1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMFeatures.h" 10 #include "ARMBaseInstrInfo.h" 11 #include "Utils/ARMBaseInfo.h" 12 #include "MCTargetDesc/ARMAddressingModes.h" 13 #include "MCTargetDesc/ARMBaseInfo.h" 14 #include "MCTargetDesc/ARMInstPrinter.h" 15 #include "MCTargetDesc/ARMMCExpr.h" 16 #include "MCTargetDesc/ARMMCTargetDesc.h" 17 #include "TargetInfo/ARMTargetInfo.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInst.h" 32 #include "llvm/MC/MCInstrDesc.h" 33 #include "llvm/MC/MCInstrInfo.h" 34 #include "llvm/MC/MCObjectFileInfo.h" 35 #include "llvm/MC/MCParser/MCAsmLexer.h" 36 #include "llvm/MC/MCParser/MCAsmParser.h" 37 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 38 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 39 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 40 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 41 #include "llvm/MC/MCRegisterInfo.h" 42 #include "llvm/MC/MCSection.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSubtargetInfo.h" 45 #include "llvm/MC/MCSymbol.h" 46 #include "llvm/MC/SubtargetFeature.h" 47 #include "llvm/Support/ARMBuildAttributes.h" 48 #include "llvm/Support/ARMEHABI.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/SMLoc.h" 55 #include "llvm/Support/TargetParser.h" 56 #include "llvm/Support/TargetRegistry.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstddef> 61 #include <cstdint> 62 #include <iterator> 63 #include <limits> 64 #include <memory> 65 #include <string> 66 #include <utility> 67 #include <vector> 68 69 #define DEBUG_TYPE "asm-parser" 70 71 using namespace llvm; 72 73 namespace llvm { 74 extern const MCInstrDesc ARMInsts[]; 75 } // end namespace llvm 76 77 namespace { 78 79 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 80 81 static cl::opt<ImplicitItModeTy> ImplicitItMode( 82 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 83 cl::desc("Allow conditional instructions outdside of an IT block"), 84 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 85 "Accept in both ISAs, emit implicit ITs in Thumb"), 86 clEnumValN(ImplicitItModeTy::Never, "never", 87 "Warn in ARM, reject in Thumb"), 88 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 89 "Accept in ARM, reject in Thumb"), 90 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 91 "Warn in ARM, emit implicit ITs in Thumb"))); 92 93 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 94 cl::init(false)); 95 96 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 97 98 static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) { 99 // Position==0 means we're not in an IT block at all. Position==1 100 // means we want the first state bit, which is always 0 (Then). 101 // Position==2 means we want the second state bit, stored at bit 3 102 // of Mask, and so on downwards. So (5 - Position) will shift the 103 // right bit down to bit 0, including the always-0 bit at bit 4 for 104 // the mandatory initial Then. 105 return (Mask >> (5 - Position) & 1); 106 } 107 108 class UnwindContext { 109 using Locs = SmallVector<SMLoc, 4>; 110 111 MCAsmParser &Parser; 112 Locs FnStartLocs; 113 Locs CantUnwindLocs; 114 Locs PersonalityLocs; 115 Locs PersonalityIndexLocs; 116 Locs HandlerDataLocs; 117 int FPReg; 118 119 public: 120 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 121 122 bool hasFnStart() const { return !FnStartLocs.empty(); } 123 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 124 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 125 126 bool hasPersonality() const { 127 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 128 } 129 130 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 131 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 132 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 133 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 134 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 135 136 void saveFPReg(int Reg) { FPReg = Reg; } 137 int getFPReg() const { return FPReg; } 138 139 void emitFnStartLocNotes() const { 140 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 141 FI != FE; ++FI) 142 Parser.Note(*FI, ".fnstart was specified here"); 143 } 144 145 void emitCantUnwindLocNotes() const { 146 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 147 UE = CantUnwindLocs.end(); UI != UE; ++UI) 148 Parser.Note(*UI, ".cantunwind was specified here"); 149 } 150 151 void emitHandlerDataLocNotes() const { 152 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 153 HE = HandlerDataLocs.end(); HI != HE; ++HI) 154 Parser.Note(*HI, ".handlerdata was specified here"); 155 } 156 157 void emitPersonalityLocNotes() const { 158 for (Locs::const_iterator PI = PersonalityLocs.begin(), 159 PE = PersonalityLocs.end(), 160 PII = PersonalityIndexLocs.begin(), 161 PIE = PersonalityIndexLocs.end(); 162 PI != PE || PII != PIE;) { 163 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 164 Parser.Note(*PI++, ".personality was specified here"); 165 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 166 Parser.Note(*PII++, ".personalityindex was specified here"); 167 else 168 llvm_unreachable(".personality and .personalityindex cannot be " 169 "at the same location"); 170 } 171 } 172 173 void reset() { 174 FnStartLocs = Locs(); 175 CantUnwindLocs = Locs(); 176 PersonalityLocs = Locs(); 177 HandlerDataLocs = Locs(); 178 PersonalityIndexLocs = Locs(); 179 FPReg = ARM::SP; 180 } 181 }; 182 183 184 class ARMAsmParser : public MCTargetAsmParser { 185 const MCRegisterInfo *MRI; 186 UnwindContext UC; 187 188 ARMTargetStreamer &getTargetStreamer() { 189 assert(getParser().getStreamer().getTargetStreamer() && 190 "do not have a target streamer"); 191 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 192 return static_cast<ARMTargetStreamer &>(TS); 193 } 194 195 // Map of register aliases registers via the .req directive. 196 StringMap<unsigned> RegisterReqs; 197 198 bool NextSymbolIsThumb; 199 200 bool useImplicitITThumb() const { 201 return ImplicitItMode == ImplicitItModeTy::Always || 202 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 203 } 204 205 bool useImplicitITARM() const { 206 return ImplicitItMode == ImplicitItModeTy::Always || 207 ImplicitItMode == ImplicitItModeTy::ARMOnly; 208 } 209 210 struct { 211 ARMCC::CondCodes Cond; // Condition for IT block. 212 unsigned Mask:4; // Condition mask for instructions. 213 // Starting at first 1 (from lsb). 214 // '1' condition as indicated in IT. 215 // '0' inverse of condition (else). 216 // Count of instructions in IT block is 217 // 4 - trailingzeroes(mask) 218 // Note that this does not have the same encoding 219 // as in the IT instruction, which also depends 220 // on the low bit of the condition code. 221 222 unsigned CurPosition; // Current position in parsing of IT 223 // block. In range [0,4], with 0 being the IT 224 // instruction itself. Initialized according to 225 // count of instructions in block. ~0U if no 226 // active IT block. 227 228 bool IsExplicit; // true - The IT instruction was present in the 229 // input, we should not modify it. 230 // false - The IT instruction was added 231 // implicitly, we can extend it if that 232 // would be legal. 233 } ITState; 234 235 SmallVector<MCInst, 4> PendingConditionalInsts; 236 237 void flushPendingInstructions(MCStreamer &Out) override { 238 if (!inImplicitITBlock()) { 239 assert(PendingConditionalInsts.size() == 0); 240 return; 241 } 242 243 // Emit the IT instruction 244 MCInst ITInst; 245 ITInst.setOpcode(ARM::t2IT); 246 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 247 ITInst.addOperand(MCOperand::createImm(ITState.Mask)); 248 Out.EmitInstruction(ITInst, getSTI()); 249 250 // Emit the conditonal instructions 251 assert(PendingConditionalInsts.size() <= 4); 252 for (const MCInst &Inst : PendingConditionalInsts) { 253 Out.EmitInstruction(Inst, getSTI()); 254 } 255 PendingConditionalInsts.clear(); 256 257 // Clear the IT state 258 ITState.Mask = 0; 259 ITState.CurPosition = ~0U; 260 } 261 262 bool inITBlock() { return ITState.CurPosition != ~0U; } 263 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 264 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 265 266 bool lastInITBlock() { 267 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 268 } 269 270 void forwardITPosition() { 271 if (!inITBlock()) return; 272 // Move to the next instruction in the IT block, if there is one. If not, 273 // mark the block as done, except for implicit IT blocks, which we leave 274 // open until we find an instruction that can't be added to it. 275 unsigned TZ = countTrailingZeros(ITState.Mask); 276 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 277 ITState.CurPosition = ~0U; // Done with the IT block after this. 278 } 279 280 // Rewind the state of the current IT block, removing the last slot from it. 281 void rewindImplicitITPosition() { 282 assert(inImplicitITBlock()); 283 assert(ITState.CurPosition > 1); 284 ITState.CurPosition--; 285 unsigned TZ = countTrailingZeros(ITState.Mask); 286 unsigned NewMask = 0; 287 NewMask |= ITState.Mask & (0xC << TZ); 288 NewMask |= 0x2 << TZ; 289 ITState.Mask = NewMask; 290 } 291 292 // Rewind the state of the current IT block, removing the last slot from it. 293 // If we were at the first slot, this closes the IT block. 294 void discardImplicitITBlock() { 295 assert(inImplicitITBlock()); 296 assert(ITState.CurPosition == 1); 297 ITState.CurPosition = ~0U; 298 } 299 300 // Return the low-subreg of a given Q register. 301 unsigned getDRegFromQReg(unsigned QReg) const { 302 return MRI->getSubReg(QReg, ARM::dsub_0); 303 } 304 305 // Get the condition code corresponding to the current IT block slot. 306 ARMCC::CondCodes currentITCond() { 307 unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition); 308 return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond; 309 } 310 311 // Invert the condition of the current IT block slot without changing any 312 // other slots in the same block. 313 void invertCurrentITCondition() { 314 if (ITState.CurPosition == 1) { 315 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 316 } else { 317 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 318 } 319 } 320 321 // Returns true if the current IT block is full (all 4 slots used). 322 bool isITBlockFull() { 323 return inITBlock() && (ITState.Mask & 1); 324 } 325 326 // Extend the current implicit IT block to have one more slot with the given 327 // condition code. 328 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 329 assert(inImplicitITBlock()); 330 assert(!isITBlockFull()); 331 assert(Cond == ITState.Cond || 332 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 333 unsigned TZ = countTrailingZeros(ITState.Mask); 334 unsigned NewMask = 0; 335 // Keep any existing condition bits. 336 NewMask |= ITState.Mask & (0xE << TZ); 337 // Insert the new condition bit. 338 NewMask |= (Cond != ITState.Cond) << TZ; 339 // Move the trailing 1 down one bit. 340 NewMask |= 1 << (TZ - 1); 341 ITState.Mask = NewMask; 342 } 343 344 // Create a new implicit IT block with a dummy condition code. 345 void startImplicitITBlock() { 346 assert(!inITBlock()); 347 ITState.Cond = ARMCC::AL; 348 ITState.Mask = 8; 349 ITState.CurPosition = 1; 350 ITState.IsExplicit = false; 351 } 352 353 // Create a new explicit IT block with the given condition and mask. 354 // The mask should be in the format used in ARMOperand and 355 // MCOperand, with a 1 implying 'e', regardless of the low bit of 356 // the condition. 357 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 358 assert(!inITBlock()); 359 ITState.Cond = Cond; 360 ITState.Mask = Mask; 361 ITState.CurPosition = 0; 362 ITState.IsExplicit = true; 363 } 364 365 struct { 366 unsigned Mask : 4; 367 unsigned CurPosition; 368 } VPTState; 369 bool inVPTBlock() { return VPTState.CurPosition != ~0U; } 370 void forwardVPTPosition() { 371 if (!inVPTBlock()) return; 372 unsigned TZ = countTrailingZeros(VPTState.Mask); 373 if (++VPTState.CurPosition == 5 - TZ) 374 VPTState.CurPosition = ~0U; 375 } 376 377 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 378 return getParser().Note(L, Msg, Range); 379 } 380 381 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 382 return getParser().Warning(L, Msg, Range); 383 } 384 385 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 386 return getParser().Error(L, Msg, Range); 387 } 388 389 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 390 unsigned ListNo, bool IsARPop = false); 391 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 392 unsigned ListNo); 393 394 int tryParseRegister(); 395 bool tryParseRegisterWithWriteBack(OperandVector &); 396 int tryParseShiftRegister(OperandVector &); 397 bool parseRegisterList(OperandVector &, bool EnforceOrder = true); 398 bool parseMemory(OperandVector &); 399 bool parseOperand(OperandVector &, StringRef Mnemonic); 400 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 401 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 402 unsigned &ShiftAmount); 403 bool parseLiteralValues(unsigned Size, SMLoc L); 404 bool parseDirectiveThumb(SMLoc L); 405 bool parseDirectiveARM(SMLoc L); 406 bool parseDirectiveThumbFunc(SMLoc L); 407 bool parseDirectiveCode(SMLoc L); 408 bool parseDirectiveSyntax(SMLoc L); 409 bool parseDirectiveReq(StringRef Name, SMLoc L); 410 bool parseDirectiveUnreq(SMLoc L); 411 bool parseDirectiveArch(SMLoc L); 412 bool parseDirectiveEabiAttr(SMLoc L); 413 bool parseDirectiveCPU(SMLoc L); 414 bool parseDirectiveFPU(SMLoc L); 415 bool parseDirectiveFnStart(SMLoc L); 416 bool parseDirectiveFnEnd(SMLoc L); 417 bool parseDirectiveCantUnwind(SMLoc L); 418 bool parseDirectivePersonality(SMLoc L); 419 bool parseDirectiveHandlerData(SMLoc L); 420 bool parseDirectiveSetFP(SMLoc L); 421 bool parseDirectivePad(SMLoc L); 422 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 423 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 424 bool parseDirectiveLtorg(SMLoc L); 425 bool parseDirectiveEven(SMLoc L); 426 bool parseDirectivePersonalityIndex(SMLoc L); 427 bool parseDirectiveUnwindRaw(SMLoc L); 428 bool parseDirectiveTLSDescSeq(SMLoc L); 429 bool parseDirectiveMovSP(SMLoc L); 430 bool parseDirectiveObjectArch(SMLoc L); 431 bool parseDirectiveArchExtension(SMLoc L); 432 bool parseDirectiveAlign(SMLoc L); 433 bool parseDirectiveThumbSet(SMLoc L); 434 435 bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken); 436 StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken, 437 unsigned &PredicationCode, 438 unsigned &VPTPredicationCode, bool &CarrySetting, 439 unsigned &ProcessorIMod, StringRef &ITMask); 440 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken, 441 StringRef FullInst, bool &CanAcceptCarrySet, 442 bool &CanAcceptPredicationCode, 443 bool &CanAcceptVPTPredicationCode); 444 445 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 446 OperandVector &Operands); 447 bool isThumb() const { 448 // FIXME: Can tablegen auto-generate this? 449 return getSTI().getFeatureBits()[ARM::ModeThumb]; 450 } 451 452 bool isThumbOne() const { 453 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 454 } 455 456 bool isThumbTwo() const { 457 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 458 } 459 460 bool hasThumb() const { 461 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 462 } 463 464 bool hasThumb2() const { 465 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 466 } 467 468 bool hasV6Ops() const { 469 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 470 } 471 472 bool hasV6T2Ops() const { 473 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 474 } 475 476 bool hasV6MOps() const { 477 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 478 } 479 480 bool hasV7Ops() const { 481 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 482 } 483 484 bool hasV8Ops() const { 485 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 486 } 487 488 bool hasV8MBaseline() const { 489 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 490 } 491 492 bool hasV8MMainline() const { 493 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 494 } 495 bool hasV8_1MMainline() const { 496 return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps]; 497 } 498 bool hasMVE() const { 499 return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps]; 500 } 501 bool hasMVEFloat() const { 502 return getSTI().getFeatureBits()[ARM::HasMVEFloatOps]; 503 } 504 bool has8MSecExt() const { 505 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 506 } 507 508 bool hasARM() const { 509 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 510 } 511 512 bool hasDSP() const { 513 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 514 } 515 516 bool hasD32() const { 517 return getSTI().getFeatureBits()[ARM::FeatureD32]; 518 } 519 520 bool hasV8_1aOps() const { 521 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 522 } 523 524 bool hasRAS() const { 525 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 526 } 527 528 void SwitchMode() { 529 MCSubtargetInfo &STI = copySTI(); 530 auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 531 setAvailableFeatures(FB); 532 } 533 534 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 535 536 bool isMClass() const { 537 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 538 } 539 540 /// @name Auto-generated Match Functions 541 /// { 542 543 #define GET_ASSEMBLER_HEADER 544 #include "ARMGenAsmMatcher.inc" 545 546 /// } 547 548 OperandMatchResultTy parseITCondCode(OperandVector &); 549 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 550 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 551 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 552 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 553 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &); 554 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 555 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 556 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 557 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 558 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 559 int High); 560 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 561 return parsePKHImm(O, "lsl", 0, 31); 562 } 563 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 564 return parsePKHImm(O, "asr", 1, 32); 565 } 566 OperandMatchResultTy parseSetEndImm(OperandVector &); 567 OperandMatchResultTy parseShifterImm(OperandVector &); 568 OperandMatchResultTy parseRotImm(OperandVector &); 569 OperandMatchResultTy parseModImm(OperandVector &); 570 OperandMatchResultTy parseBitfield(OperandVector &); 571 OperandMatchResultTy parsePostIdxReg(OperandVector &); 572 OperandMatchResultTy parseAM3Offset(OperandVector &); 573 OperandMatchResultTy parseFPImm(OperandVector &); 574 OperandMatchResultTy parseVectorList(OperandVector &); 575 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 576 SMLoc &EndLoc); 577 578 // Asm Match Converter Methods 579 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 580 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 581 void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &); 582 583 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 584 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 585 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 586 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 587 bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 588 bool isITBlockTerminator(MCInst &Inst) const; 589 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); 590 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, 591 bool Load, bool ARMMode, bool Writeback); 592 593 public: 594 enum ARMMatchResultTy { 595 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 596 Match_RequiresNotITBlock, 597 Match_RequiresV6, 598 Match_RequiresThumb2, 599 Match_RequiresV8, 600 Match_RequiresFlagSetting, 601 #define GET_OPERAND_DIAGNOSTIC_TYPES 602 #include "ARMGenAsmMatcher.inc" 603 604 }; 605 606 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 607 const MCInstrInfo &MII, const MCTargetOptions &Options) 608 : MCTargetAsmParser(Options, STI, MII), UC(Parser) { 609 MCAsmParserExtension::Initialize(Parser); 610 611 // Cache the MCRegisterInfo. 612 MRI = getContext().getRegisterInfo(); 613 614 // Initialize the set of available features. 615 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 616 617 // Add build attributes based on the selected target. 618 if (AddBuildAttributes) 619 getTargetStreamer().emitTargetAttributes(STI); 620 621 // Not in an ITBlock to start with. 622 ITState.CurPosition = ~0U; 623 624 VPTState.CurPosition = ~0U; 625 626 NextSymbolIsThumb = false; 627 } 628 629 // Implementation of the MCTargetAsmParser interface: 630 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 631 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 632 SMLoc NameLoc, OperandVector &Operands) override; 633 bool ParseDirective(AsmToken DirectiveID) override; 634 635 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 636 unsigned Kind) override; 637 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 638 639 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 640 OperandVector &Operands, MCStreamer &Out, 641 uint64_t &ErrorInfo, 642 bool MatchingInlineAsm) override; 643 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 644 SmallVectorImpl<NearMissInfo> &NearMisses, 645 bool MatchingInlineAsm, bool &EmitInITBlock, 646 MCStreamer &Out); 647 648 struct NearMissMessage { 649 SMLoc Loc; 650 SmallString<128> Message; 651 }; 652 653 const char *getCustomOperandDiag(ARMMatchResultTy MatchError); 654 655 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 656 SmallVectorImpl<NearMissMessage> &NearMissesOut, 657 SMLoc IDLoc, OperandVector &Operands); 658 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, 659 OperandVector &Operands); 660 661 void doBeforeLabelEmit(MCSymbol *Symbol) override; 662 663 void onLabelParsed(MCSymbol *Symbol) override; 664 }; 665 666 /// ARMOperand - Instances of this class represent a parsed ARM machine 667 /// operand. 668 class ARMOperand : public MCParsedAsmOperand { 669 enum KindTy { 670 k_CondCode, 671 k_VPTPred, 672 k_CCOut, 673 k_ITCondMask, 674 k_CoprocNum, 675 k_CoprocReg, 676 k_CoprocOption, 677 k_Immediate, 678 k_MemBarrierOpt, 679 k_InstSyncBarrierOpt, 680 k_TraceSyncBarrierOpt, 681 k_Memory, 682 k_PostIndexRegister, 683 k_MSRMask, 684 k_BankedReg, 685 k_ProcIFlags, 686 k_VectorIndex, 687 k_Register, 688 k_RegisterList, 689 k_RegisterListWithAPSR, 690 k_DPRRegisterList, 691 k_SPRRegisterList, 692 k_FPSRegisterListWithVPR, 693 k_FPDRegisterListWithVPR, 694 k_VectorList, 695 k_VectorListAllLanes, 696 k_VectorListIndexed, 697 k_ShiftedRegister, 698 k_ShiftedImmediate, 699 k_ShifterImmediate, 700 k_RotateImmediate, 701 k_ModifiedImmediate, 702 k_ConstantPoolImmediate, 703 k_BitfieldDescriptor, 704 k_Token, 705 } Kind; 706 707 SMLoc StartLoc, EndLoc, AlignmentLoc; 708 SmallVector<unsigned, 8> Registers; 709 710 struct CCOp { 711 ARMCC::CondCodes Val; 712 }; 713 714 struct VCCOp { 715 ARMVCC::VPTCodes Val; 716 }; 717 718 struct CopOp { 719 unsigned Val; 720 }; 721 722 struct CoprocOptionOp { 723 unsigned Val; 724 }; 725 726 struct ITMaskOp { 727 unsigned Mask:4; 728 }; 729 730 struct MBOptOp { 731 ARM_MB::MemBOpt Val; 732 }; 733 734 struct ISBOptOp { 735 ARM_ISB::InstSyncBOpt Val; 736 }; 737 738 struct TSBOptOp { 739 ARM_TSB::TraceSyncBOpt Val; 740 }; 741 742 struct IFlagsOp { 743 ARM_PROC::IFlags Val; 744 }; 745 746 struct MMaskOp { 747 unsigned Val; 748 }; 749 750 struct BankedRegOp { 751 unsigned Val; 752 }; 753 754 struct TokOp { 755 const char *Data; 756 unsigned Length; 757 }; 758 759 struct RegOp { 760 unsigned RegNum; 761 }; 762 763 // A vector register list is a sequential list of 1 to 4 registers. 764 struct VectorListOp { 765 unsigned RegNum; 766 unsigned Count; 767 unsigned LaneIndex; 768 bool isDoubleSpaced; 769 }; 770 771 struct VectorIndexOp { 772 unsigned Val; 773 }; 774 775 struct ImmOp { 776 const MCExpr *Val; 777 }; 778 779 /// Combined record for all forms of ARM address expressions. 780 struct MemoryOp { 781 unsigned BaseRegNum; 782 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 783 // was specified. 784 const MCConstantExpr *OffsetImm; // Offset immediate value 785 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 786 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 787 unsigned ShiftImm; // shift for OffsetReg. 788 unsigned Alignment; // 0 = no alignment specified 789 // n = alignment in bytes (2, 4, 8, 16, or 32) 790 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 791 }; 792 793 struct PostIdxRegOp { 794 unsigned RegNum; 795 bool isAdd; 796 ARM_AM::ShiftOpc ShiftTy; 797 unsigned ShiftImm; 798 }; 799 800 struct ShifterImmOp { 801 bool isASR; 802 unsigned Imm; 803 }; 804 805 struct RegShiftedRegOp { 806 ARM_AM::ShiftOpc ShiftTy; 807 unsigned SrcReg; 808 unsigned ShiftReg; 809 unsigned ShiftImm; 810 }; 811 812 struct RegShiftedImmOp { 813 ARM_AM::ShiftOpc ShiftTy; 814 unsigned SrcReg; 815 unsigned ShiftImm; 816 }; 817 818 struct RotImmOp { 819 unsigned Imm; 820 }; 821 822 struct ModImmOp { 823 unsigned Bits; 824 unsigned Rot; 825 }; 826 827 struct BitfieldOp { 828 unsigned LSB; 829 unsigned Width; 830 }; 831 832 union { 833 struct CCOp CC; 834 struct VCCOp VCC; 835 struct CopOp Cop; 836 struct CoprocOptionOp CoprocOption; 837 struct MBOptOp MBOpt; 838 struct ISBOptOp ISBOpt; 839 struct TSBOptOp TSBOpt; 840 struct ITMaskOp ITMask; 841 struct IFlagsOp IFlags; 842 struct MMaskOp MMask; 843 struct BankedRegOp BankedReg; 844 struct TokOp Tok; 845 struct RegOp Reg; 846 struct VectorListOp VectorList; 847 struct VectorIndexOp VectorIndex; 848 struct ImmOp Imm; 849 struct MemoryOp Memory; 850 struct PostIdxRegOp PostIdxReg; 851 struct ShifterImmOp ShifterImm; 852 struct RegShiftedRegOp RegShiftedReg; 853 struct RegShiftedImmOp RegShiftedImm; 854 struct RotImmOp RotImm; 855 struct ModImmOp ModImm; 856 struct BitfieldOp Bitfield; 857 }; 858 859 public: 860 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 861 862 /// getStartLoc - Get the location of the first token of this operand. 863 SMLoc getStartLoc() const override { return StartLoc; } 864 865 /// getEndLoc - Get the location of the last token of this operand. 866 SMLoc getEndLoc() const override { return EndLoc; } 867 868 /// getLocRange - Get the range between the first and last token of this 869 /// operand. 870 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 871 872 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 873 SMLoc getAlignmentLoc() const { 874 assert(Kind == k_Memory && "Invalid access!"); 875 return AlignmentLoc; 876 } 877 878 ARMCC::CondCodes getCondCode() const { 879 assert(Kind == k_CondCode && "Invalid access!"); 880 return CC.Val; 881 } 882 883 ARMVCC::VPTCodes getVPTPred() const { 884 assert(isVPTPred() && "Invalid access!"); 885 return VCC.Val; 886 } 887 888 unsigned getCoproc() const { 889 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 890 return Cop.Val; 891 } 892 893 StringRef getToken() const { 894 assert(Kind == k_Token && "Invalid access!"); 895 return StringRef(Tok.Data, Tok.Length); 896 } 897 898 unsigned getReg() const override { 899 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 900 return Reg.RegNum; 901 } 902 903 const SmallVectorImpl<unsigned> &getRegList() const { 904 assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR || 905 Kind == k_DPRRegisterList || Kind == k_SPRRegisterList || 906 Kind == k_FPSRegisterListWithVPR || 907 Kind == k_FPDRegisterListWithVPR) && 908 "Invalid access!"); 909 return Registers; 910 } 911 912 const MCExpr *getImm() const { 913 assert(isImm() && "Invalid access!"); 914 return Imm.Val; 915 } 916 917 const MCExpr *getConstantPoolImm() const { 918 assert(isConstantPoolImm() && "Invalid access!"); 919 return Imm.Val; 920 } 921 922 unsigned getVectorIndex() const { 923 assert(Kind == k_VectorIndex && "Invalid access!"); 924 return VectorIndex.Val; 925 } 926 927 ARM_MB::MemBOpt getMemBarrierOpt() const { 928 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 929 return MBOpt.Val; 930 } 931 932 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 933 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 934 return ISBOpt.Val; 935 } 936 937 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const { 938 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!"); 939 return TSBOpt.Val; 940 } 941 942 ARM_PROC::IFlags getProcIFlags() const { 943 assert(Kind == k_ProcIFlags && "Invalid access!"); 944 return IFlags.Val; 945 } 946 947 unsigned getMSRMask() const { 948 assert(Kind == k_MSRMask && "Invalid access!"); 949 return MMask.Val; 950 } 951 952 unsigned getBankedReg() const { 953 assert(Kind == k_BankedReg && "Invalid access!"); 954 return BankedReg.Val; 955 } 956 957 bool isCoprocNum() const { return Kind == k_CoprocNum; } 958 bool isCoprocReg() const { return Kind == k_CoprocReg; } 959 bool isCoprocOption() const { return Kind == k_CoprocOption; } 960 bool isCondCode() const { return Kind == k_CondCode; } 961 bool isVPTPred() const { return Kind == k_VPTPred; } 962 bool isCCOut() const { return Kind == k_CCOut; } 963 bool isITMask() const { return Kind == k_ITCondMask; } 964 bool isITCondCode() const { return Kind == k_CondCode; } 965 bool isImm() const override { 966 return Kind == k_Immediate; 967 } 968 969 bool isARMBranchTarget() const { 970 if (!isImm()) return false; 971 972 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 973 return CE->getValue() % 4 == 0; 974 return true; 975 } 976 977 978 bool isThumbBranchTarget() const { 979 if (!isImm()) return false; 980 981 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 982 return CE->getValue() % 2 == 0; 983 return true; 984 } 985 986 // checks whether this operand is an unsigned offset which fits is a field 987 // of specified width and scaled by a specific number of bits 988 template<unsigned width, unsigned scale> 989 bool isUnsignedOffset() const { 990 if (!isImm()) return false; 991 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 992 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 993 int64_t Val = CE->getValue(); 994 int64_t Align = 1LL << scale; 995 int64_t Max = Align * ((1LL << width) - 1); 996 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 997 } 998 return false; 999 } 1000 1001 // checks whether this operand is an signed offset which fits is a field 1002 // of specified width and scaled by a specific number of bits 1003 template<unsigned width, unsigned scale> 1004 bool isSignedOffset() const { 1005 if (!isImm()) return false; 1006 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1007 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1008 int64_t Val = CE->getValue(); 1009 int64_t Align = 1LL << scale; 1010 int64_t Max = Align * ((1LL << (width-1)) - 1); 1011 int64_t Min = -Align * (1LL << (width-1)); 1012 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 1013 } 1014 return false; 1015 } 1016 1017 // checks whether this operand is an offset suitable for the LE / 1018 // LETP instructions in Arm v8.1M 1019 bool isLEOffset() const { 1020 if (!isImm()) return false; 1021 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1022 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1023 int64_t Val = CE->getValue(); 1024 return Val < 0 && Val >= -4094 && (Val & 1) == 0; 1025 } 1026 return false; 1027 } 1028 1029 // checks whether this operand is a memory operand computed as an offset 1030 // applied to PC. the offset may have 8 bits of magnitude and is represented 1031 // with two bits of shift. textually it may be either [pc, #imm], #imm or 1032 // relocable expression... 1033 bool isThumbMemPC() const { 1034 int64_t Val = 0; 1035 if (isImm()) { 1036 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1037 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 1038 if (!CE) return false; 1039 Val = CE->getValue(); 1040 } 1041 else if (isGPRMem()) { 1042 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 1043 if(Memory.BaseRegNum != ARM::PC) return false; 1044 Val = Memory.OffsetImm->getValue(); 1045 } 1046 else return false; 1047 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 1048 } 1049 1050 bool isFPImm() const { 1051 if (!isImm()) return false; 1052 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1053 if (!CE) return false; 1054 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1055 return Val != -1; 1056 } 1057 1058 template<int64_t N, int64_t M> 1059 bool isImmediate() const { 1060 if (!isImm()) return false; 1061 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1062 if (!CE) return false; 1063 int64_t Value = CE->getValue(); 1064 return Value >= N && Value <= M; 1065 } 1066 1067 template<int64_t N, int64_t M> 1068 bool isImmediateS4() const { 1069 if (!isImm()) return false; 1070 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1071 if (!CE) return false; 1072 int64_t Value = CE->getValue(); 1073 return ((Value & 3) == 0) && Value >= N && Value <= M; 1074 } 1075 template<int64_t N, int64_t M> 1076 bool isImmediateS2() const { 1077 if (!isImm()) return false; 1078 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1079 if (!CE) return false; 1080 int64_t Value = CE->getValue(); 1081 return ((Value & 1) == 0) && Value >= N && Value <= M; 1082 } 1083 bool isFBits16() const { 1084 return isImmediate<0, 17>(); 1085 } 1086 bool isFBits32() const { 1087 return isImmediate<1, 33>(); 1088 } 1089 bool isImm8s4() const { 1090 return isImmediateS4<-1020, 1020>(); 1091 } 1092 bool isImm7s4() const { 1093 return isImmediateS4<-508, 508>(); 1094 } 1095 bool isImm7Shift0() const { 1096 return isImmediate<-127, 127>(); 1097 } 1098 bool isImm7Shift1() const { 1099 return isImmediateS2<-255, 255>(); 1100 } 1101 bool isImm7Shift2() const { 1102 return isImmediateS4<-511, 511>(); 1103 } 1104 bool isImm7() const { 1105 return isImmediate<-127, 127>(); 1106 } 1107 bool isImm0_1020s4() const { 1108 return isImmediateS4<0, 1020>(); 1109 } 1110 bool isImm0_508s4() const { 1111 return isImmediateS4<0, 508>(); 1112 } 1113 bool isImm0_508s4Neg() const { 1114 if (!isImm()) return false; 1115 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1116 if (!CE) return false; 1117 int64_t Value = -CE->getValue(); 1118 // explicitly exclude zero. we want that to use the normal 0_508 version. 1119 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 1120 } 1121 1122 bool isImm0_4095Neg() const { 1123 if (!isImm()) return false; 1124 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1125 if (!CE) return false; 1126 // isImm0_4095Neg is used with 32-bit immediates only. 1127 // 32-bit immediates are zero extended to 64-bit when parsed, 1128 // thus simple -CE->getValue() results in a big negative number, 1129 // not a small positive number as intended 1130 if ((CE->getValue() >> 32) > 0) return false; 1131 uint32_t Value = -static_cast<uint32_t>(CE->getValue()); 1132 return Value > 0 && Value < 4096; 1133 } 1134 1135 bool isImm0_7() const { 1136 return isImmediate<0, 7>(); 1137 } 1138 1139 bool isImm1_16() const { 1140 return isImmediate<1, 16>(); 1141 } 1142 1143 bool isImm1_32() const { 1144 return isImmediate<1, 32>(); 1145 } 1146 1147 bool isImm8_255() const { 1148 return isImmediate<8, 255>(); 1149 } 1150 1151 bool isImm256_65535Expr() const { 1152 if (!isImm()) return false; 1153 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1154 // If it's not a constant expression, it'll generate a fixup and be 1155 // handled later. 1156 if (!CE) return true; 1157 int64_t Value = CE->getValue(); 1158 return Value >= 256 && Value < 65536; 1159 } 1160 1161 bool isImm0_65535Expr() const { 1162 if (!isImm()) return false; 1163 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1164 // If it's not a constant expression, it'll generate a fixup and be 1165 // handled later. 1166 if (!CE) return true; 1167 int64_t Value = CE->getValue(); 1168 return Value >= 0 && Value < 65536; 1169 } 1170 1171 bool isImm24bit() const { 1172 return isImmediate<0, 0xffffff + 1>(); 1173 } 1174 1175 bool isImmThumbSR() const { 1176 return isImmediate<1, 33>(); 1177 } 1178 1179 template<int shift> 1180 bool isExpImmValue(uint64_t Value) const { 1181 uint64_t mask = (1 << shift) - 1; 1182 if ((Value & mask) != 0 || (Value >> shift) > 0xff) 1183 return false; 1184 return true; 1185 } 1186 1187 template<int shift> 1188 bool isExpImm() const { 1189 if (!isImm()) return false; 1190 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1191 if (!CE) return false; 1192 1193 return isExpImmValue<shift>(CE->getValue()); 1194 } 1195 1196 template<int shift, int size> 1197 bool isInvertedExpImm() const { 1198 if (!isImm()) return false; 1199 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1200 if (!CE) return false; 1201 1202 uint64_t OriginalValue = CE->getValue(); 1203 uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1); 1204 return isExpImmValue<shift>(InvertedValue); 1205 } 1206 1207 bool isPKHLSLImm() const { 1208 return isImmediate<0, 32>(); 1209 } 1210 1211 bool isPKHASRImm() const { 1212 return isImmediate<0, 33>(); 1213 } 1214 1215 bool isAdrLabel() const { 1216 // If we have an immediate that's not a constant, treat it as a label 1217 // reference needing a fixup. 1218 if (isImm() && !isa<MCConstantExpr>(getImm())) 1219 return true; 1220 1221 // If it is a constant, it must fit into a modified immediate encoding. 1222 if (!isImm()) return false; 1223 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1224 if (!CE) return false; 1225 int64_t Value = CE->getValue(); 1226 return (ARM_AM::getSOImmVal(Value) != -1 || 1227 ARM_AM::getSOImmVal(-Value) != -1); 1228 } 1229 1230 bool isT2SOImm() const { 1231 // If we have an immediate that's not a constant, treat it as an expression 1232 // needing a fixup. 1233 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1234 // We want to avoid matching :upper16: and :lower16: as we want these 1235 // expressions to match in isImm0_65535Expr() 1236 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1237 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1238 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1239 } 1240 if (!isImm()) return false; 1241 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1242 if (!CE) return false; 1243 int64_t Value = CE->getValue(); 1244 return ARM_AM::getT2SOImmVal(Value) != -1; 1245 } 1246 1247 bool isT2SOImmNot() const { 1248 if (!isImm()) return false; 1249 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1250 if (!CE) return false; 1251 int64_t Value = CE->getValue(); 1252 return ARM_AM::getT2SOImmVal(Value) == -1 && 1253 ARM_AM::getT2SOImmVal(~Value) != -1; 1254 } 1255 1256 bool isT2SOImmNeg() const { 1257 if (!isImm()) return false; 1258 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1259 if (!CE) return false; 1260 int64_t Value = CE->getValue(); 1261 // Only use this when not representable as a plain so_imm. 1262 return ARM_AM::getT2SOImmVal(Value) == -1 && 1263 ARM_AM::getT2SOImmVal(-Value) != -1; 1264 } 1265 1266 bool isSetEndImm() const { 1267 if (!isImm()) return false; 1268 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1269 if (!CE) return false; 1270 int64_t Value = CE->getValue(); 1271 return Value == 1 || Value == 0; 1272 } 1273 1274 bool isReg() const override { return Kind == k_Register; } 1275 bool isRegList() const { return Kind == k_RegisterList; } 1276 bool isRegListWithAPSR() const { 1277 return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList; 1278 } 1279 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1280 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1281 bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; } 1282 bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; } 1283 bool isToken() const override { return Kind == k_Token; } 1284 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1285 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1286 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; } 1287 bool isMem() const override { 1288 return isGPRMem() || isMVEMem(); 1289 } 1290 bool isMVEMem() const { 1291 if (Kind != k_Memory) 1292 return false; 1293 if (Memory.BaseRegNum && 1294 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) && 1295 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum)) 1296 return false; 1297 if (Memory.OffsetRegNum && 1298 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1299 Memory.OffsetRegNum)) 1300 return false; 1301 return true; 1302 } 1303 bool isGPRMem() const { 1304 if (Kind != k_Memory) 1305 return false; 1306 if (Memory.BaseRegNum && 1307 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) 1308 return false; 1309 if (Memory.OffsetRegNum && 1310 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) 1311 return false; 1312 return true; 1313 } 1314 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1315 bool isRegShiftedReg() const { 1316 return Kind == k_ShiftedRegister && 1317 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1318 RegShiftedReg.SrcReg) && 1319 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1320 RegShiftedReg.ShiftReg); 1321 } 1322 bool isRegShiftedImm() const { 1323 return Kind == k_ShiftedImmediate && 1324 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1325 RegShiftedImm.SrcReg); 1326 } 1327 bool isRotImm() const { return Kind == k_RotateImmediate; } 1328 1329 template<unsigned Min, unsigned Max> 1330 bool isPowerTwoInRange() const { 1331 if (!isImm()) return false; 1332 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1333 if (!CE) return false; 1334 int64_t Value = CE->getValue(); 1335 return Value > 0 && countPopulation((uint64_t)Value) == 1 && 1336 Value >= Min && Value <= Max; 1337 } 1338 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1339 1340 bool isModImmNot() const { 1341 if (!isImm()) return false; 1342 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1343 if (!CE) return false; 1344 int64_t Value = CE->getValue(); 1345 return ARM_AM::getSOImmVal(~Value) != -1; 1346 } 1347 1348 bool isModImmNeg() const { 1349 if (!isImm()) return false; 1350 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1351 if (!CE) return false; 1352 int64_t Value = CE->getValue(); 1353 return ARM_AM::getSOImmVal(Value) == -1 && 1354 ARM_AM::getSOImmVal(-Value) != -1; 1355 } 1356 1357 bool isThumbModImmNeg1_7() const { 1358 if (!isImm()) return false; 1359 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1360 if (!CE) return false; 1361 int32_t Value = -(int32_t)CE->getValue(); 1362 return 0 < Value && Value < 8; 1363 } 1364 1365 bool isThumbModImmNeg8_255() const { 1366 if (!isImm()) return false; 1367 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1368 if (!CE) return false; 1369 int32_t Value = -(int32_t)CE->getValue(); 1370 return 7 < Value && Value < 256; 1371 } 1372 1373 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1374 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1375 bool isPostIdxRegShifted() const { 1376 return Kind == k_PostIndexRegister && 1377 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); 1378 } 1379 bool isPostIdxReg() const { 1380 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; 1381 } 1382 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1383 if (!isGPRMem()) 1384 return false; 1385 // No offset of any kind. 1386 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1387 (alignOK || Memory.Alignment == Alignment); 1388 } 1389 bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const { 1390 if (!isGPRMem()) 1391 return false; 1392 1393 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1394 Memory.BaseRegNum)) 1395 return false; 1396 1397 // No offset of any kind. 1398 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1399 (alignOK || Memory.Alignment == Alignment); 1400 } 1401 bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const { 1402 if (!isGPRMem()) 1403 return false; 1404 1405 if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains( 1406 Memory.BaseRegNum)) 1407 return false; 1408 1409 // No offset of any kind. 1410 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1411 (alignOK || Memory.Alignment == Alignment); 1412 } 1413 bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const { 1414 if (!isGPRMem()) 1415 return false; 1416 1417 if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains( 1418 Memory.BaseRegNum)) 1419 return false; 1420 1421 // No offset of any kind. 1422 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1423 (alignOK || Memory.Alignment == Alignment); 1424 } 1425 bool isMemPCRelImm12() const { 1426 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1427 return false; 1428 // Base register must be PC. 1429 if (Memory.BaseRegNum != ARM::PC) 1430 return false; 1431 // Immediate offset in range [-4095, 4095]. 1432 if (!Memory.OffsetImm) return true; 1433 int64_t Val = Memory.OffsetImm->getValue(); 1434 return (Val > -4096 && Val < 4096) || 1435 (Val == std::numeric_limits<int32_t>::min()); 1436 } 1437 1438 bool isAlignedMemory() const { 1439 return isMemNoOffset(true); 1440 } 1441 1442 bool isAlignedMemoryNone() const { 1443 return isMemNoOffset(false, 0); 1444 } 1445 1446 bool isDupAlignedMemoryNone() const { 1447 return isMemNoOffset(false, 0); 1448 } 1449 1450 bool isAlignedMemory16() const { 1451 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1452 return true; 1453 return isMemNoOffset(false, 0); 1454 } 1455 1456 bool isDupAlignedMemory16() const { 1457 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1458 return true; 1459 return isMemNoOffset(false, 0); 1460 } 1461 1462 bool isAlignedMemory32() const { 1463 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1464 return true; 1465 return isMemNoOffset(false, 0); 1466 } 1467 1468 bool isDupAlignedMemory32() const { 1469 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1470 return true; 1471 return isMemNoOffset(false, 0); 1472 } 1473 1474 bool isAlignedMemory64() const { 1475 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1476 return true; 1477 return isMemNoOffset(false, 0); 1478 } 1479 1480 bool isDupAlignedMemory64() const { 1481 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1482 return true; 1483 return isMemNoOffset(false, 0); 1484 } 1485 1486 bool isAlignedMemory64or128() const { 1487 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1488 return true; 1489 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1490 return true; 1491 return isMemNoOffset(false, 0); 1492 } 1493 1494 bool isDupAlignedMemory64or128() const { 1495 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1496 return true; 1497 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1498 return true; 1499 return isMemNoOffset(false, 0); 1500 } 1501 1502 bool isAlignedMemory64or128or256() const { 1503 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1504 return true; 1505 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1506 return true; 1507 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1508 return true; 1509 return isMemNoOffset(false, 0); 1510 } 1511 1512 bool isAddrMode2() const { 1513 if (!isGPRMem() || Memory.Alignment != 0) return false; 1514 // Check for register offset. 1515 if (Memory.OffsetRegNum) return true; 1516 // Immediate offset in range [-4095, 4095]. 1517 if (!Memory.OffsetImm) return true; 1518 int64_t Val = Memory.OffsetImm->getValue(); 1519 return Val > -4096 && Val < 4096; 1520 } 1521 1522 bool isAM2OffsetImm() const { 1523 if (!isImm()) return false; 1524 // Immediate offset in range [-4095, 4095]. 1525 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1526 if (!CE) return false; 1527 int64_t Val = CE->getValue(); 1528 return (Val == std::numeric_limits<int32_t>::min()) || 1529 (Val > -4096 && Val < 4096); 1530 } 1531 1532 bool isAddrMode3() const { 1533 // If we have an immediate that's not a constant, treat it as a label 1534 // reference needing a fixup. If it is a constant, it's something else 1535 // and we reject it. 1536 if (isImm() && !isa<MCConstantExpr>(getImm())) 1537 return true; 1538 if (!isGPRMem() || Memory.Alignment != 0) return false; 1539 // No shifts are legal for AM3. 1540 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1541 // Check for register offset. 1542 if (Memory.OffsetRegNum) return true; 1543 // Immediate offset in range [-255, 255]. 1544 if (!Memory.OffsetImm) return true; 1545 int64_t Val = Memory.OffsetImm->getValue(); 1546 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we 1547 // have to check for this too. 1548 return (Val > -256 && Val < 256) || 1549 Val == std::numeric_limits<int32_t>::min(); 1550 } 1551 1552 bool isAM3Offset() const { 1553 if (isPostIdxReg()) 1554 return true; 1555 if (!isImm()) 1556 return false; 1557 // Immediate offset in range [-255, 255]. 1558 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1559 if (!CE) return false; 1560 int64_t Val = CE->getValue(); 1561 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1562 return (Val > -256 && Val < 256) || 1563 Val == std::numeric_limits<int32_t>::min(); 1564 } 1565 1566 bool isAddrMode5() const { 1567 // If we have an immediate that's not a constant, treat it as a label 1568 // reference needing a fixup. If it is a constant, it's something else 1569 // and we reject it. 1570 if (isImm() && !isa<MCConstantExpr>(getImm())) 1571 return true; 1572 if (!isGPRMem() || Memory.Alignment != 0) return false; 1573 // Check for register offset. 1574 if (Memory.OffsetRegNum) return false; 1575 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1576 if (!Memory.OffsetImm) return true; 1577 int64_t Val = Memory.OffsetImm->getValue(); 1578 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1579 Val == std::numeric_limits<int32_t>::min(); 1580 } 1581 1582 bool isAddrMode5FP16() const { 1583 // If we have an immediate that's not a constant, treat it as a label 1584 // reference needing a fixup. If it is a constant, it's something else 1585 // and we reject it. 1586 if (isImm() && !isa<MCConstantExpr>(getImm())) 1587 return true; 1588 if (!isGPRMem() || Memory.Alignment != 0) return false; 1589 // Check for register offset. 1590 if (Memory.OffsetRegNum) return false; 1591 // Immediate offset in range [-510, 510] and a multiple of 2. 1592 if (!Memory.OffsetImm) return true; 1593 int64_t Val = Memory.OffsetImm->getValue(); 1594 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || 1595 Val == std::numeric_limits<int32_t>::min(); 1596 } 1597 1598 bool isMemTBB() const { 1599 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1600 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1601 return false; 1602 return true; 1603 } 1604 1605 bool isMemTBH() const { 1606 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1607 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1608 Memory.Alignment != 0 ) 1609 return false; 1610 return true; 1611 } 1612 1613 bool isMemRegOffset() const { 1614 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1615 return false; 1616 return true; 1617 } 1618 1619 bool isT2MemRegOffset() const { 1620 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1621 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1622 return false; 1623 // Only lsl #{0, 1, 2, 3} allowed. 1624 if (Memory.ShiftType == ARM_AM::no_shift) 1625 return true; 1626 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1627 return false; 1628 return true; 1629 } 1630 1631 bool isMemThumbRR() const { 1632 // Thumb reg+reg addressing is simple. Just two registers, a base and 1633 // an offset. No shifts, negations or any other complicating factors. 1634 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1635 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1636 return false; 1637 return isARMLowRegister(Memory.BaseRegNum) && 1638 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1639 } 1640 1641 bool isMemThumbRIs4() const { 1642 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1643 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1644 return false; 1645 // Immediate offset, multiple of 4 in range [0, 124]. 1646 if (!Memory.OffsetImm) return true; 1647 int64_t Val = Memory.OffsetImm->getValue(); 1648 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1649 } 1650 1651 bool isMemThumbRIs2() const { 1652 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1653 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1654 return false; 1655 // Immediate offset, multiple of 4 in range [0, 62]. 1656 if (!Memory.OffsetImm) return true; 1657 int64_t Val = Memory.OffsetImm->getValue(); 1658 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1659 } 1660 1661 bool isMemThumbRIs1() const { 1662 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1663 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1664 return false; 1665 // Immediate offset in range [0, 31]. 1666 if (!Memory.OffsetImm) return true; 1667 int64_t Val = Memory.OffsetImm->getValue(); 1668 return Val >= 0 && Val <= 31; 1669 } 1670 1671 bool isMemThumbSPI() const { 1672 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1673 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1674 return false; 1675 // Immediate offset, multiple of 4 in range [0, 1020]. 1676 if (!Memory.OffsetImm) return true; 1677 int64_t Val = Memory.OffsetImm->getValue(); 1678 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1679 } 1680 1681 bool isMemImm8s4Offset() const { 1682 // If we have an immediate that's not a constant, treat it as a label 1683 // reference needing a fixup. If it is a constant, it's something else 1684 // and we reject it. 1685 if (isImm() && !isa<MCConstantExpr>(getImm())) 1686 return true; 1687 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1688 return false; 1689 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1690 if (!Memory.OffsetImm) return true; 1691 int64_t Val = Memory.OffsetImm->getValue(); 1692 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1693 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || 1694 Val == std::numeric_limits<int32_t>::min(); 1695 } 1696 bool isMemImm7s4Offset() const { 1697 // If we have an immediate that's not a constant, treat it as a label 1698 // reference needing a fixup. If it is a constant, it's something else 1699 // and we reject it. 1700 if (isImm() && !isa<MCConstantExpr>(getImm())) 1701 return true; 1702 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1703 !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1704 Memory.BaseRegNum)) 1705 return false; 1706 // Immediate offset a multiple of 4 in range [-508, 508]. 1707 if (!Memory.OffsetImm) return true; 1708 int64_t Val = Memory.OffsetImm->getValue(); 1709 // Special case, #-0 is INT32_MIN. 1710 return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN; 1711 } 1712 bool isMemImm0_1020s4Offset() const { 1713 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1714 return false; 1715 // Immediate offset a multiple of 4 in range [0, 1020]. 1716 if (!Memory.OffsetImm) return true; 1717 int64_t Val = Memory.OffsetImm->getValue(); 1718 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1719 } 1720 1721 bool isMemImm8Offset() const { 1722 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1723 return false; 1724 // Base reg of PC isn't allowed for these encodings. 1725 if (Memory.BaseRegNum == ARM::PC) return false; 1726 // Immediate offset in range [-255, 255]. 1727 if (!Memory.OffsetImm) return true; 1728 int64_t Val = Memory.OffsetImm->getValue(); 1729 return (Val == std::numeric_limits<int32_t>::min()) || 1730 (Val > -256 && Val < 256); 1731 } 1732 1733 template<unsigned Bits, unsigned RegClassID> 1734 bool isMemImm7ShiftedOffset() const { 1735 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1736 !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum)) 1737 return false; 1738 1739 // Expect an immediate offset equal to an element of the range 1740 // [-127, 127], shifted left by Bits. 1741 1742 if (!Memory.OffsetImm) return true; 1743 int64_t Val = Memory.OffsetImm->getValue(); 1744 1745 // INT32_MIN is a special-case value (indicating the encoding with 1746 // zero offset and the subtract bit set) 1747 if (Val == INT32_MIN) 1748 return true; 1749 1750 unsigned Divisor = 1U << Bits; 1751 1752 // Check that the low bits are zero 1753 if (Val % Divisor != 0) 1754 return false; 1755 1756 // Check that the remaining offset is within range. 1757 Val /= Divisor; 1758 return (Val >= -127 && Val <= 127); 1759 } 1760 1761 template <int shift> bool isMemRegRQOffset() const { 1762 if (!isMVEMem() || Memory.OffsetImm != 0 || Memory.Alignment != 0) 1763 return false; 1764 1765 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1766 Memory.BaseRegNum)) 1767 return false; 1768 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1769 Memory.OffsetRegNum)) 1770 return false; 1771 1772 if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift) 1773 return false; 1774 1775 if (shift > 0 && 1776 (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift)) 1777 return false; 1778 1779 return true; 1780 } 1781 1782 template <int shift> bool isMemRegQOffset() const { 1783 if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1784 return false; 1785 1786 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1787 Memory.BaseRegNum)) 1788 return false; 1789 1790 if(!Memory.OffsetImm) return true; 1791 static_assert(shift < 56, 1792 "Such that we dont shift by a value higher than 62"); 1793 int64_t Val = Memory.OffsetImm->getValue(); 1794 1795 // The value must be a multiple of (1 << shift) 1796 if ((Val & ((1U << shift) - 1)) != 0) 1797 return false; 1798 1799 // And be in the right range, depending on the amount that it is shifted 1800 // by. Shift 0, is equal to 7 unsigned bits, the sign bit is set 1801 // separately. 1802 int64_t Range = (1U << (7+shift)) - 1; 1803 return (Val == INT32_MIN) || (Val > -Range && Val < Range); 1804 } 1805 1806 bool isMemPosImm8Offset() const { 1807 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1808 return false; 1809 // Immediate offset in range [0, 255]. 1810 if (!Memory.OffsetImm) return true; 1811 int64_t Val = Memory.OffsetImm->getValue(); 1812 return Val >= 0 && Val < 256; 1813 } 1814 1815 bool isMemNegImm8Offset() const { 1816 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1817 return false; 1818 // Base reg of PC isn't allowed for these encodings. 1819 if (Memory.BaseRegNum == ARM::PC) return false; 1820 // Immediate offset in range [-255, -1]. 1821 if (!Memory.OffsetImm) return false; 1822 int64_t Val = Memory.OffsetImm->getValue(); 1823 return (Val == std::numeric_limits<int32_t>::min()) || 1824 (Val > -256 && Val < 0); 1825 } 1826 1827 bool isMemUImm12Offset() const { 1828 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1829 return false; 1830 // Immediate offset in range [0, 4095]. 1831 if (!Memory.OffsetImm) return true; 1832 int64_t Val = Memory.OffsetImm->getValue(); 1833 return (Val >= 0 && Val < 4096); 1834 } 1835 1836 bool isMemImm12Offset() const { 1837 // If we have an immediate that's not a constant, treat it as a label 1838 // reference needing a fixup. If it is a constant, it's something else 1839 // and we reject it. 1840 1841 if (isImm() && !isa<MCConstantExpr>(getImm())) 1842 return true; 1843 1844 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1845 return false; 1846 // Immediate offset in range [-4095, 4095]. 1847 if (!Memory.OffsetImm) return true; 1848 int64_t Val = Memory.OffsetImm->getValue(); 1849 return (Val > -4096 && Val < 4096) || 1850 (Val == std::numeric_limits<int32_t>::min()); 1851 } 1852 1853 bool isConstPoolAsmImm() const { 1854 // Delay processing of Constant Pool Immediate, this will turn into 1855 // a constant. Match no other operand 1856 return (isConstantPoolImm()); 1857 } 1858 1859 bool isPostIdxImm8() const { 1860 if (!isImm()) return false; 1861 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1862 if (!CE) return false; 1863 int64_t Val = CE->getValue(); 1864 return (Val > -256 && Val < 256) || 1865 (Val == std::numeric_limits<int32_t>::min()); 1866 } 1867 1868 bool isPostIdxImm8s4() const { 1869 if (!isImm()) return false; 1870 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1871 if (!CE) return false; 1872 int64_t Val = CE->getValue(); 1873 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1874 (Val == std::numeric_limits<int32_t>::min()); 1875 } 1876 1877 bool isMSRMask() const { return Kind == k_MSRMask; } 1878 bool isBankedReg() const { return Kind == k_BankedReg; } 1879 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1880 1881 // NEON operands. 1882 bool isSingleSpacedVectorList() const { 1883 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1884 } 1885 1886 bool isDoubleSpacedVectorList() const { 1887 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1888 } 1889 1890 bool isVecListOneD() const { 1891 if (!isSingleSpacedVectorList()) return false; 1892 return VectorList.Count == 1; 1893 } 1894 1895 bool isVecListTwoMQ() const { 1896 return isSingleSpacedVectorList() && VectorList.Count == 2 && 1897 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1898 VectorList.RegNum); 1899 } 1900 1901 bool isVecListDPair() const { 1902 if (!isSingleSpacedVectorList()) return false; 1903 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1904 .contains(VectorList.RegNum)); 1905 } 1906 1907 bool isVecListThreeD() const { 1908 if (!isSingleSpacedVectorList()) return false; 1909 return VectorList.Count == 3; 1910 } 1911 1912 bool isVecListFourD() const { 1913 if (!isSingleSpacedVectorList()) return false; 1914 return VectorList.Count == 4; 1915 } 1916 1917 bool isVecListDPairSpaced() const { 1918 if (Kind != k_VectorList) return false; 1919 if (isSingleSpacedVectorList()) return false; 1920 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1921 .contains(VectorList.RegNum)); 1922 } 1923 1924 bool isVecListThreeQ() const { 1925 if (!isDoubleSpacedVectorList()) return false; 1926 return VectorList.Count == 3; 1927 } 1928 1929 bool isVecListFourQ() const { 1930 if (!isDoubleSpacedVectorList()) return false; 1931 return VectorList.Count == 4; 1932 } 1933 1934 bool isVecListFourMQ() const { 1935 return isSingleSpacedVectorList() && VectorList.Count == 4 && 1936 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1937 VectorList.RegNum); 1938 } 1939 1940 bool isSingleSpacedVectorAllLanes() const { 1941 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1942 } 1943 1944 bool isDoubleSpacedVectorAllLanes() const { 1945 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1946 } 1947 1948 bool isVecListOneDAllLanes() const { 1949 if (!isSingleSpacedVectorAllLanes()) return false; 1950 return VectorList.Count == 1; 1951 } 1952 1953 bool isVecListDPairAllLanes() const { 1954 if (!isSingleSpacedVectorAllLanes()) return false; 1955 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1956 .contains(VectorList.RegNum)); 1957 } 1958 1959 bool isVecListDPairSpacedAllLanes() const { 1960 if (!isDoubleSpacedVectorAllLanes()) return false; 1961 return VectorList.Count == 2; 1962 } 1963 1964 bool isVecListThreeDAllLanes() const { 1965 if (!isSingleSpacedVectorAllLanes()) return false; 1966 return VectorList.Count == 3; 1967 } 1968 1969 bool isVecListThreeQAllLanes() const { 1970 if (!isDoubleSpacedVectorAllLanes()) return false; 1971 return VectorList.Count == 3; 1972 } 1973 1974 bool isVecListFourDAllLanes() const { 1975 if (!isSingleSpacedVectorAllLanes()) return false; 1976 return VectorList.Count == 4; 1977 } 1978 1979 bool isVecListFourQAllLanes() const { 1980 if (!isDoubleSpacedVectorAllLanes()) return false; 1981 return VectorList.Count == 4; 1982 } 1983 1984 bool isSingleSpacedVectorIndexed() const { 1985 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1986 } 1987 1988 bool isDoubleSpacedVectorIndexed() const { 1989 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1990 } 1991 1992 bool isVecListOneDByteIndexed() const { 1993 if (!isSingleSpacedVectorIndexed()) return false; 1994 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1995 } 1996 1997 bool isVecListOneDHWordIndexed() const { 1998 if (!isSingleSpacedVectorIndexed()) return false; 1999 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 2000 } 2001 2002 bool isVecListOneDWordIndexed() const { 2003 if (!isSingleSpacedVectorIndexed()) return false; 2004 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 2005 } 2006 2007 bool isVecListTwoDByteIndexed() const { 2008 if (!isSingleSpacedVectorIndexed()) return false; 2009 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 2010 } 2011 2012 bool isVecListTwoDHWordIndexed() const { 2013 if (!isSingleSpacedVectorIndexed()) return false; 2014 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2015 } 2016 2017 bool isVecListTwoQWordIndexed() const { 2018 if (!isDoubleSpacedVectorIndexed()) return false; 2019 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2020 } 2021 2022 bool isVecListTwoQHWordIndexed() const { 2023 if (!isDoubleSpacedVectorIndexed()) return false; 2024 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2025 } 2026 2027 bool isVecListTwoDWordIndexed() const { 2028 if (!isSingleSpacedVectorIndexed()) return false; 2029 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2030 } 2031 2032 bool isVecListThreeDByteIndexed() const { 2033 if (!isSingleSpacedVectorIndexed()) return false; 2034 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 2035 } 2036 2037 bool isVecListThreeDHWordIndexed() const { 2038 if (!isSingleSpacedVectorIndexed()) return false; 2039 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2040 } 2041 2042 bool isVecListThreeQWordIndexed() const { 2043 if (!isDoubleSpacedVectorIndexed()) return false; 2044 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2045 } 2046 2047 bool isVecListThreeQHWordIndexed() const { 2048 if (!isDoubleSpacedVectorIndexed()) return false; 2049 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2050 } 2051 2052 bool isVecListThreeDWordIndexed() const { 2053 if (!isSingleSpacedVectorIndexed()) return false; 2054 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2055 } 2056 2057 bool isVecListFourDByteIndexed() const { 2058 if (!isSingleSpacedVectorIndexed()) return false; 2059 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 2060 } 2061 2062 bool isVecListFourDHWordIndexed() const { 2063 if (!isSingleSpacedVectorIndexed()) return false; 2064 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2065 } 2066 2067 bool isVecListFourQWordIndexed() const { 2068 if (!isDoubleSpacedVectorIndexed()) return false; 2069 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2070 } 2071 2072 bool isVecListFourQHWordIndexed() const { 2073 if (!isDoubleSpacedVectorIndexed()) return false; 2074 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2075 } 2076 2077 bool isVecListFourDWordIndexed() const { 2078 if (!isSingleSpacedVectorIndexed()) return false; 2079 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2080 } 2081 2082 bool isVectorIndex() const { return Kind == k_VectorIndex; } 2083 2084 template <unsigned NumLanes> 2085 bool isVectorIndexInRange() const { 2086 if (Kind != k_VectorIndex) return false; 2087 return VectorIndex.Val < NumLanes; 2088 } 2089 2090 bool isVectorIndex8() const { return isVectorIndexInRange<8>(); } 2091 bool isVectorIndex16() const { return isVectorIndexInRange<4>(); } 2092 bool isVectorIndex32() const { return isVectorIndexInRange<2>(); } 2093 bool isVectorIndex64() const { return isVectorIndexInRange<1>(); } 2094 2095 template<int PermittedValue, int OtherPermittedValue> 2096 bool isMVEPairVectorIndex() const { 2097 if (Kind != k_VectorIndex) return false; 2098 return VectorIndex.Val == PermittedValue || 2099 VectorIndex.Val == OtherPermittedValue; 2100 } 2101 2102 bool isNEONi8splat() const { 2103 if (!isImm()) return false; 2104 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2105 // Must be a constant. 2106 if (!CE) return false; 2107 int64_t Value = CE->getValue(); 2108 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 2109 // value. 2110 return Value >= 0 && Value < 256; 2111 } 2112 2113 bool isNEONi16splat() const { 2114 if (isNEONByteReplicate(2)) 2115 return false; // Leave that for bytes replication and forbid by default. 2116 if (!isImm()) 2117 return false; 2118 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2119 // Must be a constant. 2120 if (!CE) return false; 2121 unsigned Value = CE->getValue(); 2122 return ARM_AM::isNEONi16splat(Value); 2123 } 2124 2125 bool isNEONi16splatNot() const { 2126 if (!isImm()) 2127 return false; 2128 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2129 // Must be a constant. 2130 if (!CE) return false; 2131 unsigned Value = CE->getValue(); 2132 return ARM_AM::isNEONi16splat(~Value & 0xffff); 2133 } 2134 2135 bool isNEONi32splat() const { 2136 if (isNEONByteReplicate(4)) 2137 return false; // Leave that for bytes replication and forbid by default. 2138 if (!isImm()) 2139 return false; 2140 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2141 // Must be a constant. 2142 if (!CE) return false; 2143 unsigned Value = CE->getValue(); 2144 return ARM_AM::isNEONi32splat(Value); 2145 } 2146 2147 bool isNEONi32splatNot() const { 2148 if (!isImm()) 2149 return false; 2150 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2151 // Must be a constant. 2152 if (!CE) return false; 2153 unsigned Value = CE->getValue(); 2154 return ARM_AM::isNEONi32splat(~Value); 2155 } 2156 2157 static bool isValidNEONi32vmovImm(int64_t Value) { 2158 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 2159 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 2160 return ((Value & 0xffffffffffffff00) == 0) || 2161 ((Value & 0xffffffffffff00ff) == 0) || 2162 ((Value & 0xffffffffff00ffff) == 0) || 2163 ((Value & 0xffffffff00ffffff) == 0) || 2164 ((Value & 0xffffffffffff00ff) == 0xff) || 2165 ((Value & 0xffffffffff00ffff) == 0xffff); 2166 } 2167 2168 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { 2169 assert((Width == 8 || Width == 16 || Width == 32) && 2170 "Invalid element width"); 2171 assert(NumElems * Width <= 64 && "Invalid result width"); 2172 2173 if (!isImm()) 2174 return false; 2175 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2176 // Must be a constant. 2177 if (!CE) 2178 return false; 2179 int64_t Value = CE->getValue(); 2180 if (!Value) 2181 return false; // Don't bother with zero. 2182 if (Inv) 2183 Value = ~Value; 2184 2185 uint64_t Mask = (1ull << Width) - 1; 2186 uint64_t Elem = Value & Mask; 2187 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) 2188 return false; 2189 if (Width == 32 && !isValidNEONi32vmovImm(Elem)) 2190 return false; 2191 2192 for (unsigned i = 1; i < NumElems; ++i) { 2193 Value >>= Width; 2194 if ((Value & Mask) != Elem) 2195 return false; 2196 } 2197 return true; 2198 } 2199 2200 bool isNEONByteReplicate(unsigned NumBytes) const { 2201 return isNEONReplicate(8, NumBytes, false); 2202 } 2203 2204 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { 2205 assert((FromW == 8 || FromW == 16 || FromW == 32) && 2206 "Invalid source width"); 2207 assert((ToW == 16 || ToW == 32 || ToW == 64) && 2208 "Invalid destination width"); 2209 assert(FromW < ToW && "ToW is not less than FromW"); 2210 } 2211 2212 template<unsigned FromW, unsigned ToW> 2213 bool isNEONmovReplicate() const { 2214 checkNeonReplicateArgs(FromW, ToW); 2215 if (ToW == 64 && isNEONi64splat()) 2216 return false; 2217 return isNEONReplicate(FromW, ToW / FromW, false); 2218 } 2219 2220 template<unsigned FromW, unsigned ToW> 2221 bool isNEONinvReplicate() const { 2222 checkNeonReplicateArgs(FromW, ToW); 2223 return isNEONReplicate(FromW, ToW / FromW, true); 2224 } 2225 2226 bool isNEONi32vmov() const { 2227 if (isNEONByteReplicate(4)) 2228 return false; // Let it to be classified as byte-replicate case. 2229 if (!isImm()) 2230 return false; 2231 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2232 // Must be a constant. 2233 if (!CE) 2234 return false; 2235 return isValidNEONi32vmovImm(CE->getValue()); 2236 } 2237 2238 bool isNEONi32vmovNeg() const { 2239 if (!isImm()) return false; 2240 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2241 // Must be a constant. 2242 if (!CE) return false; 2243 return isValidNEONi32vmovImm(~CE->getValue()); 2244 } 2245 2246 bool isNEONi64splat() const { 2247 if (!isImm()) return false; 2248 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2249 // Must be a constant. 2250 if (!CE) return false; 2251 uint64_t Value = CE->getValue(); 2252 // i64 value with each byte being either 0 or 0xff. 2253 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 2254 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 2255 return true; 2256 } 2257 2258 template<int64_t Angle, int64_t Remainder> 2259 bool isComplexRotation() const { 2260 if (!isImm()) return false; 2261 2262 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2263 if (!CE) return false; 2264 uint64_t Value = CE->getValue(); 2265 2266 return (Value % Angle == Remainder && Value <= 270); 2267 } 2268 2269 bool isMVELongShift() const { 2270 if (!isImm()) return false; 2271 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2272 // Must be a constant. 2273 if (!CE) return false; 2274 uint64_t Value = CE->getValue(); 2275 return Value >= 1 && Value <= 32; 2276 } 2277 2278 bool isMveSaturateOp() const { 2279 if (!isImm()) return false; 2280 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2281 if (!CE) return false; 2282 uint64_t Value = CE->getValue(); 2283 return Value == 48 || Value == 64; 2284 } 2285 2286 bool isITCondCodeNoAL() const { 2287 if (!isITCondCode()) return false; 2288 ARMCC::CondCodes CC = getCondCode(); 2289 return CC != ARMCC::AL; 2290 } 2291 2292 bool isITCondCodeRestrictedI() const { 2293 if (!isITCondCode()) 2294 return false; 2295 ARMCC::CondCodes CC = getCondCode(); 2296 return CC == ARMCC::EQ || CC == ARMCC::NE; 2297 } 2298 2299 bool isITCondCodeRestrictedS() const { 2300 if (!isITCondCode()) 2301 return false; 2302 ARMCC::CondCodes CC = getCondCode(); 2303 return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE || 2304 CC == ARMCC::GE; 2305 } 2306 2307 bool isITCondCodeRestrictedU() const { 2308 if (!isITCondCode()) 2309 return false; 2310 ARMCC::CondCodes CC = getCondCode(); 2311 return CC == ARMCC::HS || CC == ARMCC::HI; 2312 } 2313 2314 bool isITCondCodeRestrictedFP() const { 2315 if (!isITCondCode()) 2316 return false; 2317 ARMCC::CondCodes CC = getCondCode(); 2318 return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT || 2319 CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE; 2320 } 2321 2322 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 2323 // Add as immediates when possible. Null MCExpr = 0. 2324 if (!Expr) 2325 Inst.addOperand(MCOperand::createImm(0)); 2326 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 2327 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2328 else 2329 Inst.addOperand(MCOperand::createExpr(Expr)); 2330 } 2331 2332 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 2333 assert(N == 1 && "Invalid number of operands!"); 2334 addExpr(Inst, getImm()); 2335 } 2336 2337 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 2338 assert(N == 1 && "Invalid number of operands!"); 2339 addExpr(Inst, getImm()); 2340 } 2341 2342 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 2343 assert(N == 2 && "Invalid number of operands!"); 2344 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2345 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 2346 Inst.addOperand(MCOperand::createReg(RegNum)); 2347 } 2348 2349 void addVPTPredNOperands(MCInst &Inst, unsigned N) const { 2350 assert(N == 2 && "Invalid number of operands!"); 2351 Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred()))); 2352 unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0; 2353 Inst.addOperand(MCOperand::createReg(RegNum)); 2354 } 2355 2356 void addVPTPredROperands(MCInst &Inst, unsigned N) const { 2357 assert(N == 3 && "Invalid number of operands!"); 2358 addVPTPredNOperands(Inst, N-1); 2359 unsigned RegNum; 2360 if (getVPTPred() == ARMVCC::None) { 2361 RegNum = 0; 2362 } else { 2363 unsigned NextOpIndex = Inst.getNumOperands(); 2364 const MCInstrDesc &MCID = ARMInsts[Inst.getOpcode()]; 2365 int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO); 2366 assert(TiedOp >= 0 && 2367 "Inactive register in vpred_r is not tied to an output!"); 2368 RegNum = Inst.getOperand(TiedOp).getReg(); 2369 } 2370 Inst.addOperand(MCOperand::createReg(RegNum)); 2371 } 2372 2373 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 2374 assert(N == 1 && "Invalid number of operands!"); 2375 Inst.addOperand(MCOperand::createImm(getCoproc())); 2376 } 2377 2378 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 2379 assert(N == 1 && "Invalid number of operands!"); 2380 Inst.addOperand(MCOperand::createImm(getCoproc())); 2381 } 2382 2383 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 2384 assert(N == 1 && "Invalid number of operands!"); 2385 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 2386 } 2387 2388 void addITMaskOperands(MCInst &Inst, unsigned N) const { 2389 assert(N == 1 && "Invalid number of operands!"); 2390 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 2391 } 2392 2393 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 2394 assert(N == 1 && "Invalid number of operands!"); 2395 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2396 } 2397 2398 void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const { 2399 assert(N == 1 && "Invalid number of operands!"); 2400 Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode())))); 2401 } 2402 2403 void addCCOutOperands(MCInst &Inst, unsigned N) const { 2404 assert(N == 1 && "Invalid number of operands!"); 2405 Inst.addOperand(MCOperand::createReg(getReg())); 2406 } 2407 2408 void addRegOperands(MCInst &Inst, unsigned N) const { 2409 assert(N == 1 && "Invalid number of operands!"); 2410 Inst.addOperand(MCOperand::createReg(getReg())); 2411 } 2412 2413 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 2414 assert(N == 3 && "Invalid number of operands!"); 2415 assert(isRegShiftedReg() && 2416 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 2417 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 2418 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 2419 Inst.addOperand(MCOperand::createImm( 2420 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 2421 } 2422 2423 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 2424 assert(N == 2 && "Invalid number of operands!"); 2425 assert(isRegShiftedImm() && 2426 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 2427 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 2428 // Shift of #32 is encoded as 0 where permitted 2429 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 2430 Inst.addOperand(MCOperand::createImm( 2431 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 2432 } 2433 2434 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 2435 assert(N == 1 && "Invalid number of operands!"); 2436 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 2437 ShifterImm.Imm)); 2438 } 2439 2440 void addRegListOperands(MCInst &Inst, unsigned N) const { 2441 assert(N == 1 && "Invalid number of operands!"); 2442 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2443 for (SmallVectorImpl<unsigned>::const_iterator 2444 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2445 Inst.addOperand(MCOperand::createReg(*I)); 2446 } 2447 2448 void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const { 2449 assert(N == 1 && "Invalid number of operands!"); 2450 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2451 for (SmallVectorImpl<unsigned>::const_iterator 2452 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2453 Inst.addOperand(MCOperand::createReg(*I)); 2454 } 2455 2456 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2457 addRegListOperands(Inst, N); 2458 } 2459 2460 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2461 addRegListOperands(Inst, N); 2462 } 2463 2464 void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2465 addRegListOperands(Inst, N); 2466 } 2467 2468 void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2469 addRegListOperands(Inst, N); 2470 } 2471 2472 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2473 assert(N == 1 && "Invalid number of operands!"); 2474 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2475 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2476 } 2477 2478 void addModImmOperands(MCInst &Inst, unsigned N) const { 2479 assert(N == 1 && "Invalid number of operands!"); 2480 2481 // Support for fixups (MCFixup) 2482 if (isImm()) 2483 return addImmOperands(Inst, N); 2484 2485 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2486 } 2487 2488 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2489 assert(N == 1 && "Invalid number of operands!"); 2490 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2491 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2492 Inst.addOperand(MCOperand::createImm(Enc)); 2493 } 2494 2495 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2496 assert(N == 1 && "Invalid number of operands!"); 2497 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2498 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2499 Inst.addOperand(MCOperand::createImm(Enc)); 2500 } 2501 2502 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 2503 assert(N == 1 && "Invalid number of operands!"); 2504 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2505 uint32_t Val = -CE->getValue(); 2506 Inst.addOperand(MCOperand::createImm(Val)); 2507 } 2508 2509 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 2510 assert(N == 1 && "Invalid number of operands!"); 2511 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2512 uint32_t Val = -CE->getValue(); 2513 Inst.addOperand(MCOperand::createImm(Val)); 2514 } 2515 2516 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2517 assert(N == 1 && "Invalid number of operands!"); 2518 // Munge the lsb/width into a bitfield mask. 2519 unsigned lsb = Bitfield.LSB; 2520 unsigned width = Bitfield.Width; 2521 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2522 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2523 (32 - (lsb + width))); 2524 Inst.addOperand(MCOperand::createImm(Mask)); 2525 } 2526 2527 void addImmOperands(MCInst &Inst, unsigned N) const { 2528 assert(N == 1 && "Invalid number of operands!"); 2529 addExpr(Inst, getImm()); 2530 } 2531 2532 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2533 assert(N == 1 && "Invalid number of operands!"); 2534 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2535 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2536 } 2537 2538 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2539 assert(N == 1 && "Invalid number of operands!"); 2540 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2541 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2542 } 2543 2544 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2545 assert(N == 1 && "Invalid number of operands!"); 2546 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2547 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2548 Inst.addOperand(MCOperand::createImm(Val)); 2549 } 2550 2551 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2552 assert(N == 1 && "Invalid number of operands!"); 2553 // FIXME: We really want to scale the value here, but the LDRD/STRD 2554 // instruction don't encode operands that way yet. 2555 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2556 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2557 } 2558 2559 void addImm7s4Operands(MCInst &Inst, unsigned N) const { 2560 assert(N == 1 && "Invalid number of operands!"); 2561 // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR 2562 // instruction don't encode operands that way yet. 2563 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2564 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2565 } 2566 2567 void addImm7Shift0Operands(MCInst &Inst, unsigned N) const { 2568 assert(N == 1 && "Invalid number of operands!"); 2569 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2570 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2571 } 2572 2573 void addImm7Shift1Operands(MCInst &Inst, unsigned N) const { 2574 assert(N == 1 && "Invalid number of operands!"); 2575 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2576 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2577 } 2578 2579 void addImm7Shift2Operands(MCInst &Inst, unsigned N) const { 2580 assert(N == 1 && "Invalid number of operands!"); 2581 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2582 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2583 } 2584 2585 void addImm7Operands(MCInst &Inst, unsigned N) const { 2586 assert(N == 1 && "Invalid number of operands!"); 2587 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2588 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2589 } 2590 2591 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2592 assert(N == 1 && "Invalid number of operands!"); 2593 // The immediate is scaled by four in the encoding and is stored 2594 // in the MCInst as such. Lop off the low two bits here. 2595 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2596 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2597 } 2598 2599 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2600 assert(N == 1 && "Invalid number of operands!"); 2601 // The immediate is scaled by four in the encoding and is stored 2602 // in the MCInst as such. Lop off the low two bits here. 2603 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2604 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2605 } 2606 2607 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2608 assert(N == 1 && "Invalid number of operands!"); 2609 // The immediate is scaled by four in the encoding and is stored 2610 // in the MCInst as such. Lop off the low two bits here. 2611 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2612 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2613 } 2614 2615 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2616 assert(N == 1 && "Invalid number of operands!"); 2617 // The constant encodes as the immediate-1, and we store in the instruction 2618 // the bits as encoded, so subtract off one here. 2619 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2620 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2621 } 2622 2623 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2624 assert(N == 1 && "Invalid number of operands!"); 2625 // The constant encodes as the immediate-1, and we store in the instruction 2626 // the bits as encoded, so subtract off one here. 2627 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2628 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2629 } 2630 2631 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2632 assert(N == 1 && "Invalid number of operands!"); 2633 // The constant encodes as the immediate, except for 32, which encodes as 2634 // zero. 2635 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2636 unsigned Imm = CE->getValue(); 2637 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2638 } 2639 2640 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2641 assert(N == 1 && "Invalid number of operands!"); 2642 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2643 // the instruction as well. 2644 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2645 int Val = CE->getValue(); 2646 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2647 } 2648 2649 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2650 assert(N == 1 && "Invalid number of operands!"); 2651 // The operand is actually a t2_so_imm, but we have its bitwise 2652 // negation in the assembly source, so twiddle it here. 2653 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2654 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2655 } 2656 2657 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2658 assert(N == 1 && "Invalid number of operands!"); 2659 // The operand is actually a t2_so_imm, but we have its 2660 // negation in the assembly source, so twiddle it here. 2661 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2662 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2663 } 2664 2665 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2666 assert(N == 1 && "Invalid number of operands!"); 2667 // The operand is actually an imm0_4095, but we have its 2668 // negation in the assembly source, so twiddle it here. 2669 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2670 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2671 } 2672 2673 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2674 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2675 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2676 return; 2677 } 2678 const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val); 2679 Inst.addOperand(MCOperand::createExpr(SR)); 2680 } 2681 2682 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2683 assert(N == 1 && "Invalid number of operands!"); 2684 if (isImm()) { 2685 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2686 if (CE) { 2687 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2688 return; 2689 } 2690 const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val); 2691 Inst.addOperand(MCOperand::createExpr(SR)); 2692 return; 2693 } 2694 2695 assert(isGPRMem() && "Unknown value type!"); 2696 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2697 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2698 } 2699 2700 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2701 assert(N == 1 && "Invalid number of operands!"); 2702 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2703 } 2704 2705 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2706 assert(N == 1 && "Invalid number of operands!"); 2707 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2708 } 2709 2710 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2711 assert(N == 1 && "Invalid number of operands!"); 2712 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt()))); 2713 } 2714 2715 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2716 assert(N == 1 && "Invalid number of operands!"); 2717 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2718 } 2719 2720 void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const { 2721 assert(N == 1 && "Invalid number of operands!"); 2722 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2723 } 2724 2725 void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const { 2726 assert(N == 1 && "Invalid number of operands!"); 2727 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2728 } 2729 2730 void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const { 2731 assert(N == 1 && "Invalid number of operands!"); 2732 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2733 } 2734 2735 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2736 assert(N == 1 && "Invalid number of operands!"); 2737 int32_t Imm = Memory.OffsetImm->getValue(); 2738 Inst.addOperand(MCOperand::createImm(Imm)); 2739 } 2740 2741 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2742 assert(N == 1 && "Invalid number of operands!"); 2743 assert(isImm() && "Not an immediate!"); 2744 2745 // If we have an immediate that's not a constant, treat it as a label 2746 // reference needing a fixup. 2747 if (!isa<MCConstantExpr>(getImm())) { 2748 Inst.addOperand(MCOperand::createExpr(getImm())); 2749 return; 2750 } 2751 2752 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2753 int Val = CE->getValue(); 2754 Inst.addOperand(MCOperand::createImm(Val)); 2755 } 2756 2757 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2758 assert(N == 2 && "Invalid number of operands!"); 2759 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2760 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2761 } 2762 2763 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2764 addAlignedMemoryOperands(Inst, N); 2765 } 2766 2767 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2768 addAlignedMemoryOperands(Inst, N); 2769 } 2770 2771 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2772 addAlignedMemoryOperands(Inst, N); 2773 } 2774 2775 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2776 addAlignedMemoryOperands(Inst, N); 2777 } 2778 2779 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2780 addAlignedMemoryOperands(Inst, N); 2781 } 2782 2783 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2784 addAlignedMemoryOperands(Inst, N); 2785 } 2786 2787 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2788 addAlignedMemoryOperands(Inst, N); 2789 } 2790 2791 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2792 addAlignedMemoryOperands(Inst, N); 2793 } 2794 2795 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2796 addAlignedMemoryOperands(Inst, N); 2797 } 2798 2799 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2800 addAlignedMemoryOperands(Inst, N); 2801 } 2802 2803 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2804 addAlignedMemoryOperands(Inst, N); 2805 } 2806 2807 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2808 assert(N == 3 && "Invalid number of operands!"); 2809 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2810 if (!Memory.OffsetRegNum) { 2811 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2812 // Special case for #-0 2813 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2814 if (Val < 0) Val = -Val; 2815 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2816 } else { 2817 // For register offset, we encode the shift type and negation flag 2818 // here. 2819 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2820 Memory.ShiftImm, Memory.ShiftType); 2821 } 2822 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2823 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2824 Inst.addOperand(MCOperand::createImm(Val)); 2825 } 2826 2827 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2828 assert(N == 2 && "Invalid number of operands!"); 2829 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2830 assert(CE && "non-constant AM2OffsetImm operand!"); 2831 int32_t Val = CE->getValue(); 2832 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2833 // Special case for #-0 2834 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2835 if (Val < 0) Val = -Val; 2836 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2837 Inst.addOperand(MCOperand::createReg(0)); 2838 Inst.addOperand(MCOperand::createImm(Val)); 2839 } 2840 2841 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2842 assert(N == 3 && "Invalid number of operands!"); 2843 // If we have an immediate that's not a constant, treat it as a label 2844 // reference needing a fixup. If it is a constant, it's something else 2845 // and we reject it. 2846 if (isImm()) { 2847 Inst.addOperand(MCOperand::createExpr(getImm())); 2848 Inst.addOperand(MCOperand::createReg(0)); 2849 Inst.addOperand(MCOperand::createImm(0)); 2850 return; 2851 } 2852 2853 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2854 if (!Memory.OffsetRegNum) { 2855 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2856 // Special case for #-0 2857 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2858 if (Val < 0) Val = -Val; 2859 Val = ARM_AM::getAM3Opc(AddSub, Val); 2860 } else { 2861 // For register offset, we encode the shift type and negation flag 2862 // here. 2863 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2864 } 2865 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2866 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2867 Inst.addOperand(MCOperand::createImm(Val)); 2868 } 2869 2870 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2871 assert(N == 2 && "Invalid number of operands!"); 2872 if (Kind == k_PostIndexRegister) { 2873 int32_t Val = 2874 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2875 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2876 Inst.addOperand(MCOperand::createImm(Val)); 2877 return; 2878 } 2879 2880 // Constant offset. 2881 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2882 int32_t Val = CE->getValue(); 2883 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2884 // Special case for #-0 2885 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2886 if (Val < 0) Val = -Val; 2887 Val = ARM_AM::getAM3Opc(AddSub, Val); 2888 Inst.addOperand(MCOperand::createReg(0)); 2889 Inst.addOperand(MCOperand::createImm(Val)); 2890 } 2891 2892 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2893 assert(N == 2 && "Invalid number of operands!"); 2894 // If we have an immediate that's not a constant, treat it as a label 2895 // reference needing a fixup. If it is a constant, it's something else 2896 // and we reject it. 2897 if (isImm()) { 2898 Inst.addOperand(MCOperand::createExpr(getImm())); 2899 Inst.addOperand(MCOperand::createImm(0)); 2900 return; 2901 } 2902 2903 // The lower two bits are always zero and as such are not encoded. 2904 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2905 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2906 // Special case for #-0 2907 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2908 if (Val < 0) Val = -Val; 2909 Val = ARM_AM::getAM5Opc(AddSub, Val); 2910 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2911 Inst.addOperand(MCOperand::createImm(Val)); 2912 } 2913 2914 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2915 assert(N == 2 && "Invalid number of operands!"); 2916 // If we have an immediate that's not a constant, treat it as a label 2917 // reference needing a fixup. If it is a constant, it's something else 2918 // and we reject it. 2919 if (isImm()) { 2920 Inst.addOperand(MCOperand::createExpr(getImm())); 2921 Inst.addOperand(MCOperand::createImm(0)); 2922 return; 2923 } 2924 2925 // The lower bit is always zero and as such is not encoded. 2926 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2927 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2928 // Special case for #-0 2929 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2930 if (Val < 0) Val = -Val; 2931 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2932 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2933 Inst.addOperand(MCOperand::createImm(Val)); 2934 } 2935 2936 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2937 assert(N == 2 && "Invalid number of operands!"); 2938 // If we have an immediate that's not a constant, treat it as a label 2939 // reference needing a fixup. If it is a constant, it's something else 2940 // and we reject it. 2941 if (isImm()) { 2942 Inst.addOperand(MCOperand::createExpr(getImm())); 2943 Inst.addOperand(MCOperand::createImm(0)); 2944 return; 2945 } 2946 2947 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2948 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2949 Inst.addOperand(MCOperand::createImm(Val)); 2950 } 2951 2952 void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const { 2953 assert(N == 2 && "Invalid number of operands!"); 2954 // If we have an immediate that's not a constant, treat it as a label 2955 // reference needing a fixup. If it is a constant, it's something else 2956 // and we reject it. 2957 if (isImm()) { 2958 Inst.addOperand(MCOperand::createExpr(getImm())); 2959 Inst.addOperand(MCOperand::createImm(0)); 2960 return; 2961 } 2962 2963 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2964 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2965 Inst.addOperand(MCOperand::createImm(Val)); 2966 } 2967 2968 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2969 assert(N == 2 && "Invalid number of operands!"); 2970 // The lower two bits are always zero and as such are not encoded. 2971 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2972 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2973 Inst.addOperand(MCOperand::createImm(Val)); 2974 } 2975 2976 void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const { 2977 assert(N == 2 && "Invalid number of operands!"); 2978 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2979 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2980 Inst.addOperand(MCOperand::createImm(Val)); 2981 } 2982 2983 void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const { 2984 assert(N == 2 && "Invalid number of operands!"); 2985 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2986 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2987 } 2988 2989 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2990 assert(N == 2 && "Invalid number of operands!"); 2991 // If this is an immediate, it's a label reference. 2992 if (isImm()) { 2993 addExpr(Inst, getImm()); 2994 Inst.addOperand(MCOperand::createImm(0)); 2995 return; 2996 } 2997 2998 // Otherwise, it's a normal memory reg+offset. 2999 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3000 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3001 Inst.addOperand(MCOperand::createImm(Val)); 3002 } 3003 3004 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 3005 assert(N == 2 && "Invalid number of operands!"); 3006 // If this is an immediate, it's a label reference. 3007 if (isImm()) { 3008 addExpr(Inst, getImm()); 3009 Inst.addOperand(MCOperand::createImm(0)); 3010 return; 3011 } 3012 3013 // Otherwise, it's a normal memory reg+offset. 3014 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3015 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3016 Inst.addOperand(MCOperand::createImm(Val)); 3017 } 3018 3019 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 3020 assert(N == 1 && "Invalid number of operands!"); 3021 // This is container for the immediate that we will create the constant 3022 // pool from 3023 addExpr(Inst, getConstantPoolImm()); 3024 return; 3025 } 3026 3027 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 3028 assert(N == 2 && "Invalid number of operands!"); 3029 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3030 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3031 } 3032 3033 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 3034 assert(N == 2 && "Invalid number of operands!"); 3035 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3036 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3037 } 3038 3039 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3040 assert(N == 3 && "Invalid number of operands!"); 3041 unsigned Val = 3042 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 3043 Memory.ShiftImm, Memory.ShiftType); 3044 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3045 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3046 Inst.addOperand(MCOperand::createImm(Val)); 3047 } 3048 3049 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3050 assert(N == 3 && "Invalid number of operands!"); 3051 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3052 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3053 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 3054 } 3055 3056 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 3057 assert(N == 2 && "Invalid number of operands!"); 3058 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3059 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3060 } 3061 3062 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 3063 assert(N == 2 && "Invalid number of operands!"); 3064 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 3065 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3066 Inst.addOperand(MCOperand::createImm(Val)); 3067 } 3068 3069 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 3070 assert(N == 2 && "Invalid number of operands!"); 3071 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 3072 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3073 Inst.addOperand(MCOperand::createImm(Val)); 3074 } 3075 3076 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 3077 assert(N == 2 && "Invalid number of operands!"); 3078 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 3079 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3080 Inst.addOperand(MCOperand::createImm(Val)); 3081 } 3082 3083 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 3084 assert(N == 2 && "Invalid number of operands!"); 3085 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 3086 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3087 Inst.addOperand(MCOperand::createImm(Val)); 3088 } 3089 3090 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 3091 assert(N == 1 && "Invalid number of operands!"); 3092 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3093 assert(CE && "non-constant post-idx-imm8 operand!"); 3094 int Imm = CE->getValue(); 3095 bool isAdd = Imm >= 0; 3096 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3097 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 3098 Inst.addOperand(MCOperand::createImm(Imm)); 3099 } 3100 3101 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 3102 assert(N == 1 && "Invalid number of operands!"); 3103 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3104 assert(CE && "non-constant post-idx-imm8s4 operand!"); 3105 int Imm = CE->getValue(); 3106 bool isAdd = Imm >= 0; 3107 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3108 // Immediate is scaled by 4. 3109 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 3110 Inst.addOperand(MCOperand::createImm(Imm)); 3111 } 3112 3113 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 3114 assert(N == 2 && "Invalid number of operands!"); 3115 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3116 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 3117 } 3118 3119 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 3120 assert(N == 2 && "Invalid number of operands!"); 3121 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3122 // The sign, shift type, and shift amount are encoded in a single operand 3123 // using the AM2 encoding helpers. 3124 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 3125 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 3126 PostIdxReg.ShiftTy); 3127 Inst.addOperand(MCOperand::createImm(Imm)); 3128 } 3129 3130 void addPowerTwoOperands(MCInst &Inst, unsigned N) const { 3131 assert(N == 1 && "Invalid number of operands!"); 3132 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3133 Inst.addOperand(MCOperand::createImm(CE->getValue())); 3134 } 3135 3136 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 3137 assert(N == 1 && "Invalid number of operands!"); 3138 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 3139 } 3140 3141 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 3142 assert(N == 1 && "Invalid number of operands!"); 3143 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 3144 } 3145 3146 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 3147 assert(N == 1 && "Invalid number of operands!"); 3148 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 3149 } 3150 3151 void addVecListOperands(MCInst &Inst, unsigned N) const { 3152 assert(N == 1 && "Invalid number of operands!"); 3153 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3154 } 3155 3156 void addMVEVecListOperands(MCInst &Inst, unsigned N) const { 3157 assert(N == 1 && "Invalid number of operands!"); 3158 3159 // When we come here, the VectorList field will identify a range 3160 // of q-registers by its base register and length, and it will 3161 // have already been error-checked to be the expected length of 3162 // range and contain only q-regs in the range q0-q7. So we can 3163 // count on the base register being in the range q0-q6 (for 2 3164 // regs) or q0-q4 (for 4) 3165 // 3166 // The MVE instructions taking a register range of this kind will 3167 // need an operand in the QQPR or QQQQPR class, representing the 3168 // entire range as a unit. So we must translate into that class, 3169 // by finding the index of the base register in the MQPR reg 3170 // class, and returning the super-register at the corresponding 3171 // index in the target class. 3172 3173 const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID]; 3174 const MCRegisterClass *RC_out = (VectorList.Count == 2) ? 3175 &ARMMCRegisterClasses[ARM::QQPRRegClassID] : 3176 &ARMMCRegisterClasses[ARM::QQQQPRRegClassID]; 3177 3178 unsigned I, E = RC_out->getNumRegs(); 3179 for (I = 0; I < E; I++) 3180 if (RC_in->getRegister(I) == VectorList.RegNum) 3181 break; 3182 assert(I < E && "Invalid vector list start register!"); 3183 3184 Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I))); 3185 } 3186 3187 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 3188 assert(N == 2 && "Invalid number of operands!"); 3189 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3190 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 3191 } 3192 3193 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 3194 assert(N == 1 && "Invalid number of operands!"); 3195 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3196 } 3197 3198 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 3199 assert(N == 1 && "Invalid number of operands!"); 3200 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3201 } 3202 3203 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 3204 assert(N == 1 && "Invalid number of operands!"); 3205 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3206 } 3207 3208 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { 3209 assert(N == 1 && "Invalid number of operands!"); 3210 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3211 } 3212 3213 void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const { 3214 assert(N == 1 && "Invalid number of operands!"); 3215 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3216 } 3217 3218 void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const { 3219 assert(N == 1 && "Invalid number of operands!"); 3220 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3221 } 3222 3223 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 3224 assert(N == 1 && "Invalid number of operands!"); 3225 // The immediate encodes the type of constant as well as the value. 3226 // Mask in that this is an i8 splat. 3227 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3228 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 3229 } 3230 3231 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 3232 assert(N == 1 && "Invalid number of operands!"); 3233 // The immediate encodes the type of constant as well as the value. 3234 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3235 unsigned Value = CE->getValue(); 3236 Value = ARM_AM::encodeNEONi16splat(Value); 3237 Inst.addOperand(MCOperand::createImm(Value)); 3238 } 3239 3240 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 3241 assert(N == 1 && "Invalid number of operands!"); 3242 // The immediate encodes the type of constant as well as the value. 3243 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3244 unsigned Value = CE->getValue(); 3245 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 3246 Inst.addOperand(MCOperand::createImm(Value)); 3247 } 3248 3249 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 3250 assert(N == 1 && "Invalid number of operands!"); 3251 // The immediate encodes the type of constant as well as the value. 3252 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3253 unsigned Value = CE->getValue(); 3254 Value = ARM_AM::encodeNEONi32splat(Value); 3255 Inst.addOperand(MCOperand::createImm(Value)); 3256 } 3257 3258 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 3259 assert(N == 1 && "Invalid number of operands!"); 3260 // The immediate encodes the type of constant as well as the value. 3261 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3262 unsigned Value = CE->getValue(); 3263 Value = ARM_AM::encodeNEONi32splat(~Value); 3264 Inst.addOperand(MCOperand::createImm(Value)); 3265 } 3266 3267 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { 3268 // The immediate encodes the type of constant as well as the value. 3269 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3270 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 3271 Inst.getOpcode() == ARM::VMOVv16i8) && 3272 "All instructions that wants to replicate non-zero byte " 3273 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 3274 unsigned Value = CE->getValue(); 3275 if (Inv) 3276 Value = ~Value; 3277 unsigned B = Value & 0xff; 3278 B |= 0xe00; // cmode = 0b1110 3279 Inst.addOperand(MCOperand::createImm(B)); 3280 } 3281 3282 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3283 assert(N == 1 && "Invalid number of operands!"); 3284 addNEONi8ReplicateOperands(Inst, true); 3285 } 3286 3287 static unsigned encodeNeonVMOVImmediate(unsigned Value) { 3288 if (Value >= 256 && Value <= 0xffff) 3289 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 3290 else if (Value > 0xffff && Value <= 0xffffff) 3291 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 3292 else if (Value > 0xffffff) 3293 Value = (Value >> 24) | 0x600; 3294 return Value; 3295 } 3296 3297 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 3298 assert(N == 1 && "Invalid number of operands!"); 3299 // The immediate encodes the type of constant as well as the value. 3300 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3301 unsigned Value = encodeNeonVMOVImmediate(CE->getValue()); 3302 Inst.addOperand(MCOperand::createImm(Value)); 3303 } 3304 3305 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3306 assert(N == 1 && "Invalid number of operands!"); 3307 addNEONi8ReplicateOperands(Inst, false); 3308 } 3309 3310 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { 3311 assert(N == 1 && "Invalid number of operands!"); 3312 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3313 assert((Inst.getOpcode() == ARM::VMOVv4i16 || 3314 Inst.getOpcode() == ARM::VMOVv8i16 || 3315 Inst.getOpcode() == ARM::VMVNv4i16 || 3316 Inst.getOpcode() == ARM::VMVNv8i16) && 3317 "All instructions that want to replicate non-zero half-word " 3318 "always must be replaced with V{MOV,MVN}v{4,8}i16."); 3319 uint64_t Value = CE->getValue(); 3320 unsigned Elem = Value & 0xffff; 3321 if (Elem >= 256) 3322 Elem = (Elem >> 8) | 0x200; 3323 Inst.addOperand(MCOperand::createImm(Elem)); 3324 } 3325 3326 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 3327 assert(N == 1 && "Invalid number of operands!"); 3328 // The immediate encodes the type of constant as well as the value. 3329 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3330 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue()); 3331 Inst.addOperand(MCOperand::createImm(Value)); 3332 } 3333 3334 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { 3335 assert(N == 1 && "Invalid number of operands!"); 3336 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3337 assert((Inst.getOpcode() == ARM::VMOVv2i32 || 3338 Inst.getOpcode() == ARM::VMOVv4i32 || 3339 Inst.getOpcode() == ARM::VMVNv2i32 || 3340 Inst.getOpcode() == ARM::VMVNv4i32) && 3341 "All instructions that want to replicate non-zero word " 3342 "always must be replaced with V{MOV,MVN}v{2,4}i32."); 3343 uint64_t Value = CE->getValue(); 3344 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff); 3345 Inst.addOperand(MCOperand::createImm(Elem)); 3346 } 3347 3348 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 3349 assert(N == 1 && "Invalid number of operands!"); 3350 // The immediate encodes the type of constant as well as the value. 3351 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3352 uint64_t Value = CE->getValue(); 3353 unsigned Imm = 0; 3354 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 3355 Imm |= (Value & 1) << i; 3356 } 3357 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 3358 } 3359 3360 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { 3361 assert(N == 1 && "Invalid number of operands!"); 3362 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3363 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); 3364 } 3365 3366 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { 3367 assert(N == 1 && "Invalid number of operands!"); 3368 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3369 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); 3370 } 3371 3372 void addMveSaturateOperands(MCInst &Inst, unsigned N) const { 3373 assert(N == 1 && "Invalid number of operands!"); 3374 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3375 unsigned Imm = CE->getValue(); 3376 assert((Imm == 48 || Imm == 64) && "Invalid saturate operand"); 3377 Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0)); 3378 } 3379 3380 void print(raw_ostream &OS) const override; 3381 3382 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 3383 auto Op = std::make_unique<ARMOperand>(k_ITCondMask); 3384 Op->ITMask.Mask = Mask; 3385 Op->StartLoc = S; 3386 Op->EndLoc = S; 3387 return Op; 3388 } 3389 3390 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 3391 SMLoc S) { 3392 auto Op = std::make_unique<ARMOperand>(k_CondCode); 3393 Op->CC.Val = CC; 3394 Op->StartLoc = S; 3395 Op->EndLoc = S; 3396 return Op; 3397 } 3398 3399 static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC, 3400 SMLoc S) { 3401 auto Op = std::make_unique<ARMOperand>(k_VPTPred); 3402 Op->VCC.Val = CC; 3403 Op->StartLoc = S; 3404 Op->EndLoc = S; 3405 return Op; 3406 } 3407 3408 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 3409 auto Op = std::make_unique<ARMOperand>(k_CoprocNum); 3410 Op->Cop.Val = CopVal; 3411 Op->StartLoc = S; 3412 Op->EndLoc = S; 3413 return Op; 3414 } 3415 3416 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 3417 auto Op = std::make_unique<ARMOperand>(k_CoprocReg); 3418 Op->Cop.Val = CopVal; 3419 Op->StartLoc = S; 3420 Op->EndLoc = S; 3421 return Op; 3422 } 3423 3424 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 3425 SMLoc E) { 3426 auto Op = std::make_unique<ARMOperand>(k_CoprocOption); 3427 Op->Cop.Val = Val; 3428 Op->StartLoc = S; 3429 Op->EndLoc = E; 3430 return Op; 3431 } 3432 3433 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 3434 auto Op = std::make_unique<ARMOperand>(k_CCOut); 3435 Op->Reg.RegNum = RegNum; 3436 Op->StartLoc = S; 3437 Op->EndLoc = S; 3438 return Op; 3439 } 3440 3441 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 3442 auto Op = std::make_unique<ARMOperand>(k_Token); 3443 Op->Tok.Data = Str.data(); 3444 Op->Tok.Length = Str.size(); 3445 Op->StartLoc = S; 3446 Op->EndLoc = S; 3447 return Op; 3448 } 3449 3450 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 3451 SMLoc E) { 3452 auto Op = std::make_unique<ARMOperand>(k_Register); 3453 Op->Reg.RegNum = RegNum; 3454 Op->StartLoc = S; 3455 Op->EndLoc = E; 3456 return Op; 3457 } 3458 3459 static std::unique_ptr<ARMOperand> 3460 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3461 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 3462 SMLoc E) { 3463 auto Op = std::make_unique<ARMOperand>(k_ShiftedRegister); 3464 Op->RegShiftedReg.ShiftTy = ShTy; 3465 Op->RegShiftedReg.SrcReg = SrcReg; 3466 Op->RegShiftedReg.ShiftReg = ShiftReg; 3467 Op->RegShiftedReg.ShiftImm = ShiftImm; 3468 Op->StartLoc = S; 3469 Op->EndLoc = E; 3470 return Op; 3471 } 3472 3473 static std::unique_ptr<ARMOperand> 3474 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3475 unsigned ShiftImm, SMLoc S, SMLoc E) { 3476 auto Op = std::make_unique<ARMOperand>(k_ShiftedImmediate); 3477 Op->RegShiftedImm.ShiftTy = ShTy; 3478 Op->RegShiftedImm.SrcReg = SrcReg; 3479 Op->RegShiftedImm.ShiftImm = ShiftImm; 3480 Op->StartLoc = S; 3481 Op->EndLoc = E; 3482 return Op; 3483 } 3484 3485 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 3486 SMLoc S, SMLoc E) { 3487 auto Op = std::make_unique<ARMOperand>(k_ShifterImmediate); 3488 Op->ShifterImm.isASR = isASR; 3489 Op->ShifterImm.Imm = Imm; 3490 Op->StartLoc = S; 3491 Op->EndLoc = E; 3492 return Op; 3493 } 3494 3495 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 3496 SMLoc E) { 3497 auto Op = std::make_unique<ARMOperand>(k_RotateImmediate); 3498 Op->RotImm.Imm = Imm; 3499 Op->StartLoc = S; 3500 Op->EndLoc = E; 3501 return Op; 3502 } 3503 3504 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 3505 SMLoc S, SMLoc E) { 3506 auto Op = std::make_unique<ARMOperand>(k_ModifiedImmediate); 3507 Op->ModImm.Bits = Bits; 3508 Op->ModImm.Rot = Rot; 3509 Op->StartLoc = S; 3510 Op->EndLoc = E; 3511 return Op; 3512 } 3513 3514 static std::unique_ptr<ARMOperand> 3515 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 3516 auto Op = std::make_unique<ARMOperand>(k_ConstantPoolImmediate); 3517 Op->Imm.Val = Val; 3518 Op->StartLoc = S; 3519 Op->EndLoc = E; 3520 return Op; 3521 } 3522 3523 static std::unique_ptr<ARMOperand> 3524 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 3525 auto Op = std::make_unique<ARMOperand>(k_BitfieldDescriptor); 3526 Op->Bitfield.LSB = LSB; 3527 Op->Bitfield.Width = Width; 3528 Op->StartLoc = S; 3529 Op->EndLoc = E; 3530 return Op; 3531 } 3532 3533 static std::unique_ptr<ARMOperand> 3534 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 3535 SMLoc StartLoc, SMLoc EndLoc) { 3536 assert(Regs.size() > 0 && "RegList contains no registers?"); 3537 KindTy Kind = k_RegisterList; 3538 3539 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 3540 Regs.front().second)) { 3541 if (Regs.back().second == ARM::VPR) 3542 Kind = k_FPDRegisterListWithVPR; 3543 else 3544 Kind = k_DPRRegisterList; 3545 } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 3546 Regs.front().second)) { 3547 if (Regs.back().second == ARM::VPR) 3548 Kind = k_FPSRegisterListWithVPR; 3549 else 3550 Kind = k_SPRRegisterList; 3551 } 3552 3553 if (Kind == k_RegisterList && Regs.back().second == ARM::APSR) 3554 Kind = k_RegisterListWithAPSR; 3555 3556 assert(std::is_sorted(Regs.begin(), Regs.end()) && 3557 "Register list must be sorted by encoding"); 3558 3559 auto Op = std::make_unique<ARMOperand>(Kind); 3560 for (const auto &P : Regs) 3561 Op->Registers.push_back(P.second); 3562 3563 Op->StartLoc = StartLoc; 3564 Op->EndLoc = EndLoc; 3565 return Op; 3566 } 3567 3568 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 3569 unsigned Count, 3570 bool isDoubleSpaced, 3571 SMLoc S, SMLoc E) { 3572 auto Op = std::make_unique<ARMOperand>(k_VectorList); 3573 Op->VectorList.RegNum = RegNum; 3574 Op->VectorList.Count = Count; 3575 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3576 Op->StartLoc = S; 3577 Op->EndLoc = E; 3578 return Op; 3579 } 3580 3581 static std::unique_ptr<ARMOperand> 3582 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 3583 SMLoc S, SMLoc E) { 3584 auto Op = std::make_unique<ARMOperand>(k_VectorListAllLanes); 3585 Op->VectorList.RegNum = RegNum; 3586 Op->VectorList.Count = Count; 3587 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3588 Op->StartLoc = S; 3589 Op->EndLoc = E; 3590 return Op; 3591 } 3592 3593 static std::unique_ptr<ARMOperand> 3594 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 3595 bool isDoubleSpaced, SMLoc S, SMLoc E) { 3596 auto Op = std::make_unique<ARMOperand>(k_VectorListIndexed); 3597 Op->VectorList.RegNum = RegNum; 3598 Op->VectorList.Count = Count; 3599 Op->VectorList.LaneIndex = Index; 3600 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3601 Op->StartLoc = S; 3602 Op->EndLoc = E; 3603 return Op; 3604 } 3605 3606 static std::unique_ptr<ARMOperand> 3607 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 3608 auto Op = std::make_unique<ARMOperand>(k_VectorIndex); 3609 Op->VectorIndex.Val = Idx; 3610 Op->StartLoc = S; 3611 Op->EndLoc = E; 3612 return Op; 3613 } 3614 3615 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 3616 SMLoc E) { 3617 auto Op = std::make_unique<ARMOperand>(k_Immediate); 3618 Op->Imm.Val = Val; 3619 Op->StartLoc = S; 3620 Op->EndLoc = E; 3621 return Op; 3622 } 3623 3624 static std::unique_ptr<ARMOperand> 3625 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 3626 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 3627 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 3628 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 3629 auto Op = std::make_unique<ARMOperand>(k_Memory); 3630 Op->Memory.BaseRegNum = BaseRegNum; 3631 Op->Memory.OffsetImm = OffsetImm; 3632 Op->Memory.OffsetRegNum = OffsetRegNum; 3633 Op->Memory.ShiftType = ShiftType; 3634 Op->Memory.ShiftImm = ShiftImm; 3635 Op->Memory.Alignment = Alignment; 3636 Op->Memory.isNegative = isNegative; 3637 Op->StartLoc = S; 3638 Op->EndLoc = E; 3639 Op->AlignmentLoc = AlignmentLoc; 3640 return Op; 3641 } 3642 3643 static std::unique_ptr<ARMOperand> 3644 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 3645 unsigned ShiftImm, SMLoc S, SMLoc E) { 3646 auto Op = std::make_unique<ARMOperand>(k_PostIndexRegister); 3647 Op->PostIdxReg.RegNum = RegNum; 3648 Op->PostIdxReg.isAdd = isAdd; 3649 Op->PostIdxReg.ShiftTy = ShiftTy; 3650 Op->PostIdxReg.ShiftImm = ShiftImm; 3651 Op->StartLoc = S; 3652 Op->EndLoc = E; 3653 return Op; 3654 } 3655 3656 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3657 SMLoc S) { 3658 auto Op = std::make_unique<ARMOperand>(k_MemBarrierOpt); 3659 Op->MBOpt.Val = Opt; 3660 Op->StartLoc = S; 3661 Op->EndLoc = S; 3662 return Op; 3663 } 3664 3665 static std::unique_ptr<ARMOperand> 3666 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3667 auto Op = std::make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3668 Op->ISBOpt.Val = Opt; 3669 Op->StartLoc = S; 3670 Op->EndLoc = S; 3671 return Op; 3672 } 3673 3674 static std::unique_ptr<ARMOperand> 3675 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) { 3676 auto Op = std::make_unique<ARMOperand>(k_TraceSyncBarrierOpt); 3677 Op->TSBOpt.Val = Opt; 3678 Op->StartLoc = S; 3679 Op->EndLoc = S; 3680 return Op; 3681 } 3682 3683 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3684 SMLoc S) { 3685 auto Op = std::make_unique<ARMOperand>(k_ProcIFlags); 3686 Op->IFlags.Val = IFlags; 3687 Op->StartLoc = S; 3688 Op->EndLoc = S; 3689 return Op; 3690 } 3691 3692 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3693 auto Op = std::make_unique<ARMOperand>(k_MSRMask); 3694 Op->MMask.Val = MMask; 3695 Op->StartLoc = S; 3696 Op->EndLoc = S; 3697 return Op; 3698 } 3699 3700 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3701 auto Op = std::make_unique<ARMOperand>(k_BankedReg); 3702 Op->BankedReg.Val = Reg; 3703 Op->StartLoc = S; 3704 Op->EndLoc = S; 3705 return Op; 3706 } 3707 }; 3708 3709 } // end anonymous namespace. 3710 3711 void ARMOperand::print(raw_ostream &OS) const { 3712 auto RegName = [](unsigned Reg) { 3713 if (Reg) 3714 return ARMInstPrinter::getRegisterName(Reg); 3715 else 3716 return "noreg"; 3717 }; 3718 3719 switch (Kind) { 3720 case k_CondCode: 3721 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3722 break; 3723 case k_VPTPred: 3724 OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">"; 3725 break; 3726 case k_CCOut: 3727 OS << "<ccout " << RegName(getReg()) << ">"; 3728 break; 3729 case k_ITCondMask: { 3730 static const char *const MaskStr[] = { 3731 "(invalid)", "(tttt)", "(ttt)", "(ttte)", 3732 "(tt)", "(ttet)", "(tte)", "(ttee)", 3733 "(t)", "(tett)", "(tet)", "(tete)", 3734 "(te)", "(teet)", "(tee)", "(teee)", 3735 }; 3736 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3737 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3738 break; 3739 } 3740 case k_CoprocNum: 3741 OS << "<coprocessor number: " << getCoproc() << ">"; 3742 break; 3743 case k_CoprocReg: 3744 OS << "<coprocessor register: " << getCoproc() << ">"; 3745 break; 3746 case k_CoprocOption: 3747 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3748 break; 3749 case k_MSRMask: 3750 OS << "<mask: " << getMSRMask() << ">"; 3751 break; 3752 case k_BankedReg: 3753 OS << "<banked reg: " << getBankedReg() << ">"; 3754 break; 3755 case k_Immediate: 3756 OS << *getImm(); 3757 break; 3758 case k_MemBarrierOpt: 3759 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3760 break; 3761 case k_InstSyncBarrierOpt: 3762 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3763 break; 3764 case k_TraceSyncBarrierOpt: 3765 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">"; 3766 break; 3767 case k_Memory: 3768 OS << "<memory"; 3769 if (Memory.BaseRegNum) 3770 OS << " base:" << RegName(Memory.BaseRegNum); 3771 if (Memory.OffsetImm) 3772 OS << " offset-imm:" << *Memory.OffsetImm; 3773 if (Memory.OffsetRegNum) 3774 OS << " offset-reg:" << (Memory.isNegative ? "-" : "") 3775 << RegName(Memory.OffsetRegNum); 3776 if (Memory.ShiftType != ARM_AM::no_shift) { 3777 OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType); 3778 OS << " shift-imm:" << Memory.ShiftImm; 3779 } 3780 if (Memory.Alignment) 3781 OS << " alignment:" << Memory.Alignment; 3782 OS << ">"; 3783 break; 3784 case k_PostIndexRegister: 3785 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3786 << RegName(PostIdxReg.RegNum); 3787 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3788 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3789 << PostIdxReg.ShiftImm; 3790 OS << ">"; 3791 break; 3792 case k_ProcIFlags: { 3793 OS << "<ARM_PROC::"; 3794 unsigned IFlags = getProcIFlags(); 3795 for (int i=2; i >= 0; --i) 3796 if (IFlags & (1 << i)) 3797 OS << ARM_PROC::IFlagsToString(1 << i); 3798 OS << ">"; 3799 break; 3800 } 3801 case k_Register: 3802 OS << "<register " << RegName(getReg()) << ">"; 3803 break; 3804 case k_ShifterImmediate: 3805 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3806 << " #" << ShifterImm.Imm << ">"; 3807 break; 3808 case k_ShiftedRegister: 3809 OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " " 3810 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " " 3811 << RegName(RegShiftedReg.ShiftReg) << ">"; 3812 break; 3813 case k_ShiftedImmediate: 3814 OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " " 3815 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #" 3816 << RegShiftedImm.ShiftImm << ">"; 3817 break; 3818 case k_RotateImmediate: 3819 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3820 break; 3821 case k_ModifiedImmediate: 3822 OS << "<mod_imm #" << ModImm.Bits << ", #" 3823 << ModImm.Rot << ")>"; 3824 break; 3825 case k_ConstantPoolImmediate: 3826 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3827 break; 3828 case k_BitfieldDescriptor: 3829 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3830 << ", width: " << Bitfield.Width << ">"; 3831 break; 3832 case k_RegisterList: 3833 case k_RegisterListWithAPSR: 3834 case k_DPRRegisterList: 3835 case k_SPRRegisterList: 3836 case k_FPSRegisterListWithVPR: 3837 case k_FPDRegisterListWithVPR: { 3838 OS << "<register_list "; 3839 3840 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3841 for (SmallVectorImpl<unsigned>::const_iterator 3842 I = RegList.begin(), E = RegList.end(); I != E; ) { 3843 OS << RegName(*I); 3844 if (++I < E) OS << ", "; 3845 } 3846 3847 OS << ">"; 3848 break; 3849 } 3850 case k_VectorList: 3851 OS << "<vector_list " << VectorList.Count << " * " 3852 << RegName(VectorList.RegNum) << ">"; 3853 break; 3854 case k_VectorListAllLanes: 3855 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3856 << RegName(VectorList.RegNum) << ">"; 3857 break; 3858 case k_VectorListIndexed: 3859 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3860 << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">"; 3861 break; 3862 case k_Token: 3863 OS << "'" << getToken() << "'"; 3864 break; 3865 case k_VectorIndex: 3866 OS << "<vectorindex " << getVectorIndex() << ">"; 3867 break; 3868 } 3869 } 3870 3871 /// @name Auto-generated Match Functions 3872 /// { 3873 3874 static unsigned MatchRegisterName(StringRef Name); 3875 3876 /// } 3877 3878 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3879 SMLoc &StartLoc, SMLoc &EndLoc) { 3880 const AsmToken &Tok = getParser().getTok(); 3881 StartLoc = Tok.getLoc(); 3882 EndLoc = Tok.getEndLoc(); 3883 RegNo = tryParseRegister(); 3884 3885 return (RegNo == (unsigned)-1); 3886 } 3887 3888 /// Try to parse a register name. The token must be an Identifier when called, 3889 /// and if it is a register name the token is eaten and the register number is 3890 /// returned. Otherwise return -1. 3891 int ARMAsmParser::tryParseRegister() { 3892 MCAsmParser &Parser = getParser(); 3893 const AsmToken &Tok = Parser.getTok(); 3894 if (Tok.isNot(AsmToken::Identifier)) return -1; 3895 3896 std::string lowerCase = Tok.getString().lower(); 3897 unsigned RegNum = MatchRegisterName(lowerCase); 3898 if (!RegNum) { 3899 RegNum = StringSwitch<unsigned>(lowerCase) 3900 .Case("r13", ARM::SP) 3901 .Case("r14", ARM::LR) 3902 .Case("r15", ARM::PC) 3903 .Case("ip", ARM::R12) 3904 // Additional register name aliases for 'gas' compatibility. 3905 .Case("a1", ARM::R0) 3906 .Case("a2", ARM::R1) 3907 .Case("a3", ARM::R2) 3908 .Case("a4", ARM::R3) 3909 .Case("v1", ARM::R4) 3910 .Case("v2", ARM::R5) 3911 .Case("v3", ARM::R6) 3912 .Case("v4", ARM::R7) 3913 .Case("v5", ARM::R8) 3914 .Case("v6", ARM::R9) 3915 .Case("v7", ARM::R10) 3916 .Case("v8", ARM::R11) 3917 .Case("sb", ARM::R9) 3918 .Case("sl", ARM::R10) 3919 .Case("fp", ARM::R11) 3920 .Default(0); 3921 } 3922 if (!RegNum) { 3923 // Check for aliases registered via .req. Canonicalize to lower case. 3924 // That's more consistent since register names are case insensitive, and 3925 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3926 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3927 // If no match, return failure. 3928 if (Entry == RegisterReqs.end()) 3929 return -1; 3930 Parser.Lex(); // Eat identifier token. 3931 return Entry->getValue(); 3932 } 3933 3934 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3935 if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3936 return -1; 3937 3938 Parser.Lex(); // Eat identifier token. 3939 3940 return RegNum; 3941 } 3942 3943 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3944 // If a recoverable error occurs, return 1. If an irrecoverable error 3945 // occurs, return -1. An irrecoverable error is one where tokens have been 3946 // consumed in the process of trying to parse the shifter (i.e., when it is 3947 // indeed a shifter operand, but malformed). 3948 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3949 MCAsmParser &Parser = getParser(); 3950 SMLoc S = Parser.getTok().getLoc(); 3951 const AsmToken &Tok = Parser.getTok(); 3952 if (Tok.isNot(AsmToken::Identifier)) 3953 return -1; 3954 3955 std::string lowerCase = Tok.getString().lower(); 3956 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3957 .Case("asl", ARM_AM::lsl) 3958 .Case("lsl", ARM_AM::lsl) 3959 .Case("lsr", ARM_AM::lsr) 3960 .Case("asr", ARM_AM::asr) 3961 .Case("ror", ARM_AM::ror) 3962 .Case("rrx", ARM_AM::rrx) 3963 .Default(ARM_AM::no_shift); 3964 3965 if (ShiftTy == ARM_AM::no_shift) 3966 return 1; 3967 3968 Parser.Lex(); // Eat the operator. 3969 3970 // The source register for the shift has already been added to the 3971 // operand list, so we need to pop it off and combine it into the shifted 3972 // register operand instead. 3973 std::unique_ptr<ARMOperand> PrevOp( 3974 (ARMOperand *)Operands.pop_back_val().release()); 3975 if (!PrevOp->isReg()) 3976 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3977 int SrcReg = PrevOp->getReg(); 3978 3979 SMLoc EndLoc; 3980 int64_t Imm = 0; 3981 int ShiftReg = 0; 3982 if (ShiftTy == ARM_AM::rrx) { 3983 // RRX Doesn't have an explicit shift amount. The encoder expects 3984 // the shift register to be the same as the source register. Seems odd, 3985 // but OK. 3986 ShiftReg = SrcReg; 3987 } else { 3988 // Figure out if this is shifted by a constant or a register (for non-RRX). 3989 if (Parser.getTok().is(AsmToken::Hash) || 3990 Parser.getTok().is(AsmToken::Dollar)) { 3991 Parser.Lex(); // Eat hash. 3992 SMLoc ImmLoc = Parser.getTok().getLoc(); 3993 const MCExpr *ShiftExpr = nullptr; 3994 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3995 Error(ImmLoc, "invalid immediate shift value"); 3996 return -1; 3997 } 3998 // The expression must be evaluatable as an immediate. 3999 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 4000 if (!CE) { 4001 Error(ImmLoc, "invalid immediate shift value"); 4002 return -1; 4003 } 4004 // Range check the immediate. 4005 // lsl, ror: 0 <= imm <= 31 4006 // lsr, asr: 0 <= imm <= 32 4007 Imm = CE->getValue(); 4008 if (Imm < 0 || 4009 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 4010 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 4011 Error(ImmLoc, "immediate shift value out of range"); 4012 return -1; 4013 } 4014 // shift by zero is a nop. Always send it through as lsl. 4015 // ('as' compatibility) 4016 if (Imm == 0) 4017 ShiftTy = ARM_AM::lsl; 4018 } else if (Parser.getTok().is(AsmToken::Identifier)) { 4019 SMLoc L = Parser.getTok().getLoc(); 4020 EndLoc = Parser.getTok().getEndLoc(); 4021 ShiftReg = tryParseRegister(); 4022 if (ShiftReg == -1) { 4023 Error(L, "expected immediate or register in shift operand"); 4024 return -1; 4025 } 4026 } else { 4027 Error(Parser.getTok().getLoc(), 4028 "expected immediate or register in shift operand"); 4029 return -1; 4030 } 4031 } 4032 4033 if (ShiftReg && ShiftTy != ARM_AM::rrx) 4034 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 4035 ShiftReg, Imm, 4036 S, EndLoc)); 4037 else 4038 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 4039 S, EndLoc)); 4040 4041 return 0; 4042 } 4043 4044 /// Try to parse a register name. The token must be an Identifier when called. 4045 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 4046 /// if there is a "writeback". 'true' if it's not a register. 4047 /// 4048 /// TODO this is likely to change to allow different register types and or to 4049 /// parse for a specific register type. 4050 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 4051 MCAsmParser &Parser = getParser(); 4052 SMLoc RegStartLoc = Parser.getTok().getLoc(); 4053 SMLoc RegEndLoc = Parser.getTok().getEndLoc(); 4054 int RegNo = tryParseRegister(); 4055 if (RegNo == -1) 4056 return true; 4057 4058 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); 4059 4060 const AsmToken &ExclaimTok = Parser.getTok(); 4061 if (ExclaimTok.is(AsmToken::Exclaim)) { 4062 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 4063 ExclaimTok.getLoc())); 4064 Parser.Lex(); // Eat exclaim token 4065 return false; 4066 } 4067 4068 // Also check for an index operand. This is only legal for vector registers, 4069 // but that'll get caught OK in operand matching, so we don't need to 4070 // explicitly filter everything else out here. 4071 if (Parser.getTok().is(AsmToken::LBrac)) { 4072 SMLoc SIdx = Parser.getTok().getLoc(); 4073 Parser.Lex(); // Eat left bracket token. 4074 4075 const MCExpr *ImmVal; 4076 if (getParser().parseExpression(ImmVal)) 4077 return true; 4078 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 4079 if (!MCE) 4080 return TokError("immediate value expected for vector index"); 4081 4082 if (Parser.getTok().isNot(AsmToken::RBrac)) 4083 return Error(Parser.getTok().getLoc(), "']' expected"); 4084 4085 SMLoc E = Parser.getTok().getEndLoc(); 4086 Parser.Lex(); // Eat right bracket token. 4087 4088 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 4089 SIdx, E, 4090 getContext())); 4091 } 4092 4093 return false; 4094 } 4095 4096 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 4097 /// instruction with a symbolic operand name. 4098 /// We accept "crN" syntax for GAS compatibility. 4099 /// <operand-name> ::= <prefix><number> 4100 /// If CoprocOp is 'c', then: 4101 /// <prefix> ::= c | cr 4102 /// If CoprocOp is 'p', then : 4103 /// <prefix> ::= p 4104 /// <number> ::= integer in range [0, 15] 4105 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 4106 // Use the same layout as the tablegen'erated register name matcher. Ugly, 4107 // but efficient. 4108 if (Name.size() < 2 || Name[0] != CoprocOp) 4109 return -1; 4110 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 4111 4112 switch (Name.size()) { 4113 default: return -1; 4114 case 1: 4115 switch (Name[0]) { 4116 default: return -1; 4117 case '0': return 0; 4118 case '1': return 1; 4119 case '2': return 2; 4120 case '3': return 3; 4121 case '4': return 4; 4122 case '5': return 5; 4123 case '6': return 6; 4124 case '7': return 7; 4125 case '8': return 8; 4126 case '9': return 9; 4127 } 4128 case 2: 4129 if (Name[0] != '1') 4130 return -1; 4131 switch (Name[1]) { 4132 default: return -1; 4133 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 4134 // However, old cores (v5/v6) did use them in that way. 4135 case '0': return 10; 4136 case '1': return 11; 4137 case '2': return 12; 4138 case '3': return 13; 4139 case '4': return 14; 4140 case '5': return 15; 4141 } 4142 } 4143 } 4144 4145 /// parseITCondCode - Try to parse a condition code for an IT instruction. 4146 OperandMatchResultTy 4147 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 4148 MCAsmParser &Parser = getParser(); 4149 SMLoc S = Parser.getTok().getLoc(); 4150 const AsmToken &Tok = Parser.getTok(); 4151 if (!Tok.is(AsmToken::Identifier)) 4152 return MatchOperand_NoMatch; 4153 unsigned CC = ARMCondCodeFromString(Tok.getString()); 4154 if (CC == ~0U) 4155 return MatchOperand_NoMatch; 4156 Parser.Lex(); // Eat the token. 4157 4158 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 4159 4160 return MatchOperand_Success; 4161 } 4162 4163 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 4164 /// token must be an Identifier when called, and if it is a coprocessor 4165 /// number, the token is eaten and the operand is added to the operand list. 4166 OperandMatchResultTy 4167 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 4168 MCAsmParser &Parser = getParser(); 4169 SMLoc S = Parser.getTok().getLoc(); 4170 const AsmToken &Tok = Parser.getTok(); 4171 if (Tok.isNot(AsmToken::Identifier)) 4172 return MatchOperand_NoMatch; 4173 4174 int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p'); 4175 if (Num == -1) 4176 return MatchOperand_NoMatch; 4177 if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits())) 4178 return MatchOperand_NoMatch; 4179 4180 Parser.Lex(); // Eat identifier token. 4181 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 4182 return MatchOperand_Success; 4183 } 4184 4185 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 4186 /// token must be an Identifier when called, and if it is a coprocessor 4187 /// number, the token is eaten and the operand is added to the operand list. 4188 OperandMatchResultTy 4189 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 4190 MCAsmParser &Parser = getParser(); 4191 SMLoc S = Parser.getTok().getLoc(); 4192 const AsmToken &Tok = Parser.getTok(); 4193 if (Tok.isNot(AsmToken::Identifier)) 4194 return MatchOperand_NoMatch; 4195 4196 int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c'); 4197 if (Reg == -1) 4198 return MatchOperand_NoMatch; 4199 4200 Parser.Lex(); // Eat identifier token. 4201 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 4202 return MatchOperand_Success; 4203 } 4204 4205 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 4206 /// coproc_option : '{' imm0_255 '}' 4207 OperandMatchResultTy 4208 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 4209 MCAsmParser &Parser = getParser(); 4210 SMLoc S = Parser.getTok().getLoc(); 4211 4212 // If this isn't a '{', this isn't a coprocessor immediate operand. 4213 if (Parser.getTok().isNot(AsmToken::LCurly)) 4214 return MatchOperand_NoMatch; 4215 Parser.Lex(); // Eat the '{' 4216 4217 const MCExpr *Expr; 4218 SMLoc Loc = Parser.getTok().getLoc(); 4219 if (getParser().parseExpression(Expr)) { 4220 Error(Loc, "illegal expression"); 4221 return MatchOperand_ParseFail; 4222 } 4223 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4224 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 4225 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 4226 return MatchOperand_ParseFail; 4227 } 4228 int Val = CE->getValue(); 4229 4230 // Check for and consume the closing '}' 4231 if (Parser.getTok().isNot(AsmToken::RCurly)) 4232 return MatchOperand_ParseFail; 4233 SMLoc E = Parser.getTok().getEndLoc(); 4234 Parser.Lex(); // Eat the '}' 4235 4236 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 4237 return MatchOperand_Success; 4238 } 4239 4240 // For register list parsing, we need to map from raw GPR register numbering 4241 // to the enumeration values. The enumeration values aren't sorted by 4242 // register number due to our using "sp", "lr" and "pc" as canonical names. 4243 static unsigned getNextRegister(unsigned Reg) { 4244 // If this is a GPR, we need to do it manually, otherwise we can rely 4245 // on the sort ordering of the enumeration since the other reg-classes 4246 // are sane. 4247 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4248 return Reg + 1; 4249 switch(Reg) { 4250 default: llvm_unreachable("Invalid GPR number!"); 4251 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 4252 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 4253 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 4254 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 4255 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 4256 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 4257 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 4258 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 4259 } 4260 } 4261 4262 // Insert an <Encoding, Register> pair in an ordered vector. Return true on 4263 // success, or false, if duplicate encoding found. 4264 static bool 4265 insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 4266 unsigned Enc, unsigned Reg) { 4267 Regs.emplace_back(Enc, Reg); 4268 for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) { 4269 if (J->first == Enc) { 4270 Regs.erase(J.base()); 4271 return false; 4272 } 4273 if (J->first < Enc) 4274 break; 4275 std::swap(*I, *J); 4276 } 4277 return true; 4278 } 4279 4280 /// Parse a register list. 4281 bool ARMAsmParser::parseRegisterList(OperandVector &Operands, 4282 bool EnforceOrder) { 4283 MCAsmParser &Parser = getParser(); 4284 if (Parser.getTok().isNot(AsmToken::LCurly)) 4285 return TokError("Token is not a Left Curly Brace"); 4286 SMLoc S = Parser.getTok().getLoc(); 4287 Parser.Lex(); // Eat '{' token. 4288 SMLoc RegLoc = Parser.getTok().getLoc(); 4289 4290 // Check the first register in the list to see what register class 4291 // this is a list of. 4292 int Reg = tryParseRegister(); 4293 if (Reg == -1) 4294 return Error(RegLoc, "register expected"); 4295 4296 // The reglist instructions have at most 16 registers, so reserve 4297 // space for that many. 4298 int EReg = 0; 4299 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 4300 4301 // Allow Q regs and just interpret them as the two D sub-registers. 4302 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4303 Reg = getDRegFromQReg(Reg); 4304 EReg = MRI->getEncodingValue(Reg); 4305 Registers.emplace_back(EReg, Reg); 4306 ++Reg; 4307 } 4308 const MCRegisterClass *RC; 4309 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4310 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 4311 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 4312 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 4313 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 4314 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 4315 else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4316 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4317 else 4318 return Error(RegLoc, "invalid register in register list"); 4319 4320 // Store the register. 4321 EReg = MRI->getEncodingValue(Reg); 4322 Registers.emplace_back(EReg, Reg); 4323 4324 // This starts immediately after the first register token in the list, 4325 // so we can see either a comma or a minus (range separator) as a legal 4326 // next token. 4327 while (Parser.getTok().is(AsmToken::Comma) || 4328 Parser.getTok().is(AsmToken::Minus)) { 4329 if (Parser.getTok().is(AsmToken::Minus)) { 4330 Parser.Lex(); // Eat the minus. 4331 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4332 int EndReg = tryParseRegister(); 4333 if (EndReg == -1) 4334 return Error(AfterMinusLoc, "register expected"); 4335 // Allow Q regs and just interpret them as the two D sub-registers. 4336 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4337 EndReg = getDRegFromQReg(EndReg) + 1; 4338 // If the register is the same as the start reg, there's nothing 4339 // more to do. 4340 if (Reg == EndReg) 4341 continue; 4342 // The register must be in the same register class as the first. 4343 if (!RC->contains(EndReg)) 4344 return Error(AfterMinusLoc, "invalid register in register list"); 4345 // Ranges must go from low to high. 4346 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 4347 return Error(AfterMinusLoc, "bad range in register list"); 4348 4349 // Add all the registers in the range to the register list. 4350 while (Reg != EndReg) { 4351 Reg = getNextRegister(Reg); 4352 EReg = MRI->getEncodingValue(Reg); 4353 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4354 Warning(AfterMinusLoc, StringRef("duplicated register (") + 4355 ARMInstPrinter::getRegisterName(Reg) + 4356 ") in register list"); 4357 } 4358 } 4359 continue; 4360 } 4361 Parser.Lex(); // Eat the comma. 4362 RegLoc = Parser.getTok().getLoc(); 4363 int OldReg = Reg; 4364 const AsmToken RegTok = Parser.getTok(); 4365 Reg = tryParseRegister(); 4366 if (Reg == -1) 4367 return Error(RegLoc, "register expected"); 4368 // Allow Q regs and just interpret them as the two D sub-registers. 4369 bool isQReg = false; 4370 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4371 Reg = getDRegFromQReg(Reg); 4372 isQReg = true; 4373 } 4374 if (!RC->contains(Reg) && 4375 RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() && 4376 ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) { 4377 // switch the register classes, as GPRwithAPSRnospRegClassID is a partial 4378 // subset of GPRRegClassId except it contains APSR as well. 4379 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4380 } 4381 if (Reg == ARM::VPR && 4382 (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] || 4383 RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] || 4384 RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) { 4385 RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID]; 4386 EReg = MRI->getEncodingValue(Reg); 4387 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4388 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4389 ") in register list"); 4390 } 4391 continue; 4392 } 4393 // The register must be in the same register class as the first. 4394 if (!RC->contains(Reg)) 4395 return Error(RegLoc, "invalid register in register list"); 4396 // In most cases, the list must be monotonically increasing. An 4397 // exception is CLRM, which is order-independent anyway, so 4398 // there's no potential for confusion if you write clrm {r2,r1} 4399 // instead of clrm {r1,r2}. 4400 if (EnforceOrder && 4401 MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 4402 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4403 Warning(RegLoc, "register list not in ascending order"); 4404 else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4405 return Error(RegLoc, "register list not in ascending order"); 4406 } 4407 // VFP register lists must also be contiguous. 4408 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 4409 RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] && 4410 Reg != OldReg + 1) 4411 return Error(RegLoc, "non-contiguous register range"); 4412 EReg = MRI->getEncodingValue(Reg); 4413 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4414 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4415 ") in register list"); 4416 } 4417 if (isQReg) { 4418 EReg = MRI->getEncodingValue(++Reg); 4419 Registers.emplace_back(EReg, Reg); 4420 } 4421 } 4422 4423 if (Parser.getTok().isNot(AsmToken::RCurly)) 4424 return Error(Parser.getTok().getLoc(), "'}' expected"); 4425 SMLoc E = Parser.getTok().getEndLoc(); 4426 Parser.Lex(); // Eat '}' token. 4427 4428 // Push the register list operand. 4429 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 4430 4431 // The ARM system instruction variants for LDM/STM have a '^' token here. 4432 if (Parser.getTok().is(AsmToken::Caret)) { 4433 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 4434 Parser.Lex(); // Eat '^' token. 4435 } 4436 4437 return false; 4438 } 4439 4440 // Helper function to parse the lane index for vector lists. 4441 OperandMatchResultTy ARMAsmParser:: 4442 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 4443 MCAsmParser &Parser = getParser(); 4444 Index = 0; // Always return a defined index value. 4445 if (Parser.getTok().is(AsmToken::LBrac)) { 4446 Parser.Lex(); // Eat the '['. 4447 if (Parser.getTok().is(AsmToken::RBrac)) { 4448 // "Dn[]" is the 'all lanes' syntax. 4449 LaneKind = AllLanes; 4450 EndLoc = Parser.getTok().getEndLoc(); 4451 Parser.Lex(); // Eat the ']'. 4452 return MatchOperand_Success; 4453 } 4454 4455 // There's an optional '#' token here. Normally there wouldn't be, but 4456 // inline assemble puts one in, and it's friendly to accept that. 4457 if (Parser.getTok().is(AsmToken::Hash)) 4458 Parser.Lex(); // Eat '#' or '$'. 4459 4460 const MCExpr *LaneIndex; 4461 SMLoc Loc = Parser.getTok().getLoc(); 4462 if (getParser().parseExpression(LaneIndex)) { 4463 Error(Loc, "illegal expression"); 4464 return MatchOperand_ParseFail; 4465 } 4466 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 4467 if (!CE) { 4468 Error(Loc, "lane index must be empty or an integer"); 4469 return MatchOperand_ParseFail; 4470 } 4471 if (Parser.getTok().isNot(AsmToken::RBrac)) { 4472 Error(Parser.getTok().getLoc(), "']' expected"); 4473 return MatchOperand_ParseFail; 4474 } 4475 EndLoc = Parser.getTok().getEndLoc(); 4476 Parser.Lex(); // Eat the ']'. 4477 int64_t Val = CE->getValue(); 4478 4479 // FIXME: Make this range check context sensitive for .8, .16, .32. 4480 if (Val < 0 || Val > 7) { 4481 Error(Parser.getTok().getLoc(), "lane index out of range"); 4482 return MatchOperand_ParseFail; 4483 } 4484 Index = Val; 4485 LaneKind = IndexedLane; 4486 return MatchOperand_Success; 4487 } 4488 LaneKind = NoLanes; 4489 return MatchOperand_Success; 4490 } 4491 4492 // parse a vector register list 4493 OperandMatchResultTy 4494 ARMAsmParser::parseVectorList(OperandVector &Operands) { 4495 MCAsmParser &Parser = getParser(); 4496 VectorLaneTy LaneKind; 4497 unsigned LaneIndex; 4498 SMLoc S = Parser.getTok().getLoc(); 4499 // As an extension (to match gas), support a plain D register or Q register 4500 // (without encosing curly braces) as a single or double entry list, 4501 // respectively. 4502 if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) { 4503 SMLoc E = Parser.getTok().getEndLoc(); 4504 int Reg = tryParseRegister(); 4505 if (Reg == -1) 4506 return MatchOperand_NoMatch; 4507 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 4508 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4509 if (Res != MatchOperand_Success) 4510 return Res; 4511 switch (LaneKind) { 4512 case NoLanes: 4513 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 4514 break; 4515 case AllLanes: 4516 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 4517 S, E)); 4518 break; 4519 case IndexedLane: 4520 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 4521 LaneIndex, 4522 false, S, E)); 4523 break; 4524 } 4525 return MatchOperand_Success; 4526 } 4527 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4528 Reg = getDRegFromQReg(Reg); 4529 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4530 if (Res != MatchOperand_Success) 4531 return Res; 4532 switch (LaneKind) { 4533 case NoLanes: 4534 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4535 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4536 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 4537 break; 4538 case AllLanes: 4539 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4540 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4541 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 4542 S, E)); 4543 break; 4544 case IndexedLane: 4545 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 4546 LaneIndex, 4547 false, S, E)); 4548 break; 4549 } 4550 return MatchOperand_Success; 4551 } 4552 Error(S, "vector register expected"); 4553 return MatchOperand_ParseFail; 4554 } 4555 4556 if (Parser.getTok().isNot(AsmToken::LCurly)) 4557 return MatchOperand_NoMatch; 4558 4559 Parser.Lex(); // Eat '{' token. 4560 SMLoc RegLoc = Parser.getTok().getLoc(); 4561 4562 int Reg = tryParseRegister(); 4563 if (Reg == -1) { 4564 Error(RegLoc, "register expected"); 4565 return MatchOperand_ParseFail; 4566 } 4567 unsigned Count = 1; 4568 int Spacing = 0; 4569 unsigned FirstReg = Reg; 4570 4571 if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4572 Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected"); 4573 return MatchOperand_ParseFail; 4574 } 4575 // The list is of D registers, but we also allow Q regs and just interpret 4576 // them as the two D sub-registers. 4577 else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4578 FirstReg = Reg = getDRegFromQReg(Reg); 4579 Spacing = 1; // double-spacing requires explicit D registers, otherwise 4580 // it's ambiguous with four-register single spaced. 4581 ++Reg; 4582 ++Count; 4583 } 4584 4585 SMLoc E; 4586 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 4587 return MatchOperand_ParseFail; 4588 4589 while (Parser.getTok().is(AsmToken::Comma) || 4590 Parser.getTok().is(AsmToken::Minus)) { 4591 if (Parser.getTok().is(AsmToken::Minus)) { 4592 if (!Spacing) 4593 Spacing = 1; // Register range implies a single spaced list. 4594 else if (Spacing == 2) { 4595 Error(Parser.getTok().getLoc(), 4596 "sequential registers in double spaced list"); 4597 return MatchOperand_ParseFail; 4598 } 4599 Parser.Lex(); // Eat the minus. 4600 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4601 int EndReg = tryParseRegister(); 4602 if (EndReg == -1) { 4603 Error(AfterMinusLoc, "register expected"); 4604 return MatchOperand_ParseFail; 4605 } 4606 // Allow Q regs and just interpret them as the two D sub-registers. 4607 if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4608 EndReg = getDRegFromQReg(EndReg) + 1; 4609 // If the register is the same as the start reg, there's nothing 4610 // more to do. 4611 if (Reg == EndReg) 4612 continue; 4613 // The register must be in the same register class as the first. 4614 if ((hasMVE() && 4615 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) || 4616 (!hasMVE() && 4617 !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) { 4618 Error(AfterMinusLoc, "invalid register in register list"); 4619 return MatchOperand_ParseFail; 4620 } 4621 // Ranges must go from low to high. 4622 if (Reg > EndReg) { 4623 Error(AfterMinusLoc, "bad range in register list"); 4624 return MatchOperand_ParseFail; 4625 } 4626 // Parse the lane specifier if present. 4627 VectorLaneTy NextLaneKind; 4628 unsigned NextLaneIndex; 4629 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4630 MatchOperand_Success) 4631 return MatchOperand_ParseFail; 4632 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4633 Error(AfterMinusLoc, "mismatched lane index in register list"); 4634 return MatchOperand_ParseFail; 4635 } 4636 4637 // Add all the registers in the range to the register list. 4638 Count += EndReg - Reg; 4639 Reg = EndReg; 4640 continue; 4641 } 4642 Parser.Lex(); // Eat the comma. 4643 RegLoc = Parser.getTok().getLoc(); 4644 int OldReg = Reg; 4645 Reg = tryParseRegister(); 4646 if (Reg == -1) { 4647 Error(RegLoc, "register expected"); 4648 return MatchOperand_ParseFail; 4649 } 4650 4651 if (hasMVE()) { 4652 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4653 Error(RegLoc, "vector register in range Q0-Q7 expected"); 4654 return MatchOperand_ParseFail; 4655 } 4656 Spacing = 1; 4657 } 4658 // vector register lists must be contiguous. 4659 // It's OK to use the enumeration values directly here rather, as the 4660 // VFP register classes have the enum sorted properly. 4661 // 4662 // The list is of D registers, but we also allow Q regs and just interpret 4663 // them as the two D sub-registers. 4664 else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4665 if (!Spacing) 4666 Spacing = 1; // Register range implies a single spaced list. 4667 else if (Spacing == 2) { 4668 Error(RegLoc, 4669 "invalid register in double-spaced list (must be 'D' register')"); 4670 return MatchOperand_ParseFail; 4671 } 4672 Reg = getDRegFromQReg(Reg); 4673 if (Reg != OldReg + 1) { 4674 Error(RegLoc, "non-contiguous register range"); 4675 return MatchOperand_ParseFail; 4676 } 4677 ++Reg; 4678 Count += 2; 4679 // Parse the lane specifier if present. 4680 VectorLaneTy NextLaneKind; 4681 unsigned NextLaneIndex; 4682 SMLoc LaneLoc = Parser.getTok().getLoc(); 4683 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4684 MatchOperand_Success) 4685 return MatchOperand_ParseFail; 4686 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4687 Error(LaneLoc, "mismatched lane index in register list"); 4688 return MatchOperand_ParseFail; 4689 } 4690 continue; 4691 } 4692 // Normal D register. 4693 // Figure out the register spacing (single or double) of the list if 4694 // we don't know it already. 4695 if (!Spacing) 4696 Spacing = 1 + (Reg == OldReg + 2); 4697 4698 // Just check that it's contiguous and keep going. 4699 if (Reg != OldReg + Spacing) { 4700 Error(RegLoc, "non-contiguous register range"); 4701 return MatchOperand_ParseFail; 4702 } 4703 ++Count; 4704 // Parse the lane specifier if present. 4705 VectorLaneTy NextLaneKind; 4706 unsigned NextLaneIndex; 4707 SMLoc EndLoc = Parser.getTok().getLoc(); 4708 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 4709 return MatchOperand_ParseFail; 4710 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4711 Error(EndLoc, "mismatched lane index in register list"); 4712 return MatchOperand_ParseFail; 4713 } 4714 } 4715 4716 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4717 Error(Parser.getTok().getLoc(), "'}' expected"); 4718 return MatchOperand_ParseFail; 4719 } 4720 E = Parser.getTok().getEndLoc(); 4721 Parser.Lex(); // Eat '}' token. 4722 4723 switch (LaneKind) { 4724 case NoLanes: 4725 case AllLanes: { 4726 // Two-register operands have been converted to the 4727 // composite register classes. 4728 if (Count == 2 && !hasMVE()) { 4729 const MCRegisterClass *RC = (Spacing == 1) ? 4730 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4731 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4732 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4733 } 4734 auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList : 4735 ARMOperand::CreateVectorListAllLanes); 4736 Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E)); 4737 break; 4738 } 4739 case IndexedLane: 4740 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4741 LaneIndex, 4742 (Spacing == 2), 4743 S, E)); 4744 break; 4745 } 4746 return MatchOperand_Success; 4747 } 4748 4749 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4750 OperandMatchResultTy 4751 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4752 MCAsmParser &Parser = getParser(); 4753 SMLoc S = Parser.getTok().getLoc(); 4754 const AsmToken &Tok = Parser.getTok(); 4755 unsigned Opt; 4756 4757 if (Tok.is(AsmToken::Identifier)) { 4758 StringRef OptStr = Tok.getString(); 4759 4760 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4761 .Case("sy", ARM_MB::SY) 4762 .Case("st", ARM_MB::ST) 4763 .Case("ld", ARM_MB::LD) 4764 .Case("sh", ARM_MB::ISH) 4765 .Case("ish", ARM_MB::ISH) 4766 .Case("shst", ARM_MB::ISHST) 4767 .Case("ishst", ARM_MB::ISHST) 4768 .Case("ishld", ARM_MB::ISHLD) 4769 .Case("nsh", ARM_MB::NSH) 4770 .Case("un", ARM_MB::NSH) 4771 .Case("nshst", ARM_MB::NSHST) 4772 .Case("nshld", ARM_MB::NSHLD) 4773 .Case("unst", ARM_MB::NSHST) 4774 .Case("osh", ARM_MB::OSH) 4775 .Case("oshst", ARM_MB::OSHST) 4776 .Case("oshld", ARM_MB::OSHLD) 4777 .Default(~0U); 4778 4779 // ishld, oshld, nshld and ld are only available from ARMv8. 4780 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4781 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4782 Opt = ~0U; 4783 4784 if (Opt == ~0U) 4785 return MatchOperand_NoMatch; 4786 4787 Parser.Lex(); // Eat identifier token. 4788 } else if (Tok.is(AsmToken::Hash) || 4789 Tok.is(AsmToken::Dollar) || 4790 Tok.is(AsmToken::Integer)) { 4791 if (Parser.getTok().isNot(AsmToken::Integer)) 4792 Parser.Lex(); // Eat '#' or '$'. 4793 SMLoc Loc = Parser.getTok().getLoc(); 4794 4795 const MCExpr *MemBarrierID; 4796 if (getParser().parseExpression(MemBarrierID)) { 4797 Error(Loc, "illegal expression"); 4798 return MatchOperand_ParseFail; 4799 } 4800 4801 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4802 if (!CE) { 4803 Error(Loc, "constant expression expected"); 4804 return MatchOperand_ParseFail; 4805 } 4806 4807 int Val = CE->getValue(); 4808 if (Val & ~0xf) { 4809 Error(Loc, "immediate value out of range"); 4810 return MatchOperand_ParseFail; 4811 } 4812 4813 Opt = ARM_MB::RESERVED_0 + Val; 4814 } else 4815 return MatchOperand_ParseFail; 4816 4817 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 4818 return MatchOperand_Success; 4819 } 4820 4821 OperandMatchResultTy 4822 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) { 4823 MCAsmParser &Parser = getParser(); 4824 SMLoc S = Parser.getTok().getLoc(); 4825 const AsmToken &Tok = Parser.getTok(); 4826 4827 if (Tok.isNot(AsmToken::Identifier)) 4828 return MatchOperand_NoMatch; 4829 4830 if (!Tok.getString().equals_lower("csync")) 4831 return MatchOperand_NoMatch; 4832 4833 Parser.Lex(); // Eat identifier token. 4834 4835 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S)); 4836 return MatchOperand_Success; 4837 } 4838 4839 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 4840 OperandMatchResultTy 4841 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 4842 MCAsmParser &Parser = getParser(); 4843 SMLoc S = Parser.getTok().getLoc(); 4844 const AsmToken &Tok = Parser.getTok(); 4845 unsigned Opt; 4846 4847 if (Tok.is(AsmToken::Identifier)) { 4848 StringRef OptStr = Tok.getString(); 4849 4850 if (OptStr.equals_lower("sy")) 4851 Opt = ARM_ISB::SY; 4852 else 4853 return MatchOperand_NoMatch; 4854 4855 Parser.Lex(); // Eat identifier token. 4856 } else if (Tok.is(AsmToken::Hash) || 4857 Tok.is(AsmToken::Dollar) || 4858 Tok.is(AsmToken::Integer)) { 4859 if (Parser.getTok().isNot(AsmToken::Integer)) 4860 Parser.Lex(); // Eat '#' or '$'. 4861 SMLoc Loc = Parser.getTok().getLoc(); 4862 4863 const MCExpr *ISBarrierID; 4864 if (getParser().parseExpression(ISBarrierID)) { 4865 Error(Loc, "illegal expression"); 4866 return MatchOperand_ParseFail; 4867 } 4868 4869 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4870 if (!CE) { 4871 Error(Loc, "constant expression expected"); 4872 return MatchOperand_ParseFail; 4873 } 4874 4875 int Val = CE->getValue(); 4876 if (Val & ~0xf) { 4877 Error(Loc, "immediate value out of range"); 4878 return MatchOperand_ParseFail; 4879 } 4880 4881 Opt = ARM_ISB::RESERVED_0 + Val; 4882 } else 4883 return MatchOperand_ParseFail; 4884 4885 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4886 (ARM_ISB::InstSyncBOpt)Opt, S)); 4887 return MatchOperand_Success; 4888 } 4889 4890 4891 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4892 OperandMatchResultTy 4893 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4894 MCAsmParser &Parser = getParser(); 4895 SMLoc S = Parser.getTok().getLoc(); 4896 const AsmToken &Tok = Parser.getTok(); 4897 if (!Tok.is(AsmToken::Identifier)) 4898 return MatchOperand_NoMatch; 4899 StringRef IFlagsStr = Tok.getString(); 4900 4901 // An iflags string of "none" is interpreted to mean that none of the AIF 4902 // bits are set. Not a terribly useful instruction, but a valid encoding. 4903 unsigned IFlags = 0; 4904 if (IFlagsStr != "none") { 4905 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4906 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) 4907 .Case("a", ARM_PROC::A) 4908 .Case("i", ARM_PROC::I) 4909 .Case("f", ARM_PROC::F) 4910 .Default(~0U); 4911 4912 // If some specific iflag is already set, it means that some letter is 4913 // present more than once, this is not acceptable. 4914 if (Flag == ~0U || (IFlags & Flag)) 4915 return MatchOperand_NoMatch; 4916 4917 IFlags |= Flag; 4918 } 4919 } 4920 4921 Parser.Lex(); // Eat identifier token. 4922 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4923 return MatchOperand_Success; 4924 } 4925 4926 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4927 OperandMatchResultTy 4928 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4929 MCAsmParser &Parser = getParser(); 4930 SMLoc S = Parser.getTok().getLoc(); 4931 const AsmToken &Tok = Parser.getTok(); 4932 4933 if (Tok.is(AsmToken::Integer)) { 4934 int64_t Val = Tok.getIntVal(); 4935 if (Val > 255 || Val < 0) { 4936 return MatchOperand_NoMatch; 4937 } 4938 unsigned SYSmvalue = Val & 0xFF; 4939 Parser.Lex(); 4940 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4941 return MatchOperand_Success; 4942 } 4943 4944 if (!Tok.is(AsmToken::Identifier)) 4945 return MatchOperand_NoMatch; 4946 StringRef Mask = Tok.getString(); 4947 4948 if (isMClass()) { 4949 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 4950 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 4951 return MatchOperand_NoMatch; 4952 4953 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 4954 4955 Parser.Lex(); // Eat identifier token. 4956 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4957 return MatchOperand_Success; 4958 } 4959 4960 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4961 size_t Start = 0, Next = Mask.find('_'); 4962 StringRef Flags = ""; 4963 std::string SpecReg = Mask.slice(Start, Next).lower(); 4964 if (Next != StringRef::npos) 4965 Flags = Mask.slice(Next+1, Mask.size()); 4966 4967 // FlagsVal contains the complete mask: 4968 // 3-0: Mask 4969 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4970 unsigned FlagsVal = 0; 4971 4972 if (SpecReg == "apsr") { 4973 FlagsVal = StringSwitch<unsigned>(Flags) 4974 .Case("nzcvq", 0x8) // same as CPSR_f 4975 .Case("g", 0x4) // same as CPSR_s 4976 .Case("nzcvqg", 0xc) // same as CPSR_fs 4977 .Default(~0U); 4978 4979 if (FlagsVal == ~0U) { 4980 if (!Flags.empty()) 4981 return MatchOperand_NoMatch; 4982 else 4983 FlagsVal = 8; // No flag 4984 } 4985 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4986 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4987 if (Flags == "all" || Flags == "") 4988 Flags = "fc"; 4989 for (int i = 0, e = Flags.size(); i != e; ++i) { 4990 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4991 .Case("c", 1) 4992 .Case("x", 2) 4993 .Case("s", 4) 4994 .Case("f", 8) 4995 .Default(~0U); 4996 4997 // If some specific flag is already set, it means that some letter is 4998 // present more than once, this is not acceptable. 4999 if (Flag == ~0U || (FlagsVal & Flag)) 5000 return MatchOperand_NoMatch; 5001 FlagsVal |= Flag; 5002 } 5003 } else // No match for special register. 5004 return MatchOperand_NoMatch; 5005 5006 // Special register without flags is NOT equivalent to "fc" flags. 5007 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 5008 // two lines would enable gas compatibility at the expense of breaking 5009 // round-tripping. 5010 // 5011 // if (!FlagsVal) 5012 // FlagsVal = 0x9; 5013 5014 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 5015 if (SpecReg == "spsr") 5016 FlagsVal |= 16; 5017 5018 Parser.Lex(); // Eat identifier token. 5019 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 5020 return MatchOperand_Success; 5021 } 5022 5023 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 5024 /// use in the MRS/MSR instructions added to support virtualization. 5025 OperandMatchResultTy 5026 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 5027 MCAsmParser &Parser = getParser(); 5028 SMLoc S = Parser.getTok().getLoc(); 5029 const AsmToken &Tok = Parser.getTok(); 5030 if (!Tok.is(AsmToken::Identifier)) 5031 return MatchOperand_NoMatch; 5032 StringRef RegName = Tok.getString(); 5033 5034 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); 5035 if (!TheReg) 5036 return MatchOperand_NoMatch; 5037 unsigned Encoding = TheReg->Encoding; 5038 5039 Parser.Lex(); // Eat identifier token. 5040 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 5041 return MatchOperand_Success; 5042 } 5043 5044 OperandMatchResultTy 5045 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 5046 int High) { 5047 MCAsmParser &Parser = getParser(); 5048 const AsmToken &Tok = Parser.getTok(); 5049 if (Tok.isNot(AsmToken::Identifier)) { 5050 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5051 return MatchOperand_ParseFail; 5052 } 5053 StringRef ShiftName = Tok.getString(); 5054 std::string LowerOp = Op.lower(); 5055 std::string UpperOp = Op.upper(); 5056 if (ShiftName != LowerOp && ShiftName != UpperOp) { 5057 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5058 return MatchOperand_ParseFail; 5059 } 5060 Parser.Lex(); // Eat shift type token. 5061 5062 // There must be a '#' and a shift amount. 5063 if (Parser.getTok().isNot(AsmToken::Hash) && 5064 Parser.getTok().isNot(AsmToken::Dollar)) { 5065 Error(Parser.getTok().getLoc(), "'#' expected"); 5066 return MatchOperand_ParseFail; 5067 } 5068 Parser.Lex(); // Eat hash token. 5069 5070 const MCExpr *ShiftAmount; 5071 SMLoc Loc = Parser.getTok().getLoc(); 5072 SMLoc EndLoc; 5073 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5074 Error(Loc, "illegal expression"); 5075 return MatchOperand_ParseFail; 5076 } 5077 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5078 if (!CE) { 5079 Error(Loc, "constant expression expected"); 5080 return MatchOperand_ParseFail; 5081 } 5082 int Val = CE->getValue(); 5083 if (Val < Low || Val > High) { 5084 Error(Loc, "immediate value out of range"); 5085 return MatchOperand_ParseFail; 5086 } 5087 5088 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 5089 5090 return MatchOperand_Success; 5091 } 5092 5093 OperandMatchResultTy 5094 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 5095 MCAsmParser &Parser = getParser(); 5096 const AsmToken &Tok = Parser.getTok(); 5097 SMLoc S = Tok.getLoc(); 5098 if (Tok.isNot(AsmToken::Identifier)) { 5099 Error(S, "'be' or 'le' operand expected"); 5100 return MatchOperand_ParseFail; 5101 } 5102 int Val = StringSwitch<int>(Tok.getString().lower()) 5103 .Case("be", 1) 5104 .Case("le", 0) 5105 .Default(-1); 5106 Parser.Lex(); // Eat the token. 5107 5108 if (Val == -1) { 5109 Error(S, "'be' or 'le' operand expected"); 5110 return MatchOperand_ParseFail; 5111 } 5112 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 5113 getContext()), 5114 S, Tok.getEndLoc())); 5115 return MatchOperand_Success; 5116 } 5117 5118 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 5119 /// instructions. Legal values are: 5120 /// lsl #n 'n' in [0,31] 5121 /// asr #n 'n' in [1,32] 5122 /// n == 32 encoded as n == 0. 5123 OperandMatchResultTy 5124 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 5125 MCAsmParser &Parser = getParser(); 5126 const AsmToken &Tok = Parser.getTok(); 5127 SMLoc S = Tok.getLoc(); 5128 if (Tok.isNot(AsmToken::Identifier)) { 5129 Error(S, "shift operator 'asr' or 'lsl' expected"); 5130 return MatchOperand_ParseFail; 5131 } 5132 StringRef ShiftName = Tok.getString(); 5133 bool isASR; 5134 if (ShiftName == "lsl" || ShiftName == "LSL") 5135 isASR = false; 5136 else if (ShiftName == "asr" || ShiftName == "ASR") 5137 isASR = true; 5138 else { 5139 Error(S, "shift operator 'asr' or 'lsl' expected"); 5140 return MatchOperand_ParseFail; 5141 } 5142 Parser.Lex(); // Eat the operator. 5143 5144 // A '#' and a shift amount. 5145 if (Parser.getTok().isNot(AsmToken::Hash) && 5146 Parser.getTok().isNot(AsmToken::Dollar)) { 5147 Error(Parser.getTok().getLoc(), "'#' expected"); 5148 return MatchOperand_ParseFail; 5149 } 5150 Parser.Lex(); // Eat hash token. 5151 SMLoc ExLoc = Parser.getTok().getLoc(); 5152 5153 const MCExpr *ShiftAmount; 5154 SMLoc EndLoc; 5155 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5156 Error(ExLoc, "malformed shift expression"); 5157 return MatchOperand_ParseFail; 5158 } 5159 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5160 if (!CE) { 5161 Error(ExLoc, "shift amount must be an immediate"); 5162 return MatchOperand_ParseFail; 5163 } 5164 5165 int64_t Val = CE->getValue(); 5166 if (isASR) { 5167 // Shift amount must be in [1,32] 5168 if (Val < 1 || Val > 32) { 5169 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 5170 return MatchOperand_ParseFail; 5171 } 5172 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 5173 if (isThumb() && Val == 32) { 5174 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 5175 return MatchOperand_ParseFail; 5176 } 5177 if (Val == 32) Val = 0; 5178 } else { 5179 // Shift amount must be in [1,32] 5180 if (Val < 0 || Val > 31) { 5181 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 5182 return MatchOperand_ParseFail; 5183 } 5184 } 5185 5186 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 5187 5188 return MatchOperand_Success; 5189 } 5190 5191 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 5192 /// of instructions. Legal values are: 5193 /// ror #n 'n' in {0, 8, 16, 24} 5194 OperandMatchResultTy 5195 ARMAsmParser::parseRotImm(OperandVector &Operands) { 5196 MCAsmParser &Parser = getParser(); 5197 const AsmToken &Tok = Parser.getTok(); 5198 SMLoc S = Tok.getLoc(); 5199 if (Tok.isNot(AsmToken::Identifier)) 5200 return MatchOperand_NoMatch; 5201 StringRef ShiftName = Tok.getString(); 5202 if (ShiftName != "ror" && ShiftName != "ROR") 5203 return MatchOperand_NoMatch; 5204 Parser.Lex(); // Eat the operator. 5205 5206 // A '#' and a rotate amount. 5207 if (Parser.getTok().isNot(AsmToken::Hash) && 5208 Parser.getTok().isNot(AsmToken::Dollar)) { 5209 Error(Parser.getTok().getLoc(), "'#' expected"); 5210 return MatchOperand_ParseFail; 5211 } 5212 Parser.Lex(); // Eat hash token. 5213 SMLoc ExLoc = Parser.getTok().getLoc(); 5214 5215 const MCExpr *ShiftAmount; 5216 SMLoc EndLoc; 5217 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5218 Error(ExLoc, "malformed rotate expression"); 5219 return MatchOperand_ParseFail; 5220 } 5221 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5222 if (!CE) { 5223 Error(ExLoc, "rotate amount must be an immediate"); 5224 return MatchOperand_ParseFail; 5225 } 5226 5227 int64_t Val = CE->getValue(); 5228 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 5229 // normally, zero is represented in asm by omitting the rotate operand 5230 // entirely. 5231 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 5232 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 5233 return MatchOperand_ParseFail; 5234 } 5235 5236 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 5237 5238 return MatchOperand_Success; 5239 } 5240 5241 OperandMatchResultTy 5242 ARMAsmParser::parseModImm(OperandVector &Operands) { 5243 MCAsmParser &Parser = getParser(); 5244 MCAsmLexer &Lexer = getLexer(); 5245 int64_t Imm1, Imm2; 5246 5247 SMLoc S = Parser.getTok().getLoc(); 5248 5249 // 1) A mod_imm operand can appear in the place of a register name: 5250 // add r0, #mod_imm 5251 // add r0, r0, #mod_imm 5252 // to correctly handle the latter, we bail out as soon as we see an 5253 // identifier. 5254 // 5255 // 2) Similarly, we do not want to parse into complex operands: 5256 // mov r0, #mod_imm 5257 // mov r0, :lower16:(_foo) 5258 if (Parser.getTok().is(AsmToken::Identifier) || 5259 Parser.getTok().is(AsmToken::Colon)) 5260 return MatchOperand_NoMatch; 5261 5262 // Hash (dollar) is optional as per the ARMARM 5263 if (Parser.getTok().is(AsmToken::Hash) || 5264 Parser.getTok().is(AsmToken::Dollar)) { 5265 // Avoid parsing into complex operands (#:) 5266 if (Lexer.peekTok().is(AsmToken::Colon)) 5267 return MatchOperand_NoMatch; 5268 5269 // Eat the hash (dollar) 5270 Parser.Lex(); 5271 } 5272 5273 SMLoc Sx1, Ex1; 5274 Sx1 = Parser.getTok().getLoc(); 5275 const MCExpr *Imm1Exp; 5276 if (getParser().parseExpression(Imm1Exp, Ex1)) { 5277 Error(Sx1, "malformed expression"); 5278 return MatchOperand_ParseFail; 5279 } 5280 5281 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 5282 5283 if (CE) { 5284 // Immediate must fit within 32-bits 5285 Imm1 = CE->getValue(); 5286 int Enc = ARM_AM::getSOImmVal(Imm1); 5287 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 5288 // We have a match! 5289 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 5290 (Enc & 0xF00) >> 7, 5291 Sx1, Ex1)); 5292 return MatchOperand_Success; 5293 } 5294 5295 // We have parsed an immediate which is not for us, fallback to a plain 5296 // immediate. This can happen for instruction aliases. For an example, 5297 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 5298 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 5299 // instruction with a mod_imm operand. The alias is defined such that the 5300 // parser method is shared, that's why we have to do this here. 5301 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 5302 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5303 return MatchOperand_Success; 5304 } 5305 } else { 5306 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 5307 // MCFixup). Fallback to a plain immediate. 5308 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5309 return MatchOperand_Success; 5310 } 5311 5312 // From this point onward, we expect the input to be a (#bits, #rot) pair 5313 if (Parser.getTok().isNot(AsmToken::Comma)) { 5314 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 5315 return MatchOperand_ParseFail; 5316 } 5317 5318 if (Imm1 & ~0xFF) { 5319 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 5320 return MatchOperand_ParseFail; 5321 } 5322 5323 // Eat the comma 5324 Parser.Lex(); 5325 5326 // Repeat for #rot 5327 SMLoc Sx2, Ex2; 5328 Sx2 = Parser.getTok().getLoc(); 5329 5330 // Eat the optional hash (dollar) 5331 if (Parser.getTok().is(AsmToken::Hash) || 5332 Parser.getTok().is(AsmToken::Dollar)) 5333 Parser.Lex(); 5334 5335 const MCExpr *Imm2Exp; 5336 if (getParser().parseExpression(Imm2Exp, Ex2)) { 5337 Error(Sx2, "malformed expression"); 5338 return MatchOperand_ParseFail; 5339 } 5340 5341 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 5342 5343 if (CE) { 5344 Imm2 = CE->getValue(); 5345 if (!(Imm2 & ~0x1E)) { 5346 // We have a match! 5347 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 5348 return MatchOperand_Success; 5349 } 5350 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 5351 return MatchOperand_ParseFail; 5352 } else { 5353 Error(Sx2, "constant expression expected"); 5354 return MatchOperand_ParseFail; 5355 } 5356 } 5357 5358 OperandMatchResultTy 5359 ARMAsmParser::parseBitfield(OperandVector &Operands) { 5360 MCAsmParser &Parser = getParser(); 5361 SMLoc S = Parser.getTok().getLoc(); 5362 // The bitfield descriptor is really two operands, the LSB and the width. 5363 if (Parser.getTok().isNot(AsmToken::Hash) && 5364 Parser.getTok().isNot(AsmToken::Dollar)) { 5365 Error(Parser.getTok().getLoc(), "'#' expected"); 5366 return MatchOperand_ParseFail; 5367 } 5368 Parser.Lex(); // Eat hash token. 5369 5370 const MCExpr *LSBExpr; 5371 SMLoc E = Parser.getTok().getLoc(); 5372 if (getParser().parseExpression(LSBExpr)) { 5373 Error(E, "malformed immediate expression"); 5374 return MatchOperand_ParseFail; 5375 } 5376 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 5377 if (!CE) { 5378 Error(E, "'lsb' operand must be an immediate"); 5379 return MatchOperand_ParseFail; 5380 } 5381 5382 int64_t LSB = CE->getValue(); 5383 // The LSB must be in the range [0,31] 5384 if (LSB < 0 || LSB > 31) { 5385 Error(E, "'lsb' operand must be in the range [0,31]"); 5386 return MatchOperand_ParseFail; 5387 } 5388 E = Parser.getTok().getLoc(); 5389 5390 // Expect another immediate operand. 5391 if (Parser.getTok().isNot(AsmToken::Comma)) { 5392 Error(Parser.getTok().getLoc(), "too few operands"); 5393 return MatchOperand_ParseFail; 5394 } 5395 Parser.Lex(); // Eat hash token. 5396 if (Parser.getTok().isNot(AsmToken::Hash) && 5397 Parser.getTok().isNot(AsmToken::Dollar)) { 5398 Error(Parser.getTok().getLoc(), "'#' expected"); 5399 return MatchOperand_ParseFail; 5400 } 5401 Parser.Lex(); // Eat hash token. 5402 5403 const MCExpr *WidthExpr; 5404 SMLoc EndLoc; 5405 if (getParser().parseExpression(WidthExpr, EndLoc)) { 5406 Error(E, "malformed immediate expression"); 5407 return MatchOperand_ParseFail; 5408 } 5409 CE = dyn_cast<MCConstantExpr>(WidthExpr); 5410 if (!CE) { 5411 Error(E, "'width' operand must be an immediate"); 5412 return MatchOperand_ParseFail; 5413 } 5414 5415 int64_t Width = CE->getValue(); 5416 // The LSB must be in the range [1,32-lsb] 5417 if (Width < 1 || Width > 32 - LSB) { 5418 Error(E, "'width' operand must be in the range [1,32-lsb]"); 5419 return MatchOperand_ParseFail; 5420 } 5421 5422 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 5423 5424 return MatchOperand_Success; 5425 } 5426 5427 OperandMatchResultTy 5428 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 5429 // Check for a post-index addressing register operand. Specifically: 5430 // postidx_reg := '+' register {, shift} 5431 // | '-' register {, shift} 5432 // | register {, shift} 5433 5434 // This method must return MatchOperand_NoMatch without consuming any tokens 5435 // in the case where there is no match, as other alternatives take other 5436 // parse methods. 5437 MCAsmParser &Parser = getParser(); 5438 AsmToken Tok = Parser.getTok(); 5439 SMLoc S = Tok.getLoc(); 5440 bool haveEaten = false; 5441 bool isAdd = true; 5442 if (Tok.is(AsmToken::Plus)) { 5443 Parser.Lex(); // Eat the '+' token. 5444 haveEaten = true; 5445 } else if (Tok.is(AsmToken::Minus)) { 5446 Parser.Lex(); // Eat the '-' token. 5447 isAdd = false; 5448 haveEaten = true; 5449 } 5450 5451 SMLoc E = Parser.getTok().getEndLoc(); 5452 int Reg = tryParseRegister(); 5453 if (Reg == -1) { 5454 if (!haveEaten) 5455 return MatchOperand_NoMatch; 5456 Error(Parser.getTok().getLoc(), "register expected"); 5457 return MatchOperand_ParseFail; 5458 } 5459 5460 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 5461 unsigned ShiftImm = 0; 5462 if (Parser.getTok().is(AsmToken::Comma)) { 5463 Parser.Lex(); // Eat the ','. 5464 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 5465 return MatchOperand_ParseFail; 5466 5467 // FIXME: Only approximates end...may include intervening whitespace. 5468 E = Parser.getTok().getLoc(); 5469 } 5470 5471 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 5472 ShiftImm, S, E)); 5473 5474 return MatchOperand_Success; 5475 } 5476 5477 OperandMatchResultTy 5478 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 5479 // Check for a post-index addressing register operand. Specifically: 5480 // am3offset := '+' register 5481 // | '-' register 5482 // | register 5483 // | # imm 5484 // | # + imm 5485 // | # - imm 5486 5487 // This method must return MatchOperand_NoMatch without consuming any tokens 5488 // in the case where there is no match, as other alternatives take other 5489 // parse methods. 5490 MCAsmParser &Parser = getParser(); 5491 AsmToken Tok = Parser.getTok(); 5492 SMLoc S = Tok.getLoc(); 5493 5494 // Do immediates first, as we always parse those if we have a '#'. 5495 if (Parser.getTok().is(AsmToken::Hash) || 5496 Parser.getTok().is(AsmToken::Dollar)) { 5497 Parser.Lex(); // Eat '#' or '$'. 5498 // Explicitly look for a '-', as we need to encode negative zero 5499 // differently. 5500 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5501 const MCExpr *Offset; 5502 SMLoc E; 5503 if (getParser().parseExpression(Offset, E)) 5504 return MatchOperand_ParseFail; 5505 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5506 if (!CE) { 5507 Error(S, "constant expression expected"); 5508 return MatchOperand_ParseFail; 5509 } 5510 // Negative zero is encoded as the flag value 5511 // std::numeric_limits<int32_t>::min(). 5512 int32_t Val = CE->getValue(); 5513 if (isNegative && Val == 0) 5514 Val = std::numeric_limits<int32_t>::min(); 5515 5516 Operands.push_back( 5517 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 5518 5519 return MatchOperand_Success; 5520 } 5521 5522 bool haveEaten = false; 5523 bool isAdd = true; 5524 if (Tok.is(AsmToken::Plus)) { 5525 Parser.Lex(); // Eat the '+' token. 5526 haveEaten = true; 5527 } else if (Tok.is(AsmToken::Minus)) { 5528 Parser.Lex(); // Eat the '-' token. 5529 isAdd = false; 5530 haveEaten = true; 5531 } 5532 5533 Tok = Parser.getTok(); 5534 int Reg = tryParseRegister(); 5535 if (Reg == -1) { 5536 if (!haveEaten) 5537 return MatchOperand_NoMatch; 5538 Error(Tok.getLoc(), "register expected"); 5539 return MatchOperand_ParseFail; 5540 } 5541 5542 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 5543 0, S, Tok.getEndLoc())); 5544 5545 return MatchOperand_Success; 5546 } 5547 5548 /// Convert parsed operands to MCInst. Needed here because this instruction 5549 /// only has two register operands, but multiplication is commutative so 5550 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 5551 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 5552 const OperandVector &Operands) { 5553 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 5554 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 5555 // If we have a three-operand form, make sure to set Rn to be the operand 5556 // that isn't the same as Rd. 5557 unsigned RegOp = 4; 5558 if (Operands.size() == 6 && 5559 ((ARMOperand &)*Operands[4]).getReg() == 5560 ((ARMOperand &)*Operands[3]).getReg()) 5561 RegOp = 5; 5562 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 5563 Inst.addOperand(Inst.getOperand(0)); 5564 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 5565 } 5566 5567 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 5568 const OperandVector &Operands) { 5569 int CondOp = -1, ImmOp = -1; 5570 switch(Inst.getOpcode()) { 5571 case ARM::tB: 5572 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 5573 5574 case ARM::t2B: 5575 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 5576 5577 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 5578 } 5579 // first decide whether or not the branch should be conditional 5580 // by looking at it's location relative to an IT block 5581 if(inITBlock()) { 5582 // inside an IT block we cannot have any conditional branches. any 5583 // such instructions needs to be converted to unconditional form 5584 switch(Inst.getOpcode()) { 5585 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 5586 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 5587 } 5588 } else { 5589 // outside IT blocks we can only have unconditional branches with AL 5590 // condition code or conditional branches with non-AL condition code 5591 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 5592 switch(Inst.getOpcode()) { 5593 case ARM::tB: 5594 case ARM::tBcc: 5595 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 5596 break; 5597 case ARM::t2B: 5598 case ARM::t2Bcc: 5599 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 5600 break; 5601 } 5602 } 5603 5604 // now decide on encoding size based on branch target range 5605 switch(Inst.getOpcode()) { 5606 // classify tB as either t2B or t1B based on range of immediate operand 5607 case ARM::tB: { 5608 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5609 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 5610 Inst.setOpcode(ARM::t2B); 5611 break; 5612 } 5613 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 5614 case ARM::tBcc: { 5615 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5616 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 5617 Inst.setOpcode(ARM::t2Bcc); 5618 break; 5619 } 5620 } 5621 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 5622 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 5623 } 5624 5625 void ARMAsmParser::cvtMVEVMOVQtoDReg( 5626 MCInst &Inst, const OperandVector &Operands) { 5627 5628 // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2 5629 assert(Operands.size() == 8); 5630 5631 ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt 5632 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2 5633 ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd 5634 ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx 5635 // skip second copy of Qd in Operands[6] 5636 ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2 5637 ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code 5638 } 5639 5640 /// Parse an ARM memory expression, return false if successful else return true 5641 /// or an error. The first token must be a '[' when called. 5642 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 5643 MCAsmParser &Parser = getParser(); 5644 SMLoc S, E; 5645 if (Parser.getTok().isNot(AsmToken::LBrac)) 5646 return TokError("Token is not a Left Bracket"); 5647 S = Parser.getTok().getLoc(); 5648 Parser.Lex(); // Eat left bracket token. 5649 5650 const AsmToken &BaseRegTok = Parser.getTok(); 5651 int BaseRegNum = tryParseRegister(); 5652 if (BaseRegNum == -1) 5653 return Error(BaseRegTok.getLoc(), "register expected"); 5654 5655 // The next token must either be a comma, a colon or a closing bracket. 5656 const AsmToken &Tok = Parser.getTok(); 5657 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5658 !Tok.is(AsmToken::RBrac)) 5659 return Error(Tok.getLoc(), "malformed memory operand"); 5660 5661 if (Tok.is(AsmToken::RBrac)) { 5662 E = Tok.getEndLoc(); 5663 Parser.Lex(); // Eat right bracket token. 5664 5665 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5666 ARM_AM::no_shift, 0, 0, false, 5667 S, E)); 5668 5669 // If there's a pre-indexing writeback marker, '!', just add it as a token 5670 // operand. It's rather odd, but syntactically valid. 5671 if (Parser.getTok().is(AsmToken::Exclaim)) { 5672 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5673 Parser.Lex(); // Eat the '!'. 5674 } 5675 5676 return false; 5677 } 5678 5679 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5680 "Lost colon or comma in memory operand?!"); 5681 if (Tok.is(AsmToken::Comma)) { 5682 Parser.Lex(); // Eat the comma. 5683 } 5684 5685 // If we have a ':', it's an alignment specifier. 5686 if (Parser.getTok().is(AsmToken::Colon)) { 5687 Parser.Lex(); // Eat the ':'. 5688 E = Parser.getTok().getLoc(); 5689 SMLoc AlignmentLoc = Tok.getLoc(); 5690 5691 const MCExpr *Expr; 5692 if (getParser().parseExpression(Expr)) 5693 return true; 5694 5695 // The expression has to be a constant. Memory references with relocations 5696 // don't come through here, as they use the <label> forms of the relevant 5697 // instructions. 5698 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5699 if (!CE) 5700 return Error (E, "constant expression expected"); 5701 5702 unsigned Align = 0; 5703 switch (CE->getValue()) { 5704 default: 5705 return Error(E, 5706 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5707 case 16: Align = 2; break; 5708 case 32: Align = 4; break; 5709 case 64: Align = 8; break; 5710 case 128: Align = 16; break; 5711 case 256: Align = 32; break; 5712 } 5713 5714 // Now we should have the closing ']' 5715 if (Parser.getTok().isNot(AsmToken::RBrac)) 5716 return Error(Parser.getTok().getLoc(), "']' expected"); 5717 E = Parser.getTok().getEndLoc(); 5718 Parser.Lex(); // Eat right bracket token. 5719 5720 // Don't worry about range checking the value here. That's handled by 5721 // the is*() predicates. 5722 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5723 ARM_AM::no_shift, 0, Align, 5724 false, S, E, AlignmentLoc)); 5725 5726 // If there's a pre-indexing writeback marker, '!', just add it as a token 5727 // operand. 5728 if (Parser.getTok().is(AsmToken::Exclaim)) { 5729 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5730 Parser.Lex(); // Eat the '!'. 5731 } 5732 5733 return false; 5734 } 5735 5736 // If we have a '#' or '$', it's an immediate offset, else assume it's a 5737 // register offset. Be friendly and also accept a plain integer or expression 5738 // (without a leading hash) for gas compatibility. 5739 if (Parser.getTok().is(AsmToken::Hash) || 5740 Parser.getTok().is(AsmToken::Dollar) || 5741 Parser.getTok().is(AsmToken::LParen) || 5742 Parser.getTok().is(AsmToken::Integer)) { 5743 if (Parser.getTok().is(AsmToken::Hash) || 5744 Parser.getTok().is(AsmToken::Dollar)) 5745 Parser.Lex(); // Eat '#' or '$' 5746 E = Parser.getTok().getLoc(); 5747 5748 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5749 const MCExpr *Offset; 5750 if (getParser().parseExpression(Offset)) 5751 return true; 5752 5753 // The expression has to be a constant. Memory references with relocations 5754 // don't come through here, as they use the <label> forms of the relevant 5755 // instructions. 5756 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5757 if (!CE) 5758 return Error (E, "constant expression expected"); 5759 5760 // If the constant was #-0, represent it as 5761 // std::numeric_limits<int32_t>::min(). 5762 int32_t Val = CE->getValue(); 5763 if (isNegative && Val == 0) 5764 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5765 getContext()); 5766 5767 // Now we should have the closing ']' 5768 if (Parser.getTok().isNot(AsmToken::RBrac)) 5769 return Error(Parser.getTok().getLoc(), "']' expected"); 5770 E = Parser.getTok().getEndLoc(); 5771 Parser.Lex(); // Eat right bracket token. 5772 5773 // Don't worry about range checking the value here. That's handled by 5774 // the is*() predicates. 5775 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 5776 ARM_AM::no_shift, 0, 0, 5777 false, S, E)); 5778 5779 // If there's a pre-indexing writeback marker, '!', just add it as a token 5780 // operand. 5781 if (Parser.getTok().is(AsmToken::Exclaim)) { 5782 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5783 Parser.Lex(); // Eat the '!'. 5784 } 5785 5786 return false; 5787 } 5788 5789 // The register offset is optionally preceded by a '+' or '-' 5790 bool isNegative = false; 5791 if (Parser.getTok().is(AsmToken::Minus)) { 5792 isNegative = true; 5793 Parser.Lex(); // Eat the '-'. 5794 } else if (Parser.getTok().is(AsmToken::Plus)) { 5795 // Nothing to do. 5796 Parser.Lex(); // Eat the '+'. 5797 } 5798 5799 E = Parser.getTok().getLoc(); 5800 int OffsetRegNum = tryParseRegister(); 5801 if (OffsetRegNum == -1) 5802 return Error(E, "register expected"); 5803 5804 // If there's a shift operator, handle it. 5805 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5806 unsigned ShiftImm = 0; 5807 if (Parser.getTok().is(AsmToken::Comma)) { 5808 Parser.Lex(); // Eat the ','. 5809 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5810 return true; 5811 } 5812 5813 // Now we should have the closing ']' 5814 if (Parser.getTok().isNot(AsmToken::RBrac)) 5815 return Error(Parser.getTok().getLoc(), "']' expected"); 5816 E = Parser.getTok().getEndLoc(); 5817 Parser.Lex(); // Eat right bracket token. 5818 5819 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5820 ShiftType, ShiftImm, 0, isNegative, 5821 S, E)); 5822 5823 // If there's a pre-indexing writeback marker, '!', just add it as a token 5824 // operand. 5825 if (Parser.getTok().is(AsmToken::Exclaim)) { 5826 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5827 Parser.Lex(); // Eat the '!'. 5828 } 5829 5830 return false; 5831 } 5832 5833 /// parseMemRegOffsetShift - one of these two: 5834 /// ( lsl | lsr | asr | ror ) , # shift_amount 5835 /// rrx 5836 /// return true if it parses a shift otherwise it returns false. 5837 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5838 unsigned &Amount) { 5839 MCAsmParser &Parser = getParser(); 5840 SMLoc Loc = Parser.getTok().getLoc(); 5841 const AsmToken &Tok = Parser.getTok(); 5842 if (Tok.isNot(AsmToken::Identifier)) 5843 return Error(Loc, "illegal shift operator"); 5844 StringRef ShiftName = Tok.getString(); 5845 if (ShiftName == "lsl" || ShiftName == "LSL" || 5846 ShiftName == "asl" || ShiftName == "ASL") 5847 St = ARM_AM::lsl; 5848 else if (ShiftName == "lsr" || ShiftName == "LSR") 5849 St = ARM_AM::lsr; 5850 else if (ShiftName == "asr" || ShiftName == "ASR") 5851 St = ARM_AM::asr; 5852 else if (ShiftName == "ror" || ShiftName == "ROR") 5853 St = ARM_AM::ror; 5854 else if (ShiftName == "rrx" || ShiftName == "RRX") 5855 St = ARM_AM::rrx; 5856 else if (ShiftName == "uxtw" || ShiftName == "UXTW") 5857 St = ARM_AM::uxtw; 5858 else 5859 return Error(Loc, "illegal shift operator"); 5860 Parser.Lex(); // Eat shift type token. 5861 5862 // rrx stands alone. 5863 Amount = 0; 5864 if (St != ARM_AM::rrx) { 5865 Loc = Parser.getTok().getLoc(); 5866 // A '#' and a shift amount. 5867 const AsmToken &HashTok = Parser.getTok(); 5868 if (HashTok.isNot(AsmToken::Hash) && 5869 HashTok.isNot(AsmToken::Dollar)) 5870 return Error(HashTok.getLoc(), "'#' expected"); 5871 Parser.Lex(); // Eat hash token. 5872 5873 const MCExpr *Expr; 5874 if (getParser().parseExpression(Expr)) 5875 return true; 5876 // Range check the immediate. 5877 // lsl, ror: 0 <= imm <= 31 5878 // lsr, asr: 0 <= imm <= 32 5879 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5880 if (!CE) 5881 return Error(Loc, "shift amount must be an immediate"); 5882 int64_t Imm = CE->getValue(); 5883 if (Imm < 0 || 5884 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5885 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5886 return Error(Loc, "immediate shift value out of range"); 5887 // If <ShiftTy> #0, turn it into a no_shift. 5888 if (Imm == 0) 5889 St = ARM_AM::lsl; 5890 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5891 if (Imm == 32) 5892 Imm = 0; 5893 Amount = Imm; 5894 } 5895 5896 return false; 5897 } 5898 5899 /// parseFPImm - A floating point immediate expression operand. 5900 OperandMatchResultTy 5901 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5902 MCAsmParser &Parser = getParser(); 5903 // Anything that can accept a floating point constant as an operand 5904 // needs to go through here, as the regular parseExpression is 5905 // integer only. 5906 // 5907 // This routine still creates a generic Immediate operand, containing 5908 // a bitcast of the 64-bit floating point value. The various operands 5909 // that accept floats can check whether the value is valid for them 5910 // via the standard is*() predicates. 5911 5912 SMLoc S = Parser.getTok().getLoc(); 5913 5914 if (Parser.getTok().isNot(AsmToken::Hash) && 5915 Parser.getTok().isNot(AsmToken::Dollar)) 5916 return MatchOperand_NoMatch; 5917 5918 // Disambiguate the VMOV forms that can accept an FP immediate. 5919 // vmov.f32 <sreg>, #imm 5920 // vmov.f64 <dreg>, #imm 5921 // vmov.f32 <dreg>, #imm @ vector f32x2 5922 // vmov.f32 <qreg>, #imm @ vector f32x4 5923 // 5924 // There are also the NEON VMOV instructions which expect an 5925 // integer constant. Make sure we don't try to parse an FPImm 5926 // for these: 5927 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5928 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5929 bool isVmovf = TyOp.isToken() && 5930 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5931 TyOp.getToken() == ".f16"); 5932 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5933 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5934 Mnemonic.getToken() == "fconsts"); 5935 if (!(isVmovf || isFconst)) 5936 return MatchOperand_NoMatch; 5937 5938 Parser.Lex(); // Eat '#' or '$'. 5939 5940 // Handle negation, as that still comes through as a separate token. 5941 bool isNegative = false; 5942 if (Parser.getTok().is(AsmToken::Minus)) { 5943 isNegative = true; 5944 Parser.Lex(); 5945 } 5946 const AsmToken &Tok = Parser.getTok(); 5947 SMLoc Loc = Tok.getLoc(); 5948 if (Tok.is(AsmToken::Real) && isVmovf) { 5949 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 5950 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5951 // If we had a '-' in front, toggle the sign bit. 5952 IntVal ^= (uint64_t)isNegative << 31; 5953 Parser.Lex(); // Eat the token. 5954 Operands.push_back(ARMOperand::CreateImm( 5955 MCConstantExpr::create(IntVal, getContext()), 5956 S, Parser.getTok().getLoc())); 5957 return MatchOperand_Success; 5958 } 5959 // Also handle plain integers. Instructions which allow floating point 5960 // immediates also allow a raw encoded 8-bit value. 5961 if (Tok.is(AsmToken::Integer) && isFconst) { 5962 int64_t Val = Tok.getIntVal(); 5963 Parser.Lex(); // Eat the token. 5964 if (Val > 255 || Val < 0) { 5965 Error(Loc, "encoded floating point value out of range"); 5966 return MatchOperand_ParseFail; 5967 } 5968 float RealVal = ARM_AM::getFPImmFloat(Val); 5969 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5970 5971 Operands.push_back(ARMOperand::CreateImm( 5972 MCConstantExpr::create(Val, getContext()), S, 5973 Parser.getTok().getLoc())); 5974 return MatchOperand_Success; 5975 } 5976 5977 Error(Loc, "invalid floating point immediate"); 5978 return MatchOperand_ParseFail; 5979 } 5980 5981 /// Parse a arm instruction operand. For now this parses the operand regardless 5982 /// of the mnemonic. 5983 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5984 MCAsmParser &Parser = getParser(); 5985 SMLoc S, E; 5986 5987 // Check if the current operand has a custom associated parser, if so, try to 5988 // custom parse the operand, or fallback to the general approach. 5989 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5990 if (ResTy == MatchOperand_Success) 5991 return false; 5992 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5993 // there was a match, but an error occurred, in which case, just return that 5994 // the operand parsing failed. 5995 if (ResTy == MatchOperand_ParseFail) 5996 return true; 5997 5998 switch (getLexer().getKind()) { 5999 default: 6000 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 6001 return true; 6002 case AsmToken::Identifier: { 6003 // If we've seen a branch mnemonic, the next operand must be a label. This 6004 // is true even if the label is a register name. So "br r1" means branch to 6005 // label "r1". 6006 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 6007 if (!ExpectLabel) { 6008 if (!tryParseRegisterWithWriteBack(Operands)) 6009 return false; 6010 int Res = tryParseShiftRegister(Operands); 6011 if (Res == 0) // success 6012 return false; 6013 else if (Res == -1) // irrecoverable error 6014 return true; 6015 // If this is VMRS, check for the apsr_nzcv operand. 6016 if (Mnemonic == "vmrs" && 6017 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 6018 S = Parser.getTok().getLoc(); 6019 Parser.Lex(); 6020 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 6021 return false; 6022 } 6023 } 6024 6025 // Fall though for the Identifier case that is not a register or a 6026 // special name. 6027 LLVM_FALLTHROUGH; 6028 } 6029 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 6030 case AsmToken::Integer: // things like 1f and 2b as a branch targets 6031 case AsmToken::String: // quoted label names. 6032 case AsmToken::Dot: { // . as a branch target 6033 // This was not a register so parse other operands that start with an 6034 // identifier (like labels) as expressions and create them as immediates. 6035 const MCExpr *IdVal; 6036 S = Parser.getTok().getLoc(); 6037 if (getParser().parseExpression(IdVal)) 6038 return true; 6039 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6040 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 6041 return false; 6042 } 6043 case AsmToken::LBrac: 6044 return parseMemory(Operands); 6045 case AsmToken::LCurly: 6046 return parseRegisterList(Operands, !Mnemonic.startswith("clr")); 6047 case AsmToken::Dollar: 6048 case AsmToken::Hash: 6049 // #42 -> immediate. 6050 S = Parser.getTok().getLoc(); 6051 Parser.Lex(); 6052 6053 if (Parser.getTok().isNot(AsmToken::Colon)) { 6054 bool isNegative = Parser.getTok().is(AsmToken::Minus); 6055 const MCExpr *ImmVal; 6056 if (getParser().parseExpression(ImmVal)) 6057 return true; 6058 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 6059 if (CE) { 6060 int32_t Val = CE->getValue(); 6061 if (isNegative && Val == 0) 6062 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 6063 getContext()); 6064 } 6065 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6066 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 6067 6068 // There can be a trailing '!' on operands that we want as a separate 6069 // '!' Token operand. Handle that here. For example, the compatibility 6070 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 6071 if (Parser.getTok().is(AsmToken::Exclaim)) { 6072 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 6073 Parser.getTok().getLoc())); 6074 Parser.Lex(); // Eat exclaim token 6075 } 6076 return false; 6077 } 6078 // w/ a ':' after the '#', it's just like a plain ':'. 6079 LLVM_FALLTHROUGH; 6080 6081 case AsmToken::Colon: { 6082 S = Parser.getTok().getLoc(); 6083 // ":lower16:" and ":upper16:" expression prefixes 6084 // FIXME: Check it's an expression prefix, 6085 // e.g. (FOO - :lower16:BAR) isn't legal. 6086 ARMMCExpr::VariantKind RefKind; 6087 if (parsePrefix(RefKind)) 6088 return true; 6089 6090 const MCExpr *SubExprVal; 6091 if (getParser().parseExpression(SubExprVal)) 6092 return true; 6093 6094 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 6095 getContext()); 6096 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6097 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 6098 return false; 6099 } 6100 case AsmToken::Equal: { 6101 S = Parser.getTok().getLoc(); 6102 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 6103 return Error(S, "unexpected token in operand"); 6104 Parser.Lex(); // Eat '=' 6105 const MCExpr *SubExprVal; 6106 if (getParser().parseExpression(SubExprVal)) 6107 return true; 6108 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6109 6110 // execute-only: we assume that assembly programmers know what they are 6111 // doing and allow literal pool creation here 6112 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 6113 return false; 6114 } 6115 } 6116 } 6117 6118 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 6119 // :lower16: and :upper16:. 6120 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 6121 MCAsmParser &Parser = getParser(); 6122 RefKind = ARMMCExpr::VK_ARM_None; 6123 6124 // consume an optional '#' (GNU compatibility) 6125 if (getLexer().is(AsmToken::Hash)) 6126 Parser.Lex(); 6127 6128 // :lower16: and :upper16: modifiers 6129 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 6130 Parser.Lex(); // Eat ':' 6131 6132 if (getLexer().isNot(AsmToken::Identifier)) { 6133 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 6134 return true; 6135 } 6136 6137 enum { 6138 COFF = (1 << MCObjectFileInfo::IsCOFF), 6139 ELF = (1 << MCObjectFileInfo::IsELF), 6140 MACHO = (1 << MCObjectFileInfo::IsMachO), 6141 WASM = (1 << MCObjectFileInfo::IsWasm), 6142 }; 6143 static const struct PrefixEntry { 6144 const char *Spelling; 6145 ARMMCExpr::VariantKind VariantKind; 6146 uint8_t SupportedFormats; 6147 } PrefixEntries[] = { 6148 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 6149 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 6150 }; 6151 6152 StringRef IDVal = Parser.getTok().getIdentifier(); 6153 6154 const auto &Prefix = 6155 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 6156 [&IDVal](const PrefixEntry &PE) { 6157 return PE.Spelling == IDVal; 6158 }); 6159 if (Prefix == std::end(PrefixEntries)) { 6160 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 6161 return true; 6162 } 6163 6164 uint8_t CurrentFormat; 6165 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 6166 case MCObjectFileInfo::IsMachO: 6167 CurrentFormat = MACHO; 6168 break; 6169 case MCObjectFileInfo::IsELF: 6170 CurrentFormat = ELF; 6171 break; 6172 case MCObjectFileInfo::IsCOFF: 6173 CurrentFormat = COFF; 6174 break; 6175 case MCObjectFileInfo::IsWasm: 6176 CurrentFormat = WASM; 6177 break; 6178 case MCObjectFileInfo::IsXCOFF: 6179 llvm_unreachable("unexpected object format"); 6180 break; 6181 } 6182 6183 if (~Prefix->SupportedFormats & CurrentFormat) { 6184 Error(Parser.getTok().getLoc(), 6185 "cannot represent relocation in the current file format"); 6186 return true; 6187 } 6188 6189 RefKind = Prefix->VariantKind; 6190 Parser.Lex(); 6191 6192 if (getLexer().isNot(AsmToken::Colon)) { 6193 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 6194 return true; 6195 } 6196 Parser.Lex(); // Eat the last ':' 6197 6198 return false; 6199 } 6200 6201 /// Given a mnemonic, split out possible predication code and carry 6202 /// setting letters to form a canonical mnemonic and flags. 6203 // 6204 // FIXME: Would be nice to autogen this. 6205 // FIXME: This is a bit of a maze of special cases. 6206 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 6207 StringRef ExtraToken, 6208 unsigned &PredicationCode, 6209 unsigned &VPTPredicationCode, 6210 bool &CarrySetting, 6211 unsigned &ProcessorIMod, 6212 StringRef &ITMask) { 6213 PredicationCode = ARMCC::AL; 6214 VPTPredicationCode = ARMVCC::None; 6215 CarrySetting = false; 6216 ProcessorIMod = 0; 6217 6218 // Ignore some mnemonics we know aren't predicated forms. 6219 // 6220 // FIXME: Would be nice to autogen this. 6221 if ((Mnemonic == "movs" && isThumb()) || 6222 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 6223 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 6224 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 6225 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 6226 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 6227 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 6228 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 6229 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 6230 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 6231 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 6232 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 6233 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 6234 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 6235 Mnemonic == "bxns" || Mnemonic == "blxns" || 6236 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6237 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6238 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6239 Mnemonic == "wls" || Mnemonic == "le" || Mnemonic == "dls" || 6240 Mnemonic == "csel" || Mnemonic == "csinc" || 6241 Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" || 6242 Mnemonic == "cinv" || Mnemonic == "cneg" || Mnemonic == "cset" || 6243 Mnemonic == "csetm") 6244 return Mnemonic; 6245 6246 // First, split out any predication code. Ignore mnemonics we know aren't 6247 // predicated but do have a carry-set and so weren't caught above. 6248 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 6249 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 6250 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 6251 Mnemonic != "sbcs" && Mnemonic != "rscs" && 6252 !(hasMVE() && 6253 (Mnemonic == "vmine" || 6254 Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" || 6255 Mnemonic == "vrshle" || Mnemonic == "vrshlt" || 6256 Mnemonic == "vmvne" || Mnemonic == "vorne" || 6257 Mnemonic == "vnege" || Mnemonic == "vnegt" || 6258 Mnemonic == "vmule" || Mnemonic == "vmult" || 6259 Mnemonic == "vrintne" || 6260 Mnemonic == "vcmult" || Mnemonic == "vcmule" || 6261 Mnemonic == "vpsele" || Mnemonic == "vpselt" || 6262 Mnemonic.startswith("vq")))) { 6263 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); 6264 if (CC != ~0U) { 6265 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 6266 PredicationCode = CC; 6267 } 6268 } 6269 6270 // Next, determine if we have a carry setting bit. We explicitly ignore all 6271 // the instructions we know end in 's'. 6272 if (Mnemonic.endswith("s") && 6273 !(Mnemonic == "cps" || Mnemonic == "mls" || 6274 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 6275 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 6276 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 6277 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 6278 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 6279 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 6280 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 6281 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 6282 Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" || 6283 Mnemonic == "vmlas" || 6284 (Mnemonic == "movs" && isThumb()))) { 6285 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 6286 CarrySetting = true; 6287 } 6288 6289 // The "cps" instruction can have a interrupt mode operand which is glued into 6290 // the mnemonic. Check if this is the case, split it and parse the imod op 6291 if (Mnemonic.startswith("cps")) { 6292 // Split out any imod code. 6293 unsigned IMod = 6294 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 6295 .Case("ie", ARM_PROC::IE) 6296 .Case("id", ARM_PROC::ID) 6297 .Default(~0U); 6298 if (IMod != ~0U) { 6299 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 6300 ProcessorIMod = IMod; 6301 } 6302 } 6303 6304 if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" && 6305 Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" && 6306 Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" && 6307 Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" && 6308 Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" && 6309 Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" && 6310 Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") { 6311 unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1)); 6312 if (CC != ~0U) { 6313 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1); 6314 VPTPredicationCode = CC; 6315 } 6316 return Mnemonic; 6317 } 6318 6319 // The "it" instruction has the condition mask on the end of the mnemonic. 6320 if (Mnemonic.startswith("it")) { 6321 ITMask = Mnemonic.slice(2, Mnemonic.size()); 6322 Mnemonic = Mnemonic.slice(0, 2); 6323 } 6324 6325 if (Mnemonic.startswith("vpst")) { 6326 ITMask = Mnemonic.slice(4, Mnemonic.size()); 6327 Mnemonic = Mnemonic.slice(0, 4); 6328 } 6329 else if (Mnemonic.startswith("vpt")) { 6330 ITMask = Mnemonic.slice(3, Mnemonic.size()); 6331 Mnemonic = Mnemonic.slice(0, 3); 6332 } 6333 6334 return Mnemonic; 6335 } 6336 6337 /// Given a canonical mnemonic, determine if the instruction ever allows 6338 /// inclusion of carry set or predication code operands. 6339 // 6340 // FIXME: It would be nice to autogen this. 6341 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, 6342 StringRef ExtraToken, 6343 StringRef FullInst, 6344 bool &CanAcceptCarrySet, 6345 bool &CanAcceptPredicationCode, 6346 bool &CanAcceptVPTPredicationCode) { 6347 CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken); 6348 6349 CanAcceptCarrySet = 6350 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6351 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 6352 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 6353 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 6354 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 6355 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 6356 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 6357 (!isThumb() && 6358 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 6359 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 6360 6361 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 6362 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 6363 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 6364 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 6365 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 6366 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 6367 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 6368 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 6369 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 6370 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 6371 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 6372 Mnemonic == "vmovx" || Mnemonic == "vins" || 6373 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6374 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6375 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6376 Mnemonic == "sb" || Mnemonic == "ssbb" || 6377 Mnemonic == "pssbb" || 6378 Mnemonic == "bfcsel" || Mnemonic == "wls" || 6379 Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" || 6380 Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" || 6381 Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" || 6382 Mnemonic == "cset" || Mnemonic == "csetm" || 6383 Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") || 6384 (hasMVE() && 6385 (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") || 6386 Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") || 6387 Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") || 6388 Mnemonic.startswith("letp")))) { 6389 // These mnemonics are never predicable 6390 CanAcceptPredicationCode = false; 6391 } else if (!isThumb()) { 6392 // Some instructions are only predicable in Thumb mode 6393 CanAcceptPredicationCode = 6394 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 6395 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 6396 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && 6397 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && 6398 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && 6399 Mnemonic != "stc2" && Mnemonic != "stc2l" && 6400 Mnemonic != "tsb" && 6401 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); 6402 } else if (isThumbOne()) { 6403 if (hasV6MOps()) 6404 CanAcceptPredicationCode = Mnemonic != "movs"; 6405 else 6406 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 6407 } else 6408 CanAcceptPredicationCode = true; 6409 } 6410 6411 // Some Thumb instructions have two operand forms that are not 6412 // available as three operand, convert to two operand form if possible. 6413 // 6414 // FIXME: We would really like to be able to tablegen'erate this. 6415 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 6416 bool CarrySetting, 6417 OperandVector &Operands) { 6418 if (Operands.size() != 6) 6419 return; 6420 6421 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6422 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 6423 if (!Op3.isReg() || !Op4.isReg()) 6424 return; 6425 6426 auto Op3Reg = Op3.getReg(); 6427 auto Op4Reg = Op4.getReg(); 6428 6429 // For most Thumb2 cases we just generate the 3 operand form and reduce 6430 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 6431 // won't accept SP or PC so we do the transformation here taking care 6432 // with immediate range in the 'add sp, sp #imm' case. 6433 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 6434 if (isThumbTwo()) { 6435 if (Mnemonic != "add") 6436 return; 6437 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 6438 (Op5.isReg() && Op5.getReg() == ARM::PC); 6439 if (!TryTransform) { 6440 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 6441 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 6442 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 6443 Op5.isImm() && !Op5.isImm0_508s4()); 6444 } 6445 if (!TryTransform) 6446 return; 6447 } else if (!isThumbOne()) 6448 return; 6449 6450 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 6451 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6452 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 6453 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 6454 return; 6455 6456 // If first 2 operands of a 3 operand instruction are the same 6457 // then transform to 2 operand version of the same instruction 6458 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 6459 bool Transform = Op3Reg == Op4Reg; 6460 6461 // For communtative operations, we might be able to transform if we swap 6462 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 6463 // as tADDrsp. 6464 const ARMOperand *LastOp = &Op5; 6465 bool Swap = false; 6466 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 6467 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 6468 Mnemonic == "and" || Mnemonic == "eor" || 6469 Mnemonic == "adc" || Mnemonic == "orr")) { 6470 Swap = true; 6471 LastOp = &Op4; 6472 Transform = true; 6473 } 6474 6475 // If both registers are the same then remove one of them from 6476 // the operand list, with certain exceptions. 6477 if (Transform) { 6478 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 6479 // 2 operand forms don't exist. 6480 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 6481 LastOp->isReg()) 6482 Transform = false; 6483 6484 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 6485 // 3-bits because the ARMARM says not to. 6486 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 6487 Transform = false; 6488 } 6489 6490 if (Transform) { 6491 if (Swap) 6492 std::swap(Op4, Op5); 6493 Operands.erase(Operands.begin() + 3); 6494 } 6495 } 6496 6497 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 6498 OperandVector &Operands) { 6499 // FIXME: This is all horribly hacky. We really need a better way to deal 6500 // with optional operands like this in the matcher table. 6501 6502 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 6503 // another does not. Specifically, the MOVW instruction does not. So we 6504 // special case it here and remove the defaulted (non-setting) cc_out 6505 // operand if that's the instruction we're trying to match. 6506 // 6507 // We do this as post-processing of the explicit operands rather than just 6508 // conditionally adding the cc_out in the first place because we need 6509 // to check the type of the parsed immediate operand. 6510 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 6511 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 6512 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 6513 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6514 return true; 6515 6516 // Register-register 'add' for thumb does not have a cc_out operand 6517 // when there are only two register operands. 6518 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 6519 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6520 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6521 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6522 return true; 6523 // Register-register 'add' for thumb does not have a cc_out operand 6524 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 6525 // have to check the immediate range here since Thumb2 has a variant 6526 // that can handle a different range and has a cc_out operand. 6527 if (((isThumb() && Mnemonic == "add") || 6528 (isThumbTwo() && Mnemonic == "sub")) && 6529 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6530 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6531 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 6532 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6533 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 6534 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 6535 return true; 6536 // For Thumb2, add/sub immediate does not have a cc_out operand for the 6537 // imm0_4095 variant. That's the least-preferred variant when 6538 // selecting via the generic "add" mnemonic, so to know that we 6539 // should remove the cc_out operand, we have to explicitly check that 6540 // it's not one of the other variants. Ugh. 6541 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 6542 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6543 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6544 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6545 // Nest conditions rather than one big 'if' statement for readability. 6546 // 6547 // If both registers are low, we're in an IT block, and the immediate is 6548 // in range, we should use encoding T1 instead, which has a cc_out. 6549 if (inITBlock() && 6550 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 6551 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 6552 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 6553 return false; 6554 // Check against T3. If the second register is the PC, this is an 6555 // alternate form of ADR, which uses encoding T4, so check for that too. 6556 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 6557 (static_cast<ARMOperand &>(*Operands[5]).isT2SOImm() || 6558 static_cast<ARMOperand &>(*Operands[5]).isT2SOImmNeg())) 6559 return false; 6560 6561 // Otherwise, we use encoding T4, which does not have a cc_out 6562 // operand. 6563 return true; 6564 } 6565 6566 // The thumb2 multiply instruction doesn't have a CCOut register, so 6567 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 6568 // use the 16-bit encoding or not. 6569 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 6570 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6571 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6572 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6573 static_cast<ARMOperand &>(*Operands[5]).isReg() && 6574 // If the registers aren't low regs, the destination reg isn't the 6575 // same as one of the source regs, or the cc_out operand is zero 6576 // outside of an IT block, we have to use the 32-bit encoding, so 6577 // remove the cc_out operand. 6578 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6579 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6580 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 6581 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 6582 static_cast<ARMOperand &>(*Operands[5]).getReg() && 6583 static_cast<ARMOperand &>(*Operands[3]).getReg() != 6584 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 6585 return true; 6586 6587 // Also check the 'mul' syntax variant that doesn't specify an explicit 6588 // destination register. 6589 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 6590 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6591 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6592 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6593 // If the registers aren't low regs or the cc_out operand is zero 6594 // outside of an IT block, we have to use the 32-bit encoding, so 6595 // remove the cc_out operand. 6596 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6597 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6598 !inITBlock())) 6599 return true; 6600 6601 // Register-register 'add/sub' for thumb does not have a cc_out operand 6602 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 6603 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 6604 // right, this will result in better diagnostics (which operand is off) 6605 // anyway. 6606 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 6607 (Operands.size() == 5 || Operands.size() == 6) && 6608 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6609 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 6610 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6611 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 6612 (Operands.size() == 6 && 6613 static_cast<ARMOperand &>(*Operands[5]).isImm()))) { 6614 // Thumb2 (add|sub){s}{p}.w GPRnopc, sp, #{T2SOImm} has cc_out 6615 return (!(isThumbTwo() && 6616 (static_cast<ARMOperand &>(*Operands[4]).isT2SOImm() || 6617 static_cast<ARMOperand &>(*Operands[4]).isT2SOImmNeg()))); 6618 } 6619 // Fixme: Should join all the thumb+thumb2 (add|sub) in a single if case 6620 // Thumb2 ADD r0, #4095 -> ADDW r0, r0, #4095 (T4) 6621 // Thumb2 SUB r0, #4095 -> SUBW r0, r0, #4095 6622 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 6623 (Operands.size() == 5) && 6624 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6625 static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::SP && 6626 static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::PC && 6627 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6628 static_cast<ARMOperand &>(*Operands[4]).isImm()) { 6629 const ARMOperand &IMM = static_cast<ARMOperand &>(*Operands[4]); 6630 if (IMM.isT2SOImm() || IMM.isT2SOImmNeg()) 6631 return false; // add.w / sub.w 6632 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IMM.getImm())) { 6633 const int64_t Value = CE->getValue(); 6634 // Thumb1 imm8 sub / add 6635 if ((Value < ((1 << 7) - 1) << 2) && inITBlock() && (!(Value & 3)) && 6636 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg())) 6637 return false; 6638 return true; // Thumb2 T4 addw / subw 6639 } 6640 } 6641 return false; 6642 } 6643 6644 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 6645 OperandVector &Operands) { 6646 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON 6647 unsigned RegIdx = 3; 6648 if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) || 6649 Mnemonic == "vrintr") && 6650 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 6651 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 6652 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6653 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 6654 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 6655 RegIdx = 4; 6656 6657 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 6658 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6659 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 6660 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6661 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 6662 return true; 6663 } 6664 return false; 6665 } 6666 6667 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic, 6668 OperandVector &Operands) { 6669 if (!hasMVE() || Operands.size() < 3) 6670 return true; 6671 6672 if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") || 6673 Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4")) 6674 return true; 6675 6676 if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot")) 6677 return false; 6678 6679 if (Mnemonic.startswith("vmov") && 6680 !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") || 6681 Mnemonic.startswith("vmovx"))) { 6682 for (auto &Operand : Operands) { 6683 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6684 ((*Operand).isReg() && 6685 (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 6686 (*Operand).getReg()) || 6687 ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6688 (*Operand).getReg())))) { 6689 return true; 6690 } 6691 } 6692 return false; 6693 } else { 6694 for (auto &Operand : Operands) { 6695 // We check the larger class QPR instead of just the legal class 6696 // MQPR, to more accurately report errors when using Q registers 6697 // outside of the allowed range. 6698 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6699 (Operand->isReg() && 6700 (ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6701 Operand->getReg())))) 6702 return false; 6703 } 6704 return true; 6705 } 6706 } 6707 6708 static bool isDataTypeToken(StringRef Tok) { 6709 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 6710 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 6711 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 6712 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 6713 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 6714 Tok == ".f" || Tok == ".d"; 6715 } 6716 6717 // FIXME: This bit should probably be handled via an explicit match class 6718 // in the .td files that matches the suffix instead of having it be 6719 // a literal string token the way it is now. 6720 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 6721 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 6722 } 6723 6724 static void applyMnemonicAliases(StringRef &Mnemonic, 6725 const FeatureBitset &Features, 6726 unsigned VariantID); 6727 6728 // The GNU assembler has aliases of ldrd and strd with the second register 6729 // omitted. We don't have a way to do that in tablegen, so fix it up here. 6730 // 6731 // We have to be careful to not emit an invalid Rt2 here, because the rest of 6732 // the assembly parser could then generate confusing diagnostics refering to 6733 // it. If we do find anything that prevents us from doing the transformation we 6734 // bail out, and let the assembly parser report an error on the instruction as 6735 // it is written. 6736 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, 6737 OperandVector &Operands) { 6738 if (Mnemonic != "ldrd" && Mnemonic != "strd") 6739 return; 6740 if (Operands.size() < 4) 6741 return; 6742 6743 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6744 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6745 6746 if (!Op2.isReg()) 6747 return; 6748 if (!Op3.isGPRMem()) 6749 return; 6750 6751 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); 6752 if (!GPR.contains(Op2.getReg())) 6753 return; 6754 6755 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); 6756 if (!isThumb() && (RtEncoding & 1)) { 6757 // In ARM mode, the registers must be from an aligned pair, this 6758 // restriction does not apply in Thumb mode. 6759 return; 6760 } 6761 if (Op2.getReg() == ARM::PC) 6762 return; 6763 unsigned PairedReg = GPR.getRegister(RtEncoding + 1); 6764 if (!PairedReg || PairedReg == ARM::PC || 6765 (PairedReg == ARM::SP && !hasV8Ops())) 6766 return; 6767 6768 Operands.insert( 6769 Operands.begin() + 3, 6770 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6771 } 6772 6773 /// Parse an arm instruction mnemonic followed by its operands. 6774 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 6775 SMLoc NameLoc, OperandVector &Operands) { 6776 MCAsmParser &Parser = getParser(); 6777 6778 // Apply mnemonic aliases before doing anything else, as the destination 6779 // mnemonic may include suffices and we want to handle them normally. 6780 // The generic tblgen'erated code does this later, at the start of 6781 // MatchInstructionImpl(), but that's too late for aliases that include 6782 // any sort of suffix. 6783 const FeatureBitset &AvailableFeatures = getAvailableFeatures(); 6784 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 6785 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 6786 6787 // First check for the ARM-specific .req directive. 6788 if (Parser.getTok().is(AsmToken::Identifier) && 6789 Parser.getTok().getIdentifier() == ".req") { 6790 parseDirectiveReq(Name, NameLoc); 6791 // We always return 'error' for this, as we're done with this 6792 // statement and don't need to match the 'instruction." 6793 return true; 6794 } 6795 6796 // Create the leading tokens for the mnemonic, split by '.' characters. 6797 size_t Start = 0, Next = Name.find('.'); 6798 StringRef Mnemonic = Name.slice(Start, Next); 6799 StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1)); 6800 6801 // Split out the predication code and carry setting flag from the mnemonic. 6802 unsigned PredicationCode; 6803 unsigned VPTPredicationCode; 6804 unsigned ProcessorIMod; 6805 bool CarrySetting; 6806 StringRef ITMask; 6807 Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode, 6808 CarrySetting, ProcessorIMod, ITMask); 6809 6810 // In Thumb1, only the branch (B) instruction can be predicated. 6811 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 6812 return Error(NameLoc, "conditional execution not supported in Thumb1"); 6813 } 6814 6815 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 6816 6817 // Handle the mask for IT and VPT instructions. In ARMOperand and 6818 // MCOperand, this is stored in a format independent of the 6819 // condition code: the lowest set bit indicates the end of the 6820 // encoding, and above that, a 1 bit indicates 'else', and an 0 6821 // indicates 'then'. E.g. 6822 // IT -> 1000 6823 // ITx -> x100 (ITT -> 0100, ITE -> 1100) 6824 // ITxy -> xy10 (e.g. ITET -> 1010) 6825 // ITxyz -> xyz1 (e.g. ITEET -> 1101) 6826 if (Mnemonic == "it" || Mnemonic.startswith("vpt") || 6827 Mnemonic.startswith("vpst")) { 6828 SMLoc Loc = Mnemonic == "it" ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) : 6829 Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) : 6830 SMLoc::getFromPointer(NameLoc.getPointer() + 4); 6831 if (ITMask.size() > 3) { 6832 if (Mnemonic == "it") 6833 return Error(Loc, "too many conditions on IT instruction"); 6834 return Error(Loc, "too many conditions on VPT instruction"); 6835 } 6836 unsigned Mask = 8; 6837 for (unsigned i = ITMask.size(); i != 0; --i) { 6838 char pos = ITMask[i - 1]; 6839 if (pos != 't' && pos != 'e') { 6840 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 6841 } 6842 Mask >>= 1; 6843 if (ITMask[i - 1] == 'e') 6844 Mask |= 8; 6845 } 6846 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 6847 } 6848 6849 // FIXME: This is all a pretty gross hack. We should automatically handle 6850 // optional operands like this via tblgen. 6851 6852 // Next, add the CCOut and ConditionCode operands, if needed. 6853 // 6854 // For mnemonics which can ever incorporate a carry setting bit or predication 6855 // code, our matching model involves us always generating CCOut and 6856 // ConditionCode operands to match the mnemonic "as written" and then we let 6857 // the matcher deal with finding the right instruction or generating an 6858 // appropriate error. 6859 bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode; 6860 getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet, 6861 CanAcceptPredicationCode, CanAcceptVPTPredicationCode); 6862 6863 // If we had a carry-set on an instruction that can't do that, issue an 6864 // error. 6865 if (!CanAcceptCarrySet && CarrySetting) { 6866 return Error(NameLoc, "instruction '" + Mnemonic + 6867 "' can not set flags, but 's' suffix specified"); 6868 } 6869 // If we had a predication code on an instruction that can't do that, issue an 6870 // error. 6871 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 6872 return Error(NameLoc, "instruction '" + Mnemonic + 6873 "' is not predicable, but condition code specified"); 6874 } 6875 6876 // If we had a VPT predication code on an instruction that can't do that, issue an 6877 // error. 6878 if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) { 6879 return Error(NameLoc, "instruction '" + Mnemonic + 6880 "' is not VPT predicable, but VPT code T/E is specified"); 6881 } 6882 6883 // Add the carry setting operand, if necessary. 6884 if (CanAcceptCarrySet) { 6885 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 6886 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 6887 Loc)); 6888 } 6889 6890 // Add the predication code operand, if necessary. 6891 if (CanAcceptPredicationCode) { 6892 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6893 CarrySetting); 6894 Operands.push_back(ARMOperand::CreateCondCode( 6895 ARMCC::CondCodes(PredicationCode), Loc)); 6896 } 6897 6898 // Add the VPT predication code operand, if necessary. 6899 // FIXME: We don't add them for the instructions filtered below as these can 6900 // have custom operands which need special parsing. This parsing requires 6901 // the operand to be in the same place in the OperandVector as their 6902 // definition in tblgen. Since these instructions may also have the 6903 // scalar predication operand we do not add the vector one and leave until 6904 // now to fix it up. 6905 if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" && 6906 !Mnemonic.startswith("vcmp") && 6907 !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" && 6908 Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) { 6909 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6910 CarrySetting); 6911 Operands.push_back(ARMOperand::CreateVPTPred( 6912 ARMVCC::VPTCodes(VPTPredicationCode), Loc)); 6913 } 6914 6915 // Add the processor imod operand, if necessary. 6916 if (ProcessorIMod) { 6917 Operands.push_back(ARMOperand::CreateImm( 6918 MCConstantExpr::create(ProcessorIMod, getContext()), 6919 NameLoc, NameLoc)); 6920 } else if (Mnemonic == "cps" && isMClass()) { 6921 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 6922 } 6923 6924 // Add the remaining tokens in the mnemonic. 6925 while (Next != StringRef::npos) { 6926 Start = Next; 6927 Next = Name.find('.', Start + 1); 6928 ExtraToken = Name.slice(Start, Next); 6929 6930 // Some NEON instructions have an optional datatype suffix that is 6931 // completely ignored. Check for that. 6932 if (isDataTypeToken(ExtraToken) && 6933 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 6934 continue; 6935 6936 // For for ARM mode generate an error if the .n qualifier is used. 6937 if (ExtraToken == ".n" && !isThumb()) { 6938 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6939 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 6940 "arm mode"); 6941 } 6942 6943 // The .n qualifier is always discarded as that is what the tables 6944 // and matcher expect. In ARM mode the .w qualifier has no effect, 6945 // so discard it to avoid errors that can be caused by the matcher. 6946 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 6947 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6948 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 6949 } 6950 } 6951 6952 // Read the remaining operands. 6953 if (getLexer().isNot(AsmToken::EndOfStatement)) { 6954 // Read the first operand. 6955 if (parseOperand(Operands, Mnemonic)) { 6956 return true; 6957 } 6958 6959 while (parseOptionalToken(AsmToken::Comma)) { 6960 // Parse and remember the operand. 6961 if (parseOperand(Operands, Mnemonic)) { 6962 return true; 6963 } 6964 } 6965 } 6966 6967 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 6968 return true; 6969 6970 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 6971 6972 // Some instructions, mostly Thumb, have forms for the same mnemonic that 6973 // do and don't have a cc_out optional-def operand. With some spot-checks 6974 // of the operand list, we can figure out which variant we're trying to 6975 // parse and adjust accordingly before actually matching. We shouldn't ever 6976 // try to remove a cc_out operand that was explicitly set on the 6977 // mnemonic, of course (CarrySetting == true). Reason number #317 the 6978 // table driven matcher doesn't fit well with the ARM instruction set. 6979 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 6980 Operands.erase(Operands.begin() + 1); 6981 6982 // Some instructions have the same mnemonic, but don't always 6983 // have a predicate. Distinguish them here and delete the 6984 // appropriate predicate if needed. This could be either the scalar 6985 // predication code or the vector predication code. 6986 if (PredicationCode == ARMCC::AL && 6987 shouldOmitPredicateOperand(Mnemonic, Operands)) 6988 Operands.erase(Operands.begin() + 1); 6989 6990 6991 if (hasMVE()) { 6992 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) && 6993 Mnemonic == "vmov" && PredicationCode == ARMCC::LT) { 6994 // Very nasty hack to deal with the vector predicated variant of vmovlt 6995 // the scalar predicated vmov with condition 'lt'. We can not tell them 6996 // apart until we have parsed their operands. 6997 Operands.erase(Operands.begin() + 1); 6998 Operands.erase(Operands.begin()); 6999 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7000 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7001 Mnemonic.size() - 1 + CarrySetting); 7002 Operands.insert(Operands.begin(), 7003 ARMOperand::CreateVPTPred(ARMVCC::None, PLoc)); 7004 Operands.insert(Operands.begin(), 7005 ARMOperand::CreateToken(StringRef("vmovlt"), MLoc)); 7006 } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE && 7007 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7008 // Another nasty hack to deal with the ambiguity between vcvt with scalar 7009 // predication 'ne' and vcvtn with vector predication 'e'. As above we 7010 // can only distinguish between the two after we have parsed their 7011 // operands. 7012 Operands.erase(Operands.begin() + 1); 7013 Operands.erase(Operands.begin()); 7014 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7015 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7016 Mnemonic.size() - 1 + CarrySetting); 7017 Operands.insert(Operands.begin(), 7018 ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc)); 7019 Operands.insert(Operands.begin(), 7020 ARMOperand::CreateToken(StringRef("vcvtn"), MLoc)); 7021 } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT && 7022 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7023 // Another hack, this time to distinguish between scalar predicated vmul 7024 // with 'lt' predication code and the vector instruction vmullt with 7025 // vector predication code "none" 7026 Operands.erase(Operands.begin() + 1); 7027 Operands.erase(Operands.begin()); 7028 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7029 Operands.insert(Operands.begin(), 7030 ARMOperand::CreateToken(StringRef("vmullt"), MLoc)); 7031 } 7032 // For vmov and vcmp, as mentioned earlier, we did not add the vector 7033 // predication code, since these may contain operands that require 7034 // special parsing. So now we have to see if they require vector 7035 // predication and replace the scalar one with the vector predication 7036 // operand if that is the case. 7037 else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") || 7038 (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") && 7039 !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") && 7040 !Mnemonic.startswith("vcvtm"))) { 7041 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7042 // We could not split the vector predicate off vcvt because it might 7043 // have been the scalar vcvtt instruction. Now we know its a vector 7044 // instruction, we still need to check whether its the vector 7045 // predicated vcvt with 'Then' predication or the vector vcvtt. We can 7046 // distinguish the two based on the suffixes, if it is any of 7047 // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt. 7048 if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) { 7049 auto Sz1 = static_cast<ARMOperand &>(*Operands[2]); 7050 auto Sz2 = static_cast<ARMOperand &>(*Operands[3]); 7051 if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") && 7052 Sz2.isToken() && Sz2.getToken().startswith(".f"))) { 7053 Operands.erase(Operands.begin()); 7054 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7055 VPTPredicationCode = ARMVCC::Then; 7056 7057 Mnemonic = Mnemonic.substr(0, 4); 7058 Operands.insert(Operands.begin(), 7059 ARMOperand::CreateToken(Mnemonic, MLoc)); 7060 } 7061 } 7062 Operands.erase(Operands.begin() + 1); 7063 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7064 Mnemonic.size() + CarrySetting); 7065 Operands.insert(Operands.begin() + 1, 7066 ARMOperand::CreateVPTPred( 7067 ARMVCC::VPTCodes(VPTPredicationCode), PLoc)); 7068 } 7069 } else if (CanAcceptVPTPredicationCode) { 7070 // For all other instructions, make sure only one of the two 7071 // predication operands is left behind, depending on whether we should 7072 // use the vector predication. 7073 if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7074 if (CanAcceptPredicationCode) 7075 Operands.erase(Operands.begin() + 2); 7076 else 7077 Operands.erase(Operands.begin() + 1); 7078 } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) { 7079 Operands.erase(Operands.begin() + 1); 7080 } 7081 } 7082 } 7083 7084 if (VPTPredicationCode != ARMVCC::None) { 7085 bool usedVPTPredicationCode = false; 7086 for (unsigned I = 1; I < Operands.size(); ++I) 7087 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7088 usedVPTPredicationCode = true; 7089 if (!usedVPTPredicationCode) { 7090 // If we have a VPT predication code and we haven't just turned it 7091 // into an operand, then it was a mistake for splitMnemonic to 7092 // separate it from the rest of the mnemonic in the first place, 7093 // and this may lead to wrong disassembly (e.g. scalar floating 7094 // point VCMPE is actually a different instruction from VCMP, so 7095 // we mustn't treat them the same). In that situation, glue it 7096 // back on. 7097 Mnemonic = Name.slice(0, Mnemonic.size() + 1); 7098 Operands.erase(Operands.begin()); 7099 Operands.insert(Operands.begin(), 7100 ARMOperand::CreateToken(Mnemonic, NameLoc)); 7101 } 7102 } 7103 7104 // ARM mode 'blx' need special handling, as the register operand version 7105 // is predicable, but the label operand version is not. So, we can't rely 7106 // on the Mnemonic based checking to correctly figure out when to put 7107 // a k_CondCode operand in the list. If we're trying to match the label 7108 // version, remove the k_CondCode operand here. 7109 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 7110 static_cast<ARMOperand &>(*Operands[2]).isImm()) 7111 Operands.erase(Operands.begin() + 1); 7112 7113 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 7114 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 7115 // a single GPRPair reg operand is used in the .td file to replace the two 7116 // GPRs. However, when parsing from asm, the two GRPs cannot be 7117 // automatically 7118 // expressed as a GPRPair, so we have to manually merge them. 7119 // FIXME: We would really like to be able to tablegen'erate this. 7120 if (!isThumb() && Operands.size() > 4 && 7121 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 7122 Mnemonic == "stlexd")) { 7123 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 7124 unsigned Idx = isLoad ? 2 : 3; 7125 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 7126 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 7127 7128 const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID); 7129 // Adjust only if Op1 and Op2 are GPRs. 7130 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 7131 MRC.contains(Op2.getReg())) { 7132 unsigned Reg1 = Op1.getReg(); 7133 unsigned Reg2 = Op2.getReg(); 7134 unsigned Rt = MRI->getEncodingValue(Reg1); 7135 unsigned Rt2 = MRI->getEncodingValue(Reg2); 7136 7137 // Rt2 must be Rt + 1 and Rt must be even. 7138 if (Rt + 1 != Rt2 || (Rt & 1)) { 7139 return Error(Op2.getStartLoc(), 7140 isLoad ? "destination operands must be sequential" 7141 : "source operands must be sequential"); 7142 } 7143 unsigned NewReg = MRI->getMatchingSuperReg( 7144 Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID))); 7145 Operands[Idx] = 7146 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 7147 Operands.erase(Operands.begin() + Idx + 1); 7148 } 7149 } 7150 7151 // GNU Assembler extension (compatibility). 7152 fixupGNULDRDAlias(Mnemonic, Operands); 7153 7154 // FIXME: As said above, this is all a pretty gross hack. This instruction 7155 // does not fit with other "subs" and tblgen. 7156 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 7157 // so the Mnemonic is the original name "subs" and delete the predicate 7158 // operand so it will match the table entry. 7159 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 7160 static_cast<ARMOperand &>(*Operands[3]).isReg() && 7161 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 7162 static_cast<ARMOperand &>(*Operands[4]).isReg() && 7163 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 7164 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 7165 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 7166 Operands.erase(Operands.begin() + 1); 7167 } 7168 return false; 7169 } 7170 7171 // Validate context-sensitive operand constraints. 7172 7173 // return 'true' if register list contains non-low GPR registers, 7174 // 'false' otherwise. If Reg is in the register list or is HiReg, set 7175 // 'containsReg' to true. 7176 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 7177 unsigned Reg, unsigned HiReg, 7178 bool &containsReg) { 7179 containsReg = false; 7180 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 7181 unsigned OpReg = Inst.getOperand(i).getReg(); 7182 if (OpReg == Reg) 7183 containsReg = true; 7184 // Anything other than a low register isn't legal here. 7185 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 7186 return true; 7187 } 7188 return false; 7189 } 7190 7191 // Check if the specified regisgter is in the register list of the inst, 7192 // starting at the indicated operand number. 7193 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 7194 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 7195 unsigned OpReg = Inst.getOperand(i).getReg(); 7196 if (OpReg == Reg) 7197 return true; 7198 } 7199 return false; 7200 } 7201 7202 // Return true if instruction has the interesting property of being 7203 // allowed in IT blocks, but not being predicable. 7204 static bool instIsBreakpoint(const MCInst &Inst) { 7205 return Inst.getOpcode() == ARM::tBKPT || 7206 Inst.getOpcode() == ARM::BKPT || 7207 Inst.getOpcode() == ARM::tHLT || 7208 Inst.getOpcode() == ARM::HLT; 7209 } 7210 7211 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 7212 const OperandVector &Operands, 7213 unsigned ListNo, bool IsARPop) { 7214 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7215 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7216 7217 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7218 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 7219 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7220 7221 if (!IsARPop && ListContainsSP) 7222 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7223 "SP may not be in the register list"); 7224 else if (ListContainsPC && ListContainsLR) 7225 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7226 "PC and LR may not be in the register list simultaneously"); 7227 return false; 7228 } 7229 7230 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 7231 const OperandVector &Operands, 7232 unsigned ListNo) { 7233 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7234 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7235 7236 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7237 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7238 7239 if (ListContainsSP && ListContainsPC) 7240 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7241 "SP and PC may not be in the register list"); 7242 else if (ListContainsSP) 7243 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7244 "SP may not be in the register list"); 7245 else if (ListContainsPC) 7246 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7247 "PC may not be in the register list"); 7248 return false; 7249 } 7250 7251 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst, 7252 const OperandVector &Operands, 7253 bool Load, bool ARMMode, bool Writeback) { 7254 unsigned RtIndex = Load || !Writeback ? 0 : 1; 7255 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg()); 7256 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg()); 7257 7258 if (ARMMode) { 7259 // Rt can't be R14. 7260 if (Rt == 14) 7261 return Error(Operands[3]->getStartLoc(), 7262 "Rt can't be R14"); 7263 7264 // Rt must be even-numbered. 7265 if ((Rt & 1) == 1) 7266 return Error(Operands[3]->getStartLoc(), 7267 "Rt must be even-numbered"); 7268 7269 // Rt2 must be Rt + 1. 7270 if (Rt2 != Rt + 1) { 7271 if (Load) 7272 return Error(Operands[3]->getStartLoc(), 7273 "destination operands must be sequential"); 7274 else 7275 return Error(Operands[3]->getStartLoc(), 7276 "source operands must be sequential"); 7277 } 7278 7279 // FIXME: Diagnose m == 15 7280 // FIXME: Diagnose ldrd with m == t || m == t2. 7281 } 7282 7283 if (!ARMMode && Load) { 7284 if (Rt2 == Rt) 7285 return Error(Operands[3]->getStartLoc(), 7286 "destination operands can't be identical"); 7287 } 7288 7289 if (Writeback) { 7290 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 7291 7292 if (Rn == Rt || Rn == Rt2) { 7293 if (Load) 7294 return Error(Operands[3]->getStartLoc(), 7295 "base register needs to be different from destination " 7296 "registers"); 7297 else 7298 return Error(Operands[3]->getStartLoc(), 7299 "source register and base register can't be identical"); 7300 } 7301 7302 // FIXME: Diagnose ldrd/strd with writeback and n == 15. 7303 // (Except the immediate form of ldrd?) 7304 } 7305 7306 return false; 7307 } 7308 7309 static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) { 7310 for (unsigned i = 0; i < MCID.NumOperands; ++i) { 7311 if (ARM::isVpred(MCID.OpInfo[i].OperandType)) 7312 return i; 7313 } 7314 return -1; 7315 } 7316 7317 static bool isVectorPredicable(const MCInstrDesc &MCID) { 7318 return findFirstVectorPredOperandIdx(MCID) != -1; 7319 } 7320 7321 // FIXME: We would really like to be able to tablegen'erate this. 7322 bool ARMAsmParser::validateInstruction(MCInst &Inst, 7323 const OperandVector &Operands) { 7324 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 7325 SMLoc Loc = Operands[0]->getStartLoc(); 7326 7327 // Check the IT block state first. 7328 // NOTE: BKPT and HLT instructions have the interesting property of being 7329 // allowed in IT blocks, but not being predicable. They just always execute. 7330 if (inITBlock() && !instIsBreakpoint(Inst)) { 7331 // The instruction must be predicable. 7332 if (!MCID.isPredicable()) 7333 return Error(Loc, "instructions in IT block must be predicable"); 7334 ARMCC::CondCodes Cond = ARMCC::CondCodes( 7335 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm()); 7336 if (Cond != currentITCond()) { 7337 // Find the condition code Operand to get its SMLoc information. 7338 SMLoc CondLoc; 7339 for (unsigned I = 1; I < Operands.size(); ++I) 7340 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 7341 CondLoc = Operands[I]->getStartLoc(); 7342 return Error(CondLoc, "incorrect condition in IT block; got '" + 7343 StringRef(ARMCondCodeToString(Cond)) + 7344 "', but expected '" + 7345 ARMCondCodeToString(currentITCond()) + "'"); 7346 } 7347 // Check for non-'al' condition codes outside of the IT block. 7348 } else if (isThumbTwo() && MCID.isPredicable() && 7349 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7350 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 7351 Inst.getOpcode() != ARM::t2Bcc && 7352 Inst.getOpcode() != ARM::t2BFic) { 7353 return Error(Loc, "predicated instructions must be in IT block"); 7354 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 7355 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7356 ARMCC::AL) { 7357 return Warning(Loc, "predicated instructions should be in IT block"); 7358 } else if (!MCID.isPredicable()) { 7359 // Check the instruction doesn't have a predicate operand anyway 7360 // that it's not allowed to use. Sometimes this happens in order 7361 // to keep instructions the same shape even though one cannot 7362 // legally be predicated, e.g. vmul.f16 vs vmul.f32. 7363 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 7364 if (MCID.OpInfo[i].isPredicate()) { 7365 if (Inst.getOperand(i).getImm() != ARMCC::AL) 7366 return Error(Loc, "instruction is not predicable"); 7367 break; 7368 } 7369 } 7370 } 7371 7372 // PC-setting instructions in an IT block, but not the last instruction of 7373 // the block, are UNPREDICTABLE. 7374 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 7375 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 7376 } 7377 7378 if (inVPTBlock() && !instIsBreakpoint(Inst)) { 7379 unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition); 7380 if (!isVectorPredicable(MCID)) 7381 return Error(Loc, "instruction in VPT block must be predicable"); 7382 unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm(); 7383 unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then; 7384 if (Pred != VPTPred) { 7385 SMLoc PredLoc; 7386 for (unsigned I = 1; I < Operands.size(); ++I) 7387 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7388 PredLoc = Operands[I]->getStartLoc(); 7389 return Error(PredLoc, "incorrect predication in VPT block; got '" + 7390 StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) + 7391 "', but expected '" + 7392 ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'"); 7393 } 7394 } 7395 else if (isVectorPredicable(MCID) && 7396 Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() != 7397 ARMVCC::None) 7398 return Error(Loc, "VPT predicated instructions must be in VPT block"); 7399 7400 const unsigned Opcode = Inst.getOpcode(); 7401 switch (Opcode) { 7402 case ARM::t2IT: { 7403 // Encoding is unpredictable if it ever results in a notional 'NV' 7404 // predicate. Since we don't parse 'NV' directly this means an 'AL' 7405 // predicate with an "else" mask bit. 7406 unsigned Cond = Inst.getOperand(0).getImm(); 7407 unsigned Mask = Inst.getOperand(1).getImm(); 7408 7409 // Conditions only allowing a 't' are those with no set bit except 7410 // the lowest-order one that indicates the end of the sequence. In 7411 // other words, powers of 2. 7412 if (Cond == ARMCC::AL && countPopulation(Mask) != 1) 7413 return Error(Loc, "unpredictable IT predicate sequence"); 7414 break; 7415 } 7416 case ARM::LDRD: 7417 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7418 /*Writeback*/false)) 7419 return true; 7420 break; 7421 case ARM::LDRD_PRE: 7422 case ARM::LDRD_POST: 7423 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7424 /*Writeback*/true)) 7425 return true; 7426 break; 7427 case ARM::t2LDRDi8: 7428 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7429 /*Writeback*/false)) 7430 return true; 7431 break; 7432 case ARM::t2LDRD_PRE: 7433 case ARM::t2LDRD_POST: 7434 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7435 /*Writeback*/true)) 7436 return true; 7437 break; 7438 case ARM::t2BXJ: { 7439 const unsigned RmReg = Inst.getOperand(0).getReg(); 7440 // Rm = SP is no longer unpredictable in v8-A 7441 if (RmReg == ARM::SP && !hasV8Ops()) 7442 return Error(Operands[2]->getStartLoc(), 7443 "r13 (SP) is an unpredictable operand to BXJ"); 7444 return false; 7445 } 7446 case ARM::STRD: 7447 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7448 /*Writeback*/false)) 7449 return true; 7450 break; 7451 case ARM::STRD_PRE: 7452 case ARM::STRD_POST: 7453 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7454 /*Writeback*/true)) 7455 return true; 7456 break; 7457 case ARM::t2STRD_PRE: 7458 case ARM::t2STRD_POST: 7459 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false, 7460 /*Writeback*/true)) 7461 return true; 7462 break; 7463 case ARM::STR_PRE_IMM: 7464 case ARM::STR_PRE_REG: 7465 case ARM::t2STR_PRE: 7466 case ARM::STR_POST_IMM: 7467 case ARM::STR_POST_REG: 7468 case ARM::t2STR_POST: 7469 case ARM::STRH_PRE: 7470 case ARM::t2STRH_PRE: 7471 case ARM::STRH_POST: 7472 case ARM::t2STRH_POST: 7473 case ARM::STRB_PRE_IMM: 7474 case ARM::STRB_PRE_REG: 7475 case ARM::t2STRB_PRE: 7476 case ARM::STRB_POST_IMM: 7477 case ARM::STRB_POST_REG: 7478 case ARM::t2STRB_POST: { 7479 // Rt must be different from Rn. 7480 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 7481 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7482 7483 if (Rt == Rn) 7484 return Error(Operands[3]->getStartLoc(), 7485 "source register and base register can't be identical"); 7486 return false; 7487 } 7488 case ARM::LDR_PRE_IMM: 7489 case ARM::LDR_PRE_REG: 7490 case ARM::t2LDR_PRE: 7491 case ARM::LDR_POST_IMM: 7492 case ARM::LDR_POST_REG: 7493 case ARM::t2LDR_POST: 7494 case ARM::LDRH_PRE: 7495 case ARM::t2LDRH_PRE: 7496 case ARM::LDRH_POST: 7497 case ARM::t2LDRH_POST: 7498 case ARM::LDRSH_PRE: 7499 case ARM::t2LDRSH_PRE: 7500 case ARM::LDRSH_POST: 7501 case ARM::t2LDRSH_POST: 7502 case ARM::LDRB_PRE_IMM: 7503 case ARM::LDRB_PRE_REG: 7504 case ARM::t2LDRB_PRE: 7505 case ARM::LDRB_POST_IMM: 7506 case ARM::LDRB_POST_REG: 7507 case ARM::t2LDRB_POST: 7508 case ARM::LDRSB_PRE: 7509 case ARM::t2LDRSB_PRE: 7510 case ARM::LDRSB_POST: 7511 case ARM::t2LDRSB_POST: { 7512 // Rt must be different from Rn. 7513 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 7514 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7515 7516 if (Rt == Rn) 7517 return Error(Operands[3]->getStartLoc(), 7518 "destination register and base register can't be identical"); 7519 return false; 7520 } 7521 7522 case ARM::MVE_VLDRBU8_rq: 7523 case ARM::MVE_VLDRBU16_rq: 7524 case ARM::MVE_VLDRBS16_rq: 7525 case ARM::MVE_VLDRBU32_rq: 7526 case ARM::MVE_VLDRBS32_rq: 7527 case ARM::MVE_VLDRHU16_rq: 7528 case ARM::MVE_VLDRHU16_rq_u: 7529 case ARM::MVE_VLDRHU32_rq: 7530 case ARM::MVE_VLDRHU32_rq_u: 7531 case ARM::MVE_VLDRHS32_rq: 7532 case ARM::MVE_VLDRHS32_rq_u: 7533 case ARM::MVE_VLDRWU32_rq: 7534 case ARM::MVE_VLDRWU32_rq_u: 7535 case ARM::MVE_VLDRDU64_rq: 7536 case ARM::MVE_VLDRDU64_rq_u: 7537 case ARM::MVE_VLDRWU32_qi: 7538 case ARM::MVE_VLDRWU32_qi_pre: 7539 case ARM::MVE_VLDRDU64_qi: 7540 case ARM::MVE_VLDRDU64_qi_pre: { 7541 // Qd must be different from Qm. 7542 unsigned QdIdx = 0, QmIdx = 2; 7543 bool QmIsPointer = false; 7544 switch (Opcode) { 7545 case ARM::MVE_VLDRWU32_qi: 7546 case ARM::MVE_VLDRDU64_qi: 7547 QmIdx = 1; 7548 QmIsPointer = true; 7549 break; 7550 case ARM::MVE_VLDRWU32_qi_pre: 7551 case ARM::MVE_VLDRDU64_qi_pre: 7552 QdIdx = 1; 7553 QmIsPointer = true; 7554 break; 7555 } 7556 7557 const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg()); 7558 const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg()); 7559 7560 if (Qd == Qm) { 7561 return Error(Operands[3]->getStartLoc(), 7562 Twine("destination vector register and vector ") + 7563 (QmIsPointer ? "pointer" : "offset") + 7564 " register can't be identical"); 7565 } 7566 return false; 7567 } 7568 7569 case ARM::SBFX: 7570 case ARM::t2SBFX: 7571 case ARM::UBFX: 7572 case ARM::t2UBFX: { 7573 // Width must be in range [1, 32-lsb]. 7574 unsigned LSB = Inst.getOperand(2).getImm(); 7575 unsigned Widthm1 = Inst.getOperand(3).getImm(); 7576 if (Widthm1 >= 32 - LSB) 7577 return Error(Operands[5]->getStartLoc(), 7578 "bitfield width must be in range [1,32-lsb]"); 7579 return false; 7580 } 7581 // Notionally handles ARM::tLDMIA_UPD too. 7582 case ARM::tLDMIA: { 7583 // If we're parsing Thumb2, the .w variant is available and handles 7584 // most cases that are normally illegal for a Thumb1 LDM instruction. 7585 // We'll make the transformation in processInstruction() if necessary. 7586 // 7587 // Thumb LDM instructions are writeback iff the base register is not 7588 // in the register list. 7589 unsigned Rn = Inst.getOperand(0).getReg(); 7590 bool HasWritebackToken = 7591 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 7592 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 7593 bool ListContainsBase; 7594 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 7595 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 7596 "registers must be in range r0-r7"); 7597 // If we should have writeback, then there should be a '!' token. 7598 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 7599 return Error(Operands[2]->getStartLoc(), 7600 "writeback operator '!' expected"); 7601 // If we should not have writeback, there must not be a '!'. This is 7602 // true even for the 32-bit wide encodings. 7603 if (ListContainsBase && HasWritebackToken) 7604 return Error(Operands[3]->getStartLoc(), 7605 "writeback operator '!' not allowed when base register " 7606 "in register list"); 7607 7608 if (validatetLDMRegList(Inst, Operands, 3)) 7609 return true; 7610 break; 7611 } 7612 case ARM::LDMIA_UPD: 7613 case ARM::LDMDB_UPD: 7614 case ARM::LDMIB_UPD: 7615 case ARM::LDMDA_UPD: 7616 // ARM variants loading and updating the same register are only officially 7617 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 7618 if (!hasV7Ops()) 7619 break; 7620 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7621 return Error(Operands.back()->getStartLoc(), 7622 "writeback register not allowed in register list"); 7623 break; 7624 case ARM::t2LDMIA: 7625 case ARM::t2LDMDB: 7626 if (validatetLDMRegList(Inst, Operands, 3)) 7627 return true; 7628 break; 7629 case ARM::t2STMIA: 7630 case ARM::t2STMDB: 7631 if (validatetSTMRegList(Inst, Operands, 3)) 7632 return true; 7633 break; 7634 case ARM::t2LDMIA_UPD: 7635 case ARM::t2LDMDB_UPD: 7636 case ARM::t2STMIA_UPD: 7637 case ARM::t2STMDB_UPD: 7638 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7639 return Error(Operands.back()->getStartLoc(), 7640 "writeback register not allowed in register list"); 7641 7642 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 7643 if (validatetLDMRegList(Inst, Operands, 3)) 7644 return true; 7645 } else { 7646 if (validatetSTMRegList(Inst, Operands, 3)) 7647 return true; 7648 } 7649 break; 7650 7651 case ARM::sysLDMIA_UPD: 7652 case ARM::sysLDMDA_UPD: 7653 case ARM::sysLDMDB_UPD: 7654 case ARM::sysLDMIB_UPD: 7655 if (!listContainsReg(Inst, 3, ARM::PC)) 7656 return Error(Operands[4]->getStartLoc(), 7657 "writeback register only allowed on system LDM " 7658 "if PC in register-list"); 7659 break; 7660 case ARM::sysSTMIA_UPD: 7661 case ARM::sysSTMDA_UPD: 7662 case ARM::sysSTMDB_UPD: 7663 case ARM::sysSTMIB_UPD: 7664 return Error(Operands[2]->getStartLoc(), 7665 "system STM cannot have writeback register"); 7666 case ARM::tMUL: 7667 // The second source operand must be the same register as the destination 7668 // operand. 7669 // 7670 // In this case, we must directly check the parsed operands because the 7671 // cvtThumbMultiply() function is written in such a way that it guarantees 7672 // this first statement is always true for the new Inst. Essentially, the 7673 // destination is unconditionally copied into the second source operand 7674 // without checking to see if it matches what we actually parsed. 7675 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 7676 ((ARMOperand &)*Operands[5]).getReg()) && 7677 (((ARMOperand &)*Operands[3]).getReg() != 7678 ((ARMOperand &)*Operands[4]).getReg())) { 7679 return Error(Operands[3]->getStartLoc(), 7680 "destination register must match source register"); 7681 } 7682 break; 7683 7684 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 7685 // so only issue a diagnostic for thumb1. The instructions will be 7686 // switched to the t2 encodings in processInstruction() if necessary. 7687 case ARM::tPOP: { 7688 bool ListContainsBase; 7689 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 7690 !isThumbTwo()) 7691 return Error(Operands[2]->getStartLoc(), 7692 "registers must be in range r0-r7 or pc"); 7693 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 7694 return true; 7695 break; 7696 } 7697 case ARM::tPUSH: { 7698 bool ListContainsBase; 7699 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 7700 !isThumbTwo()) 7701 return Error(Operands[2]->getStartLoc(), 7702 "registers must be in range r0-r7 or lr"); 7703 if (validatetSTMRegList(Inst, Operands, 2)) 7704 return true; 7705 break; 7706 } 7707 case ARM::tSTMIA_UPD: { 7708 bool ListContainsBase, InvalidLowList; 7709 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 7710 0, ListContainsBase); 7711 if (InvalidLowList && !isThumbTwo()) 7712 return Error(Operands[4]->getStartLoc(), 7713 "registers must be in range r0-r7"); 7714 7715 // This would be converted to a 32-bit stm, but that's not valid if the 7716 // writeback register is in the list. 7717 if (InvalidLowList && ListContainsBase) 7718 return Error(Operands[4]->getStartLoc(), 7719 "writeback operator '!' not allowed when base register " 7720 "in register list"); 7721 7722 if (validatetSTMRegList(Inst, Operands, 4)) 7723 return true; 7724 break; 7725 } 7726 case ARM::tADDrSP: 7727 // If the non-SP source operand and the destination operand are not the 7728 // same, we need thumb2 (for the wide encoding), or we have an error. 7729 if (!isThumbTwo() && 7730 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 7731 return Error(Operands[4]->getStartLoc(), 7732 "source register must be the same as destination"); 7733 } 7734 break; 7735 7736 case ARM::t2ADDrr: 7737 case ARM::t2ADDrs: 7738 case ARM::t2SUBrr: 7739 case ARM::t2SUBrs: 7740 if (Inst.getOperand(0).getReg() == ARM::SP && 7741 Inst.getOperand(1).getReg() != ARM::SP) 7742 return Error(Operands[4]->getStartLoc(), 7743 "source register must be sp if destination is sp"); 7744 break; 7745 7746 // Final range checking for Thumb unconditional branch instructions. 7747 case ARM::tB: 7748 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 7749 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7750 break; 7751 case ARM::t2B: { 7752 int op = (Operands[2]->isImm()) ? 2 : 3; 7753 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 7754 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 7755 break; 7756 } 7757 // Final range checking for Thumb conditional branch instructions. 7758 case ARM::tBcc: 7759 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 7760 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7761 break; 7762 case ARM::t2Bcc: { 7763 int Op = (Operands[2]->isImm()) ? 2 : 3; 7764 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 7765 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 7766 break; 7767 } 7768 case ARM::tCBZ: 7769 case ARM::tCBNZ: { 7770 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 7771 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7772 break; 7773 } 7774 case ARM::MOVi16: 7775 case ARM::MOVTi16: 7776 case ARM::t2MOVi16: 7777 case ARM::t2MOVTi16: 7778 { 7779 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 7780 // especially when we turn it into a movw and the expression <symbol> does 7781 // not have a :lower16: or :upper16 as part of the expression. We don't 7782 // want the behavior of silently truncating, which can be unexpected and 7783 // lead to bugs that are difficult to find since this is an easy mistake 7784 // to make. 7785 int i = (Operands[3]->isImm()) ? 3 : 4; 7786 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 7787 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 7788 if (CE) break; 7789 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 7790 if (!E) break; 7791 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 7792 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 7793 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 7794 return Error( 7795 Op.getStartLoc(), 7796 "immediate expression for mov requires :lower16: or :upper16"); 7797 break; 7798 } 7799 case ARM::HINT: 7800 case ARM::t2HINT: { 7801 unsigned Imm8 = Inst.getOperand(0).getImm(); 7802 unsigned Pred = Inst.getOperand(1).getImm(); 7803 // ESB is not predicable (pred must be AL). Without the RAS extension, this 7804 // behaves as any other unallocated hint. 7805 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) 7806 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 7807 "predicable, but condition " 7808 "code specified"); 7809 if (Imm8 == 0x14 && Pred != ARMCC::AL) 7810 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not " 7811 "predicable, but condition " 7812 "code specified"); 7813 break; 7814 } 7815 case ARM::t2BFi: 7816 case ARM::t2BFr: 7817 case ARM::t2BFLi: 7818 case ARM::t2BFLr: { 7819 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() || 7820 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 7821 return Error(Operands[2]->getStartLoc(), 7822 "branch location out of range or not a multiple of 2"); 7823 7824 if (Opcode == ARM::t2BFi) { 7825 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>()) 7826 return Error(Operands[3]->getStartLoc(), 7827 "branch target out of range or not a multiple of 2"); 7828 } else if (Opcode == ARM::t2BFLi) { 7829 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>()) 7830 return Error(Operands[3]->getStartLoc(), 7831 "branch target out of range or not a multiple of 2"); 7832 } 7833 break; 7834 } 7835 case ARM::t2BFic: { 7836 if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() || 7837 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 7838 return Error(Operands[1]->getStartLoc(), 7839 "branch location out of range or not a multiple of 2"); 7840 7841 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>()) 7842 return Error(Operands[2]->getStartLoc(), 7843 "branch target out of range or not a multiple of 2"); 7844 7845 assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() && 7846 "branch location and else branch target should either both be " 7847 "immediates or both labels"); 7848 7849 if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) { 7850 int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm(); 7851 if (Diff != 4 && Diff != 2) 7852 return Error( 7853 Operands[3]->getStartLoc(), 7854 "else branch target must be 2 or 4 greater than the branch location"); 7855 } 7856 break; 7857 } 7858 case ARM::t2CLRM: { 7859 for (unsigned i = 2; i < Inst.getNumOperands(); i++) { 7860 if (Inst.getOperand(i).isReg() && 7861 !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains( 7862 Inst.getOperand(i).getReg())) { 7863 return Error(Operands[2]->getStartLoc(), 7864 "invalid register in register list. Valid registers are " 7865 "r0-r12, lr/r14 and APSR."); 7866 } 7867 } 7868 break; 7869 } 7870 case ARM::DSB: 7871 case ARM::t2DSB: { 7872 7873 if (Inst.getNumOperands() < 2) 7874 break; 7875 7876 unsigned Option = Inst.getOperand(0).getImm(); 7877 unsigned Pred = Inst.getOperand(1).getImm(); 7878 7879 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL). 7880 if (Option == 0 && Pred != ARMCC::AL) 7881 return Error(Operands[1]->getStartLoc(), 7882 "instruction 'ssbb' is not predicable, but condition code " 7883 "specified"); 7884 if (Option == 4 && Pred != ARMCC::AL) 7885 return Error(Operands[1]->getStartLoc(), 7886 "instruction 'pssbb' is not predicable, but condition code " 7887 "specified"); 7888 break; 7889 } 7890 case ARM::VMOVRRS: { 7891 // Source registers must be sequential. 7892 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7893 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 7894 if (Sm1 != Sm + 1) 7895 return Error(Operands[5]->getStartLoc(), 7896 "source operands must be sequential"); 7897 break; 7898 } 7899 case ARM::VMOVSRR: { 7900 // Destination registers must be sequential. 7901 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 7902 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 7903 if (Sm1 != Sm + 1) 7904 return Error(Operands[3]->getStartLoc(), 7905 "destination operands must be sequential"); 7906 break; 7907 } 7908 case ARM::VLDMDIA: 7909 case ARM::VSTMDIA: { 7910 ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]); 7911 auto &RegList = Op.getRegList(); 7912 if (RegList.size() < 1 || RegList.size() > 16) 7913 return Error(Operands[3]->getStartLoc(), 7914 "list of registers must be at least 1 and at most 16"); 7915 break; 7916 } 7917 case ARM::MVE_VQDMULLs32bh: 7918 case ARM::MVE_VQDMULLs32th: 7919 case ARM::MVE_VCMULf32: 7920 case ARM::MVE_VMULLBs32: 7921 case ARM::MVE_VMULLTs32: 7922 case ARM::MVE_VMULLBu32: 7923 case ARM::MVE_VMULLTu32: { 7924 if (Operands[3]->getReg() == Operands[4]->getReg()) { 7925 return Error (Operands[3]->getStartLoc(), 7926 "Qd register and Qn register can't be identical"); 7927 } 7928 if (Operands[3]->getReg() == Operands[5]->getReg()) { 7929 return Error (Operands[3]->getStartLoc(), 7930 "Qd register and Qm register can't be identical"); 7931 } 7932 break; 7933 } 7934 case ARM::MVE_VMOV_rr_q: { 7935 if (Operands[4]->getReg() != Operands[6]->getReg()) 7936 return Error (Operands[4]->getStartLoc(), "Q-registers must be the same"); 7937 if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() != 7938 static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2) 7939 return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 7940 break; 7941 } 7942 case ARM::MVE_VMOV_q_rr: { 7943 if (Operands[2]->getReg() != Operands[4]->getReg()) 7944 return Error (Operands[2]->getStartLoc(), "Q-registers must be the same"); 7945 if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() != 7946 static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2) 7947 return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 7948 break; 7949 } 7950 } 7951 7952 return false; 7953 } 7954 7955 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 7956 switch(Opc) { 7957 default: llvm_unreachable("unexpected opcode!"); 7958 // VST1LN 7959 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 7960 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 7961 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 7962 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 7963 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 7964 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 7965 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 7966 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 7967 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 7968 7969 // VST2LN 7970 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 7971 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 7972 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 7973 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 7974 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 7975 7976 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 7977 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 7978 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 7979 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 7980 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 7981 7982 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 7983 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 7984 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 7985 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 7986 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 7987 7988 // VST3LN 7989 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 7990 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 7991 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 7992 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 7993 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 7994 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 7995 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 7996 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 7997 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 7998 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 7999 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 8000 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 8001 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 8002 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 8003 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 8004 8005 // VST3 8006 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 8007 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 8008 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 8009 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 8010 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 8011 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 8012 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 8013 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 8014 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 8015 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 8016 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 8017 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 8018 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 8019 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 8020 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 8021 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 8022 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 8023 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 8024 8025 // VST4LN 8026 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 8027 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 8028 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 8029 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 8030 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 8031 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 8032 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 8033 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 8034 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 8035 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 8036 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 8037 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 8038 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 8039 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 8040 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 8041 8042 // VST4 8043 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8044 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8045 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8046 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8047 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8048 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8049 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8050 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8051 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8052 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8053 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8054 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8055 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 8056 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 8057 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 8058 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 8059 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 8060 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 8061 } 8062 } 8063 8064 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 8065 switch(Opc) { 8066 default: llvm_unreachable("unexpected opcode!"); 8067 // VLD1LN 8068 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8069 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8070 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8071 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8072 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8073 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8074 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 8075 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 8076 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 8077 8078 // VLD2LN 8079 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8080 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8081 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8082 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 8083 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8084 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8085 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8086 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8087 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 8088 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8089 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 8090 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 8091 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 8092 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 8093 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 8094 8095 // VLD3DUP 8096 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8097 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8098 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8099 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 8100 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8101 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8102 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8103 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8104 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8105 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 8106 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8107 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8108 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 8109 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 8110 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 8111 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 8112 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 8113 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 8114 8115 // VLD3LN 8116 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8117 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8118 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8119 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 8120 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8121 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8122 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8123 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8124 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 8125 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8126 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 8127 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 8128 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 8129 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 8130 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 8131 8132 // VLD3 8133 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8134 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8135 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8136 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8137 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8138 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8139 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8140 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8141 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8142 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8143 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8144 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8145 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 8146 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 8147 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 8148 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 8149 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 8150 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 8151 8152 // VLD4LN 8153 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8154 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8155 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8156 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8157 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8158 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8159 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8160 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8161 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8162 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8163 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 8164 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 8165 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 8166 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 8167 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 8168 8169 // VLD4DUP 8170 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8171 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8172 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8173 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 8174 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 8175 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8176 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8177 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8178 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8179 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 8180 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 8181 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8182 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 8183 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 8184 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 8185 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 8186 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 8187 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 8188 8189 // VLD4 8190 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8191 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8192 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8193 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8194 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8195 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8196 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8197 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8198 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8199 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8200 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8201 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8202 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 8203 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 8204 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 8205 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 8206 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 8207 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 8208 } 8209 } 8210 8211 bool ARMAsmParser::processInstruction(MCInst &Inst, 8212 const OperandVector &Operands, 8213 MCStreamer &Out) { 8214 // Check if we have the wide qualifier, because if it's present we 8215 // must avoid selecting a 16-bit thumb instruction. 8216 bool HasWideQualifier = false; 8217 for (auto &Op : Operands) { 8218 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 8219 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 8220 HasWideQualifier = true; 8221 break; 8222 } 8223 } 8224 8225 switch (Inst.getOpcode()) { 8226 case ARM::MVE_VORNIZ0v4i32: 8227 case ARM::MVE_VORNIZ0v8i16: 8228 case ARM::MVE_VORNIZ8v4i32: 8229 case ARM::MVE_VORNIZ8v8i16: 8230 case ARM::MVE_VORNIZ16v4i32: 8231 case ARM::MVE_VORNIZ24v4i32: 8232 case ARM::MVE_VANDIZ0v4i32: 8233 case ARM::MVE_VANDIZ0v8i16: 8234 case ARM::MVE_VANDIZ8v4i32: 8235 case ARM::MVE_VANDIZ8v8i16: 8236 case ARM::MVE_VANDIZ16v4i32: 8237 case ARM::MVE_VANDIZ24v4i32: { 8238 unsigned Opcode; 8239 bool imm16 = false; 8240 switch(Inst.getOpcode()) { 8241 case ARM::MVE_VORNIZ0v4i32: Opcode = ARM::MVE_VORRIZ0v4i32; break; 8242 case ARM::MVE_VORNIZ0v8i16: Opcode = ARM::MVE_VORRIZ0v8i16; imm16 = true; break; 8243 case ARM::MVE_VORNIZ8v4i32: Opcode = ARM::MVE_VORRIZ8v4i32; break; 8244 case ARM::MVE_VORNIZ8v8i16: Opcode = ARM::MVE_VORRIZ8v8i16; imm16 = true; break; 8245 case ARM::MVE_VORNIZ16v4i32: Opcode = ARM::MVE_VORRIZ16v4i32; break; 8246 case ARM::MVE_VORNIZ24v4i32: Opcode = ARM::MVE_VORRIZ24v4i32; break; 8247 case ARM::MVE_VANDIZ0v4i32: Opcode = ARM::MVE_VBICIZ0v4i32; break; 8248 case ARM::MVE_VANDIZ0v8i16: Opcode = ARM::MVE_VBICIZ0v8i16; imm16 = true; break; 8249 case ARM::MVE_VANDIZ8v4i32: Opcode = ARM::MVE_VBICIZ8v4i32; break; 8250 case ARM::MVE_VANDIZ8v8i16: Opcode = ARM::MVE_VBICIZ8v8i16; imm16 = true; break; 8251 case ARM::MVE_VANDIZ16v4i32: Opcode = ARM::MVE_VBICIZ16v4i32; break; 8252 case ARM::MVE_VANDIZ24v4i32: Opcode = ARM::MVE_VBICIZ24v4i32; break; 8253 default: llvm_unreachable("unexpected opcode"); 8254 } 8255 8256 MCInst TmpInst; 8257 TmpInst.setOpcode(Opcode); 8258 TmpInst.addOperand(Inst.getOperand(0)); 8259 TmpInst.addOperand(Inst.getOperand(1)); 8260 8261 // invert immediate 8262 unsigned imm = ~Inst.getOperand(2).getImm() & (imm16 ? 0xffff : 0xffffffff); 8263 TmpInst.addOperand(MCOperand::createImm(imm)); 8264 8265 TmpInst.addOperand(Inst.getOperand(3)); 8266 TmpInst.addOperand(Inst.getOperand(4)); 8267 Inst = TmpInst; 8268 return true; 8269 } 8270 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 8271 case ARM::LDRT_POST: 8272 case ARM::LDRBT_POST: { 8273 const unsigned Opcode = 8274 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 8275 : ARM::LDRBT_POST_IMM; 8276 MCInst TmpInst; 8277 TmpInst.setOpcode(Opcode); 8278 TmpInst.addOperand(Inst.getOperand(0)); 8279 TmpInst.addOperand(Inst.getOperand(1)); 8280 TmpInst.addOperand(Inst.getOperand(1)); 8281 TmpInst.addOperand(MCOperand::createReg(0)); 8282 TmpInst.addOperand(MCOperand::createImm(0)); 8283 TmpInst.addOperand(Inst.getOperand(2)); 8284 TmpInst.addOperand(Inst.getOperand(3)); 8285 Inst = TmpInst; 8286 return true; 8287 } 8288 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 8289 case ARM::STRT_POST: 8290 case ARM::STRBT_POST: { 8291 const unsigned Opcode = 8292 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 8293 : ARM::STRBT_POST_IMM; 8294 MCInst TmpInst; 8295 TmpInst.setOpcode(Opcode); 8296 TmpInst.addOperand(Inst.getOperand(1)); 8297 TmpInst.addOperand(Inst.getOperand(0)); 8298 TmpInst.addOperand(Inst.getOperand(1)); 8299 TmpInst.addOperand(MCOperand::createReg(0)); 8300 TmpInst.addOperand(MCOperand::createImm(0)); 8301 TmpInst.addOperand(Inst.getOperand(2)); 8302 TmpInst.addOperand(Inst.getOperand(3)); 8303 Inst = TmpInst; 8304 return true; 8305 } 8306 // Alias for alternate form of 'ADR Rd, #imm' instruction. 8307 case ARM::ADDri: { 8308 if (Inst.getOperand(1).getReg() != ARM::PC || 8309 Inst.getOperand(5).getReg() != 0 || 8310 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 8311 return false; 8312 MCInst TmpInst; 8313 TmpInst.setOpcode(ARM::ADR); 8314 TmpInst.addOperand(Inst.getOperand(0)); 8315 if (Inst.getOperand(2).isImm()) { 8316 // Immediate (mod_imm) will be in its encoded form, we must unencode it 8317 // before passing it to the ADR instruction. 8318 unsigned Enc = Inst.getOperand(2).getImm(); 8319 TmpInst.addOperand(MCOperand::createImm( 8320 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 8321 } else { 8322 // Turn PC-relative expression into absolute expression. 8323 // Reading PC provides the start of the current instruction + 8 and 8324 // the transform to adr is biased by that. 8325 MCSymbol *Dot = getContext().createTempSymbol(); 8326 Out.EmitLabel(Dot); 8327 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 8328 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 8329 MCSymbolRefExpr::VK_None, 8330 getContext()); 8331 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 8332 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 8333 getContext()); 8334 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 8335 getContext()); 8336 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 8337 } 8338 TmpInst.addOperand(Inst.getOperand(3)); 8339 TmpInst.addOperand(Inst.getOperand(4)); 8340 Inst = TmpInst; 8341 return true; 8342 } 8343 // Aliases for alternate PC+imm syntax of LDR instructions. 8344 case ARM::t2LDRpcrel: 8345 // Select the narrow version if the immediate will fit. 8346 if (Inst.getOperand(1).getImm() > 0 && 8347 Inst.getOperand(1).getImm() <= 0xff && 8348 !HasWideQualifier) 8349 Inst.setOpcode(ARM::tLDRpci); 8350 else 8351 Inst.setOpcode(ARM::t2LDRpci); 8352 return true; 8353 case ARM::t2LDRBpcrel: 8354 Inst.setOpcode(ARM::t2LDRBpci); 8355 return true; 8356 case ARM::t2LDRHpcrel: 8357 Inst.setOpcode(ARM::t2LDRHpci); 8358 return true; 8359 case ARM::t2LDRSBpcrel: 8360 Inst.setOpcode(ARM::t2LDRSBpci); 8361 return true; 8362 case ARM::t2LDRSHpcrel: 8363 Inst.setOpcode(ARM::t2LDRSHpci); 8364 return true; 8365 case ARM::LDRConstPool: 8366 case ARM::tLDRConstPool: 8367 case ARM::t2LDRConstPool: { 8368 // Pseudo instruction ldr rt, =immediate is converted to a 8369 // MOV rt, immediate if immediate is known and representable 8370 // otherwise we create a constant pool entry that we load from. 8371 MCInst TmpInst; 8372 if (Inst.getOpcode() == ARM::LDRConstPool) 8373 TmpInst.setOpcode(ARM::LDRi12); 8374 else if (Inst.getOpcode() == ARM::tLDRConstPool) 8375 TmpInst.setOpcode(ARM::tLDRpci); 8376 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 8377 TmpInst.setOpcode(ARM::t2LDRpci); 8378 const ARMOperand &PoolOperand = 8379 (HasWideQualifier ? 8380 static_cast<ARMOperand &>(*Operands[4]) : 8381 static_cast<ARMOperand &>(*Operands[3])); 8382 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 8383 // If SubExprVal is a constant we may be able to use a MOV 8384 if (isa<MCConstantExpr>(SubExprVal) && 8385 Inst.getOperand(0).getReg() != ARM::PC && 8386 Inst.getOperand(0).getReg() != ARM::SP) { 8387 int64_t Value = 8388 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 8389 bool UseMov = true; 8390 bool MovHasS = true; 8391 if (Inst.getOpcode() == ARM::LDRConstPool) { 8392 // ARM Constant 8393 if (ARM_AM::getSOImmVal(Value) != -1) { 8394 Value = ARM_AM::getSOImmVal(Value); 8395 TmpInst.setOpcode(ARM::MOVi); 8396 } 8397 else if (ARM_AM::getSOImmVal(~Value) != -1) { 8398 Value = ARM_AM::getSOImmVal(~Value); 8399 TmpInst.setOpcode(ARM::MVNi); 8400 } 8401 else if (hasV6T2Ops() && 8402 Value >=0 && Value < 65536) { 8403 TmpInst.setOpcode(ARM::MOVi16); 8404 MovHasS = false; 8405 } 8406 else 8407 UseMov = false; 8408 } 8409 else { 8410 // Thumb/Thumb2 Constant 8411 if (hasThumb2() && 8412 ARM_AM::getT2SOImmVal(Value) != -1) 8413 TmpInst.setOpcode(ARM::t2MOVi); 8414 else if (hasThumb2() && 8415 ARM_AM::getT2SOImmVal(~Value) != -1) { 8416 TmpInst.setOpcode(ARM::t2MVNi); 8417 Value = ~Value; 8418 } 8419 else if (hasV8MBaseline() && 8420 Value >=0 && Value < 65536) { 8421 TmpInst.setOpcode(ARM::t2MOVi16); 8422 MovHasS = false; 8423 } 8424 else 8425 UseMov = false; 8426 } 8427 if (UseMov) { 8428 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8429 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 8430 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8431 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8432 if (MovHasS) 8433 TmpInst.addOperand(MCOperand::createReg(0)); // S 8434 Inst = TmpInst; 8435 return true; 8436 } 8437 } 8438 // No opportunity to use MOV/MVN create constant pool 8439 const MCExpr *CPLoc = 8440 getTargetStreamer().addConstantPoolEntry(SubExprVal, 8441 PoolOperand.getStartLoc()); 8442 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8443 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 8444 if (TmpInst.getOpcode() == ARM::LDRi12) 8445 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 8446 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8447 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8448 Inst = TmpInst; 8449 return true; 8450 } 8451 // Handle NEON VST complex aliases. 8452 case ARM::VST1LNdWB_register_Asm_8: 8453 case ARM::VST1LNdWB_register_Asm_16: 8454 case ARM::VST1LNdWB_register_Asm_32: { 8455 MCInst TmpInst; 8456 // Shuffle the operands around so the lane index operand is in the 8457 // right place. 8458 unsigned Spacing; 8459 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8460 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8461 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8462 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8463 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8464 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8465 TmpInst.addOperand(Inst.getOperand(1)); // lane 8466 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8467 TmpInst.addOperand(Inst.getOperand(6)); 8468 Inst = TmpInst; 8469 return true; 8470 } 8471 8472 case ARM::VST2LNdWB_register_Asm_8: 8473 case ARM::VST2LNdWB_register_Asm_16: 8474 case ARM::VST2LNdWB_register_Asm_32: 8475 case ARM::VST2LNqWB_register_Asm_16: 8476 case ARM::VST2LNqWB_register_Asm_32: { 8477 MCInst TmpInst; 8478 // Shuffle the operands around so the lane index operand is in the 8479 // right place. 8480 unsigned Spacing; 8481 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8482 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8483 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8484 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8485 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8486 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8487 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8488 Spacing)); 8489 TmpInst.addOperand(Inst.getOperand(1)); // lane 8490 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8491 TmpInst.addOperand(Inst.getOperand(6)); 8492 Inst = TmpInst; 8493 return true; 8494 } 8495 8496 case ARM::VST3LNdWB_register_Asm_8: 8497 case ARM::VST3LNdWB_register_Asm_16: 8498 case ARM::VST3LNdWB_register_Asm_32: 8499 case ARM::VST3LNqWB_register_Asm_16: 8500 case ARM::VST3LNqWB_register_Asm_32: { 8501 MCInst TmpInst; 8502 // Shuffle the operands around so the lane index operand is in the 8503 // right place. 8504 unsigned Spacing; 8505 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8506 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8507 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8508 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8509 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8510 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8511 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8512 Spacing)); 8513 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8514 Spacing * 2)); 8515 TmpInst.addOperand(Inst.getOperand(1)); // lane 8516 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8517 TmpInst.addOperand(Inst.getOperand(6)); 8518 Inst = TmpInst; 8519 return true; 8520 } 8521 8522 case ARM::VST4LNdWB_register_Asm_8: 8523 case ARM::VST4LNdWB_register_Asm_16: 8524 case ARM::VST4LNdWB_register_Asm_32: 8525 case ARM::VST4LNqWB_register_Asm_16: 8526 case ARM::VST4LNqWB_register_Asm_32: { 8527 MCInst TmpInst; 8528 // Shuffle the operands around so the lane index operand is in the 8529 // right place. 8530 unsigned Spacing; 8531 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8532 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8533 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8534 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8535 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8536 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8537 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8538 Spacing)); 8539 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8540 Spacing * 2)); 8541 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8542 Spacing * 3)); 8543 TmpInst.addOperand(Inst.getOperand(1)); // lane 8544 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8545 TmpInst.addOperand(Inst.getOperand(6)); 8546 Inst = TmpInst; 8547 return true; 8548 } 8549 8550 case ARM::VST1LNdWB_fixed_Asm_8: 8551 case ARM::VST1LNdWB_fixed_Asm_16: 8552 case ARM::VST1LNdWB_fixed_Asm_32: { 8553 MCInst TmpInst; 8554 // Shuffle the operands around so the lane index operand is in the 8555 // right place. 8556 unsigned Spacing; 8557 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8558 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8559 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8560 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8561 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8562 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8563 TmpInst.addOperand(Inst.getOperand(1)); // lane 8564 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8565 TmpInst.addOperand(Inst.getOperand(5)); 8566 Inst = TmpInst; 8567 return true; 8568 } 8569 8570 case ARM::VST2LNdWB_fixed_Asm_8: 8571 case ARM::VST2LNdWB_fixed_Asm_16: 8572 case ARM::VST2LNdWB_fixed_Asm_32: 8573 case ARM::VST2LNqWB_fixed_Asm_16: 8574 case ARM::VST2LNqWB_fixed_Asm_32: { 8575 MCInst TmpInst; 8576 // Shuffle the operands around so the lane index operand is in the 8577 // right place. 8578 unsigned Spacing; 8579 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8580 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8581 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8582 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8583 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8584 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8585 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8586 Spacing)); 8587 TmpInst.addOperand(Inst.getOperand(1)); // lane 8588 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8589 TmpInst.addOperand(Inst.getOperand(5)); 8590 Inst = TmpInst; 8591 return true; 8592 } 8593 8594 case ARM::VST3LNdWB_fixed_Asm_8: 8595 case ARM::VST3LNdWB_fixed_Asm_16: 8596 case ARM::VST3LNdWB_fixed_Asm_32: 8597 case ARM::VST3LNqWB_fixed_Asm_16: 8598 case ARM::VST3LNqWB_fixed_Asm_32: { 8599 MCInst TmpInst; 8600 // Shuffle the operands around so the lane index operand is in the 8601 // right place. 8602 unsigned Spacing; 8603 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8604 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8605 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8606 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8607 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8608 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8609 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8610 Spacing)); 8611 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8612 Spacing * 2)); 8613 TmpInst.addOperand(Inst.getOperand(1)); // lane 8614 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8615 TmpInst.addOperand(Inst.getOperand(5)); 8616 Inst = TmpInst; 8617 return true; 8618 } 8619 8620 case ARM::VST4LNdWB_fixed_Asm_8: 8621 case ARM::VST4LNdWB_fixed_Asm_16: 8622 case ARM::VST4LNdWB_fixed_Asm_32: 8623 case ARM::VST4LNqWB_fixed_Asm_16: 8624 case ARM::VST4LNqWB_fixed_Asm_32: { 8625 MCInst TmpInst; 8626 // Shuffle the operands around so the lane index operand is in the 8627 // right place. 8628 unsigned Spacing; 8629 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8630 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8631 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8632 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8633 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8634 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8635 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8636 Spacing)); 8637 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8638 Spacing * 2)); 8639 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8640 Spacing * 3)); 8641 TmpInst.addOperand(Inst.getOperand(1)); // lane 8642 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8643 TmpInst.addOperand(Inst.getOperand(5)); 8644 Inst = TmpInst; 8645 return true; 8646 } 8647 8648 case ARM::VST1LNdAsm_8: 8649 case ARM::VST1LNdAsm_16: 8650 case ARM::VST1LNdAsm_32: { 8651 MCInst TmpInst; 8652 // Shuffle the operands around so the lane index operand is in the 8653 // right place. 8654 unsigned Spacing; 8655 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8656 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8657 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8658 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8659 TmpInst.addOperand(Inst.getOperand(1)); // lane 8660 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8661 TmpInst.addOperand(Inst.getOperand(5)); 8662 Inst = TmpInst; 8663 return true; 8664 } 8665 8666 case ARM::VST2LNdAsm_8: 8667 case ARM::VST2LNdAsm_16: 8668 case ARM::VST2LNdAsm_32: 8669 case ARM::VST2LNqAsm_16: 8670 case ARM::VST2LNqAsm_32: { 8671 MCInst TmpInst; 8672 // Shuffle the operands around so the lane index operand is in the 8673 // right place. 8674 unsigned Spacing; 8675 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8676 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8677 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8678 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8679 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8680 Spacing)); 8681 TmpInst.addOperand(Inst.getOperand(1)); // lane 8682 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8683 TmpInst.addOperand(Inst.getOperand(5)); 8684 Inst = TmpInst; 8685 return true; 8686 } 8687 8688 case ARM::VST3LNdAsm_8: 8689 case ARM::VST3LNdAsm_16: 8690 case ARM::VST3LNdAsm_32: 8691 case ARM::VST3LNqAsm_16: 8692 case ARM::VST3LNqAsm_32: { 8693 MCInst TmpInst; 8694 // Shuffle the operands around so the lane index operand is in the 8695 // right place. 8696 unsigned Spacing; 8697 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8698 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8699 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8700 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8701 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8702 Spacing)); 8703 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8704 Spacing * 2)); 8705 TmpInst.addOperand(Inst.getOperand(1)); // lane 8706 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8707 TmpInst.addOperand(Inst.getOperand(5)); 8708 Inst = TmpInst; 8709 return true; 8710 } 8711 8712 case ARM::VST4LNdAsm_8: 8713 case ARM::VST4LNdAsm_16: 8714 case ARM::VST4LNdAsm_32: 8715 case ARM::VST4LNqAsm_16: 8716 case ARM::VST4LNqAsm_32: { 8717 MCInst TmpInst; 8718 // Shuffle the operands around so the lane index operand is in the 8719 // right place. 8720 unsigned Spacing; 8721 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8722 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8723 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8724 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8725 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8726 Spacing)); 8727 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8728 Spacing * 2)); 8729 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8730 Spacing * 3)); 8731 TmpInst.addOperand(Inst.getOperand(1)); // lane 8732 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8733 TmpInst.addOperand(Inst.getOperand(5)); 8734 Inst = TmpInst; 8735 return true; 8736 } 8737 8738 // Handle NEON VLD complex aliases. 8739 case ARM::VLD1LNdWB_register_Asm_8: 8740 case ARM::VLD1LNdWB_register_Asm_16: 8741 case ARM::VLD1LNdWB_register_Asm_32: { 8742 MCInst TmpInst; 8743 // Shuffle the operands around so the lane index operand is in the 8744 // right place. 8745 unsigned Spacing; 8746 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8747 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8748 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8749 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8750 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8751 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8752 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8753 TmpInst.addOperand(Inst.getOperand(1)); // lane 8754 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8755 TmpInst.addOperand(Inst.getOperand(6)); 8756 Inst = TmpInst; 8757 return true; 8758 } 8759 8760 case ARM::VLD2LNdWB_register_Asm_8: 8761 case ARM::VLD2LNdWB_register_Asm_16: 8762 case ARM::VLD2LNdWB_register_Asm_32: 8763 case ARM::VLD2LNqWB_register_Asm_16: 8764 case ARM::VLD2LNqWB_register_Asm_32: { 8765 MCInst TmpInst; 8766 // Shuffle the operands around so the lane index operand is in the 8767 // right place. 8768 unsigned Spacing; 8769 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8770 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8771 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8772 Spacing)); 8773 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8774 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8775 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8776 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8777 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8778 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8779 Spacing)); 8780 TmpInst.addOperand(Inst.getOperand(1)); // lane 8781 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8782 TmpInst.addOperand(Inst.getOperand(6)); 8783 Inst = TmpInst; 8784 return true; 8785 } 8786 8787 case ARM::VLD3LNdWB_register_Asm_8: 8788 case ARM::VLD3LNdWB_register_Asm_16: 8789 case ARM::VLD3LNdWB_register_Asm_32: 8790 case ARM::VLD3LNqWB_register_Asm_16: 8791 case ARM::VLD3LNqWB_register_Asm_32: { 8792 MCInst TmpInst; 8793 // Shuffle the operands around so the lane index operand is in the 8794 // right place. 8795 unsigned Spacing; 8796 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8797 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8798 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8799 Spacing)); 8800 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8801 Spacing * 2)); 8802 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8803 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8804 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8805 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8806 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8807 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8808 Spacing)); 8809 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8810 Spacing * 2)); 8811 TmpInst.addOperand(Inst.getOperand(1)); // lane 8812 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8813 TmpInst.addOperand(Inst.getOperand(6)); 8814 Inst = TmpInst; 8815 return true; 8816 } 8817 8818 case ARM::VLD4LNdWB_register_Asm_8: 8819 case ARM::VLD4LNdWB_register_Asm_16: 8820 case ARM::VLD4LNdWB_register_Asm_32: 8821 case ARM::VLD4LNqWB_register_Asm_16: 8822 case ARM::VLD4LNqWB_register_Asm_32: { 8823 MCInst TmpInst; 8824 // Shuffle the operands around so the lane index operand is in the 8825 // right place. 8826 unsigned Spacing; 8827 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8828 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8829 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8830 Spacing)); 8831 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8832 Spacing * 2)); 8833 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8834 Spacing * 3)); 8835 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8836 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8837 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8838 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8839 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8840 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8841 Spacing)); 8842 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8843 Spacing * 2)); 8844 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8845 Spacing * 3)); 8846 TmpInst.addOperand(Inst.getOperand(1)); // lane 8847 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8848 TmpInst.addOperand(Inst.getOperand(6)); 8849 Inst = TmpInst; 8850 return true; 8851 } 8852 8853 case ARM::VLD1LNdWB_fixed_Asm_8: 8854 case ARM::VLD1LNdWB_fixed_Asm_16: 8855 case ARM::VLD1LNdWB_fixed_Asm_32: { 8856 MCInst TmpInst; 8857 // Shuffle the operands around so the lane index operand is in the 8858 // right place. 8859 unsigned Spacing; 8860 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8861 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8862 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8863 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8864 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8865 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8866 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8867 TmpInst.addOperand(Inst.getOperand(1)); // lane 8868 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8869 TmpInst.addOperand(Inst.getOperand(5)); 8870 Inst = TmpInst; 8871 return true; 8872 } 8873 8874 case ARM::VLD2LNdWB_fixed_Asm_8: 8875 case ARM::VLD2LNdWB_fixed_Asm_16: 8876 case ARM::VLD2LNdWB_fixed_Asm_32: 8877 case ARM::VLD2LNqWB_fixed_Asm_16: 8878 case ARM::VLD2LNqWB_fixed_Asm_32: { 8879 MCInst TmpInst; 8880 // Shuffle the operands around so the lane index operand is in the 8881 // right place. 8882 unsigned Spacing; 8883 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8884 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8885 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8886 Spacing)); 8887 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8888 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8889 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8890 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8891 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8892 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8893 Spacing)); 8894 TmpInst.addOperand(Inst.getOperand(1)); // lane 8895 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8896 TmpInst.addOperand(Inst.getOperand(5)); 8897 Inst = TmpInst; 8898 return true; 8899 } 8900 8901 case ARM::VLD3LNdWB_fixed_Asm_8: 8902 case ARM::VLD3LNdWB_fixed_Asm_16: 8903 case ARM::VLD3LNdWB_fixed_Asm_32: 8904 case ARM::VLD3LNqWB_fixed_Asm_16: 8905 case ARM::VLD3LNqWB_fixed_Asm_32: { 8906 MCInst TmpInst; 8907 // Shuffle the operands around so the lane index operand is in the 8908 // right place. 8909 unsigned Spacing; 8910 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8911 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8912 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8913 Spacing)); 8914 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8915 Spacing * 2)); 8916 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8917 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8918 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8919 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8920 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8921 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8922 Spacing)); 8923 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8924 Spacing * 2)); 8925 TmpInst.addOperand(Inst.getOperand(1)); // lane 8926 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8927 TmpInst.addOperand(Inst.getOperand(5)); 8928 Inst = TmpInst; 8929 return true; 8930 } 8931 8932 case ARM::VLD4LNdWB_fixed_Asm_8: 8933 case ARM::VLD4LNdWB_fixed_Asm_16: 8934 case ARM::VLD4LNdWB_fixed_Asm_32: 8935 case ARM::VLD4LNqWB_fixed_Asm_16: 8936 case ARM::VLD4LNqWB_fixed_Asm_32: { 8937 MCInst TmpInst; 8938 // Shuffle the operands around so the lane index operand is in the 8939 // right place. 8940 unsigned Spacing; 8941 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8942 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8943 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8944 Spacing)); 8945 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8946 Spacing * 2)); 8947 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8948 Spacing * 3)); 8949 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8950 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8951 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8952 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8953 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8954 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8955 Spacing)); 8956 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8957 Spacing * 2)); 8958 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8959 Spacing * 3)); 8960 TmpInst.addOperand(Inst.getOperand(1)); // lane 8961 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8962 TmpInst.addOperand(Inst.getOperand(5)); 8963 Inst = TmpInst; 8964 return true; 8965 } 8966 8967 case ARM::VLD1LNdAsm_8: 8968 case ARM::VLD1LNdAsm_16: 8969 case ARM::VLD1LNdAsm_32: { 8970 MCInst TmpInst; 8971 // Shuffle the operands around so the lane index operand is in the 8972 // right place. 8973 unsigned Spacing; 8974 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8975 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8976 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8977 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8978 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8979 TmpInst.addOperand(Inst.getOperand(1)); // lane 8980 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8981 TmpInst.addOperand(Inst.getOperand(5)); 8982 Inst = TmpInst; 8983 return true; 8984 } 8985 8986 case ARM::VLD2LNdAsm_8: 8987 case ARM::VLD2LNdAsm_16: 8988 case ARM::VLD2LNdAsm_32: 8989 case ARM::VLD2LNqAsm_16: 8990 case ARM::VLD2LNqAsm_32: { 8991 MCInst TmpInst; 8992 // Shuffle the operands around so the lane index operand is in the 8993 // right place. 8994 unsigned Spacing; 8995 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8996 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8997 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8998 Spacing)); 8999 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9000 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9001 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9002 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9003 Spacing)); 9004 TmpInst.addOperand(Inst.getOperand(1)); // lane 9005 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9006 TmpInst.addOperand(Inst.getOperand(5)); 9007 Inst = TmpInst; 9008 return true; 9009 } 9010 9011 case ARM::VLD3LNdAsm_8: 9012 case ARM::VLD3LNdAsm_16: 9013 case ARM::VLD3LNdAsm_32: 9014 case ARM::VLD3LNqAsm_16: 9015 case ARM::VLD3LNqAsm_32: { 9016 MCInst TmpInst; 9017 // Shuffle the operands around so the lane index operand is in the 9018 // right place. 9019 unsigned Spacing; 9020 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9021 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9022 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9023 Spacing)); 9024 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9025 Spacing * 2)); 9026 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9027 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9028 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9029 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9030 Spacing)); 9031 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9032 Spacing * 2)); 9033 TmpInst.addOperand(Inst.getOperand(1)); // lane 9034 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9035 TmpInst.addOperand(Inst.getOperand(5)); 9036 Inst = TmpInst; 9037 return true; 9038 } 9039 9040 case ARM::VLD4LNdAsm_8: 9041 case ARM::VLD4LNdAsm_16: 9042 case ARM::VLD4LNdAsm_32: 9043 case ARM::VLD4LNqAsm_16: 9044 case ARM::VLD4LNqAsm_32: { 9045 MCInst TmpInst; 9046 // Shuffle the operands around so the lane index operand is in the 9047 // right place. 9048 unsigned Spacing; 9049 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9050 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9051 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9052 Spacing)); 9053 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9054 Spacing * 2)); 9055 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9056 Spacing * 3)); 9057 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9058 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9059 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9060 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9061 Spacing)); 9062 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9063 Spacing * 2)); 9064 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9065 Spacing * 3)); 9066 TmpInst.addOperand(Inst.getOperand(1)); // lane 9067 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9068 TmpInst.addOperand(Inst.getOperand(5)); 9069 Inst = TmpInst; 9070 return true; 9071 } 9072 9073 // VLD3DUP single 3-element structure to all lanes instructions. 9074 case ARM::VLD3DUPdAsm_8: 9075 case ARM::VLD3DUPdAsm_16: 9076 case ARM::VLD3DUPdAsm_32: 9077 case ARM::VLD3DUPqAsm_8: 9078 case ARM::VLD3DUPqAsm_16: 9079 case ARM::VLD3DUPqAsm_32: { 9080 MCInst TmpInst; 9081 unsigned Spacing; 9082 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9083 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9084 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9085 Spacing)); 9086 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9087 Spacing * 2)); 9088 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9089 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9090 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9091 TmpInst.addOperand(Inst.getOperand(4)); 9092 Inst = TmpInst; 9093 return true; 9094 } 9095 9096 case ARM::VLD3DUPdWB_fixed_Asm_8: 9097 case ARM::VLD3DUPdWB_fixed_Asm_16: 9098 case ARM::VLD3DUPdWB_fixed_Asm_32: 9099 case ARM::VLD3DUPqWB_fixed_Asm_8: 9100 case ARM::VLD3DUPqWB_fixed_Asm_16: 9101 case ARM::VLD3DUPqWB_fixed_Asm_32: { 9102 MCInst TmpInst; 9103 unsigned Spacing; 9104 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9105 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9106 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9107 Spacing)); 9108 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9109 Spacing * 2)); 9110 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9111 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9112 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9113 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9114 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9115 TmpInst.addOperand(Inst.getOperand(4)); 9116 Inst = TmpInst; 9117 return true; 9118 } 9119 9120 case ARM::VLD3DUPdWB_register_Asm_8: 9121 case ARM::VLD3DUPdWB_register_Asm_16: 9122 case ARM::VLD3DUPdWB_register_Asm_32: 9123 case ARM::VLD3DUPqWB_register_Asm_8: 9124 case ARM::VLD3DUPqWB_register_Asm_16: 9125 case ARM::VLD3DUPqWB_register_Asm_32: { 9126 MCInst TmpInst; 9127 unsigned Spacing; 9128 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9129 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9130 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9131 Spacing)); 9132 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9133 Spacing * 2)); 9134 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9135 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9136 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9137 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9138 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9139 TmpInst.addOperand(Inst.getOperand(5)); 9140 Inst = TmpInst; 9141 return true; 9142 } 9143 9144 // VLD3 multiple 3-element structure instructions. 9145 case ARM::VLD3dAsm_8: 9146 case ARM::VLD3dAsm_16: 9147 case ARM::VLD3dAsm_32: 9148 case ARM::VLD3qAsm_8: 9149 case ARM::VLD3qAsm_16: 9150 case ARM::VLD3qAsm_32: { 9151 MCInst TmpInst; 9152 unsigned Spacing; 9153 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9154 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9155 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9156 Spacing)); 9157 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9158 Spacing * 2)); 9159 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9160 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9161 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9162 TmpInst.addOperand(Inst.getOperand(4)); 9163 Inst = TmpInst; 9164 return true; 9165 } 9166 9167 case ARM::VLD3dWB_fixed_Asm_8: 9168 case ARM::VLD3dWB_fixed_Asm_16: 9169 case ARM::VLD3dWB_fixed_Asm_32: 9170 case ARM::VLD3qWB_fixed_Asm_8: 9171 case ARM::VLD3qWB_fixed_Asm_16: 9172 case ARM::VLD3qWB_fixed_Asm_32: { 9173 MCInst TmpInst; 9174 unsigned Spacing; 9175 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9176 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9177 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9178 Spacing)); 9179 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9180 Spacing * 2)); 9181 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9182 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9183 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9184 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9185 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9186 TmpInst.addOperand(Inst.getOperand(4)); 9187 Inst = TmpInst; 9188 return true; 9189 } 9190 9191 case ARM::VLD3dWB_register_Asm_8: 9192 case ARM::VLD3dWB_register_Asm_16: 9193 case ARM::VLD3dWB_register_Asm_32: 9194 case ARM::VLD3qWB_register_Asm_8: 9195 case ARM::VLD3qWB_register_Asm_16: 9196 case ARM::VLD3qWB_register_Asm_32: { 9197 MCInst TmpInst; 9198 unsigned Spacing; 9199 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9200 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9201 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9202 Spacing)); 9203 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9204 Spacing * 2)); 9205 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9206 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9207 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9208 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9209 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9210 TmpInst.addOperand(Inst.getOperand(5)); 9211 Inst = TmpInst; 9212 return true; 9213 } 9214 9215 // VLD4DUP single 3-element structure to all lanes instructions. 9216 case ARM::VLD4DUPdAsm_8: 9217 case ARM::VLD4DUPdAsm_16: 9218 case ARM::VLD4DUPdAsm_32: 9219 case ARM::VLD4DUPqAsm_8: 9220 case ARM::VLD4DUPqAsm_16: 9221 case ARM::VLD4DUPqAsm_32: { 9222 MCInst TmpInst; 9223 unsigned Spacing; 9224 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9225 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9226 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9227 Spacing)); 9228 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9229 Spacing * 2)); 9230 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9231 Spacing * 3)); 9232 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9233 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9234 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9235 TmpInst.addOperand(Inst.getOperand(4)); 9236 Inst = TmpInst; 9237 return true; 9238 } 9239 9240 case ARM::VLD4DUPdWB_fixed_Asm_8: 9241 case ARM::VLD4DUPdWB_fixed_Asm_16: 9242 case ARM::VLD4DUPdWB_fixed_Asm_32: 9243 case ARM::VLD4DUPqWB_fixed_Asm_8: 9244 case ARM::VLD4DUPqWB_fixed_Asm_16: 9245 case ARM::VLD4DUPqWB_fixed_Asm_32: { 9246 MCInst TmpInst; 9247 unsigned Spacing; 9248 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9249 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9250 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9251 Spacing)); 9252 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9253 Spacing * 2)); 9254 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9255 Spacing * 3)); 9256 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9257 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9258 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9259 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9260 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9261 TmpInst.addOperand(Inst.getOperand(4)); 9262 Inst = TmpInst; 9263 return true; 9264 } 9265 9266 case ARM::VLD4DUPdWB_register_Asm_8: 9267 case ARM::VLD4DUPdWB_register_Asm_16: 9268 case ARM::VLD4DUPdWB_register_Asm_32: 9269 case ARM::VLD4DUPqWB_register_Asm_8: 9270 case ARM::VLD4DUPqWB_register_Asm_16: 9271 case ARM::VLD4DUPqWB_register_Asm_32: { 9272 MCInst TmpInst; 9273 unsigned Spacing; 9274 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9275 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9276 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9277 Spacing)); 9278 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9279 Spacing * 2)); 9280 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9281 Spacing * 3)); 9282 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9283 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9284 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9285 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9286 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9287 TmpInst.addOperand(Inst.getOperand(5)); 9288 Inst = TmpInst; 9289 return true; 9290 } 9291 9292 // VLD4 multiple 4-element structure instructions. 9293 case ARM::VLD4dAsm_8: 9294 case ARM::VLD4dAsm_16: 9295 case ARM::VLD4dAsm_32: 9296 case ARM::VLD4qAsm_8: 9297 case ARM::VLD4qAsm_16: 9298 case ARM::VLD4qAsm_32: { 9299 MCInst TmpInst; 9300 unsigned Spacing; 9301 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9302 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9303 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9304 Spacing)); 9305 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9306 Spacing * 2)); 9307 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9308 Spacing * 3)); 9309 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9310 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9311 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9312 TmpInst.addOperand(Inst.getOperand(4)); 9313 Inst = TmpInst; 9314 return true; 9315 } 9316 9317 case ARM::VLD4dWB_fixed_Asm_8: 9318 case ARM::VLD4dWB_fixed_Asm_16: 9319 case ARM::VLD4dWB_fixed_Asm_32: 9320 case ARM::VLD4qWB_fixed_Asm_8: 9321 case ARM::VLD4qWB_fixed_Asm_16: 9322 case ARM::VLD4qWB_fixed_Asm_32: { 9323 MCInst TmpInst; 9324 unsigned Spacing; 9325 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9326 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9327 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9328 Spacing)); 9329 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9330 Spacing * 2)); 9331 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9332 Spacing * 3)); 9333 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9334 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9335 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9336 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9337 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9338 TmpInst.addOperand(Inst.getOperand(4)); 9339 Inst = TmpInst; 9340 return true; 9341 } 9342 9343 case ARM::VLD4dWB_register_Asm_8: 9344 case ARM::VLD4dWB_register_Asm_16: 9345 case ARM::VLD4dWB_register_Asm_32: 9346 case ARM::VLD4qWB_register_Asm_8: 9347 case ARM::VLD4qWB_register_Asm_16: 9348 case ARM::VLD4qWB_register_Asm_32: { 9349 MCInst TmpInst; 9350 unsigned Spacing; 9351 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9352 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9353 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9354 Spacing)); 9355 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9356 Spacing * 2)); 9357 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9358 Spacing * 3)); 9359 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9360 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9361 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9362 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9363 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9364 TmpInst.addOperand(Inst.getOperand(5)); 9365 Inst = TmpInst; 9366 return true; 9367 } 9368 9369 // VST3 multiple 3-element structure instructions. 9370 case ARM::VST3dAsm_8: 9371 case ARM::VST3dAsm_16: 9372 case ARM::VST3dAsm_32: 9373 case ARM::VST3qAsm_8: 9374 case ARM::VST3qAsm_16: 9375 case ARM::VST3qAsm_32: { 9376 MCInst TmpInst; 9377 unsigned Spacing; 9378 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9379 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9380 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9381 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9382 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9383 Spacing)); 9384 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9385 Spacing * 2)); 9386 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9387 TmpInst.addOperand(Inst.getOperand(4)); 9388 Inst = TmpInst; 9389 return true; 9390 } 9391 9392 case ARM::VST3dWB_fixed_Asm_8: 9393 case ARM::VST3dWB_fixed_Asm_16: 9394 case ARM::VST3dWB_fixed_Asm_32: 9395 case ARM::VST3qWB_fixed_Asm_8: 9396 case ARM::VST3qWB_fixed_Asm_16: 9397 case ARM::VST3qWB_fixed_Asm_32: { 9398 MCInst TmpInst; 9399 unsigned Spacing; 9400 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9401 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9402 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9403 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9404 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9405 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9406 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9407 Spacing)); 9408 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9409 Spacing * 2)); 9410 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9411 TmpInst.addOperand(Inst.getOperand(4)); 9412 Inst = TmpInst; 9413 return true; 9414 } 9415 9416 case ARM::VST3dWB_register_Asm_8: 9417 case ARM::VST3dWB_register_Asm_16: 9418 case ARM::VST3dWB_register_Asm_32: 9419 case ARM::VST3qWB_register_Asm_8: 9420 case ARM::VST3qWB_register_Asm_16: 9421 case ARM::VST3qWB_register_Asm_32: { 9422 MCInst TmpInst; 9423 unsigned Spacing; 9424 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9425 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9426 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9427 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9428 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9429 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9430 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9431 Spacing)); 9432 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9433 Spacing * 2)); 9434 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9435 TmpInst.addOperand(Inst.getOperand(5)); 9436 Inst = TmpInst; 9437 return true; 9438 } 9439 9440 // VST4 multiple 3-element structure instructions. 9441 case ARM::VST4dAsm_8: 9442 case ARM::VST4dAsm_16: 9443 case ARM::VST4dAsm_32: 9444 case ARM::VST4qAsm_8: 9445 case ARM::VST4qAsm_16: 9446 case ARM::VST4qAsm_32: { 9447 MCInst TmpInst; 9448 unsigned Spacing; 9449 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9450 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9451 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9452 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9453 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9454 Spacing)); 9455 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9456 Spacing * 2)); 9457 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9458 Spacing * 3)); 9459 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9460 TmpInst.addOperand(Inst.getOperand(4)); 9461 Inst = TmpInst; 9462 return true; 9463 } 9464 9465 case ARM::VST4dWB_fixed_Asm_8: 9466 case ARM::VST4dWB_fixed_Asm_16: 9467 case ARM::VST4dWB_fixed_Asm_32: 9468 case ARM::VST4qWB_fixed_Asm_8: 9469 case ARM::VST4qWB_fixed_Asm_16: 9470 case ARM::VST4qWB_fixed_Asm_32: { 9471 MCInst TmpInst; 9472 unsigned Spacing; 9473 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9474 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9475 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9476 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9477 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9478 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9479 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9480 Spacing)); 9481 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9482 Spacing * 2)); 9483 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9484 Spacing * 3)); 9485 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9486 TmpInst.addOperand(Inst.getOperand(4)); 9487 Inst = TmpInst; 9488 return true; 9489 } 9490 9491 case ARM::VST4dWB_register_Asm_8: 9492 case ARM::VST4dWB_register_Asm_16: 9493 case ARM::VST4dWB_register_Asm_32: 9494 case ARM::VST4qWB_register_Asm_8: 9495 case ARM::VST4qWB_register_Asm_16: 9496 case ARM::VST4qWB_register_Asm_32: { 9497 MCInst TmpInst; 9498 unsigned Spacing; 9499 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9500 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9501 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9502 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9503 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9504 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9505 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9506 Spacing)); 9507 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9508 Spacing * 2)); 9509 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9510 Spacing * 3)); 9511 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9512 TmpInst.addOperand(Inst.getOperand(5)); 9513 Inst = TmpInst; 9514 return true; 9515 } 9516 9517 // Handle encoding choice for the shift-immediate instructions. 9518 case ARM::t2LSLri: 9519 case ARM::t2LSRri: 9520 case ARM::t2ASRri: 9521 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9522 isARMLowRegister(Inst.getOperand(1).getReg()) && 9523 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9524 !HasWideQualifier) { 9525 unsigned NewOpc; 9526 switch (Inst.getOpcode()) { 9527 default: llvm_unreachable("unexpected opcode"); 9528 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 9529 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 9530 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 9531 } 9532 // The Thumb1 operands aren't in the same order. Awesome, eh? 9533 MCInst TmpInst; 9534 TmpInst.setOpcode(NewOpc); 9535 TmpInst.addOperand(Inst.getOperand(0)); 9536 TmpInst.addOperand(Inst.getOperand(5)); 9537 TmpInst.addOperand(Inst.getOperand(1)); 9538 TmpInst.addOperand(Inst.getOperand(2)); 9539 TmpInst.addOperand(Inst.getOperand(3)); 9540 TmpInst.addOperand(Inst.getOperand(4)); 9541 Inst = TmpInst; 9542 return true; 9543 } 9544 return false; 9545 9546 // Handle the Thumb2 mode MOV complex aliases. 9547 case ARM::t2MOVsr: 9548 case ARM::t2MOVSsr: { 9549 // Which instruction to expand to depends on the CCOut operand and 9550 // whether we're in an IT block if the register operands are low 9551 // registers. 9552 bool isNarrow = false; 9553 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9554 isARMLowRegister(Inst.getOperand(1).getReg()) && 9555 isARMLowRegister(Inst.getOperand(2).getReg()) && 9556 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 9557 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 9558 !HasWideQualifier) 9559 isNarrow = true; 9560 MCInst TmpInst; 9561 unsigned newOpc; 9562 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 9563 default: llvm_unreachable("unexpected opcode!"); 9564 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 9565 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 9566 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 9567 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 9568 } 9569 TmpInst.setOpcode(newOpc); 9570 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9571 if (isNarrow) 9572 TmpInst.addOperand(MCOperand::createReg( 9573 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 9574 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9575 TmpInst.addOperand(Inst.getOperand(2)); // Rm 9576 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9577 TmpInst.addOperand(Inst.getOperand(5)); 9578 if (!isNarrow) 9579 TmpInst.addOperand(MCOperand::createReg( 9580 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 9581 Inst = TmpInst; 9582 return true; 9583 } 9584 case ARM::t2MOVsi: 9585 case ARM::t2MOVSsi: { 9586 // Which instruction to expand to depends on the CCOut operand and 9587 // whether we're in an IT block if the register operands are low 9588 // registers. 9589 bool isNarrow = false; 9590 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9591 isARMLowRegister(Inst.getOperand(1).getReg()) && 9592 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 9593 !HasWideQualifier) 9594 isNarrow = true; 9595 MCInst TmpInst; 9596 unsigned newOpc; 9597 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 9598 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 9599 bool isMov = false; 9600 // MOV rd, rm, LSL #0 is actually a MOV instruction 9601 if (Shift == ARM_AM::lsl && Amount == 0) { 9602 isMov = true; 9603 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 9604 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 9605 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 9606 // instead. 9607 if (inITBlock()) { 9608 isNarrow = false; 9609 } 9610 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 9611 } else { 9612 switch(Shift) { 9613 default: llvm_unreachable("unexpected opcode!"); 9614 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 9615 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 9616 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 9617 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 9618 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 9619 } 9620 } 9621 if (Amount == 32) Amount = 0; 9622 TmpInst.setOpcode(newOpc); 9623 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9624 if (isNarrow && !isMov) 9625 TmpInst.addOperand(MCOperand::createReg( 9626 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 9627 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9628 if (newOpc != ARM::t2RRX && !isMov) 9629 TmpInst.addOperand(MCOperand::createImm(Amount)); 9630 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9631 TmpInst.addOperand(Inst.getOperand(4)); 9632 if (!isNarrow) 9633 TmpInst.addOperand(MCOperand::createReg( 9634 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 9635 Inst = TmpInst; 9636 return true; 9637 } 9638 // Handle the ARM mode MOV complex aliases. 9639 case ARM::ASRr: 9640 case ARM::LSRr: 9641 case ARM::LSLr: 9642 case ARM::RORr: { 9643 ARM_AM::ShiftOpc ShiftTy; 9644 switch(Inst.getOpcode()) { 9645 default: llvm_unreachable("unexpected opcode!"); 9646 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 9647 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 9648 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 9649 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 9650 } 9651 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 9652 MCInst TmpInst; 9653 TmpInst.setOpcode(ARM::MOVsr); 9654 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9655 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9656 TmpInst.addOperand(Inst.getOperand(2)); // Rm 9657 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9658 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9659 TmpInst.addOperand(Inst.getOperand(4)); 9660 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 9661 Inst = TmpInst; 9662 return true; 9663 } 9664 case ARM::ASRi: 9665 case ARM::LSRi: 9666 case ARM::LSLi: 9667 case ARM::RORi: { 9668 ARM_AM::ShiftOpc ShiftTy; 9669 switch(Inst.getOpcode()) { 9670 default: llvm_unreachable("unexpected opcode!"); 9671 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 9672 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 9673 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 9674 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 9675 } 9676 // A shift by zero is a plain MOVr, not a MOVsi. 9677 unsigned Amt = Inst.getOperand(2).getImm(); 9678 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 9679 // A shift by 32 should be encoded as 0 when permitted 9680 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 9681 Amt = 0; 9682 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 9683 MCInst TmpInst; 9684 TmpInst.setOpcode(Opc); 9685 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9686 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9687 if (Opc == ARM::MOVsi) 9688 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9689 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9690 TmpInst.addOperand(Inst.getOperand(4)); 9691 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 9692 Inst = TmpInst; 9693 return true; 9694 } 9695 case ARM::RRXi: { 9696 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 9697 MCInst TmpInst; 9698 TmpInst.setOpcode(ARM::MOVsi); 9699 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9700 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9701 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9702 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9703 TmpInst.addOperand(Inst.getOperand(3)); 9704 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 9705 Inst = TmpInst; 9706 return true; 9707 } 9708 case ARM::t2LDMIA_UPD: { 9709 // If this is a load of a single register, then we should use 9710 // a post-indexed LDR instruction instead, per the ARM ARM. 9711 if (Inst.getNumOperands() != 5) 9712 return false; 9713 MCInst TmpInst; 9714 TmpInst.setOpcode(ARM::t2LDR_POST); 9715 TmpInst.addOperand(Inst.getOperand(4)); // Rt 9716 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 9717 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9718 TmpInst.addOperand(MCOperand::createImm(4)); 9719 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9720 TmpInst.addOperand(Inst.getOperand(3)); 9721 Inst = TmpInst; 9722 return true; 9723 } 9724 case ARM::t2STMDB_UPD: { 9725 // If this is a store of a single register, then we should use 9726 // a pre-indexed STR instruction instead, per the ARM ARM. 9727 if (Inst.getNumOperands() != 5) 9728 return false; 9729 MCInst TmpInst; 9730 TmpInst.setOpcode(ARM::t2STR_PRE); 9731 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 9732 TmpInst.addOperand(Inst.getOperand(4)); // Rt 9733 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9734 TmpInst.addOperand(MCOperand::createImm(-4)); 9735 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9736 TmpInst.addOperand(Inst.getOperand(3)); 9737 Inst = TmpInst; 9738 return true; 9739 } 9740 case ARM::LDMIA_UPD: 9741 // If this is a load of a single register via a 'pop', then we should use 9742 // a post-indexed LDR instruction instead, per the ARM ARM. 9743 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 9744 Inst.getNumOperands() == 5) { 9745 MCInst TmpInst; 9746 TmpInst.setOpcode(ARM::LDR_POST_IMM); 9747 TmpInst.addOperand(Inst.getOperand(4)); // Rt 9748 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 9749 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9750 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 9751 TmpInst.addOperand(MCOperand::createImm(4)); 9752 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9753 TmpInst.addOperand(Inst.getOperand(3)); 9754 Inst = TmpInst; 9755 return true; 9756 } 9757 break; 9758 case ARM::STMDB_UPD: 9759 // If this is a store of a single register via a 'push', then we should use 9760 // a pre-indexed STR instruction instead, per the ARM ARM. 9761 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 9762 Inst.getNumOperands() == 5) { 9763 MCInst TmpInst; 9764 TmpInst.setOpcode(ARM::STR_PRE_IMM); 9765 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 9766 TmpInst.addOperand(Inst.getOperand(4)); // Rt 9767 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 9768 TmpInst.addOperand(MCOperand::createImm(-4)); 9769 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9770 TmpInst.addOperand(Inst.getOperand(3)); 9771 Inst = TmpInst; 9772 } 9773 break; 9774 case ARM::t2ADDri12: 9775 case ARM::t2SUBri12: 9776 case ARM::t2ADDspImm12: 9777 case ARM::t2SUBspImm12: { 9778 // If the immediate fits for encoding T3 and the generic 9779 // mnemonic was used, encoding T3 is preferred. 9780 const StringRef Token = static_cast<ARMOperand &>(*Operands[0]).getToken(); 9781 if ((Token != "add" && Token != "sub") || 9782 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 9783 break; 9784 switch (Inst.getOpcode()) { 9785 case ARM::t2ADDri12: 9786 Inst.setOpcode(ARM::t2ADDri); 9787 break; 9788 case ARM::t2SUBri12: 9789 Inst.setOpcode(ARM::t2SUBri); 9790 break; 9791 case ARM::t2ADDspImm12: 9792 Inst.setOpcode(ARM::t2ADDspImm); 9793 break; 9794 case ARM::t2SUBspImm12: 9795 Inst.setOpcode(ARM::t2SUBspImm); 9796 break; 9797 } 9798 9799 Inst.addOperand(MCOperand::createReg(0)); // cc_out 9800 return true; 9801 } 9802 case ARM::tADDi8: 9803 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 9804 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 9805 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 9806 // to encoding T1 if <Rd> is omitted." 9807 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 9808 Inst.setOpcode(ARM::tADDi3); 9809 return true; 9810 } 9811 break; 9812 case ARM::tSUBi8: 9813 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 9814 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 9815 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 9816 // to encoding T1 if <Rd> is omitted." 9817 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 9818 Inst.setOpcode(ARM::tSUBi3); 9819 return true; 9820 } 9821 break; 9822 case ARM::t2ADDri: 9823 case ARM::t2SUBri: { 9824 // If the destination and first source operand are the same, and 9825 // the flags are compatible with the current IT status, use encoding T2 9826 // instead of T3. For compatibility with the system 'as'. Make sure the 9827 // wide encoding wasn't explicit. 9828 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 9829 !isARMLowRegister(Inst.getOperand(0).getReg()) || 9830 (Inst.getOperand(2).isImm() && 9831 (unsigned)Inst.getOperand(2).getImm() > 255) || 9832 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 9833 HasWideQualifier) 9834 break; 9835 MCInst TmpInst; 9836 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 9837 ARM::tADDi8 : ARM::tSUBi8); 9838 TmpInst.addOperand(Inst.getOperand(0)); 9839 TmpInst.addOperand(Inst.getOperand(5)); 9840 TmpInst.addOperand(Inst.getOperand(0)); 9841 TmpInst.addOperand(Inst.getOperand(2)); 9842 TmpInst.addOperand(Inst.getOperand(3)); 9843 TmpInst.addOperand(Inst.getOperand(4)); 9844 Inst = TmpInst; 9845 return true; 9846 } 9847 case ARM::t2ADDspImm: 9848 case ARM::t2SUBspImm: { 9849 // Prefer T1 encoding if possible 9850 if (Inst.getOperand(5).getReg() != 0 || HasWideQualifier) 9851 break; 9852 unsigned V = Inst.getOperand(2).getImm(); 9853 if (V & 3 || V > ((1 << 7) - 1) << 2) 9854 break; 9855 MCInst TmpInst; 9856 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDspImm ? ARM::tADDspi 9857 : ARM::tSUBspi); 9858 TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // destination reg 9859 TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // source reg 9860 TmpInst.addOperand(MCOperand::createImm(V / 4)); // immediate 9861 TmpInst.addOperand(Inst.getOperand(3)); // pred 9862 TmpInst.addOperand(Inst.getOperand(4)); 9863 Inst = TmpInst; 9864 return true; 9865 } 9866 case ARM::t2ADDrr: { 9867 // If the destination and first source operand are the same, and 9868 // there's no setting of the flags, use encoding T2 instead of T3. 9869 // Note that this is only for ADD, not SUB. This mirrors the system 9870 // 'as' behaviour. Also take advantage of ADD being commutative. 9871 // Make sure the wide encoding wasn't explicit. 9872 bool Swap = false; 9873 auto DestReg = Inst.getOperand(0).getReg(); 9874 bool Transform = DestReg == Inst.getOperand(1).getReg(); 9875 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 9876 Transform = true; 9877 Swap = true; 9878 } 9879 if (!Transform || 9880 Inst.getOperand(5).getReg() != 0 || 9881 HasWideQualifier) 9882 break; 9883 MCInst TmpInst; 9884 TmpInst.setOpcode(ARM::tADDhirr); 9885 TmpInst.addOperand(Inst.getOperand(0)); 9886 TmpInst.addOperand(Inst.getOperand(0)); 9887 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 9888 TmpInst.addOperand(Inst.getOperand(3)); 9889 TmpInst.addOperand(Inst.getOperand(4)); 9890 Inst = TmpInst; 9891 return true; 9892 } 9893 case ARM::tADDrSP: 9894 // If the non-SP source operand and the destination operand are not the 9895 // same, we need to use the 32-bit encoding if it's available. 9896 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 9897 Inst.setOpcode(ARM::t2ADDrr); 9898 Inst.addOperand(MCOperand::createReg(0)); // cc_out 9899 return true; 9900 } 9901 break; 9902 case ARM::tB: 9903 // A Thumb conditional branch outside of an IT block is a tBcc. 9904 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 9905 Inst.setOpcode(ARM::tBcc); 9906 return true; 9907 } 9908 break; 9909 case ARM::t2B: 9910 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 9911 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 9912 Inst.setOpcode(ARM::t2Bcc); 9913 return true; 9914 } 9915 break; 9916 case ARM::t2Bcc: 9917 // If the conditional is AL or we're in an IT block, we really want t2B. 9918 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 9919 Inst.setOpcode(ARM::t2B); 9920 return true; 9921 } 9922 break; 9923 case ARM::tBcc: 9924 // If the conditional is AL, we really want tB. 9925 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 9926 Inst.setOpcode(ARM::tB); 9927 return true; 9928 } 9929 break; 9930 case ARM::tLDMIA: { 9931 // If the register list contains any high registers, or if the writeback 9932 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 9933 // instead if we're in Thumb2. Otherwise, this should have generated 9934 // an error in validateInstruction(). 9935 unsigned Rn = Inst.getOperand(0).getReg(); 9936 bool hasWritebackToken = 9937 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 9938 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 9939 bool listContainsBase; 9940 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 9941 (!listContainsBase && !hasWritebackToken) || 9942 (listContainsBase && hasWritebackToken)) { 9943 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 9944 assert(isThumbTwo()); 9945 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 9946 // If we're switching to the updating version, we need to insert 9947 // the writeback tied operand. 9948 if (hasWritebackToken) 9949 Inst.insert(Inst.begin(), 9950 MCOperand::createReg(Inst.getOperand(0).getReg())); 9951 return true; 9952 } 9953 break; 9954 } 9955 case ARM::tSTMIA_UPD: { 9956 // If the register list contains any high registers, we need to use 9957 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 9958 // should have generated an error in validateInstruction(). 9959 unsigned Rn = Inst.getOperand(0).getReg(); 9960 bool listContainsBase; 9961 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 9962 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 9963 assert(isThumbTwo()); 9964 Inst.setOpcode(ARM::t2STMIA_UPD); 9965 return true; 9966 } 9967 break; 9968 } 9969 case ARM::tPOP: { 9970 bool listContainsBase; 9971 // If the register list contains any high registers, we need to use 9972 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 9973 // should have generated an error in validateInstruction(). 9974 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 9975 return false; 9976 assert(isThumbTwo()); 9977 Inst.setOpcode(ARM::t2LDMIA_UPD); 9978 // Add the base register and writeback operands. 9979 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 9980 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 9981 return true; 9982 } 9983 case ARM::tPUSH: { 9984 bool listContainsBase; 9985 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 9986 return false; 9987 assert(isThumbTwo()); 9988 Inst.setOpcode(ARM::t2STMDB_UPD); 9989 // Add the base register and writeback operands. 9990 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 9991 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 9992 return true; 9993 } 9994 case ARM::t2MOVi: 9995 // If we can use the 16-bit encoding and the user didn't explicitly 9996 // request the 32-bit variant, transform it here. 9997 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9998 (Inst.getOperand(1).isImm() && 9999 (unsigned)Inst.getOperand(1).getImm() <= 255) && 10000 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10001 !HasWideQualifier) { 10002 // The operands aren't in the same order for tMOVi8... 10003 MCInst TmpInst; 10004 TmpInst.setOpcode(ARM::tMOVi8); 10005 TmpInst.addOperand(Inst.getOperand(0)); 10006 TmpInst.addOperand(Inst.getOperand(4)); 10007 TmpInst.addOperand(Inst.getOperand(1)); 10008 TmpInst.addOperand(Inst.getOperand(2)); 10009 TmpInst.addOperand(Inst.getOperand(3)); 10010 Inst = TmpInst; 10011 return true; 10012 } 10013 break; 10014 10015 case ARM::t2MOVr: 10016 // If we can use the 16-bit encoding and the user didn't explicitly 10017 // request the 32-bit variant, transform it here. 10018 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10019 isARMLowRegister(Inst.getOperand(1).getReg()) && 10020 Inst.getOperand(2).getImm() == ARMCC::AL && 10021 Inst.getOperand(4).getReg() == ARM::CPSR && 10022 !HasWideQualifier) { 10023 // The operands aren't the same for tMOV[S]r... (no cc_out) 10024 MCInst TmpInst; 10025 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 10026 TmpInst.addOperand(Inst.getOperand(0)); 10027 TmpInst.addOperand(Inst.getOperand(1)); 10028 TmpInst.addOperand(Inst.getOperand(2)); 10029 TmpInst.addOperand(Inst.getOperand(3)); 10030 Inst = TmpInst; 10031 return true; 10032 } 10033 break; 10034 10035 case ARM::t2SXTH: 10036 case ARM::t2SXTB: 10037 case ARM::t2UXTH: 10038 case ARM::t2UXTB: 10039 // If we can use the 16-bit encoding and the user didn't explicitly 10040 // request the 32-bit variant, transform it here. 10041 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10042 isARMLowRegister(Inst.getOperand(1).getReg()) && 10043 Inst.getOperand(2).getImm() == 0 && 10044 !HasWideQualifier) { 10045 unsigned NewOpc; 10046 switch (Inst.getOpcode()) { 10047 default: llvm_unreachable("Illegal opcode!"); 10048 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 10049 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 10050 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 10051 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 10052 } 10053 // The operands aren't the same for thumb1 (no rotate operand). 10054 MCInst TmpInst; 10055 TmpInst.setOpcode(NewOpc); 10056 TmpInst.addOperand(Inst.getOperand(0)); 10057 TmpInst.addOperand(Inst.getOperand(1)); 10058 TmpInst.addOperand(Inst.getOperand(3)); 10059 TmpInst.addOperand(Inst.getOperand(4)); 10060 Inst = TmpInst; 10061 return true; 10062 } 10063 break; 10064 10065 case ARM::MOVsi: { 10066 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 10067 // rrx shifts and asr/lsr of #32 is encoded as 0 10068 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 10069 return false; 10070 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 10071 // Shifting by zero is accepted as a vanilla 'MOVr' 10072 MCInst TmpInst; 10073 TmpInst.setOpcode(ARM::MOVr); 10074 TmpInst.addOperand(Inst.getOperand(0)); 10075 TmpInst.addOperand(Inst.getOperand(1)); 10076 TmpInst.addOperand(Inst.getOperand(3)); 10077 TmpInst.addOperand(Inst.getOperand(4)); 10078 TmpInst.addOperand(Inst.getOperand(5)); 10079 Inst = TmpInst; 10080 return true; 10081 } 10082 return false; 10083 } 10084 case ARM::ANDrsi: 10085 case ARM::ORRrsi: 10086 case ARM::EORrsi: 10087 case ARM::BICrsi: 10088 case ARM::SUBrsi: 10089 case ARM::ADDrsi: { 10090 unsigned newOpc; 10091 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 10092 if (SOpc == ARM_AM::rrx) return false; 10093 switch (Inst.getOpcode()) { 10094 default: llvm_unreachable("unexpected opcode!"); 10095 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 10096 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 10097 case ARM::EORrsi: newOpc = ARM::EORrr; break; 10098 case ARM::BICrsi: newOpc = ARM::BICrr; break; 10099 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 10100 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 10101 } 10102 // If the shift is by zero, use the non-shifted instruction definition. 10103 // The exception is for right shifts, where 0 == 32 10104 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 10105 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 10106 MCInst TmpInst; 10107 TmpInst.setOpcode(newOpc); 10108 TmpInst.addOperand(Inst.getOperand(0)); 10109 TmpInst.addOperand(Inst.getOperand(1)); 10110 TmpInst.addOperand(Inst.getOperand(2)); 10111 TmpInst.addOperand(Inst.getOperand(4)); 10112 TmpInst.addOperand(Inst.getOperand(5)); 10113 TmpInst.addOperand(Inst.getOperand(6)); 10114 Inst = TmpInst; 10115 return true; 10116 } 10117 return false; 10118 } 10119 case ARM::ITasm: 10120 case ARM::t2IT: { 10121 // Set up the IT block state according to the IT instruction we just 10122 // matched. 10123 assert(!inITBlock() && "nested IT blocks?!"); 10124 startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()), 10125 Inst.getOperand(1).getImm()); 10126 break; 10127 } 10128 case ARM::t2LSLrr: 10129 case ARM::t2LSRrr: 10130 case ARM::t2ASRrr: 10131 case ARM::t2SBCrr: 10132 case ARM::t2RORrr: 10133 case ARM::t2BICrr: 10134 // Assemblers should use the narrow encodings of these instructions when permissible. 10135 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10136 isARMLowRegister(Inst.getOperand(2).getReg())) && 10137 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 10138 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10139 !HasWideQualifier) { 10140 unsigned NewOpc; 10141 switch (Inst.getOpcode()) { 10142 default: llvm_unreachable("unexpected opcode"); 10143 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 10144 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 10145 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 10146 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 10147 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 10148 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 10149 } 10150 MCInst TmpInst; 10151 TmpInst.setOpcode(NewOpc); 10152 TmpInst.addOperand(Inst.getOperand(0)); 10153 TmpInst.addOperand(Inst.getOperand(5)); 10154 TmpInst.addOperand(Inst.getOperand(1)); 10155 TmpInst.addOperand(Inst.getOperand(2)); 10156 TmpInst.addOperand(Inst.getOperand(3)); 10157 TmpInst.addOperand(Inst.getOperand(4)); 10158 Inst = TmpInst; 10159 return true; 10160 } 10161 return false; 10162 10163 case ARM::t2ANDrr: 10164 case ARM::t2EORrr: 10165 case ARM::t2ADCrr: 10166 case ARM::t2ORRrr: 10167 // Assemblers should use the narrow encodings of these instructions when permissible. 10168 // These instructions are special in that they are commutable, so shorter encodings 10169 // are available more often. 10170 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10171 isARMLowRegister(Inst.getOperand(2).getReg())) && 10172 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 10173 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 10174 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10175 !HasWideQualifier) { 10176 unsigned NewOpc; 10177 switch (Inst.getOpcode()) { 10178 default: llvm_unreachable("unexpected opcode"); 10179 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 10180 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 10181 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 10182 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 10183 } 10184 MCInst TmpInst; 10185 TmpInst.setOpcode(NewOpc); 10186 TmpInst.addOperand(Inst.getOperand(0)); 10187 TmpInst.addOperand(Inst.getOperand(5)); 10188 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 10189 TmpInst.addOperand(Inst.getOperand(1)); 10190 TmpInst.addOperand(Inst.getOperand(2)); 10191 } else { 10192 TmpInst.addOperand(Inst.getOperand(2)); 10193 TmpInst.addOperand(Inst.getOperand(1)); 10194 } 10195 TmpInst.addOperand(Inst.getOperand(3)); 10196 TmpInst.addOperand(Inst.getOperand(4)); 10197 Inst = TmpInst; 10198 return true; 10199 } 10200 return false; 10201 case ARM::MVE_VPST: 10202 case ARM::MVE_VPTv16i8: 10203 case ARM::MVE_VPTv8i16: 10204 case ARM::MVE_VPTv4i32: 10205 case ARM::MVE_VPTv16u8: 10206 case ARM::MVE_VPTv8u16: 10207 case ARM::MVE_VPTv4u32: 10208 case ARM::MVE_VPTv16s8: 10209 case ARM::MVE_VPTv8s16: 10210 case ARM::MVE_VPTv4s32: 10211 case ARM::MVE_VPTv4f32: 10212 case ARM::MVE_VPTv8f16: 10213 case ARM::MVE_VPTv16i8r: 10214 case ARM::MVE_VPTv8i16r: 10215 case ARM::MVE_VPTv4i32r: 10216 case ARM::MVE_VPTv16u8r: 10217 case ARM::MVE_VPTv8u16r: 10218 case ARM::MVE_VPTv4u32r: 10219 case ARM::MVE_VPTv16s8r: 10220 case ARM::MVE_VPTv8s16r: 10221 case ARM::MVE_VPTv4s32r: 10222 case ARM::MVE_VPTv4f32r: 10223 case ARM::MVE_VPTv8f16r: { 10224 assert(!inVPTBlock() && "Nested VPT blocks are not allowed"); 10225 MCOperand &MO = Inst.getOperand(0); 10226 VPTState.Mask = MO.getImm(); 10227 VPTState.CurPosition = 0; 10228 break; 10229 } 10230 } 10231 return false; 10232 } 10233 10234 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 10235 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 10236 // suffix depending on whether they're in an IT block or not. 10237 unsigned Opc = Inst.getOpcode(); 10238 const MCInstrDesc &MCID = MII.get(Opc); 10239 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 10240 assert(MCID.hasOptionalDef() && 10241 "optionally flag setting instruction missing optional def operand"); 10242 assert(MCID.NumOperands == Inst.getNumOperands() && 10243 "operand count mismatch!"); 10244 // Find the optional-def operand (cc_out). 10245 unsigned OpNo; 10246 for (OpNo = 0; 10247 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 10248 ++OpNo) 10249 ; 10250 // If we're parsing Thumb1, reject it completely. 10251 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 10252 return Match_RequiresFlagSetting; 10253 // If we're parsing Thumb2, which form is legal depends on whether we're 10254 // in an IT block. 10255 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 10256 !inITBlock()) 10257 return Match_RequiresITBlock; 10258 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 10259 inITBlock()) 10260 return Match_RequiresNotITBlock; 10261 // LSL with zero immediate is not allowed in an IT block 10262 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 10263 return Match_RequiresNotITBlock; 10264 } else if (isThumbOne()) { 10265 // Some high-register supporting Thumb1 encodings only allow both registers 10266 // to be from r0-r7 when in Thumb2. 10267 if (Opc == ARM::tADDhirr && !hasV6MOps() && 10268 isARMLowRegister(Inst.getOperand(1).getReg()) && 10269 isARMLowRegister(Inst.getOperand(2).getReg())) 10270 return Match_RequiresThumb2; 10271 // Others only require ARMv6 or later. 10272 else if (Opc == ARM::tMOVr && !hasV6Ops() && 10273 isARMLowRegister(Inst.getOperand(0).getReg()) && 10274 isARMLowRegister(Inst.getOperand(1).getReg())) 10275 return Match_RequiresV6; 10276 } 10277 10278 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 10279 // than the loop below can handle, so it uses the GPRnopc register class and 10280 // we do SP handling here. 10281 if (Opc == ARM::t2MOVr && !hasV8Ops()) 10282 { 10283 // SP as both source and destination is not allowed 10284 if (Inst.getOperand(0).getReg() == ARM::SP && 10285 Inst.getOperand(1).getReg() == ARM::SP) 10286 return Match_RequiresV8; 10287 // When flags-setting SP as either source or destination is not allowed 10288 if (Inst.getOperand(4).getReg() == ARM::CPSR && 10289 (Inst.getOperand(0).getReg() == ARM::SP || 10290 Inst.getOperand(1).getReg() == ARM::SP)) 10291 return Match_RequiresV8; 10292 } 10293 10294 switch (Inst.getOpcode()) { 10295 case ARM::VMRS: 10296 case ARM::VMSR: 10297 case ARM::VMRS_FPCXTS: 10298 case ARM::VMRS_FPCXTNS: 10299 case ARM::VMSR_FPCXTS: 10300 case ARM::VMSR_FPCXTNS: 10301 case ARM::VMRS_FPSCR_NZCVQC: 10302 case ARM::VMSR_FPSCR_NZCVQC: 10303 case ARM::FMSTAT: 10304 case ARM::VMRS_VPR: 10305 case ARM::VMRS_P0: 10306 case ARM::VMSR_VPR: 10307 case ARM::VMSR_P0: 10308 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of 10309 // ARMv8-A. 10310 if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP && 10311 (isThumb() && !hasV8Ops())) 10312 return Match_InvalidOperand; 10313 break; 10314 default: 10315 break; 10316 } 10317 10318 for (unsigned I = 0; I < MCID.NumOperands; ++I) 10319 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 10320 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 10321 const auto &Op = Inst.getOperand(I); 10322 if (!Op.isReg()) { 10323 // This can happen in awkward cases with tied operands, e.g. a 10324 // writeback load/store with a complex addressing mode in 10325 // which there's an output operand corresponding to the 10326 // updated written-back base register: the Tablegen-generated 10327 // AsmMatcher will have written a placeholder operand to that 10328 // slot in the form of an immediate 0, because it can't 10329 // generate the register part of the complex addressing-mode 10330 // operand ahead of time. 10331 continue; 10332 } 10333 10334 unsigned Reg = Op.getReg(); 10335 if ((Reg == ARM::SP) && !hasV8Ops()) 10336 return Match_RequiresV8; 10337 else if (Reg == ARM::PC) 10338 return Match_InvalidOperand; 10339 } 10340 10341 return Match_Success; 10342 } 10343 10344 namespace llvm { 10345 10346 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 10347 return true; // In an assembly source, no need to second-guess 10348 } 10349 10350 } // end namespace llvm 10351 10352 // Returns true if Inst is unpredictable if it is in and IT block, but is not 10353 // the last instruction in the block. 10354 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 10355 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10356 10357 // All branch & call instructions terminate IT blocks with the exception of 10358 // SVC. 10359 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || 10360 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) 10361 return true; 10362 10363 // Any arithmetic instruction which writes to the PC also terminates the IT 10364 // block. 10365 if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI)) 10366 return true; 10367 10368 return false; 10369 } 10370 10371 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 10372 SmallVectorImpl<NearMissInfo> &NearMisses, 10373 bool MatchingInlineAsm, 10374 bool &EmitInITBlock, 10375 MCStreamer &Out) { 10376 // If we can't use an implicit IT block here, just match as normal. 10377 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 10378 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10379 10380 // Try to match the instruction in an extension of the current IT block (if 10381 // there is one). 10382 if (inImplicitITBlock()) { 10383 extendImplicitITBlock(ITState.Cond); 10384 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10385 Match_Success) { 10386 // The match succeded, but we still have to check that the instruction is 10387 // valid in this implicit IT block. 10388 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10389 if (MCID.isPredicable()) { 10390 ARMCC::CondCodes InstCond = 10391 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10392 .getImm(); 10393 ARMCC::CondCodes ITCond = currentITCond(); 10394 if (InstCond == ITCond) { 10395 EmitInITBlock = true; 10396 return Match_Success; 10397 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 10398 invertCurrentITCondition(); 10399 EmitInITBlock = true; 10400 return Match_Success; 10401 } 10402 } 10403 } 10404 rewindImplicitITPosition(); 10405 } 10406 10407 // Finish the current IT block, and try to match outside any IT block. 10408 flushPendingInstructions(Out); 10409 unsigned PlainMatchResult = 10410 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10411 if (PlainMatchResult == Match_Success) { 10412 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10413 if (MCID.isPredicable()) { 10414 ARMCC::CondCodes InstCond = 10415 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10416 .getImm(); 10417 // Some forms of the branch instruction have their own condition code 10418 // fields, so can be conditionally executed without an IT block. 10419 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 10420 EmitInITBlock = false; 10421 return Match_Success; 10422 } 10423 if (InstCond == ARMCC::AL) { 10424 EmitInITBlock = false; 10425 return Match_Success; 10426 } 10427 } else { 10428 EmitInITBlock = false; 10429 return Match_Success; 10430 } 10431 } 10432 10433 // Try to match in a new IT block. The matcher doesn't check the actual 10434 // condition, so we create an IT block with a dummy condition, and fix it up 10435 // once we know the actual condition. 10436 startImplicitITBlock(); 10437 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10438 Match_Success) { 10439 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10440 if (MCID.isPredicable()) { 10441 ITState.Cond = 10442 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10443 .getImm(); 10444 EmitInITBlock = true; 10445 return Match_Success; 10446 } 10447 } 10448 discardImplicitITBlock(); 10449 10450 // If none of these succeed, return the error we got when trying to match 10451 // outside any IT blocks. 10452 EmitInITBlock = false; 10453 return PlainMatchResult; 10454 } 10455 10456 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, 10457 unsigned VariantID = 0); 10458 10459 static const char *getSubtargetFeatureName(uint64_t Val); 10460 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 10461 OperandVector &Operands, 10462 MCStreamer &Out, uint64_t &ErrorInfo, 10463 bool MatchingInlineAsm) { 10464 MCInst Inst; 10465 unsigned MatchResult; 10466 bool PendConditionalInstruction = false; 10467 10468 SmallVector<NearMissInfo, 4> NearMisses; 10469 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, 10470 PendConditionalInstruction, Out); 10471 10472 switch (MatchResult) { 10473 case Match_Success: 10474 LLVM_DEBUG(dbgs() << "Parsed as: "; 10475 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10476 dbgs() << "\n"); 10477 10478 // Context sensitive operand constraints aren't handled by the matcher, 10479 // so check them here. 10480 if (validateInstruction(Inst, Operands)) { 10481 // Still progress the IT block, otherwise one wrong condition causes 10482 // nasty cascading errors. 10483 forwardITPosition(); 10484 forwardVPTPosition(); 10485 return true; 10486 } 10487 10488 { // processInstruction() updates inITBlock state, we need to save it away 10489 bool wasInITBlock = inITBlock(); 10490 10491 // Some instructions need post-processing to, for example, tweak which 10492 // encoding is selected. Loop on it while changes happen so the 10493 // individual transformations can chain off each other. E.g., 10494 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 10495 while (processInstruction(Inst, Operands, Out)) 10496 LLVM_DEBUG(dbgs() << "Changed to: "; 10497 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10498 dbgs() << "\n"); 10499 10500 // Only after the instruction is fully processed, we can validate it 10501 if (wasInITBlock && hasV8Ops() && isThumb() && 10502 !isV8EligibleForIT(&Inst)) { 10503 Warning(IDLoc, "deprecated instruction in IT block"); 10504 } 10505 } 10506 10507 // Only move forward at the very end so that everything in validate 10508 // and process gets a consistent answer about whether we're in an IT 10509 // block. 10510 forwardITPosition(); 10511 forwardVPTPosition(); 10512 10513 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 10514 // doesn't actually encode. 10515 if (Inst.getOpcode() == ARM::ITasm) 10516 return false; 10517 10518 Inst.setLoc(IDLoc); 10519 if (PendConditionalInstruction) { 10520 PendingConditionalInsts.push_back(Inst); 10521 if (isITBlockFull() || isITBlockTerminator(Inst)) 10522 flushPendingInstructions(Out); 10523 } else { 10524 Out.EmitInstruction(Inst, getSTI()); 10525 } 10526 return false; 10527 case Match_NearMisses: 10528 ReportNearMisses(NearMisses, IDLoc, Operands); 10529 return true; 10530 case Match_MnemonicFail: { 10531 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 10532 std::string Suggestion = ARMMnemonicSpellCheck( 10533 ((ARMOperand &)*Operands[0]).getToken(), FBS); 10534 return Error(IDLoc, "invalid instruction" + Suggestion, 10535 ((ARMOperand &)*Operands[0]).getLocRange()); 10536 } 10537 } 10538 10539 llvm_unreachable("Implement any new match types added!"); 10540 } 10541 10542 /// parseDirective parses the arm specific directives 10543 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 10544 const MCObjectFileInfo::Environment Format = 10545 getContext().getObjectFileInfo()->getObjectFileType(); 10546 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 10547 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 10548 10549 StringRef IDVal = DirectiveID.getIdentifier(); 10550 if (IDVal == ".word") 10551 parseLiteralValues(4, DirectiveID.getLoc()); 10552 else if (IDVal == ".short" || IDVal == ".hword") 10553 parseLiteralValues(2, DirectiveID.getLoc()); 10554 else if (IDVal == ".thumb") 10555 parseDirectiveThumb(DirectiveID.getLoc()); 10556 else if (IDVal == ".arm") 10557 parseDirectiveARM(DirectiveID.getLoc()); 10558 else if (IDVal == ".thumb_func") 10559 parseDirectiveThumbFunc(DirectiveID.getLoc()); 10560 else if (IDVal == ".code") 10561 parseDirectiveCode(DirectiveID.getLoc()); 10562 else if (IDVal == ".syntax") 10563 parseDirectiveSyntax(DirectiveID.getLoc()); 10564 else if (IDVal == ".unreq") 10565 parseDirectiveUnreq(DirectiveID.getLoc()); 10566 else if (IDVal == ".fnend") 10567 parseDirectiveFnEnd(DirectiveID.getLoc()); 10568 else if (IDVal == ".cantunwind") 10569 parseDirectiveCantUnwind(DirectiveID.getLoc()); 10570 else if (IDVal == ".personality") 10571 parseDirectivePersonality(DirectiveID.getLoc()); 10572 else if (IDVal == ".handlerdata") 10573 parseDirectiveHandlerData(DirectiveID.getLoc()); 10574 else if (IDVal == ".setfp") 10575 parseDirectiveSetFP(DirectiveID.getLoc()); 10576 else if (IDVal == ".pad") 10577 parseDirectivePad(DirectiveID.getLoc()); 10578 else if (IDVal == ".save") 10579 parseDirectiveRegSave(DirectiveID.getLoc(), false); 10580 else if (IDVal == ".vsave") 10581 parseDirectiveRegSave(DirectiveID.getLoc(), true); 10582 else if (IDVal == ".ltorg" || IDVal == ".pool") 10583 parseDirectiveLtorg(DirectiveID.getLoc()); 10584 else if (IDVal == ".even") 10585 parseDirectiveEven(DirectiveID.getLoc()); 10586 else if (IDVal == ".personalityindex") 10587 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 10588 else if (IDVal == ".unwind_raw") 10589 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 10590 else if (IDVal == ".movsp") 10591 parseDirectiveMovSP(DirectiveID.getLoc()); 10592 else if (IDVal == ".arch_extension") 10593 parseDirectiveArchExtension(DirectiveID.getLoc()); 10594 else if (IDVal == ".align") 10595 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 10596 else if (IDVal == ".thumb_set") 10597 parseDirectiveThumbSet(DirectiveID.getLoc()); 10598 else if (IDVal == ".inst") 10599 parseDirectiveInst(DirectiveID.getLoc()); 10600 else if (IDVal == ".inst.n") 10601 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 10602 else if (IDVal == ".inst.w") 10603 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 10604 else if (!IsMachO && !IsCOFF) { 10605 if (IDVal == ".arch") 10606 parseDirectiveArch(DirectiveID.getLoc()); 10607 else if (IDVal == ".cpu") 10608 parseDirectiveCPU(DirectiveID.getLoc()); 10609 else if (IDVal == ".eabi_attribute") 10610 parseDirectiveEabiAttr(DirectiveID.getLoc()); 10611 else if (IDVal == ".fpu") 10612 parseDirectiveFPU(DirectiveID.getLoc()); 10613 else if (IDVal == ".fnstart") 10614 parseDirectiveFnStart(DirectiveID.getLoc()); 10615 else if (IDVal == ".object_arch") 10616 parseDirectiveObjectArch(DirectiveID.getLoc()); 10617 else if (IDVal == ".tlsdescseq") 10618 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 10619 else 10620 return true; 10621 } else 10622 return true; 10623 return false; 10624 } 10625 10626 /// parseLiteralValues 10627 /// ::= .hword expression [, expression]* 10628 /// ::= .short expression [, expression]* 10629 /// ::= .word expression [, expression]* 10630 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 10631 auto parseOne = [&]() -> bool { 10632 const MCExpr *Value; 10633 if (getParser().parseExpression(Value)) 10634 return true; 10635 getParser().getStreamer().EmitValue(Value, Size, L); 10636 return false; 10637 }; 10638 return (parseMany(parseOne)); 10639 } 10640 10641 /// parseDirectiveThumb 10642 /// ::= .thumb 10643 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 10644 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 10645 check(!hasThumb(), L, "target does not support Thumb mode")) 10646 return true; 10647 10648 if (!isThumb()) 10649 SwitchMode(); 10650 10651 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 10652 return false; 10653 } 10654 10655 /// parseDirectiveARM 10656 /// ::= .arm 10657 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 10658 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 10659 check(!hasARM(), L, "target does not support ARM mode")) 10660 return true; 10661 10662 if (isThumb()) 10663 SwitchMode(); 10664 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 10665 return false; 10666 } 10667 10668 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) { 10669 // We need to flush the current implicit IT block on a label, because it is 10670 // not legal to branch into an IT block. 10671 flushPendingInstructions(getStreamer()); 10672 } 10673 10674 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 10675 if (NextSymbolIsThumb) { 10676 getParser().getStreamer().EmitThumbFunc(Symbol); 10677 NextSymbolIsThumb = false; 10678 } 10679 } 10680 10681 /// parseDirectiveThumbFunc 10682 /// ::= .thumbfunc symbol_name 10683 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 10684 MCAsmParser &Parser = getParser(); 10685 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 10686 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 10687 10688 // Darwin asm has (optionally) function name after .thumb_func direction 10689 // ELF doesn't 10690 10691 if (IsMachO) { 10692 if (Parser.getTok().is(AsmToken::Identifier) || 10693 Parser.getTok().is(AsmToken::String)) { 10694 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 10695 Parser.getTok().getIdentifier()); 10696 getParser().getStreamer().EmitThumbFunc(Func); 10697 Parser.Lex(); 10698 if (parseToken(AsmToken::EndOfStatement, 10699 "unexpected token in '.thumb_func' directive")) 10700 return true; 10701 return false; 10702 } 10703 } 10704 10705 if (parseToken(AsmToken::EndOfStatement, 10706 "unexpected token in '.thumb_func' directive")) 10707 return true; 10708 10709 NextSymbolIsThumb = true; 10710 return false; 10711 } 10712 10713 /// parseDirectiveSyntax 10714 /// ::= .syntax unified | divided 10715 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 10716 MCAsmParser &Parser = getParser(); 10717 const AsmToken &Tok = Parser.getTok(); 10718 if (Tok.isNot(AsmToken::Identifier)) { 10719 Error(L, "unexpected token in .syntax directive"); 10720 return false; 10721 } 10722 10723 StringRef Mode = Tok.getString(); 10724 Parser.Lex(); 10725 if (check(Mode == "divided" || Mode == "DIVIDED", L, 10726 "'.syntax divided' arm assembly not supported") || 10727 check(Mode != "unified" && Mode != "UNIFIED", L, 10728 "unrecognized syntax mode in .syntax directive") || 10729 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10730 return true; 10731 10732 // TODO tell the MC streamer the mode 10733 // getParser().getStreamer().Emit???(); 10734 return false; 10735 } 10736 10737 /// parseDirectiveCode 10738 /// ::= .code 16 | 32 10739 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 10740 MCAsmParser &Parser = getParser(); 10741 const AsmToken &Tok = Parser.getTok(); 10742 if (Tok.isNot(AsmToken::Integer)) 10743 return Error(L, "unexpected token in .code directive"); 10744 int64_t Val = Parser.getTok().getIntVal(); 10745 if (Val != 16 && Val != 32) { 10746 Error(L, "invalid operand to .code directive"); 10747 return false; 10748 } 10749 Parser.Lex(); 10750 10751 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10752 return true; 10753 10754 if (Val == 16) { 10755 if (!hasThumb()) 10756 return Error(L, "target does not support Thumb mode"); 10757 10758 if (!isThumb()) 10759 SwitchMode(); 10760 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 10761 } else { 10762 if (!hasARM()) 10763 return Error(L, "target does not support ARM mode"); 10764 10765 if (isThumb()) 10766 SwitchMode(); 10767 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 10768 } 10769 10770 return false; 10771 } 10772 10773 /// parseDirectiveReq 10774 /// ::= name .req registername 10775 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 10776 MCAsmParser &Parser = getParser(); 10777 Parser.Lex(); // Eat the '.req' token. 10778 unsigned Reg; 10779 SMLoc SRegLoc, ERegLoc; 10780 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 10781 "register name expected") || 10782 parseToken(AsmToken::EndOfStatement, 10783 "unexpected input in .req directive.")) 10784 return true; 10785 10786 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 10787 return Error(SRegLoc, 10788 "redefinition of '" + Name + "' does not match original."); 10789 10790 return false; 10791 } 10792 10793 /// parseDirectiveUneq 10794 /// ::= .unreq registername 10795 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 10796 MCAsmParser &Parser = getParser(); 10797 if (Parser.getTok().isNot(AsmToken::Identifier)) 10798 return Error(L, "unexpected input in .unreq directive."); 10799 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 10800 Parser.Lex(); // Eat the identifier. 10801 if (parseToken(AsmToken::EndOfStatement, 10802 "unexpected input in '.unreq' directive")) 10803 return true; 10804 return false; 10805 } 10806 10807 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 10808 // before, if supported by the new target, or emit mapping symbols for the mode 10809 // switch. 10810 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 10811 if (WasThumb != isThumb()) { 10812 if (WasThumb && hasThumb()) { 10813 // Stay in Thumb mode 10814 SwitchMode(); 10815 } else if (!WasThumb && hasARM()) { 10816 // Stay in ARM mode 10817 SwitchMode(); 10818 } else { 10819 // Mode switch forced, because the new arch doesn't support the old mode. 10820 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 10821 : MCAF_Code32); 10822 // Warn about the implcit mode switch. GAS does not switch modes here, 10823 // but instead stays in the old mode, reporting an error on any following 10824 // instructions as the mode does not exist on the target. 10825 Warning(Loc, Twine("new target does not support ") + 10826 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 10827 (!WasThumb ? "thumb" : "arm") + " mode"); 10828 } 10829 } 10830 } 10831 10832 /// parseDirectiveArch 10833 /// ::= .arch token 10834 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 10835 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 10836 ARM::ArchKind ID = ARM::parseArch(Arch); 10837 10838 if (ID == ARM::ArchKind::INVALID) 10839 return Error(L, "Unknown arch name"); 10840 10841 bool WasThumb = isThumb(); 10842 Triple T; 10843 MCSubtargetInfo &STI = copySTI(); 10844 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 10845 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 10846 FixModeAfterArchChange(WasThumb, L); 10847 10848 getTargetStreamer().emitArch(ID); 10849 return false; 10850 } 10851 10852 /// parseDirectiveEabiAttr 10853 /// ::= .eabi_attribute int, int [, "str"] 10854 /// ::= .eabi_attribute Tag_name, int [, "str"] 10855 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 10856 MCAsmParser &Parser = getParser(); 10857 int64_t Tag; 10858 SMLoc TagLoc; 10859 TagLoc = Parser.getTok().getLoc(); 10860 if (Parser.getTok().is(AsmToken::Identifier)) { 10861 StringRef Name = Parser.getTok().getIdentifier(); 10862 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 10863 if (Tag == -1) { 10864 Error(TagLoc, "attribute name not recognised: " + Name); 10865 return false; 10866 } 10867 Parser.Lex(); 10868 } else { 10869 const MCExpr *AttrExpr; 10870 10871 TagLoc = Parser.getTok().getLoc(); 10872 if (Parser.parseExpression(AttrExpr)) 10873 return true; 10874 10875 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 10876 if (check(!CE, TagLoc, "expected numeric constant")) 10877 return true; 10878 10879 Tag = CE->getValue(); 10880 } 10881 10882 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 10883 return true; 10884 10885 StringRef StringValue = ""; 10886 bool IsStringValue = false; 10887 10888 int64_t IntegerValue = 0; 10889 bool IsIntegerValue = false; 10890 10891 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 10892 IsStringValue = true; 10893 else if (Tag == ARMBuildAttrs::compatibility) { 10894 IsStringValue = true; 10895 IsIntegerValue = true; 10896 } else if (Tag < 32 || Tag % 2 == 0) 10897 IsIntegerValue = true; 10898 else if (Tag % 2 == 1) 10899 IsStringValue = true; 10900 else 10901 llvm_unreachable("invalid tag type"); 10902 10903 if (IsIntegerValue) { 10904 const MCExpr *ValueExpr; 10905 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 10906 if (Parser.parseExpression(ValueExpr)) 10907 return true; 10908 10909 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 10910 if (!CE) 10911 return Error(ValueExprLoc, "expected numeric constant"); 10912 IntegerValue = CE->getValue(); 10913 } 10914 10915 if (Tag == ARMBuildAttrs::compatibility) { 10916 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 10917 return true; 10918 } 10919 10920 if (IsStringValue) { 10921 if (Parser.getTok().isNot(AsmToken::String)) 10922 return Error(Parser.getTok().getLoc(), "bad string constant"); 10923 10924 StringValue = Parser.getTok().getStringContents(); 10925 Parser.Lex(); 10926 } 10927 10928 if (Parser.parseToken(AsmToken::EndOfStatement, 10929 "unexpected token in '.eabi_attribute' directive")) 10930 return true; 10931 10932 if (IsIntegerValue && IsStringValue) { 10933 assert(Tag == ARMBuildAttrs::compatibility); 10934 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 10935 } else if (IsIntegerValue) 10936 getTargetStreamer().emitAttribute(Tag, IntegerValue); 10937 else if (IsStringValue) 10938 getTargetStreamer().emitTextAttribute(Tag, StringValue); 10939 return false; 10940 } 10941 10942 /// parseDirectiveCPU 10943 /// ::= .cpu str 10944 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 10945 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 10946 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 10947 10948 // FIXME: This is using table-gen data, but should be moved to 10949 // ARMTargetParser once that is table-gen'd. 10950 if (!getSTI().isCPUStringValid(CPU)) 10951 return Error(L, "Unknown CPU name"); 10952 10953 bool WasThumb = isThumb(); 10954 MCSubtargetInfo &STI = copySTI(); 10955 STI.setDefaultFeatures(CPU, ""); 10956 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 10957 FixModeAfterArchChange(WasThumb, L); 10958 10959 return false; 10960 } 10961 10962 /// parseDirectiveFPU 10963 /// ::= .fpu str 10964 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 10965 SMLoc FPUNameLoc = getTok().getLoc(); 10966 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 10967 10968 unsigned ID = ARM::parseFPU(FPU); 10969 std::vector<StringRef> Features; 10970 if (!ARM::getFPUFeatures(ID, Features)) 10971 return Error(FPUNameLoc, "Unknown FPU name"); 10972 10973 MCSubtargetInfo &STI = copySTI(); 10974 for (auto Feature : Features) 10975 STI.ApplyFeatureFlag(Feature); 10976 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 10977 10978 getTargetStreamer().emitFPU(ID); 10979 return false; 10980 } 10981 10982 /// parseDirectiveFnStart 10983 /// ::= .fnstart 10984 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 10985 if (parseToken(AsmToken::EndOfStatement, 10986 "unexpected token in '.fnstart' directive")) 10987 return true; 10988 10989 if (UC.hasFnStart()) { 10990 Error(L, ".fnstart starts before the end of previous one"); 10991 UC.emitFnStartLocNotes(); 10992 return true; 10993 } 10994 10995 // Reset the unwind directives parser state 10996 UC.reset(); 10997 10998 getTargetStreamer().emitFnStart(); 10999 11000 UC.recordFnStart(L); 11001 return false; 11002 } 11003 11004 /// parseDirectiveFnEnd 11005 /// ::= .fnend 11006 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 11007 if (parseToken(AsmToken::EndOfStatement, 11008 "unexpected token in '.fnend' directive")) 11009 return true; 11010 // Check the ordering of unwind directives 11011 if (!UC.hasFnStart()) 11012 return Error(L, ".fnstart must precede .fnend directive"); 11013 11014 // Reset the unwind directives parser state 11015 getTargetStreamer().emitFnEnd(); 11016 11017 UC.reset(); 11018 return false; 11019 } 11020 11021 /// parseDirectiveCantUnwind 11022 /// ::= .cantunwind 11023 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 11024 if (parseToken(AsmToken::EndOfStatement, 11025 "unexpected token in '.cantunwind' directive")) 11026 return true; 11027 11028 UC.recordCantUnwind(L); 11029 // Check the ordering of unwind directives 11030 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 11031 return true; 11032 11033 if (UC.hasHandlerData()) { 11034 Error(L, ".cantunwind can't be used with .handlerdata directive"); 11035 UC.emitHandlerDataLocNotes(); 11036 return true; 11037 } 11038 if (UC.hasPersonality()) { 11039 Error(L, ".cantunwind can't be used with .personality directive"); 11040 UC.emitPersonalityLocNotes(); 11041 return true; 11042 } 11043 11044 getTargetStreamer().emitCantUnwind(); 11045 return false; 11046 } 11047 11048 /// parseDirectivePersonality 11049 /// ::= .personality name 11050 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 11051 MCAsmParser &Parser = getParser(); 11052 bool HasExistingPersonality = UC.hasPersonality(); 11053 11054 // Parse the name of the personality routine 11055 if (Parser.getTok().isNot(AsmToken::Identifier)) 11056 return Error(L, "unexpected input in .personality directive."); 11057 StringRef Name(Parser.getTok().getIdentifier()); 11058 Parser.Lex(); 11059 11060 if (parseToken(AsmToken::EndOfStatement, 11061 "unexpected token in '.personality' directive")) 11062 return true; 11063 11064 UC.recordPersonality(L); 11065 11066 // Check the ordering of unwind directives 11067 if (!UC.hasFnStart()) 11068 return Error(L, ".fnstart must precede .personality directive"); 11069 if (UC.cantUnwind()) { 11070 Error(L, ".personality can't be used with .cantunwind directive"); 11071 UC.emitCantUnwindLocNotes(); 11072 return true; 11073 } 11074 if (UC.hasHandlerData()) { 11075 Error(L, ".personality must precede .handlerdata directive"); 11076 UC.emitHandlerDataLocNotes(); 11077 return true; 11078 } 11079 if (HasExistingPersonality) { 11080 Error(L, "multiple personality directives"); 11081 UC.emitPersonalityLocNotes(); 11082 return true; 11083 } 11084 11085 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 11086 getTargetStreamer().emitPersonality(PR); 11087 return false; 11088 } 11089 11090 /// parseDirectiveHandlerData 11091 /// ::= .handlerdata 11092 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 11093 if (parseToken(AsmToken::EndOfStatement, 11094 "unexpected token in '.handlerdata' directive")) 11095 return true; 11096 11097 UC.recordHandlerData(L); 11098 // Check the ordering of unwind directives 11099 if (!UC.hasFnStart()) 11100 return Error(L, ".fnstart must precede .personality directive"); 11101 if (UC.cantUnwind()) { 11102 Error(L, ".handlerdata can't be used with .cantunwind directive"); 11103 UC.emitCantUnwindLocNotes(); 11104 return true; 11105 } 11106 11107 getTargetStreamer().emitHandlerData(); 11108 return false; 11109 } 11110 11111 /// parseDirectiveSetFP 11112 /// ::= .setfp fpreg, spreg [, offset] 11113 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 11114 MCAsmParser &Parser = getParser(); 11115 // Check the ordering of unwind directives 11116 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 11117 check(UC.hasHandlerData(), L, 11118 ".setfp must precede .handlerdata directive")) 11119 return true; 11120 11121 // Parse fpreg 11122 SMLoc FPRegLoc = Parser.getTok().getLoc(); 11123 int FPReg = tryParseRegister(); 11124 11125 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 11126 Parser.parseToken(AsmToken::Comma, "comma expected")) 11127 return true; 11128 11129 // Parse spreg 11130 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11131 int SPReg = tryParseRegister(); 11132 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 11133 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 11134 "register should be either $sp or the latest fp register")) 11135 return true; 11136 11137 // Update the frame pointer register 11138 UC.saveFPReg(FPReg); 11139 11140 // Parse offset 11141 int64_t Offset = 0; 11142 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11143 if (Parser.getTok().isNot(AsmToken::Hash) && 11144 Parser.getTok().isNot(AsmToken::Dollar)) 11145 return Error(Parser.getTok().getLoc(), "'#' expected"); 11146 Parser.Lex(); // skip hash token. 11147 11148 const MCExpr *OffsetExpr; 11149 SMLoc ExLoc = Parser.getTok().getLoc(); 11150 SMLoc EndLoc; 11151 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11152 return Error(ExLoc, "malformed setfp offset"); 11153 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11154 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 11155 return true; 11156 Offset = CE->getValue(); 11157 } 11158 11159 if (Parser.parseToken(AsmToken::EndOfStatement)) 11160 return true; 11161 11162 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 11163 static_cast<unsigned>(SPReg), Offset); 11164 return false; 11165 } 11166 11167 /// parseDirective 11168 /// ::= .pad offset 11169 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 11170 MCAsmParser &Parser = getParser(); 11171 // Check the ordering of unwind directives 11172 if (!UC.hasFnStart()) 11173 return Error(L, ".fnstart must precede .pad directive"); 11174 if (UC.hasHandlerData()) 11175 return Error(L, ".pad must precede .handlerdata directive"); 11176 11177 // Parse the offset 11178 if (Parser.getTok().isNot(AsmToken::Hash) && 11179 Parser.getTok().isNot(AsmToken::Dollar)) 11180 return Error(Parser.getTok().getLoc(), "'#' expected"); 11181 Parser.Lex(); // skip hash token. 11182 11183 const MCExpr *OffsetExpr; 11184 SMLoc ExLoc = Parser.getTok().getLoc(); 11185 SMLoc EndLoc; 11186 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11187 return Error(ExLoc, "malformed pad offset"); 11188 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11189 if (!CE) 11190 return Error(ExLoc, "pad offset must be an immediate"); 11191 11192 if (parseToken(AsmToken::EndOfStatement, 11193 "unexpected token in '.pad' directive")) 11194 return true; 11195 11196 getTargetStreamer().emitPad(CE->getValue()); 11197 return false; 11198 } 11199 11200 /// parseDirectiveRegSave 11201 /// ::= .save { registers } 11202 /// ::= .vsave { registers } 11203 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 11204 // Check the ordering of unwind directives 11205 if (!UC.hasFnStart()) 11206 return Error(L, ".fnstart must precede .save or .vsave directives"); 11207 if (UC.hasHandlerData()) 11208 return Error(L, ".save or .vsave must precede .handlerdata directive"); 11209 11210 // RAII object to make sure parsed operands are deleted. 11211 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 11212 11213 // Parse the register list 11214 if (parseRegisterList(Operands) || 11215 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11216 return true; 11217 ARMOperand &Op = (ARMOperand &)*Operands[0]; 11218 if (!IsVector && !Op.isRegList()) 11219 return Error(L, ".save expects GPR registers"); 11220 if (IsVector && !Op.isDPRRegList()) 11221 return Error(L, ".vsave expects DPR registers"); 11222 11223 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 11224 return false; 11225 } 11226 11227 /// parseDirectiveInst 11228 /// ::= .inst opcode [, ...] 11229 /// ::= .inst.n opcode [, ...] 11230 /// ::= .inst.w opcode [, ...] 11231 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 11232 int Width = 4; 11233 11234 if (isThumb()) { 11235 switch (Suffix) { 11236 case 'n': 11237 Width = 2; 11238 break; 11239 case 'w': 11240 break; 11241 default: 11242 Width = 0; 11243 break; 11244 } 11245 } else { 11246 if (Suffix) 11247 return Error(Loc, "width suffixes are invalid in ARM mode"); 11248 } 11249 11250 auto parseOne = [&]() -> bool { 11251 const MCExpr *Expr; 11252 if (getParser().parseExpression(Expr)) 11253 return true; 11254 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 11255 if (!Value) { 11256 return Error(Loc, "expected constant expression"); 11257 } 11258 11259 char CurSuffix = Suffix; 11260 switch (Width) { 11261 case 2: 11262 if (Value->getValue() > 0xffff) 11263 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 11264 break; 11265 case 4: 11266 if (Value->getValue() > 0xffffffff) 11267 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 11268 " operand is too big"); 11269 break; 11270 case 0: 11271 // Thumb mode, no width indicated. Guess from the opcode, if possible. 11272 if (Value->getValue() < 0xe800) 11273 CurSuffix = 'n'; 11274 else if (Value->getValue() >= 0xe8000000) 11275 CurSuffix = 'w'; 11276 else 11277 return Error(Loc, "cannot determine Thumb instruction size, " 11278 "use inst.n/inst.w instead"); 11279 break; 11280 default: 11281 llvm_unreachable("only supported widths are 2 and 4"); 11282 } 11283 11284 getTargetStreamer().emitInst(Value->getValue(), CurSuffix); 11285 return false; 11286 }; 11287 11288 if (parseOptionalToken(AsmToken::EndOfStatement)) 11289 return Error(Loc, "expected expression following directive"); 11290 if (parseMany(parseOne)) 11291 return true; 11292 return false; 11293 } 11294 11295 /// parseDirectiveLtorg 11296 /// ::= .ltorg | .pool 11297 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 11298 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11299 return true; 11300 getTargetStreamer().emitCurrentConstantPool(); 11301 return false; 11302 } 11303 11304 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 11305 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11306 11307 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11308 return true; 11309 11310 if (!Section) { 11311 getStreamer().InitSections(false); 11312 Section = getStreamer().getCurrentSectionOnly(); 11313 } 11314 11315 assert(Section && "must have section to emit alignment"); 11316 if (Section->UseCodeAlign()) 11317 getStreamer().EmitCodeAlignment(2); 11318 else 11319 getStreamer().EmitValueToAlignment(2); 11320 11321 return false; 11322 } 11323 11324 /// parseDirectivePersonalityIndex 11325 /// ::= .personalityindex index 11326 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 11327 MCAsmParser &Parser = getParser(); 11328 bool HasExistingPersonality = UC.hasPersonality(); 11329 11330 const MCExpr *IndexExpression; 11331 SMLoc IndexLoc = Parser.getTok().getLoc(); 11332 if (Parser.parseExpression(IndexExpression) || 11333 parseToken(AsmToken::EndOfStatement, 11334 "unexpected token in '.personalityindex' directive")) { 11335 return true; 11336 } 11337 11338 UC.recordPersonalityIndex(L); 11339 11340 if (!UC.hasFnStart()) { 11341 return Error(L, ".fnstart must precede .personalityindex directive"); 11342 } 11343 if (UC.cantUnwind()) { 11344 Error(L, ".personalityindex cannot be used with .cantunwind"); 11345 UC.emitCantUnwindLocNotes(); 11346 return true; 11347 } 11348 if (UC.hasHandlerData()) { 11349 Error(L, ".personalityindex must precede .handlerdata directive"); 11350 UC.emitHandlerDataLocNotes(); 11351 return true; 11352 } 11353 if (HasExistingPersonality) { 11354 Error(L, "multiple personality directives"); 11355 UC.emitPersonalityLocNotes(); 11356 return true; 11357 } 11358 11359 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 11360 if (!CE) 11361 return Error(IndexLoc, "index must be a constant number"); 11362 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 11363 return Error(IndexLoc, 11364 "personality routine index should be in range [0-3]"); 11365 11366 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 11367 return false; 11368 } 11369 11370 /// parseDirectiveUnwindRaw 11371 /// ::= .unwind_raw offset, opcode [, opcode...] 11372 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 11373 MCAsmParser &Parser = getParser(); 11374 int64_t StackOffset; 11375 const MCExpr *OffsetExpr; 11376 SMLoc OffsetLoc = getLexer().getLoc(); 11377 11378 if (!UC.hasFnStart()) 11379 return Error(L, ".fnstart must precede .unwind_raw directives"); 11380 if (getParser().parseExpression(OffsetExpr)) 11381 return Error(OffsetLoc, "expected expression"); 11382 11383 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11384 if (!CE) 11385 return Error(OffsetLoc, "offset must be a constant"); 11386 11387 StackOffset = CE->getValue(); 11388 11389 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 11390 return true; 11391 11392 SmallVector<uint8_t, 16> Opcodes; 11393 11394 auto parseOne = [&]() -> bool { 11395 const MCExpr *OE = nullptr; 11396 SMLoc OpcodeLoc = getLexer().getLoc(); 11397 if (check(getLexer().is(AsmToken::EndOfStatement) || 11398 Parser.parseExpression(OE), 11399 OpcodeLoc, "expected opcode expression")) 11400 return true; 11401 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 11402 if (!OC) 11403 return Error(OpcodeLoc, "opcode value must be a constant"); 11404 const int64_t Opcode = OC->getValue(); 11405 if (Opcode & ~0xff) 11406 return Error(OpcodeLoc, "invalid opcode"); 11407 Opcodes.push_back(uint8_t(Opcode)); 11408 return false; 11409 }; 11410 11411 // Must have at least 1 element 11412 SMLoc OpcodeLoc = getLexer().getLoc(); 11413 if (parseOptionalToken(AsmToken::EndOfStatement)) 11414 return Error(OpcodeLoc, "expected opcode expression"); 11415 if (parseMany(parseOne)) 11416 return true; 11417 11418 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 11419 return false; 11420 } 11421 11422 /// parseDirectiveTLSDescSeq 11423 /// ::= .tlsdescseq tls-variable 11424 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 11425 MCAsmParser &Parser = getParser(); 11426 11427 if (getLexer().isNot(AsmToken::Identifier)) 11428 return TokError("expected variable after '.tlsdescseq' directive"); 11429 11430 const MCSymbolRefExpr *SRE = 11431 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 11432 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 11433 Lex(); 11434 11435 if (parseToken(AsmToken::EndOfStatement, 11436 "unexpected token in '.tlsdescseq' directive")) 11437 return true; 11438 11439 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 11440 return false; 11441 } 11442 11443 /// parseDirectiveMovSP 11444 /// ::= .movsp reg [, #offset] 11445 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 11446 MCAsmParser &Parser = getParser(); 11447 if (!UC.hasFnStart()) 11448 return Error(L, ".fnstart must precede .movsp directives"); 11449 if (UC.getFPReg() != ARM::SP) 11450 return Error(L, "unexpected .movsp directive"); 11451 11452 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11453 int SPReg = tryParseRegister(); 11454 if (SPReg == -1) 11455 return Error(SPRegLoc, "register expected"); 11456 if (SPReg == ARM::SP || SPReg == ARM::PC) 11457 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 11458 11459 int64_t Offset = 0; 11460 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11461 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 11462 return true; 11463 11464 const MCExpr *OffsetExpr; 11465 SMLoc OffsetLoc = Parser.getTok().getLoc(); 11466 11467 if (Parser.parseExpression(OffsetExpr)) 11468 return Error(OffsetLoc, "malformed offset expression"); 11469 11470 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11471 if (!CE) 11472 return Error(OffsetLoc, "offset must be an immediate constant"); 11473 11474 Offset = CE->getValue(); 11475 } 11476 11477 if (parseToken(AsmToken::EndOfStatement, 11478 "unexpected token in '.movsp' directive")) 11479 return true; 11480 11481 getTargetStreamer().emitMovSP(SPReg, Offset); 11482 UC.saveFPReg(SPReg); 11483 11484 return false; 11485 } 11486 11487 /// parseDirectiveObjectArch 11488 /// ::= .object_arch name 11489 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 11490 MCAsmParser &Parser = getParser(); 11491 if (getLexer().isNot(AsmToken::Identifier)) 11492 return Error(getLexer().getLoc(), "unexpected token"); 11493 11494 StringRef Arch = Parser.getTok().getString(); 11495 SMLoc ArchLoc = Parser.getTok().getLoc(); 11496 Lex(); 11497 11498 ARM::ArchKind ID = ARM::parseArch(Arch); 11499 11500 if (ID == ARM::ArchKind::INVALID) 11501 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 11502 if (parseToken(AsmToken::EndOfStatement)) 11503 return true; 11504 11505 getTargetStreamer().emitObjectArch(ID); 11506 return false; 11507 } 11508 11509 /// parseDirectiveAlign 11510 /// ::= .align 11511 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 11512 // NOTE: if this is not the end of the statement, fall back to the target 11513 // agnostic handling for this directive which will correctly handle this. 11514 if (parseOptionalToken(AsmToken::EndOfStatement)) { 11515 // '.align' is target specifically handled to mean 2**2 byte alignment. 11516 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11517 assert(Section && "must have section to emit alignment"); 11518 if (Section->UseCodeAlign()) 11519 getStreamer().EmitCodeAlignment(4, 0); 11520 else 11521 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 11522 return false; 11523 } 11524 return true; 11525 } 11526 11527 /// parseDirectiveThumbSet 11528 /// ::= .thumb_set name, value 11529 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 11530 MCAsmParser &Parser = getParser(); 11531 11532 StringRef Name; 11533 if (check(Parser.parseIdentifier(Name), 11534 "expected identifier after '.thumb_set'") || 11535 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 11536 return true; 11537 11538 MCSymbol *Sym; 11539 const MCExpr *Value; 11540 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 11541 Parser, Sym, Value)) 11542 return true; 11543 11544 getTargetStreamer().emitThumbSet(Sym, Value); 11545 return false; 11546 } 11547 11548 /// Force static initialization. 11549 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmParser() { 11550 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 11551 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 11552 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 11553 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 11554 } 11555 11556 #define GET_REGISTER_MATCHER 11557 #define GET_SUBTARGET_FEATURE_NAME 11558 #define GET_MATCHER_IMPLEMENTATION 11559 #define GET_MNEMONIC_SPELL_CHECKER 11560 #include "ARMGenAsmMatcher.inc" 11561 11562 // Some diagnostics need to vary with subtarget features, so they are handled 11563 // here. For example, the DPR class has either 16 or 32 registers, depending 11564 // on the FPU available. 11565 const char * 11566 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { 11567 switch (MatchError) { 11568 // rGPR contains sp starting with ARMv8. 11569 case Match_rGPR: 11570 return hasV8Ops() ? "operand must be a register in range [r0, r14]" 11571 : "operand must be a register in range [r0, r12] or r14"; 11572 // DPR contains 16 registers for some FPUs, and 32 for others. 11573 case Match_DPR: 11574 return hasD32() ? "operand must be a register in range [d0, d31]" 11575 : "operand must be a register in range [d0, d15]"; 11576 case Match_DPR_RegList: 11577 return hasD32() ? "operand must be a list of registers in range [d0, d31]" 11578 : "operand must be a list of registers in range [d0, d15]"; 11579 11580 // For all other diags, use the static string from tablegen. 11581 default: 11582 return getMatchKindDiag(MatchError); 11583 } 11584 } 11585 11586 // Process the list of near-misses, throwing away ones we don't want to report 11587 // to the user, and converting the rest to a source location and string that 11588 // should be reported. 11589 void 11590 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 11591 SmallVectorImpl<NearMissMessage> &NearMissesOut, 11592 SMLoc IDLoc, OperandVector &Operands) { 11593 // TODO: If operand didn't match, sub in a dummy one and run target 11594 // predicate, so that we can avoid reporting near-misses that are invalid? 11595 // TODO: Many operand types dont have SuperClasses set, so we report 11596 // redundant ones. 11597 // TODO: Some operands are superclasses of registers (e.g. 11598 // MCK_RegShiftedImm), we don't have any way to represent that currently. 11599 // TODO: This is not all ARM-specific, can some of it be factored out? 11600 11601 // Record some information about near-misses that we have already seen, so 11602 // that we can avoid reporting redundant ones. For example, if there are 11603 // variants of an instruction that take 8- and 16-bit immediates, we want 11604 // to only report the widest one. 11605 std::multimap<unsigned, unsigned> OperandMissesSeen; 11606 SmallSet<FeatureBitset, 4> FeatureMissesSeen; 11607 bool ReportedTooFewOperands = false; 11608 11609 // Process the near-misses in reverse order, so that we see more general ones 11610 // first, and so can avoid emitting more specific ones. 11611 for (NearMissInfo &I : reverse(NearMissesIn)) { 11612 switch (I.getKind()) { 11613 case NearMissInfo::NearMissOperand: { 11614 SMLoc OperandLoc = 11615 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); 11616 const char *OperandDiag = 11617 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); 11618 11619 // If we have already emitted a message for a superclass, don't also report 11620 // the sub-class. We consider all operand classes that we don't have a 11621 // specialised diagnostic for to be equal for the propose of this check, 11622 // so that we don't report the generic error multiple times on the same 11623 // operand. 11624 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; 11625 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); 11626 if (std::any_of(PrevReports.first, PrevReports.second, 11627 [DupCheckMatchClass]( 11628 const std::pair<unsigned, unsigned> Pair) { 11629 if (DupCheckMatchClass == ~0U || Pair.second == ~0U) 11630 return Pair.second == DupCheckMatchClass; 11631 else 11632 return isSubclass((MatchClassKind)DupCheckMatchClass, 11633 (MatchClassKind)Pair.second); 11634 })) 11635 break; 11636 OperandMissesSeen.insert( 11637 std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); 11638 11639 NearMissMessage Message; 11640 Message.Loc = OperandLoc; 11641 if (OperandDiag) { 11642 Message.Message = OperandDiag; 11643 } else if (I.getOperandClass() == InvalidMatchClass) { 11644 Message.Message = "too many operands for instruction"; 11645 } else { 11646 Message.Message = "invalid operand for instruction"; 11647 LLVM_DEBUG( 11648 dbgs() << "Missing diagnostic string for operand class " 11649 << getMatchClassName((MatchClassKind)I.getOperandClass()) 11650 << I.getOperandClass() << ", error " << I.getOperandError() 11651 << ", opcode " << MII.getName(I.getOpcode()) << "\n"); 11652 } 11653 NearMissesOut.emplace_back(Message); 11654 break; 11655 } 11656 case NearMissInfo::NearMissFeature: { 11657 const FeatureBitset &MissingFeatures = I.getFeatures(); 11658 // Don't report the same set of features twice. 11659 if (FeatureMissesSeen.count(MissingFeatures)) 11660 break; 11661 FeatureMissesSeen.insert(MissingFeatures); 11662 11663 // Special case: don't report a feature set which includes arm-mode for 11664 // targets that don't have ARM mode. 11665 if (MissingFeatures.test(Feature_IsARMBit) && !hasARM()) 11666 break; 11667 // Don't report any near-misses that both require switching instruction 11668 // set, and adding other subtarget features. 11669 if (isThumb() && MissingFeatures.test(Feature_IsARMBit) && 11670 MissingFeatures.count() > 1) 11671 break; 11672 if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) && 11673 MissingFeatures.count() > 1) 11674 break; 11675 if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) && 11676 (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit, 11677 Feature_IsThumbBit})).any()) 11678 break; 11679 if (isMClass() && MissingFeatures.test(Feature_HasNEONBit)) 11680 break; 11681 11682 NearMissMessage Message; 11683 Message.Loc = IDLoc; 11684 raw_svector_ostream OS(Message.Message); 11685 11686 OS << "instruction requires:"; 11687 for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) 11688 if (MissingFeatures.test(i)) 11689 OS << ' ' << getSubtargetFeatureName(i); 11690 11691 NearMissesOut.emplace_back(Message); 11692 11693 break; 11694 } 11695 case NearMissInfo::NearMissPredicate: { 11696 NearMissMessage Message; 11697 Message.Loc = IDLoc; 11698 switch (I.getPredicateError()) { 11699 case Match_RequiresNotITBlock: 11700 Message.Message = "flag setting instruction only valid outside IT block"; 11701 break; 11702 case Match_RequiresITBlock: 11703 Message.Message = "instruction only valid inside IT block"; 11704 break; 11705 case Match_RequiresV6: 11706 Message.Message = "instruction variant requires ARMv6 or later"; 11707 break; 11708 case Match_RequiresThumb2: 11709 Message.Message = "instruction variant requires Thumb2"; 11710 break; 11711 case Match_RequiresV8: 11712 Message.Message = "instruction variant requires ARMv8 or later"; 11713 break; 11714 case Match_RequiresFlagSetting: 11715 Message.Message = "no flag-preserving variant of this instruction available"; 11716 break; 11717 case Match_InvalidOperand: 11718 Message.Message = "invalid operand for instruction"; 11719 break; 11720 default: 11721 llvm_unreachable("Unhandled target predicate error"); 11722 break; 11723 } 11724 NearMissesOut.emplace_back(Message); 11725 break; 11726 } 11727 case NearMissInfo::NearMissTooFewOperands: { 11728 if (!ReportedTooFewOperands) { 11729 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); 11730 NearMissesOut.emplace_back(NearMissMessage{ 11731 EndLoc, StringRef("too few operands for instruction")}); 11732 ReportedTooFewOperands = true; 11733 } 11734 break; 11735 } 11736 case NearMissInfo::NoNearMiss: 11737 // This should never leave the matcher. 11738 llvm_unreachable("not a near-miss"); 11739 break; 11740 } 11741 } 11742 } 11743 11744 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, 11745 SMLoc IDLoc, OperandVector &Operands) { 11746 SmallVector<NearMissMessage, 4> Messages; 11747 FilterNearMisses(NearMisses, Messages, IDLoc, Operands); 11748 11749 if (Messages.size() == 0) { 11750 // No near-misses were found, so the best we can do is "invalid 11751 // instruction". 11752 Error(IDLoc, "invalid instruction"); 11753 } else if (Messages.size() == 1) { 11754 // One near miss was found, report it as the sole error. 11755 Error(Messages[0].Loc, Messages[0].Message); 11756 } else { 11757 // More than one near miss, so report a generic "invalid instruction" 11758 // error, followed by notes for each of the near-misses. 11759 Error(IDLoc, "invalid instruction, any one of the following would fix this:"); 11760 for (auto &M : Messages) { 11761 Note(M.Loc, M.Message); 11762 } 11763 } 11764 } 11765 11766 /// parseDirectiveArchExtension 11767 /// ::= .arch_extension [no]feature 11768 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 11769 // FIXME: This structure should be moved inside ARMTargetParser 11770 // when we start to table-generate them, and we can use the ARM 11771 // flags below, that were generated by table-gen. 11772 static const struct { 11773 const unsigned Kind; 11774 const FeatureBitset ArchCheck; 11775 const FeatureBitset Features; 11776 } Extensions[] = { 11777 { ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC} }, 11778 { ARM::AEK_CRYPTO, {Feature_HasV8Bit}, 11779 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 11780 { ARM::AEK_FP, {Feature_HasV8Bit}, 11781 {ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8} }, 11782 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), 11783 {Feature_HasV7Bit, Feature_IsNotMClassBit}, 11784 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} }, 11785 { ARM::AEK_MP, {Feature_HasV7Bit, Feature_IsNotMClassBit}, 11786 {ARM::FeatureMP} }, 11787 { ARM::AEK_SIMD, {Feature_HasV8Bit}, 11788 {ARM::FeatureNEON, ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8} }, 11789 { ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone} }, 11790 // FIXME: Only available in A-class, isel not predicated 11791 { ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization} }, 11792 { ARM::AEK_FP16, {Feature_HasV8_2aBit}, 11793 {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 11794 { ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS} }, 11795 { ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB} }, 11796 // FIXME: Unsupported extensions. 11797 { ARM::AEK_OS, {}, {} }, 11798 { ARM::AEK_IWMMXT, {}, {} }, 11799 { ARM::AEK_IWMMXT2, {}, {} }, 11800 { ARM::AEK_MAVERICK, {}, {} }, 11801 { ARM::AEK_XSCALE, {}, {} }, 11802 }; 11803 11804 MCAsmParser &Parser = getParser(); 11805 11806 if (getLexer().isNot(AsmToken::Identifier)) 11807 return Error(getLexer().getLoc(), "expected architecture extension name"); 11808 11809 StringRef Name = Parser.getTok().getString(); 11810 SMLoc ExtLoc = Parser.getTok().getLoc(); 11811 Lex(); 11812 11813 if (parseToken(AsmToken::EndOfStatement, 11814 "unexpected token in '.arch_extension' directive")) 11815 return true; 11816 11817 bool EnableFeature = true; 11818 if (Name.startswith_lower("no")) { 11819 EnableFeature = false; 11820 Name = Name.substr(2); 11821 } 11822 unsigned FeatureKind = ARM::parseArchExt(Name); 11823 if (FeatureKind == ARM::AEK_INVALID) 11824 return Error(ExtLoc, "unknown architectural extension: " + Name); 11825 11826 for (const auto &Extension : Extensions) { 11827 if (Extension.Kind != FeatureKind) 11828 continue; 11829 11830 if (Extension.Features.none()) 11831 return Error(ExtLoc, "unsupported architectural extension: " + Name); 11832 11833 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 11834 return Error(ExtLoc, "architectural extension '" + Name + 11835 "' is not " 11836 "allowed for the current base architecture"); 11837 11838 MCSubtargetInfo &STI = copySTI(); 11839 if (EnableFeature) { 11840 STI.SetFeatureBitsTransitively(Extension.Features); 11841 } else { 11842 STI.ClearFeatureBitsTransitively(Extension.Features); 11843 } 11844 FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits()); 11845 setAvailableFeatures(Features); 11846 return false; 11847 } 11848 11849 return Error(ExtLoc, "unknown architectural extension: " + Name); 11850 } 11851 11852 // Define this matcher function after the auto-generated include so we 11853 // have the match class enum definitions. 11854 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 11855 unsigned Kind) { 11856 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 11857 // If the kind is a token for a literal immediate, check if our asm 11858 // operand matches. This is for InstAliases which have a fixed-value 11859 // immediate in the syntax. 11860 switch (Kind) { 11861 default: break; 11862 case MCK__HASH_0: 11863 if (Op.isImm()) 11864 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 11865 if (CE->getValue() == 0) 11866 return Match_Success; 11867 break; 11868 case MCK__HASH_8: 11869 if (Op.isImm()) 11870 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 11871 if (CE->getValue() == 8) 11872 return Match_Success; 11873 break; 11874 case MCK__HASH_16: 11875 if (Op.isImm()) 11876 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 11877 if (CE->getValue() == 16) 11878 return Match_Success; 11879 break; 11880 case MCK_ModImm: 11881 if (Op.isImm()) { 11882 const MCExpr *SOExpr = Op.getImm(); 11883 int64_t Value; 11884 if (!SOExpr->evaluateAsAbsolute(Value)) 11885 return Match_Success; 11886 assert((Value >= std::numeric_limits<int32_t>::min() && 11887 Value <= std::numeric_limits<uint32_t>::max()) && 11888 "expression value must be representable in 32 bits"); 11889 } 11890 break; 11891 case MCK_rGPR: 11892 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 11893 return Match_Success; 11894 return Match_rGPR; 11895 case MCK_GPRPair: 11896 if (Op.isReg() && 11897 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 11898 return Match_Success; 11899 break; 11900 } 11901 return Match_InvalidOperand; 11902 } 11903 11904 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic, 11905 StringRef ExtraToken) { 11906 if (!hasMVE()) 11907 return false; 11908 11909 return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") || 11910 Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") || 11911 Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") || 11912 Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") || 11913 Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") || 11914 Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") || 11915 Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") || 11916 Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") || 11917 Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") || 11918 Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") || 11919 Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") || 11920 Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") || 11921 Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") || 11922 Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") || 11923 Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") || 11924 Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") || 11925 Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") || 11926 Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") || 11927 Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") || 11928 Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") || 11929 Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") || 11930 Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") || 11931 Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") || 11932 Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") || 11933 Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") || 11934 Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") || 11935 Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") || 11936 Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") || 11937 Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") || 11938 Mnemonic.startswith("vqabs") || 11939 (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") || 11940 Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") || 11941 Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") || 11942 Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") || 11943 Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") || 11944 Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") || 11945 Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") || 11946 Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") || 11947 Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") || 11948 Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") || 11949 Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") || 11950 Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") || 11951 Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") || 11952 Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") || 11953 Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") || 11954 Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") || 11955 Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") || 11956 Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") || 11957 Mnemonic.startswith("vldrb") || 11958 (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") || 11959 (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") || 11960 Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") || 11961 Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") || 11962 Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") || 11963 Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") || 11964 Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") || 11965 Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") || 11966 Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") || 11967 Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") || 11968 Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") || 11969 Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") || 11970 Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") || 11971 Mnemonic.startswith("vcvt") || 11972 (Mnemonic.startswith("vmov") && 11973 !(ExtraToken == ".f16" || ExtraToken == ".32" || 11974 ExtraToken == ".16" || ExtraToken == ".8")); 11975 } 11976