
4447     if (Parser.getTok().is(AsmToken::RBrac)) {
4448       // "Dn[]" is the 'all lanes' syntax.
4449       LaneKind = AllLanes;
4450       EndLoc = Parser.getTok().getEndLoc();
4451       Parser.Lex(); // Eat the ']'.
4452       return MatchOperand_Success;
4453     }
4454 
4455     // There's an optional '#' token here. Normally there wouldn't be, but
4456     // inline assemble puts one in, and it's friendly to accept that.
4457     if (Parser.getTok().is(AsmToken::Hash))
4458       Parser.Lex(); // Eat '#' or '$'.
4459 
4460     const MCExpr *LaneIndex;
4461     SMLoc Loc = Parser.getTok().getLoc();
4462     if (getParser().parseExpression(LaneIndex)) {
4463       Error(Loc, "illegal expression");
4464       return MatchOperand_ParseFail;
4465     }
4466     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
4467     if (!CE) {
4468       Error(Loc, "lane index must be empty or an integer");
4469       return MatchOperand_ParseFail;
4470     }
4471     if (Parser.getTok().isNot(AsmToken::RBrac)) {
4472       Error(Parser.getTok().getLoc(), "']' expected");
4473       return MatchOperand_ParseFail;
4474     }
4475     EndLoc = Parser.getTok().getEndLoc();
4476     Parser.Lex(); // Eat the ']'.
4477     int64_t Val = CE->getValue();
4478 
4479     // FIXME: Make this range check context sensitive for .8, .16, .32.
4480     if (Val < 0 || Val > 7) {
4481       Error(Parser.getTok().getLoc(), "lane index out of range");
4482       return MatchOperand_ParseFail;
4483     }
4484     Index = Val;
4485     LaneKind = IndexedLane;
4486     return MatchOperand_Success;
4487   }
4488   LaneKind = NoLanes;
4489   return MatchOperand_Success;
4490 }
4491 
4492 // parse a vector register list
4493 OperandMatchResultTy
4494 ARMAsmParser::parseVectorList(OperandVector &Operands) {
4495   MCAsmParser &Parser = getParser();
4496   VectorLaneTy LaneKind;
4497   unsigned LaneIndex;
4498   SMLoc S = Parser.getTok().getLoc();
4499   // As an extension (to match gas), support a plain D register or Q register
4500   // (without encosing curly braces) as a single or double entry list,
4501   // respectively.
4502   if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) {
4503     SMLoc E = Parser.getTok().getEndLoc();
4504     int Reg = tryParseRegister();
4505     if (Reg == -1)
4506       return MatchOperand_NoMatch;
4507     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
4508       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
4509       if (Res != MatchOperand_Success)
4510         return Res;
4511       switch (LaneKind) {
4512       case NoLanes:
4513         Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
4514         break;
4515       case AllLanes:
4516         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
4517                                                                 S, E));
4518         break;
4519       case IndexedLane:
4520         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
4521                                                                LaneIndex,
4522                                                                false, S, E));
4523         break;
4524       }
4525       return MatchOperand_Success;
4526     }
4527     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4528       Reg = getDRegFromQReg(Reg);
4529       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
4530       if (Res != MatchOperand_Success)
4531         return Res;
4532       switch (LaneKind) {
4533       case NoLanes:
4534         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
4535                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
4536         Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
4537         break;
4538       case AllLanes:
4539         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
4540                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
4541         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
4542                                                                 S, E));
4543         break;
4544       case IndexedLane:
4545         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
4546                                                                LaneIndex,
4547                                                                false, S, E));
4548         break;
4549       }
4550       return MatchOperand_Success;
4551     }
4552     Error(S, "vector register expected");
4553     return MatchOperand_ParseFail;
4554   }
4555 
4556   if (Parser.getTok().isNot(AsmToken::LCurly))
4557     return MatchOperand_NoMatch;
4558 
4559   Parser.Lex(); // Eat '{' token.
4560   SMLoc RegLoc = Parser.getTok().getLoc();
4561 
4562   int Reg = tryParseRegister();
4563   if (Reg == -1) {
4564     Error(RegLoc, "register expected");
4565     return MatchOperand_ParseFail;
4566   }
4567   unsigned Count = 1;
4568   int Spacing = 0;
4569   unsigned FirstReg = Reg;
4570 
4571   if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) {
4572       Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected");
4573       return MatchOperand_ParseFail;
4574   }
4575   // The list is of D registers, but we also allow Q regs and just interpret
4576   // them as the two D sub-registers.
4577   else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4578     FirstReg = Reg = getDRegFromQReg(Reg);
4579     Spacing = 1; // double-spacing requires explicit D registers, otherwise
4580                  // it's ambiguous with four-register single spaced.
4581     ++Reg;
4582     ++Count;
4583   }
4584 
4585   SMLoc E;
4586   if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
4587     return MatchOperand_ParseFail;
4588 
4589   while (Parser.getTok().is(AsmToken::Comma) ||
4590          Parser.getTok().is(AsmToken::Minus)) {
4591     if (Parser.getTok().is(AsmToken::Minus)) {
4592       if (!Spacing)
4593         Spacing = 1; // Register range implies a single spaced list.
4594       else if (Spacing == 2) {
4595         Error(Parser.getTok().getLoc(),
4596               "sequential registers in double spaced list");
4597         return MatchOperand_ParseFail;
4598       }
4599       Parser.Lex(); // Eat the minus.
4600       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4601       int EndReg = tryParseRegister();
4602       if (EndReg == -1) {
4603         Error(AfterMinusLoc, "register expected");
4604         return MatchOperand_ParseFail;
4605       }
4606       // Allow Q regs and just interpret them as the two D sub-registers.
4607       if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4608         EndReg = getDRegFromQReg(EndReg) + 1;
4609       // If the register is the same as the start reg, there's nothing
4610       // more to do.
4611       if (Reg == EndReg)
4612         continue;
4613       // The register must be in the same register class as the first.
4614       if ((hasMVE() &&
4615            !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) ||
4616           (!hasMVE() &&
4617            !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) {
4618         Error(AfterMinusLoc, "invalid register in register list");
4619         return MatchOperand_ParseFail;
4620       }
4621       // Ranges must go from low to high.
4622       if (Reg > EndReg) {
4623         Error(AfterMinusLoc, "bad range in register list");
4624         return MatchOperand_ParseFail;
4625       }
4626       // Parse the lane specifier if present.
4627       VectorLaneTy NextLaneKind;
4628       unsigned NextLaneIndex;
4629       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4630           MatchOperand_Success)
4631         return MatchOperand_ParseFail;
4632       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4633         Error(AfterMinusLoc, "mismatched lane index in register list");
4634         return MatchOperand_ParseFail;
4635       }
4636 
4637       // Add all the registers in the range to the register list.
4638       Count += EndReg - Reg;
4639       Reg = EndReg;
4640       continue;
4641     }
4642     Parser.Lex(); // Eat the comma.
4643     RegLoc = Parser.getTok().getLoc();
4644     int OldReg = Reg;
4645     Reg = tryParseRegister();
4646     if (Reg == -1) {
4647       Error(RegLoc, "register expected");
4648       return MatchOperand_ParseFail;
4649     }
4650 
4651     if (hasMVE()) {
4652       if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) {
4653         Error(RegLoc, "vector register in range Q0-Q7 expected");
4654         return MatchOperand_ParseFail;
4655       }
4656       Spacing = 1;
4657     }
4658     // vector register lists must be contiguous.
4659     // It's OK to use the enumeration values directly here rather, as the
4660     // VFP register classes have the enum sorted properly.
4661     //
4662     // The list is of D registers, but we also allow Q regs and just interpret
4663     // them as the two D sub-registers.
4664     else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4665       if (!Spacing)
4666         Spacing = 1; // Register range implies a single spaced list.
4667       else if (Spacing == 2) {
4668         Error(RegLoc,
4669               "invalid register in double-spaced list (must be 'D' register')");
4670         return MatchOperand_ParseFail;
4671       }
4672       Reg = getDRegFromQReg(Reg);
4673       if (Reg != OldReg + 1) {
4674         Error(RegLoc, "non-contiguous register range");
4675         return MatchOperand_ParseFail;
4676       }
4677       ++Reg;
4678       Count += 2;
4679       // Parse the lane specifier if present.
4680       VectorLaneTy NextLaneKind;
4681       unsigned NextLaneIndex;
4682       SMLoc LaneLoc = Parser.getTok().getLoc();
4683       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4684           MatchOperand_Success)
4685         return MatchOperand_ParseFail;
4686       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4687         Error(LaneLoc, "mismatched lane index in register list");
4688         return MatchOperand_ParseFail;
4689       }
4690       continue;
4691     }
4692     // Normal D register.
4693     // Figure out the register spacing (single or double) of the list if
4694     // we don't know it already.
4695     if (!Spacing)
4696       Spacing = 1 + (Reg == OldReg + 2);
4697 
4698     // Just check that it's contiguous and keep going.
4699     if (Reg != OldReg + Spacing) {
4700       Error(RegLoc, "non-contiguous register range");
4701       return MatchOperand_ParseFail;
4702     }
4703     ++Count;
4704     // Parse the lane specifier if present.
4705     VectorLaneTy NextLaneKind;
4706     unsigned NextLaneIndex;
4707     SMLoc EndLoc = Parser.getTok().getLoc();
4708     if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
4709       return MatchOperand_ParseFail;
4710     if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4711       Error(EndLoc, "mismatched lane index in register list");
4712       return MatchOperand_ParseFail;
4713     }
4714   }
4715 
4716   if (Parser.getTok().isNot(AsmToken::RCurly)) {
4717     Error(Parser.getTok().getLoc(), "'}' expected");
4718     return MatchOperand_ParseFail;
4719   }
4720   E = Parser.getTok().getEndLoc();
4721   Parser.Lex(); // Eat '}' token.
4722 
4723   switch (LaneKind) {
4724   case NoLanes:
4725   case AllLanes: {
4726     // Two-register operands have been converted to the
4727     // composite register classes.
4728     if (Count == 2 && !hasMVE()) {
4729       const MCRegisterClass *RC = (Spacing == 1) ?
4730         &ARMMCRegisterClasses[ARM::DPairRegClassID] :
4731         &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
4732       FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
4733     }
4734     auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList :
4735                    ARMOperand::CreateVectorListAllLanes);
4736     Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E));
4737     break;
4738   }
4739   case IndexedLane:
4740     Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
4741                                                            LaneIndex,
4742                                                            (Spacing == 2),
4743                                                            S, E));
4744     break;
4745   }
4746   return MatchOperand_Success;
4747 }
4748 
4749 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
4750 OperandMatchResultTy
4751 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
4752   MCAsmParser &Parser = getParser();
4753   SMLoc S = Parser.getTok().getLoc();
4754   const AsmToken &Tok = Parser.getTok();
4755   unsigned Opt;
4756 
4757   if (Tok.is(AsmToken::Identifier)) {
4758     StringRef OptStr = Tok.getString();
4759 
4760     Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
4761       .Case("sy",    ARM_MB::SY)
4762       .Case("st",    ARM_MB::ST)
4763       .Case("ld",    ARM_MB::LD)
4764       .Case("sh",    ARM_MB::ISH)
4765       .Case("ish",   ARM_MB::ISH)
4766       .Case("shst",  ARM_MB::ISHST)
4767       .Case("ishst", ARM_MB::ISHST)
4768       .Case("ishld", ARM_MB::ISHLD)
4769       .Case("nsh",   ARM_MB::NSH)
4770       .Case("un",    ARM_MB::NSH)
4771       .Case("nshst", ARM_MB::NSHST)
4772       .Case("nshld", ARM_MB::NSHLD)
4773       .Case("unst",  ARM_MB::NSHST)
4774       .Case("osh",   ARM_MB::OSH)
4775       .Case("oshst", ARM_MB::OSHST)
4776       .Case("oshld", ARM_MB::OSHLD)
4777       .Default(~0U);
4778 
4779     // ishld, oshld, nshld and ld are only available from ARMv8.
4780     if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
4781                         Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
4782       Opt = ~0U;
4783 
4784     if (Opt == ~0U)
4785       return MatchOperand_NoMatch;
4786 
4787     Parser.Lex(); // Eat identifier token.
4788   } else if (Tok.is(AsmToken::Hash) ||
4789              Tok.is(AsmToken::Dollar) ||
4790              Tok.is(AsmToken::Integer)) {
4791     if (Parser.getTok().isNot(AsmToken::Integer))
4792       Parser.Lex(); // Eat '#' or '$'.
4793     SMLoc Loc = Parser.getTok().getLoc();
4794 
4795     const MCExpr *MemBarrierID;
4796     if (getParser().parseExpression(MemBarrierID)) {
4797       Error(Loc, "illegal expression");
4798       return MatchOperand_ParseFail;
4799     }
4800 
4801     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
4802     if (!CE) {
4803       Error(Loc, "constant expression expected");
4804       return MatchOperand_ParseFail;
4805     }
4806 
4807     int Val = CE->getValue();
4808     if (Val & ~0xf) {
4809       Error(Loc, "immediate value out of range");
4810       return MatchOperand_ParseFail;
4811     }
4812 
4813     Opt = ARM_MB::RESERVED_0 + Val;
4814   } else
4815     return MatchOperand_ParseFail;
4816 
4817   Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
4818   return MatchOperand_Success;
4819 }
4820 
4821 OperandMatchResultTy
4822 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) {
4823   MCAsmParser &Parser = getParser();
4824   SMLoc S = Parser.getTok().getLoc();
4825   const AsmToken &Tok = Parser.getTok();
4826 
4827   if (Tok.isNot(AsmToken::Identifier))
4828      return MatchOperand_NoMatch;
4829 
4830   if (!Tok.getString().equals_lower("csync"))
4831     return MatchOperand_NoMatch;
4832 
4833   Parser.Lex(); // Eat identifier token.
4834 
4835   Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S));
4836   return MatchOperand_Success;
4837 }
4838 
4839 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
4840 OperandMatchResultTy
4841 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
4842   MCAsmParser &Parser = getParser();
4843   SMLoc S = Parser.getTok().getLoc();
4844   const AsmToken &Tok = Parser.getTok();
4845   unsigned Opt;
4846 
4847   if (Tok.is(AsmToken::Identifier)) {
4848     StringRef OptStr = Tok.getString();
4849 
4850     if (OptStr.equals_lower("sy"))
4851       Opt = ARM_ISB::SY;
4852     else
4853       return MatchOperand_NoMatch;
4854 
4855     Parser.Lex(); // Eat identifier token.
4856   } else if (Tok.is(AsmToken::Hash) ||
4857              Tok.is(AsmToken::Dollar) ||
4858              Tok.is(AsmToken::Integer)) {
4859     if (Parser.getTok().isNot(AsmToken::Integer))
4860       Parser.Lex(); // Eat '#' or '$'.
4861     SMLoc Loc = Parser.getTok().getLoc();
4862 
4863     const MCExpr *ISBarrierID;
4864     if (getParser().parseExpression(ISBarrierID)) {
4865       Error(Loc, "illegal expression");
4866       return MatchOperand_ParseFail;
4867     }
4868 
4869     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
4870     if (!CE) {
4871       Error(Loc, "constant expression expected");
4872       return MatchOperand_ParseFail;
4873     }
4874 
4875     int Val = CE->getValue();
4876     if (Val & ~0xf) {
4877       Error(Loc, "immediate value out of range");
4878       return MatchOperand_ParseFail;
4879     }
4880 
4881     Opt = ARM_ISB::RESERVED_0 + Val;
4882   } else
4883     return MatchOperand_ParseFail;
4884 
4885   Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
4886           (ARM_ISB::InstSyncBOpt)Opt, S));
4887   return MatchOperand_Success;
4888 }
4889 
4890 
4891 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
4892 OperandMatchResultTy
4893 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
4894   MCAsmParser &Parser = getParser();
4895   SMLoc S = Parser.getTok().getLoc();
4896   const AsmToken &Tok = Parser.getTok();
4897   if (!Tok.is(AsmToken::Identifier))
4898     return MatchOperand_NoMatch;
4899   StringRef IFlagsStr = Tok.getString();
4900 
4901   // An iflags string of "none" is interpreted to mean that none of the AIF
4902   // bits are set.  Not a terribly useful instruction, but a valid encoding.
4903   unsigned IFlags = 0;
4904   if (IFlagsStr != "none") {
4905         for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
4906       unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower())
4907         .Case("a", ARM_PROC::A)
4908         .Case("i", ARM_PROC::I)
4909         .Case("f", ARM_PROC::F)
4910         .Default(~0U);
4911 
4912       // If some specific iflag is already set, it means that some letter is
4913       // present more than once, this is not acceptable.
4914       if (Flag == ~0U || (IFlags & Flag))
4915         return MatchOperand_NoMatch;
4916 
4917       IFlags |= Flag;
4918     }
4919   }
4920 
4921   Parser.Lex(); // Eat identifier token.
4922   Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
4923   return MatchOperand_Success;
4924 }
4925 
4926 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
4927 OperandMatchResultTy
4928 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
4929   MCAsmParser &Parser = getParser();
4930   SMLoc S = Parser.getTok().getLoc();
4931   const AsmToken &Tok = Parser.getTok();
4932 
4933   if (Tok.is(AsmToken::Integer)) {
4934     int64_t Val = Tok.getIntVal();
4935     if (Val > 255 || Val < 0) {
4936       return MatchOperand_NoMatch;
4937     }
4938     unsigned SYSmvalue = Val & 0xFF;
4939     Parser.Lex();
4940     Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
4941     return MatchOperand_Success;
4942   }
4943 
4944   if (!Tok.is(AsmToken::Identifier))
4945     return MatchOperand_NoMatch;
4946   StringRef Mask = Tok.getString();
4947 
4948   if (isMClass()) {
4949     auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower());
4950     if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits()))
4951       return MatchOperand_NoMatch;
4952 
4953     unsigned SYSmvalue = TheReg->Encoding & 0xFFF;
4954 
4955     Parser.Lex(); // Eat identifier token.
4956     Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
4957     return MatchOperand_Success;
4958   }
4959 
4960   // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
4961   size_t Start = 0, Next = Mask.find('_');
4962   StringRef Flags = "";
4963   std::string SpecReg = Mask.slice(Start, Next).lower();
4964   if (Next != StringRef::npos)
4965     Flags = Mask.slice(Next+1, Mask.size());
4966 
4967   // FlagsVal contains the complete mask:
4968   // 3-0: Mask
4969   // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
4970   unsigned FlagsVal = 0;
4971 
4972   if (SpecReg == "apsr") {
4973     FlagsVal = StringSwitch<unsigned>(Flags)
4974     .Case("nzcvq",  0x8) // same as CPSR_f
4975     .Case("g",      0x4) // same as CPSR_s
4976     .Case("nzcvqg", 0xc) // same as CPSR_fs
4977     .Default(~0U);
4978 
4979     if (FlagsVal == ~0U) {
4980       if (!Flags.empty())
4981         return MatchOperand_NoMatch;
4982       else
4983         FlagsVal = 8; // No flag
4984     }
4985   } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
4986     // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
4987     if (Flags == "all" || Flags == "")
4988       Flags = "fc";
4989     for (int i = 0, e = Flags.size(); i != e; ++i) {
4990       unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
4991       .Case("c", 1)
4992       .Case("x", 2)
4993       .Case("s", 4)
4994       .Case("f", 8)
4995       .Default(~0U);
4996 
4997       // If some specific flag is already set, it means that some letter is
4998       // present more than once, this is not acceptable.
4999       if (Flag == ~0U || (FlagsVal & Flag))
5000         return MatchOperand_NoMatch;
5001       FlagsVal |= Flag;
5002     }
5003   } else // No match for special register.
5004     return MatchOperand_NoMatch;
5005 
5006   // Special register without flags is NOT equivalent to "fc" flags.
5007   // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
5008   // two lines would enable gas compatibility at the expense of breaking
5009   // round-tripping.
5010   //
5011   // if (!FlagsVal)
5012   //  FlagsVal = 0x9;
5013 
5014   // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
5015   if (SpecReg == "spsr")
5016     FlagsVal |= 16;
5017 
5018   Parser.Lex(); // Eat identifier token.
5019   Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
5020   return MatchOperand_Success;
5021 }
5022 
5023 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
5024 /// use in the MRS/MSR instructions added to support virtualization.
5025 OperandMatchResultTy
5026 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) {
5027   MCAsmParser &Parser = getParser();
5028   SMLoc S = Parser.getTok().getLoc();
5029   const AsmToken &Tok = Parser.getTok();
5030   if (!Tok.is(AsmToken::Identifier))
5031     return MatchOperand_NoMatch;
5032   StringRef RegName = Tok.getString();
5033 
5034   auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower());
5035   if (!TheReg)
5036     return MatchOperand_NoMatch;
5037   unsigned Encoding = TheReg->Encoding;
5038 
5039   Parser.Lex(); // Eat identifier token.
5040   Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S));
5041   return MatchOperand_Success;
5042 }
5043 
5044 OperandMatchResultTy
5045 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
5046                           int High) {
5047   MCAsmParser &Parser = getParser();
5048   const AsmToken &Tok = Parser.getTok();
5049   if (Tok.isNot(AsmToken::Identifier)) {
5050     Error(Parser.getTok().getLoc(), Op + " operand expected.");
5051     return MatchOperand_ParseFail;
5052   }
5053   StringRef ShiftName = Tok.getString();
5054   std::string LowerOp = Op.lower();
5055   std::string UpperOp = Op.upper();
5056   if (ShiftName != LowerOp && ShiftName != UpperOp) {
5057     Error(Parser.getTok().getLoc(), Op + " operand expected.");
5058     return MatchOperand_ParseFail;
5059   }
5060   Parser.Lex(); // Eat shift type token.
5061 
5062   // There must be a '#' and a shift amount.
5063   if (Parser.getTok().isNot(AsmToken::Hash) &&
5064       Parser.getTok().isNot(AsmToken::Dollar)) {
5065     Error(Parser.getTok().getLoc(), "'#' expected");
5066     return MatchOperand_ParseFail;
5067   }
5068   Parser.Lex(); // Eat hash token.
5069 
5070   const MCExpr *ShiftAmount;
5071   SMLoc Loc = Parser.getTok().getLoc();
5072   SMLoc EndLoc;
5073   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5074     Error(Loc, "illegal expression");
5075     return MatchOperand_ParseFail;
5076   }
5077   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5078   if (!CE) {
5079     Error(Loc, "constant expression expected");
5080     return MatchOperand_ParseFail;
5081   }
5082   int Val = CE->getValue();
5083   if (Val < Low || Val > High) {
5084     Error(Loc, "immediate value out of range");
5085     return MatchOperand_ParseFail;
5086   }
5087 
5088   Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
5089 
5090   return MatchOperand_Success;
5091 }
5092 
5093 OperandMatchResultTy
5094 ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
5095   MCAsmParser &Parser = getParser();
5096   const AsmToken &Tok = Parser.getTok();
5097   SMLoc S = Tok.getLoc();
5098   if (Tok.isNot(AsmToken::Identifier)) {
5099     Error(S, "'be' or 'le' operand expected");
5100     return MatchOperand_ParseFail;
5101   }
5102   int Val = StringSwitch<int>(Tok.getString().lower())
5103     .Case("be", 1)
5104     .Case("le", 0)
5105     .Default(-1);
5106   Parser.Lex(); // Eat the token.
5107 
5108   if (Val == -1) {
5109     Error(S, "'be' or 'le' operand expected");
5110     return MatchOperand_ParseFail;
5111   }
5112   Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val,
5113                                                                   getContext()),
5114                                            S, Tok.getEndLoc()));
5115   return MatchOperand_Success;
5116 }
5117 
5118 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
5119 /// instructions. Legal values are:
5120 ///     lsl #n  'n' in [0,31]
5121 ///     asr #n  'n' in [1,32]
5122 ///             n == 32 encoded as n == 0.
5123 OperandMatchResultTy
5124 ARMAsmParser::parseShifterImm(OperandVector &Operands) {
5125   MCAsmParser &Parser = getParser();
5126   const AsmToken &Tok = Parser.getTok();
5127   SMLoc S = Tok.getLoc();
5128   if (Tok.isNot(AsmToken::Identifier)) {
5129     Error(S, "shift operator 'asr' or 'lsl' expected");
5130     return MatchOperand_ParseFail;
5131   }
5132   StringRef ShiftName = Tok.getString();
5133   bool isASR;
5134   if (ShiftName == "lsl" || ShiftName == "LSL")
5135     isASR = false;
5136   else if (ShiftName == "asr" || ShiftName == "ASR")
5137     isASR = true;
5138   else {
5139     Error(S, "shift operator 'asr' or 'lsl' expected");
5140     return MatchOperand_ParseFail;
5141   }
5142   Parser.Lex(); // Eat the operator.
5143 
5144   // A '#' and a shift amount.
5145   if (Parser.getTok().isNot(AsmToken::Hash) &&
5146       Parser.getTok().isNot(AsmToken::Dollar)) {
5147     Error(Parser.getTok().getLoc(), "'#' expected");
5148     return MatchOperand_ParseFail;
5149   }
5150   Parser.Lex(); // Eat hash token.
5151   SMLoc ExLoc = Parser.getTok().getLoc();
5152 
5153   const MCExpr *ShiftAmount;
5154   SMLoc EndLoc;
5155   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5156     Error(ExLoc, "malformed shift expression");
5157     return MatchOperand_ParseFail;
5158   }
5159   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5160   if (!CE) {
5161     Error(ExLoc, "shift amount must be an immediate");
5162     return MatchOperand_ParseFail;
5163   }
5164 
5165   int64_t Val = CE->getValue();
5166   if (isASR) {
5167     // Shift amount must be in [1,32]
5168     if (Val < 1 || Val > 32) {
5169       Error(ExLoc, "'asr' shift amount must be in range [1,32]");
5170       return MatchOperand_ParseFail;
5171     }
5172     // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
5173     if (isThumb() && Val == 32) {
5174       Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
5175       return MatchOperand_ParseFail;
5176     }
5177     if (Val == 32) Val = 0;
5178   } else {
5179     // Shift amount must be in [1,32]
5180     if (Val < 0 || Val > 31) {
5181       Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
5182       return MatchOperand_ParseFail;
5183     }
5184   }
5185 
5186   Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
5187 
5188   return MatchOperand_Success;
5189 }
5190 
5191 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
5192 /// of instructions. Legal values are:
5193 ///     ror #n  'n' in {0, 8, 16, 24}
5194 OperandMatchResultTy
5195 ARMAsmParser::parseRotImm(OperandVector &Operands) {
5196   MCAsmParser &Parser = getParser();
5197   const AsmToken &Tok = Parser.getTok();
5198   SMLoc S = Tok.getLoc();
5199   if (Tok.isNot(AsmToken::Identifier))
5200     return MatchOperand_NoMatch;
5201   StringRef ShiftName = Tok.getString();
5202   if (ShiftName != "ror" && ShiftName != "ROR")
5203     return MatchOperand_NoMatch;
5204   Parser.Lex(); // Eat the operator.
5205 
5206   // A '#' and a rotate amount.
5207   if (Parser.getTok().isNot(AsmToken::Hash) &&
5208       Parser.getTok().isNot(AsmToken::Dollar)) {
5209     Error(Parser.getTok().getLoc(), "'#' expected");
5210     return MatchOperand_ParseFail;
5211   }
5212   Parser.Lex(); // Eat hash token.
5213   SMLoc ExLoc = Parser.getTok().getLoc();
5214 
5215   const MCExpr *ShiftAmount;
5216   SMLoc EndLoc;
5217   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5218     Error(ExLoc, "malformed rotate expression");
5219     return MatchOperand_ParseFail;
5220   }
5221   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5222   if (!CE) {
5223     Error(ExLoc, "rotate amount must be an immediate");
5224     return MatchOperand_ParseFail;
5225   }
5226 
5227   int64_t Val = CE->getValue();
5228   // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
5229   // normally, zero is represented in asm by omitting the rotate operand
5230   // entirely.
5231   if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
5232     Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
5233     return MatchOperand_ParseFail;
5234   }
5235 
5236   Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
5237 
5238   return MatchOperand_Success;
5239 }
5240 
5241 OperandMatchResultTy
5242 ARMAsmParser::parseModImm(OperandVector &Operands) {
5243   MCAsmParser &Parser = getParser();
5244   MCAsmLexer &Lexer = getLexer();
5245   int64_t Imm1, Imm2;
5246 
5247   SMLoc S = Parser.getTok().getLoc();
5248 
5249   // 1) A mod_imm operand can appear in the place of a register name:
5250   //   add r0, #mod_imm
5251   //   add r0, r0, #mod_imm
5252   // to correctly handle the latter, we bail out as soon as we see an
5253   // identifier.
5254   //
5255   // 2) Similarly, we do not want to parse into complex operands:
5256   //   mov r0, #mod_imm
5257   //   mov r0, :lower16:(_foo)
5258   if (Parser.getTok().is(AsmToken::Identifier) ||
5259       Parser.getTok().is(AsmToken::Colon))
5260     return MatchOperand_NoMatch;
5261 
5262   // Hash (dollar) is optional as per the ARMARM
5263   if (Parser.getTok().is(AsmToken::Hash) ||
5264       Parser.getTok().is(AsmToken::Dollar)) {
5265     // Avoid parsing into complex operands (#:)
5266     if (Lexer.peekTok().is(AsmToken::Colon))
5267       return MatchOperand_NoMatch;
5268 
5269     // Eat the hash (dollar)
5270     Parser.Lex();
5271   }
5272 
5273   SMLoc Sx1, Ex1;
5274   Sx1 = Parser.getTok().getLoc();
5275   const MCExpr *Imm1Exp;
5276   if (getParser().parseExpression(Imm1Exp, Ex1)) {
5277     Error(Sx1, "malformed expression");
5278     return MatchOperand_ParseFail;
5279   }
5280 
5281   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp);
5282 
5283   if (CE) {
5284     // Immediate must fit within 32-bits
5285     Imm1 = CE->getValue();
5286     int Enc = ARM_AM::getSOImmVal(Imm1);
5287     if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) {
5288       // We have a match!
5289       Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF),
5290                                                   (Enc & 0xF00) >> 7,
5291                                                   Sx1, Ex1));
5292       return MatchOperand_Success;
5293     }
5294 
5295     // We have parsed an immediate which is not for us, fallback to a plain
5296     // immediate. This can happen for instruction aliases. For an example,
5297     // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
5298     // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
5299     // instruction with a mod_imm operand. The alias is defined such that the
5300     // parser method is shared, that's why we have to do this here.
5301     if (Parser.getTok().is(AsmToken::EndOfStatement)) {
5302       Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
5303       return MatchOperand_Success;
5304     }
5305   } else {
5306     // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
5307     // MCFixup). Fallback to a plain immediate.
5308     Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
5309     return MatchOperand_Success;
5310   }
5311 
5312   // From this point onward, we expect the input to be a (#bits, #rot) pair
5313   if (Parser.getTok().isNot(AsmToken::Comma)) {
5314     Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]");
5315     return MatchOperand_ParseFail;
5316   }
5317 
5318   if (Imm1 & ~0xFF) {
5319     Error(Sx1, "immediate operand must a number in the range [0, 255]");
5320     return MatchOperand_ParseFail;
5321   }
5322 
5323   // Eat the comma
5324   Parser.Lex();
5325 
5326   // Repeat for #rot
5327   SMLoc Sx2, Ex2;
5328   Sx2 = Parser.getTok().getLoc();
5329 
5330   // Eat the optional hash (dollar)
5331   if (Parser.getTok().is(AsmToken::Hash) ||
5332       Parser.getTok().is(AsmToken::Dollar))
5333     Parser.Lex();
5334 
5335   const MCExpr *Imm2Exp;
5336   if (getParser().parseExpression(Imm2Exp, Ex2)) {
5337     Error(Sx2, "malformed expression");
5338     return MatchOperand_ParseFail;
5339   }
5340 
5341   CE = dyn_cast<MCConstantExpr>(Imm2Exp);
5342 
5343   if (CE) {
5344     Imm2 = CE->getValue();
5345     if (!(Imm2 & ~0x1E)) {
5346       // We have a match!
5347       Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2));
5348       return MatchOperand_Success;
5349     }
5350     Error(Sx2, "immediate operand must an even number in the range [0, 30]");
5351     return MatchOperand_ParseFail;
5352   } else {
5353     Error(Sx2, "constant expression expected");
5354     return MatchOperand_ParseFail;
5355   }
5356 }
5357 
5358 OperandMatchResultTy
5359 ARMAsmParser::parseBitfield(OperandVector &Operands) {
5360   MCAsmParser &Parser = getParser();
5361   SMLoc S = Parser.getTok().getLoc();
5362   // The bitfield descriptor is really two operands, the LSB and the width.
5363   if (Parser.getTok().isNot(AsmToken::Hash) &&
5364       Parser.getTok().isNot(AsmToken::Dollar)) {
5365     Error(Parser.getTok().getLoc(), "'#' expected");
5366     return MatchOperand_ParseFail;
5367   }
5368   Parser.Lex(); // Eat hash token.
5369 
5370   const MCExpr *LSBExpr;
5371   SMLoc E = Parser.getTok().getLoc();
5372   if (getParser().parseExpression(LSBExpr)) {
5373     Error(E, "malformed immediate expression");
5374     return MatchOperand_ParseFail;
5375   }
5376   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
5377   if (!CE) {
5378     Error(E, "'lsb' operand must be an immediate");
5379     return MatchOperand_ParseFail;
5380   }
5381 
5382   int64_t LSB = CE->getValue();
5383   // The LSB must be in the range [0,31]
5384   if (LSB < 0 || LSB > 31) {
5385     Error(E, "'lsb' operand must be in the range [0,31]");
5386     return MatchOperand_ParseFail;
5387   }
5388   E = Parser.getTok().getLoc();
5389 
5390   // Expect another immediate operand.
5391   if (Parser.getTok().isNot(AsmToken::Comma)) {
5392     Error(Parser.getTok().getLoc(), "too few operands");
5393     return MatchOperand_ParseFail;
5394   }
5395   Parser.Lex(); // Eat hash token.
5396   if (Parser.getTok().isNot(AsmToken::Hash) &&
5397       Parser.getTok().isNot(AsmToken::Dollar)) {
5398     Error(Parser.getTok().getLoc(), "'#' expected");
5399     return MatchOperand_ParseFail;
5400   }
5401   Parser.Lex(); // Eat hash token.
5402 
5403   const MCExpr *WidthExpr;
5404   SMLoc EndLoc;
5405   if (getParser().parseExpression(WidthExpr, EndLoc)) {
5406     Error(E, "malformed immediate expression");
5407     return MatchOperand_ParseFail;
5408   }
5409   CE = dyn_cast<MCConstantExpr>(WidthExpr);
5410   if (!CE) {
5411     Error(E, "'width' operand must be an immediate");
5412     return MatchOperand_ParseFail;
5413   }
5414 
5415   int64_t Width = CE->getValue();
5416   // The LSB must be in the range [1,32-lsb]
5417   if (Width < 1 || Width > 32 - LSB) {
5418     Error(E, "'width' operand must be in the range [1,32-lsb]");
5419     return MatchOperand_ParseFail;
5420   }
5421 
5422   Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
5423 
5424   return MatchOperand_Success;
5425 }
5426 
5427 OperandMatchResultTy
5428 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
5429   // Check for a post-index addressing register operand. Specifically:
5430   // postidx_reg := '+' register {, shift}
5431   //              | '-' register {, shift}
5432   //              | register {, shift}
5433 
5434   // This method must return MatchOperand_NoMatch without consuming any tokens
5435   // in the case where there is no match, as other alternatives take other
5436   // parse methods.
5437   MCAsmParser &Parser = getParser();
5438   AsmToken Tok = Parser.getTok();
5439   SMLoc S = Tok.getLoc();
5440   bool haveEaten = false;
5441   bool isAdd = true;
5442   if (Tok.is(AsmToken::Plus)) {
5443     Parser.Lex(); // Eat the '+' token.
5444     haveEaten = true;
5445   } else if (Tok.is(AsmToken::Minus)) {
5446     Parser.Lex(); // Eat the '-' token.
5447     isAdd = false;
5448     haveEaten = true;
5449   }
5450 
5451   SMLoc E = Parser.getTok().getEndLoc();
5452   int Reg = tryParseRegister();
5453   if (Reg == -1) {
5454     if (!haveEaten)
5455       return MatchOperand_NoMatch;
5456     Error(Parser.getTok().getLoc(), "register expected");
5457     return MatchOperand_ParseFail;
5458   }
5459 
5460   ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
5461   unsigned ShiftImm = 0;
5462   if (Parser.getTok().is(AsmToken::Comma)) {
5463     Parser.Lex(); // Eat the ','.
5464     if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
5465       return MatchOperand_ParseFail;
5466 
5467     // FIXME: Only approximates end...may include intervening whitespace.
5468     E = Parser.getTok().getLoc();
5469   }
5470 
5471   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
5472                                                   ShiftImm, S, E));
5473 
5474   return MatchOperand_Success;
5475 }
5476 
5477 OperandMatchResultTy
5478 ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
5479   // Check for a post-index addressing register operand. Specifically:
5480   // am3offset := '+' register
5481   //              | '-' register
5482   //              | register
5483   //              | # imm
5484   //              | # + imm
5485   //              | # - imm
5486 
5487   // This method must return MatchOperand_NoMatch without consuming any tokens
5488   // in the case where there is no match, as other alternatives take other
5489   // parse methods.
5490   MCAsmParser &Parser = getParser();
5491   AsmToken Tok = Parser.getTok();
5492   SMLoc S = Tok.getLoc();
5493 
5494   // Do immediates first, as we always parse those if we have a '#'.
5495   if (Parser.getTok().is(AsmToken::Hash) ||
5496       Parser.getTok().is(AsmToken::Dollar)) {
5497     Parser.Lex(); // Eat '#' or '$'.
5498     // Explicitly look for a '-', as we need to encode negative zero
5499     // differently.
5500     bool isNegative = Parser.getTok().is(AsmToken::Minus);
5501     const MCExpr *Offset;
5502     SMLoc E;
5503     if (getParser().parseExpression(Offset, E))
5504       return MatchOperand_ParseFail;
5505     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
5506     if (!CE) {
5507       Error(S, "constant expression expected");
5508       return MatchOperand_ParseFail;
5509     }
5510     // Negative zero is encoded as the flag value
5511     // std::numeric_limits<int32_t>::min().
5512     int32_t Val = CE->getValue();
5513     if (isNegative && Val == 0)
5514       Val = std::numeric_limits<int32_t>::min();
5515 
5516     Operands.push_back(
5517       ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E));
5518 
5519     return MatchOperand_Success;
5520   }
5521 
5522   bool haveEaten = false;
5523   bool isAdd = true;
5524   if (Tok.is(AsmToken::Plus)) {
5525     Parser.Lex(); // Eat the '+' token.
5526     haveEaten = true;
5527   } else if (Tok.is(AsmToken::Minus)) {
5528     Parser.Lex(); // Eat the '-' token.
5529     isAdd = false;
5530     haveEaten = true;
5531   }
5532 
5533   Tok = Parser.getTok();
5534   int Reg = tryParseRegister();
5535   if (Reg == -1) {
5536     if (!haveEaten)
5537       return MatchOperand_NoMatch;
5538     Error(Tok.getLoc(), "register expected");
5539     return MatchOperand_ParseFail;
5540   }
5541 
5542   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
5543                                                   0, S, Tok.getEndLoc()));
5544 
5545   return MatchOperand_Success;
5546 }
5547 
5548 /// Convert parsed operands to MCInst.  Needed here because this instruction
5549 /// only has two register operands, but multiplication is commutative so
5550 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
5551 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst,
5552                                     const OperandVector &Operands) {
5553   ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1);
5554   ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1);
5555   // If we have a three-operand form, make sure to set Rn to be the operand
5556   // that isn't the same as Rd.
5557   unsigned RegOp = 4;
5558   if (Operands.size() == 6 &&
5559       ((ARMOperand &)*Operands[4]).getReg() ==
5560           ((ARMOperand &)*Operands[3]).getReg())
5561     RegOp = 5;
5562   ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1);
5563   Inst.addOperand(Inst.getOperand(0));
5564   ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2);
5565 }
5566 
5567 void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
5568                                     const OperandVector &Operands) {
5569   int CondOp = -1, ImmOp = -1;
5570   switch(Inst.getOpcode()) {
5571     case ARM::tB:
5572     case ARM::tBcc:  CondOp = 1; ImmOp = 2; break;
5573 
5574     case ARM::t2B:
5575     case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
5576 
5577     default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
5578   }
5579   // first decide whether or not the branch should be conditional
5580   // by looking at it's location relative to an IT block
5581   if(inITBlock()) {
5582     // inside an IT block we cannot have any conditional branches. any
5583     // such instructions needs to be converted to unconditional form
5584     switch(Inst.getOpcode()) {
5585       case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
5586       case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
5587     }
5588   } else {
5589     // outside IT blocks we can only have unconditional branches with AL
5590     // condition code or conditional branches with non-AL condition code
5591     unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode();
5592     switch(Inst.getOpcode()) {
5593       case ARM::tB:
5594       case ARM::tBcc:
5595         Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
5596         break;
5597       case ARM::t2B:
5598       case ARM::t2Bcc:
5599         Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
5600         break;
5601     }
5602   }
5603 
5604   // now decide on encoding size based on branch target range
5605   switch(Inst.getOpcode()) {
5606     // classify tB as either t2B or t1B based on range of immediate operand
5607     case ARM::tB: {
5608       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5609       if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline())
5610         Inst.setOpcode(ARM::t2B);
5611       break;
5612     }
5613     // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
5614     case ARM::tBcc: {
5615       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5616       if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline())
5617         Inst.setOpcode(ARM::t2Bcc);
5618       break;
5619     }
5620   }
5621   ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1);
5622   ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2);
5623 }
5624 
5625 void ARMAsmParser::cvtMVEVMOVQtoDReg(
5626   MCInst &Inst, const OperandVector &Operands) {
5627 
5628   // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2
5629   assert(Operands.size() == 8);
5630 
5631   ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt
5632   ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2
5633   ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd
5634   ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx
5635   // skip second copy of Qd in Operands[6]
5636   ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2
5637   ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code
5638 }
5639 
5640 /// Parse an ARM memory expression, return false if successful else return true
5641 /// or an error.  The first token must be a '[' when called.
5642 bool ARMAsmParser::parseMemory(OperandVector &Operands) {
5643   MCAsmParser &Parser = getParser();
5644   SMLoc S, E;
5645   if (Parser.getTok().isNot(AsmToken::LBrac))
5646     return TokError("Token is not a Left Bracket");
5647   S = Parser.getTok().getLoc();
5648   Parser.Lex(); // Eat left bracket token.
5649 
5650   const AsmToken &BaseRegTok = Parser.getTok();
5651   int BaseRegNum = tryParseRegister();
5652   if (BaseRegNum == -1)
5653     return Error(BaseRegTok.getLoc(), "register expected");
5654 
5655   // The next token must either be a comma, a colon or a closing bracket.
5656   const AsmToken &Tok = Parser.getTok();
5657   if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
5658       !Tok.is(AsmToken::RBrac))
5659     return Error(Tok.getLoc(), "malformed memory operand");
5660 
5661   if (Tok.is(AsmToken::RBrac)) {
5662     E = Tok.getEndLoc();
5663     Parser.Lex(); // Eat right bracket token.
5664 
5665     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5666                                              ARM_AM::no_shift, 0, 0, false,
5667                                              S, E));
5668 
5669     // If there's a pre-indexing writeback marker, '!', just add it as a token
5670     // operand. It's rather odd, but syntactically valid.
5671     if (Parser.getTok().is(AsmToken::Exclaim)) {
5672       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5673       Parser.Lex(); // Eat the '!'.
5674     }
5675 
5676     return false;
5677   }
5678 
5679   assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
5680          "Lost colon or comma in memory operand?!");
5681   if (Tok.is(AsmToken::Comma)) {
5682     Parser.Lex(); // Eat the comma.
5683   }
5684 
5685   // If we have a ':', it's an alignment specifier.
5686   if (Parser.getTok().is(AsmToken::Colon)) {
5687     Parser.Lex(); // Eat the ':'.
5688     E = Parser.getTok().getLoc();
5689     SMLoc AlignmentLoc = Tok.getLoc();
5690 
5691     const MCExpr *Expr;
5692     if (getParser().parseExpression(Expr))
5693      return true;
5694 
5695     // The expression has to be a constant. Memory references with relocations
5696     // don't come through here, as they use the <label> forms of the relevant
5697     // instructions.
5698     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5699     if (!CE)
5700       return Error (E, "constant expression expected");
5701 
5702     unsigned Align = 0;
5703     switch (CE->getValue()) {
5704     default:
5705       return Error(E,
5706                    "alignment specifier must be 16, 32, 64, 128, or 256 bits");
5707     case 16:  Align = 2; break;
5708     case 32:  Align = 4; break;
5709     case 64:  Align = 8; break;
5710     case 128: Align = 16; break;
5711     case 256: Align = 32; break;
5712     }
5713 
5714     // Now we should have the closing ']'
5715     if (Parser.getTok().isNot(AsmToken::RBrac))
5716       return Error(Parser.getTok().getLoc(), "']' expected");
5717     E = Parser.getTok().getEndLoc();
5718     Parser.Lex(); // Eat right bracket token.
5719 
5720     // Don't worry about range checking the value here. That's handled by
5721     // the is*() predicates.
5722     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5723                                              ARM_AM::no_shift, 0, Align,
5724                                              false, S, E, AlignmentLoc));
5725 
5726     // If there's a pre-indexing writeback marker, '!', just add it as a token
5727     // operand.
5728     if (Parser.getTok().is(AsmToken::Exclaim)) {
5729       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5730       Parser.Lex(); // Eat the '!'.
5731     }
5732 
5733     return false;
5734   }
5735 
5736   // If we have a '#' or '$', it's an immediate offset, else assume it's a
5737   // register offset. Be friendly and also accept a plain integer or expression
5738   // (without a leading hash) for gas compatibility.
5739   if (Parser.getTok().is(AsmToken::Hash) ||
5740       Parser.getTok().is(AsmToken::Dollar) ||
5741       Parser.getTok().is(AsmToken::LParen) ||
5742       Parser.getTok().is(AsmToken::Integer)) {
5743     if (Parser.getTok().is(AsmToken::Hash) ||
5744         Parser.getTok().is(AsmToken::Dollar))
5745       Parser.Lex(); // Eat '#' or '$'
5746     E = Parser.getTok().getLoc();
5747 
5748     bool isNegative = getParser().getTok().is(AsmToken::Minus);
5749     const MCExpr *Offset;
5750     if (getParser().parseExpression(Offset))
5751      return true;
5752 
5753     // The expression has to be a constant. Memory references with relocations
5754     // don't come through here, as they use the <label> forms of the relevant
5755     // instructions.
5756     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
5757     if (!CE)
5758       return Error (E, "constant expression expected");
5759 
5760     // If the constant was #-0, represent it as
5761     // std::numeric_limits<int32_t>::min().
5762     int32_t Val = CE->getValue();
5763     if (isNegative && Val == 0)
5764       CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
5765                                   getContext());
5766 
5767     // Now we should have the closing ']'
5768     if (Parser.getTok().isNot(AsmToken::RBrac))
5769       return Error(Parser.getTok().getLoc(), "']' expected");
5770     E = Parser.getTok().getEndLoc();
5771     Parser.Lex(); // Eat right bracket token.
5772 
5773     // Don't worry about range checking the value here. That's handled by
5774     // the is*() predicates.
5775     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
5776                                              ARM_AM::no_shift, 0, 0,
5777                                              false, S, E));
5778 
5779     // If there's a pre-indexing writeback marker, '!', just add it as a token
5780     // operand.
5781     if (Parser.getTok().is(AsmToken::Exclaim)) {
5782       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5783       Parser.Lex(); // Eat the '!'.
5784     }
5785 
5786     return false;
5787   }
5788 
5789   // The register offset is optionally preceded by a '+' or '-'
5790   bool isNegative = false;
5791   if (Parser.getTok().is(AsmToken::Minus)) {
5792     isNegative = true;
5793     Parser.Lex(); // Eat the '-'.
5794   } else if (Parser.getTok().is(AsmToken::Plus)) {
5795     // Nothing to do.
5796     Parser.Lex(); // Eat the '+'.
5797   }
5798 
5799   E = Parser.getTok().getLoc();
5800   int OffsetRegNum = tryParseRegister();
5801   if (OffsetRegNum == -1)
5802     return Error(E, "register expected");
5803 
5804   // If there's a shift operator, handle it.
5805   ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
5806   unsigned ShiftImm = 0;
5807   if (Parser.getTok().is(AsmToken::Comma)) {
5808     Parser.Lex(); // Eat the ','.
5809     if (parseMemRegOffsetShift(ShiftType, ShiftImm))
5810       return true;
5811   }
5812 
5813   // Now we should have the closing ']'
5814   if (Parser.getTok().isNot(AsmToken::RBrac))
5815     return Error(Parser.getTok().getLoc(), "']' expected");
5816   E = Parser.getTok().getEndLoc();
5817   Parser.Lex(); // Eat right bracket token.
5818 
5819   Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum,
5820                                            ShiftType, ShiftImm, 0, isNegative,
5821                                            S, E));
5822 
5823   // If there's a pre-indexing writeback marker, '!', just add it as a token
5824   // operand.
5825   if (Parser.getTok().is(AsmToken::Exclaim)) {
5826     Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5827     Parser.Lex(); // Eat the '!'.
5828   }
5829 
5830   return false;
5831 }
5832 
5833 /// parseMemRegOffsetShift - one of these two:
5834 ///   ( lsl | lsr | asr | ror ) , # shift_amount
5835 ///   rrx
5836 /// return true if it parses a shift otherwise it returns false.
5837 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
5838                                           unsigned &Amount) {
5839   MCAsmParser &Parser = getParser();
5840   SMLoc Loc = Parser.getTok().getLoc();
5841   const AsmToken &Tok = Parser.getTok();
5842   if (Tok.isNot(AsmToken::Identifier))
5843     return Error(Loc, "illegal shift operator");
5844   StringRef ShiftName = Tok.getString();
5845   if (ShiftName == "lsl" || ShiftName == "LSL" ||
5846       ShiftName == "asl" || ShiftName == "ASL")
5847     St = ARM_AM::lsl;
5848   else if (ShiftName == "lsr" || ShiftName == "LSR")
5849     St = ARM_AM::lsr;
5850   else if (ShiftName == "asr" || ShiftName == "ASR")
5851     St = ARM_AM::asr;
5852   else if (ShiftName == "ror" || ShiftName == "ROR")
5853     St = ARM_AM::ror;
5854   else if (ShiftName == "rrx" || ShiftName == "RRX")
5855     St = ARM_AM::rrx;
5856   else if (ShiftName == "uxtw" || ShiftName == "UXTW")
5857     St = ARM_AM::uxtw;
5858   else
5859     return Error(Loc, "illegal shift operator");
5860   Parser.Lex(); // Eat shift type token.
5861 
5862   // rrx stands alone.
5863   Amount = 0;
5864   if (St != ARM_AM::rrx) {
5865     Loc = Parser.getTok().getLoc();
5866     // A '#' and a shift amount.
5867     const AsmToken &HashTok = Parser.getTok();
5868     if (HashTok.isNot(AsmToken::Hash) &&
5869         HashTok.isNot(AsmToken::Dollar))
5870       return Error(HashTok.getLoc(), "'#' expected");
5871     Parser.Lex(); // Eat hash token.
5872 
5873     const MCExpr *Expr;
5874     if (getParser().parseExpression(Expr))
5875       return true;
5876     // Range check the immediate.
5877     // lsl, ror: 0 <= imm <= 31
5878     // lsr, asr: 0 <= imm <= 32
5879     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5880     if (!CE)
5881       return Error(Loc, "shift amount must be an immediate");
5882     int64_t Imm = CE->getValue();
5883     if (Imm < 0 ||
5884         ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
5885         ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
5886       return Error(Loc, "immediate shift value out of range");
5887     // If <ShiftTy> #0, turn it into a no_shift.
5888     if (Imm == 0)
5889       St = ARM_AM::lsl;
5890     // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
5891     if (Imm == 32)
5892       Imm = 0;
5893     Amount = Imm;
5894   }
5895 
5896   return false;
5897 }
5898 
5899 /// parseFPImm - A floating point immediate expression operand.
5900 OperandMatchResultTy
5901 ARMAsmParser::parseFPImm(OperandVector &Operands) {
5902   MCAsmParser &Parser = getParser();
5903   // Anything that can accept a floating point constant as an operand
5904   // needs to go through here, as the regular parseExpression is
5905   // integer only.
5906   //
5907   // This routine still creates a generic Immediate operand, containing
5908   // a bitcast of the 64-bit floating point value. The various operands
5909   // that accept floats can check whether the value is valid for them
5910   // via the standard is*() predicates.
5911 
5912   SMLoc S = Parser.getTok().getLoc();
5913 
5914   if (Parser.getTok().isNot(AsmToken::Hash) &&
5915       Parser.getTok().isNot(AsmToken::Dollar))
5916     return MatchOperand_NoMatch;
5917 
5918   // Disambiguate the VMOV forms that can accept an FP immediate.
5919   // vmov.f32 <sreg>, #imm
5920   // vmov.f64 <dreg>, #imm
5921   // vmov.f32 <dreg>, #imm  @ vector f32x2
5922   // vmov.f32 <qreg>, #imm  @ vector f32x4
5923   //
5924   // There are also the NEON VMOV instructions which expect an
5925   // integer constant. Make sure we don't try to parse an FPImm
5926   // for these:
5927   // vmov.i{8|16|32|64} <dreg|qreg>, #imm
5928   ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]);
5929   bool isVmovf = TyOp.isToken() &&
5930                  (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" ||
5931                   TyOp.getToken() == ".f16");
5932   ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]);
5933   bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" ||
5934                                          Mnemonic.getToken() == "fconsts");
5935   if (!(isVmovf || isFconst))
5936     return MatchOperand_NoMatch;
5937 
5938   Parser.Lex(); // Eat '#' or '$'.
5939 
5940   // Handle negation, as that still comes through as a separate token.
5941   bool isNegative = false;
5942   if (Parser.getTok().is(AsmToken::Minus)) {
5943     isNegative = true;
5944     Parser.Lex();
5945   }
5946   const AsmToken &Tok = Parser.getTok();
5947   SMLoc Loc = Tok.getLoc();
5948   if (Tok.is(AsmToken::Real) && isVmovf) {
5949     APFloat RealVal(APFloat::IEEEsingle(), Tok.getString());
5950     uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
5951     // If we had a '-' in front, toggle the sign bit.
5952     IntVal ^= (uint64_t)isNegative << 31;
5953     Parser.Lex(); // Eat the token.
5954     Operands.push_back(ARMOperand::CreateImm(
5955           MCConstantExpr::create(IntVal, getContext()),
5956           S, Parser.getTok().getLoc()));
5957     return MatchOperand_Success;
5958   }
5959   // Also handle plain integers. Instructions which allow floating point
5960   // immediates also allow a raw encoded 8-bit value.
5961   if (Tok.is(AsmToken::Integer) && isFconst) {
5962     int64_t Val = Tok.getIntVal();
5963     Parser.Lex(); // Eat the token.
5964     if (Val > 255 || Val < 0) {
5965       Error(Loc, "encoded floating point value out of range");
5966       return MatchOperand_ParseFail;
5967     }
5968     float RealVal = ARM_AM::getFPImmFloat(Val);
5969     Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();
5970 
5971     Operands.push_back(ARMOperand::CreateImm(
5972         MCConstantExpr::create(Val, getContext()), S,
5973         Parser.getTok().getLoc()));
5974     return MatchOperand_Success;
5975   }
5976 
5977   Error(Loc, "invalid floating point immediate");
5978   return MatchOperand_ParseFail;
5979 }
5980 
5981 /// Parse a arm instruction operand.  For now this parses the operand regardless
5982 /// of the mnemonic.
5983 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
5984   MCAsmParser &Parser = getParser();
5985   SMLoc S, E;
5986 
5987   // Check if the current operand has a custom associated parser, if so, try to
5988   // custom parse the operand, or fallback to the general approach.
5989   OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
5990   if (ResTy == MatchOperand_Success)
5991     return false;
5992   // If there wasn't a custom match, try the generic matcher below. Otherwise,
5993   // there was a match, but an error occurred, in which case, just return that
5994   // the operand parsing failed.
5995   if (ResTy == MatchOperand_ParseFail)
5996     return true;
5997 
5998   switch (getLexer().getKind()) {
5999   default:
6000     Error(Parser.getTok().getLoc(), "unexpected token in operand");
6001     return true;
6002   case AsmToken::Identifier: {
6003     // If we've seen a branch mnemonic, the next operand must be a label.  This
6004     // is true even if the label is a register name.  So "br r1" means branch to
6005     // label "r1".
6006     bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
6007     if (!ExpectLabel) {
6008       if (!tryParseRegisterWithWriteBack(Operands))
6009         return false;
6010       int Res = tryParseShiftRegister(Operands);
6011       if (Res == 0) // success
6012         return false;
6013       else if (Res == -1) // irrecoverable error
6014         return true;
6015       // If this is VMRS, check for the apsr_nzcv operand.
6016       if (Mnemonic == "vmrs" &&
6017           Parser.getTok().getString().equals_lower("apsr_nzcv")) {
6018         S = Parser.getTok().getLoc();
6019         Parser.Lex();
6020         Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
6021         return false;
6022       }
6023     }
6024 
6025     // Fall though for the Identifier case that is not a register or a
6026     // special name.
6027     LLVM_FALLTHROUGH;
6028   }
6029   case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
6030   case AsmToken::Integer: // things like 1f and 2b as a branch targets
6031   case AsmToken::String:  // quoted label names.
6032   case AsmToken::Dot: {   // . as a branch target
6033     // This was not a register so parse other operands that start with an
6034     // identifier (like labels) as expressions and create them as immediates.
6035     const MCExpr *IdVal;
6036     S = Parser.getTok().getLoc();
6037     if (getParser().parseExpression(IdVal))
6038       return true;
6039     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6040     Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
6041     return false;
6042   }
6043   case AsmToken::LBrac:
6044     return parseMemory(Operands);
6045   case AsmToken::LCurly:
6046     return parseRegisterList(Operands, !Mnemonic.startswith("clr"));
6047   case AsmToken::Dollar:
6048   case AsmToken::Hash:
6049     // #42 -> immediate.
6050     S = Parser.getTok().getLoc();
6051     Parser.Lex();
6052 
6053     if (Parser.getTok().isNot(AsmToken::Colon)) {
6054       bool isNegative = Parser.getTok().is(AsmToken::Minus);
6055       const MCExpr *ImmVal;
6056       if (getParser().parseExpression(ImmVal))
6057         return true;
6058       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
6059       if (CE) {
6060         int32_t Val = CE->getValue();
6061         if (isNegative && Val == 0)
6062           ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
6063                                           getContext());
6064       }
6065       E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6066       Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
6067 
6068       // There can be a trailing '!' on operands that we want as a separate
6069       // '!' Token operand. Handle that here. For example, the compatibility
6070       // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
6071       if (Parser.getTok().is(AsmToken::Exclaim)) {
6072         Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
6073                                                    Parser.getTok().getLoc()));
6074         Parser.Lex(); // Eat exclaim token
6075       }
6076       return false;
6077     }
6078     // w/ a ':' after the '#', it's just like a plain ':'.
6079     LLVM_FALLTHROUGH;
6080 
6081   case AsmToken::Colon: {
6082     S = Parser.getTok().getLoc();
6083     // ":lower16:" and ":upper16:" expression prefixes
6084     // FIXME: Check it's an expression prefix,
6085     // e.g. (FOO - :lower16:BAR) isn't legal.
6086     ARMMCExpr::VariantKind RefKind;
6087     if (parsePrefix(RefKind))
6088       return true;
6089 
6090     const MCExpr *SubExprVal;
6091     if (getParser().parseExpression(SubExprVal))
6092       return true;
6093 
6094     const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal,
6095                                               getContext());
6096     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6097     Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
6098     return false;
6099   }
6100   case AsmToken::Equal: {
6101     S = Parser.getTok().getLoc();
6102     if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
6103       return Error(S, "unexpected token in operand");
6104     Parser.Lex(); // Eat '='
6105     const MCExpr *SubExprVal;
6106     if (getParser().parseExpression(SubExprVal))
6107       return true;
6108     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6109 
6110     // execute-only: we assume that assembly programmers know what they are
6111     // doing and allow literal pool creation here
6112     Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E));
6113     return false;
6114   }
6115   }
6116 }
6117 
6118 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
6119 //  :lower16: and :upper16:.
6120 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
6121   MCAsmParser &Parser = getParser();
6122   RefKind = ARMMCExpr::VK_ARM_None;
6123 
6124   // consume an optional '#' (GNU compatibility)
6125   if (getLexer().is(AsmToken::Hash))
6126     Parser.Lex();
6127 
6128   // :lower16: and :upper16: modifiers
6129   assert(getLexer().is(AsmToken::Colon) && "expected a :");
6130   Parser.Lex(); // Eat ':'
6131 
6132   if (getLexer().isNot(AsmToken::Identifier)) {
6133     Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
6134     return true;
6135   }
6136 
6137   enum {
6138     COFF = (1 << MCObjectFileInfo::IsCOFF),
6139     ELF = (1 << MCObjectFileInfo::IsELF),
6140     MACHO = (1 << MCObjectFileInfo::IsMachO),
6141     WASM = (1 << MCObjectFileInfo::IsWasm),
6142   };
6143   static const struct PrefixEntry {
6144     const char *Spelling;
6145     ARMMCExpr::VariantKind VariantKind;
6146     uint8_t SupportedFormats;
6147   } PrefixEntries[] = {
6148     { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO },
6149     { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO },
6150   };
6151 
6152   StringRef IDVal = Parser.getTok().getIdentifier();
6153 
6154   const auto &Prefix =
6155       std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries),
6156                    [&IDVal](const PrefixEntry &PE) {
6157                       return PE.Spelling == IDVal;
6158                    });
6159   if (Prefix == std::end(PrefixEntries)) {
6160     Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
6161     return true;
6162   }
6163 
6164   uint8_t CurrentFormat;
6165   switch (getContext().getObjectFileInfo()->getObjectFileType()) {
6166   case MCObjectFileInfo::IsMachO:
6167     CurrentFormat = MACHO;
6168     break;
6169   case MCObjectFileInfo::IsELF:
6170     CurrentFormat = ELF;
6171     break;
6172   case MCObjectFileInfo::IsCOFF:
6173     CurrentFormat = COFF;
6174     break;
6175   case MCObjectFileInfo::IsWasm:
6176     CurrentFormat = WASM;
6177     break;
6178   case MCObjectFileInfo::IsXCOFF:
6179     llvm_unreachable("unexpected object format");
6180     break;
6181   }
6182 
6183   if (~Prefix->SupportedFormats & CurrentFormat) {
6184     Error(Parser.getTok().getLoc(),
6185           "cannot represent relocation in the current file format");
6186     return true;
6187   }
6188 
6189   RefKind = Prefix->VariantKind;
6190   Parser.Lex();
6191 
6192   if (getLexer().isNot(AsmToken::Colon)) {
6193     Error(Parser.getTok().getLoc(), "unexpected token after prefix");
6194     return true;
6195   }
6196   Parser.Lex(); // Eat the last ':'
6197 
6198   return false;
6199 }
6200 
6201 /// Given a mnemonic, split out possible predication code and carry
6202 /// setting letters to form a canonical mnemonic and flags.
6203 //
6204 // FIXME: Would be nice to autogen this.
6205 // FIXME: This is a bit of a maze of special cases.
6206 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
6207                                       StringRef ExtraToken,
6208                                       unsigned &PredicationCode,
6209                                       unsigned &VPTPredicationCode,
6210                                       bool &CarrySetting,
6211                                       unsigned &ProcessorIMod,
6212                                       StringRef &ITMask) {
6213   PredicationCode = ARMCC::AL;
6214   VPTPredicationCode = ARMVCC::None;
6215   CarrySetting = false;
6216   ProcessorIMod = 0;
6217 
6218   // Ignore some mnemonics we know aren't predicated forms.
6219   //
6220   // FIXME: Would be nice to autogen this.
6221   if ((Mnemonic == "movs" && isThumb()) ||
6222       Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
6223       Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
6224       Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
6225       Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
6226       Mnemonic == "vaclt" || Mnemonic == "vacle"  || Mnemonic == "hlt" ||
6227       Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
6228       Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
6229       Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
6230       Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
6231       Mnemonic == "vcvta" || Mnemonic == "vcvtn"  || Mnemonic == "vcvtp" ||
6232       Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
6233       Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" ||
6234       Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" ||
6235       Mnemonic == "bxns"  || Mnemonic == "blxns" ||
6236       Mnemonic == "vudot" || Mnemonic == "vsdot" ||
6237       Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
6238       Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
6239       Mnemonic == "wls" || Mnemonic == "le" || Mnemonic == "dls" ||
6240       Mnemonic == "csel" || Mnemonic == "csinc" ||
6241       Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" ||
6242       Mnemonic == "cinv" || Mnemonic == "cneg" || Mnemonic == "cset" ||
6243       Mnemonic == "csetm")
6244     return Mnemonic;
6245 
6246   // First, split out any predication code. Ignore mnemonics we know aren't
6247   // predicated but do have a carry-set and so weren't caught above.
6248   if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
6249       Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
6250       Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
6251       Mnemonic != "sbcs" && Mnemonic != "rscs" &&
6252       !(hasMVE() &&
6253         (Mnemonic == "vmine" ||
6254          Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" ||
6255          Mnemonic == "vrshle" || Mnemonic == "vrshlt" ||
6256          Mnemonic == "vmvne" || Mnemonic == "vorne" ||
6257          Mnemonic == "vnege" || Mnemonic == "vnegt" ||
6258          Mnemonic == "vmule" || Mnemonic == "vmult" ||
6259          Mnemonic == "vrintne" ||
6260          Mnemonic == "vcmult" || Mnemonic == "vcmule" ||
6261          Mnemonic == "vpsele" || Mnemonic == "vpselt" ||
6262          Mnemonic.startswith("vq")))) {
6263     unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2));
6264     if (CC != ~0U) {
6265       Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
6266       PredicationCode = CC;
6267     }
6268   }
6269 
6270   // Next, determine if we have a carry setting bit. We explicitly ignore all
6271   // the instructions we know end in 's'.
6272   if (Mnemonic.endswith("s") &&
6273       !(Mnemonic == "cps" || Mnemonic == "mls" ||
6274         Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
6275         Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
6276         Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
6277         Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
6278         Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
6279         Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
6280         Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
6281         Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
6282         Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" ||
6283         Mnemonic == "vmlas" ||
6284         (Mnemonic == "movs" && isThumb()))) {
6285     Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
6286     CarrySetting = true;
6287   }
6288 
6289   // The "cps" instruction can have a interrupt mode operand which is glued into
6290   // the mnemonic. Check if this is the case, split it and parse the imod op
6291   if (Mnemonic.startswith("cps")) {
6292     // Split out any imod code.
6293     unsigned IMod =
6294       StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
6295       .Case("ie", ARM_PROC::IE)
6296       .Case("id", ARM_PROC::ID)
6297       .Default(~0U);
6298     if (IMod != ~0U) {
6299       Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
6300       ProcessorIMod = IMod;
6301     }
6302   }
6303 
6304   if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" &&
6305       Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" &&
6306       Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" &&
6307       Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" &&
6308       Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" &&
6309       Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" &&
6310       Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") {
6311     unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1));
6312     if (CC != ~0U) {
6313       Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1);
6314       VPTPredicationCode = CC;
6315     }
6316     return Mnemonic;
6317   }
6318 
6319   // The "it" instruction has the condition mask on the end of the mnemonic.
6320   if (Mnemonic.startswith("it")) {
6321     ITMask = Mnemonic.slice(2, Mnemonic.size());
6322     Mnemonic = Mnemonic.slice(0, 2);
6323   }
6324 
6325   if (Mnemonic.startswith("vpst")) {
6326     ITMask = Mnemonic.slice(4, Mnemonic.size());
6327     Mnemonic = Mnemonic.slice(0, 4);
6328   }
6329   else if (Mnemonic.startswith("vpt")) {
6330     ITMask = Mnemonic.slice(3, Mnemonic.size());
6331     Mnemonic = Mnemonic.slice(0, 3);
6332   }
6333 
6334   return Mnemonic;
6335 }
6336 
6337 /// Given a canonical mnemonic, determine if the instruction ever allows
6338 /// inclusion of carry set or predication code operands.
6339 //
6340 // FIXME: It would be nice to autogen this.
6341 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic,
6342                                          StringRef ExtraToken,
6343                                          StringRef FullInst,
6344                                          bool &CanAcceptCarrySet,
6345                                          bool &CanAcceptPredicationCode,
6346                                          bool &CanAcceptVPTPredicationCode) {
6347   CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken);
6348 
6349   CanAcceptCarrySet =
6350       Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
6351       Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
6352       Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" ||
6353       Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" ||
6354       Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" ||
6355       Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" ||
6356       Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" ||
6357       (!isThumb() &&
6358        (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" ||
6359         Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull"));
6360 
6361   if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
6362       Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" ||
6363       Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" ||
6364       Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") ||
6365       Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" ||
6366       Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" ||
6367       Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" ||
6368       Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" ||
6369       Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" ||
6370       Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
6371       (FullInst.startswith("vmull") && FullInst.endswith(".p64")) ||
6372       Mnemonic == "vmovx" || Mnemonic == "vins" ||
6373       Mnemonic == "vudot" || Mnemonic == "vsdot" ||
6374       Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
6375       Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
6376       Mnemonic == "sb"    || Mnemonic == "ssbb"  ||
6377       Mnemonic == "pssbb" ||
6378       Mnemonic == "bfcsel" || Mnemonic == "wls" ||
6379       Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" ||
6380       Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" ||
6381       Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" ||
6382       Mnemonic == "cset" || Mnemonic == "csetm" ||
6383       Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") ||
6384       (hasMVE() &&
6385        (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") ||
6386         Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") ||
6387         Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") ||
6388         Mnemonic.startswith("letp")))) {
6389     // These mnemonics are never predicable
6390     CanAcceptPredicationCode = false;
6391   } else if (!isThumb()) {
6392     // Some instructions are only predicable in Thumb mode
6393     CanAcceptPredicationCode =
6394         Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
6395         Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
6396         Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" &&
6397         Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" &&
6398         Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
6399         Mnemonic != "stc2" && Mnemonic != "stc2l" &&
6400         Mnemonic != "tsb" &&
6401         !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
6402   } else if (isThumbOne()) {
6403     if (hasV6MOps())
6404       CanAcceptPredicationCode = Mnemonic != "movs";
6405     else
6406       CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
6407   } else
6408     CanAcceptPredicationCode = true;
6409 }
6410 
6411 // Some Thumb instructions have two operand forms that are not
6412 // available as three operand, convert to two operand form if possible.
6413 //
6414 // FIXME: We would really like to be able to tablegen'erate this.
6415 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic,
6416                                                  bool CarrySetting,
6417                                                  OperandVector &Operands) {
6418   if (Operands.size() != 6)
6419     return;
6420 
6421   const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6422         auto &Op4 = static_cast<ARMOperand &>(*Operands[4]);
6423   if (!Op3.isReg() || !Op4.isReg())
6424     return;
6425 
6426   auto Op3Reg = Op3.getReg();
6427   auto Op4Reg = Op4.getReg();
6428 
6429   // For most Thumb2 cases we just generate the 3 operand form and reduce
6430   // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr)
6431   // won't accept SP or PC so we do the transformation here taking care
6432   // with immediate range in the 'add sp, sp #imm' case.
6433   auto &Op5 = static_cast<ARMOperand &>(*Operands[5]);
6434   if (isThumbTwo()) {
6435     if (Mnemonic != "add")
6436       return;
6437     bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC ||
6438                         (Op5.isReg() && Op5.getReg() == ARM::PC);
6439     if (!TryTransform) {
6440       TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP ||
6441                       (Op5.isReg() && Op5.getReg() == ARM::SP)) &&
6442                      !(Op3Reg == ARM::SP && Op4Reg == ARM::SP &&
6443                        Op5.isImm() && !Op5.isImm0_508s4());
6444     }
6445     if (!TryTransform)
6446       return;
6447   } else if (!isThumbOne())
6448     return;
6449 
6450   if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" ||
6451         Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
6452         Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" ||
6453         Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic"))
6454     return;
6455 
6456   // If first 2 operands of a 3 operand instruction are the same
6457   // then transform to 2 operand version of the same instruction
6458   // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
6459   bool Transform = Op3Reg == Op4Reg;
6460 
6461   // For communtative operations, we might be able to transform if we swap
6462   // Op4 and Op5.  The 'ADD Rdm, SP, Rdm' form is already handled specially
6463   // as tADDrsp.
6464   const ARMOperand *LastOp = &Op5;
6465   bool Swap = false;
6466   if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() &&
6467       ((Mnemonic == "add" && Op4Reg != ARM::SP) ||
6468        Mnemonic == "and" || Mnemonic == "eor" ||
6469        Mnemonic == "adc" || Mnemonic == "orr")) {
6470     Swap = true;
6471     LastOp = &Op4;
6472     Transform = true;
6473   }
6474 
6475   // If both registers are the same then remove one of them from
6476   // the operand list, with certain exceptions.
6477   if (Transform) {
6478     // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the
6479     // 2 operand forms don't exist.
6480     if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") &&
6481         LastOp->isReg())
6482       Transform = false;
6483 
6484     // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into
6485     // 3-bits because the ARMARM says not to.
6486     if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7())
6487       Transform = false;
6488   }
6489 
6490   if (Transform) {
6491     if (Swap)
6492       std::swap(Op4, Op5);
6493     Operands.erase(Operands.begin() + 3);
6494   }
6495 }
6496 
6497 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
6498                                           OperandVector &Operands) {
6499   // FIXME: This is all horribly hacky. We really need a better way to deal
6500   // with optional operands like this in the matcher table.
6501 
6502   // The 'mov' mnemonic is special. One variant has a cc_out operand, while
6503   // another does not. Specifically, the MOVW instruction does not. So we
6504   // special case it here and remove the defaulted (non-setting) cc_out
6505   // operand if that's the instruction we're trying to match.
6506   //
6507   // We do this as post-processing of the explicit operands rather than just
6508   // conditionally adding the cc_out in the first place because we need
6509   // to check the type of the parsed immediate operand.
6510   if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
6511       !static_cast<ARMOperand &>(*Operands[4]).isModImm() &&
6512       static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
6513       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
6514     return true;
6515 
6516   // Register-register 'add' for thumb does not have a cc_out operand
6517   // when there are only two register operands.
6518   if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
6519       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6520       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6521       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
6522     return true;
6523   // Register-register 'add' for thumb does not have a cc_out operand
6524   // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
6525   // have to check the immediate range here since Thumb2 has a variant
6526   // that can handle a different range and has a cc_out operand.
6527   if (((isThumb() && Mnemonic == "add") ||
6528        (isThumbTwo() && Mnemonic == "sub")) &&
6529       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6530       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6531       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP &&
6532       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6533       ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) ||
6534        static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4()))
6535     return true;
6536   // For Thumb2, add/sub immediate does not have a cc_out operand for the
6537   // imm0_4095 variant. That's the least-preferred variant when
6538   // selecting via the generic "add" mnemonic, so to know that we
6539   // should remove the cc_out operand, we have to explicitly check that
6540   // it's not one of the other variants. Ugh.
6541   if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
6542       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6543       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6544       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
6545     // Nest conditions rather than one big 'if' statement for readability.
6546     //
6547     // If both registers are low, we're in an IT block, and the immediate is
6548     // in range, we should use encoding T1 instead, which has a cc_out.
6549     if (inITBlock() &&
6550         isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) &&
6551         isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) &&
6552         static_cast<ARMOperand &>(*Operands[5]).isImm0_7())
6553       return false;
6554     // Check against T3. If the second register is the PC, this is an
6555     // alternate form of ADR, which uses encoding T4, so check for that too.
6556     if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC &&
6557         static_cast<ARMOperand &>(*Operands[5]).isT2SOImm())
6558       return false;
6559 
6560     // Otherwise, we use encoding T4, which does not have a cc_out
6561     // operand.
6562     return true;
6563   }
6564 
6565   // The thumb2 multiply instruction doesn't have a CCOut register, so
6566   // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
6567   // use the 16-bit encoding or not.
6568   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
6569       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6570       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6571       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6572       static_cast<ARMOperand &>(*Operands[5]).isReg() &&
6573       // If the registers aren't low regs, the destination reg isn't the
6574       // same as one of the source regs, or the cc_out operand is zero
6575       // outside of an IT block, we have to use the 32-bit encoding, so
6576       // remove the cc_out operand.
6577       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
6578        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
6579        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) ||
6580        !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() !=
6581                             static_cast<ARMOperand &>(*Operands[5]).getReg() &&
6582                         static_cast<ARMOperand &>(*Operands[3]).getReg() !=
6583                             static_cast<ARMOperand &>(*Operands[4]).getReg())))
6584     return true;
6585 
6586   // Also check the 'mul' syntax variant that doesn't specify an explicit
6587   // destination register.
6588   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
6589       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6590       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6591       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6592       // If the registers aren't low regs  or the cc_out operand is zero
6593       // outside of an IT block, we have to use the 32-bit encoding, so
6594       // remove the cc_out operand.
6595       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
6596        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
6597        !inITBlock()))
6598     return true;
6599 
6600   // Register-register 'add/sub' for thumb does not have a cc_out operand
6601   // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
6602   // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
6603   // right, this will result in better diagnostics (which operand is off)
6604   // anyway.
6605   if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
6606       (Operands.size() == 5 || Operands.size() == 6) &&
6607       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6608       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP &&
6609       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6610       (static_cast<ARMOperand &>(*Operands[4]).isImm() ||
6611        (Operands.size() == 6 &&
6612         static_cast<ARMOperand &>(*Operands[5]).isImm())))
6613     return true;
6614 
6615   return false;
6616 }
6617 
6618 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic,
6619                                               OperandVector &Operands) {
6620   // VRINT{Z, X} have a predicate operand in VFP, but not in NEON
6621   unsigned RegIdx = 3;
6622   if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) ||
6623       Mnemonic == "vrintr") &&
6624       (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" ||
6625        static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) {
6626     if (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
6627         (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" ||
6628          static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16"))
6629       RegIdx = 4;
6630 
6631     if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() &&
6632         (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
6633              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) ||
6634          ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
6635              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg())))
6636       return true;
6637   }
6638   return false;
6639 }
6640 
6641 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic,
6642                                                     OperandVector &Operands) {
6643   if (!hasMVE() || Operands.size() < 3)
6644     return true;
6645 
6646   if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") ||
6647       Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4"))
6648     return true;
6649 
6650   if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot"))
6651     return false;
6652 
6653   if (Mnemonic.startswith("vmov") &&
6654       !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") ||
6655         Mnemonic.startswith("vmovx"))) {
6656     for (auto &Operand : Operands) {
6657       if (static_cast<ARMOperand &>(*Operand).isVectorIndex() ||
6658           ((*Operand).isReg() &&
6659            (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(
6660              (*Operand).getReg()) ||
6661             ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
6662               (*Operand).getReg())))) {
6663         return true;
6664       }
6665     }
6666     return false;
6667   } else {
6668     for (auto &Operand : Operands) {
6669       // We check the larger class QPR instead of just the legal class
6670       // MQPR, to more accurately report errors when using Q registers
6671       // outside of the allowed range.
6672       if (static_cast<ARMOperand &>(*Operand).isVectorIndex() ||
6673           (Operand->isReg() &&
6674            (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
6675              Operand->getReg()))))
6676         return false;
6677     }
6678     return true;
6679   }
6680 }
6681 
6682 static bool isDataTypeToken(StringRef Tok) {
6683   return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
6684     Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
6685     Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
6686     Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
6687     Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
6688     Tok == ".f" || Tok == ".d";
6689 }
6690 
6691 // FIXME: This bit should probably be handled via an explicit match class
6692 // in the .td files that matches the suffix instead of having it be
6693 // a literal string token the way it is now.
6694 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
6695   return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
6696 }
6697 
6698 static void applyMnemonicAliases(StringRef &Mnemonic,
6699                                  const FeatureBitset &Features,
6700                                  unsigned VariantID);
6701 
6702 // The GNU assembler has aliases of ldrd and strd with the second register
6703 // omitted. We don't have a way to do that in tablegen, so fix it up here.
6704 //
6705 // We have to be careful to not emit an invalid Rt2 here, because the rest of
6706 // the assmebly parser could then generate confusing diagnostics refering to
6707 // it. If we do find anything that prevents us from doing the transformation we
6708 // bail out, and let the assembly parser report an error on the instruction as
6709 // it is written.
6710 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic,
6711                                      OperandVector &Operands) {
6712   if (Mnemonic != "ldrd" && Mnemonic != "strd")
6713     return;
6714   if (Operands.size() < 4)
6715     return;
6716 
6717   ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
6718   ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6719 
6720   if (!Op2.isReg())
6721     return;
6722   if (!Op3.isGPRMem())
6723     return;
6724 
6725   const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID);
6726   if (!GPR.contains(Op2.getReg()))
6727     return;
6728 
6729   unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg());
6730   if (!isThumb() && (RtEncoding & 1)) {
6731     // In ARM mode, the registers must be from an aligned pair, this
6732     // restriction does not apply in Thumb mode.
6733     return;
6734   }
6735   if (Op2.getReg() == ARM::PC)
6736     return;
6737   unsigned PairedReg = GPR.getRegister(RtEncoding + 1);
6738   if (!PairedReg || PairedReg == ARM::PC ||
6739       (PairedReg == ARM::SP && !hasV8Ops()))
6740     return;
6741 
6742   Operands.insert(
6743       Operands.begin() + 3,
6744       ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc()));
6745 }
6746 
6747 /// Parse an arm instruction mnemonic followed by its operands.
6748 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
6749                                     SMLoc NameLoc, OperandVector &Operands) {
6750   MCAsmParser &Parser = getParser();
6751 
6752   // Apply mnemonic aliases before doing anything else, as the destination
6753   // mnemonic may include suffices and we want to handle them normally.
6754   // The generic tblgen'erated code does this later, at the start of
6755   // MatchInstructionImpl(), but that's too late for aliases that include
6756   // any sort of suffix.
6757   const FeatureBitset &AvailableFeatures = getAvailableFeatures();
6758   unsigned AssemblerDialect = getParser().getAssemblerDialect();
6759   applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
6760 
6761   // First check for the ARM-specific .req directive.
6762   if (Parser.getTok().is(AsmToken::Identifier) &&
6763       Parser.getTok().getIdentifier() == ".req") {
6764     parseDirectiveReq(Name, NameLoc);
6765     // We always return 'error' for this, as we're done with this
6766     // statement and don't need to match the 'instruction."
6767     return true;
6768   }
6769 
6770   // Create the leading tokens for the mnemonic, split by '.' characters.
6771   size_t Start = 0, Next = Name.find('.');
6772   StringRef Mnemonic = Name.slice(Start, Next);
6773   StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1));
6774 
6775   // Split out the predication code and carry setting flag from the mnemonic.
6776   unsigned PredicationCode;
6777   unsigned VPTPredicationCode;
6778   unsigned ProcessorIMod;
6779   bool CarrySetting;
6780   StringRef ITMask;
6781   Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode,
6782                            CarrySetting, ProcessorIMod, ITMask);
6783 
6784   // In Thumb1, only the branch (B) instruction can be predicated.
6785   if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
6786     return Error(NameLoc, "conditional execution not supported in Thumb1");
6787   }
6788 
6789   Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
6790 
6791   // Handle the mask for IT and VPT instructions. In ARMOperand and
6792   // MCOperand, this is stored in a format independent of the
6793   // condition code: the lowest set bit indicates the end of the
6794   // encoding, and above that, a 1 bit indicates 'else', and an 0
6795   // indicates 'then'. E.g.
6796   //    IT    -> 1000
6797   //    ITx   -> x100    (ITT -> 0100, ITE -> 1100)
6798   //    ITxy  -> xy10    (e.g. ITET -> 1010)
6799   //    ITxyz -> xyz1    (e.g. ITEET -> 1101)
6800   if (Mnemonic == "it" || Mnemonic.startswith("vpt") ||
6801       Mnemonic.startswith("vpst")) {
6802     SMLoc Loc = Mnemonic == "it"  ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) :
6803                 Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) :
6804                                     SMLoc::getFromPointer(NameLoc.getPointer() + 4);
6805     if (ITMask.size() > 3) {
6806       if (Mnemonic == "it")
6807         return Error(Loc, "too many conditions on IT instruction");
6808       return Error(Loc, "too many conditions on VPT instruction");
6809     }
6810     unsigned Mask = 8;
6811     for (unsigned i = ITMask.size(); i != 0; --i) {
6812       char pos = ITMask[i - 1];
6813       if (pos != 't' && pos != 'e') {
6814         return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
6815       }
6816       Mask >>= 1;
6817       if (ITMask[i - 1] == 'e')
6818         Mask |= 8;
6819     }
6820     Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
6821   }
6822 
6823   // FIXME: This is all a pretty gross hack. We should automatically handle
6824   // optional operands like this via tblgen.
6825 
6826   // Next, add the CCOut and ConditionCode operands, if needed.
6827   //
6828   // For mnemonics which can ever incorporate a carry setting bit or predication
6829   // code, our matching model involves us always generating CCOut and
6830   // ConditionCode operands to match the mnemonic "as written" and then we let
6831   // the matcher deal with finding the right instruction or generating an
6832   // appropriate error.
6833   bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode;
6834   getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet,
6835                         CanAcceptPredicationCode, CanAcceptVPTPredicationCode);
6836 
6837   // If we had a carry-set on an instruction that can't do that, issue an
6838   // error.
6839   if (!CanAcceptCarrySet && CarrySetting) {
6840     return Error(NameLoc, "instruction '" + Mnemonic +
6841                  "' can not set flags, but 's' suffix specified");
6842   }
6843   // If we had a predication code on an instruction that can't do that, issue an
6844   // error.
6845   if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
6846     return Error(NameLoc, "instruction '" + Mnemonic +
6847                  "' is not predicable, but condition code specified");
6848   }
6849 
6850   // If we had a VPT predication code on an instruction that can't do that, issue an
6851   // error.
6852   if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) {
6853     return Error(NameLoc, "instruction '" + Mnemonic +
6854                  "' is not VPT predicable, but VPT code T/E is specified");
6855   }
6856 
6857   // Add the carry setting operand, if necessary.
6858   if (CanAcceptCarrySet) {
6859     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
6860     Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
6861                                                Loc));
6862   }
6863 
6864   // Add the predication code operand, if necessary.
6865   if (CanAcceptPredicationCode) {
6866     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
6867                                       CarrySetting);
6868     Operands.push_back(ARMOperand::CreateCondCode(
6869                        ARMCC::CondCodes(PredicationCode), Loc));
6870   }
6871 
6872   // Add the VPT predication code operand, if necessary.
6873   // FIXME: We don't add them for the instructions filtered below as these can
6874   // have custom operands which need special parsing.  This parsing requires
6875   // the operand to be in the same place in the OperandVector as their
6876   // definition in tblgen.  Since these instructions may also have the
6877   // scalar predication operand we do not add the vector one and leave until
6878   // now to fix it up.
6879   if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" &&
6880       !Mnemonic.startswith("vcmp") &&
6881       !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" &&
6882         Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) {
6883     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
6884                                       CarrySetting);
6885     Operands.push_back(ARMOperand::CreateVPTPred(
6886                          ARMVCC::VPTCodes(VPTPredicationCode), Loc));
6887   }
6888 
6889   // Add the processor imod operand, if necessary.
6890   if (ProcessorIMod) {
6891     Operands.push_back(ARMOperand::CreateImm(
6892           MCConstantExpr::create(ProcessorIMod, getContext()),
6893                                  NameLoc, NameLoc));
6894   } else if (Mnemonic == "cps" && isMClass()) {
6895     return Error(NameLoc, "instruction 'cps' requires effect for M-class");
6896   }
6897 
6898   // Add the remaining tokens in the mnemonic.
6899   while (Next != StringRef::npos) {
6900     Start = Next;
6901     Next = Name.find('.', Start + 1);
6902     ExtraToken = Name.slice(Start, Next);
6903 
6904     // Some NEON instructions have an optional datatype suffix that is
6905     // completely ignored. Check for that.
6906     if (isDataTypeToken(ExtraToken) &&
6907         doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
6908       continue;
6909 
6910     // For for ARM mode generate an error if the .n qualifier is used.
6911     if (ExtraToken == ".n" && !isThumb()) {
6912       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
6913       return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
6914                    "arm mode");
6915     }
6916 
6917     // The .n qualifier is always discarded as that is what the tables
6918     // and matcher expect.  In ARM mode the .w qualifier has no effect,
6919     // so discard it to avoid errors that can be caused by the matcher.
6920     if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
6921       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
6922       Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
6923     }
6924   }
6925 
6926   // Read the remaining operands.
6927   if (getLexer().isNot(AsmToken::EndOfStatement)) {
6928     // Read the first operand.
6929     if (parseOperand(Operands, Mnemonic)) {
6930       return true;
6931     }
6932 
6933     while (parseOptionalToken(AsmToken::Comma)) {
6934       // Parse and remember the operand.
6935       if (parseOperand(Operands, Mnemonic)) {
6936         return true;
6937       }
6938     }
6939   }
6940 
6941   if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
6942     return true;
6943 
6944   tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands);
6945 
6946   // Some instructions, mostly Thumb, have forms for the same mnemonic that
6947   // do and don't have a cc_out optional-def operand. With some spot-checks
6948   // of the operand list, we can figure out which variant we're trying to
6949   // parse and adjust accordingly before actually matching. We shouldn't ever
6950   // try to remove a cc_out operand that was explicitly set on the
6951   // mnemonic, of course (CarrySetting == true). Reason number #317 the
6952   // table driven matcher doesn't fit well with the ARM instruction set.
6953   if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands))
6954     Operands.erase(Operands.begin() + 1);
6955 
6956   // Some instructions have the same mnemonic, but don't always
6957   // have a predicate. Distinguish them here and delete the
6958   // appropriate predicate if needed.  This could be either the scalar
6959   // predication code or the vector predication code.
6960   if (PredicationCode == ARMCC::AL &&
6961       shouldOmitPredicateOperand(Mnemonic, Operands))
6962     Operands.erase(Operands.begin() + 1);
6963 
6964 
6965   if (hasMVE()) {
6966     if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) &&
6967         Mnemonic == "vmov" && PredicationCode == ARMCC::LT) {
6968       // Very nasty hack to deal with the vector predicated variant of vmovlt
6969       // the scalar predicated vmov with condition 'lt'.  We can not tell them
6970       // apart until we have parsed their operands.
6971       Operands.erase(Operands.begin() + 1);
6972       Operands.erase(Operands.begin());
6973       SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
6974       SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
6975                                          Mnemonic.size() - 1 + CarrySetting);
6976       Operands.insert(Operands.begin(),
6977                       ARMOperand::CreateVPTPred(ARMVCC::None, PLoc));
6978       Operands.insert(Operands.begin(),
6979                       ARMOperand::CreateToken(StringRef("vmovlt"), MLoc));
6980     } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE &&
6981                !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
6982       // Another nasty hack to deal with the ambiguity between vcvt with scalar
6983       // predication 'ne' and vcvtn with vector predication 'e'.  As above we
6984       // can only distinguish between the two after we have parsed their
6985       // operands.
6986       Operands.erase(Operands.begin() + 1);
6987       Operands.erase(Operands.begin());
6988       SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
6989       SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
6990                                          Mnemonic.size() - 1 + CarrySetting);
6991       Operands.insert(Operands.begin(),
6992                       ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc));
6993       Operands.insert(Operands.begin(),
6994                       ARMOperand::CreateToken(StringRef("vcvtn"), MLoc));
6995     } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT &&
6996                !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
6997       // Another hack, this time to distinguish between scalar predicated vmul
6998       // with 'lt' predication code and the vector instruction vmullt with
6999       // vector predication code "none"
7000       Operands.erase(Operands.begin() + 1);
7001       Operands.erase(Operands.begin());
7002       SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7003       Operands.insert(Operands.begin(),
7004                       ARMOperand::CreateToken(StringRef("vmullt"), MLoc));
7005     }
7006     // For vmov and vcmp, as mentioned earlier, we did not add the vector
7007     // predication code, since these may contain operands that require
7008     // special parsing.  So now we have to see if they require vector
7009     // predication and replace the scalar one with the vector predication
7010     // operand if that is the case.
7011     else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") ||
7012              (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") &&
7013               !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") &&
7014               !Mnemonic.startswith("vcvtm"))) {
7015       if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7016         // We could not split the vector predicate off vcvt because it might
7017         // have been the scalar vcvtt instruction.  Now we know its a vector
7018         // instruction, we still need to check whether its the vector
7019         // predicated vcvt with 'Then' predication or the vector vcvtt.  We can
7020         // distinguish the two based on the suffixes, if it is any of
7021         // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt.
7022         if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) {
7023           auto Sz1 = static_cast<ARMOperand &>(*Operands[2]);
7024           auto Sz2 = static_cast<ARMOperand &>(*Operands[3]);
7025           if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") &&
7026               Sz2.isToken() && Sz2.getToken().startswith(".f"))) {
7027             Operands.erase(Operands.begin());
7028             SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7029             VPTPredicationCode = ARMVCC::Then;
7030 
7031             Mnemonic = Mnemonic.substr(0, 4);
7032             Operands.insert(Operands.begin(),
7033                             ARMOperand::CreateToken(Mnemonic, MLoc));
7034           }
7035         }
7036         Operands.erase(Operands.begin() + 1);
7037         SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
7038                                           Mnemonic.size() + CarrySetting);
7039         Operands.insert(Operands.begin() + 1,
7040                         ARMOperand::CreateVPTPred(
7041                             ARMVCC::VPTCodes(VPTPredicationCode), PLoc));
7042       }
7043     } else if (CanAcceptVPTPredicationCode) {
7044       // For all other instructions, make sure only one of the two
7045       // predication operands is left behind, depending on whether we should
7046       // use the vector predication.
7047       if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7048         if (CanAcceptPredicationCode)
7049           Operands.erase(Operands.begin() + 2);
7050         else
7051           Operands.erase(Operands.begin() + 1);
7052       } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) {
7053         Operands.erase(Operands.begin() + 1);
7054       }
7055     }
7056   }
7057 
7058   if (VPTPredicationCode != ARMVCC::None) {
7059     bool usedVPTPredicationCode = false;
7060     for (unsigned I = 1; I < Operands.size(); ++I)
7061       if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred())
7062         usedVPTPredicationCode = true;
7063     if (!usedVPTPredicationCode) {
7064       // If we have a VPT predication code and we haven't just turned it
7065       // into an operand, then it was a mistake for splitMnemonic to
7066       // separate it from the rest of the mnemonic in the first place,
7067       // and this may lead to wrong disassembly (e.g. scalar floating
7068       // point VCMPE is actually a different instruction from VCMP, so
7069       // we mustn't treat them the same). In that situation, glue it
7070       // back on.
7071       Mnemonic = Name.slice(0, Mnemonic.size() + 1);
7072       Operands.erase(Operands.begin());
7073       Operands.insert(Operands.begin(),
7074                       ARMOperand::CreateToken(Mnemonic, NameLoc));
7075     }
7076   }
7077 
7078     // ARM mode 'blx' need special handling, as the register operand version
7079     // is predicable, but the label operand version is not. So, we can't rely
7080     // on the Mnemonic based checking to correctly figure out when to put
7081     // a k_CondCode operand in the list. If we're trying to match the label
7082     // version, remove the k_CondCode operand here.
7083     if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
7084         static_cast<ARMOperand &>(*Operands[2]).isImm())
7085       Operands.erase(Operands.begin() + 1);
7086 
7087     // Adjust operands of ldrexd/strexd to MCK_GPRPair.
7088     // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
7089     // a single GPRPair reg operand is used in the .td file to replace the two
7090     // GPRs. However, when parsing from asm, the two GRPs cannot be
7091     // automatically
7092     // expressed as a GPRPair, so we have to manually merge them.
7093     // FIXME: We would really like to be able to tablegen'erate this.
7094     if (!isThumb() && Operands.size() > 4 &&
7095         (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
7096          Mnemonic == "stlexd")) {
7097       bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
7098       unsigned Idx = isLoad ? 2 : 3;
7099       ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]);
7100       ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]);
7101 
7102       const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID);
7103       // Adjust only if Op1 and Op2 are GPRs.
7104       if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) &&
7105           MRC.contains(Op2.getReg())) {
7106         unsigned Reg1 = Op1.getReg();
7107         unsigned Reg2 = Op2.getReg();
7108         unsigned Rt = MRI->getEncodingValue(Reg1);
7109         unsigned Rt2 = MRI->getEncodingValue(Reg2);
7110 
7111         // Rt2 must be Rt + 1 and Rt must be even.
7112         if (Rt + 1 != Rt2 || (Rt & 1)) {
7113           return Error(Op2.getStartLoc(),
7114                        isLoad ? "destination operands must be sequential"
7115                               : "source operands must be sequential");
7116         }
7117         unsigned NewReg = MRI->getMatchingSuperReg(
7118             Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID)));
7119         Operands[Idx] =
7120             ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc());
7121         Operands.erase(Operands.begin() + Idx + 1);
7122       }
7123   }
7124 
7125   // GNU Assembler extension (compatibility).
7126   fixupGNULDRDAlias(Mnemonic, Operands);
7127 
7128   // FIXME: As said above, this is all a pretty gross hack.  This instruction
7129   // does not fit with other "subs" and tblgen.
7130   // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
7131   // so the Mnemonic is the original name "subs" and delete the predicate
7132   // operand so it will match the table entry.
7133   if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
7134       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
7135       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC &&
7136       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
7137       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR &&
7138       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
7139     Operands.front() = ARMOperand::CreateToken(Name, NameLoc);
7140     Operands.erase(Operands.begin() + 1);
7141   }
7142   return false;
7143 }
7144 
7145 // Validate context-sensitive operand constraints.
7146 
7147 // return 'true' if register list contains non-low GPR registers,
7148 // 'false' otherwise. If Reg is in the register list or is HiReg, set
7149 // 'containsReg' to true.
7150 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo,
7151                                  unsigned Reg, unsigned HiReg,
7152                                  bool &containsReg) {
7153   containsReg = false;
7154   for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
7155     unsigned OpReg = Inst.getOperand(i).getReg();
7156     if (OpReg == Reg)
7157       containsReg = true;
7158     // Anything other than a low register isn't legal here.
7159     if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
7160       return true;
7161   }
7162   return false;
7163 }
7164 
7165 // Check if the specified regisgter is in the register list of the inst,
7166 // starting at the indicated operand number.
7167 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) {
7168   for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) {
7169     unsigned OpReg = Inst.getOperand(i).getReg();
7170     if (OpReg == Reg)
7171       return true;
7172   }
7173   return false;
7174 }
7175 
7176 // Return true if instruction has the interesting property of being
7177 // allowed in IT blocks, but not being predicable.
7178 static bool instIsBreakpoint(const MCInst &Inst) {
7179     return Inst.getOpcode() == ARM::tBKPT ||
7180            Inst.getOpcode() == ARM::BKPT ||
7181            Inst.getOpcode() == ARM::tHLT ||
7182            Inst.getOpcode() == ARM::HLT;
7183 }
7184 
7185 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst,
7186                                        const OperandVector &Operands,
7187                                        unsigned ListNo, bool IsARPop) {
7188   const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
7189   bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
7190 
7191   bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
7192   bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR);
7193   bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
7194 
7195   if (!IsARPop && ListContainsSP)
7196     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7197                  "SP may not be in the register list");
7198   else if (ListContainsPC && ListContainsLR)
7199     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7200                  "PC and LR may not be in the register list simultaneously");
7201   return false;
7202 }
7203 
7204 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst,
7205                                        const OperandVector &Operands,
7206                                        unsigned ListNo) {
7207   const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
7208   bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
7209 
7210   bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
7211   bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
7212 
7213   if (ListContainsSP && ListContainsPC)
7214     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7215                  "SP and PC may not be in the register list");
7216   else if (ListContainsSP)
7217     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7218                  "SP may not be in the register list");
7219   else if (ListContainsPC)
7220     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7221                  "PC may not be in the register list");
7222   return false;
7223 }
7224 
7225 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst,
7226                                     const OperandVector &Operands,
7227                                     bool Load, bool ARMMode, bool Writeback) {
7228   unsigned RtIndex = Load || !Writeback ? 0 : 1;
7229   unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg());
7230   unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg());
7231 
7232   if (ARMMode) {
7233     // Rt can't be R14.
7234     if (Rt == 14)
7235       return Error(Operands[3]->getStartLoc(),
7236                   "Rt can't be R14");
7237 
7238     // Rt must be even-numbered.
7239     if ((Rt & 1) == 1)
7240       return Error(Operands[3]->getStartLoc(),
7241                    "Rt must be even-numbered");
7242 
7243     // Rt2 must be Rt + 1.
7244     if (Rt2 != Rt + 1) {
7245       if (Load)
7246         return Error(Operands[3]->getStartLoc(),
7247                      "destination operands must be sequential");
7248       else
7249         return Error(Operands[3]->getStartLoc(),
7250                      "source operands must be sequential");
7251     }
7252 
7253     // FIXME: Diagnose m == 15
7254     // FIXME: Diagnose ldrd with m == t || m == t2.
7255   }
7256 
7257   if (!ARMMode && Load) {
7258     if (Rt2 == Rt)
7259       return Error(Operands[3]->getStartLoc(),
7260                    "destination operands can't be identical");
7261   }
7262 
7263   if (Writeback) {
7264     unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
7265 
7266     if (Rn == Rt || Rn == Rt2) {
7267       if (Load)
7268         return Error(Operands[3]->getStartLoc(),
7269                      "base register needs to be different from destination "
7270                      "registers");
7271       else
7272         return Error(Operands[3]->getStartLoc(),
7273                      "source register and base register can't be identical");
7274     }
7275 
7276     // FIXME: Diagnose ldrd/strd with writeback and n == 15.
7277     // (Except the immediate form of ldrd?)
7278   }
7279 
7280   return false;
7281 }
7282 
7283 static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) {
7284   for (unsigned i = 0; i < MCID.NumOperands; ++i) {
7285     if (ARM::isVpred(MCID.OpInfo[i].OperandType))
7286       return i;
7287   }
7288   return -1;
7289 }
7290 
7291 static bool isVectorPredicable(const MCInstrDesc &MCID) {
7292   return findFirstVectorPredOperandIdx(MCID) != -1;
7293 }
7294 
7295 // FIXME: We would really like to be able to tablegen'erate this.
7296 bool ARMAsmParser::validateInstruction(MCInst &Inst,
7297                                        const OperandVector &Operands) {
7298   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
7299   SMLoc Loc = Operands[0]->getStartLoc();
7300 
7301   // Check the IT block state first.
7302   // NOTE: BKPT and HLT instructions have the interesting property of being
7303   // allowed in IT blocks, but not being predicable. They just always execute.
7304   if (inITBlock() && !instIsBreakpoint(Inst)) {
7305     // The instruction must be predicable.
7306     if (!MCID.isPredicable())
7307       return Error(Loc, "instructions in IT block must be predicable");
7308     ARMCC::CondCodes Cond = ARMCC::CondCodes(
7309         Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm());
7310     if (Cond != currentITCond()) {
7311       // Find the condition code Operand to get its SMLoc information.
7312       SMLoc CondLoc;
7313       for (unsigned I = 1; I < Operands.size(); ++I)
7314         if (static_cast<ARMOperand &>(*Operands[I]).isCondCode())
7315           CondLoc = Operands[I]->getStartLoc();
7316       return Error(CondLoc, "incorrect condition in IT block; got '" +
7317                                 StringRef(ARMCondCodeToString(Cond)) +
7318                                 "', but expected '" +
7319                                 ARMCondCodeToString(currentITCond()) + "'");
7320     }
7321   // Check for non-'al' condition codes outside of the IT block.
7322   } else if (isThumbTwo() && MCID.isPredicable() &&
7323              Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
7324              ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
7325              Inst.getOpcode() != ARM::t2Bcc &&
7326              Inst.getOpcode() != ARM::t2BFic) {
7327     return Error(Loc, "predicated instructions must be in IT block");
7328   } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() &&
7329              Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
7330                  ARMCC::AL) {
7331     return Warning(Loc, "predicated instructions should be in IT block");
7332   } else if (!MCID.isPredicable()) {
7333     // Check the instruction doesn't have a predicate operand anyway
7334     // that it's not allowed to use. Sometimes this happens in order
7335     // to keep instructions the same shape even though one cannot
7336     // legally be predicated, e.g. vmul.f16 vs vmul.f32.
7337     for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
7338       if (MCID.OpInfo[i].isPredicate()) {
7339         if (Inst.getOperand(i).getImm() != ARMCC::AL)
7340           return Error(Loc, "instruction is not predicable");
7341         break;
7342       }
7343     }
7344   }
7345 
7346   // PC-setting instructions in an IT block, but not the last instruction of
7347   // the block, are UNPREDICTABLE.
7348   if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) {
7349     return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block");
7350   }
7351 
7352   if (inVPTBlock() && !instIsBreakpoint(Inst)) {
7353     unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition);
7354     if (!isVectorPredicable(MCID))
7355       return Error(Loc, "instruction in VPT block must be predicable");
7356     unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm();
7357     unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then;
7358     if (Pred != VPTPred) {
7359       SMLoc PredLoc;
7360       for (unsigned I = 1; I < Operands.size(); ++I)
7361         if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred())
7362           PredLoc = Operands[I]->getStartLoc();
7363       return Error(PredLoc, "incorrect predication in VPT block; got '" +
7364                    StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) +
7365                    "', but expected '" +
7366                    ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'");
7367     }
7368   }
7369   else if (isVectorPredicable(MCID) &&
7370            Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() !=
7371            ARMVCC::None)
7372     return Error(Loc, "VPT predicated instructions must be in VPT block");
7373 
7374   const unsigned Opcode = Inst.getOpcode();
7375   switch (Opcode) {
7376   case ARM::t2IT: {
7377     // Encoding is unpredictable if it ever results in a notional 'NV'
7378     // predicate. Since we don't parse 'NV' directly this means an 'AL'
7379     // predicate with an "else" mask bit.
7380     unsigned Cond = Inst.getOperand(0).getImm();
7381     unsigned Mask = Inst.getOperand(1).getImm();
7382 
7383     // Conditions only allowing a 't' are those with no set bit except
7384     // the lowest-order one that indicates the end of the sequence. In
7385     // other words, powers of 2.
7386     if (Cond == ARMCC::AL && countPopulation(Mask) != 1)
7387       return Error(Loc, "unpredictable IT predicate sequence");
7388     break;
7389   }
7390   case ARM::LDRD:
7391     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
7392                          /*Writeback*/false))
7393       return true;
7394     break;
7395   case ARM::LDRD_PRE:
7396   case ARM::LDRD_POST:
7397     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
7398                          /*Writeback*/true))
7399       return true;
7400     break;
7401   case ARM::t2LDRDi8:
7402     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
7403                          /*Writeback*/false))
7404       return true;
7405     break;
7406   case ARM::t2LDRD_PRE:
7407   case ARM::t2LDRD_POST:
7408     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
7409                          /*Writeback*/true))
7410       return true;
7411     break;
7412   case ARM::t2BXJ: {
7413     const unsigned RmReg = Inst.getOperand(0).getReg();
7414     // Rm = SP is no longer unpredictable in v8-A
7415     if (RmReg == ARM::SP && !hasV8Ops())
7416       return Error(Operands[2]->getStartLoc(),
7417                    "r13 (SP) is an unpredictable operand to BXJ");
7418     return false;
7419   }
7420   case ARM::STRD:
7421     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
7422                          /*Writeback*/false))
7423       return true;
7424     break;
7425   case ARM::STRD_PRE:
7426   case ARM::STRD_POST:
7427     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
7428                          /*Writeback*/true))
7429       return true;
7430     break;
7431   case ARM::t2STRD_PRE:
7432   case ARM::t2STRD_POST:
7433     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false,
7434                          /*Writeback*/true))
7435       return true;
7436     break;
7437   case ARM::STR_PRE_IMM:
7438   case ARM::STR_PRE_REG:
7439   case ARM::t2STR_PRE:
7440   case ARM::STR_POST_IMM:
7441   case ARM::STR_POST_REG:
7442   case ARM::t2STR_POST:
7443   case ARM::STRH_PRE:
7444   case ARM::t2STRH_PRE:
7445   case ARM::STRH_POST:
7446   case ARM::t2STRH_POST:
7447   case ARM::STRB_PRE_IMM:
7448   case ARM::STRB_PRE_REG:
7449   case ARM::t2STRB_PRE:
7450   case ARM::STRB_POST_IMM:
7451   case ARM::STRB_POST_REG:
7452   case ARM::t2STRB_POST: {
7453     // Rt must be different from Rn.
7454     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
7455     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
7456 
7457     if (Rt == Rn)
7458       return Error(Operands[3]->getStartLoc(),
7459                    "source register and base register can't be identical");
7460     return false;
7461   }
7462   case ARM::LDR_PRE_IMM:
7463   case ARM::LDR_PRE_REG:
7464   case ARM::t2LDR_PRE:
7465   case ARM::LDR_POST_IMM:
7466   case ARM::LDR_POST_REG:
7467   case ARM::t2LDR_POST:
7468   case ARM::LDRH_PRE:
7469   case ARM::t2LDRH_PRE:
7470   case ARM::LDRH_POST:
7471   case ARM::t2LDRH_POST:
7472   case ARM::LDRSH_PRE:
7473   case ARM::t2LDRSH_PRE:
7474   case ARM::LDRSH_POST:
7475   case ARM::t2LDRSH_POST:
7476   case ARM::LDRB_PRE_IMM:
7477   case ARM::LDRB_PRE_REG:
7478   case ARM::t2LDRB_PRE:
7479   case ARM::LDRB_POST_IMM:
7480   case ARM::LDRB_POST_REG:
7481   case ARM::t2LDRB_POST:
7482   case ARM::LDRSB_PRE:
7483   case ARM::t2LDRSB_PRE:
7484   case ARM::LDRSB_POST:
7485   case ARM::t2LDRSB_POST: {
7486     // Rt must be different from Rn.
7487     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
7488     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
7489 
7490     if (Rt == Rn)
7491       return Error(Operands[3]->getStartLoc(),
7492                    "destination register and base register can't be identical");
7493     return false;
7494   }
7495 
7496   case ARM::MVE_VLDRBU8_rq:
7497   case ARM::MVE_VLDRBU16_rq:
7498   case ARM::MVE_VLDRBS16_rq:
7499   case ARM::MVE_VLDRBU32_rq:
7500   case ARM::MVE_VLDRBS32_rq:
7501   case ARM::MVE_VLDRHU16_rq:
7502   case ARM::MVE_VLDRHU16_rq_u:
7503   case ARM::MVE_VLDRHU32_rq:
7504   case ARM::MVE_VLDRHU32_rq_u:
7505   case ARM::MVE_VLDRHS32_rq:
7506   case ARM::MVE_VLDRHS32_rq_u:
7507   case ARM::MVE_VLDRWU32_rq:
7508   case ARM::MVE_VLDRWU32_rq_u:
7509   case ARM::MVE_VLDRDU64_rq:
7510   case ARM::MVE_VLDRDU64_rq_u:
7511   case ARM::MVE_VLDRWU32_qi:
7512   case ARM::MVE_VLDRWU32_qi_pre:
7513   case ARM::MVE_VLDRDU64_qi:
7514   case ARM::MVE_VLDRDU64_qi_pre: {
7515     // Qd must be different from Qm.
7516     unsigned QdIdx = 0, QmIdx = 2;
7517     bool QmIsPointer = false;
7518     switch (Opcode) {
7519     case ARM::MVE_VLDRWU32_qi:
7520     case ARM::MVE_VLDRDU64_qi:
7521       QmIdx = 1;
7522       QmIsPointer = true;
7523       break;
7524     case ARM::MVE_VLDRWU32_qi_pre:
7525     case ARM::MVE_VLDRDU64_qi_pre:
7526       QdIdx = 1;
7527       QmIsPointer = true;
7528       break;
7529     }
7530 
7531     const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg());
7532     const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg());
7533 
7534     if (Qd == Qm) {
7535       return Error(Operands[3]->getStartLoc(),
7536                    Twine("destination vector register and vector ") +
7537                    (QmIsPointer ? "pointer" : "offset") +
7538                    " register can't be identical");
7539     }
7540     return false;
7541   }
7542 
7543   case ARM::SBFX:
7544   case ARM::t2SBFX:
7545   case ARM::UBFX:
7546   case ARM::t2UBFX: {
7547     // Width must be in range [1, 32-lsb].
7548     unsigned LSB = Inst.getOperand(2).getImm();
7549     unsigned Widthm1 = Inst.getOperand(3).getImm();
7550     if (Widthm1 >= 32 - LSB)
7551       return Error(Operands[5]->getStartLoc(),
7552                    "bitfield width must be in range [1,32-lsb]");
7553     return false;
7554   }
7555   // Notionally handles ARM::tLDMIA_UPD too.
7556   case ARM::tLDMIA: {
7557     // If we're parsing Thumb2, the .w variant is available and handles
7558     // most cases that are normally illegal for a Thumb1 LDM instruction.
7559     // We'll make the transformation in processInstruction() if necessary.
7560     //
7561     // Thumb LDM instructions are writeback iff the base register is not
7562     // in the register list.
7563     unsigned Rn = Inst.getOperand(0).getReg();
7564     bool HasWritebackToken =
7565         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
7566          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
7567     bool ListContainsBase;
7568     if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
7569       return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
7570                    "registers must be in range r0-r7");
7571     // If we should have writeback, then there should be a '!' token.
7572     if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
7573       return Error(Operands[2]->getStartLoc(),
7574                    "writeback operator '!' expected");
7575     // If we should not have writeback, there must not be a '!'. This is
7576     // true even for the 32-bit wide encodings.
7577     if (ListContainsBase && HasWritebackToken)
7578       return Error(Operands[3]->getStartLoc(),
7579                    "writeback operator '!' not allowed when base register "
7580                    "in register list");
7581 
7582     if (validatetLDMRegList(Inst, Operands, 3))
7583       return true;
7584     break;
7585   }
7586   case ARM::LDMIA_UPD:
7587   case ARM::LDMDB_UPD:
7588   case ARM::LDMIB_UPD:
7589   case ARM::LDMDA_UPD:
7590     // ARM variants loading and updating the same register are only officially
7591     // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
7592     if (!hasV7Ops())
7593       break;
7594     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
7595       return Error(Operands.back()->getStartLoc(),
7596                    "writeback register not allowed in register list");
7597     break;
7598   case ARM::t2LDMIA:
7599   case ARM::t2LDMDB:
7600     if (validatetLDMRegList(Inst, Operands, 3))
7601       return true;
7602     break;
7603   case ARM::t2STMIA:
7604   case ARM::t2STMDB:
7605     if (validatetSTMRegList(Inst, Operands, 3))
7606       return true;
7607     break;
7608   case ARM::t2LDMIA_UPD:
7609   case ARM::t2LDMDB_UPD:
7610   case ARM::t2STMIA_UPD:
7611   case ARM::t2STMDB_UPD:
7612     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
7613       return Error(Operands.back()->getStartLoc(),
7614                    "writeback register not allowed in register list");
7615 
7616     if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
7617       if (validatetLDMRegList(Inst, Operands, 3))
7618         return true;
7619     } else {
7620       if (validatetSTMRegList(Inst, Operands, 3))
7621         return true;
7622     }
7623     break;
7624 
7625   case ARM::sysLDMIA_UPD:
7626   case ARM::sysLDMDA_UPD:
7627   case ARM::sysLDMDB_UPD:
7628   case ARM::sysLDMIB_UPD:
7629     if (!listContainsReg(Inst, 3, ARM::PC))
7630       return Error(Operands[4]->getStartLoc(),
7631                    "writeback register only allowed on system LDM "
7632                    "if PC in register-list");
7633     break;
7634   case ARM::sysSTMIA_UPD:
7635   case ARM::sysSTMDA_UPD:
7636   case ARM::sysSTMDB_UPD:
7637   case ARM::sysSTMIB_UPD:
7638     return Error(Operands[2]->getStartLoc(),
7639                  "system STM cannot have writeback register");
7640   case ARM::tMUL:
7641     // The second source operand must be the same register as the destination
7642     // operand.
7643     //
7644     // In this case, we must directly check the parsed operands because the
7645     // cvtThumbMultiply() function is written in such a way that it guarantees
7646     // this first statement is always true for the new Inst.  Essentially, the
7647     // destination is unconditionally copied into the second source operand
7648     // without checking to see if it matches what we actually parsed.
7649     if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() !=
7650                                  ((ARMOperand &)*Operands[5]).getReg()) &&
7651         (((ARMOperand &)*Operands[3]).getReg() !=
7652          ((ARMOperand &)*Operands[4]).getReg())) {
7653       return Error(Operands[3]->getStartLoc(),
7654                    "destination register must match source register");
7655     }
7656     break;
7657 
7658   // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
7659   // so only issue a diagnostic for thumb1. The instructions will be
7660   // switched to the t2 encodings in processInstruction() if necessary.
7661   case ARM::tPOP: {
7662     bool ListContainsBase;
7663     if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
7664         !isThumbTwo())
7665       return Error(Operands[2]->getStartLoc(),
7666                    "registers must be in range r0-r7 or pc");
7667     if (validatetLDMRegList(Inst, Operands, 2, !isMClass()))
7668       return true;
7669     break;
7670   }
7671   case ARM::tPUSH: {
7672     bool ListContainsBase;
7673     if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
7674         !isThumbTwo())
7675       return Error(Operands[2]->getStartLoc(),
7676                    "registers must be in range r0-r7 or lr");
7677     if (validatetSTMRegList(Inst, Operands, 2))
7678       return true;
7679     break;
7680   }
7681   case ARM::tSTMIA_UPD: {
7682     bool ListContainsBase, InvalidLowList;
7683     InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
7684                                           0, ListContainsBase);
7685     if (InvalidLowList && !isThumbTwo())
7686       return Error(Operands[4]->getStartLoc(),
7687                    "registers must be in range r0-r7");
7688 
7689     // This would be converted to a 32-bit stm, but that's not valid if the
7690     // writeback register is in the list.
7691     if (InvalidLowList && ListContainsBase)
7692       return Error(Operands[4]->getStartLoc(),
7693                    "writeback operator '!' not allowed when base register "
7694                    "in register list");
7695 
7696     if (validatetSTMRegList(Inst, Operands, 4))
7697       return true;
7698     break;
7699   }
7700   case ARM::tADDrSP:
7701     // If the non-SP source operand and the destination operand are not the
7702     // same, we need thumb2 (for the wide encoding), or we have an error.
7703     if (!isThumbTwo() &&
7704         Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
7705       return Error(Operands[4]->getStartLoc(),
7706                    "source register must be the same as destination");
7707     }
7708     break;
7709 
7710   case ARM::t2ADDri:
7711   case ARM::t2ADDri12:
7712   case ARM::t2ADDrr:
7713   case ARM::t2ADDrs:
7714   case ARM::t2SUBri:
7715   case ARM::t2SUBri12:
7716   case ARM::t2SUBrr:
7717   case ARM::t2SUBrs:
7718     if (Inst.getOperand(0).getReg() == ARM::SP &&
7719         Inst.getOperand(1).getReg() != ARM::SP)
7720       return Error(Operands[4]->getStartLoc(),
7721                    "source register must be sp if destination is sp");
7722     break;
7723 
7724   // Final range checking for Thumb unconditional branch instructions.
7725   case ARM::tB:
7726     if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>())
7727       return Error(Operands[2]->getStartLoc(), "branch target out of range");
7728     break;
7729   case ARM::t2B: {
7730     int op = (Operands[2]->isImm()) ? 2 : 3;
7731     if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>())
7732       return Error(Operands[op]->getStartLoc(), "branch target out of range");
7733     break;
7734   }
7735   // Final range checking for Thumb conditional branch instructions.
7736   case ARM::tBcc:
7737     if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>())
7738       return Error(Operands[2]->getStartLoc(), "branch target out of range");
7739     break;
7740   case ARM::t2Bcc: {
7741     int Op = (Operands[2]->isImm()) ? 2 : 3;
7742     if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>())
7743       return Error(Operands[Op]->getStartLoc(), "branch target out of range");
7744     break;
7745   }
7746   case ARM::tCBZ:
7747   case ARM::tCBNZ: {
7748     if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>())
7749       return Error(Operands[2]->getStartLoc(), "branch target out of range");
7750     break;
7751   }
7752   case ARM::MOVi16:
7753   case ARM::MOVTi16:
7754   case ARM::t2MOVi16:
7755   case ARM::t2MOVTi16:
7756     {
7757     // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
7758     // especially when we turn it into a movw and the expression <symbol> does
7759     // not have a :lower16: or :upper16 as part of the expression.  We don't
7760     // want the behavior of silently truncating, which can be unexpected and
7761     // lead to bugs that are difficult to find since this is an easy mistake
7762     // to make.
7763     int i = (Operands[3]->isImm()) ? 3 : 4;
7764     ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]);
7765     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
7766     if (CE) break;
7767     const MCExpr *E = dyn_cast<MCExpr>(Op.getImm());
7768     if (!E) break;
7769     const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E);
7770     if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
7771                        ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16))
7772       return Error(
7773           Op.getStartLoc(),
7774           "immediate expression for mov requires :lower16: or :upper16");
7775     break;
7776   }
7777   case ARM::HINT:
7778   case ARM::t2HINT: {
7779     unsigned Imm8 = Inst.getOperand(0).getImm();
7780     unsigned Pred = Inst.getOperand(1).getImm();
7781     // ESB is not predicable (pred must be AL). Without the RAS extension, this
7782     // behaves as any other unallocated hint.
7783     if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS())
7784       return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not "
7785                                                "predicable, but condition "
7786                                                "code specified");
7787     if (Imm8 == 0x14 && Pred != ARMCC::AL)
7788       return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not "
7789                                                "predicable, but condition "
7790                                                "code specified");
7791     break;
7792   }
7793   case ARM::t2BFi:
7794   case ARM::t2BFr:
7795   case ARM::t2BFLi:
7796   case ARM::t2BFLr: {
7797     if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() ||
7798         (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0))
7799       return Error(Operands[2]->getStartLoc(),
7800                    "branch location out of range or not a multiple of 2");
7801 
7802     if (Opcode == ARM::t2BFi) {
7803       if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>())
7804         return Error(Operands[3]->getStartLoc(),
7805                      "branch target out of range or not a multiple of 2");
7806     } else if (Opcode == ARM::t2BFLi) {
7807       if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>())
7808         return Error(Operands[3]->getStartLoc(),
7809                      "branch target out of range or not a multiple of 2");
7810     }
7811     break;
7812   }
7813   case ARM::t2BFic: {
7814     if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() ||
7815         (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0))
7816       return Error(Operands[1]->getStartLoc(),
7817                    "branch location out of range or not a multiple of 2");
7818 
7819     if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>())
7820       return Error(Operands[2]->getStartLoc(),
7821                    "branch target out of range or not a multiple of 2");
7822 
7823     assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() &&
7824            "branch location and else branch target should either both be "
7825            "immediates or both labels");
7826 
7827     if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) {
7828       int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm();
7829       if (Diff != 4 && Diff != 2)
7830         return Error(
7831             Operands[3]->getStartLoc(),
7832             "else branch target must be 2 or 4 greater than the branch location");
7833     }
7834     break;
7835   }
7836   case ARM::t2CLRM: {
7837     for (unsigned i = 2; i < Inst.getNumOperands(); i++) {
7838       if (Inst.getOperand(i).isReg() &&
7839           !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(
7840               Inst.getOperand(i).getReg())) {
7841         return Error(Operands[2]->getStartLoc(),
7842                      "invalid register in register list. Valid registers are "
7843                      "r0-r12, lr/r14 and APSR.");
7844       }
7845     }
7846     break;
7847   }
7848   case ARM::DSB:
7849   case ARM::t2DSB: {
7850 
7851     if (Inst.getNumOperands() < 2)
7852       break;
7853 
7854     unsigned Option = Inst.getOperand(0).getImm();
7855     unsigned Pred = Inst.getOperand(1).getImm();
7856 
7857     // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL).
7858     if (Option == 0 && Pred != ARMCC::AL)
7859       return Error(Operands[1]->getStartLoc(),
7860                    "instruction 'ssbb' is not predicable, but condition code "
7861                    "specified");
7862     if (Option == 4 && Pred != ARMCC::AL)
7863       return Error(Operands[1]->getStartLoc(),
7864                    "instruction 'pssbb' is not predicable, but condition code "
7865                    "specified");
7866     break;
7867   }
7868   case ARM::VMOVRRS: {
7869     // Source registers must be sequential.
7870     const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg());
7871     const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg());
7872     if (Sm1 != Sm + 1)
7873       return Error(Operands[5]->getStartLoc(),
7874                    "source operands must be sequential");
7875     break;
7876   }
7877   case ARM::VMOVSRR: {
7878     // Destination registers must be sequential.
7879     const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg());
7880     const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
7881     if (Sm1 != Sm + 1)
7882       return Error(Operands[3]->getStartLoc(),
7883                    "destination operands must be sequential");
7884     break;
7885   }
7886   case ARM::VLDMDIA:
7887   case ARM::VSTMDIA: {
7888     ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]);
7889     auto &RegList = Op.getRegList();
7890     if (RegList.size() < 1 || RegList.size() > 16)
7891       return Error(Operands[3]->getStartLoc(),
7892                    "list of registers must be at least 1 and at most 16");
7893     break;
7894   }
7895   case ARM::MVE_VQDMULLs32bh:
7896   case ARM::MVE_VQDMULLs32th:
7897   case ARM::MVE_VCMULf32:
7898   case ARM::MVE_VMULLs32bh:
7899   case ARM::MVE_VMULLs32th:
7900   case ARM::MVE_VMULLu32bh:
7901   case ARM::MVE_VMULLu32th: {
7902     if (Operands[3]->getReg() == Operands[4]->getReg()) {
7903       return Error (Operands[3]->getStartLoc(),
7904                     "Qd register and Qn register can't be identical");
7905     }
7906     if (Operands[3]->getReg() == Operands[5]->getReg()) {
7907       return Error (Operands[3]->getStartLoc(),
7908                     "Qd register and Qm register can't be identical");
7909     }
7910     break;
7911   }
7912   case ARM::MVE_VMOV_rr_q: {
7913     if (Operands[4]->getReg() != Operands[6]->getReg())
7914       return Error (Operands[4]->getStartLoc(), "Q-registers must be the same");
7915     if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() !=
7916         static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2)
7917       return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
7918     break;
7919   }
7920   case ARM::MVE_VMOV_q_rr: {
7921     if (Operands[2]->getReg() != Operands[4]->getReg())
7922       return Error (Operands[2]->getStartLoc(), "Q-registers must be the same");
7923     if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() !=
7924         static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2)
7925       return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
7926     break;
7927   }
7928   }
7929 
7930   return false;
7931 }
7932 
7933 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
7934   switch(Opc) {
7935   default: llvm_unreachable("unexpected opcode!");
7936   // VST1LN
7937   case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
7938   case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
7939   case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
7940   case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
7941   case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
7942   case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
7943   case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
7944   case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
7945   case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
7946 
7947   // VST2LN
7948   case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
7949   case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
7950   case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
7951   case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
7952   case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
7953 
7954   case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
7955   case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
7956   case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
7957   case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
7958   case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
7959 
7960   case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
7961   case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
7962   case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
7963   case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
7964   case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
7965 
7966   // VST3LN
7967   case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
7968   case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
7969   case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
7970   case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
7971   case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
7972   case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
7973   case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
7974   case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
7975   case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
7976   case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
7977   case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
7978   case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
7979   case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
7980   case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
7981   case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
7982 
7983   // VST3
7984   case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
7985   case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
7986   case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
7987   case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
7988   case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
7989   case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
7990   case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
7991   case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
7992   case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
7993   case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
7994   case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
7995   case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
7996   case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
7997   case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
7998   case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
7999   case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
8000   case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
8001   case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
8002 
8003   // VST4LN
8004   case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
8005   case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
8006   case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
8007   case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
8008   case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
8009   case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
8010   case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
8011   case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
8012   case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
8013   case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
8014   case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
8015   case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
8016   case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
8017   case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
8018   case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
8019 
8020   // VST4
8021   case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
8022   case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
8023   case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
8024   case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
8025   case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
8026   case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
8027   case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
8028   case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
8029   case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
8030   case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
8031   case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
8032   case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
8033   case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
8034   case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
8035   case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
8036   case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
8037   case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
8038   case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
8039   }
8040 }
8041 
8042 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
8043   switch(Opc) {
8044   default: llvm_unreachable("unexpected opcode!");
8045   // VLD1LN
8046   case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
8047   case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
8048   case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
8049   case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
8050   case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
8051   case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
8052   case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
8053   case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
8054   case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
8055 
8056   // VLD2LN
8057   case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
8058   case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
8059   case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
8060   case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
8061   case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
8062   case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
8063   case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
8064   case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
8065   case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
8066   case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
8067   case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
8068   case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
8069   case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
8070   case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
8071   case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
8072 
8073   // VLD3DUP
8074   case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
8075   case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
8076   case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
8077   case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
8078   case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
8079   case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
8080   case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
8081   case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
8082   case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
8083   case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
8084   case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
8085   case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
8086   case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
8087   case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
8088   case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
8089   case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
8090   case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
8091   case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
8092 
8093   // VLD3LN
8094   case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
8095   case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
8096   case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
8097   case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
8098   case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
8099   case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
8100   case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
8101   case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
8102   case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
8103   case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
8104   case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
8105   case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
8106   case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
8107   case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
8108   case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
8109 
8110   // VLD3
8111   case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
8112   case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
8113   case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
8114   case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
8115   case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
8116   case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
8117   case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
8118   case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
8119   case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
8120   case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
8121   case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
8122   case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
8123   case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
8124   case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
8125   case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
8126   case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
8127   case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
8128   case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
8129 
8130   // VLD4LN
8131   case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
8132   case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
8133   case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
8134   case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
8135   case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
8136   case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
8137   case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
8138   case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
8139   case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
8140   case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
8141   case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
8142   case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
8143   case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
8144   case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
8145   case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
8146 
8147   // VLD4DUP
8148   case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
8149   case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
8150   case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
8151   case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
8152   case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
8153   case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
8154   case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
8155   case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
8156   case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
8157   case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
8158   case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
8159   case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
8160   case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
8161   case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
8162   case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
8163   case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
8164   case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
8165   case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
8166 
8167   // VLD4
8168   case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
8169   case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
8170   case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
8171   case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
8172   case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
8173   case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
8174   case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
8175   case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
8176   case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
8177   case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
8178   case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
8179   case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
8180   case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
8181   case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
8182   case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
8183   case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
8184   case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
8185   case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
8186   }
8187 }
8188 
8189 bool ARMAsmParser::processInstruction(MCInst &Inst,
8190                                       const OperandVector &Operands,
8191                                       MCStreamer &Out) {
8192   // Check if we have the wide qualifier, because if it's present we
8193   // must avoid selecting a 16-bit thumb instruction.
8194   bool HasWideQualifier = false;
8195   for (auto &Op : Operands) {
8196     ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op);
8197     if (ARMOp.isToken() && ARMOp.getToken() == ".w") {
8198       HasWideQualifier = true;
8199       break;
8200     }
8201   }
8202 
8203   switch (Inst.getOpcode()) {
8204   case ARM::MVE_VORNIZ0v4i32:
8205   case ARM::MVE_VORNIZ0v8i16:
8206   case ARM::MVE_VORNIZ8v4i32:
8207   case ARM::MVE_VORNIZ8v8i16:
8208   case ARM::MVE_VORNIZ16v4i32:
8209   case ARM::MVE_VORNIZ24v4i32:
8210   case ARM::MVE_VANDIZ0v4i32:
8211   case ARM::MVE_VANDIZ0v8i16:
8212   case ARM::MVE_VANDIZ8v4i32:
8213   case ARM::MVE_VANDIZ8v8i16:
8214   case ARM::MVE_VANDIZ16v4i32:
8215   case ARM::MVE_VANDIZ24v4i32: {
8216     unsigned Opcode;
8217     bool imm16 = false;
8218     switch(Inst.getOpcode()) {
8219     case ARM::MVE_VORNIZ0v4i32: Opcode = ARM::MVE_VORRIZ0v4i32; break;
8220     case ARM::MVE_VORNIZ0v8i16: Opcode = ARM::MVE_VORRIZ0v8i16; imm16 = true; break;
8221     case ARM::MVE_VORNIZ8v4i32: Opcode = ARM::MVE_VORRIZ8v4i32; break;
8222     case ARM::MVE_VORNIZ8v8i16: Opcode = ARM::MVE_VORRIZ8v8i16; imm16 = true; break;
8223     case ARM::MVE_VORNIZ16v4i32: Opcode = ARM::MVE_VORRIZ16v4i32; break;
8224     case ARM::MVE_VORNIZ24v4i32: Opcode = ARM::MVE_VORRIZ24v4i32; break;
8225     case ARM::MVE_VANDIZ0v4i32: Opcode = ARM::MVE_VBICIZ0v4i32; break;
8226     case ARM::MVE_VANDIZ0v8i16: Opcode = ARM::MVE_VBICIZ0v8i16; imm16 = true; break;
8227     case ARM::MVE_VANDIZ8v4i32: Opcode = ARM::MVE_VBICIZ8v4i32; break;
8228     case ARM::MVE_VANDIZ8v8i16: Opcode = ARM::MVE_VBICIZ8v8i16; imm16 = true; break;
8229     case ARM::MVE_VANDIZ16v4i32: Opcode = ARM::MVE_VBICIZ16v4i32; break;
8230     case ARM::MVE_VANDIZ24v4i32: Opcode = ARM::MVE_VBICIZ24v4i32; break;
8231     default: llvm_unreachable("unexpected opcode");
8232     }
8233 
8234     MCInst TmpInst;
8235     TmpInst.setOpcode(Opcode);
8236     TmpInst.addOperand(Inst.getOperand(0));
8237     TmpInst.addOperand(Inst.getOperand(1));
8238 
8239     // invert immediate
8240     unsigned imm = ~Inst.getOperand(2).getImm() & (imm16 ? 0xffff : 0xffffffff);
8241     TmpInst.addOperand(MCOperand::createImm(imm));
8242 
8243     TmpInst.addOperand(Inst.getOperand(3));
8244     TmpInst.addOperand(Inst.getOperand(4));
8245     Inst = TmpInst;
8246     return true;
8247   }
8248   // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
8249   case ARM::LDRT_POST:
8250   case ARM::LDRBT_POST: {
8251     const unsigned Opcode =
8252       (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
8253                                            : ARM::LDRBT_POST_IMM;
8254     MCInst TmpInst;
8255     TmpInst.setOpcode(Opcode);
8256     TmpInst.addOperand(Inst.getOperand(0));
8257     TmpInst.addOperand(Inst.getOperand(1));
8258     TmpInst.addOperand(Inst.getOperand(1));
8259     TmpInst.addOperand(MCOperand::createReg(0));
8260     TmpInst.addOperand(MCOperand::createImm(0));
8261     TmpInst.addOperand(Inst.getOperand(2));
8262     TmpInst.addOperand(Inst.getOperand(3));
8263     Inst = TmpInst;
8264     return true;
8265   }
8266   // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
8267   case ARM::STRT_POST:
8268   case ARM::STRBT_POST: {
8269     const unsigned Opcode =
8270       (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
8271                                            : ARM::STRBT_POST_IMM;
8272     MCInst TmpInst;
8273     TmpInst.setOpcode(Opcode);
8274     TmpInst.addOperand(Inst.getOperand(1));
8275     TmpInst.addOperand(Inst.getOperand(0));
8276     TmpInst.addOperand(Inst.getOperand(1));
8277     TmpInst.addOperand(MCOperand::createReg(0));
8278     TmpInst.addOperand(MCOperand::createImm(0));
8279     TmpInst.addOperand(Inst.getOperand(2));
8280     TmpInst.addOperand(Inst.getOperand(3));
8281     Inst = TmpInst;
8282     return true;
8283   }
8284   // Alias for alternate form of 'ADR Rd, #imm' instruction.
8285   case ARM::ADDri: {
8286     if (Inst.getOperand(1).getReg() != ARM::PC ||
8287         Inst.getOperand(5).getReg() != 0 ||
8288         !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm()))
8289       return false;
8290     MCInst TmpInst;
8291     TmpInst.setOpcode(ARM::ADR);
8292     TmpInst.addOperand(Inst.getOperand(0));
8293     if (Inst.getOperand(2).isImm()) {
8294       // Immediate (mod_imm) will be in its encoded form, we must unencode it
8295       // before passing it to the ADR instruction.
8296       unsigned Enc = Inst.getOperand(2).getImm();
8297       TmpInst.addOperand(MCOperand::createImm(
8298         ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7)));
8299     } else {
8300       // Turn PC-relative expression into absolute expression.
8301       // Reading PC provides the start of the current instruction + 8 and
8302       // the transform to adr is biased by that.
8303       MCSymbol *Dot = getContext().createTempSymbol();
8304       Out.EmitLabel(Dot);
8305       const MCExpr *OpExpr = Inst.getOperand(2).getExpr();
8306       const MCExpr *InstPC = MCSymbolRefExpr::create(Dot,
8307                                                      MCSymbolRefExpr::VK_None,
8308                                                      getContext());
8309       const MCExpr *Const8 = MCConstantExpr::create(8, getContext());
8310       const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8,
8311                                                      getContext());
8312       const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr,
8313                                                         getContext());
8314       TmpInst.addOperand(MCOperand::createExpr(FixupAddr));
8315     }
8316     TmpInst.addOperand(Inst.getOperand(3));
8317     TmpInst.addOperand(Inst.getOperand(4));
8318     Inst = TmpInst;
8319     return true;
8320   }
8321   // Aliases for alternate PC+imm syntax of LDR instructions.
8322   case ARM::t2LDRpcrel:
8323     // Select the narrow version if the immediate will fit.
8324     if (Inst.getOperand(1).getImm() > 0 &&
8325         Inst.getOperand(1).getImm() <= 0xff &&
8326         !HasWideQualifier)
8327       Inst.setOpcode(ARM::tLDRpci);
8328     else
8329       Inst.setOpcode(ARM::t2LDRpci);
8330     return true;
8331   case ARM::t2LDRBpcrel:
8332     Inst.setOpcode(ARM::t2LDRBpci);
8333     return true;
8334   case ARM::t2LDRHpcrel:
8335     Inst.setOpcode(ARM::t2LDRHpci);
8336     return true;
8337   case ARM::t2LDRSBpcrel:
8338     Inst.setOpcode(ARM::t2LDRSBpci);
8339     return true;
8340   case ARM::t2LDRSHpcrel:
8341     Inst.setOpcode(ARM::t2LDRSHpci);
8342     return true;
8343   case ARM::LDRConstPool:
8344   case ARM::tLDRConstPool:
8345   case ARM::t2LDRConstPool: {
8346     // Pseudo instruction ldr rt, =immediate is converted to a
8347     // MOV rt, immediate if immediate is known and representable
8348     // otherwise we create a constant pool entry that we load from.
8349     MCInst TmpInst;
8350     if (Inst.getOpcode() == ARM::LDRConstPool)
8351       TmpInst.setOpcode(ARM::LDRi12);
8352     else if (Inst.getOpcode() == ARM::tLDRConstPool)
8353       TmpInst.setOpcode(ARM::tLDRpci);
8354     else if (Inst.getOpcode() == ARM::t2LDRConstPool)
8355       TmpInst.setOpcode(ARM::t2LDRpci);
8356     const ARMOperand &PoolOperand =
8357       (HasWideQualifier ?
8358        static_cast<ARMOperand &>(*Operands[4]) :
8359        static_cast<ARMOperand &>(*Operands[3]));
8360     const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm();
8361     // If SubExprVal is a constant we may be able to use a MOV
8362     if (isa<MCConstantExpr>(SubExprVal) &&
8363         Inst.getOperand(0).getReg() != ARM::PC &&
8364         Inst.getOperand(0).getReg() != ARM::SP) {
8365       int64_t Value =
8366         (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue();
8367       bool UseMov  = true;
8368       bool MovHasS = true;
8369       if (Inst.getOpcode() == ARM::LDRConstPool) {
8370         // ARM Constant
8371         if (ARM_AM::getSOImmVal(Value) != -1) {
8372           Value = ARM_AM::getSOImmVal(Value);
8373           TmpInst.setOpcode(ARM::MOVi);
8374         }
8375         else if (ARM_AM::getSOImmVal(~Value) != -1) {
8376           Value = ARM_AM::getSOImmVal(~Value);
8377           TmpInst.setOpcode(ARM::MVNi);
8378         }
8379         else if (hasV6T2Ops() &&
8380                  Value >=0 && Value < 65536) {
8381           TmpInst.setOpcode(ARM::MOVi16);
8382           MovHasS = false;
8383         }
8384         else
8385           UseMov = false;
8386       }
8387       else {
8388         // Thumb/Thumb2 Constant
8389         if (hasThumb2() &&
8390             ARM_AM::getT2SOImmVal(Value) != -1)
8391           TmpInst.setOpcode(ARM::t2MOVi);
8392         else if (hasThumb2() &&
8393                  ARM_AM::getT2SOImmVal(~Value) != -1) {
8394           TmpInst.setOpcode(ARM::t2MVNi);
8395           Value = ~Value;
8396         }
8397         else if (hasV8MBaseline() &&
8398                  Value >=0 && Value < 65536) {
8399           TmpInst.setOpcode(ARM::t2MOVi16);
8400           MovHasS = false;
8401         }
8402         else
8403           UseMov = false;
8404       }
8405       if (UseMov) {
8406         TmpInst.addOperand(Inst.getOperand(0));           // Rt
8407         TmpInst.addOperand(MCOperand::createImm(Value));  // Immediate
8408         TmpInst.addOperand(Inst.getOperand(2));           // CondCode
8409         TmpInst.addOperand(Inst.getOperand(3));           // CondCode
8410         if (MovHasS)
8411           TmpInst.addOperand(MCOperand::createReg(0));    // S
8412         Inst = TmpInst;
8413         return true;
8414       }
8415     }
8416     // No opportunity to use MOV/MVN create constant pool
8417     const MCExpr *CPLoc =
8418       getTargetStreamer().addConstantPoolEntry(SubExprVal,
8419                                                PoolOperand.getStartLoc());
8420     TmpInst.addOperand(Inst.getOperand(0));           // Rt
8421     TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool
8422     if (TmpInst.getOpcode() == ARM::LDRi12)
8423       TmpInst.addOperand(MCOperand::createImm(0));    // unused offset
8424     TmpInst.addOperand(Inst.getOperand(2));           // CondCode
8425     TmpInst.addOperand(Inst.getOperand(3));           // CondCode
8426     Inst = TmpInst;
8427     return true;
8428   }
8429   // Handle NEON VST complex aliases.
8430   case ARM::VST1LNdWB_register_Asm_8:
8431   case ARM::VST1LNdWB_register_Asm_16:
8432   case ARM::VST1LNdWB_register_Asm_32: {
8433     MCInst TmpInst;
8434     // Shuffle the operands around so the lane index operand is in the
8435     // right place.
8436     unsigned Spacing;
8437     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8438     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8439     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8440     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8441     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8442     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8443     TmpInst.addOperand(Inst.getOperand(1)); // lane
8444     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8445     TmpInst.addOperand(Inst.getOperand(6));
8446     Inst = TmpInst;
8447     return true;
8448   }
8449 
8450   case ARM::VST2LNdWB_register_Asm_8:
8451   case ARM::VST2LNdWB_register_Asm_16:
8452   case ARM::VST2LNdWB_register_Asm_32:
8453   case ARM::VST2LNqWB_register_Asm_16:
8454   case ARM::VST2LNqWB_register_Asm_32: {
8455     MCInst TmpInst;
8456     // Shuffle the operands around so the lane index operand is in the
8457     // right place.
8458     unsigned Spacing;
8459     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8460     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8461     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8462     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8463     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8464     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8465     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8466                                             Spacing));
8467     TmpInst.addOperand(Inst.getOperand(1)); // lane
8468     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8469     TmpInst.addOperand(Inst.getOperand(6));
8470     Inst = TmpInst;
8471     return true;
8472   }
8473 
8474   case ARM::VST3LNdWB_register_Asm_8:
8475   case ARM::VST3LNdWB_register_Asm_16:
8476   case ARM::VST3LNdWB_register_Asm_32:
8477   case ARM::VST3LNqWB_register_Asm_16:
8478   case ARM::VST3LNqWB_register_Asm_32: {
8479     MCInst TmpInst;
8480     // Shuffle the operands around so the lane index operand is in the
8481     // right place.
8482     unsigned Spacing;
8483     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8484     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8485     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8486     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8487     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8488     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8489     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8490                                             Spacing));
8491     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8492                                             Spacing * 2));
8493     TmpInst.addOperand(Inst.getOperand(1)); // lane
8494     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8495     TmpInst.addOperand(Inst.getOperand(6));
8496     Inst = TmpInst;
8497     return true;
8498   }
8499 
8500   case ARM::VST4LNdWB_register_Asm_8:
8501   case ARM::VST4LNdWB_register_Asm_16:
8502   case ARM::VST4LNdWB_register_Asm_32:
8503   case ARM::VST4LNqWB_register_Asm_16:
8504   case ARM::VST4LNqWB_register_Asm_32: {
8505     MCInst TmpInst;
8506     // Shuffle the operands around so the lane index operand is in the
8507     // right place.
8508     unsigned Spacing;
8509     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8510     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8511     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8512     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8513     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8514     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8515     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8516                                             Spacing));
8517     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8518                                             Spacing * 2));
8519     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8520                                             Spacing * 3));
8521     TmpInst.addOperand(Inst.getOperand(1)); // lane
8522     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8523     TmpInst.addOperand(Inst.getOperand(6));
8524     Inst = TmpInst;
8525     return true;
8526   }
8527 
8528   case ARM::VST1LNdWB_fixed_Asm_8:
8529   case ARM::VST1LNdWB_fixed_Asm_16:
8530   case ARM::VST1LNdWB_fixed_Asm_32: {
8531     MCInst TmpInst;
8532     // Shuffle the operands around so the lane index operand is in the
8533     // right place.
8534     unsigned Spacing;
8535     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8536     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8537     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8538     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8539     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8540     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8541     TmpInst.addOperand(Inst.getOperand(1)); // lane
8542     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8543     TmpInst.addOperand(Inst.getOperand(5));
8544     Inst = TmpInst;
8545     return true;
8546   }
8547 
8548   case ARM::VST2LNdWB_fixed_Asm_8:
8549   case ARM::VST2LNdWB_fixed_Asm_16:
8550   case ARM::VST2LNdWB_fixed_Asm_32:
8551   case ARM::VST2LNqWB_fixed_Asm_16:
8552   case ARM::VST2LNqWB_fixed_Asm_32: {
8553     MCInst TmpInst;
8554     // Shuffle the operands around so the lane index operand is in the
8555     // right place.
8556     unsigned Spacing;
8557     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8558     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8559     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8560     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8561     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8562     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8563     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8564                                             Spacing));
8565     TmpInst.addOperand(Inst.getOperand(1)); // lane
8566     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8567     TmpInst.addOperand(Inst.getOperand(5));
8568     Inst = TmpInst;
8569     return true;
8570   }
8571 
8572   case ARM::VST3LNdWB_fixed_Asm_8:
8573   case ARM::VST3LNdWB_fixed_Asm_16:
8574   case ARM::VST3LNdWB_fixed_Asm_32:
8575   case ARM::VST3LNqWB_fixed_Asm_16:
8576   case ARM::VST3LNqWB_fixed_Asm_32: {
8577     MCInst TmpInst;
8578     // Shuffle the operands around so the lane index operand is in the
8579     // right place.
8580     unsigned Spacing;
8581     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8582     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8583     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8584     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8585     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8586     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8587     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8588                                             Spacing));
8589     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8590                                             Spacing * 2));
8591     TmpInst.addOperand(Inst.getOperand(1)); // lane
8592     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8593     TmpInst.addOperand(Inst.getOperand(5));
8594     Inst = TmpInst;
8595     return true;
8596   }
8597 
8598   case ARM::VST4LNdWB_fixed_Asm_8:
8599   case ARM::VST4LNdWB_fixed_Asm_16:
8600   case ARM::VST4LNdWB_fixed_Asm_32:
8601   case ARM::VST4LNqWB_fixed_Asm_16:
8602   case ARM::VST4LNqWB_fixed_Asm_32: {
8603     MCInst TmpInst;
8604     // Shuffle the operands around so the lane index operand is in the
8605     // right place.
8606     unsigned Spacing;
8607     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8608     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8609     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8610     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8611     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8612     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8613     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8614                                             Spacing));
8615     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8616                                             Spacing * 2));
8617     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8618                                             Spacing * 3));
8619     TmpInst.addOperand(Inst.getOperand(1)); // lane
8620     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8621     TmpInst.addOperand(Inst.getOperand(5));
8622     Inst = TmpInst;
8623     return true;
8624   }
8625 
8626   case ARM::VST1LNdAsm_8:
8627   case ARM::VST1LNdAsm_16:
8628   case ARM::VST1LNdAsm_32: {
8629     MCInst TmpInst;
8630     // Shuffle the operands around so the lane index operand is in the
8631     // right place.
8632     unsigned Spacing;
8633     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8634     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8635     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8636     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8637     TmpInst.addOperand(Inst.getOperand(1)); // lane
8638     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8639     TmpInst.addOperand(Inst.getOperand(5));
8640     Inst = TmpInst;
8641     return true;
8642   }
8643 
8644   case ARM::VST2LNdAsm_8:
8645   case ARM::VST2LNdAsm_16:
8646   case ARM::VST2LNdAsm_32:
8647   case ARM::VST2LNqAsm_16:
8648   case ARM::VST2LNqAsm_32: {
8649     MCInst TmpInst;
8650     // Shuffle the operands around so the lane index operand is in the
8651     // right place.
8652     unsigned Spacing;
8653     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8654     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8655     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8656     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8657     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8658                                             Spacing));
8659     TmpInst.addOperand(Inst.getOperand(1)); // lane
8660     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8661     TmpInst.addOperand(Inst.getOperand(5));
8662     Inst = TmpInst;
8663     return true;
8664   }
8665 
8666   case ARM::VST3LNdAsm_8:
8667   case ARM::VST3LNdAsm_16:
8668   case ARM::VST3LNdAsm_32:
8669   case ARM::VST3LNqAsm_16:
8670   case ARM::VST3LNqAsm_32: {
8671     MCInst TmpInst;
8672     // Shuffle the operands around so the lane index operand is in the
8673     // right place.
8674     unsigned Spacing;
8675     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8676     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8677     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8678     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8679     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8680                                             Spacing));
8681     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8682                                             Spacing * 2));
8683     TmpInst.addOperand(Inst.getOperand(1)); // lane
8684     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8685     TmpInst.addOperand(Inst.getOperand(5));
8686     Inst = TmpInst;
8687     return true;
8688   }
8689 
8690   case ARM::VST4LNdAsm_8:
8691   case ARM::VST4LNdAsm_16:
8692   case ARM::VST4LNdAsm_32:
8693   case ARM::VST4LNqAsm_16:
8694   case ARM::VST4LNqAsm_32: {
8695     MCInst TmpInst;
8696     // Shuffle the operands around so the lane index operand is in the
8697     // right place.
8698     unsigned Spacing;
8699     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8700     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8701     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8702     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8703     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8704                                             Spacing));
8705     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8706                                             Spacing * 2));
8707     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8708                                             Spacing * 3));
8709     TmpInst.addOperand(Inst.getOperand(1)); // lane
8710     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8711     TmpInst.addOperand(Inst.getOperand(5));
8712     Inst = TmpInst;
8713     return true;
8714   }
8715 
8716   // Handle NEON VLD complex aliases.
8717   case ARM::VLD1LNdWB_register_Asm_8:
8718   case ARM::VLD1LNdWB_register_Asm_16:
8719   case ARM::VLD1LNdWB_register_Asm_32: {
8720     MCInst TmpInst;
8721     // Shuffle the operands around so the lane index operand is in the
8722     // right place.
8723     unsigned Spacing;
8724     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8725     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8726     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8727     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8728     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8729     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8730     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8731     TmpInst.addOperand(Inst.getOperand(1)); // lane
8732     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8733     TmpInst.addOperand(Inst.getOperand(6));
8734     Inst = TmpInst;
8735     return true;
8736   }
8737 
8738   case ARM::VLD2LNdWB_register_Asm_8:
8739   case ARM::VLD2LNdWB_register_Asm_16:
8740   case ARM::VLD2LNdWB_register_Asm_32:
8741   case ARM::VLD2LNqWB_register_Asm_16:
8742   case ARM::VLD2LNqWB_register_Asm_32: {
8743     MCInst TmpInst;
8744     // Shuffle the operands around so the lane index operand is in the
8745     // right place.
8746     unsigned Spacing;
8747     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8748     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8749     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8750                                             Spacing));
8751     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8752     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8753     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8754     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8755     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8756     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8757                                             Spacing));
8758     TmpInst.addOperand(Inst.getOperand(1)); // lane
8759     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8760     TmpInst.addOperand(Inst.getOperand(6));
8761     Inst = TmpInst;
8762     return true;
8763   }
8764 
8765   case ARM::VLD3LNdWB_register_Asm_8:
8766   case ARM::VLD3LNdWB_register_Asm_16:
8767   case ARM::VLD3LNdWB_register_Asm_32:
8768   case ARM::VLD3LNqWB_register_Asm_16:
8769   case ARM::VLD3LNqWB_register_Asm_32: {
8770     MCInst TmpInst;
8771     // Shuffle the operands around so the lane index operand is in the
8772     // right place.
8773     unsigned Spacing;
8774     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8775     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8776     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8777                                             Spacing));
8778     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8779                                             Spacing * 2));
8780     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8781     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8782     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8783     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8784     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8785     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8786                                             Spacing));
8787     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8788                                             Spacing * 2));
8789     TmpInst.addOperand(Inst.getOperand(1)); // lane
8790     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8791     TmpInst.addOperand(Inst.getOperand(6));
8792     Inst = TmpInst;
8793     return true;
8794   }
8795 
8796   case ARM::VLD4LNdWB_register_Asm_8:
8797   case ARM::VLD4LNdWB_register_Asm_16:
8798   case ARM::VLD4LNdWB_register_Asm_32:
8799   case ARM::VLD4LNqWB_register_Asm_16:
8800   case ARM::VLD4LNqWB_register_Asm_32: {
8801     MCInst TmpInst;
8802     // Shuffle the operands around so the lane index operand is in the
8803     // right place.
8804     unsigned Spacing;
8805     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8806     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8807     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8808                                             Spacing));
8809     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8810                                             Spacing * 2));
8811     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8812                                             Spacing * 3));
8813     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8814     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8815     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8816     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8817     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8818     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8819                                             Spacing));
8820     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8821                                             Spacing * 2));
8822     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8823                                             Spacing * 3));
8824     TmpInst.addOperand(Inst.getOperand(1)); // lane
8825     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8826     TmpInst.addOperand(Inst.getOperand(6));
8827     Inst = TmpInst;
8828     return true;
8829   }
8830 
8831   case ARM::VLD1LNdWB_fixed_Asm_8:
8832   case ARM::VLD1LNdWB_fixed_Asm_16:
8833   case ARM::VLD1LNdWB_fixed_Asm_32: {
8834     MCInst TmpInst;
8835     // Shuffle the operands around so the lane index operand is in the
8836     // right place.
8837     unsigned Spacing;
8838     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8839     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8840     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8841     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8842     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8843     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8844     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8845     TmpInst.addOperand(Inst.getOperand(1)); // lane
8846     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8847     TmpInst.addOperand(Inst.getOperand(5));
8848     Inst = TmpInst;
8849     return true;
8850   }
8851 
8852   case ARM::VLD2LNdWB_fixed_Asm_8:
8853   case ARM::VLD2LNdWB_fixed_Asm_16:
8854   case ARM::VLD2LNdWB_fixed_Asm_32:
8855   case ARM::VLD2LNqWB_fixed_Asm_16:
8856   case ARM::VLD2LNqWB_fixed_Asm_32: {
8857     MCInst TmpInst;
8858     // Shuffle the operands around so the lane index operand is in the
8859     // right place.
8860     unsigned Spacing;
8861     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8862     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8863     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8864                                             Spacing));
8865     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8866     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8867     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8868     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8869     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8870     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8871                                             Spacing));
8872     TmpInst.addOperand(Inst.getOperand(1)); // lane
8873     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8874     TmpInst.addOperand(Inst.getOperand(5));
8875     Inst = TmpInst;
8876     return true;
8877   }
8878 
8879   case ARM::VLD3LNdWB_fixed_Asm_8:
8880   case ARM::VLD3LNdWB_fixed_Asm_16:
8881   case ARM::VLD3LNdWB_fixed_Asm_32:
8882   case ARM::VLD3LNqWB_fixed_Asm_16:
8883   case ARM::VLD3LNqWB_fixed_Asm_32: {
8884     MCInst TmpInst;
8885     // Shuffle the operands around so the lane index operand is in the
8886     // right place.
8887     unsigned Spacing;
8888     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8889     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8890     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8891                                             Spacing));
8892     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8893                                             Spacing * 2));
8894     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8895     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8896     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8897     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8898     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8899     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8900                                             Spacing));
8901     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8902                                             Spacing * 2));
8903     TmpInst.addOperand(Inst.getOperand(1)); // lane
8904     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8905     TmpInst.addOperand(Inst.getOperand(5));
8906     Inst = TmpInst;
8907     return true;
8908   }
8909 
8910   case ARM::VLD4LNdWB_fixed_Asm_8:
8911   case ARM::VLD4LNdWB_fixed_Asm_16:
8912   case ARM::VLD4LNdWB_fixed_Asm_32:
8913   case ARM::VLD4LNqWB_fixed_Asm_16:
8914   case ARM::VLD4LNqWB_fixed_Asm_32: {
8915     MCInst TmpInst;
8916     // Shuffle the operands around so the lane index operand is in the
8917     // right place.
8918     unsigned Spacing;
8919     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8920     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8921     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8922                                             Spacing));
8923     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8924                                             Spacing * 2));
8925     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8926                                             Spacing * 3));
8927     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8928     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8929     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8930     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8931     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8932     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8933                                             Spacing));
8934     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8935                                             Spacing * 2));
8936     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8937                                             Spacing * 3));
8938     TmpInst.addOperand(Inst.getOperand(1)); // lane
8939     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8940     TmpInst.addOperand(Inst.getOperand(5));
8941     Inst = TmpInst;
8942     return true;
8943   }
8944 
8945   case ARM::VLD1LNdAsm_8:
8946   case ARM::VLD1LNdAsm_16:
8947   case ARM::VLD1LNdAsm_32: {
8948     MCInst TmpInst;
8949     // Shuffle the operands around so the lane index operand is in the
8950     // right place.
8951     unsigned Spacing;
8952     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8953     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8954     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8955     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8956     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8957     TmpInst.addOperand(Inst.getOperand(1)); // lane
8958     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8959     TmpInst.addOperand(Inst.getOperand(5));
8960     Inst = TmpInst;
8961     return true;
8962   }
8963 
8964   case ARM::VLD2LNdAsm_8:
8965   case ARM::VLD2LNdAsm_16:
8966   case ARM::VLD2LNdAsm_32:
8967   case ARM::VLD2LNqAsm_16:
8968   case ARM::VLD2LNqAsm_32: {
8969     MCInst TmpInst;
8970     // Shuffle the operands around so the lane index operand is in the
8971     // right place.
8972     unsigned Spacing;
8973     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8974     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8975     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8976                                             Spacing));
8977     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8978     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8979     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8980     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8981                                             Spacing));
8982     TmpInst.addOperand(Inst.getOperand(1)); // lane
8983     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8984     TmpInst.addOperand(Inst.getOperand(5));
8985     Inst = TmpInst;
8986     return true;
8987   }
8988 
8989   case ARM::VLD3LNdAsm_8:
8990   case ARM::VLD3LNdAsm_16:
8991   case ARM::VLD3LNdAsm_32:
8992   case ARM::VLD3LNqAsm_16:
8993   case ARM::VLD3LNqAsm_32: {
8994     MCInst TmpInst;
8995     // Shuffle the operands around so the lane index operand is in the
8996     // right place.
8997     unsigned Spacing;
8998     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8999     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9000     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9001                                             Spacing));
9002     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9003                                             Spacing * 2));
9004     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9005     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9006     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9007     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9008                                             Spacing));
9009     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9010                                             Spacing * 2));
9011     TmpInst.addOperand(Inst.getOperand(1)); // lane
9012     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9013     TmpInst.addOperand(Inst.getOperand(5));
9014     Inst = TmpInst;
9015     return true;
9016   }
9017 
9018   case ARM::VLD4LNdAsm_8:
9019   case ARM::VLD4LNdAsm_16:
9020   case ARM::VLD4LNdAsm_32:
9021   case ARM::VLD4LNqAsm_16:
9022   case ARM::VLD4LNqAsm_32: {
9023     MCInst TmpInst;
9024     // Shuffle the operands around so the lane index operand is in the
9025     // right place.
9026     unsigned Spacing;
9027     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9028     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9029     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9030                                             Spacing));
9031     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9032                                             Spacing * 2));
9033     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9034                                             Spacing * 3));
9035     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9036     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9037     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9038     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9039                                             Spacing));
9040     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9041                                             Spacing * 2));
9042     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9043                                             Spacing * 3));
9044     TmpInst.addOperand(Inst.getOperand(1)); // lane
9045     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9046     TmpInst.addOperand(Inst.getOperand(5));
9047     Inst = TmpInst;
9048     return true;
9049   }
9050 
9051   // VLD3DUP single 3-element structure to all lanes instructions.
9052   case ARM::VLD3DUPdAsm_8:
9053   case ARM::VLD3DUPdAsm_16:
9054   case ARM::VLD3DUPdAsm_32:
9055   case ARM::VLD3DUPqAsm_8:
9056   case ARM::VLD3DUPqAsm_16:
9057   case ARM::VLD3DUPqAsm_32: {
9058     MCInst TmpInst;
9059     unsigned Spacing;
9060     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9061     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9062     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9063                                             Spacing));
9064     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9065                                             Spacing * 2));
9066     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9067     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9068     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9069     TmpInst.addOperand(Inst.getOperand(4));
9070     Inst = TmpInst;
9071     return true;
9072   }
9073 
9074   case ARM::VLD3DUPdWB_fixed_Asm_8:
9075   case ARM::VLD3DUPdWB_fixed_Asm_16:
9076   case ARM::VLD3DUPdWB_fixed_Asm_32:
9077   case ARM::VLD3DUPqWB_fixed_Asm_8:
9078   case ARM::VLD3DUPqWB_fixed_Asm_16:
9079   case ARM::VLD3DUPqWB_fixed_Asm_32: {
9080     MCInst TmpInst;
9081     unsigned Spacing;
9082     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9083     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9084     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9085                                             Spacing));
9086     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9087                                             Spacing * 2));
9088     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9089     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9090     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9091     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9092     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9093     TmpInst.addOperand(Inst.getOperand(4));
9094     Inst = TmpInst;
9095     return true;
9096   }
9097 
9098   case ARM::VLD3DUPdWB_register_Asm_8:
9099   case ARM::VLD3DUPdWB_register_Asm_16:
9100   case ARM::VLD3DUPdWB_register_Asm_32:
9101   case ARM::VLD3DUPqWB_register_Asm_8:
9102   case ARM::VLD3DUPqWB_register_Asm_16:
9103   case ARM::VLD3DUPqWB_register_Asm_32: {
9104     MCInst TmpInst;
9105     unsigned Spacing;
9106     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9107     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9108     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9109                                             Spacing));
9110     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9111                                             Spacing * 2));
9112     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9113     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9114     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9115     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9116     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9117     TmpInst.addOperand(Inst.getOperand(5));
9118     Inst = TmpInst;
9119     return true;
9120   }
9121 
9122   // VLD3 multiple 3-element structure instructions.
9123   case ARM::VLD3dAsm_8:
9124   case ARM::VLD3dAsm_16:
9125   case ARM::VLD3dAsm_32:
9126   case ARM::VLD3qAsm_8:
9127   case ARM::VLD3qAsm_16:
9128   case ARM::VLD3qAsm_32: {
9129     MCInst TmpInst;
9130     unsigned Spacing;
9131     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9132     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9133     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9134                                             Spacing));
9135     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9136                                             Spacing * 2));
9137     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9138     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9139     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9140     TmpInst.addOperand(Inst.getOperand(4));
9141     Inst = TmpInst;
9142     return true;
9143   }
9144 
9145   case ARM::VLD3dWB_fixed_Asm_8:
9146   case ARM::VLD3dWB_fixed_Asm_16:
9147   case ARM::VLD3dWB_fixed_Asm_32:
9148   case ARM::VLD3qWB_fixed_Asm_8:
9149   case ARM::VLD3qWB_fixed_Asm_16:
9150   case ARM::VLD3qWB_fixed_Asm_32: {
9151     MCInst TmpInst;
9152     unsigned Spacing;
9153     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9154     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9155     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9156                                             Spacing));
9157     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9158                                             Spacing * 2));
9159     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9160     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9161     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9162     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9163     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9164     TmpInst.addOperand(Inst.getOperand(4));
9165     Inst = TmpInst;
9166     return true;
9167   }
9168 
9169   case ARM::VLD3dWB_register_Asm_8:
9170   case ARM::VLD3dWB_register_Asm_16:
9171   case ARM::VLD3dWB_register_Asm_32:
9172   case ARM::VLD3qWB_register_Asm_8:
9173   case ARM::VLD3qWB_register_Asm_16:
9174   case ARM::VLD3qWB_register_Asm_32: {
9175     MCInst TmpInst;
9176     unsigned Spacing;
9177     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9178     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9179     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9180                                             Spacing));
9181     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9182                                             Spacing * 2));
9183     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9184     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9185     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9186     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9187     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9188     TmpInst.addOperand(Inst.getOperand(5));
9189     Inst = TmpInst;
9190     return true;
9191   }
9192 
9193   // VLD4DUP single 3-element structure to all lanes instructions.
9194   case ARM::VLD4DUPdAsm_8:
9195   case ARM::VLD4DUPdAsm_16:
9196   case ARM::VLD4DUPdAsm_32:
9197   case ARM::VLD4DUPqAsm_8:
9198   case ARM::VLD4DUPqAsm_16:
9199   case ARM::VLD4DUPqAsm_32: {
9200     MCInst TmpInst;
9201     unsigned Spacing;
9202     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9203     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9204     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9205                                             Spacing));
9206     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9207                                             Spacing * 2));
9208     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9209                                             Spacing * 3));
9210     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9211     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9212     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9213     TmpInst.addOperand(Inst.getOperand(4));
9214     Inst = TmpInst;
9215     return true;
9216   }
9217 
9218   case ARM::VLD4DUPdWB_fixed_Asm_8:
9219   case ARM::VLD4DUPdWB_fixed_Asm_16:
9220   case ARM::VLD4DUPdWB_fixed_Asm_32:
9221   case ARM::VLD4DUPqWB_fixed_Asm_8:
9222   case ARM::VLD4DUPqWB_fixed_Asm_16:
9223   case ARM::VLD4DUPqWB_fixed_Asm_32: {
9224     MCInst TmpInst;
9225     unsigned Spacing;
9226     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9227     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9228     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9229                                             Spacing));
9230     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9231                                             Spacing * 2));
9232     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9233                                             Spacing * 3));
9234     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9235     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9236     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9237     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9238     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9239     TmpInst.addOperand(Inst.getOperand(4));
9240     Inst = TmpInst;
9241     return true;
9242   }
9243 
9244   case ARM::VLD4DUPdWB_register_Asm_8:
9245   case ARM::VLD4DUPdWB_register_Asm_16:
9246   case ARM::VLD4DUPdWB_register_Asm_32:
9247   case ARM::VLD4DUPqWB_register_Asm_8:
9248   case ARM::VLD4DUPqWB_register_Asm_16:
9249   case ARM::VLD4DUPqWB_register_Asm_32: {
9250     MCInst TmpInst;
9251     unsigned Spacing;
9252     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9253     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9254     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9255                                             Spacing));
9256     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9257                                             Spacing * 2));
9258     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9259                                             Spacing * 3));
9260     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9261     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9262     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9263     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9264     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9265     TmpInst.addOperand(Inst.getOperand(5));
9266     Inst = TmpInst;
9267     return true;
9268   }
9269 
9270   // VLD4 multiple 4-element structure instructions.
9271   case ARM::VLD4dAsm_8:
9272   case ARM::VLD4dAsm_16:
9273   case ARM::VLD4dAsm_32:
9274   case ARM::VLD4qAsm_8:
9275   case ARM::VLD4qAsm_16:
9276   case ARM::VLD4qAsm_32: {
9277     MCInst TmpInst;
9278     unsigned Spacing;
9279     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9280     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9281     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9282                                             Spacing));
9283     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9284                                             Spacing * 2));
9285     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9286                                             Spacing * 3));
9287     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9288     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9289     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9290     TmpInst.addOperand(Inst.getOperand(4));
9291     Inst = TmpInst;
9292     return true;
9293   }
9294 
9295   case ARM::VLD4dWB_fixed_Asm_8:
9296   case ARM::VLD4dWB_fixed_Asm_16:
9297   case ARM::VLD4dWB_fixed_Asm_32:
9298   case ARM::VLD4qWB_fixed_Asm_8:
9299   case ARM::VLD4qWB_fixed_Asm_16:
9300   case ARM::VLD4qWB_fixed_Asm_32: {
9301     MCInst TmpInst;
9302     unsigned Spacing;
9303     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9304     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9305     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9306                                             Spacing));
9307     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9308                                             Spacing * 2));
9309     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9310                                             Spacing * 3));
9311     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9312     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9313     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9314     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9315     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9316     TmpInst.addOperand(Inst.getOperand(4));
9317     Inst = TmpInst;
9318     return true;
9319   }
9320 
9321   case ARM::VLD4dWB_register_Asm_8:
9322   case ARM::VLD4dWB_register_Asm_16:
9323   case ARM::VLD4dWB_register_Asm_32:
9324   case ARM::VLD4qWB_register_Asm_8:
9325   case ARM::VLD4qWB_register_Asm_16:
9326   case ARM::VLD4qWB_register_Asm_32: {
9327     MCInst TmpInst;
9328     unsigned Spacing;
9329     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9330     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9331     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9332                                             Spacing));
9333     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9334                                             Spacing * 2));
9335     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9336                                             Spacing * 3));
9337     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9338     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9339     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9340     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9341     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9342     TmpInst.addOperand(Inst.getOperand(5));
9343     Inst = TmpInst;
9344     return true;
9345   }
9346 
9347   // VST3 multiple 3-element structure instructions.
9348   case ARM::VST3dAsm_8:
9349   case ARM::VST3dAsm_16:
9350   case ARM::VST3dAsm_32:
9351   case ARM::VST3qAsm_8:
9352   case ARM::VST3qAsm_16:
9353   case ARM::VST3qAsm_32: {
9354     MCInst TmpInst;
9355     unsigned Spacing;
9356     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9357     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9358     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9359     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9360     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9361                                             Spacing));
9362     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9363                                             Spacing * 2));
9364     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9365     TmpInst.addOperand(Inst.getOperand(4));
9366     Inst = TmpInst;
9367     return true;
9368   }
9369 
9370   case ARM::VST3dWB_fixed_Asm_8:
9371   case ARM::VST3dWB_fixed_Asm_16:
9372   case ARM::VST3dWB_fixed_Asm_32:
9373   case ARM::VST3qWB_fixed_Asm_8:
9374   case ARM::VST3qWB_fixed_Asm_16:
9375   case ARM::VST3qWB_fixed_Asm_32: {
9376     MCInst TmpInst;
9377     unsigned Spacing;
9378     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9379     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9380     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9381     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9382     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9383     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9384     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9385                                             Spacing));
9386     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9387                                             Spacing * 2));
9388     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9389     TmpInst.addOperand(Inst.getOperand(4));
9390     Inst = TmpInst;
9391     return true;
9392   }
9393 
9394   case ARM::VST3dWB_register_Asm_8:
9395   case ARM::VST3dWB_register_Asm_16:
9396   case ARM::VST3dWB_register_Asm_32:
9397   case ARM::VST3qWB_register_Asm_8:
9398   case ARM::VST3qWB_register_Asm_16:
9399   case ARM::VST3qWB_register_Asm_32: {
9400     MCInst TmpInst;
9401     unsigned Spacing;
9402     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9403     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9404     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9405     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9406     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9407     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9408     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9409                                             Spacing));
9410     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9411                                             Spacing * 2));
9412     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9413     TmpInst.addOperand(Inst.getOperand(5));
9414     Inst = TmpInst;
9415     return true;
9416   }
9417 
9418   // VST4 multiple 3-element structure instructions.
9419   case ARM::VST4dAsm_8:
9420   case ARM::VST4dAsm_16:
9421   case ARM::VST4dAsm_32:
9422   case ARM::VST4qAsm_8:
9423   case ARM::VST4qAsm_16:
9424   case ARM::VST4qAsm_32: {
9425     MCInst TmpInst;
9426     unsigned Spacing;
9427     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9428     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9429     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9430     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9431     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9432                                             Spacing));
9433     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9434                                             Spacing * 2));
9435     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9436                                             Spacing * 3));
9437     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9438     TmpInst.addOperand(Inst.getOperand(4));
9439     Inst = TmpInst;
9440     return true;
9441   }
9442 
9443   case ARM::VST4dWB_fixed_Asm_8:
9444   case ARM::VST4dWB_fixed_Asm_16:
9445   case ARM::VST4dWB_fixed_Asm_32:
9446   case ARM::VST4qWB_fixed_Asm_8:
9447   case ARM::VST4qWB_fixed_Asm_16:
9448   case ARM::VST4qWB_fixed_Asm_32: {
9449     MCInst TmpInst;
9450     unsigned Spacing;
9451     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9452     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9453     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9454     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9455     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9456     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9457     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9458                                             Spacing));
9459     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9460                                             Spacing * 2));
9461     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9462                                             Spacing * 3));
9463     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9464     TmpInst.addOperand(Inst.getOperand(4));
9465     Inst = TmpInst;
9466     return true;
9467   }
9468 
9469   case ARM::VST4dWB_register_Asm_8:
9470   case ARM::VST4dWB_register_Asm_16:
9471   case ARM::VST4dWB_register_Asm_32:
9472   case ARM::VST4qWB_register_Asm_8:
9473   case ARM::VST4qWB_register_Asm_16:
9474   case ARM::VST4qWB_register_Asm_32: {
9475     MCInst TmpInst;
9476     unsigned Spacing;
9477     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9478     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9479     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9480     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9481     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9482     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9483     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9484                                             Spacing));
9485     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9486                                             Spacing * 2));
9487     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9488                                             Spacing * 3));
9489     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9490     TmpInst.addOperand(Inst.getOperand(5));
9491     Inst = TmpInst;
9492     return true;
9493   }
9494 
9495   // Handle encoding choice for the shift-immediate instructions.
9496   case ARM::t2LSLri:
9497   case ARM::t2LSRri:
9498   case ARM::t2ASRri:
9499     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9500         isARMLowRegister(Inst.getOperand(1).getReg()) &&
9501         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
9502         !HasWideQualifier) {
9503       unsigned NewOpc;
9504       switch (Inst.getOpcode()) {
9505       default: llvm_unreachable("unexpected opcode");
9506       case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
9507       case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
9508       case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
9509       }
9510       // The Thumb1 operands aren't in the same order. Awesome, eh?
9511       MCInst TmpInst;
9512       TmpInst.setOpcode(NewOpc);
9513       TmpInst.addOperand(Inst.getOperand(0));
9514       TmpInst.addOperand(Inst.getOperand(5));
9515       TmpInst.addOperand(Inst.getOperand(1));
9516       TmpInst.addOperand(Inst.getOperand(2));
9517       TmpInst.addOperand(Inst.getOperand(3));
9518       TmpInst.addOperand(Inst.getOperand(4));
9519       Inst = TmpInst;
9520       return true;
9521     }
9522     return false;
9523 
9524   // Handle the Thumb2 mode MOV complex aliases.
9525   case ARM::t2MOVsr:
9526   case ARM::t2MOVSsr: {
9527     // Which instruction to expand to depends on the CCOut operand and
9528     // whether we're in an IT block if the register operands are low
9529     // registers.
9530     bool isNarrow = false;
9531     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9532         isARMLowRegister(Inst.getOperand(1).getReg()) &&
9533         isARMLowRegister(Inst.getOperand(2).getReg()) &&
9534         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
9535         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) &&
9536         !HasWideQualifier)
9537       isNarrow = true;
9538     MCInst TmpInst;
9539     unsigned newOpc;
9540     switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
9541     default: llvm_unreachable("unexpected opcode!");
9542     case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
9543     case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
9544     case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
9545     case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
9546     }
9547     TmpInst.setOpcode(newOpc);
9548     TmpInst.addOperand(Inst.getOperand(0)); // Rd
9549     if (isNarrow)
9550       TmpInst.addOperand(MCOperand::createReg(
9551           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
9552     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9553     TmpInst.addOperand(Inst.getOperand(2)); // Rm
9554     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9555     TmpInst.addOperand(Inst.getOperand(5));
9556     if (!isNarrow)
9557       TmpInst.addOperand(MCOperand::createReg(
9558           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
9559     Inst = TmpInst;
9560     return true;
9561   }
9562   case ARM::t2MOVsi:
9563   case ARM::t2MOVSsi: {
9564     // Which instruction to expand to depends on the CCOut operand and
9565     // whether we're in an IT block if the register operands are low
9566     // registers.
9567     bool isNarrow = false;
9568     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9569         isARMLowRegister(Inst.getOperand(1).getReg()) &&
9570         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) &&
9571         !HasWideQualifier)
9572       isNarrow = true;
9573     MCInst TmpInst;
9574     unsigned newOpc;
9575     unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
9576     unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
9577     bool isMov = false;
9578     // MOV rd, rm, LSL #0 is actually a MOV instruction
9579     if (Shift == ARM_AM::lsl && Amount == 0) {
9580       isMov = true;
9581       // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of
9582       // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is
9583       // unpredictable in an IT block so the 32-bit encoding T3 has to be used
9584       // instead.
9585       if (inITBlock()) {
9586         isNarrow = false;
9587       }
9588       newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr;
9589     } else {
9590       switch(Shift) {
9591       default: llvm_unreachable("unexpected opcode!");
9592       case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
9593       case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
9594       case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
9595       case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
9596       case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
9597       }
9598     }
9599     if (Amount == 32) Amount = 0;
9600     TmpInst.setOpcode(newOpc);
9601     TmpInst.addOperand(Inst.getOperand(0)); // Rd
9602     if (isNarrow && !isMov)
9603       TmpInst.addOperand(MCOperand::createReg(
9604           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
9605     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9606     if (newOpc != ARM::t2RRX && !isMov)
9607       TmpInst.addOperand(MCOperand::createImm(Amount));
9608     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9609     TmpInst.addOperand(Inst.getOperand(4));
9610     if (!isNarrow)
9611       TmpInst.addOperand(MCOperand::createReg(
9612           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
9613     Inst = TmpInst;
9614     return true;
9615   }
9616   // Handle the ARM mode MOV complex aliases.
9617   case ARM::ASRr:
9618   case ARM::LSRr:
9619   case ARM::LSLr:
9620   case ARM::RORr: {
9621     ARM_AM::ShiftOpc ShiftTy;
9622     switch(Inst.getOpcode()) {
9623     default: llvm_unreachable("unexpected opcode!");
9624     case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
9625     case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
9626     case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
9627     case ARM::RORr: ShiftTy = ARM_AM::ror; break;
9628     }
9629     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
9630     MCInst TmpInst;
9631     TmpInst.setOpcode(ARM::MOVsr);
9632     TmpInst.addOperand(Inst.getOperand(0)); // Rd
9633     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9634     TmpInst.addOperand(Inst.getOperand(2)); // Rm
9635     TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
9636     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9637     TmpInst.addOperand(Inst.getOperand(4));
9638     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
9639     Inst = TmpInst;
9640     return true;
9641   }
9642   case ARM::ASRi:
9643   case ARM::LSRi:
9644   case ARM::LSLi:
9645   case ARM::RORi: {
9646     ARM_AM::ShiftOpc ShiftTy;
9647     switch(Inst.getOpcode()) {
9648     default: llvm_unreachable("unexpected opcode!");
9649     case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
9650     case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
9651     case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
9652     case ARM::RORi: ShiftTy = ARM_AM::ror; break;
9653     }
9654     // A shift by zero is a plain MOVr, not a MOVsi.
9655     unsigned Amt = Inst.getOperand(2).getImm();
9656     unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
9657     // A shift by 32 should be encoded as 0 when permitted
9658     if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
9659       Amt = 0;
9660     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
9661     MCInst TmpInst;
9662     TmpInst.setOpcode(Opc);
9663     TmpInst.addOperand(Inst.getOperand(0)); // Rd
9664     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9665     if (Opc == ARM::MOVsi)
9666       TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
9667     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9668     TmpInst.addOperand(Inst.getOperand(4));
9669     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
9670     Inst = TmpInst;
9671     return true;
9672   }
9673   case ARM::RRXi: {
9674     unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
9675     MCInst TmpInst;
9676     TmpInst.setOpcode(ARM::MOVsi);
9677     TmpInst.addOperand(Inst.getOperand(0)); // Rd
9678     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9679     TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
9680     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
9681     TmpInst.addOperand(Inst.getOperand(3));
9682     TmpInst.addOperand(Inst.getOperand(4)); // cc_out
9683     Inst = TmpInst;
9684     return true;
9685   }
9686   case ARM::t2LDMIA_UPD: {
9687     // If this is a load of a single register, then we should use
9688     // a post-indexed LDR instruction instead, per the ARM ARM.
9689     if (Inst.getNumOperands() != 5)
9690       return false;
9691     MCInst TmpInst;
9692     TmpInst.setOpcode(ARM::t2LDR_POST);
9693     TmpInst.addOperand(Inst.getOperand(4)); // Rt
9694     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
9695     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9696     TmpInst.addOperand(MCOperand::createImm(4));
9697     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
9698     TmpInst.addOperand(Inst.getOperand(3));
9699     Inst = TmpInst;
9700     return true;
9701   }
9702   case ARM::t2STMDB_UPD: {
9703     // If this is a store of a single register, then we should use
9704     // a pre-indexed STR instruction instead, per the ARM ARM.
9705     if (Inst.getNumOperands() != 5)
9706       return false;
9707     MCInst TmpInst;
9708     TmpInst.setOpcode(ARM::t2STR_PRE);
9709     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
9710     TmpInst.addOperand(Inst.getOperand(4)); // Rt
9711     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9712     TmpInst.addOperand(MCOperand::createImm(-4));
9713     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
9714     TmpInst.addOperand(Inst.getOperand(3));
9715     Inst = TmpInst;
9716     return true;
9717   }
9718   case ARM::LDMIA_UPD:
9719     // If this is a load of a single register via a 'pop', then we should use
9720     // a post-indexed LDR instruction instead, per the ARM ARM.
9721     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" &&
9722         Inst.getNumOperands() == 5) {
9723       MCInst TmpInst;
9724       TmpInst.setOpcode(ARM::LDR_POST_IMM);
9725       TmpInst.addOperand(Inst.getOperand(4)); // Rt
9726       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
9727       TmpInst.addOperand(Inst.getOperand(1)); // Rn
9728       TmpInst.addOperand(MCOperand::createReg(0));  // am2offset
9729       TmpInst.addOperand(MCOperand::createImm(4));
9730       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
9731       TmpInst.addOperand(Inst.getOperand(3));
9732       Inst = TmpInst;
9733       return true;
9734     }
9735     break;
9736   case ARM::STMDB_UPD:
9737     // If this is a store of a single register via a 'push', then we should use
9738     // a pre-indexed STR instruction instead, per the ARM ARM.
9739     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" &&
9740         Inst.getNumOperands() == 5) {
9741       MCInst TmpInst;
9742       TmpInst.setOpcode(ARM::STR_PRE_IMM);
9743       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
9744       TmpInst.addOperand(Inst.getOperand(4)); // Rt
9745       TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
9746       TmpInst.addOperand(MCOperand::createImm(-4));
9747       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
9748       TmpInst.addOperand(Inst.getOperand(3));
9749       Inst = TmpInst;
9750     }
9751     break;
9752   case ARM::t2ADDri12:
9753     // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
9754     // mnemonic was used (not "addw"), encoding T3 is preferred.
9755     if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" ||
9756         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
9757       break;
9758     Inst.setOpcode(ARM::t2ADDri);
9759     Inst.addOperand(MCOperand::createReg(0)); // cc_out
9760     break;
9761   case ARM::t2SUBri12:
9762     // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
9763     // mnemonic was used (not "subw"), encoding T3 is preferred.
9764     if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" ||
9765         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
9766       break;
9767     Inst.setOpcode(ARM::t2SUBri);
9768     Inst.addOperand(MCOperand::createReg(0)); // cc_out
9769     break;
9770   case ARM::tADDi8:
9771     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
9772     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
9773     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
9774     // to encoding T1 if <Rd> is omitted."
9775     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
9776       Inst.setOpcode(ARM::tADDi3);
9777       return true;
9778     }
9779     break;
9780   case ARM::tSUBi8:
9781     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
9782     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
9783     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
9784     // to encoding T1 if <Rd> is omitted."
9785     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
9786       Inst.setOpcode(ARM::tSUBi3);
9787       return true;
9788     }
9789     break;
9790   case ARM::t2ADDri:
9791   case ARM::t2SUBri: {
9792     // If the destination and first source operand are the same, and
9793     // the flags are compatible with the current IT status, use encoding T2
9794     // instead of T3. For compatibility with the system 'as'. Make sure the
9795     // wide encoding wasn't explicit.
9796     if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
9797         !isARMLowRegister(Inst.getOperand(0).getReg()) ||
9798         (Inst.getOperand(2).isImm() &&
9799          (unsigned)Inst.getOperand(2).getImm() > 255) ||
9800         Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) ||
9801         HasWideQualifier)
9802       break;
9803     MCInst TmpInst;
9804     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
9805                       ARM::tADDi8 : ARM::tSUBi8);
9806     TmpInst.addOperand(Inst.getOperand(0));
9807     TmpInst.addOperand(Inst.getOperand(5));
9808     TmpInst.addOperand(Inst.getOperand(0));
9809     TmpInst.addOperand(Inst.getOperand(2));
9810     TmpInst.addOperand(Inst.getOperand(3));
9811     TmpInst.addOperand(Inst.getOperand(4));
9812     Inst = TmpInst;
9813     return true;
9814   }
9815   case ARM::t2ADDrr: {
9816     // If the destination and first source operand are the same, and
9817     // there's no setting of the flags, use encoding T2 instead of T3.
9818     // Note that this is only for ADD, not SUB. This mirrors the system
9819     // 'as' behaviour.  Also take advantage of ADD being commutative.
9820     // Make sure the wide encoding wasn't explicit.
9821     bool Swap = false;
9822     auto DestReg = Inst.getOperand(0).getReg();
9823     bool Transform = DestReg == Inst.getOperand(1).getReg();
9824     if (!Transform && DestReg == Inst.getOperand(2).getReg()) {
9825       Transform = true;
9826       Swap = true;
9827     }
9828     if (!Transform ||
9829         Inst.getOperand(5).getReg() != 0 ||
9830         HasWideQualifier)
9831       break;
9832     MCInst TmpInst;
9833     TmpInst.setOpcode(ARM::tADDhirr);
9834     TmpInst.addOperand(Inst.getOperand(0));
9835     TmpInst.addOperand(Inst.getOperand(0));
9836     TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2));
9837     TmpInst.addOperand(Inst.getOperand(3));
9838     TmpInst.addOperand(Inst.getOperand(4));
9839     Inst = TmpInst;
9840     return true;
9841   }
9842   case ARM::tADDrSP:
9843     // If the non-SP source operand and the destination operand are not the
9844     // same, we need to use the 32-bit encoding if it's available.
9845     if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
9846       Inst.setOpcode(ARM::t2ADDrr);
9847       Inst.addOperand(MCOperand::createReg(0)); // cc_out
9848       return true;
9849     }
9850     break;
9851   case ARM::tB:
9852     // A Thumb conditional branch outside of an IT block is a tBcc.
9853     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
9854       Inst.setOpcode(ARM::tBcc);
9855       return true;
9856     }
9857     break;
9858   case ARM::t2B:
9859     // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
9860     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
9861       Inst.setOpcode(ARM::t2Bcc);
9862       return true;
9863     }
9864     break;
9865   case ARM::t2Bcc:
9866     // If the conditional is AL or we're in an IT block, we really want t2B.
9867     if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
9868       Inst.setOpcode(ARM::t2B);
9869       return true;
9870     }
9871     break;
9872   case ARM::tBcc:
9873     // If the conditional is AL, we really want tB.
9874     if (Inst.getOperand(1).getImm() == ARMCC::AL) {
9875       Inst.setOpcode(ARM::tB);
9876       return true;
9877     }
9878     break;
9879   case ARM::tLDMIA: {
9880     // If the register list contains any high registers, or if the writeback
9881     // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
9882     // instead if we're in Thumb2. Otherwise, this should have generated
9883     // an error in validateInstruction().
9884     unsigned Rn = Inst.getOperand(0).getReg();
9885     bool hasWritebackToken =
9886         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
9887          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
9888     bool listContainsBase;
9889     if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
9890         (!listContainsBase && !hasWritebackToken) ||
9891         (listContainsBase && hasWritebackToken)) {
9892       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
9893       assert(isThumbTwo());
9894       Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
9895       // If we're switching to the updating version, we need to insert
9896       // the writeback tied operand.
9897       if (hasWritebackToken)
9898         Inst.insert(Inst.begin(),
9899                     MCOperand::createReg(Inst.getOperand(0).getReg()));
9900       return true;
9901     }
9902     break;
9903   }
9904   case ARM::tSTMIA_UPD: {
9905     // If the register list contains any high registers, we need to use
9906     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
9907     // should have generated an error in validateInstruction().
9908     unsigned Rn = Inst.getOperand(0).getReg();
9909     bool listContainsBase;
9910     if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
9911       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
9912       assert(isThumbTwo());
9913       Inst.setOpcode(ARM::t2STMIA_UPD);
9914       return true;
9915     }
9916     break;
9917   }
9918   case ARM::tPOP: {
9919     bool listContainsBase;
9920     // If the register list contains any high registers, we need to use
9921     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
9922     // should have generated an error in validateInstruction().
9923     if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
9924       return false;
9925     assert(isThumbTwo());
9926     Inst.setOpcode(ARM::t2LDMIA_UPD);
9927     // Add the base register and writeback operands.
9928     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
9929     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
9930     return true;
9931   }
9932   case ARM::tPUSH: {
9933     bool listContainsBase;
9934     if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
9935       return false;
9936     assert(isThumbTwo());
9937     Inst.setOpcode(ARM::t2STMDB_UPD);
9938     // Add the base register and writeback operands.
9939     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
9940     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
9941     return true;
9942   }
9943   case ARM::t2MOVi:
9944     // If we can use the 16-bit encoding and the user didn't explicitly
9945     // request the 32-bit variant, transform it here.
9946     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9947         (Inst.getOperand(1).isImm() &&
9948          (unsigned)Inst.getOperand(1).getImm() <= 255) &&
9949         Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
9950         !HasWideQualifier) {
9951       // The operands aren't in the same order for tMOVi8...
9952       MCInst TmpInst;
9953       TmpInst.setOpcode(ARM::tMOVi8);
9954       TmpInst.addOperand(Inst.getOperand(0));
9955       TmpInst.addOperand(Inst.getOperand(4));
9956       TmpInst.addOperand(Inst.getOperand(1));
9957       TmpInst.addOperand(Inst.getOperand(2));
9958       TmpInst.addOperand(Inst.getOperand(3));
9959       Inst = TmpInst;
9960       return true;
9961     }
9962     break;
9963 
9964   case ARM::t2MOVr:
9965     // If we can use the 16-bit encoding and the user didn't explicitly
9966     // request the 32-bit variant, transform it here.
9967     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9968         isARMLowRegister(Inst.getOperand(1).getReg()) &&
9969         Inst.getOperand(2).getImm() == ARMCC::AL &&
9970         Inst.getOperand(4).getReg() == ARM::CPSR &&
9971         !HasWideQualifier) {
9972       // The operands aren't the same for tMOV[S]r... (no cc_out)
9973       MCInst TmpInst;
9974       TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
9975       TmpInst.addOperand(Inst.getOperand(0));
9976       TmpInst.addOperand(Inst.getOperand(1));
9977       TmpInst.addOperand(Inst.getOperand(2));
9978       TmpInst.addOperand(Inst.getOperand(3));
9979       Inst = TmpInst;
9980       return true;
9981     }
9982     break;
9983 
9984   case ARM::t2SXTH:
9985   case ARM::t2SXTB:
9986   case ARM::t2UXTH:
9987   case ARM::t2UXTB:
9988     // If we can use the 16-bit encoding and the user didn't explicitly
9989     // request the 32-bit variant, transform it here.
9990     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9991         isARMLowRegister(Inst.getOperand(1).getReg()) &&
9992         Inst.getOperand(2).getImm() == 0 &&
9993         !HasWideQualifier) {
9994       unsigned NewOpc;
9995       switch (Inst.getOpcode()) {
9996       default: llvm_unreachable("Illegal opcode!");
9997       case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
9998       case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
9999       case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
10000       case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
10001       }
10002       // The operands aren't the same for thumb1 (no rotate operand).
10003       MCInst TmpInst;
10004       TmpInst.setOpcode(NewOpc);
10005       TmpInst.addOperand(Inst.getOperand(0));
10006       TmpInst.addOperand(Inst.getOperand(1));
10007       TmpInst.addOperand(Inst.getOperand(3));
10008       TmpInst.addOperand(Inst.getOperand(4));
10009       Inst = TmpInst;
10010       return true;
10011     }
10012     break;
10013 
10014   case ARM::MOVsi: {
10015     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
10016     // rrx shifts and asr/lsr of #32 is encoded as 0
10017     if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
10018       return false;
10019     if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
10020       // Shifting by zero is accepted as a vanilla 'MOVr'
10021       MCInst TmpInst;
10022       TmpInst.setOpcode(ARM::MOVr);
10023       TmpInst.addOperand(Inst.getOperand(0));
10024       TmpInst.addOperand(Inst.getOperand(1));
10025       TmpInst.addOperand(Inst.getOperand(3));
10026       TmpInst.addOperand(Inst.getOperand(4));
10027       TmpInst.addOperand(Inst.getOperand(5));
10028       Inst = TmpInst;
10029       return true;
10030     }
10031     return false;
10032   }
10033   case ARM::ANDrsi:
10034   case ARM::ORRrsi:
10035   case ARM::EORrsi:
10036   case ARM::BICrsi:
10037   case ARM::SUBrsi:
10038   case ARM::ADDrsi: {
10039     unsigned newOpc;
10040     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
10041     if (SOpc == ARM_AM::rrx) return false;
10042     switch (Inst.getOpcode()) {
10043     default: llvm_unreachable("unexpected opcode!");
10044     case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
10045     case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
10046     case ARM::EORrsi: newOpc = ARM::EORrr; break;
10047     case ARM::BICrsi: newOpc = ARM::BICrr; break;
10048     case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
10049     case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
10050     }
10051     // If the shift is by zero, use the non-shifted instruction definition.
10052     // The exception is for right shifts, where 0 == 32
10053     if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
10054         !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
10055       MCInst TmpInst;
10056       TmpInst.setOpcode(newOpc);
10057       TmpInst.addOperand(Inst.getOperand(0));
10058       TmpInst.addOperand(Inst.getOperand(1));
10059       TmpInst.addOperand(Inst.getOperand(2));
10060       TmpInst.addOperand(Inst.getOperand(4));
10061       TmpInst.addOperand(Inst.getOperand(5));
10062       TmpInst.addOperand(Inst.getOperand(6));
10063       Inst = TmpInst;
10064       return true;
10065     }
10066     return false;
10067   }
10068   case ARM::ITasm:
10069   case ARM::t2IT: {
10070     // Set up the IT block state according to the IT instruction we just
10071     // matched.
10072     assert(!inITBlock() && "nested IT blocks?!");
10073     startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()),
10074                          Inst.getOperand(1).getImm());
10075     break;
10076   }
10077   case ARM::t2LSLrr:
10078   case ARM::t2LSRrr:
10079   case ARM::t2ASRrr:
10080   case ARM::t2SBCrr:
10081   case ARM::t2RORrr:
10082   case ARM::t2BICrr:
10083     // Assemblers should use the narrow encodings of these instructions when permissible.
10084     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
10085          isARMLowRegister(Inst.getOperand(2).getReg())) &&
10086         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
10087         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10088         !HasWideQualifier) {
10089       unsigned NewOpc;
10090       switch (Inst.getOpcode()) {
10091         default: llvm_unreachable("unexpected opcode");
10092         case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
10093         case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
10094         case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
10095         case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
10096         case ARM::t2RORrr: NewOpc = ARM::tROR; break;
10097         case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
10098       }
10099       MCInst TmpInst;
10100       TmpInst.setOpcode(NewOpc);
10101       TmpInst.addOperand(Inst.getOperand(0));
10102       TmpInst.addOperand(Inst.getOperand(5));
10103       TmpInst.addOperand(Inst.getOperand(1));
10104       TmpInst.addOperand(Inst.getOperand(2));
10105       TmpInst.addOperand(Inst.getOperand(3));
10106       TmpInst.addOperand(Inst.getOperand(4));
10107       Inst = TmpInst;
10108       return true;
10109     }
10110     return false;
10111 
10112   case ARM::t2ANDrr:
10113   case ARM::t2EORrr:
10114   case ARM::t2ADCrr:
10115   case ARM::t2ORRrr:
10116     // Assemblers should use the narrow encodings of these instructions when permissible.
10117     // These instructions are special in that they are commutable, so shorter encodings
10118     // are available more often.
10119     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
10120          isARMLowRegister(Inst.getOperand(2).getReg())) &&
10121         (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
10122          Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
10123         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10124         !HasWideQualifier) {
10125       unsigned NewOpc;
10126       switch (Inst.getOpcode()) {
10127         default: llvm_unreachable("unexpected opcode");
10128         case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
10129         case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
10130         case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
10131         case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
10132       }
10133       MCInst TmpInst;
10134       TmpInst.setOpcode(NewOpc);
10135       TmpInst.addOperand(Inst.getOperand(0));
10136       TmpInst.addOperand(Inst.getOperand(5));
10137       if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
10138         TmpInst.addOperand(Inst.getOperand(1));
10139         TmpInst.addOperand(Inst.getOperand(2));
10140       } else {
10141         TmpInst.addOperand(Inst.getOperand(2));
10142         TmpInst.addOperand(Inst.getOperand(1));
10143       }
10144       TmpInst.addOperand(Inst.getOperand(3));
10145       TmpInst.addOperand(Inst.getOperand(4));
10146       Inst = TmpInst;
10147       return true;
10148     }
10149     return false;
10150   case ARM::MVE_VPST:
10151   case ARM::MVE_VPTv16i8:
10152   case ARM::MVE_VPTv8i16:
10153   case ARM::MVE_VPTv4i32:
10154   case ARM::MVE_VPTv16u8:
10155   case ARM::MVE_VPTv8u16:
10156   case ARM::MVE_VPTv4u32:
10157   case ARM::MVE_VPTv16s8:
10158   case ARM::MVE_VPTv8s16:
10159   case ARM::MVE_VPTv4s32:
10160   case ARM::MVE_VPTv4f32:
10161   case ARM::MVE_VPTv8f16:
10162   case ARM::MVE_VPTv16i8r:
10163   case ARM::MVE_VPTv8i16r:
10164   case ARM::MVE_VPTv4i32r:
10165   case ARM::MVE_VPTv16u8r:
10166   case ARM::MVE_VPTv8u16r:
10167   case ARM::MVE_VPTv4u32r:
10168   case ARM::MVE_VPTv16s8r:
10169   case ARM::MVE_VPTv8s16r:
10170   case ARM::MVE_VPTv4s32r:
10171   case ARM::MVE_VPTv4f32r:
10172   case ARM::MVE_VPTv8f16r: {
10173     assert(!inVPTBlock() && "Nested VPT blocks are not allowed");
10174     MCOperand &MO = Inst.getOperand(0);
10175     VPTState.Mask = MO.getImm();
10176     VPTState.CurPosition = 0;
10177     break;
10178   }
10179   }
10180   return false;
10181 }
10182 
10183 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
10184   // 16-bit thumb arithmetic instructions either require or preclude the 'S'
10185   // suffix depending on whether they're in an IT block or not.
10186   unsigned Opc = Inst.getOpcode();
10187   const MCInstrDesc &MCID = MII.get(Opc);
10188   if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
10189     assert(MCID.hasOptionalDef() &&
10190            "optionally flag setting instruction missing optional def operand");
10191     assert(MCID.NumOperands == Inst.getNumOperands() &&
10192            "operand count mismatch!");
10193     // Find the optional-def operand (cc_out).
10194     unsigned OpNo;
10195     for (OpNo = 0;
10196          !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
10197          ++OpNo)
10198       ;
10199     // If we're parsing Thumb1, reject it completely.
10200     if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
10201       return Match_RequiresFlagSetting;
10202     // If we're parsing Thumb2, which form is legal depends on whether we're
10203     // in an IT block.
10204     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
10205         !inITBlock())
10206       return Match_RequiresITBlock;
10207     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
10208         inITBlock())
10209       return Match_RequiresNotITBlock;
10210     // LSL with zero immediate is not allowed in an IT block
10211     if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock())
10212       return Match_RequiresNotITBlock;
10213   } else if (isThumbOne()) {
10214     // Some high-register supporting Thumb1 encodings only allow both registers
10215     // to be from r0-r7 when in Thumb2.
10216     if (Opc == ARM::tADDhirr && !hasV6MOps() &&
10217         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10218         isARMLowRegister(Inst.getOperand(2).getReg()))
10219       return Match_RequiresThumb2;
10220     // Others only require ARMv6 or later.
10221     else if (Opc == ARM::tMOVr && !hasV6Ops() &&
10222              isARMLowRegister(Inst.getOperand(0).getReg()) &&
10223              isARMLowRegister(Inst.getOperand(1).getReg()))
10224       return Match_RequiresV6;
10225   }
10226 
10227   // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex
10228   // than the loop below can handle, so it uses the GPRnopc register class and
10229   // we do SP handling here.
10230   if (Opc == ARM::t2MOVr && !hasV8Ops())
10231   {
10232     // SP as both source and destination is not allowed
10233     if (Inst.getOperand(0).getReg() == ARM::SP &&
10234         Inst.getOperand(1).getReg() == ARM::SP)
10235       return Match_RequiresV8;
10236     // When flags-setting SP as either source or destination is not allowed
10237     if (Inst.getOperand(4).getReg() == ARM::CPSR &&
10238         (Inst.getOperand(0).getReg() == ARM::SP ||
10239          Inst.getOperand(1).getReg() == ARM::SP))
10240       return Match_RequiresV8;
10241   }
10242 
10243   switch (Inst.getOpcode()) {
10244   case ARM::VMRS:
10245   case ARM::VMSR:
10246   case ARM::VMRS_FPCXTS:
10247   case ARM::VMRS_FPCXTNS:
10248   case ARM::VMSR_FPCXTS:
10249   case ARM::VMSR_FPCXTNS:
10250   case ARM::VMRS_FPSCR_NZCVQC:
10251   case ARM::VMSR_FPSCR_NZCVQC:
10252   case ARM::FMSTAT:
10253   case ARM::VMRS_VPR:
10254   case ARM::VMRS_P0:
10255   case ARM::VMSR_VPR:
10256   case ARM::VMSR_P0:
10257     // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of
10258     // ARMv8-A.
10259     if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP &&
10260         (isThumb() && !hasV8Ops()))
10261       return Match_InvalidOperand;
10262     break;
10263   default:
10264     break;
10265   }
10266 
10267   for (unsigned I = 0; I < MCID.NumOperands; ++I)
10268     if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) {
10269       // rGPRRegClass excludes PC, and also excluded SP before ARMv8
10270       const auto &Op = Inst.getOperand(I);
10271       if (!Op.isReg()) {
10272         // This can happen in awkward cases with tied operands, e.g. a
10273         // writeback load/store with a complex addressing mode in
10274         // which there's an output operand corresponding to the
10275         // updated written-back base register: the Tablegen-generated
10276         // AsmMatcher will have written a placeholder operand to that
10277         // slot in the form of an immediate 0, because it can't
10278         // generate the register part of the complex addressing-mode
10279         // operand ahead of time.
10280         continue;
10281       }
10282 
10283       unsigned Reg = Op.getReg();
10284       if ((Reg == ARM::SP) && !hasV8Ops())
10285         return Match_RequiresV8;
10286       else if (Reg == ARM::PC)
10287         return Match_InvalidOperand;
10288     }
10289 
10290   return Match_Success;
10291 }
10292 
10293 namespace llvm {
10294 
10295 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) {
10296   return true; // In an assembly source, no need to second-guess
10297 }
10298 
10299 } // end namespace llvm
10300 
10301 // Returns true if Inst is unpredictable if it is in and IT block, but is not
10302 // the last instruction in the block.
10303 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const {
10304   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10305 
10306   // All branch & call instructions terminate IT blocks with the exception of
10307   // SVC.
10308   if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) ||
10309       MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch())
10310     return true;
10311 
10312   // Any arithmetic instruction which writes to the PC also terminates the IT
10313   // block.
10314   if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI))
10315     return true;
10316 
10317   return false;
10318 }
10319 
10320 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst,
10321                                           SmallVectorImpl<NearMissInfo> &NearMisses,
10322                                           bool MatchingInlineAsm,
10323                                           bool &EmitInITBlock,
10324                                           MCStreamer &Out) {
10325   // If we can't use an implicit IT block here, just match as normal.
10326   if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb())
10327     return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
10328 
10329   // Try to match the instruction in an extension of the current IT block (if
10330   // there is one).
10331   if (inImplicitITBlock()) {
10332     extendImplicitITBlock(ITState.Cond);
10333     if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
10334             Match_Success) {
10335       // The match succeded, but we still have to check that the instruction is
10336       // valid in this implicit IT block.
10337       const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10338       if (MCID.isPredicable()) {
10339         ARMCC::CondCodes InstCond =
10340             (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10341                 .getImm();
10342         ARMCC::CondCodes ITCond = currentITCond();
10343         if (InstCond == ITCond) {
10344           EmitInITBlock = true;
10345           return Match_Success;
10346         } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) {
10347           invertCurrentITCondition();
10348           EmitInITBlock = true;
10349           return Match_Success;
10350         }
10351       }
10352     }
10353     rewindImplicitITPosition();
10354   }
10355 
10356   // Finish the current IT block, and try to match outside any IT block.
10357   flushPendingInstructions(Out);
10358   unsigned PlainMatchResult =
10359       MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
10360   if (PlainMatchResult == Match_Success) {
10361     const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10362     if (MCID.isPredicable()) {
10363       ARMCC::CondCodes InstCond =
10364           (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10365               .getImm();
10366       // Some forms of the branch instruction have their own condition code
10367       // fields, so can be conditionally executed without an IT block.
10368       if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) {
10369         EmitInITBlock = false;
10370         return Match_Success;
10371       }
10372       if (InstCond == ARMCC::AL) {
10373         EmitInITBlock = false;
10374         return Match_Success;
10375       }
10376     } else {
10377       EmitInITBlock = false;
10378       return Match_Success;
10379     }
10380   }
10381 
10382   // Try to match in a new IT block. The matcher doesn't check the actual
10383   // condition, so we create an IT block with a dummy condition, and fix it up
10384   // once we know the actual condition.
10385   startImplicitITBlock();
10386   if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
10387       Match_Success) {
10388     const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10389     if (MCID.isPredicable()) {
10390       ITState.Cond =
10391           (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10392               .getImm();
10393       EmitInITBlock = true;
10394       return Match_Success;
10395     }
10396   }
10397   discardImplicitITBlock();
10398 
10399   // If none of these succeed, return the error we got when trying to match
10400   // outside any IT blocks.
10401   EmitInITBlock = false;
10402   return PlainMatchResult;
10403 }
10404 
10405 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,
10406                                          unsigned VariantID = 0);
10407 
10408 static const char *getSubtargetFeatureName(uint64_t Val);
10409 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
10410                                            OperandVector &Operands,
10411                                            MCStreamer &Out, uint64_t &ErrorInfo,
10412                                            bool MatchingInlineAsm) {
10413   MCInst Inst;
10414   unsigned MatchResult;
10415   bool PendConditionalInstruction = false;
10416 
10417   SmallVector<NearMissInfo, 4> NearMisses;
10418   MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm,
10419                                  PendConditionalInstruction, Out);
10420 
10421   switch (MatchResult) {
10422   case Match_Success:
10423     LLVM_DEBUG(dbgs() << "Parsed as: ";
10424                Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
10425                dbgs() << "\n");
10426 
10427     // Context sensitive operand constraints aren't handled by the matcher,
10428     // so check them here.
10429     if (validateInstruction(Inst, Operands)) {
10430       // Still progress the IT block, otherwise one wrong condition causes
10431       // nasty cascading errors.
10432       forwardITPosition();
10433       forwardVPTPosition();
10434       return true;
10435     }
10436 
10437     { // processInstruction() updates inITBlock state, we need to save it away
10438       bool wasInITBlock = inITBlock();
10439 
10440       // Some instructions need post-processing to, for example, tweak which
10441       // encoding is selected. Loop on it while changes happen so the
10442       // individual transformations can chain off each other. E.g.,
10443       // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
10444       while (processInstruction(Inst, Operands, Out))
10445         LLVM_DEBUG(dbgs() << "Changed to: ";
10446                    Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
10447                    dbgs() << "\n");
10448 
10449       // Only after the instruction is fully processed, we can validate it
10450       if (wasInITBlock && hasV8Ops() && isThumb() &&
10451           !isV8EligibleForIT(&Inst)) {
10452         Warning(IDLoc, "deprecated instruction in IT block");
10453       }
10454     }
10455 
10456     // Only move forward at the very end so that everything in validate
10457     // and process gets a consistent answer about whether we're in an IT
10458     // block.
10459     forwardITPosition();
10460     forwardVPTPosition();
10461 
10462     // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
10463     // doesn't actually encode.
10464     if (Inst.getOpcode() == ARM::ITasm)
10465       return false;
10466 
10467     Inst.setLoc(IDLoc);
10468     if (PendConditionalInstruction) {
10469       PendingConditionalInsts.push_back(Inst);
10470       if (isITBlockFull() || isITBlockTerminator(Inst))
10471         flushPendingInstructions(Out);
10472     } else {
10473       Out.EmitInstruction(Inst, getSTI());
10474     }
10475     return false;
10476   case Match_NearMisses:
10477     ReportNearMisses(NearMisses, IDLoc, Operands);
10478     return true;
10479   case Match_MnemonicFail: {
10480     FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
10481     std::string Suggestion = ARMMnemonicSpellCheck(
10482       ((ARMOperand &)*Operands[0]).getToken(), FBS);
10483     return Error(IDLoc, "invalid instruction" + Suggestion,
10484                  ((ARMOperand &)*Operands[0]).getLocRange());
10485   }
10486   }
10487 
10488   llvm_unreachable("Implement any new match types added!");
10489 }
10490 
10491 /// parseDirective parses the arm specific directives
10492 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
10493   const MCObjectFileInfo::Environment Format =
10494     getContext().getObjectFileInfo()->getObjectFileType();
10495   bool IsMachO = Format == MCObjectFileInfo::IsMachO;
10496   bool IsCOFF = Format == MCObjectFileInfo::IsCOFF;
10497 
10498   StringRef IDVal = DirectiveID.getIdentifier();
10499   if (IDVal == ".word")
10500     parseLiteralValues(4, DirectiveID.getLoc());
10501   else if (IDVal == ".short" || IDVal == ".hword")
10502     parseLiteralValues(2, DirectiveID.getLoc());
10503   else if (IDVal == ".thumb")
10504     parseDirectiveThumb(DirectiveID.getLoc());
10505   else if (IDVal == ".arm")
10506     parseDirectiveARM(DirectiveID.getLoc());
10507   else if (IDVal == ".thumb_func")
10508     parseDirectiveThumbFunc(DirectiveID.getLoc());
10509   else if (IDVal == ".code")
10510     parseDirectiveCode(DirectiveID.getLoc());
10511   else if (IDVal == ".syntax")
10512     parseDirectiveSyntax(DirectiveID.getLoc());
10513   else if (IDVal == ".unreq")
10514     parseDirectiveUnreq(DirectiveID.getLoc());
10515   else if (IDVal == ".fnend")
10516     parseDirectiveFnEnd(DirectiveID.getLoc());
10517   else if (IDVal == ".cantunwind")
10518     parseDirectiveCantUnwind(DirectiveID.getLoc());
10519   else if (IDVal == ".personality")
10520     parseDirectivePersonality(DirectiveID.getLoc());
10521   else if (IDVal == ".handlerdata")
10522     parseDirectiveHandlerData(DirectiveID.getLoc());
10523   else if (IDVal == ".setfp")
10524     parseDirectiveSetFP(DirectiveID.getLoc());
10525   else if (IDVal == ".pad")
10526     parseDirectivePad(DirectiveID.getLoc());
10527   else if (IDVal == ".save")
10528     parseDirectiveRegSave(DirectiveID.getLoc(), false);
10529   else if (IDVal == ".vsave")
10530     parseDirectiveRegSave(DirectiveID.getLoc(), true);
10531   else if (IDVal == ".ltorg" || IDVal == ".pool")
10532     parseDirectiveLtorg(DirectiveID.getLoc());
10533   else if (IDVal == ".even")
10534     parseDirectiveEven(DirectiveID.getLoc());
10535   else if (IDVal == ".personalityindex")
10536     parseDirectivePersonalityIndex(DirectiveID.getLoc());
10537   else if (IDVal == ".unwind_raw")
10538     parseDirectiveUnwindRaw(DirectiveID.getLoc());
10539   else if (IDVal == ".movsp")
10540     parseDirectiveMovSP(DirectiveID.getLoc());
10541   else if (IDVal == ".arch_extension")
10542     parseDirectiveArchExtension(DirectiveID.getLoc());
10543   else if (IDVal == ".align")
10544     return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure.
10545   else if (IDVal == ".thumb_set")
10546     parseDirectiveThumbSet(DirectiveID.getLoc());
10547   else if (IDVal == ".inst")
10548     parseDirectiveInst(DirectiveID.getLoc());
10549   else if (IDVal == ".inst.n")
10550     parseDirectiveInst(DirectiveID.getLoc(), 'n');
10551   else if (IDVal == ".inst.w")
10552     parseDirectiveInst(DirectiveID.getLoc(), 'w');
10553   else if (!IsMachO && !IsCOFF) {
10554     if (IDVal == ".arch")
10555       parseDirectiveArch(DirectiveID.getLoc());
10556     else if (IDVal == ".cpu")
10557       parseDirectiveCPU(DirectiveID.getLoc());
10558     else if (IDVal == ".eabi_attribute")
10559       parseDirectiveEabiAttr(DirectiveID.getLoc());
10560     else if (IDVal == ".fpu")
10561       parseDirectiveFPU(DirectiveID.getLoc());
10562     else if (IDVal == ".fnstart")
10563       parseDirectiveFnStart(DirectiveID.getLoc());
10564     else if (IDVal == ".object_arch")
10565       parseDirectiveObjectArch(DirectiveID.getLoc());
10566     else if (IDVal == ".tlsdescseq")
10567       parseDirectiveTLSDescSeq(DirectiveID.getLoc());
10568     else
10569       return true;
10570   } else
10571     return true;
10572   return false;
10573 }
10574 
10575 /// parseLiteralValues
10576 ///  ::= .hword expression [, expression]*
10577 ///  ::= .short expression [, expression]*
10578 ///  ::= .word expression [, expression]*
10579 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
10580   auto parseOne = [&]() -> bool {
10581     const MCExpr *Value;
10582     if (getParser().parseExpression(Value))
10583       return true;
10584     getParser().getStreamer().EmitValue(Value, Size, L);
10585     return false;
10586   };
10587   return (parseMany(parseOne));
10588 }
10589 
10590 /// parseDirectiveThumb
10591 ///  ::= .thumb
10592 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
10593   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
10594       check(!hasThumb(), L, "target does not support Thumb mode"))
10595     return true;
10596 
10597   if (!isThumb())
10598     SwitchMode();
10599 
10600   getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
10601   return false;
10602 }
10603 
10604 /// parseDirectiveARM
10605 ///  ::= .arm
10606 bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
10607   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
10608       check(!hasARM(), L, "target does not support ARM mode"))
10609     return true;
10610 
10611   if (isThumb())
10612     SwitchMode();
10613   getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
10614   return false;
10615 }
10616 
10617 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) {
10618   // We need to flush the current implicit IT block on a label, because it is
10619   // not legal to branch into an IT block.
10620   flushPendingInstructions(getStreamer());
10621 }
10622 
10623 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
10624   if (NextSymbolIsThumb) {
10625     getParser().getStreamer().EmitThumbFunc(Symbol);
10626     NextSymbolIsThumb = false;
10627   }
10628 }
10629 
10630 /// parseDirectiveThumbFunc
10631 ///  ::= .thumbfunc symbol_name
10632 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
10633   MCAsmParser &Parser = getParser();
10634   const auto Format = getContext().getObjectFileInfo()->getObjectFileType();
10635   bool IsMachO = Format == MCObjectFileInfo::IsMachO;
10636 
10637   // Darwin asm has (optionally) function name after .thumb_func direction
10638   // ELF doesn't
10639 
10640   if (IsMachO) {
10641     if (Parser.getTok().is(AsmToken::Identifier) ||
10642         Parser.getTok().is(AsmToken::String)) {
10643       MCSymbol *Func = getParser().getContext().getOrCreateSymbol(
10644           Parser.getTok().getIdentifier());
10645       getParser().getStreamer().EmitThumbFunc(Func);
10646       Parser.Lex();
10647       if (parseToken(AsmToken::EndOfStatement,
10648                      "unexpected token in '.thumb_func' directive"))
10649         return true;
10650       return false;
10651     }
10652   }
10653 
10654   if (parseToken(AsmToken::EndOfStatement,
10655                  "unexpected token in '.thumb_func' directive"))
10656     return true;
10657 
10658   NextSymbolIsThumb = true;
10659   return false;
10660 }
10661 
10662 /// parseDirectiveSyntax
10663 ///  ::= .syntax unified | divided
10664 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
10665   MCAsmParser &Parser = getParser();
10666   const AsmToken &Tok = Parser.getTok();
10667   if (Tok.isNot(AsmToken::Identifier)) {
10668     Error(L, "unexpected token in .syntax directive");
10669     return false;
10670   }
10671 
10672   StringRef Mode = Tok.getString();
10673   Parser.Lex();
10674   if (check(Mode == "divided" || Mode == "DIVIDED", L,
10675             "'.syntax divided' arm assembly not supported") ||
10676       check(Mode != "unified" && Mode != "UNIFIED", L,
10677             "unrecognized syntax mode in .syntax directive") ||
10678       parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
10679     return true;
10680 
10681   // TODO tell the MC streamer the mode
10682   // getParser().getStreamer().Emit???();
10683   return false;
10684 }
10685 
10686 /// parseDirectiveCode
10687 ///  ::= .code 16 | 32
10688 bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
10689   MCAsmParser &Parser = getParser();
10690   const AsmToken &Tok = Parser.getTok();
10691   if (Tok.isNot(AsmToken::Integer))
10692     return Error(L, "unexpected token in .code directive");
10693   int64_t Val = Parser.getTok().getIntVal();
10694   if (Val != 16 && Val != 32) {
10695     Error(L, "invalid operand to .code directive");
10696     return false;
10697   }
10698   Parser.Lex();
10699 
10700   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
10701     return true;
10702 
10703   if (Val == 16) {
10704     if (!hasThumb())
10705       return Error(L, "target does not support Thumb mode");
10706 
10707     if (!isThumb())
10708       SwitchMode();
10709     getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
10710   } else {
10711     if (!hasARM())
10712       return Error(L, "target does not support ARM mode");
10713 
10714     if (isThumb())
10715       SwitchMode();
10716     getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
10717   }
10718 
10719   return false;
10720 }
10721 
10722 /// parseDirectiveReq
10723 ///  ::= name .req registername
10724 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
10725   MCAsmParser &Parser = getParser();
10726   Parser.Lex(); // Eat the '.req' token.
10727   unsigned Reg;
10728   SMLoc SRegLoc, ERegLoc;
10729   if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc,
10730             "register name expected") ||
10731       parseToken(AsmToken::EndOfStatement,
10732                  "unexpected input in .req directive."))
10733     return true;
10734 
10735   if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg)
10736     return Error(SRegLoc,
10737                  "redefinition of '" + Name + "' does not match original.");
10738 
10739   return false;
10740 }
10741 
10742 /// parseDirectiveUneq
10743 ///  ::= .unreq registername
10744 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
10745   MCAsmParser &Parser = getParser();
10746   if (Parser.getTok().isNot(AsmToken::Identifier))
10747     return Error(L, "unexpected input in .unreq directive.");
10748   RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
10749   Parser.Lex(); // Eat the identifier.
10750   if (parseToken(AsmToken::EndOfStatement,
10751                  "unexpected input in '.unreq' directive"))
10752     return true;
10753   return false;
10754 }
10755 
10756 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was
10757 // before, if supported by the new target, or emit mapping symbols for the mode
10758 // switch.
10759 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) {
10760   if (WasThumb != isThumb()) {
10761     if (WasThumb && hasThumb()) {
10762       // Stay in Thumb mode
10763       SwitchMode();
10764     } else if (!WasThumb && hasARM()) {
10765       // Stay in ARM mode
10766       SwitchMode();
10767     } else {
10768       // Mode switch forced, because the new arch doesn't support the old mode.
10769       getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16
10770                                                             : MCAF_Code32);
10771       // Warn about the implcit mode switch. GAS does not switch modes here,
10772       // but instead stays in the old mode, reporting an error on any following
10773       // instructions as the mode does not exist on the target.
10774       Warning(Loc, Twine("new target does not support ") +
10775                        (WasThumb ? "thumb" : "arm") + " mode, switching to " +
10776                        (!WasThumb ? "thumb" : "arm") + " mode");
10777     }
10778   }
10779 }
10780 
10781 /// parseDirectiveArch
10782 ///  ::= .arch token
10783 bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
10784   StringRef Arch = getParser().parseStringToEndOfStatement().trim();
10785   ARM::ArchKind ID = ARM::parseArch(Arch);
10786 
10787   if (ID == ARM::ArchKind::INVALID)
10788     return Error(L, "Unknown arch name");
10789 
10790   bool WasThumb = isThumb();
10791   Triple T;
10792   MCSubtargetInfo &STI = copySTI();
10793   STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str());
10794   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
10795   FixModeAfterArchChange(WasThumb, L);
10796 
10797   getTargetStreamer().emitArch(ID);
10798   return false;
10799 }
10800 
10801 /// parseDirectiveEabiAttr
10802 ///  ::= .eabi_attribute int, int [, "str"]
10803 ///  ::= .eabi_attribute Tag_name, int [, "str"]
10804 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
10805   MCAsmParser &Parser = getParser();
10806   int64_t Tag;
10807   SMLoc TagLoc;
10808   TagLoc = Parser.getTok().getLoc();
10809   if (Parser.getTok().is(AsmToken::Identifier)) {
10810     StringRef Name = Parser.getTok().getIdentifier();
10811     Tag = ARMBuildAttrs::AttrTypeFromString(Name);
10812     if (Tag == -1) {
10813       Error(TagLoc, "attribute name not recognised: " + Name);
10814       return false;
10815     }
10816     Parser.Lex();
10817   } else {
10818     const MCExpr *AttrExpr;
10819 
10820     TagLoc = Parser.getTok().getLoc();
10821     if (Parser.parseExpression(AttrExpr))
10822       return true;
10823 
10824     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
10825     if (check(!CE, TagLoc, "expected numeric constant"))
10826       return true;
10827 
10828     Tag = CE->getValue();
10829   }
10830 
10831   if (Parser.parseToken(AsmToken::Comma, "comma expected"))
10832     return true;
10833 
10834   StringRef StringValue = "";
10835   bool IsStringValue = false;
10836 
10837   int64_t IntegerValue = 0;
10838   bool IsIntegerValue = false;
10839 
10840   if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name)
10841     IsStringValue = true;
10842   else if (Tag == ARMBuildAttrs::compatibility) {
10843     IsStringValue = true;
10844     IsIntegerValue = true;
10845   } else if (Tag < 32 || Tag % 2 == 0)
10846     IsIntegerValue = true;
10847   else if (Tag % 2 == 1)
10848     IsStringValue = true;
10849   else
10850     llvm_unreachable("invalid tag type");
10851 
10852   if (IsIntegerValue) {
10853     const MCExpr *ValueExpr;
10854     SMLoc ValueExprLoc = Parser.getTok().getLoc();
10855     if (Parser.parseExpression(ValueExpr))
10856       return true;
10857 
10858     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
10859     if (!CE)
10860       return Error(ValueExprLoc, "expected numeric constant");
10861     IntegerValue = CE->getValue();
10862   }
10863 
10864   if (Tag == ARMBuildAttrs::compatibility) {
10865     if (Parser.parseToken(AsmToken::Comma, "comma expected"))
10866       return true;
10867   }
10868 
10869   if (IsStringValue) {
10870     if (Parser.getTok().isNot(AsmToken::String))
10871       return Error(Parser.getTok().getLoc(), "bad string constant");
10872 
10873     StringValue = Parser.getTok().getStringContents();
10874     Parser.Lex();
10875   }
10876 
10877   if (Parser.parseToken(AsmToken::EndOfStatement,
10878                         "unexpected token in '.eabi_attribute' directive"))
10879     return true;
10880 
10881   if (IsIntegerValue && IsStringValue) {
10882     assert(Tag == ARMBuildAttrs::compatibility);
10883     getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
10884   } else if (IsIntegerValue)
10885     getTargetStreamer().emitAttribute(Tag, IntegerValue);
10886   else if (IsStringValue)
10887     getTargetStreamer().emitTextAttribute(Tag, StringValue);
10888   return false;
10889 }
10890 
10891 /// parseDirectiveCPU
10892 ///  ::= .cpu str
10893 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
10894   StringRef CPU = getParser().parseStringToEndOfStatement().trim();
10895   getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
10896 
10897   // FIXME: This is using table-gen data, but should be moved to
10898   // ARMTargetParser once that is table-gen'd.
10899   if (!getSTI().isCPUStringValid(CPU))
10900     return Error(L, "Unknown CPU name");
10901 
10902   bool WasThumb = isThumb();
10903   MCSubtargetInfo &STI = copySTI();
10904   STI.setDefaultFeatures(CPU, "");
10905   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
10906   FixModeAfterArchChange(WasThumb, L);
10907 
10908   return false;
10909 }
10910 
10911 /// parseDirectiveFPU
10912 ///  ::= .fpu str
10913 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
10914   SMLoc FPUNameLoc = getTok().getLoc();
10915   StringRef FPU = getParser().parseStringToEndOfStatement().trim();
10916 
10917   unsigned ID = ARM::parseFPU(FPU);
10918   std::vector<StringRef> Features;
10919   if (!ARM::getFPUFeatures(ID, Features))
10920     return Error(FPUNameLoc, "Unknown FPU name");
10921 
10922   MCSubtargetInfo &STI = copySTI();
10923   for (auto Feature : Features)
10924     STI.ApplyFeatureFlag(Feature);
10925   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
10926 
10927   getTargetStreamer().emitFPU(ID);
10928   return false;
10929 }
10930 
10931 /// parseDirectiveFnStart
10932 ///  ::= .fnstart
10933 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
10934   if (parseToken(AsmToken::EndOfStatement,
10935                  "unexpected token in '.fnstart' directive"))
10936     return true;
10937 
10938   if (UC.hasFnStart()) {
10939     Error(L, ".fnstart starts before the end of previous one");
10940     UC.emitFnStartLocNotes();
10941     return true;
10942   }
10943 
10944   // Reset the unwind directives parser state
10945   UC.reset();
10946 
10947   getTargetStreamer().emitFnStart();
10948 
10949   UC.recordFnStart(L);
10950   return false;
10951 }
10952 
10953 /// parseDirectiveFnEnd
10954 ///  ::= .fnend
10955 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
10956   if (parseToken(AsmToken::EndOfStatement,
10957                  "unexpected token in '.fnend' directive"))
10958     return true;
10959   // Check the ordering of unwind directives
10960   if (!UC.hasFnStart())
10961     return Error(L, ".fnstart must precede .fnend directive");
10962 
10963   // Reset the unwind directives parser state
10964   getTargetStreamer().emitFnEnd();
10965 
10966   UC.reset();
10967   return false;
10968 }
10969 
10970 /// parseDirectiveCantUnwind
10971 ///  ::= .cantunwind
10972 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
10973   if (parseToken(AsmToken::EndOfStatement,
10974                  "unexpected token in '.cantunwind' directive"))
10975     return true;
10976 
10977   UC.recordCantUnwind(L);
10978   // Check the ordering of unwind directives
10979   if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive"))
10980     return true;
10981 
10982   if (UC.hasHandlerData()) {
10983     Error(L, ".cantunwind can't be used with .handlerdata directive");
10984     UC.emitHandlerDataLocNotes();
10985     return true;
10986   }
10987   if (UC.hasPersonality()) {
10988     Error(L, ".cantunwind can't be used with .personality directive");
10989     UC.emitPersonalityLocNotes();
10990     return true;
10991   }
10992 
10993   getTargetStreamer().emitCantUnwind();
10994   return false;
10995 }
10996 
10997 /// parseDirectivePersonality
10998 ///  ::= .personality name
10999 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
11000   MCAsmParser &Parser = getParser();
11001   bool HasExistingPersonality = UC.hasPersonality();
11002 
11003   // Parse the name of the personality routine
11004   if (Parser.getTok().isNot(AsmToken::Identifier))
11005     return Error(L, "unexpected input in .personality directive.");
11006   StringRef Name(Parser.getTok().getIdentifier());
11007   Parser.Lex();
11008 
11009   if (parseToken(AsmToken::EndOfStatement,
11010                  "unexpected token in '.personality' directive"))
11011     return true;
11012 
11013   UC.recordPersonality(L);
11014 
11015   // Check the ordering of unwind directives
11016   if (!UC.hasFnStart())
11017     return Error(L, ".fnstart must precede .personality directive");
11018   if (UC.cantUnwind()) {
11019     Error(L, ".personality can't be used with .cantunwind directive");
11020     UC.emitCantUnwindLocNotes();
11021     return true;
11022   }
11023   if (UC.hasHandlerData()) {
11024     Error(L, ".personality must precede .handlerdata directive");
11025     UC.emitHandlerDataLocNotes();
11026     return true;
11027   }
11028   if (HasExistingPersonality) {
11029     Error(L, "multiple personality directives");
11030     UC.emitPersonalityLocNotes();
11031     return true;
11032   }
11033 
11034   MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name);
11035   getTargetStreamer().emitPersonality(PR);
11036   return false;
11037 }
11038 
11039 /// parseDirectiveHandlerData
11040 ///  ::= .handlerdata
11041 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
11042   if (parseToken(AsmToken::EndOfStatement,
11043                  "unexpected token in '.handlerdata' directive"))
11044     return true;
11045 
11046   UC.recordHandlerData(L);
11047   // Check the ordering of unwind directives
11048   if (!UC.hasFnStart())
11049     return Error(L, ".fnstart must precede .personality directive");
11050   if (UC.cantUnwind()) {
11051     Error(L, ".handlerdata can't be used with .cantunwind directive");
11052     UC.emitCantUnwindLocNotes();
11053     return true;
11054   }
11055 
11056   getTargetStreamer().emitHandlerData();
11057   return false;
11058 }
11059 
11060 /// parseDirectiveSetFP
11061 ///  ::= .setfp fpreg, spreg [, offset]
11062 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
11063   MCAsmParser &Parser = getParser();
11064   // Check the ordering of unwind directives
11065   if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") ||
11066       check(UC.hasHandlerData(), L,
11067             ".setfp must precede .handlerdata directive"))
11068     return true;
11069 
11070   // Parse fpreg
11071   SMLoc FPRegLoc = Parser.getTok().getLoc();
11072   int FPReg = tryParseRegister();
11073 
11074   if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") ||
11075       Parser.parseToken(AsmToken::Comma, "comma expected"))
11076     return true;
11077 
11078   // Parse spreg
11079   SMLoc SPRegLoc = Parser.getTok().getLoc();
11080   int SPReg = tryParseRegister();
11081   if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") ||
11082       check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc,
11083             "register should be either $sp or the latest fp register"))
11084     return true;
11085 
11086   // Update the frame pointer register
11087   UC.saveFPReg(FPReg);
11088 
11089   // Parse offset
11090   int64_t Offset = 0;
11091   if (Parser.parseOptionalToken(AsmToken::Comma)) {
11092     if (Parser.getTok().isNot(AsmToken::Hash) &&
11093         Parser.getTok().isNot(AsmToken::Dollar))
11094       return Error(Parser.getTok().getLoc(), "'#' expected");
11095     Parser.Lex(); // skip hash token.
11096 
11097     const MCExpr *OffsetExpr;
11098     SMLoc ExLoc = Parser.getTok().getLoc();
11099     SMLoc EndLoc;
11100     if (getParser().parseExpression(OffsetExpr, EndLoc))
11101       return Error(ExLoc, "malformed setfp offset");
11102     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11103     if (check(!CE, ExLoc, "setfp offset must be an immediate"))
11104       return true;
11105     Offset = CE->getValue();
11106   }
11107 
11108   if (Parser.parseToken(AsmToken::EndOfStatement))
11109     return true;
11110 
11111   getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
11112                                 static_cast<unsigned>(SPReg), Offset);
11113   return false;
11114 }
11115 
11116 /// parseDirective
11117 ///  ::= .pad offset
11118 bool ARMAsmParser::parseDirectivePad(SMLoc L) {
11119   MCAsmParser &Parser = getParser();
11120   // Check the ordering of unwind directives
11121   if (!UC.hasFnStart())
11122     return Error(L, ".fnstart must precede .pad directive");
11123   if (UC.hasHandlerData())
11124     return Error(L, ".pad must precede .handlerdata directive");
11125 
11126   // Parse the offset
11127   if (Parser.getTok().isNot(AsmToken::Hash) &&
11128       Parser.getTok().isNot(AsmToken::Dollar))
11129     return Error(Parser.getTok().getLoc(), "'#' expected");
11130   Parser.Lex(); // skip hash token.
11131 
11132   const MCExpr *OffsetExpr;
11133   SMLoc ExLoc = Parser.getTok().getLoc();
11134   SMLoc EndLoc;
11135   if (getParser().parseExpression(OffsetExpr, EndLoc))
11136     return Error(ExLoc, "malformed pad offset");
11137   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11138   if (!CE)
11139     return Error(ExLoc, "pad offset must be an immediate");
11140 
11141   if (parseToken(AsmToken::EndOfStatement,
11142                  "unexpected token in '.pad' directive"))
11143     return true;
11144 
11145   getTargetStreamer().emitPad(CE->getValue());
11146   return false;
11147 }
11148 
11149 /// parseDirectiveRegSave
11150 ///  ::= .save  { registers }
11151 ///  ::= .vsave { registers }
11152 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
11153   // Check the ordering of unwind directives
11154   if (!UC.hasFnStart())
11155     return Error(L, ".fnstart must precede .save or .vsave directives");
11156   if (UC.hasHandlerData())
11157     return Error(L, ".save or .vsave must precede .handlerdata directive");
11158 
11159   // RAII object to make sure parsed operands are deleted.
11160   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
11161 
11162   // Parse the register list
11163   if (parseRegisterList(Operands) ||
11164       parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11165     return true;
11166   ARMOperand &Op = (ARMOperand &)*Operands[0];
11167   if (!IsVector && !Op.isRegList())
11168     return Error(L, ".save expects GPR registers");
11169   if (IsVector && !Op.isDPRRegList())
11170     return Error(L, ".vsave expects DPR registers");
11171 
11172   getTargetStreamer().emitRegSave(Op.getRegList(), IsVector);
11173   return false;
11174 }
11175 
11176 /// parseDirectiveInst
11177 ///  ::= .inst opcode [, ...]
11178 ///  ::= .inst.n opcode [, ...]
11179 ///  ::= .inst.w opcode [, ...]
11180 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
11181   int Width = 4;
11182 
11183   if (isThumb()) {
11184     switch (Suffix) {
11185     case 'n':
11186       Width = 2;
11187       break;
11188     case 'w':
11189       break;
11190     default:
11191       Width = 0;
11192       break;
11193     }
11194   } else {
11195     if (Suffix)
11196       return Error(Loc, "width suffixes are invalid in ARM mode");
11197   }
11198 
11199   auto parseOne = [&]() -> bool {
11200     const MCExpr *Expr;
11201     if (getParser().parseExpression(Expr))
11202       return true;
11203     const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
11204     if (!Value) {
11205       return Error(Loc, "expected constant expression");
11206     }
11207 
11208     char CurSuffix = Suffix;
11209     switch (Width) {
11210     case 2:
11211       if (Value->getValue() > 0xffff)
11212         return Error(Loc, "inst.n operand is too big, use inst.w instead");
11213       break;
11214     case 4:
11215       if (Value->getValue() > 0xffffffff)
11216         return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") +
11217                               " operand is too big");
11218       break;
11219     case 0:
11220       // Thumb mode, no width indicated. Guess from the opcode, if possible.
11221       if (Value->getValue() < 0xe800)
11222         CurSuffix = 'n';
11223       else if (Value->getValue() >= 0xe8000000)
11224         CurSuffix = 'w';
11225       else
11226         return Error(Loc, "cannot determine Thumb instruction size, "
11227                           "use inst.n/inst.w instead");
11228       break;
11229     default:
11230       llvm_unreachable("only supported widths are 2 and 4");
11231     }
11232 
11233     getTargetStreamer().emitInst(Value->getValue(), CurSuffix);
11234     return false;
11235   };
11236 
11237   if (parseOptionalToken(AsmToken::EndOfStatement))
11238     return Error(Loc, "expected expression following directive");
11239   if (parseMany(parseOne))
11240     return true;
11241   return false;
11242 }
11243 
11244 /// parseDirectiveLtorg
11245 ///  ::= .ltorg | .pool
11246 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
11247   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11248     return true;
11249   getTargetStreamer().emitCurrentConstantPool();
11250   return false;
11251 }
11252 
11253 bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
11254   const MCSection *Section = getStreamer().getCurrentSectionOnly();
11255 
11256   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11257     return true;
11258 
11259   if (!Section) {
11260     getStreamer().InitSections(false);
11261     Section = getStreamer().getCurrentSectionOnly();
11262   }
11263 
11264   assert(Section && "must have section to emit alignment");
11265   if (Section->UseCodeAlign())
11266     getStreamer().EmitCodeAlignment(2);
11267   else
11268     getStreamer().EmitValueToAlignment(2);
11269 
11270   return false;
11271 }
11272 
11273 /// parseDirectivePersonalityIndex
11274 ///   ::= .personalityindex index
11275 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
11276   MCAsmParser &Parser = getParser();
11277   bool HasExistingPersonality = UC.hasPersonality();
11278 
11279   const MCExpr *IndexExpression;
11280   SMLoc IndexLoc = Parser.getTok().getLoc();
11281   if (Parser.parseExpression(IndexExpression) ||
11282       parseToken(AsmToken::EndOfStatement,
11283                  "unexpected token in '.personalityindex' directive")) {
11284     return true;
11285   }
11286 
11287   UC.recordPersonalityIndex(L);
11288 
11289   if (!UC.hasFnStart()) {
11290     return Error(L, ".fnstart must precede .personalityindex directive");
11291   }
11292   if (UC.cantUnwind()) {
11293     Error(L, ".personalityindex cannot be used with .cantunwind");
11294     UC.emitCantUnwindLocNotes();
11295     return true;
11296   }
11297   if (UC.hasHandlerData()) {
11298     Error(L, ".personalityindex must precede .handlerdata directive");
11299     UC.emitHandlerDataLocNotes();
11300     return true;
11301   }
11302   if (HasExistingPersonality) {
11303     Error(L, "multiple personality directives");
11304     UC.emitPersonalityLocNotes();
11305     return true;
11306   }
11307 
11308   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
11309   if (!CE)
11310     return Error(IndexLoc, "index must be a constant number");
11311   if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX)
11312     return Error(IndexLoc,
11313                  "personality routine index should be in range [0-3]");
11314 
11315   getTargetStreamer().emitPersonalityIndex(CE->getValue());
11316   return false;
11317 }
11318 
11319 /// parseDirectiveUnwindRaw
11320 ///   ::= .unwind_raw offset, opcode [, opcode...]
11321 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
11322   MCAsmParser &Parser = getParser();
11323   int64_t StackOffset;
11324   const MCExpr *OffsetExpr;
11325   SMLoc OffsetLoc = getLexer().getLoc();
11326 
11327   if (!UC.hasFnStart())
11328     return Error(L, ".fnstart must precede .unwind_raw directives");
11329   if (getParser().parseExpression(OffsetExpr))
11330     return Error(OffsetLoc, "expected expression");
11331 
11332   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11333   if (!CE)
11334     return Error(OffsetLoc, "offset must be a constant");
11335 
11336   StackOffset = CE->getValue();
11337 
11338   if (Parser.parseToken(AsmToken::Comma, "expected comma"))
11339     return true;
11340 
11341   SmallVector<uint8_t, 16> Opcodes;
11342 
11343   auto parseOne = [&]() -> bool {
11344     const MCExpr *OE = nullptr;
11345     SMLoc OpcodeLoc = getLexer().getLoc();
11346     if (check(getLexer().is(AsmToken::EndOfStatement) ||
11347                   Parser.parseExpression(OE),
11348               OpcodeLoc, "expected opcode expression"))
11349       return true;
11350     const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
11351     if (!OC)
11352       return Error(OpcodeLoc, "opcode value must be a constant");
11353     const int64_t Opcode = OC->getValue();
11354     if (Opcode & ~0xff)
11355       return Error(OpcodeLoc, "invalid opcode");
11356     Opcodes.push_back(uint8_t(Opcode));
11357     return false;
11358   };
11359 
11360   // Must have at least 1 element
11361   SMLoc OpcodeLoc = getLexer().getLoc();
11362   if (parseOptionalToken(AsmToken::EndOfStatement))
11363     return Error(OpcodeLoc, "expected opcode expression");
11364   if (parseMany(parseOne))
11365     return true;
11366 
11367   getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
11368   return false;
11369 }
11370 
11371 /// parseDirectiveTLSDescSeq
11372 ///   ::= .tlsdescseq tls-variable
11373 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
11374   MCAsmParser &Parser = getParser();
11375 
11376   if (getLexer().isNot(AsmToken::Identifier))
11377     return TokError("expected variable after '.tlsdescseq' directive");
11378 
11379   const MCSymbolRefExpr *SRE =
11380     MCSymbolRefExpr::create(Parser.getTok().getIdentifier(),
11381                             MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
11382   Lex();
11383 
11384   if (parseToken(AsmToken::EndOfStatement,
11385                  "unexpected token in '.tlsdescseq' directive"))
11386     return true;
11387 
11388   getTargetStreamer().AnnotateTLSDescriptorSequence(SRE);
11389   return false;
11390 }
11391 
11392 /// parseDirectiveMovSP
11393 ///  ::= .movsp reg [, #offset]
11394 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
11395   MCAsmParser &Parser = getParser();
11396   if (!UC.hasFnStart())
11397     return Error(L, ".fnstart must precede .movsp directives");
11398   if (UC.getFPReg() != ARM::SP)
11399     return Error(L, "unexpected .movsp directive");
11400 
11401   SMLoc SPRegLoc = Parser.getTok().getLoc();
11402   int SPReg = tryParseRegister();
11403   if (SPReg == -1)
11404     return Error(SPRegLoc, "register expected");
11405   if (SPReg == ARM::SP || SPReg == ARM::PC)
11406     return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");
11407 
11408   int64_t Offset = 0;
11409   if (Parser.parseOptionalToken(AsmToken::Comma)) {
11410     if (Parser.parseToken(AsmToken::Hash, "expected #constant"))
11411       return true;
11412 
11413     const MCExpr *OffsetExpr;
11414     SMLoc OffsetLoc = Parser.getTok().getLoc();
11415 
11416     if (Parser.parseExpression(OffsetExpr))
11417       return Error(OffsetLoc, "malformed offset expression");
11418 
11419     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11420     if (!CE)
11421       return Error(OffsetLoc, "offset must be an immediate constant");
11422 
11423     Offset = CE->getValue();
11424   }
11425 
11426   if (parseToken(AsmToken::EndOfStatement,
11427                  "unexpected token in '.movsp' directive"))
11428     return true;
11429 
11430   getTargetStreamer().emitMovSP(SPReg, Offset);
11431   UC.saveFPReg(SPReg);
11432 
11433   return false;
11434 }
11435 
11436 /// parseDirectiveObjectArch
11437 ///   ::= .object_arch name
11438 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
11439   MCAsmParser &Parser = getParser();
11440   if (getLexer().isNot(AsmToken::Identifier))
11441     return Error(getLexer().getLoc(), "unexpected token");
11442 
11443   StringRef Arch = Parser.getTok().getString();
11444   SMLoc ArchLoc = Parser.getTok().getLoc();
11445   Lex();
11446 
11447   ARM::ArchKind ID = ARM::parseArch(Arch);
11448 
11449   if (ID == ARM::ArchKind::INVALID)
11450     return Error(ArchLoc, "unknown architecture '" + Arch + "'");
11451   if (parseToken(AsmToken::EndOfStatement))
11452     return true;
11453 
11454   getTargetStreamer().emitObjectArch(ID);
11455   return false;
11456 }
11457 
11458 /// parseDirectiveAlign
11459 ///   ::= .align
11460 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
11461   // NOTE: if this is not the end of the statement, fall back to the target
11462   // agnostic handling for this directive which will correctly handle this.
11463   if (parseOptionalToken(AsmToken::EndOfStatement)) {
11464     // '.align' is target specifically handled to mean 2**2 byte alignment.
11465     const MCSection *Section = getStreamer().getCurrentSectionOnly();
11466     assert(Section && "must have section to emit alignment");
11467     if (Section->UseCodeAlign())
11468       getStreamer().EmitCodeAlignment(4, 0);
11469     else
11470       getStreamer().EmitValueToAlignment(4, 0, 1, 0);
11471     return false;
11472   }
11473   return true;
11474 }
11475 
11476 /// parseDirectiveThumbSet
11477 ///  ::= .thumb_set name, value
11478 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
11479   MCAsmParser &Parser = getParser();
11480 
11481   StringRef Name;
11482   if (check(Parser.parseIdentifier(Name),
11483             "expected identifier after '.thumb_set'") ||
11484       parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'"))
11485     return true;
11486 
11487   MCSymbol *Sym;
11488   const MCExpr *Value;
11489   if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true,
11490                                                Parser, Sym, Value))
11491     return true;
11492 
11493   getTargetStreamer().emitThumbSet(Sym, Value);
11494   return false;
11495 }
11496 
11497 /// Force static initialization.
11498 extern "C" void LLVMInitializeARMAsmParser() {
11499   RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget());
11500   RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget());
11501   RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget());
11502   RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget());
11503 }
11504 
11505 #define GET_REGISTER_MATCHER
11506 #define GET_SUBTARGET_FEATURE_NAME
11507 #define GET_MATCHER_IMPLEMENTATION
11508 #define GET_MNEMONIC_SPELL_CHECKER
11509 #include "ARMGenAsmMatcher.inc"
11510 
11511 // Some diagnostics need to vary with subtarget features, so they are handled
11512 // here. For example, the DPR class has either 16 or 32 registers, depending
11513 // on the FPU available.
11514 const char *
11515 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) {
11516   switch (MatchError) {
11517   // rGPR contains sp starting with ARMv8.
11518   case Match_rGPR:
11519     return hasV8Ops() ? "operand must be a register in range [r0, r14]"
11520                       : "operand must be a register in range [r0, r12] or r14";
11521   // DPR contains 16 registers for some FPUs, and 32 for others.
11522   case Match_DPR:
11523     return hasD32() ? "operand must be a register in range [d0, d31]"
11524                     : "operand must be a register in range [d0, d15]";
11525   case Match_DPR_RegList:
11526     return hasD32() ? "operand must be a list of registers in range [d0, d31]"
11527                     : "operand must be a list of registers in range [d0, d15]";
11528 
11529   // For all other diags, use the static string from tablegen.
11530   default:
11531     return getMatchKindDiag(MatchError);
11532   }
11533 }
11534 
11535 // Process the list of near-misses, throwing away ones we don't want to report
11536 // to the user, and converting the rest to a source location and string that
11537 // should be reported.
11538 void
11539 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
11540                                SmallVectorImpl<NearMissMessage> &NearMissesOut,
11541                                SMLoc IDLoc, OperandVector &Operands) {
11542   // TODO: If operand didn't match, sub in a dummy one and run target
11543   // predicate, so that we can avoid reporting near-misses that are invalid?
11544   // TODO: Many operand types dont have SuperClasses set, so we report
11545   // redundant ones.
11546   // TODO: Some operands are superclasses of registers (e.g.
11547   // MCK_RegShiftedImm), we don't have any way to represent that currently.
11548   // TODO: This is not all ARM-specific, can some of it be factored out?
11549 
11550   // Record some information about near-misses that we have already seen, so
11551   // that we can avoid reporting redundant ones. For example, if there are
11552   // variants of an instruction that take 8- and 16-bit immediates, we want
11553   // to only report the widest one.
11554   std::multimap<unsigned, unsigned> OperandMissesSeen;
11555   SmallSet<FeatureBitset, 4> FeatureMissesSeen;
11556   bool ReportedTooFewOperands = false;
11557 
11558   // Process the near-misses in reverse order, so that we see more general ones
11559   // first, and so can avoid emitting more specific ones.
11560   for (NearMissInfo &I : reverse(NearMissesIn)) {
11561     switch (I.getKind()) {
11562     case NearMissInfo::NearMissOperand: {
11563       SMLoc OperandLoc =
11564           ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc();
11565       const char *OperandDiag =
11566           getCustomOperandDiag((ARMMatchResultTy)I.getOperandError());
11567 
11568       // If we have already emitted a message for a superclass, don't also report
11569       // the sub-class. We consider all operand classes that we don't have a
11570       // specialised diagnostic for to be equal for the propose of this check,
11571       // so that we don't report the generic error multiple times on the same
11572       // operand.
11573       unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U;
11574       auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex());
11575       if (std::any_of(PrevReports.first, PrevReports.second,
11576                       [DupCheckMatchClass](
11577                           const std::pair<unsigned, unsigned> Pair) {
11578             if (DupCheckMatchClass == ~0U || Pair.second == ~0U)
11579               return Pair.second == DupCheckMatchClass;
11580             else
11581               return isSubclass((MatchClassKind)DupCheckMatchClass,
11582                                 (MatchClassKind)Pair.second);
11583           }))
11584         break;
11585       OperandMissesSeen.insert(
11586           std::make_pair(I.getOperandIndex(), DupCheckMatchClass));
11587 
11588       NearMissMessage Message;
11589       Message.Loc = OperandLoc;
11590       if (OperandDiag) {
11591         Message.Message = OperandDiag;
11592       } else if (I.getOperandClass() == InvalidMatchClass) {
11593         Message.Message = "too many operands for instruction";
11594       } else {
11595         Message.Message = "invalid operand for instruction";
11596         LLVM_DEBUG(
11597             dbgs() << "Missing diagnostic string for operand class "
11598                    << getMatchClassName((MatchClassKind)I.getOperandClass())
11599                    << I.getOperandClass() << ", error " << I.getOperandError()
11600                    << ", opcode " << MII.getName(I.getOpcode()) << "\n");
11601       }
11602       NearMissesOut.emplace_back(Message);
11603       break;
11604     }
11605     case NearMissInfo::NearMissFeature: {
11606       const FeatureBitset &MissingFeatures = I.getFeatures();
11607       // Don't report the same set of features twice.
11608       if (FeatureMissesSeen.count(MissingFeatures))
11609         break;
11610       FeatureMissesSeen.insert(MissingFeatures);
11611 
11612       // Special case: don't report a feature set which includes arm-mode for
11613       // targets that don't have ARM mode.
11614       if (MissingFeatures.test(Feature_IsARMBit) && !hasARM())
11615         break;
11616       // Don't report any near-misses that both require switching instruction
11617       // set, and adding other subtarget features.
11618       if (isThumb() && MissingFeatures.test(Feature_IsARMBit) &&
11619           MissingFeatures.count() > 1)
11620         break;
11621       if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) &&
11622           MissingFeatures.count() > 1)
11623         break;
11624       if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) &&
11625           (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit,
11626                                              Feature_IsThumbBit})).any())
11627         break;
11628       if (isMClass() && MissingFeatures.test(Feature_HasNEONBit))
11629         break;
11630 
11631       NearMissMessage Message;
11632       Message.Loc = IDLoc;
11633       raw_svector_ostream OS(Message.Message);
11634 
11635       OS << "instruction requires:";
11636       for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i)
11637         if (MissingFeatures.test(i))
11638           OS << ' ' << getSubtargetFeatureName(i);
11639 
11640       NearMissesOut.emplace_back(Message);
11641 
11642       break;
11643     }
11644     case NearMissInfo::NearMissPredicate: {
11645       NearMissMessage Message;
11646       Message.Loc = IDLoc;
11647       switch (I.getPredicateError()) {
11648       case Match_RequiresNotITBlock:
11649         Message.Message = "flag setting instruction only valid outside IT block";
11650         break;
11651       case Match_RequiresITBlock:
11652         Message.Message = "instruction only valid inside IT block";
11653         break;
11654       case Match_RequiresV6:
11655         Message.Message = "instruction variant requires ARMv6 or later";
11656         break;
11657       case Match_RequiresThumb2:
11658         Message.Message = "instruction variant requires Thumb2";
11659         break;
11660       case Match_RequiresV8:
11661         Message.Message = "instruction variant requires ARMv8 or later";
11662         break;
11663       case Match_RequiresFlagSetting:
11664         Message.Message = "no flag-preserving variant of this instruction available";
11665         break;
11666       case Match_InvalidOperand:
11667         Message.Message = "invalid operand for instruction";
11668         break;
11669       default:
11670         llvm_unreachable("Unhandled target predicate error");
11671         break;
11672       }
11673       NearMissesOut.emplace_back(Message);
11674       break;
11675     }
11676     case NearMissInfo::NearMissTooFewOperands: {
11677       if (!ReportedTooFewOperands) {
11678         SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc();
11679         NearMissesOut.emplace_back(NearMissMessage{
11680             EndLoc, StringRef("too few operands for instruction")});
11681         ReportedTooFewOperands = true;
11682       }
11683       break;
11684     }
11685     case NearMissInfo::NoNearMiss:
11686       // This should never leave the matcher.
11687       llvm_unreachable("not a near-miss");
11688       break;
11689     }
11690   }
11691 }
11692 
11693 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses,
11694                                     SMLoc IDLoc, OperandVector &Operands) {
11695   SmallVector<NearMissMessage, 4> Messages;
11696   FilterNearMisses(NearMisses, Messages, IDLoc, Operands);
11697 
11698   if (Messages.size() == 0) {
11699     // No near-misses were found, so the best we can do is "invalid
11700     // instruction".
11701     Error(IDLoc, "invalid instruction");
11702   } else if (Messages.size() == 1) {
11703     // One near miss was found, report it as the sole error.
11704     Error(Messages[0].Loc, Messages[0].Message);
11705   } else {
11706     // More than one near miss, so report a generic "invalid instruction"
11707     // error, followed by notes for each of the near-misses.
11708     Error(IDLoc, "invalid instruction, any one of the following would fix this:");
11709     for (auto &M : Messages) {
11710       Note(M.Loc, M.Message);
11711     }
11712   }
11713 }
11714 
11715 /// parseDirectiveArchExtension
11716 ///   ::= .arch_extension [no]feature
11717 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
11718   // FIXME: This structure should be moved inside ARMTargetParser
11719   // when we start to table-generate them, and we can use the ARM
11720   // flags below, that were generated by table-gen.
11721   static const struct {
11722     const unsigned Kind;
11723     const FeatureBitset ArchCheck;
11724     const FeatureBitset Features;
11725   } Extensions[] = {
11726     { ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC} },
11727     { ARM::AEK_CRYPTO,  {Feature_HasV8Bit},
11728       {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} },
11729     { ARM::AEK_FP, {Feature_HasV8Bit},
11730       {ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8} },
11731     { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM),
11732       {Feature_HasV7Bit, Feature_IsNotMClassBit},
11733       {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} },
11734     { ARM::AEK_MP, {Feature_HasV7Bit, Feature_IsNotMClassBit},
11735       {ARM::FeatureMP} },
11736     { ARM::AEK_SIMD, {Feature_HasV8Bit},
11737       {ARM::FeatureNEON, ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8} },
11738     { ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone} },
11739     // FIXME: Only available in A-class, isel not predicated
11740     { ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization} },
11741     { ARM::AEK_FP16, {Feature_HasV8_2aBit},
11742       {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} },
11743     { ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS} },
11744     { ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB} },
11745     // FIXME: Unsupported extensions.
11746     { ARM::AEK_OS, {}, {} },
11747     { ARM::AEK_IWMMXT, {}, {} },
11748     { ARM::AEK_IWMMXT2, {}, {} },
11749     { ARM::AEK_MAVERICK, {}, {} },
11750     { ARM::AEK_XSCALE, {}, {} },
11751   };
11752 
11753   MCAsmParser &Parser = getParser();
11754 
11755   if (getLexer().isNot(AsmToken::Identifier))
11756     return Error(getLexer().getLoc(), "expected architecture extension name");
11757 
11758   StringRef Name = Parser.getTok().getString();
11759   SMLoc ExtLoc = Parser.getTok().getLoc();
11760   Lex();
11761 
11762   if (parseToken(AsmToken::EndOfStatement,
11763                  "unexpected token in '.arch_extension' directive"))
11764     return true;
11765 
11766   bool EnableFeature = true;
11767   if (Name.startswith_lower("no")) {
11768     EnableFeature = false;
11769     Name = Name.substr(2);
11770   }
11771   unsigned FeatureKind = ARM::parseArchExt(Name);
11772   if (FeatureKind == ARM::AEK_INVALID)
11773     return Error(ExtLoc, "unknown architectural extension: " + Name);
11774 
11775   for (const auto &Extension : Extensions) {
11776     if (Extension.Kind != FeatureKind)
11777       continue;
11778 
11779     if (Extension.Features.none())
11780       return Error(ExtLoc, "unsupported architectural extension: " + Name);
11781 
11782     if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck)
11783       return Error(ExtLoc, "architectural extension '" + Name +
11784                                "' is not "
11785                                "allowed for the current base architecture");
11786 
11787     MCSubtargetInfo &STI = copySTI();
11788     if (EnableFeature) {
11789       STI.SetFeatureBitsTransitively(Extension.Features);
11790     } else {
11791       STI.ClearFeatureBitsTransitively(Extension.Features);
11792     }
11793     FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits());
11794     setAvailableFeatures(Features);
11795     return false;
11796   }
11797 
11798   return Error(ExtLoc, "unknown architectural extension: " + Name);
11799 }
11800 
11801 // Define this matcher function after the auto-generated include so we
11802 // have the match class enum definitions.
11803 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
11804                                                   unsigned Kind) {
11805   ARMOperand &Op = static_cast<ARMOperand &>(AsmOp);
11806   // If the kind is a token for a literal immediate, check if our asm
11807   // operand matches. This is for InstAliases which have a fixed-value
11808   // immediate in the syntax.
11809   switch (Kind) {
11810   default: break;
11811   case MCK__HASH_0:
11812     if (Op.isImm())
11813       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
11814         if (CE->getValue() == 0)
11815           return Match_Success;
11816     break;
11817   case MCK__HASH_8:
11818     if (Op.isImm())
11819       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
11820         if (CE->getValue() == 8)
11821           return Match_Success;
11822     break;
11823   case MCK__HASH_16:
11824     if (Op.isImm())
11825       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
11826         if (CE->getValue() == 16)
11827           return Match_Success;
11828     break;
11829   case MCK_ModImm:
11830     if (Op.isImm()) {
11831       const MCExpr *SOExpr = Op.getImm();
11832       int64_t Value;
11833       if (!SOExpr->evaluateAsAbsolute(Value))
11834         return Match_Success;
11835       assert((Value >= std::numeric_limits<int32_t>::min() &&
11836               Value <= std::numeric_limits<uint32_t>::max()) &&
11837              "expression value must be representable in 32 bits");
11838     }
11839     break;
11840   case MCK_rGPR:
11841     if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP)
11842       return Match_Success;
11843     return Match_rGPR;
11844   case MCK_GPRPair:
11845     if (Op.isReg() &&
11846         MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg()))
11847       return Match_Success;
11848     break;
11849   }
11850   return Match_InvalidOperand;
11851 }
11852 
11853 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic,
11854                                            StringRef ExtraToken) {
11855   if (!hasMVE())
11856     return false;
11857 
11858   return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") ||
11859          Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") ||
11860          Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") ||
11861          Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") ||
11862          Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") ||
11863          Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") ||
11864          Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") ||
11865          Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") ||
11866          Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") ||
11867          Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") ||
11868          Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") ||
11869          Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") ||
11870          Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") ||
11871          Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") ||
11872          Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") ||
11873          Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") ||
11874          Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") ||
11875          Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") ||
11876          Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") ||
11877          Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") ||
11878          Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") ||
11879          Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") ||
11880          Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") ||
11881          Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") ||
11882          Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") ||
11883          Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") ||
11884          Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") ||
11885          Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") ||
11886          Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") ||
11887          Mnemonic.startswith("vqabs") ||
11888          (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") ||
11889          Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") ||
11890          Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") ||
11891          Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") ||
11892          Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") ||
11893          Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") ||
11894          Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") ||
11895          Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") ||
11896          Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") ||
11897          Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") ||
11898          Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") ||
11899          Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") ||
11900          Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") ||
11901          Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") ||
11902          Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") ||
11903          Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") ||
11904          Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") ||
11905          Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") ||
11906          Mnemonic.startswith("vldrb") ||
11907          (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") ||
11908          (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") ||
11909          Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") ||
11910          Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") ||
11911          Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") ||
11912          Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") ||
11913          Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") ||
11914          Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") ||
11915          Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") ||
11916          Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") ||
11917          Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") ||
11918          Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") ||
11919          Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") ||
11920          Mnemonic.startswith("vcvt") ||
11921          (Mnemonic.startswith("vmov") &&
11922           !(ExtraToken == ".f16" || ExtraToken == ".32" ||
11923             ExtraToken == ".16" || ExtraToken == ".8"));
11924 }
11925