xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp (revision 5e3190f700637fcfc1a52daeaa4a031fdd2557c7)
1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ARMBaseInstrInfo.h"
10 #include "ARMFeatures.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "MCTargetDesc/ARMBaseInfo.h"
13 #include "MCTargetDesc/ARMInstPrinter.h"
14 #include "MCTargetDesc/ARMMCExpr.h"
15 #include "MCTargetDesc/ARMMCTargetDesc.h"
16 #include "TargetInfo/ARMTargetInfo.h"
17 #include "Utils/ARMBaseInfo.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/StringSet.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInst.h"
32 #include "llvm/MC/MCInstrDesc.h"
33 #include "llvm/MC/MCInstrInfo.h"
34 #include "llvm/MC/MCParser/MCAsmLexer.h"
35 #include "llvm/MC/MCParser/MCAsmParser.h"
36 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
37 #include "llvm/MC/MCParser/MCAsmParserUtils.h"
38 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
39 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
40 #include "llvm/MC/MCRegisterInfo.h"
41 #include "llvm/MC/MCSection.h"
42 #include "llvm/MC/MCStreamer.h"
43 #include "llvm/MC/MCSubtargetInfo.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/MC/SubtargetFeature.h"
46 #include "llvm/MC/TargetRegistry.h"
47 #include "llvm/Support/ARMBuildAttributes.h"
48 #include "llvm/Support/ARMEHABI.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/SMLoc.h"
55 #include "llvm/Support/TargetParser.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstddef>
60 #include <cstdint>
61 #include <iterator>
62 #include <limits>
63 #include <memory>
64 #include <string>
65 #include <utility>
66 #include <vector>
67 
68 #define DEBUG_TYPE "asm-parser"
69 
70 using namespace llvm;
71 
72 namespace llvm {
73 extern const MCInstrDesc ARMInsts[];
74 } // end namespace llvm
75 
76 namespace {
77 
78 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly };
79 
80 static cl::opt<ImplicitItModeTy> ImplicitItMode(
81     "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly),
82     cl::desc("Allow conditional instructions outdside of an IT block"),
83     cl::values(clEnumValN(ImplicitItModeTy::Always, "always",
84                           "Accept in both ISAs, emit implicit ITs in Thumb"),
85                clEnumValN(ImplicitItModeTy::Never, "never",
86                           "Warn in ARM, reject in Thumb"),
87                clEnumValN(ImplicitItModeTy::ARMOnly, "arm",
88                           "Accept in ARM, reject in Thumb"),
89                clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb",
90                           "Warn in ARM, emit implicit ITs in Thumb")));
91 
92 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes",
93                                         cl::init(false));
94 
95 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
96 
97 static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) {
98   // Position==0 means we're not in an IT block at all. Position==1
99   // means we want the first state bit, which is always 0 (Then).
100   // Position==2 means we want the second state bit, stored at bit 3
101   // of Mask, and so on downwards. So (5 - Position) will shift the
102   // right bit down to bit 0, including the always-0 bit at bit 4 for
103   // the mandatory initial Then.
104   return (Mask >> (5 - Position) & 1);
105 }
106 
107 class UnwindContext {
108   using Locs = SmallVector<SMLoc, 4>;
109 
110   MCAsmParser &Parser;
111   Locs FnStartLocs;
112   Locs CantUnwindLocs;
113   Locs PersonalityLocs;
114   Locs PersonalityIndexLocs;
115   Locs HandlerDataLocs;
116   int FPReg;
117 
118 public:
119   UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}
120 
121   bool hasFnStart() const { return !FnStartLocs.empty(); }
122   bool cantUnwind() const { return !CantUnwindLocs.empty(); }
123   bool hasHandlerData() const { return !HandlerDataLocs.empty(); }
124 
125   bool hasPersonality() const {
126     return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
127   }
128 
129   void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
130   void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
131   void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
132   void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
133   void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }
134 
135   void saveFPReg(int Reg) { FPReg = Reg; }
136   int getFPReg() const { return FPReg; }
137 
138   void emitFnStartLocNotes() const {
139     for (const SMLoc &Loc : FnStartLocs)
140       Parser.Note(Loc, ".fnstart was specified here");
141   }
142 
143   void emitCantUnwindLocNotes() const {
144     for (const SMLoc &Loc : CantUnwindLocs)
145       Parser.Note(Loc, ".cantunwind was specified here");
146   }
147 
148   void emitHandlerDataLocNotes() const {
149     for (const SMLoc &Loc : HandlerDataLocs)
150       Parser.Note(Loc, ".handlerdata was specified here");
151   }
152 
153   void emitPersonalityLocNotes() const {
154     for (Locs::const_iterator PI = PersonalityLocs.begin(),
155                               PE = PersonalityLocs.end(),
156                               PII = PersonalityIndexLocs.begin(),
157                               PIE = PersonalityIndexLocs.end();
158          PI != PE || PII != PIE;) {
159       if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
160         Parser.Note(*PI++, ".personality was specified here");
161       else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
162         Parser.Note(*PII++, ".personalityindex was specified here");
163       else
164         llvm_unreachable(".personality and .personalityindex cannot be "
165                          "at the same location");
166     }
167   }
168 
169   void reset() {
170     FnStartLocs = Locs();
171     CantUnwindLocs = Locs();
172     PersonalityLocs = Locs();
173     HandlerDataLocs = Locs();
174     PersonalityIndexLocs = Locs();
175     FPReg = ARM::SP;
176   }
177 };
178 
179 // Various sets of ARM instruction mnemonics which are used by the asm parser
180 class ARMMnemonicSets {
181   StringSet<> CDE;
182   StringSet<> CDEWithVPTSuffix;
183 public:
184   ARMMnemonicSets(const MCSubtargetInfo &STI);
185 
186   /// Returns true iff a given mnemonic is a CDE instruction
187   bool isCDEInstr(StringRef Mnemonic) {
188     // Quick check before searching the set
189     if (!Mnemonic.startswith("cx") && !Mnemonic.startswith("vcx"))
190       return false;
191     return CDE.count(Mnemonic);
192   }
193 
194   /// Returns true iff a given mnemonic is a VPT-predicable CDE instruction
195   /// (possibly with a predication suffix "e" or "t")
196   bool isVPTPredicableCDEInstr(StringRef Mnemonic) {
197     if (!Mnemonic.startswith("vcx"))
198       return false;
199     return CDEWithVPTSuffix.count(Mnemonic);
200   }
201 
202   /// Returns true iff a given mnemonic is an IT-predicable CDE instruction
203   /// (possibly with a condition suffix)
204   bool isITPredicableCDEInstr(StringRef Mnemonic) {
205     if (!Mnemonic.startswith("cx"))
206       return false;
207     return Mnemonic.startswith("cx1a") || Mnemonic.startswith("cx1da") ||
208            Mnemonic.startswith("cx2a") || Mnemonic.startswith("cx2da") ||
209            Mnemonic.startswith("cx3a") || Mnemonic.startswith("cx3da");
210   }
211 
212   /// Return true iff a given mnemonic is an integer CDE instruction with
213   /// dual-register destination
214   bool isCDEDualRegInstr(StringRef Mnemonic) {
215     if (!Mnemonic.startswith("cx"))
216       return false;
217     return Mnemonic == "cx1d" || Mnemonic == "cx1da" ||
218            Mnemonic == "cx2d" || Mnemonic == "cx2da" ||
219            Mnemonic == "cx3d" || Mnemonic == "cx3da";
220   }
221 };
222 
223 ARMMnemonicSets::ARMMnemonicSets(const MCSubtargetInfo &STI) {
224   for (StringRef Mnemonic: { "cx1", "cx1a", "cx1d", "cx1da",
225                              "cx2", "cx2a", "cx2d", "cx2da",
226                              "cx3", "cx3a", "cx3d", "cx3da", })
227     CDE.insert(Mnemonic);
228   for (StringRef Mnemonic :
229        {"vcx1", "vcx1a", "vcx2", "vcx2a", "vcx3", "vcx3a"}) {
230     CDE.insert(Mnemonic);
231     CDEWithVPTSuffix.insert(Mnemonic);
232     CDEWithVPTSuffix.insert(std::string(Mnemonic) + "t");
233     CDEWithVPTSuffix.insert(std::string(Mnemonic) + "e");
234   }
235 }
236 
237 class ARMAsmParser : public MCTargetAsmParser {
238   const MCRegisterInfo *MRI;
239   UnwindContext UC;
240   ARMMnemonicSets MS;
241 
242   ARMTargetStreamer &getTargetStreamer() {
243     assert(getParser().getStreamer().getTargetStreamer() &&
244            "do not have a target streamer");
245     MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
246     return static_cast<ARMTargetStreamer &>(TS);
247   }
248 
249   // Map of register aliases registers via the .req directive.
250   StringMap<unsigned> RegisterReqs;
251 
252   bool NextSymbolIsThumb;
253 
254   bool useImplicitITThumb() const {
255     return ImplicitItMode == ImplicitItModeTy::Always ||
256            ImplicitItMode == ImplicitItModeTy::ThumbOnly;
257   }
258 
259   bool useImplicitITARM() const {
260     return ImplicitItMode == ImplicitItModeTy::Always ||
261            ImplicitItMode == ImplicitItModeTy::ARMOnly;
262   }
263 
264   struct {
265     ARMCC::CondCodes Cond;    // Condition for IT block.
266     unsigned Mask:4;          // Condition mask for instructions.
267                               // Starting at first 1 (from lsb).
268                               //   '1'  condition as indicated in IT.
269                               //   '0'  inverse of condition (else).
270                               // Count of instructions in IT block is
271                               // 4 - trailingzeroes(mask)
272                               // Note that this does not have the same encoding
273                               // as in the IT instruction, which also depends
274                               // on the low bit of the condition code.
275 
276     unsigned CurPosition;     // Current position in parsing of IT
277                               // block. In range [0,4], with 0 being the IT
278                               // instruction itself. Initialized according to
279                               // count of instructions in block.  ~0U if no
280                               // active IT block.
281 
282     bool IsExplicit;          // true  - The IT instruction was present in the
283                               //         input, we should not modify it.
284                               // false - The IT instruction was added
285                               //         implicitly, we can extend it if that
286                               //         would be legal.
287   } ITState;
288 
289   SmallVector<MCInst, 4> PendingConditionalInsts;
290 
291   void flushPendingInstructions(MCStreamer &Out) override {
292     if (!inImplicitITBlock()) {
293       assert(PendingConditionalInsts.size() == 0);
294       return;
295     }
296 
297     // Emit the IT instruction
298     MCInst ITInst;
299     ITInst.setOpcode(ARM::t2IT);
300     ITInst.addOperand(MCOperand::createImm(ITState.Cond));
301     ITInst.addOperand(MCOperand::createImm(ITState.Mask));
302     Out.emitInstruction(ITInst, getSTI());
303 
304     // Emit the conditional instructions
305     assert(PendingConditionalInsts.size() <= 4);
306     for (const MCInst &Inst : PendingConditionalInsts) {
307       Out.emitInstruction(Inst, getSTI());
308     }
309     PendingConditionalInsts.clear();
310 
311     // Clear the IT state
312     ITState.Mask = 0;
313     ITState.CurPosition = ~0U;
314   }
315 
316   bool inITBlock() { return ITState.CurPosition != ~0U; }
317   bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; }
318   bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; }
319 
320   bool lastInITBlock() {
321     return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask);
322   }
323 
324   void forwardITPosition() {
325     if (!inITBlock()) return;
326     // Move to the next instruction in the IT block, if there is one. If not,
327     // mark the block as done, except for implicit IT blocks, which we leave
328     // open until we find an instruction that can't be added to it.
329     unsigned TZ = countTrailingZeros(ITState.Mask);
330     if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit)
331       ITState.CurPosition = ~0U; // Done with the IT block after this.
332   }
333 
334   // Rewind the state of the current IT block, removing the last slot from it.
335   void rewindImplicitITPosition() {
336     assert(inImplicitITBlock());
337     assert(ITState.CurPosition > 1);
338     ITState.CurPosition--;
339     unsigned TZ = countTrailingZeros(ITState.Mask);
340     unsigned NewMask = 0;
341     NewMask |= ITState.Mask & (0xC << TZ);
342     NewMask |= 0x2 << TZ;
343     ITState.Mask = NewMask;
344   }
345 
346   // Rewind the state of the current IT block, removing the last slot from it.
347   // If we were at the first slot, this closes the IT block.
348   void discardImplicitITBlock() {
349     assert(inImplicitITBlock());
350     assert(ITState.CurPosition == 1);
351     ITState.CurPosition = ~0U;
352   }
353 
354   // Return the low-subreg of a given Q register.
355   unsigned getDRegFromQReg(unsigned QReg) const {
356     return MRI->getSubReg(QReg, ARM::dsub_0);
357   }
358 
359   // Get the condition code corresponding to the current IT block slot.
360   ARMCC::CondCodes currentITCond() {
361     unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition);
362     return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond;
363   }
364 
365   // Invert the condition of the current IT block slot without changing any
366   // other slots in the same block.
367   void invertCurrentITCondition() {
368     if (ITState.CurPosition == 1) {
369       ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond);
370     } else {
371       ITState.Mask ^= 1 << (5 - ITState.CurPosition);
372     }
373   }
374 
375   // Returns true if the current IT block is full (all 4 slots used).
376   bool isITBlockFull() {
377     return inITBlock() && (ITState.Mask & 1);
378   }
379 
380   // Extend the current implicit IT block to have one more slot with the given
381   // condition code.
382   void extendImplicitITBlock(ARMCC::CondCodes Cond) {
383     assert(inImplicitITBlock());
384     assert(!isITBlockFull());
385     assert(Cond == ITState.Cond ||
386            Cond == ARMCC::getOppositeCondition(ITState.Cond));
387     unsigned TZ = countTrailingZeros(ITState.Mask);
388     unsigned NewMask = 0;
389     // Keep any existing condition bits.
390     NewMask |= ITState.Mask & (0xE << TZ);
391     // Insert the new condition bit.
392     NewMask |= (Cond != ITState.Cond) << TZ;
393     // Move the trailing 1 down one bit.
394     NewMask |= 1 << (TZ - 1);
395     ITState.Mask = NewMask;
396   }
397 
398   // Create a new implicit IT block with a dummy condition code.
399   void startImplicitITBlock() {
400     assert(!inITBlock());
401     ITState.Cond = ARMCC::AL;
402     ITState.Mask = 8;
403     ITState.CurPosition = 1;
404     ITState.IsExplicit = false;
405   }
406 
407   // Create a new explicit IT block with the given condition and mask.
408   // The mask should be in the format used in ARMOperand and
409   // MCOperand, with a 1 implying 'e', regardless of the low bit of
410   // the condition.
411   void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) {
412     assert(!inITBlock());
413     ITState.Cond = Cond;
414     ITState.Mask = Mask;
415     ITState.CurPosition = 0;
416     ITState.IsExplicit = true;
417   }
418 
419   struct {
420     unsigned Mask : 4;
421     unsigned CurPosition;
422   } VPTState;
423   bool inVPTBlock() { return VPTState.CurPosition != ~0U; }
424   void forwardVPTPosition() {
425     if (!inVPTBlock()) return;
426     unsigned TZ = countTrailingZeros(VPTState.Mask);
427     if (++VPTState.CurPosition == 5 - TZ)
428       VPTState.CurPosition = ~0U;
429   }
430 
431   void Note(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) {
432     return getParser().Note(L, Msg, Range);
433   }
434 
435   bool Warning(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) {
436     return getParser().Warning(L, Msg, Range);
437   }
438 
439   bool Error(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) {
440     return getParser().Error(L, Msg, Range);
441   }
442 
443   bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands,
444                            unsigned ListNo, bool IsARPop = false);
445   bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands,
446                            unsigned ListNo);
447 
448   int tryParseRegister();
449   bool tryParseRegisterWithWriteBack(OperandVector &);
450   int tryParseShiftRegister(OperandVector &);
451   bool parseRegisterList(OperandVector &, bool EnforceOrder = true,
452                          bool AllowRAAC = false);
453   bool parseMemory(OperandVector &);
454   bool parseOperand(OperandVector &, StringRef Mnemonic);
455   bool parseImmExpr(int64_t &Out);
456   bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
457   bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
458                               unsigned &ShiftAmount);
459   bool parseLiteralValues(unsigned Size, SMLoc L);
460   bool parseDirectiveThumb(SMLoc L);
461   bool parseDirectiveARM(SMLoc L);
462   bool parseDirectiveThumbFunc(SMLoc L);
463   bool parseDirectiveCode(SMLoc L);
464   bool parseDirectiveSyntax(SMLoc L);
465   bool parseDirectiveReq(StringRef Name, SMLoc L);
466   bool parseDirectiveUnreq(SMLoc L);
467   bool parseDirectiveArch(SMLoc L);
468   bool parseDirectiveEabiAttr(SMLoc L);
469   bool parseDirectiveCPU(SMLoc L);
470   bool parseDirectiveFPU(SMLoc L);
471   bool parseDirectiveFnStart(SMLoc L);
472   bool parseDirectiveFnEnd(SMLoc L);
473   bool parseDirectiveCantUnwind(SMLoc L);
474   bool parseDirectivePersonality(SMLoc L);
475   bool parseDirectiveHandlerData(SMLoc L);
476   bool parseDirectiveSetFP(SMLoc L);
477   bool parseDirectivePad(SMLoc L);
478   bool parseDirectiveRegSave(SMLoc L, bool IsVector);
479   bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
480   bool parseDirectiveLtorg(SMLoc L);
481   bool parseDirectiveEven(SMLoc L);
482   bool parseDirectivePersonalityIndex(SMLoc L);
483   bool parseDirectiveUnwindRaw(SMLoc L);
484   bool parseDirectiveTLSDescSeq(SMLoc L);
485   bool parseDirectiveMovSP(SMLoc L);
486   bool parseDirectiveObjectArch(SMLoc L);
487   bool parseDirectiveArchExtension(SMLoc L);
488   bool parseDirectiveAlign(SMLoc L);
489   bool parseDirectiveThumbSet(SMLoc L);
490 
491   bool parseDirectiveSEHAllocStack(SMLoc L, bool Wide);
492   bool parseDirectiveSEHSaveRegs(SMLoc L, bool Wide);
493   bool parseDirectiveSEHSaveSP(SMLoc L);
494   bool parseDirectiveSEHSaveFRegs(SMLoc L);
495   bool parseDirectiveSEHSaveLR(SMLoc L);
496   bool parseDirectiveSEHPrologEnd(SMLoc L, bool Fragment);
497   bool parseDirectiveSEHNop(SMLoc L, bool Wide);
498   bool parseDirectiveSEHEpilogStart(SMLoc L, bool Condition);
499   bool parseDirectiveSEHEpilogEnd(SMLoc L);
500   bool parseDirectiveSEHCustom(SMLoc L);
501 
502   bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken);
503   StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken,
504                           unsigned &PredicationCode,
505                           unsigned &VPTPredicationCode, bool &CarrySetting,
506                           unsigned &ProcessorIMod, StringRef &ITMask);
507   void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken,
508                              StringRef FullInst, bool &CanAcceptCarrySet,
509                              bool &CanAcceptPredicationCode,
510                              bool &CanAcceptVPTPredicationCode);
511   bool enableArchExtFeature(StringRef Name, SMLoc &ExtLoc);
512 
513   void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting,
514                                      OperandVector &Operands);
515   bool CDEConvertDualRegOperand(StringRef Mnemonic, OperandVector &Operands);
516 
517   bool isThumb() const {
518     // FIXME: Can tablegen auto-generate this?
519     return getSTI().getFeatureBits()[ARM::ModeThumb];
520   }
521 
522   bool isThumbOne() const {
523     return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2];
524   }
525 
526   bool isThumbTwo() const {
527     return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2];
528   }
529 
530   bool hasThumb() const {
531     return getSTI().getFeatureBits()[ARM::HasV4TOps];
532   }
533 
534   bool hasThumb2() const {
535     return getSTI().getFeatureBits()[ARM::FeatureThumb2];
536   }
537 
538   bool hasV6Ops() const {
539     return getSTI().getFeatureBits()[ARM::HasV6Ops];
540   }
541 
542   bool hasV6T2Ops() const {
543     return getSTI().getFeatureBits()[ARM::HasV6T2Ops];
544   }
545 
546   bool hasV6MOps() const {
547     return getSTI().getFeatureBits()[ARM::HasV6MOps];
548   }
549 
550   bool hasV7Ops() const {
551     return getSTI().getFeatureBits()[ARM::HasV7Ops];
552   }
553 
554   bool hasV8Ops() const {
555     return getSTI().getFeatureBits()[ARM::HasV8Ops];
556   }
557 
558   bool hasV8MBaseline() const {
559     return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps];
560   }
561 
562   bool hasV8MMainline() const {
563     return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps];
564   }
565   bool hasV8_1MMainline() const {
566     return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps];
567   }
568   bool hasMVE() const {
569     return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps];
570   }
571   bool hasMVEFloat() const {
572     return getSTI().getFeatureBits()[ARM::HasMVEFloatOps];
573   }
574   bool hasCDE() const {
575     return getSTI().getFeatureBits()[ARM::HasCDEOps];
576   }
577   bool has8MSecExt() const {
578     return getSTI().getFeatureBits()[ARM::Feature8MSecExt];
579   }
580 
581   bool hasARM() const {
582     return !getSTI().getFeatureBits()[ARM::FeatureNoARM];
583   }
584 
585   bool hasDSP() const {
586     return getSTI().getFeatureBits()[ARM::FeatureDSP];
587   }
588 
589   bool hasD32() const {
590     return getSTI().getFeatureBits()[ARM::FeatureD32];
591   }
592 
593   bool hasV8_1aOps() const {
594     return getSTI().getFeatureBits()[ARM::HasV8_1aOps];
595   }
596 
597   bool hasRAS() const {
598     return getSTI().getFeatureBits()[ARM::FeatureRAS];
599   }
600 
601   void SwitchMode() {
602     MCSubtargetInfo &STI = copySTI();
603     auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
604     setAvailableFeatures(FB);
605   }
606 
607   void FixModeAfterArchChange(bool WasThumb, SMLoc Loc);
608 
609   bool isMClass() const {
610     return getSTI().getFeatureBits()[ARM::FeatureMClass];
611   }
612 
613   /// @name Auto-generated Match Functions
614   /// {
615 
616 #define GET_ASSEMBLER_HEADER
617 #include "ARMGenAsmMatcher.inc"
618 
619   /// }
620 
621   OperandMatchResultTy parseITCondCode(OperandVector &);
622   OperandMatchResultTy parseCoprocNumOperand(OperandVector &);
623   OperandMatchResultTy parseCoprocRegOperand(OperandVector &);
624   OperandMatchResultTy parseCoprocOptionOperand(OperandVector &);
625   OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &);
626   OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &);
627   OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
628   OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
629   OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
630   OperandMatchResultTy parseBankedRegOperand(OperandVector &);
631   OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
632                                    int High);
633   OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
634     return parsePKHImm(O, "lsl", 0, 31);
635   }
636   OperandMatchResultTy parsePKHASRImm(OperandVector &O) {
637     return parsePKHImm(O, "asr", 1, 32);
638   }
639   OperandMatchResultTy parseSetEndImm(OperandVector &);
640   OperandMatchResultTy parseShifterImm(OperandVector &);
641   OperandMatchResultTy parseRotImm(OperandVector &);
642   OperandMatchResultTy parseModImm(OperandVector &);
643   OperandMatchResultTy parseBitfield(OperandVector &);
644   OperandMatchResultTy parsePostIdxReg(OperandVector &);
645   OperandMatchResultTy parseAM3Offset(OperandVector &);
646   OperandMatchResultTy parseFPImm(OperandVector &);
647   OperandMatchResultTy parseVectorList(OperandVector &);
648   OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
649                                        SMLoc &EndLoc);
650 
651   // Asm Match Converter Methods
652   void cvtThumbMultiply(MCInst &Inst, const OperandVector &);
653   void cvtThumbBranches(MCInst &Inst, const OperandVector &);
654   void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &);
655 
656   bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
657   bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out);
658   bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands);
659   bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
660   bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
661   bool isITBlockTerminator(MCInst &Inst) const;
662   void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands);
663   bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands,
664                         bool Load, bool ARMMode, bool Writeback);
665 
666 public:
667   enum ARMMatchResultTy {
668     Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
669     Match_RequiresNotITBlock,
670     Match_RequiresV6,
671     Match_RequiresThumb2,
672     Match_RequiresV8,
673     Match_RequiresFlagSetting,
674 #define GET_OPERAND_DIAGNOSTIC_TYPES
675 #include "ARMGenAsmMatcher.inc"
676 
677   };
678 
679   ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
680                const MCInstrInfo &MII, const MCTargetOptions &Options)
681     : MCTargetAsmParser(Options, STI, MII), UC(Parser), MS(STI) {
682     MCAsmParserExtension::Initialize(Parser);
683 
684     // Cache the MCRegisterInfo.
685     MRI = getContext().getRegisterInfo();
686 
687     // Initialize the set of available features.
688     setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
689 
690     // Add build attributes based on the selected target.
691     if (AddBuildAttributes)
692       getTargetStreamer().emitTargetAttributes(STI);
693 
694     // Not in an ITBlock to start with.
695     ITState.CurPosition = ~0U;
696 
697     VPTState.CurPosition = ~0U;
698 
699     NextSymbolIsThumb = false;
700   }
701 
702   // Implementation of the MCTargetAsmParser interface:
703   bool parseRegister(MCRegister &RegNo, SMLoc &StartLoc,
704                      SMLoc &EndLoc) override;
705   OperandMatchResultTy tryParseRegister(MCRegister &RegNo, SMLoc &StartLoc,
706                                         SMLoc &EndLoc) override;
707   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
708                         SMLoc NameLoc, OperandVector &Operands) override;
709   bool ParseDirective(AsmToken DirectiveID) override;
710 
711   unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
712                                       unsigned Kind) override;
713   unsigned checkTargetMatchPredicate(MCInst &Inst) override;
714 
715   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
716                                OperandVector &Operands, MCStreamer &Out,
717                                uint64_t &ErrorInfo,
718                                bool MatchingInlineAsm) override;
719   unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst,
720                             SmallVectorImpl<NearMissInfo> &NearMisses,
721                             bool MatchingInlineAsm, bool &EmitInITBlock,
722                             MCStreamer &Out);
723 
724   struct NearMissMessage {
725     SMLoc Loc;
726     SmallString<128> Message;
727   };
728 
729   const char *getCustomOperandDiag(ARMMatchResultTy MatchError);
730 
731   void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
732                         SmallVectorImpl<NearMissMessage> &NearMissesOut,
733                         SMLoc IDLoc, OperandVector &Operands);
734   void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc,
735                         OperandVector &Operands);
736 
737   void doBeforeLabelEmit(MCSymbol *Symbol, SMLoc IDLoc) override;
738 
739   void onLabelParsed(MCSymbol *Symbol) override;
740 };
741 
742 /// ARMOperand - Instances of this class represent a parsed ARM machine
743 /// operand.
744 class ARMOperand : public MCParsedAsmOperand {
745   enum KindTy {
746     k_CondCode,
747     k_VPTPred,
748     k_CCOut,
749     k_ITCondMask,
750     k_CoprocNum,
751     k_CoprocReg,
752     k_CoprocOption,
753     k_Immediate,
754     k_MemBarrierOpt,
755     k_InstSyncBarrierOpt,
756     k_TraceSyncBarrierOpt,
757     k_Memory,
758     k_PostIndexRegister,
759     k_MSRMask,
760     k_BankedReg,
761     k_ProcIFlags,
762     k_VectorIndex,
763     k_Register,
764     k_RegisterList,
765     k_RegisterListWithAPSR,
766     k_DPRRegisterList,
767     k_SPRRegisterList,
768     k_FPSRegisterListWithVPR,
769     k_FPDRegisterListWithVPR,
770     k_VectorList,
771     k_VectorListAllLanes,
772     k_VectorListIndexed,
773     k_ShiftedRegister,
774     k_ShiftedImmediate,
775     k_ShifterImmediate,
776     k_RotateImmediate,
777     k_ModifiedImmediate,
778     k_ConstantPoolImmediate,
779     k_BitfieldDescriptor,
780     k_Token,
781   } Kind;
782 
783   SMLoc StartLoc, EndLoc, AlignmentLoc;
784   SmallVector<unsigned, 8> Registers;
785 
786   struct CCOp {
787     ARMCC::CondCodes Val;
788   };
789 
790   struct VCCOp {
791     ARMVCC::VPTCodes Val;
792   };
793 
794   struct CopOp {
795     unsigned Val;
796   };
797 
798   struct CoprocOptionOp {
799     unsigned Val;
800   };
801 
802   struct ITMaskOp {
803     unsigned Mask:4;
804   };
805 
806   struct MBOptOp {
807     ARM_MB::MemBOpt Val;
808   };
809 
810   struct ISBOptOp {
811     ARM_ISB::InstSyncBOpt Val;
812   };
813 
814   struct TSBOptOp {
815     ARM_TSB::TraceSyncBOpt Val;
816   };
817 
818   struct IFlagsOp {
819     ARM_PROC::IFlags Val;
820   };
821 
822   struct MMaskOp {
823     unsigned Val;
824   };
825 
826   struct BankedRegOp {
827     unsigned Val;
828   };
829 
830   struct TokOp {
831     const char *Data;
832     unsigned Length;
833   };
834 
835   struct RegOp {
836     unsigned RegNum;
837   };
838 
839   // A vector register list is a sequential list of 1 to 4 registers.
840   struct VectorListOp {
841     unsigned RegNum;
842     unsigned Count;
843     unsigned LaneIndex;
844     bool isDoubleSpaced;
845   };
846 
847   struct VectorIndexOp {
848     unsigned Val;
849   };
850 
851   struct ImmOp {
852     const MCExpr *Val;
853   };
854 
855   /// Combined record for all forms of ARM address expressions.
856   struct MemoryOp {
857     unsigned BaseRegNum;
858     // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
859     // was specified.
860     const MCExpr *OffsetImm;  // Offset immediate value
861     unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
862     ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
863     unsigned ShiftImm;        // shift for OffsetReg.
864     unsigned Alignment;       // 0 = no alignment specified
865     // n = alignment in bytes (2, 4, 8, 16, or 32)
866     unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
867   };
868 
869   struct PostIdxRegOp {
870     unsigned RegNum;
871     bool isAdd;
872     ARM_AM::ShiftOpc ShiftTy;
873     unsigned ShiftImm;
874   };
875 
876   struct ShifterImmOp {
877     bool isASR;
878     unsigned Imm;
879   };
880 
881   struct RegShiftedRegOp {
882     ARM_AM::ShiftOpc ShiftTy;
883     unsigned SrcReg;
884     unsigned ShiftReg;
885     unsigned ShiftImm;
886   };
887 
888   struct RegShiftedImmOp {
889     ARM_AM::ShiftOpc ShiftTy;
890     unsigned SrcReg;
891     unsigned ShiftImm;
892   };
893 
894   struct RotImmOp {
895     unsigned Imm;
896   };
897 
898   struct ModImmOp {
899     unsigned Bits;
900     unsigned Rot;
901   };
902 
903   struct BitfieldOp {
904     unsigned LSB;
905     unsigned Width;
906   };
907 
908   union {
909     struct CCOp CC;
910     struct VCCOp VCC;
911     struct CopOp Cop;
912     struct CoprocOptionOp CoprocOption;
913     struct MBOptOp MBOpt;
914     struct ISBOptOp ISBOpt;
915     struct TSBOptOp TSBOpt;
916     struct ITMaskOp ITMask;
917     struct IFlagsOp IFlags;
918     struct MMaskOp MMask;
919     struct BankedRegOp BankedReg;
920     struct TokOp Tok;
921     struct RegOp Reg;
922     struct VectorListOp VectorList;
923     struct VectorIndexOp VectorIndex;
924     struct ImmOp Imm;
925     struct MemoryOp Memory;
926     struct PostIdxRegOp PostIdxReg;
927     struct ShifterImmOp ShifterImm;
928     struct RegShiftedRegOp RegShiftedReg;
929     struct RegShiftedImmOp RegShiftedImm;
930     struct RotImmOp RotImm;
931     struct ModImmOp ModImm;
932     struct BitfieldOp Bitfield;
933   };
934 
935 public:
936   ARMOperand(KindTy K) : Kind(K) {}
937 
938   /// getStartLoc - Get the location of the first token of this operand.
939   SMLoc getStartLoc() const override { return StartLoc; }
940 
941   /// getEndLoc - Get the location of the last token of this operand.
942   SMLoc getEndLoc() const override { return EndLoc; }
943 
944   /// getLocRange - Get the range between the first and last token of this
945   /// operand.
946   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
947 
948   /// getAlignmentLoc - Get the location of the Alignment token of this operand.
949   SMLoc getAlignmentLoc() const {
950     assert(Kind == k_Memory && "Invalid access!");
951     return AlignmentLoc;
952   }
953 
954   ARMCC::CondCodes getCondCode() const {
955     assert(Kind == k_CondCode && "Invalid access!");
956     return CC.Val;
957   }
958 
959   ARMVCC::VPTCodes getVPTPred() const {
960     assert(isVPTPred() && "Invalid access!");
961     return VCC.Val;
962   }
963 
964   unsigned getCoproc() const {
965     assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
966     return Cop.Val;
967   }
968 
969   StringRef getToken() const {
970     assert(Kind == k_Token && "Invalid access!");
971     return StringRef(Tok.Data, Tok.Length);
972   }
973 
974   unsigned getReg() const override {
975     assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
976     return Reg.RegNum;
977   }
978 
979   const SmallVectorImpl<unsigned> &getRegList() const {
980     assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR ||
981             Kind == k_DPRRegisterList || Kind == k_SPRRegisterList ||
982             Kind == k_FPSRegisterListWithVPR ||
983             Kind == k_FPDRegisterListWithVPR) &&
984            "Invalid access!");
985     return Registers;
986   }
987 
988   const MCExpr *getImm() const {
989     assert(isImm() && "Invalid access!");
990     return Imm.Val;
991   }
992 
993   const MCExpr *getConstantPoolImm() const {
994     assert(isConstantPoolImm() && "Invalid access!");
995     return Imm.Val;
996   }
997 
998   unsigned getVectorIndex() const {
999     assert(Kind == k_VectorIndex && "Invalid access!");
1000     return VectorIndex.Val;
1001   }
1002 
1003   ARM_MB::MemBOpt getMemBarrierOpt() const {
1004     assert(Kind == k_MemBarrierOpt && "Invalid access!");
1005     return MBOpt.Val;
1006   }
1007 
1008   ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
1009     assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
1010     return ISBOpt.Val;
1011   }
1012 
1013   ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const {
1014     assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!");
1015     return TSBOpt.Val;
1016   }
1017 
1018   ARM_PROC::IFlags getProcIFlags() const {
1019     assert(Kind == k_ProcIFlags && "Invalid access!");
1020     return IFlags.Val;
1021   }
1022 
1023   unsigned getMSRMask() const {
1024     assert(Kind == k_MSRMask && "Invalid access!");
1025     return MMask.Val;
1026   }
1027 
1028   unsigned getBankedReg() const {
1029     assert(Kind == k_BankedReg && "Invalid access!");
1030     return BankedReg.Val;
1031   }
1032 
1033   bool isCoprocNum() const { return Kind == k_CoprocNum; }
1034   bool isCoprocReg() const { return Kind == k_CoprocReg; }
1035   bool isCoprocOption() const { return Kind == k_CoprocOption; }
1036   bool isCondCode() const { return Kind == k_CondCode; }
1037   bool isVPTPred() const { return Kind == k_VPTPred; }
1038   bool isCCOut() const { return Kind == k_CCOut; }
1039   bool isITMask() const { return Kind == k_ITCondMask; }
1040   bool isITCondCode() const { return Kind == k_CondCode; }
1041   bool isImm() const override {
1042     return Kind == k_Immediate;
1043   }
1044 
1045   bool isARMBranchTarget() const {
1046     if (!isImm()) return false;
1047 
1048     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
1049       return CE->getValue() % 4 == 0;
1050     return true;
1051   }
1052 
1053 
1054   bool isThumbBranchTarget() const {
1055     if (!isImm()) return false;
1056 
1057     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
1058       return CE->getValue() % 2 == 0;
1059     return true;
1060   }
1061 
1062   // checks whether this operand is an unsigned offset which fits is a field
1063   // of specified width and scaled by a specific number of bits
1064   template<unsigned width, unsigned scale>
1065   bool isUnsignedOffset() const {
1066     if (!isImm()) return false;
1067     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1068     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1069       int64_t Val = CE->getValue();
1070       int64_t Align = 1LL << scale;
1071       int64_t Max = Align * ((1LL << width) - 1);
1072       return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
1073     }
1074     return false;
1075   }
1076 
1077   // checks whether this operand is an signed offset which fits is a field
1078   // of specified width and scaled by a specific number of bits
1079   template<unsigned width, unsigned scale>
1080   bool isSignedOffset() const {
1081     if (!isImm()) return false;
1082     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1083     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1084       int64_t Val = CE->getValue();
1085       int64_t Align = 1LL << scale;
1086       int64_t Max = Align * ((1LL << (width-1)) - 1);
1087       int64_t Min = -Align * (1LL << (width-1));
1088       return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
1089     }
1090     return false;
1091   }
1092 
1093   // checks whether this operand is an offset suitable for the LE /
1094   // LETP instructions in Arm v8.1M
1095   bool isLEOffset() const {
1096     if (!isImm()) return false;
1097     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1098     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1099       int64_t Val = CE->getValue();
1100       return Val < 0 && Val >= -4094 && (Val & 1) == 0;
1101     }
1102     return false;
1103   }
1104 
1105   // checks whether this operand is a memory operand computed as an offset
1106   // applied to PC. the offset may have 8 bits of magnitude and is represented
1107   // with two bits of shift. textually it may be either [pc, #imm], #imm or
1108   // relocable expression...
1109   bool isThumbMemPC() const {
1110     int64_t Val = 0;
1111     if (isImm()) {
1112       if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1113       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
1114       if (!CE) return false;
1115       Val = CE->getValue();
1116     }
1117     else if (isGPRMem()) {
1118       if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
1119       if(Memory.BaseRegNum != ARM::PC) return false;
1120       if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
1121         Val = CE->getValue();
1122       else
1123         return false;
1124     }
1125     else return false;
1126     return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
1127   }
1128 
1129   bool isFPImm() const {
1130     if (!isImm()) return false;
1131     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1132     if (!CE) return false;
1133     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
1134     return Val != -1;
1135   }
1136 
1137   template<int64_t N, int64_t M>
1138   bool isImmediate() const {
1139     if (!isImm()) return false;
1140     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1141     if (!CE) return false;
1142     int64_t Value = CE->getValue();
1143     return Value >= N && Value <= M;
1144   }
1145 
1146   template<int64_t N, int64_t M>
1147   bool isImmediateS4() const {
1148     if (!isImm()) return false;
1149     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1150     if (!CE) return false;
1151     int64_t Value = CE->getValue();
1152     return ((Value & 3) == 0) && Value >= N && Value <= M;
1153   }
1154   template<int64_t N, int64_t M>
1155   bool isImmediateS2() const {
1156     if (!isImm()) return false;
1157     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1158     if (!CE) return false;
1159     int64_t Value = CE->getValue();
1160     return ((Value & 1) == 0) && Value >= N && Value <= M;
1161   }
1162   bool isFBits16() const {
1163     return isImmediate<0, 17>();
1164   }
1165   bool isFBits32() const {
1166     return isImmediate<1, 33>();
1167   }
1168   bool isImm8s4() const {
1169     return isImmediateS4<-1020, 1020>();
1170   }
1171   bool isImm7s4() const {
1172     return isImmediateS4<-508, 508>();
1173   }
1174   bool isImm7Shift0() const {
1175     return isImmediate<-127, 127>();
1176   }
1177   bool isImm7Shift1() const {
1178     return isImmediateS2<-255, 255>();
1179   }
1180   bool isImm7Shift2() const {
1181     return isImmediateS4<-511, 511>();
1182   }
1183   bool isImm7() const {
1184     return isImmediate<-127, 127>();
1185   }
1186   bool isImm0_1020s4() const {
1187     return isImmediateS4<0, 1020>();
1188   }
1189   bool isImm0_508s4() const {
1190     return isImmediateS4<0, 508>();
1191   }
1192   bool isImm0_508s4Neg() const {
1193     if (!isImm()) return false;
1194     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1195     if (!CE) return false;
1196     int64_t Value = -CE->getValue();
1197     // explicitly exclude zero. we want that to use the normal 0_508 version.
1198     return ((Value & 3) == 0) && Value > 0 && Value <= 508;
1199   }
1200 
1201   bool isImm0_4095Neg() const {
1202     if (!isImm()) return false;
1203     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1204     if (!CE) return false;
1205     // isImm0_4095Neg is used with 32-bit immediates only.
1206     // 32-bit immediates are zero extended to 64-bit when parsed,
1207     // thus simple -CE->getValue() results in a big negative number,
1208     // not a small positive number as intended
1209     if ((CE->getValue() >> 32) > 0) return false;
1210     uint32_t Value = -static_cast<uint32_t>(CE->getValue());
1211     return Value > 0 && Value < 4096;
1212   }
1213 
1214   bool isImm0_7() const {
1215     return isImmediate<0, 7>();
1216   }
1217 
1218   bool isImm1_16() const {
1219     return isImmediate<1, 16>();
1220   }
1221 
1222   bool isImm1_32() const {
1223     return isImmediate<1, 32>();
1224   }
1225 
1226   bool isImm8_255() const {
1227     return isImmediate<8, 255>();
1228   }
1229 
1230   bool isImm256_65535Expr() const {
1231     if (!isImm()) return false;
1232     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1233     // If it's not a constant expression, it'll generate a fixup and be
1234     // handled later.
1235     if (!CE) return true;
1236     int64_t Value = CE->getValue();
1237     return Value >= 256 && Value < 65536;
1238   }
1239 
1240   bool isImm0_65535Expr() const {
1241     if (!isImm()) return false;
1242     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1243     // If it's not a constant expression, it'll generate a fixup and be
1244     // handled later.
1245     if (!CE) return true;
1246     int64_t Value = CE->getValue();
1247     return Value >= 0 && Value < 65536;
1248   }
1249 
1250   bool isImm24bit() const {
1251     return isImmediate<0, 0xffffff + 1>();
1252   }
1253 
1254   bool isImmThumbSR() const {
1255     return isImmediate<1, 33>();
1256   }
1257 
1258   template<int shift>
1259   bool isExpImmValue(uint64_t Value) const {
1260     uint64_t mask = (1 << shift) - 1;
1261     if ((Value & mask) != 0 || (Value >> shift) > 0xff)
1262       return false;
1263     return true;
1264   }
1265 
1266   template<int shift>
1267   bool isExpImm() const {
1268     if (!isImm()) return false;
1269     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1270     if (!CE) return false;
1271 
1272     return isExpImmValue<shift>(CE->getValue());
1273   }
1274 
1275   template<int shift, int size>
1276   bool isInvertedExpImm() const {
1277     if (!isImm()) return false;
1278     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1279     if (!CE) return false;
1280 
1281     uint64_t OriginalValue = CE->getValue();
1282     uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1);
1283     return isExpImmValue<shift>(InvertedValue);
1284   }
1285 
1286   bool isPKHLSLImm() const {
1287     return isImmediate<0, 32>();
1288   }
1289 
1290   bool isPKHASRImm() const {
1291     return isImmediate<0, 33>();
1292   }
1293 
1294   bool isAdrLabel() const {
1295     // If we have an immediate that's not a constant, treat it as a label
1296     // reference needing a fixup.
1297     if (isImm() && !isa<MCConstantExpr>(getImm()))
1298       return true;
1299 
1300     // If it is a constant, it must fit into a modified immediate encoding.
1301     if (!isImm()) return false;
1302     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1303     if (!CE) return false;
1304     int64_t Value = CE->getValue();
1305     return (ARM_AM::getSOImmVal(Value) != -1 ||
1306             ARM_AM::getSOImmVal(-Value) != -1);
1307   }
1308 
1309   bool isT2SOImm() const {
1310     // If we have an immediate that's not a constant, treat it as an expression
1311     // needing a fixup.
1312     if (isImm() && !isa<MCConstantExpr>(getImm())) {
1313       // We want to avoid matching :upper16: and :lower16: as we want these
1314       // expressions to match in isImm0_65535Expr()
1315       const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm());
1316       return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
1317                              ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16));
1318     }
1319     if (!isImm()) return false;
1320     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1321     if (!CE) return false;
1322     int64_t Value = CE->getValue();
1323     return ARM_AM::getT2SOImmVal(Value) != -1;
1324   }
1325 
1326   bool isT2SOImmNot() const {
1327     if (!isImm()) return false;
1328     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1329     if (!CE) return false;
1330     int64_t Value = CE->getValue();
1331     return ARM_AM::getT2SOImmVal(Value) == -1 &&
1332       ARM_AM::getT2SOImmVal(~Value) != -1;
1333   }
1334 
1335   bool isT2SOImmNeg() const {
1336     if (!isImm()) return false;
1337     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1338     if (!CE) return false;
1339     int64_t Value = CE->getValue();
1340     // Only use this when not representable as a plain so_imm.
1341     return ARM_AM::getT2SOImmVal(Value) == -1 &&
1342       ARM_AM::getT2SOImmVal(-Value) != -1;
1343   }
1344 
1345   bool isSetEndImm() const {
1346     if (!isImm()) return false;
1347     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1348     if (!CE) return false;
1349     int64_t Value = CE->getValue();
1350     return Value == 1 || Value == 0;
1351   }
1352 
1353   bool isReg() const override { return Kind == k_Register; }
1354   bool isRegList() const { return Kind == k_RegisterList; }
1355   bool isRegListWithAPSR() const {
1356     return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList;
1357   }
1358   bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
1359   bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
1360   bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; }
1361   bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; }
1362   bool isToken() const override { return Kind == k_Token; }
1363   bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
1364   bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
1365   bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; }
1366   bool isMem() const override {
1367       return isGPRMem() || isMVEMem();
1368   }
1369   bool isMVEMem() const {
1370     if (Kind != k_Memory)
1371       return false;
1372     if (Memory.BaseRegNum &&
1373         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) &&
1374         !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum))
1375       return false;
1376     if (Memory.OffsetRegNum &&
1377         !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1378             Memory.OffsetRegNum))
1379       return false;
1380     return true;
1381   }
1382   bool isGPRMem() const {
1383     if (Kind != k_Memory)
1384       return false;
1385     if (Memory.BaseRegNum &&
1386         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum))
1387       return false;
1388     if (Memory.OffsetRegNum &&
1389         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum))
1390       return false;
1391     return true;
1392   }
1393   bool isShifterImm() const { return Kind == k_ShifterImmediate; }
1394   bool isRegShiftedReg() const {
1395     return Kind == k_ShiftedRegister &&
1396            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1397                RegShiftedReg.SrcReg) &&
1398            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1399                RegShiftedReg.ShiftReg);
1400   }
1401   bool isRegShiftedImm() const {
1402     return Kind == k_ShiftedImmediate &&
1403            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1404                RegShiftedImm.SrcReg);
1405   }
1406   bool isRotImm() const { return Kind == k_RotateImmediate; }
1407 
1408   template<unsigned Min, unsigned Max>
1409   bool isPowerTwoInRange() const {
1410     if (!isImm()) return false;
1411     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1412     if (!CE) return false;
1413     int64_t Value = CE->getValue();
1414     return Value > 0 && llvm::popcount((uint64_t)Value) == 1 && Value >= Min &&
1415            Value <= Max;
1416   }
1417   bool isModImm() const { return Kind == k_ModifiedImmediate; }
1418 
1419   bool isModImmNot() const {
1420     if (!isImm()) return false;
1421     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1422     if (!CE) return false;
1423     int64_t Value = CE->getValue();
1424     return ARM_AM::getSOImmVal(~Value) != -1;
1425   }
1426 
1427   bool isModImmNeg() const {
1428     if (!isImm()) return false;
1429     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1430     if (!CE) return false;
1431     int64_t Value = CE->getValue();
1432     return ARM_AM::getSOImmVal(Value) == -1 &&
1433       ARM_AM::getSOImmVal(-Value) != -1;
1434   }
1435 
1436   bool isThumbModImmNeg1_7() const {
1437     if (!isImm()) return false;
1438     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1439     if (!CE) return false;
1440     int32_t Value = -(int32_t)CE->getValue();
1441     return 0 < Value && Value < 8;
1442   }
1443 
1444   bool isThumbModImmNeg8_255() const {
1445     if (!isImm()) return false;
1446     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1447     if (!CE) return false;
1448     int32_t Value = -(int32_t)CE->getValue();
1449     return 7 < Value && Value < 256;
1450   }
1451 
1452   bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; }
1453   bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
1454   bool isPostIdxRegShifted() const {
1455     return Kind == k_PostIndexRegister &&
1456            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum);
1457   }
1458   bool isPostIdxReg() const {
1459     return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift;
1460   }
1461   bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const {
1462     if (!isGPRMem())
1463       return false;
1464     // No offset of any kind.
1465     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1466      (alignOK || Memory.Alignment == Alignment);
1467   }
1468   bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const {
1469     if (!isGPRMem())
1470       return false;
1471 
1472     if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1473             Memory.BaseRegNum))
1474       return false;
1475 
1476     // No offset of any kind.
1477     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1478      (alignOK || Memory.Alignment == Alignment);
1479   }
1480   bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const {
1481     if (!isGPRMem())
1482       return false;
1483 
1484     if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains(
1485             Memory.BaseRegNum))
1486       return false;
1487 
1488     // No offset of any kind.
1489     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1490      (alignOK || Memory.Alignment == Alignment);
1491   }
1492   bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const {
1493     if (!isGPRMem())
1494       return false;
1495 
1496     if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains(
1497             Memory.BaseRegNum))
1498       return false;
1499 
1500     // No offset of any kind.
1501     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1502      (alignOK || Memory.Alignment == Alignment);
1503   }
1504   bool isMemPCRelImm12() const {
1505     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1506       return false;
1507     // Base register must be PC.
1508     if (Memory.BaseRegNum != ARM::PC)
1509       return false;
1510     // Immediate offset in range [-4095, 4095].
1511     if (!Memory.OffsetImm) return true;
1512     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1513       int64_t Val = CE->getValue();
1514       return (Val > -4096 && Val < 4096) ||
1515              (Val == std::numeric_limits<int32_t>::min());
1516     }
1517     return false;
1518   }
1519 
1520   bool isAlignedMemory() const {
1521     return isMemNoOffset(true);
1522   }
1523 
1524   bool isAlignedMemoryNone() const {
1525     return isMemNoOffset(false, 0);
1526   }
1527 
1528   bool isDupAlignedMemoryNone() const {
1529     return isMemNoOffset(false, 0);
1530   }
1531 
1532   bool isAlignedMemory16() const {
1533     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1534       return true;
1535     return isMemNoOffset(false, 0);
1536   }
1537 
1538   bool isDupAlignedMemory16() const {
1539     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1540       return true;
1541     return isMemNoOffset(false, 0);
1542   }
1543 
1544   bool isAlignedMemory32() const {
1545     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1546       return true;
1547     return isMemNoOffset(false, 0);
1548   }
1549 
1550   bool isDupAlignedMemory32() const {
1551     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1552       return true;
1553     return isMemNoOffset(false, 0);
1554   }
1555 
1556   bool isAlignedMemory64() const {
1557     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1558       return true;
1559     return isMemNoOffset(false, 0);
1560   }
1561 
1562   bool isDupAlignedMemory64() const {
1563     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1564       return true;
1565     return isMemNoOffset(false, 0);
1566   }
1567 
1568   bool isAlignedMemory64or128() const {
1569     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1570       return true;
1571     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1572       return true;
1573     return isMemNoOffset(false, 0);
1574   }
1575 
1576   bool isDupAlignedMemory64or128() const {
1577     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1578       return true;
1579     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1580       return true;
1581     return isMemNoOffset(false, 0);
1582   }
1583 
1584   bool isAlignedMemory64or128or256() const {
1585     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1586       return true;
1587     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1588       return true;
1589     if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
1590       return true;
1591     return isMemNoOffset(false, 0);
1592   }
1593 
1594   bool isAddrMode2() const {
1595     if (!isGPRMem() || Memory.Alignment != 0) return false;
1596     // Check for register offset.
1597     if (Memory.OffsetRegNum) return true;
1598     // Immediate offset in range [-4095, 4095].
1599     if (!Memory.OffsetImm) return true;
1600     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1601       int64_t Val = CE->getValue();
1602       return Val > -4096 && Val < 4096;
1603     }
1604     return false;
1605   }
1606 
1607   bool isAM2OffsetImm() const {
1608     if (!isImm()) return false;
1609     // Immediate offset in range [-4095, 4095].
1610     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1611     if (!CE) return false;
1612     int64_t Val = CE->getValue();
1613     return (Val == std::numeric_limits<int32_t>::min()) ||
1614            (Val > -4096 && Val < 4096);
1615   }
1616 
1617   bool isAddrMode3() const {
1618     // If we have an immediate that's not a constant, treat it as a label
1619     // reference needing a fixup. If it is a constant, it's something else
1620     // and we reject it.
1621     if (isImm() && !isa<MCConstantExpr>(getImm()))
1622       return true;
1623     if (!isGPRMem() || Memory.Alignment != 0) return false;
1624     // No shifts are legal for AM3.
1625     if (Memory.ShiftType != ARM_AM::no_shift) return false;
1626     // Check for register offset.
1627     if (Memory.OffsetRegNum) return true;
1628     // Immediate offset in range [-255, 255].
1629     if (!Memory.OffsetImm) return true;
1630     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1631       int64_t Val = CE->getValue();
1632       // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and
1633       // we have to check for this too.
1634       return (Val > -256 && Val < 256) ||
1635              Val == std::numeric_limits<int32_t>::min();
1636     }
1637     return false;
1638   }
1639 
1640   bool isAM3Offset() const {
1641     if (isPostIdxReg())
1642       return true;
1643     if (!isImm())
1644       return false;
1645     // Immediate offset in range [-255, 255].
1646     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1647     if (!CE) return false;
1648     int64_t Val = CE->getValue();
1649     // Special case, #-0 is std::numeric_limits<int32_t>::min().
1650     return (Val > -256 && Val < 256) ||
1651            Val == std::numeric_limits<int32_t>::min();
1652   }
1653 
1654   bool isAddrMode5() const {
1655     // If we have an immediate that's not a constant, treat it as a label
1656     // reference needing a fixup. If it is a constant, it's something else
1657     // and we reject it.
1658     if (isImm() && !isa<MCConstantExpr>(getImm()))
1659       return true;
1660     if (!isGPRMem() || Memory.Alignment != 0) return false;
1661     // Check for register offset.
1662     if (Memory.OffsetRegNum) return false;
1663     // Immediate offset in range [-1020, 1020] and a multiple of 4.
1664     if (!Memory.OffsetImm) return true;
1665     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1666       int64_t Val = CE->getValue();
1667       return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
1668              Val == std::numeric_limits<int32_t>::min();
1669     }
1670     return false;
1671   }
1672 
1673   bool isAddrMode5FP16() const {
1674     // If we have an immediate that's not a constant, treat it as a label
1675     // reference needing a fixup. If it is a constant, it's something else
1676     // and we reject it.
1677     if (isImm() && !isa<MCConstantExpr>(getImm()))
1678       return true;
1679     if (!isGPRMem() || Memory.Alignment != 0) return false;
1680     // Check for register offset.
1681     if (Memory.OffsetRegNum) return false;
1682     // Immediate offset in range [-510, 510] and a multiple of 2.
1683     if (!Memory.OffsetImm) return true;
1684     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1685       int64_t Val = CE->getValue();
1686       return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) ||
1687              Val == std::numeric_limits<int32_t>::min();
1688     }
1689     return false;
1690   }
1691 
1692   bool isMemTBB() const {
1693     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1694         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1695       return false;
1696     return true;
1697   }
1698 
1699   bool isMemTBH() const {
1700     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1701         Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
1702         Memory.Alignment != 0 )
1703       return false;
1704     return true;
1705   }
1706 
1707   bool isMemRegOffset() const {
1708     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
1709       return false;
1710     return true;
1711   }
1712 
1713   bool isT2MemRegOffset() const {
1714     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1715         Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC)
1716       return false;
1717     // Only lsl #{0, 1, 2, 3} allowed.
1718     if (Memory.ShiftType == ARM_AM::no_shift)
1719       return true;
1720     if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
1721       return false;
1722     return true;
1723   }
1724 
1725   bool isMemThumbRR() const {
1726     // Thumb reg+reg addressing is simple. Just two registers, a base and
1727     // an offset. No shifts, negations or any other complicating factors.
1728     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1729         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1730       return false;
1731     return isARMLowRegister(Memory.BaseRegNum) &&
1732       (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
1733   }
1734 
1735   bool isMemThumbRIs4() const {
1736     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1737         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1738       return false;
1739     // Immediate offset, multiple of 4 in range [0, 124].
1740     if (!Memory.OffsetImm) return true;
1741     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1742       int64_t Val = CE->getValue();
1743       return Val >= 0 && Val <= 124 && (Val % 4) == 0;
1744     }
1745     return false;
1746   }
1747 
1748   bool isMemThumbRIs2() const {
1749     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1750         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1751       return false;
1752     // Immediate offset, multiple of 4 in range [0, 62].
1753     if (!Memory.OffsetImm) return true;
1754     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1755       int64_t Val = CE->getValue();
1756       return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1757     }
1758     return false;
1759   }
1760 
1761   bool isMemThumbRIs1() const {
1762     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1763         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1764       return false;
1765     // Immediate offset in range [0, 31].
1766     if (!Memory.OffsetImm) return true;
1767     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1768       int64_t Val = CE->getValue();
1769       return Val >= 0 && Val <= 31;
1770     }
1771     return false;
1772   }
1773 
1774   bool isMemThumbSPI() const {
1775     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1776         Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1777       return false;
1778     // Immediate offset, multiple of 4 in range [0, 1020].
1779     if (!Memory.OffsetImm) return true;
1780     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1781       int64_t Val = CE->getValue();
1782       return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1783     }
1784     return false;
1785   }
1786 
1787   bool isMemImm8s4Offset() const {
1788     // If we have an immediate that's not a constant, treat it as a label
1789     // reference needing a fixup. If it is a constant, it's something else
1790     // and we reject it.
1791     if (isImm() && !isa<MCConstantExpr>(getImm()))
1792       return true;
1793     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1794       return false;
1795     // Immediate offset a multiple of 4 in range [-1020, 1020].
1796     if (!Memory.OffsetImm) return true;
1797     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1798       int64_t Val = CE->getValue();
1799       // Special case, #-0 is std::numeric_limits<int32_t>::min().
1800       return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) ||
1801              Val == std::numeric_limits<int32_t>::min();
1802     }
1803     return false;
1804   }
1805 
1806   bool isMemImm7s4Offset() const {
1807     // If we have an immediate that's not a constant, treat it as a label
1808     // reference needing a fixup. If it is a constant, it's something else
1809     // and we reject it.
1810     if (isImm() && !isa<MCConstantExpr>(getImm()))
1811       return true;
1812     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 ||
1813         !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1814             Memory.BaseRegNum))
1815       return false;
1816     // Immediate offset a multiple of 4 in range [-508, 508].
1817     if (!Memory.OffsetImm) return true;
1818     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1819       int64_t Val = CE->getValue();
1820       // Special case, #-0 is INT32_MIN.
1821       return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN;
1822     }
1823     return false;
1824   }
1825 
1826   bool isMemImm0_1020s4Offset() const {
1827     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1828       return false;
1829     // Immediate offset a multiple of 4 in range [0, 1020].
1830     if (!Memory.OffsetImm) return true;
1831     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1832       int64_t Val = CE->getValue();
1833       return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1834     }
1835     return false;
1836   }
1837 
1838   bool isMemImm8Offset() const {
1839     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1840       return false;
1841     // Base reg of PC isn't allowed for these encodings.
1842     if (Memory.BaseRegNum == ARM::PC) return false;
1843     // Immediate offset in range [-255, 255].
1844     if (!Memory.OffsetImm) return true;
1845     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1846       int64_t Val = CE->getValue();
1847       return (Val == std::numeric_limits<int32_t>::min()) ||
1848              (Val > -256 && Val < 256);
1849     }
1850     return false;
1851   }
1852 
1853   template<unsigned Bits, unsigned RegClassID>
1854   bool isMemImm7ShiftedOffset() const {
1855     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 ||
1856         !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum))
1857       return false;
1858 
1859     // Expect an immediate offset equal to an element of the range
1860     // [-127, 127], shifted left by Bits.
1861 
1862     if (!Memory.OffsetImm) return true;
1863     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1864       int64_t Val = CE->getValue();
1865 
1866       // INT32_MIN is a special-case value (indicating the encoding with
1867       // zero offset and the subtract bit set)
1868       if (Val == INT32_MIN)
1869         return true;
1870 
1871       unsigned Divisor = 1U << Bits;
1872 
1873       // Check that the low bits are zero
1874       if (Val % Divisor != 0)
1875         return false;
1876 
1877       // Check that the remaining offset is within range.
1878       Val /= Divisor;
1879       return (Val >= -127 && Val <= 127);
1880     }
1881     return false;
1882   }
1883 
1884   template <int shift> bool isMemRegRQOffset() const {
1885     if (!isMVEMem() || Memory.OffsetImm != nullptr || Memory.Alignment != 0)
1886       return false;
1887 
1888     if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1889             Memory.BaseRegNum))
1890       return false;
1891     if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1892             Memory.OffsetRegNum))
1893       return false;
1894 
1895     if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift)
1896       return false;
1897 
1898     if (shift > 0 &&
1899         (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift))
1900       return false;
1901 
1902     return true;
1903   }
1904 
1905   template <int shift> bool isMemRegQOffset() const {
1906     if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1907       return false;
1908 
1909     if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1910             Memory.BaseRegNum))
1911       return false;
1912 
1913     if (!Memory.OffsetImm)
1914       return true;
1915     static_assert(shift < 56,
1916                   "Such that we dont shift by a value higher than 62");
1917     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1918       int64_t Val = CE->getValue();
1919 
1920       // The value must be a multiple of (1 << shift)
1921       if ((Val & ((1U << shift) - 1)) != 0)
1922         return false;
1923 
1924       // And be in the right range, depending on the amount that it is shifted
1925       // by.  Shift 0, is equal to 7 unsigned bits, the sign bit is set
1926       // separately.
1927       int64_t Range = (1U << (7 + shift)) - 1;
1928       return (Val == INT32_MIN) || (Val > -Range && Val < Range);
1929     }
1930     return false;
1931   }
1932 
1933   bool isMemPosImm8Offset() const {
1934     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1935       return false;
1936     // Immediate offset in range [0, 255].
1937     if (!Memory.OffsetImm) return true;
1938     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1939       int64_t Val = CE->getValue();
1940       return Val >= 0 && Val < 256;
1941     }
1942     return false;
1943   }
1944 
1945   bool isMemNegImm8Offset() const {
1946     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1947       return false;
1948     // Base reg of PC isn't allowed for these encodings.
1949     if (Memory.BaseRegNum == ARM::PC) return false;
1950     // Immediate offset in range [-255, -1].
1951     if (!Memory.OffsetImm) return false;
1952     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1953       int64_t Val = CE->getValue();
1954       return (Val == std::numeric_limits<int32_t>::min()) ||
1955              (Val > -256 && Val < 0);
1956     }
1957     return false;
1958   }
1959 
1960   bool isMemUImm12Offset() const {
1961     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1962       return false;
1963     // Immediate offset in range [0, 4095].
1964     if (!Memory.OffsetImm) return true;
1965     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1966       int64_t Val = CE->getValue();
1967       return (Val >= 0 && Val < 4096);
1968     }
1969     return false;
1970   }
1971 
1972   bool isMemImm12Offset() const {
1973     // If we have an immediate that's not a constant, treat it as a label
1974     // reference needing a fixup. If it is a constant, it's something else
1975     // and we reject it.
1976 
1977     if (isImm() && !isa<MCConstantExpr>(getImm()))
1978       return true;
1979 
1980     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1981       return false;
1982     // Immediate offset in range [-4095, 4095].
1983     if (!Memory.OffsetImm) return true;
1984     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1985       int64_t Val = CE->getValue();
1986       return (Val > -4096 && Val < 4096) ||
1987              (Val == std::numeric_limits<int32_t>::min());
1988     }
1989     // If we have an immediate that's not a constant, treat it as a
1990     // symbolic expression needing a fixup.
1991     return true;
1992   }
1993 
1994   bool isConstPoolAsmImm() const {
1995     // Delay processing of Constant Pool Immediate, this will turn into
1996     // a constant. Match no other operand
1997     return (isConstantPoolImm());
1998   }
1999 
2000   bool isPostIdxImm8() const {
2001     if (!isImm()) return false;
2002     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2003     if (!CE) return false;
2004     int64_t Val = CE->getValue();
2005     return (Val > -256 && Val < 256) ||
2006            (Val == std::numeric_limits<int32_t>::min());
2007   }
2008 
2009   bool isPostIdxImm8s4() const {
2010     if (!isImm()) return false;
2011     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2012     if (!CE) return false;
2013     int64_t Val = CE->getValue();
2014     return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
2015            (Val == std::numeric_limits<int32_t>::min());
2016   }
2017 
2018   bool isMSRMask() const { return Kind == k_MSRMask; }
2019   bool isBankedReg() const { return Kind == k_BankedReg; }
2020   bool isProcIFlags() const { return Kind == k_ProcIFlags; }
2021 
2022   // NEON operands.
2023   bool isSingleSpacedVectorList() const {
2024     return Kind == k_VectorList && !VectorList.isDoubleSpaced;
2025   }
2026 
2027   bool isDoubleSpacedVectorList() const {
2028     return Kind == k_VectorList && VectorList.isDoubleSpaced;
2029   }
2030 
2031   bool isVecListOneD() const {
2032     if (!isSingleSpacedVectorList()) return false;
2033     return VectorList.Count == 1;
2034   }
2035 
2036   bool isVecListTwoMQ() const {
2037     return isSingleSpacedVectorList() && VectorList.Count == 2 &&
2038            ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
2039                VectorList.RegNum);
2040   }
2041 
2042   bool isVecListDPair() const {
2043     if (!isSingleSpacedVectorList()) return false;
2044     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
2045               .contains(VectorList.RegNum));
2046   }
2047 
2048   bool isVecListThreeD() const {
2049     if (!isSingleSpacedVectorList()) return false;
2050     return VectorList.Count == 3;
2051   }
2052 
2053   bool isVecListFourD() const {
2054     if (!isSingleSpacedVectorList()) return false;
2055     return VectorList.Count == 4;
2056   }
2057 
2058   bool isVecListDPairSpaced() const {
2059     if (Kind != k_VectorList) return false;
2060     if (isSingleSpacedVectorList()) return false;
2061     return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
2062               .contains(VectorList.RegNum));
2063   }
2064 
2065   bool isVecListThreeQ() const {
2066     if (!isDoubleSpacedVectorList()) return false;
2067     return VectorList.Count == 3;
2068   }
2069 
2070   bool isVecListFourQ() const {
2071     if (!isDoubleSpacedVectorList()) return false;
2072     return VectorList.Count == 4;
2073   }
2074 
2075   bool isVecListFourMQ() const {
2076     return isSingleSpacedVectorList() && VectorList.Count == 4 &&
2077            ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
2078                VectorList.RegNum);
2079   }
2080 
2081   bool isSingleSpacedVectorAllLanes() const {
2082     return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
2083   }
2084 
2085   bool isDoubleSpacedVectorAllLanes() const {
2086     return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
2087   }
2088 
2089   bool isVecListOneDAllLanes() const {
2090     if (!isSingleSpacedVectorAllLanes()) return false;
2091     return VectorList.Count == 1;
2092   }
2093 
2094   bool isVecListDPairAllLanes() const {
2095     if (!isSingleSpacedVectorAllLanes()) return false;
2096     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
2097               .contains(VectorList.RegNum));
2098   }
2099 
2100   bool isVecListDPairSpacedAllLanes() const {
2101     if (!isDoubleSpacedVectorAllLanes()) return false;
2102     return VectorList.Count == 2;
2103   }
2104 
2105   bool isVecListThreeDAllLanes() const {
2106     if (!isSingleSpacedVectorAllLanes()) return false;
2107     return VectorList.Count == 3;
2108   }
2109 
2110   bool isVecListThreeQAllLanes() const {
2111     if (!isDoubleSpacedVectorAllLanes()) return false;
2112     return VectorList.Count == 3;
2113   }
2114 
2115   bool isVecListFourDAllLanes() const {
2116     if (!isSingleSpacedVectorAllLanes()) return false;
2117     return VectorList.Count == 4;
2118   }
2119 
2120   bool isVecListFourQAllLanes() const {
2121     if (!isDoubleSpacedVectorAllLanes()) return false;
2122     return VectorList.Count == 4;
2123   }
2124 
2125   bool isSingleSpacedVectorIndexed() const {
2126     return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
2127   }
2128 
2129   bool isDoubleSpacedVectorIndexed() const {
2130     return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
2131   }
2132 
2133   bool isVecListOneDByteIndexed() const {
2134     if (!isSingleSpacedVectorIndexed()) return false;
2135     return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
2136   }
2137 
2138   bool isVecListOneDHWordIndexed() const {
2139     if (!isSingleSpacedVectorIndexed()) return false;
2140     return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
2141   }
2142 
2143   bool isVecListOneDWordIndexed() const {
2144     if (!isSingleSpacedVectorIndexed()) return false;
2145     return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
2146   }
2147 
2148   bool isVecListTwoDByteIndexed() const {
2149     if (!isSingleSpacedVectorIndexed()) return false;
2150     return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
2151   }
2152 
2153   bool isVecListTwoDHWordIndexed() const {
2154     if (!isSingleSpacedVectorIndexed()) return false;
2155     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
2156   }
2157 
2158   bool isVecListTwoQWordIndexed() const {
2159     if (!isDoubleSpacedVectorIndexed()) return false;
2160     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
2161   }
2162 
2163   bool isVecListTwoQHWordIndexed() const {
2164     if (!isDoubleSpacedVectorIndexed()) return false;
2165     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
2166   }
2167 
2168   bool isVecListTwoDWordIndexed() const {
2169     if (!isSingleSpacedVectorIndexed()) return false;
2170     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
2171   }
2172 
2173   bool isVecListThreeDByteIndexed() const {
2174     if (!isSingleSpacedVectorIndexed()) return false;
2175     return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
2176   }
2177 
2178   bool isVecListThreeDHWordIndexed() const {
2179     if (!isSingleSpacedVectorIndexed()) return false;
2180     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
2181   }
2182 
2183   bool isVecListThreeQWordIndexed() const {
2184     if (!isDoubleSpacedVectorIndexed()) return false;
2185     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
2186   }
2187 
2188   bool isVecListThreeQHWordIndexed() const {
2189     if (!isDoubleSpacedVectorIndexed()) return false;
2190     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
2191   }
2192 
2193   bool isVecListThreeDWordIndexed() const {
2194     if (!isSingleSpacedVectorIndexed()) return false;
2195     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
2196   }
2197 
2198   bool isVecListFourDByteIndexed() const {
2199     if (!isSingleSpacedVectorIndexed()) return false;
2200     return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
2201   }
2202 
2203   bool isVecListFourDHWordIndexed() const {
2204     if (!isSingleSpacedVectorIndexed()) return false;
2205     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
2206   }
2207 
2208   bool isVecListFourQWordIndexed() const {
2209     if (!isDoubleSpacedVectorIndexed()) return false;
2210     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
2211   }
2212 
2213   bool isVecListFourQHWordIndexed() const {
2214     if (!isDoubleSpacedVectorIndexed()) return false;
2215     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
2216   }
2217 
2218   bool isVecListFourDWordIndexed() const {
2219     if (!isSingleSpacedVectorIndexed()) return false;
2220     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
2221   }
2222 
2223   bool isVectorIndex() const { return Kind == k_VectorIndex; }
2224 
2225   template <unsigned NumLanes>
2226   bool isVectorIndexInRange() const {
2227     if (Kind != k_VectorIndex) return false;
2228     return VectorIndex.Val < NumLanes;
2229   }
2230 
2231   bool isVectorIndex8()  const { return isVectorIndexInRange<8>(); }
2232   bool isVectorIndex16() const { return isVectorIndexInRange<4>(); }
2233   bool isVectorIndex32() const { return isVectorIndexInRange<2>(); }
2234   bool isVectorIndex64() const { return isVectorIndexInRange<1>(); }
2235 
2236   template<int PermittedValue, int OtherPermittedValue>
2237   bool isMVEPairVectorIndex() const {
2238     if (Kind != k_VectorIndex) return false;
2239     return VectorIndex.Val == PermittedValue ||
2240            VectorIndex.Val == OtherPermittedValue;
2241   }
2242 
2243   bool isNEONi8splat() const {
2244     if (!isImm()) return false;
2245     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2246     // Must be a constant.
2247     if (!CE) return false;
2248     int64_t Value = CE->getValue();
2249     // i8 value splatted across 8 bytes. The immediate is just the 8 byte
2250     // value.
2251     return Value >= 0 && Value < 256;
2252   }
2253 
2254   bool isNEONi16splat() const {
2255     if (isNEONByteReplicate(2))
2256       return false; // Leave that for bytes replication and forbid by default.
2257     if (!isImm())
2258       return false;
2259     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2260     // Must be a constant.
2261     if (!CE) return false;
2262     unsigned Value = CE->getValue();
2263     return ARM_AM::isNEONi16splat(Value);
2264   }
2265 
2266   bool isNEONi16splatNot() const {
2267     if (!isImm())
2268       return false;
2269     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2270     // Must be a constant.
2271     if (!CE) return false;
2272     unsigned Value = CE->getValue();
2273     return ARM_AM::isNEONi16splat(~Value & 0xffff);
2274   }
2275 
2276   bool isNEONi32splat() const {
2277     if (isNEONByteReplicate(4))
2278       return false; // Leave that for bytes replication and forbid by default.
2279     if (!isImm())
2280       return false;
2281     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2282     // Must be a constant.
2283     if (!CE) return false;
2284     unsigned Value = CE->getValue();
2285     return ARM_AM::isNEONi32splat(Value);
2286   }
2287 
2288   bool isNEONi32splatNot() const {
2289     if (!isImm())
2290       return false;
2291     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2292     // Must be a constant.
2293     if (!CE) return false;
2294     unsigned Value = CE->getValue();
2295     return ARM_AM::isNEONi32splat(~Value);
2296   }
2297 
2298   static bool isValidNEONi32vmovImm(int64_t Value) {
2299     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
2300     // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
2301     return ((Value & 0xffffffffffffff00) == 0) ||
2302            ((Value & 0xffffffffffff00ff) == 0) ||
2303            ((Value & 0xffffffffff00ffff) == 0) ||
2304            ((Value & 0xffffffff00ffffff) == 0) ||
2305            ((Value & 0xffffffffffff00ff) == 0xff) ||
2306            ((Value & 0xffffffffff00ffff) == 0xffff);
2307   }
2308 
2309   bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const {
2310     assert((Width == 8 || Width == 16 || Width == 32) &&
2311            "Invalid element width");
2312     assert(NumElems * Width <= 64 && "Invalid result width");
2313 
2314     if (!isImm())
2315       return false;
2316     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2317     // Must be a constant.
2318     if (!CE)
2319       return false;
2320     int64_t Value = CE->getValue();
2321     if (!Value)
2322       return false; // Don't bother with zero.
2323     if (Inv)
2324       Value = ~Value;
2325 
2326     uint64_t Mask = (1ull << Width) - 1;
2327     uint64_t Elem = Value & Mask;
2328     if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0)
2329       return false;
2330     if (Width == 32 && !isValidNEONi32vmovImm(Elem))
2331       return false;
2332 
2333     for (unsigned i = 1; i < NumElems; ++i) {
2334       Value >>= Width;
2335       if ((Value & Mask) != Elem)
2336         return false;
2337     }
2338     return true;
2339   }
2340 
2341   bool isNEONByteReplicate(unsigned NumBytes) const {
2342     return isNEONReplicate(8, NumBytes, false);
2343   }
2344 
2345   static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) {
2346     assert((FromW == 8 || FromW == 16 || FromW == 32) &&
2347            "Invalid source width");
2348     assert((ToW == 16 || ToW == 32 || ToW == 64) &&
2349            "Invalid destination width");
2350     assert(FromW < ToW && "ToW is not less than FromW");
2351   }
2352 
2353   template<unsigned FromW, unsigned ToW>
2354   bool isNEONmovReplicate() const {
2355     checkNeonReplicateArgs(FromW, ToW);
2356     if (ToW == 64 && isNEONi64splat())
2357       return false;
2358     return isNEONReplicate(FromW, ToW / FromW, false);
2359   }
2360 
2361   template<unsigned FromW, unsigned ToW>
2362   bool isNEONinvReplicate() const {
2363     checkNeonReplicateArgs(FromW, ToW);
2364     return isNEONReplicate(FromW, ToW / FromW, true);
2365   }
2366 
2367   bool isNEONi32vmov() const {
2368     if (isNEONByteReplicate(4))
2369       return false; // Let it to be classified as byte-replicate case.
2370     if (!isImm())
2371       return false;
2372     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2373     // Must be a constant.
2374     if (!CE)
2375       return false;
2376     return isValidNEONi32vmovImm(CE->getValue());
2377   }
2378 
2379   bool isNEONi32vmovNeg() const {
2380     if (!isImm()) return false;
2381     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2382     // Must be a constant.
2383     if (!CE) return false;
2384     return isValidNEONi32vmovImm(~CE->getValue());
2385   }
2386 
2387   bool isNEONi64splat() const {
2388     if (!isImm()) return false;
2389     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2390     // Must be a constant.
2391     if (!CE) return false;
2392     uint64_t Value = CE->getValue();
2393     // i64 value with each byte being either 0 or 0xff.
2394     for (unsigned i = 0; i < 8; ++i, Value >>= 8)
2395       if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
2396     return true;
2397   }
2398 
2399   template<int64_t Angle, int64_t Remainder>
2400   bool isComplexRotation() const {
2401     if (!isImm()) return false;
2402 
2403     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2404     if (!CE) return false;
2405     uint64_t Value = CE->getValue();
2406 
2407     return (Value % Angle == Remainder && Value <= 270);
2408   }
2409 
2410   bool isMVELongShift() const {
2411     if (!isImm()) return false;
2412     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2413     // Must be a constant.
2414     if (!CE) return false;
2415     uint64_t Value = CE->getValue();
2416     return Value >= 1 && Value <= 32;
2417   }
2418 
2419   bool isMveSaturateOp() const {
2420     if (!isImm()) return false;
2421     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2422     if (!CE) return false;
2423     uint64_t Value = CE->getValue();
2424     return Value == 48 || Value == 64;
2425   }
2426 
2427   bool isITCondCodeNoAL() const {
2428     if (!isITCondCode()) return false;
2429     ARMCC::CondCodes CC = getCondCode();
2430     return CC != ARMCC::AL;
2431   }
2432 
2433   bool isITCondCodeRestrictedI() const {
2434     if (!isITCondCode())
2435       return false;
2436     ARMCC::CondCodes CC = getCondCode();
2437     return CC == ARMCC::EQ || CC == ARMCC::NE;
2438   }
2439 
2440   bool isITCondCodeRestrictedS() const {
2441     if (!isITCondCode())
2442       return false;
2443     ARMCC::CondCodes CC = getCondCode();
2444     return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE ||
2445            CC == ARMCC::GE;
2446   }
2447 
2448   bool isITCondCodeRestrictedU() const {
2449     if (!isITCondCode())
2450       return false;
2451     ARMCC::CondCodes CC = getCondCode();
2452     return CC == ARMCC::HS || CC == ARMCC::HI;
2453   }
2454 
2455   bool isITCondCodeRestrictedFP() const {
2456     if (!isITCondCode())
2457       return false;
2458     ARMCC::CondCodes CC = getCondCode();
2459     return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT ||
2460            CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE;
2461   }
2462 
2463   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
2464     // Add as immediates when possible.  Null MCExpr = 0.
2465     if (!Expr)
2466       Inst.addOperand(MCOperand::createImm(0));
2467     else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
2468       Inst.addOperand(MCOperand::createImm(CE->getValue()));
2469     else
2470       Inst.addOperand(MCOperand::createExpr(Expr));
2471   }
2472 
2473   void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const {
2474     assert(N == 1 && "Invalid number of operands!");
2475     addExpr(Inst, getImm());
2476   }
2477 
2478   void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const {
2479     assert(N == 1 && "Invalid number of operands!");
2480     addExpr(Inst, getImm());
2481   }
2482 
2483   void addCondCodeOperands(MCInst &Inst, unsigned N) const {
2484     assert(N == 2 && "Invalid number of operands!");
2485     Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2486     unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
2487     Inst.addOperand(MCOperand::createReg(RegNum));
2488   }
2489 
2490   void addVPTPredNOperands(MCInst &Inst, unsigned N) const {
2491     assert(N == 3 && "Invalid number of operands!");
2492     Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred())));
2493     unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0;
2494     Inst.addOperand(MCOperand::createReg(RegNum));
2495     Inst.addOperand(MCOperand::createReg(0));
2496   }
2497 
2498   void addVPTPredROperands(MCInst &Inst, unsigned N) const {
2499     assert(N == 4 && "Invalid number of operands!");
2500     addVPTPredNOperands(Inst, N-1);
2501     unsigned RegNum;
2502     if (getVPTPred() == ARMVCC::None) {
2503       RegNum = 0;
2504     } else {
2505       unsigned NextOpIndex = Inst.getNumOperands();
2506       const MCInstrDesc &MCID =
2507           ARMInsts[ARM::INSTRUCTION_LIST_END - 1 - Inst.getOpcode()];
2508       int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO);
2509       assert(TiedOp >= 0 &&
2510              "Inactive register in vpred_r is not tied to an output!");
2511       RegNum = Inst.getOperand(TiedOp).getReg();
2512     }
2513     Inst.addOperand(MCOperand::createReg(RegNum));
2514   }
2515 
2516   void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
2517     assert(N == 1 && "Invalid number of operands!");
2518     Inst.addOperand(MCOperand::createImm(getCoproc()));
2519   }
2520 
2521   void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
2522     assert(N == 1 && "Invalid number of operands!");
2523     Inst.addOperand(MCOperand::createImm(getCoproc()));
2524   }
2525 
2526   void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
2527     assert(N == 1 && "Invalid number of operands!");
2528     Inst.addOperand(MCOperand::createImm(CoprocOption.Val));
2529   }
2530 
2531   void addITMaskOperands(MCInst &Inst, unsigned N) const {
2532     assert(N == 1 && "Invalid number of operands!");
2533     Inst.addOperand(MCOperand::createImm(ITMask.Mask));
2534   }
2535 
2536   void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
2537     assert(N == 1 && "Invalid number of operands!");
2538     Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2539   }
2540 
2541   void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const {
2542     assert(N == 1 && "Invalid number of operands!");
2543     Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode()))));
2544   }
2545 
2546   void addCCOutOperands(MCInst &Inst, unsigned N) const {
2547     assert(N == 1 && "Invalid number of operands!");
2548     Inst.addOperand(MCOperand::createReg(getReg()));
2549   }
2550 
2551   void addRegOperands(MCInst &Inst, unsigned N) const {
2552     assert(N == 1 && "Invalid number of operands!");
2553     Inst.addOperand(MCOperand::createReg(getReg()));
2554   }
2555 
2556   void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
2557     assert(N == 3 && "Invalid number of operands!");
2558     assert(isRegShiftedReg() &&
2559            "addRegShiftedRegOperands() on non-RegShiftedReg!");
2560     Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg));
2561     Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg));
2562     Inst.addOperand(MCOperand::createImm(
2563       ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
2564   }
2565 
2566   void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
2567     assert(N == 2 && "Invalid number of operands!");
2568     assert(isRegShiftedImm() &&
2569            "addRegShiftedImmOperands() on non-RegShiftedImm!");
2570     Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg));
2571     // Shift of #32 is encoded as 0 where permitted
2572     unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
2573     Inst.addOperand(MCOperand::createImm(
2574       ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
2575   }
2576 
2577   void addShifterImmOperands(MCInst &Inst, unsigned N) const {
2578     assert(N == 1 && "Invalid number of operands!");
2579     Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) |
2580                                          ShifterImm.Imm));
2581   }
2582 
2583   void addRegListOperands(MCInst &Inst, unsigned N) const {
2584     assert(N == 1 && "Invalid number of operands!");
2585     const SmallVectorImpl<unsigned> &RegList = getRegList();
2586     for (unsigned Reg : RegList)
2587       Inst.addOperand(MCOperand::createReg(Reg));
2588   }
2589 
2590   void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const {
2591     assert(N == 1 && "Invalid number of operands!");
2592     const SmallVectorImpl<unsigned> &RegList = getRegList();
2593     for (unsigned Reg : RegList)
2594       Inst.addOperand(MCOperand::createReg(Reg));
2595   }
2596 
2597   void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
2598     addRegListOperands(Inst, N);
2599   }
2600 
2601   void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
2602     addRegListOperands(Inst, N);
2603   }
2604 
2605   void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const {
2606     addRegListOperands(Inst, N);
2607   }
2608 
2609   void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const {
2610     addRegListOperands(Inst, N);
2611   }
2612 
2613   void addRotImmOperands(MCInst &Inst, unsigned N) const {
2614     assert(N == 1 && "Invalid number of operands!");
2615     // Encoded as val>>3. The printer handles display as 8, 16, 24.
2616     Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3));
2617   }
2618 
2619   void addModImmOperands(MCInst &Inst, unsigned N) const {
2620     assert(N == 1 && "Invalid number of operands!");
2621 
2622     // Support for fixups (MCFixup)
2623     if (isImm())
2624       return addImmOperands(Inst, N);
2625 
2626     Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7)));
2627   }
2628 
2629   void addModImmNotOperands(MCInst &Inst, unsigned N) const {
2630     assert(N == 1 && "Invalid number of operands!");
2631     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2632     uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue());
2633     Inst.addOperand(MCOperand::createImm(Enc));
2634   }
2635 
2636   void addModImmNegOperands(MCInst &Inst, unsigned N) const {
2637     assert(N == 1 && "Invalid number of operands!");
2638     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2639     uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue());
2640     Inst.addOperand(MCOperand::createImm(Enc));
2641   }
2642 
2643   void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const {
2644     assert(N == 1 && "Invalid number of operands!");
2645     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2646     uint32_t Val = -CE->getValue();
2647     Inst.addOperand(MCOperand::createImm(Val));
2648   }
2649 
2650   void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const {
2651     assert(N == 1 && "Invalid number of operands!");
2652     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2653     uint32_t Val = -CE->getValue();
2654     Inst.addOperand(MCOperand::createImm(Val));
2655   }
2656 
2657   void addBitfieldOperands(MCInst &Inst, unsigned N) const {
2658     assert(N == 1 && "Invalid number of operands!");
2659     // Munge the lsb/width into a bitfield mask.
2660     unsigned lsb = Bitfield.LSB;
2661     unsigned width = Bitfield.Width;
2662     // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
2663     uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
2664                       (32 - (lsb + width)));
2665     Inst.addOperand(MCOperand::createImm(Mask));
2666   }
2667 
2668   void addImmOperands(MCInst &Inst, unsigned N) const {
2669     assert(N == 1 && "Invalid number of operands!");
2670     addExpr(Inst, getImm());
2671   }
2672 
2673   void addFBits16Operands(MCInst &Inst, unsigned N) const {
2674     assert(N == 1 && "Invalid number of operands!");
2675     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2676     Inst.addOperand(MCOperand::createImm(16 - CE->getValue()));
2677   }
2678 
2679   void addFBits32Operands(MCInst &Inst, unsigned N) const {
2680     assert(N == 1 && "Invalid number of operands!");
2681     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2682     Inst.addOperand(MCOperand::createImm(32 - CE->getValue()));
2683   }
2684 
2685   void addFPImmOperands(MCInst &Inst, unsigned N) const {
2686     assert(N == 1 && "Invalid number of operands!");
2687     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2688     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
2689     Inst.addOperand(MCOperand::createImm(Val));
2690   }
2691 
2692   void addImm8s4Operands(MCInst &Inst, unsigned N) const {
2693     assert(N == 1 && "Invalid number of operands!");
2694     // FIXME: We really want to scale the value here, but the LDRD/STRD
2695     // instruction don't encode operands that way yet.
2696     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2697     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2698   }
2699 
2700   void addImm7s4Operands(MCInst &Inst, unsigned N) const {
2701     assert(N == 1 && "Invalid number of operands!");
2702     // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR
2703     // instruction don't encode operands that way yet.
2704     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2705     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2706   }
2707 
2708   void addImm7Shift0Operands(MCInst &Inst, unsigned N) const {
2709     assert(N == 1 && "Invalid number of operands!");
2710     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2711     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2712   }
2713 
2714   void addImm7Shift1Operands(MCInst &Inst, unsigned N) const {
2715     assert(N == 1 && "Invalid number of operands!");
2716     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2717     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2718   }
2719 
2720   void addImm7Shift2Operands(MCInst &Inst, unsigned N) const {
2721     assert(N == 1 && "Invalid number of operands!");
2722     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2723     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2724   }
2725 
2726   void addImm7Operands(MCInst &Inst, unsigned N) const {
2727     assert(N == 1 && "Invalid number of operands!");
2728     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2729     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2730   }
2731 
2732   void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
2733     assert(N == 1 && "Invalid number of operands!");
2734     // The immediate is scaled by four in the encoding and is stored
2735     // in the MCInst as such. Lop off the low two bits here.
2736     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2737     Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2738   }
2739 
2740   void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
2741     assert(N == 1 && "Invalid number of operands!");
2742     // The immediate is scaled by four in the encoding and is stored
2743     // in the MCInst as such. Lop off the low two bits here.
2744     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2745     Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4)));
2746   }
2747 
2748   void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
2749     assert(N == 1 && "Invalid number of operands!");
2750     // The immediate is scaled by four in the encoding and is stored
2751     // in the MCInst as such. Lop off the low two bits here.
2752     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2753     Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2754   }
2755 
2756   void addImm1_16Operands(MCInst &Inst, unsigned N) const {
2757     assert(N == 1 && "Invalid number of operands!");
2758     // The constant encodes as the immediate-1, and we store in the instruction
2759     // the bits as encoded, so subtract off one here.
2760     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2761     Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2762   }
2763 
2764   void addImm1_32Operands(MCInst &Inst, unsigned N) const {
2765     assert(N == 1 && "Invalid number of operands!");
2766     // The constant encodes as the immediate-1, and we store in the instruction
2767     // the bits as encoded, so subtract off one here.
2768     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2769     Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2770   }
2771 
2772   void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
2773     assert(N == 1 && "Invalid number of operands!");
2774     // The constant encodes as the immediate, except for 32, which encodes as
2775     // zero.
2776     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2777     unsigned Imm = CE->getValue();
2778     Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm)));
2779   }
2780 
2781   void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
2782     assert(N == 1 && "Invalid number of operands!");
2783     // An ASR value of 32 encodes as 0, so that's how we want to add it to
2784     // the instruction as well.
2785     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2786     int Val = CE->getValue();
2787     Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val));
2788   }
2789 
2790   void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
2791     assert(N == 1 && "Invalid number of operands!");
2792     // The operand is actually a t2_so_imm, but we have its bitwise
2793     // negation in the assembly source, so twiddle it here.
2794     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2795     Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue()));
2796   }
2797 
2798   void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
2799     assert(N == 1 && "Invalid number of operands!");
2800     // The operand is actually a t2_so_imm, but we have its
2801     // negation in the assembly source, so twiddle it here.
2802     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2803     Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2804   }
2805 
2806   void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
2807     assert(N == 1 && "Invalid number of operands!");
2808     // The operand is actually an imm0_4095, but we have its
2809     // negation in the assembly source, so twiddle it here.
2810     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2811     Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2812   }
2813 
2814   void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
2815     if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
2816       Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2));
2817       return;
2818     }
2819     const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val);
2820     Inst.addOperand(MCOperand::createExpr(SR));
2821   }
2822 
2823   void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
2824     assert(N == 1 && "Invalid number of operands!");
2825     if (isImm()) {
2826       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2827       if (CE) {
2828         Inst.addOperand(MCOperand::createImm(CE->getValue()));
2829         return;
2830       }
2831       const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val);
2832       Inst.addOperand(MCOperand::createExpr(SR));
2833       return;
2834     }
2835 
2836     assert(isGPRMem()  && "Unknown value type!");
2837     assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
2838     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
2839       Inst.addOperand(MCOperand::createImm(CE->getValue()));
2840     else
2841       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
2842   }
2843 
2844   void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
2845     assert(N == 1 && "Invalid number of operands!");
2846     Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt())));
2847   }
2848 
2849   void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2850     assert(N == 1 && "Invalid number of operands!");
2851     Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt())));
2852   }
2853 
2854   void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2855     assert(N == 1 && "Invalid number of operands!");
2856     Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt())));
2857   }
2858 
2859   void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
2860     assert(N == 1 && "Invalid number of operands!");
2861     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2862   }
2863 
2864   void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const {
2865     assert(N == 1 && "Invalid number of operands!");
2866     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2867   }
2868 
2869   void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const {
2870     assert(N == 1 && "Invalid number of operands!");
2871     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2872   }
2873 
2874   void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const {
2875     assert(N == 1 && "Invalid number of operands!");
2876     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2877   }
2878 
2879   void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
2880     assert(N == 1 && "Invalid number of operands!");
2881     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
2882       Inst.addOperand(MCOperand::createImm(CE->getValue()));
2883     else
2884       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
2885   }
2886 
2887   void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
2888     assert(N == 1 && "Invalid number of operands!");
2889     assert(isImm() && "Not an immediate!");
2890 
2891     // If we have an immediate that's not a constant, treat it as a label
2892     // reference needing a fixup.
2893     if (!isa<MCConstantExpr>(getImm())) {
2894       Inst.addOperand(MCOperand::createExpr(getImm()));
2895       return;
2896     }
2897 
2898     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2899     int Val = CE->getValue();
2900     Inst.addOperand(MCOperand::createImm(Val));
2901   }
2902 
2903   void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
2904     assert(N == 2 && "Invalid number of operands!");
2905     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2906     Inst.addOperand(MCOperand::createImm(Memory.Alignment));
2907   }
2908 
2909   void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2910     addAlignedMemoryOperands(Inst, N);
2911   }
2912 
2913   void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2914     addAlignedMemoryOperands(Inst, N);
2915   }
2916 
2917   void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2918     addAlignedMemoryOperands(Inst, N);
2919   }
2920 
2921   void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2922     addAlignedMemoryOperands(Inst, N);
2923   }
2924 
2925   void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2926     addAlignedMemoryOperands(Inst, N);
2927   }
2928 
2929   void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2930     addAlignedMemoryOperands(Inst, N);
2931   }
2932 
2933   void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2934     addAlignedMemoryOperands(Inst, N);
2935   }
2936 
2937   void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2938     addAlignedMemoryOperands(Inst, N);
2939   }
2940 
2941   void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2942     addAlignedMemoryOperands(Inst, N);
2943   }
2944 
2945   void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2946     addAlignedMemoryOperands(Inst, N);
2947   }
2948 
2949   void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const {
2950     addAlignedMemoryOperands(Inst, N);
2951   }
2952 
2953   void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
2954     assert(N == 3 && "Invalid number of operands!");
2955     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2956     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2957     if (!Memory.OffsetRegNum) {
2958       if (!Memory.OffsetImm)
2959         Inst.addOperand(MCOperand::createImm(0));
2960       else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
2961         int32_t Val = CE->getValue();
2962         ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2963         // Special case for #-0
2964         if (Val == std::numeric_limits<int32_t>::min())
2965           Val = 0;
2966         if (Val < 0)
2967           Val = -Val;
2968         Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2969         Inst.addOperand(MCOperand::createImm(Val));
2970       } else
2971         Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
2972     } else {
2973       // For register offset, we encode the shift type and negation flag
2974       // here.
2975       int32_t Val =
2976           ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2977                             Memory.ShiftImm, Memory.ShiftType);
2978       Inst.addOperand(MCOperand::createImm(Val));
2979     }
2980   }
2981 
2982   void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
2983     assert(N == 2 && "Invalid number of operands!");
2984     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2985     assert(CE && "non-constant AM2OffsetImm operand!");
2986     int32_t Val = CE->getValue();
2987     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2988     // Special case for #-0
2989     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2990     if (Val < 0) Val = -Val;
2991     Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2992     Inst.addOperand(MCOperand::createReg(0));
2993     Inst.addOperand(MCOperand::createImm(Val));
2994   }
2995 
2996   void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
2997     assert(N == 3 && "Invalid number of operands!");
2998     // If we have an immediate that's not a constant, treat it as a label
2999     // reference needing a fixup. If it is a constant, it's something else
3000     // and we reject it.
3001     if (isImm()) {
3002       Inst.addOperand(MCOperand::createExpr(getImm()));
3003       Inst.addOperand(MCOperand::createReg(0));
3004       Inst.addOperand(MCOperand::createImm(0));
3005       return;
3006     }
3007 
3008     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3009     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3010     if (!Memory.OffsetRegNum) {
3011       if (!Memory.OffsetImm)
3012         Inst.addOperand(MCOperand::createImm(0));
3013       else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
3014         int32_t Val = CE->getValue();
3015         ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
3016         // Special case for #-0
3017         if (Val == std::numeric_limits<int32_t>::min())
3018           Val = 0;
3019         if (Val < 0)
3020           Val = -Val;
3021         Val = ARM_AM::getAM3Opc(AddSub, Val);
3022         Inst.addOperand(MCOperand::createImm(Val));
3023       } else
3024         Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3025     } else {
3026       // For register offset, we encode the shift type and negation flag
3027       // here.
3028       int32_t Val =
3029           ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
3030       Inst.addOperand(MCOperand::createImm(Val));
3031     }
3032   }
3033 
3034   void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
3035     assert(N == 2 && "Invalid number of operands!");
3036     if (Kind == k_PostIndexRegister) {
3037       int32_t Val =
3038         ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
3039       Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3040       Inst.addOperand(MCOperand::createImm(Val));
3041       return;
3042     }
3043 
3044     // Constant offset.
3045     const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
3046     int32_t Val = CE->getValue();
3047     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
3048     // Special case for #-0
3049     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
3050     if (Val < 0) Val = -Val;
3051     Val = ARM_AM::getAM3Opc(AddSub, Val);
3052     Inst.addOperand(MCOperand::createReg(0));
3053     Inst.addOperand(MCOperand::createImm(Val));
3054   }
3055 
3056   void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
3057     assert(N == 2 && "Invalid number of operands!");
3058     // If we have an immediate that's not a constant, treat it as a label
3059     // reference needing a fixup. If it is a constant, it's something else
3060     // and we reject it.
3061     if (isImm()) {
3062       Inst.addOperand(MCOperand::createExpr(getImm()));
3063       Inst.addOperand(MCOperand::createImm(0));
3064       return;
3065     }
3066 
3067     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3068     if (!Memory.OffsetImm)
3069       Inst.addOperand(MCOperand::createImm(0));
3070     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
3071       // The lower two bits are always zero and as such are not encoded.
3072       int32_t Val = CE->getValue() / 4;
3073       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
3074       // Special case for #-0
3075       if (Val == std::numeric_limits<int32_t>::min())
3076         Val = 0;
3077       if (Val < 0)
3078         Val = -Val;
3079       Val = ARM_AM::getAM5Opc(AddSub, Val);
3080       Inst.addOperand(MCOperand::createImm(Val));
3081     } else
3082       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3083   }
3084 
3085   void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const {
3086     assert(N == 2 && "Invalid number of operands!");
3087     // If we have an immediate that's not a constant, treat it as a label
3088     // reference needing a fixup. If it is a constant, it's something else
3089     // and we reject it.
3090     if (isImm()) {
3091       Inst.addOperand(MCOperand::createExpr(getImm()));
3092       Inst.addOperand(MCOperand::createImm(0));
3093       return;
3094     }
3095 
3096     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3097     // The lower bit is always zero and as such is not encoded.
3098     if (!Memory.OffsetImm)
3099       Inst.addOperand(MCOperand::createImm(0));
3100     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
3101       int32_t Val = CE->getValue() / 2;
3102       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
3103       // Special case for #-0
3104       if (Val == std::numeric_limits<int32_t>::min())
3105         Val = 0;
3106       if (Val < 0)
3107         Val = -Val;
3108       Val = ARM_AM::getAM5FP16Opc(AddSub, Val);
3109       Inst.addOperand(MCOperand::createImm(Val));
3110     } else
3111       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3112   }
3113 
3114   void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
3115     assert(N == 2 && "Invalid number of operands!");
3116     // If we have an immediate that's not a constant, treat it as a label
3117     // reference needing a fixup. If it is a constant, it's something else
3118     // and we reject it.
3119     if (isImm()) {
3120       Inst.addOperand(MCOperand::createExpr(getImm()));
3121       Inst.addOperand(MCOperand::createImm(0));
3122       return;
3123     }
3124 
3125     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3126     addExpr(Inst, Memory.OffsetImm);
3127   }
3128 
3129   void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const {
3130     assert(N == 2 && "Invalid number of operands!");
3131     // If we have an immediate that's not a constant, treat it as a label
3132     // reference needing a fixup. If it is a constant, it's something else
3133     // and we reject it.
3134     if (isImm()) {
3135       Inst.addOperand(MCOperand::createExpr(getImm()));
3136       Inst.addOperand(MCOperand::createImm(0));
3137       return;
3138     }
3139 
3140     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3141     addExpr(Inst, Memory.OffsetImm);
3142   }
3143 
3144   void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
3145     assert(N == 2 && "Invalid number of operands!");
3146     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3147     if (!Memory.OffsetImm)
3148       Inst.addOperand(MCOperand::createImm(0));
3149     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
3150       // The lower two bits are always zero and as such are not encoded.
3151       Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
3152     else
3153       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3154   }
3155 
3156   void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const {
3157     assert(N == 2 && "Invalid number of operands!");
3158     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3159     addExpr(Inst, Memory.OffsetImm);
3160   }
3161 
3162   void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const {
3163     assert(N == 2 && "Invalid number of operands!");
3164     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3165     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3166   }
3167 
3168   void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
3169     assert(N == 2 && "Invalid number of operands!");
3170     // If this is an immediate, it's a label reference.
3171     if (isImm()) {
3172       addExpr(Inst, getImm());
3173       Inst.addOperand(MCOperand::createImm(0));
3174       return;
3175     }
3176 
3177     // Otherwise, it's a normal memory reg+offset.
3178     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3179     addExpr(Inst, Memory.OffsetImm);
3180   }
3181 
3182   void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
3183     assert(N == 2 && "Invalid number of operands!");
3184     // If this is an immediate, it's a label reference.
3185     if (isImm()) {
3186       addExpr(Inst, getImm());
3187       Inst.addOperand(MCOperand::createImm(0));
3188       return;
3189     }
3190 
3191     // Otherwise, it's a normal memory reg+offset.
3192     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3193     addExpr(Inst, Memory.OffsetImm);
3194   }
3195 
3196   void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const {
3197     assert(N == 1 && "Invalid number of operands!");
3198     // This is container for the immediate that we will create the constant
3199     // pool from
3200     addExpr(Inst, getConstantPoolImm());
3201   }
3202 
3203   void addMemTBBOperands(MCInst &Inst, unsigned N) const {
3204     assert(N == 2 && "Invalid number of operands!");
3205     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3206     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3207   }
3208 
3209   void addMemTBHOperands(MCInst &Inst, unsigned N) const {
3210     assert(N == 2 && "Invalid number of operands!");
3211     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3212     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3213   }
3214 
3215   void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
3216     assert(N == 3 && "Invalid number of operands!");
3217     unsigned Val =
3218       ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
3219                         Memory.ShiftImm, Memory.ShiftType);
3220     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3221     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3222     Inst.addOperand(MCOperand::createImm(Val));
3223   }
3224 
3225   void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
3226     assert(N == 3 && "Invalid number of operands!");
3227     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3228     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3229     Inst.addOperand(MCOperand::createImm(Memory.ShiftImm));
3230   }
3231 
3232   void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
3233     assert(N == 2 && "Invalid number of operands!");
3234     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3235     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3236   }
3237 
3238   void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
3239     assert(N == 2 && "Invalid number of operands!");
3240     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3241     if (!Memory.OffsetImm)
3242       Inst.addOperand(MCOperand::createImm(0));
3243     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
3244       // The lower two bits are always zero and as such are not encoded.
3245       Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
3246     else
3247       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3248   }
3249 
3250   void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
3251     assert(N == 2 && "Invalid number of operands!");
3252     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3253     if (!Memory.OffsetImm)
3254       Inst.addOperand(MCOperand::createImm(0));
3255     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
3256       Inst.addOperand(MCOperand::createImm(CE->getValue() / 2));
3257     else
3258       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3259   }
3260 
3261   void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
3262     assert(N == 2 && "Invalid number of operands!");
3263     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3264     addExpr(Inst, Memory.OffsetImm);
3265   }
3266 
3267   void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
3268     assert(N == 2 && "Invalid number of operands!");
3269     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3270     if (!Memory.OffsetImm)
3271       Inst.addOperand(MCOperand::createImm(0));
3272     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
3273       // The lower two bits are always zero and as such are not encoded.
3274       Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
3275     else
3276       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3277   }
3278 
3279   void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
3280     assert(N == 1 && "Invalid number of operands!");
3281     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3282     assert(CE && "non-constant post-idx-imm8 operand!");
3283     int Imm = CE->getValue();
3284     bool isAdd = Imm >= 0;
3285     if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
3286     Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
3287     Inst.addOperand(MCOperand::createImm(Imm));
3288   }
3289 
3290   void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
3291     assert(N == 1 && "Invalid number of operands!");
3292     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3293     assert(CE && "non-constant post-idx-imm8s4 operand!");
3294     int Imm = CE->getValue();
3295     bool isAdd = Imm >= 0;
3296     if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
3297     // Immediate is scaled by 4.
3298     Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
3299     Inst.addOperand(MCOperand::createImm(Imm));
3300   }
3301 
3302   void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
3303     assert(N == 2 && "Invalid number of operands!");
3304     Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3305     Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd));
3306   }
3307 
3308   void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
3309     assert(N == 2 && "Invalid number of operands!");
3310     Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3311     // The sign, shift type, and shift amount are encoded in a single operand
3312     // using the AM2 encoding helpers.
3313     ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
3314     unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
3315                                      PostIdxReg.ShiftTy);
3316     Inst.addOperand(MCOperand::createImm(Imm));
3317   }
3318 
3319   void addPowerTwoOperands(MCInst &Inst, unsigned N) const {
3320     assert(N == 1 && "Invalid number of operands!");
3321     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3322     Inst.addOperand(MCOperand::createImm(CE->getValue()));
3323   }
3324 
3325   void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
3326     assert(N == 1 && "Invalid number of operands!");
3327     Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask())));
3328   }
3329 
3330   void addBankedRegOperands(MCInst &Inst, unsigned N) const {
3331     assert(N == 1 && "Invalid number of operands!");
3332     Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg())));
3333   }
3334 
3335   void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
3336     assert(N == 1 && "Invalid number of operands!");
3337     Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags())));
3338   }
3339 
3340   void addVecListOperands(MCInst &Inst, unsigned N) const {
3341     assert(N == 1 && "Invalid number of operands!");
3342     Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
3343   }
3344 
3345   void addMVEVecListOperands(MCInst &Inst, unsigned N) const {
3346     assert(N == 1 && "Invalid number of operands!");
3347 
3348     // When we come here, the VectorList field will identify a range
3349     // of q-registers by its base register and length, and it will
3350     // have already been error-checked to be the expected length of
3351     // range and contain only q-regs in the range q0-q7. So we can
3352     // count on the base register being in the range q0-q6 (for 2
3353     // regs) or q0-q4 (for 4)
3354     //
3355     // The MVE instructions taking a register range of this kind will
3356     // need an operand in the MQQPR or MQQQQPR class, representing the
3357     // entire range as a unit. So we must translate into that class,
3358     // by finding the index of the base register in the MQPR reg
3359     // class, and returning the super-register at the corresponding
3360     // index in the target class.
3361 
3362     const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID];
3363     const MCRegisterClass *RC_out =
3364         (VectorList.Count == 2) ? &ARMMCRegisterClasses[ARM::MQQPRRegClassID]
3365                                 : &ARMMCRegisterClasses[ARM::MQQQQPRRegClassID];
3366 
3367     unsigned I, E = RC_out->getNumRegs();
3368     for (I = 0; I < E; I++)
3369       if (RC_in->getRegister(I) == VectorList.RegNum)
3370         break;
3371     assert(I < E && "Invalid vector list start register!");
3372 
3373     Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I)));
3374   }
3375 
3376   void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
3377     assert(N == 2 && "Invalid number of operands!");
3378     Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
3379     Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex));
3380   }
3381 
3382   void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
3383     assert(N == 1 && "Invalid number of operands!");
3384     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3385   }
3386 
3387   void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
3388     assert(N == 1 && "Invalid number of operands!");
3389     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3390   }
3391 
3392   void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
3393     assert(N == 1 && "Invalid number of operands!");
3394     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3395   }
3396 
3397   void addVectorIndex64Operands(MCInst &Inst, unsigned N) const {
3398     assert(N == 1 && "Invalid number of operands!");
3399     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3400   }
3401 
3402   void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const {
3403     assert(N == 1 && "Invalid number of operands!");
3404     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3405   }
3406 
3407   void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const {
3408     assert(N == 1 && "Invalid number of operands!");
3409     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3410   }
3411 
3412   void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
3413     assert(N == 1 && "Invalid number of operands!");
3414     // The immediate encodes the type of constant as well as the value.
3415     // Mask in that this is an i8 splat.
3416     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3417     Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00));
3418   }
3419 
3420   void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
3421     assert(N == 1 && "Invalid number of operands!");
3422     // The immediate encodes the type of constant as well as the value.
3423     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3424     unsigned Value = CE->getValue();
3425     Value = ARM_AM::encodeNEONi16splat(Value);
3426     Inst.addOperand(MCOperand::createImm(Value));
3427   }
3428 
3429   void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const {
3430     assert(N == 1 && "Invalid number of operands!");
3431     // The immediate encodes the type of constant as well as the value.
3432     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3433     unsigned Value = CE->getValue();
3434     Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff);
3435     Inst.addOperand(MCOperand::createImm(Value));
3436   }
3437 
3438   void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
3439     assert(N == 1 && "Invalid number of operands!");
3440     // The immediate encodes the type of constant as well as the value.
3441     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3442     unsigned Value = CE->getValue();
3443     Value = ARM_AM::encodeNEONi32splat(Value);
3444     Inst.addOperand(MCOperand::createImm(Value));
3445   }
3446 
3447   void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const {
3448     assert(N == 1 && "Invalid number of operands!");
3449     // The immediate encodes the type of constant as well as the value.
3450     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3451     unsigned Value = CE->getValue();
3452     Value = ARM_AM::encodeNEONi32splat(~Value);
3453     Inst.addOperand(MCOperand::createImm(Value));
3454   }
3455 
3456   void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const {
3457     // The immediate encodes the type of constant as well as the value.
3458     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3459     assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
3460             Inst.getOpcode() == ARM::VMOVv16i8) &&
3461           "All instructions that wants to replicate non-zero byte "
3462           "always must be replaced with VMOVv8i8 or VMOVv16i8.");
3463     unsigned Value = CE->getValue();
3464     if (Inv)
3465       Value = ~Value;
3466     unsigned B = Value & 0xff;
3467     B |= 0xe00; // cmode = 0b1110
3468     Inst.addOperand(MCOperand::createImm(B));
3469   }
3470 
3471   void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const {
3472     assert(N == 1 && "Invalid number of operands!");
3473     addNEONi8ReplicateOperands(Inst, true);
3474   }
3475 
3476   static unsigned encodeNeonVMOVImmediate(unsigned Value) {
3477     if (Value >= 256 && Value <= 0xffff)
3478       Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
3479     else if (Value > 0xffff && Value <= 0xffffff)
3480       Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
3481     else if (Value > 0xffffff)
3482       Value = (Value >> 24) | 0x600;
3483     return Value;
3484   }
3485 
3486   void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
3487     assert(N == 1 && "Invalid number of operands!");
3488     // The immediate encodes the type of constant as well as the value.
3489     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3490     unsigned Value = encodeNeonVMOVImmediate(CE->getValue());
3491     Inst.addOperand(MCOperand::createImm(Value));
3492   }
3493 
3494   void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const {
3495     assert(N == 1 && "Invalid number of operands!");
3496     addNEONi8ReplicateOperands(Inst, false);
3497   }
3498 
3499   void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const {
3500     assert(N == 1 && "Invalid number of operands!");
3501     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3502     assert((Inst.getOpcode() == ARM::VMOVv4i16 ||
3503             Inst.getOpcode() == ARM::VMOVv8i16 ||
3504             Inst.getOpcode() == ARM::VMVNv4i16 ||
3505             Inst.getOpcode() == ARM::VMVNv8i16) &&
3506           "All instructions that want to replicate non-zero half-word "
3507           "always must be replaced with V{MOV,MVN}v{4,8}i16.");
3508     uint64_t Value = CE->getValue();
3509     unsigned Elem = Value & 0xffff;
3510     if (Elem >= 256)
3511       Elem = (Elem >> 8) | 0x200;
3512     Inst.addOperand(MCOperand::createImm(Elem));
3513   }
3514 
3515   void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
3516     assert(N == 1 && "Invalid number of operands!");
3517     // The immediate encodes the type of constant as well as the value.
3518     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3519     unsigned Value = encodeNeonVMOVImmediate(~CE->getValue());
3520     Inst.addOperand(MCOperand::createImm(Value));
3521   }
3522 
3523   void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const {
3524     assert(N == 1 && "Invalid number of operands!");
3525     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3526     assert((Inst.getOpcode() == ARM::VMOVv2i32 ||
3527             Inst.getOpcode() == ARM::VMOVv4i32 ||
3528             Inst.getOpcode() == ARM::VMVNv2i32 ||
3529             Inst.getOpcode() == ARM::VMVNv4i32) &&
3530           "All instructions that want to replicate non-zero word "
3531           "always must be replaced with V{MOV,MVN}v{2,4}i32.");
3532     uint64_t Value = CE->getValue();
3533     unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff);
3534     Inst.addOperand(MCOperand::createImm(Elem));
3535   }
3536 
3537   void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
3538     assert(N == 1 && "Invalid number of operands!");
3539     // The immediate encodes the type of constant as well as the value.
3540     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3541     uint64_t Value = CE->getValue();
3542     unsigned Imm = 0;
3543     for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
3544       Imm |= (Value & 1) << i;
3545     }
3546     Inst.addOperand(MCOperand::createImm(Imm | 0x1e00));
3547   }
3548 
3549   void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const {
3550     assert(N == 1 && "Invalid number of operands!");
3551     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3552     Inst.addOperand(MCOperand::createImm(CE->getValue() / 90));
3553   }
3554 
3555   void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const {
3556     assert(N == 1 && "Invalid number of operands!");
3557     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3558     Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180));
3559   }
3560 
3561   void addMveSaturateOperands(MCInst &Inst, unsigned N) const {
3562     assert(N == 1 && "Invalid number of operands!");
3563     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3564     unsigned Imm = CE->getValue();
3565     assert((Imm == 48 || Imm == 64) && "Invalid saturate operand");
3566     Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0));
3567   }
3568 
3569   void print(raw_ostream &OS) const override;
3570 
3571   static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) {
3572     auto Op = std::make_unique<ARMOperand>(k_ITCondMask);
3573     Op->ITMask.Mask = Mask;
3574     Op->StartLoc = S;
3575     Op->EndLoc = S;
3576     return Op;
3577   }
3578 
3579   static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC,
3580                                                     SMLoc S) {
3581     auto Op = std::make_unique<ARMOperand>(k_CondCode);
3582     Op->CC.Val = CC;
3583     Op->StartLoc = S;
3584     Op->EndLoc = S;
3585     return Op;
3586   }
3587 
3588   static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC,
3589                                                    SMLoc S) {
3590     auto Op = std::make_unique<ARMOperand>(k_VPTPred);
3591     Op->VCC.Val = CC;
3592     Op->StartLoc = S;
3593     Op->EndLoc = S;
3594     return Op;
3595   }
3596 
3597   static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) {
3598     auto Op = std::make_unique<ARMOperand>(k_CoprocNum);
3599     Op->Cop.Val = CopVal;
3600     Op->StartLoc = S;
3601     Op->EndLoc = S;
3602     return Op;
3603   }
3604 
3605   static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) {
3606     auto Op = std::make_unique<ARMOperand>(k_CoprocReg);
3607     Op->Cop.Val = CopVal;
3608     Op->StartLoc = S;
3609     Op->EndLoc = S;
3610     return Op;
3611   }
3612 
3613   static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S,
3614                                                         SMLoc E) {
3615     auto Op = std::make_unique<ARMOperand>(k_CoprocOption);
3616     Op->Cop.Val = Val;
3617     Op->StartLoc = S;
3618     Op->EndLoc = E;
3619     return Op;
3620   }
3621 
3622   static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) {
3623     auto Op = std::make_unique<ARMOperand>(k_CCOut);
3624     Op->Reg.RegNum = RegNum;
3625     Op->StartLoc = S;
3626     Op->EndLoc = S;
3627     return Op;
3628   }
3629 
3630   static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) {
3631     auto Op = std::make_unique<ARMOperand>(k_Token);
3632     Op->Tok.Data = Str.data();
3633     Op->Tok.Length = Str.size();
3634     Op->StartLoc = S;
3635     Op->EndLoc = S;
3636     return Op;
3637   }
3638 
3639   static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S,
3640                                                SMLoc E) {
3641     auto Op = std::make_unique<ARMOperand>(k_Register);
3642     Op->Reg.RegNum = RegNum;
3643     Op->StartLoc = S;
3644     Op->EndLoc = E;
3645     return Op;
3646   }
3647 
3648   static std::unique_ptr<ARMOperand>
3649   CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
3650                         unsigned ShiftReg, unsigned ShiftImm, SMLoc S,
3651                         SMLoc E) {
3652     auto Op = std::make_unique<ARMOperand>(k_ShiftedRegister);
3653     Op->RegShiftedReg.ShiftTy = ShTy;
3654     Op->RegShiftedReg.SrcReg = SrcReg;
3655     Op->RegShiftedReg.ShiftReg = ShiftReg;
3656     Op->RegShiftedReg.ShiftImm = ShiftImm;
3657     Op->StartLoc = S;
3658     Op->EndLoc = E;
3659     return Op;
3660   }
3661 
3662   static std::unique_ptr<ARMOperand>
3663   CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
3664                          unsigned ShiftImm, SMLoc S, SMLoc E) {
3665     auto Op = std::make_unique<ARMOperand>(k_ShiftedImmediate);
3666     Op->RegShiftedImm.ShiftTy = ShTy;
3667     Op->RegShiftedImm.SrcReg = SrcReg;
3668     Op->RegShiftedImm.ShiftImm = ShiftImm;
3669     Op->StartLoc = S;
3670     Op->EndLoc = E;
3671     return Op;
3672   }
3673 
3674   static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm,
3675                                                       SMLoc S, SMLoc E) {
3676     auto Op = std::make_unique<ARMOperand>(k_ShifterImmediate);
3677     Op->ShifterImm.isASR = isASR;
3678     Op->ShifterImm.Imm = Imm;
3679     Op->StartLoc = S;
3680     Op->EndLoc = E;
3681     return Op;
3682   }
3683 
3684   static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S,
3685                                                   SMLoc E) {
3686     auto Op = std::make_unique<ARMOperand>(k_RotateImmediate);
3687     Op->RotImm.Imm = Imm;
3688     Op->StartLoc = S;
3689     Op->EndLoc = E;
3690     return Op;
3691   }
3692 
3693   static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot,
3694                                                   SMLoc S, SMLoc E) {
3695     auto Op = std::make_unique<ARMOperand>(k_ModifiedImmediate);
3696     Op->ModImm.Bits = Bits;
3697     Op->ModImm.Rot = Rot;
3698     Op->StartLoc = S;
3699     Op->EndLoc = E;
3700     return Op;
3701   }
3702 
3703   static std::unique_ptr<ARMOperand>
3704   CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) {
3705     auto Op = std::make_unique<ARMOperand>(k_ConstantPoolImmediate);
3706     Op->Imm.Val = Val;
3707     Op->StartLoc = S;
3708     Op->EndLoc = E;
3709     return Op;
3710   }
3711 
3712   static std::unique_ptr<ARMOperand>
3713   CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
3714     auto Op = std::make_unique<ARMOperand>(k_BitfieldDescriptor);
3715     Op->Bitfield.LSB = LSB;
3716     Op->Bitfield.Width = Width;
3717     Op->StartLoc = S;
3718     Op->EndLoc = E;
3719     return Op;
3720   }
3721 
3722   static std::unique_ptr<ARMOperand>
3723   CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
3724                 SMLoc StartLoc, SMLoc EndLoc) {
3725     assert(Regs.size() > 0 && "RegList contains no registers?");
3726     KindTy Kind = k_RegisterList;
3727 
3728     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
3729             Regs.front().second)) {
3730       if (Regs.back().second == ARM::VPR)
3731         Kind = k_FPDRegisterListWithVPR;
3732       else
3733         Kind = k_DPRRegisterList;
3734     } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(
3735                    Regs.front().second)) {
3736       if (Regs.back().second == ARM::VPR)
3737         Kind = k_FPSRegisterListWithVPR;
3738       else
3739         Kind = k_SPRRegisterList;
3740     }
3741 
3742     if (Kind == k_RegisterList && Regs.back().second == ARM::APSR)
3743       Kind = k_RegisterListWithAPSR;
3744 
3745     assert(llvm::is_sorted(Regs) && "Register list must be sorted by encoding");
3746 
3747     auto Op = std::make_unique<ARMOperand>(Kind);
3748     for (const auto &P : Regs)
3749       Op->Registers.push_back(P.second);
3750 
3751     Op->StartLoc = StartLoc;
3752     Op->EndLoc = EndLoc;
3753     return Op;
3754   }
3755 
3756   static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum,
3757                                                       unsigned Count,
3758                                                       bool isDoubleSpaced,
3759                                                       SMLoc S, SMLoc E) {
3760     auto Op = std::make_unique<ARMOperand>(k_VectorList);
3761     Op->VectorList.RegNum = RegNum;
3762     Op->VectorList.Count = Count;
3763     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3764     Op->StartLoc = S;
3765     Op->EndLoc = E;
3766     return Op;
3767   }
3768 
3769   static std::unique_ptr<ARMOperand>
3770   CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced,
3771                            SMLoc S, SMLoc E) {
3772     auto Op = std::make_unique<ARMOperand>(k_VectorListAllLanes);
3773     Op->VectorList.RegNum = RegNum;
3774     Op->VectorList.Count = Count;
3775     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3776     Op->StartLoc = S;
3777     Op->EndLoc = E;
3778     return Op;
3779   }
3780 
3781   static std::unique_ptr<ARMOperand>
3782   CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index,
3783                           bool isDoubleSpaced, SMLoc S, SMLoc E) {
3784     auto Op = std::make_unique<ARMOperand>(k_VectorListIndexed);
3785     Op->VectorList.RegNum = RegNum;
3786     Op->VectorList.Count = Count;
3787     Op->VectorList.LaneIndex = Index;
3788     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3789     Op->StartLoc = S;
3790     Op->EndLoc = E;
3791     return Op;
3792   }
3793 
3794   static std::unique_ptr<ARMOperand>
3795   CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
3796     auto Op = std::make_unique<ARMOperand>(k_VectorIndex);
3797     Op->VectorIndex.Val = Idx;
3798     Op->StartLoc = S;
3799     Op->EndLoc = E;
3800     return Op;
3801   }
3802 
3803   static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S,
3804                                                SMLoc E) {
3805     auto Op = std::make_unique<ARMOperand>(k_Immediate);
3806     Op->Imm.Val = Val;
3807     Op->StartLoc = S;
3808     Op->EndLoc = E;
3809     return Op;
3810   }
3811 
3812   static std::unique_ptr<ARMOperand>
3813   CreateMem(unsigned BaseRegNum, const MCExpr *OffsetImm, unsigned OffsetRegNum,
3814             ARM_AM::ShiftOpc ShiftType, unsigned ShiftImm, unsigned Alignment,
3815             bool isNegative, SMLoc S, SMLoc E, SMLoc AlignmentLoc = SMLoc()) {
3816     auto Op = std::make_unique<ARMOperand>(k_Memory);
3817     Op->Memory.BaseRegNum = BaseRegNum;
3818     Op->Memory.OffsetImm = OffsetImm;
3819     Op->Memory.OffsetRegNum = OffsetRegNum;
3820     Op->Memory.ShiftType = ShiftType;
3821     Op->Memory.ShiftImm = ShiftImm;
3822     Op->Memory.Alignment = Alignment;
3823     Op->Memory.isNegative = isNegative;
3824     Op->StartLoc = S;
3825     Op->EndLoc = E;
3826     Op->AlignmentLoc = AlignmentLoc;
3827     return Op;
3828   }
3829 
3830   static std::unique_ptr<ARMOperand>
3831   CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy,
3832                    unsigned ShiftImm, SMLoc S, SMLoc E) {
3833     auto Op = std::make_unique<ARMOperand>(k_PostIndexRegister);
3834     Op->PostIdxReg.RegNum = RegNum;
3835     Op->PostIdxReg.isAdd = isAdd;
3836     Op->PostIdxReg.ShiftTy = ShiftTy;
3837     Op->PostIdxReg.ShiftImm = ShiftImm;
3838     Op->StartLoc = S;
3839     Op->EndLoc = E;
3840     return Op;
3841   }
3842 
3843   static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,
3844                                                          SMLoc S) {
3845     auto Op = std::make_unique<ARMOperand>(k_MemBarrierOpt);
3846     Op->MBOpt.Val = Opt;
3847     Op->StartLoc = S;
3848     Op->EndLoc = S;
3849     return Op;
3850   }
3851 
3852   static std::unique_ptr<ARMOperand>
3853   CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) {
3854     auto Op = std::make_unique<ARMOperand>(k_InstSyncBarrierOpt);
3855     Op->ISBOpt.Val = Opt;
3856     Op->StartLoc = S;
3857     Op->EndLoc = S;
3858     return Op;
3859   }
3860 
3861   static std::unique_ptr<ARMOperand>
3862   CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) {
3863     auto Op = std::make_unique<ARMOperand>(k_TraceSyncBarrierOpt);
3864     Op->TSBOpt.Val = Opt;
3865     Op->StartLoc = S;
3866     Op->EndLoc = S;
3867     return Op;
3868   }
3869 
3870   static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags,
3871                                                       SMLoc S) {
3872     auto Op = std::make_unique<ARMOperand>(k_ProcIFlags);
3873     Op->IFlags.Val = IFlags;
3874     Op->StartLoc = S;
3875     Op->EndLoc = S;
3876     return Op;
3877   }
3878 
3879   static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) {
3880     auto Op = std::make_unique<ARMOperand>(k_MSRMask);
3881     Op->MMask.Val = MMask;
3882     Op->StartLoc = S;
3883     Op->EndLoc = S;
3884     return Op;
3885   }
3886 
3887   static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) {
3888     auto Op = std::make_unique<ARMOperand>(k_BankedReg);
3889     Op->BankedReg.Val = Reg;
3890     Op->StartLoc = S;
3891     Op->EndLoc = S;
3892     return Op;
3893   }
3894 };
3895 
3896 } // end anonymous namespace.
3897 
3898 void ARMOperand::print(raw_ostream &OS) const {
3899   auto RegName = [](MCRegister Reg) {
3900     if (Reg)
3901       return ARMInstPrinter::getRegisterName(Reg);
3902     else
3903       return "noreg";
3904   };
3905 
3906   switch (Kind) {
3907   case k_CondCode:
3908     OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
3909     break;
3910   case k_VPTPred:
3911     OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">";
3912     break;
3913   case k_CCOut:
3914     OS << "<ccout " << RegName(getReg()) << ">";
3915     break;
3916   case k_ITCondMask: {
3917     static const char *const MaskStr[] = {
3918       "(invalid)", "(tttt)", "(ttt)", "(ttte)",
3919       "(tt)",      "(ttet)", "(tte)", "(ttee)",
3920       "(t)",       "(tett)", "(tet)", "(tete)",
3921       "(te)",      "(teet)", "(tee)", "(teee)",
3922     };
3923     assert((ITMask.Mask & 0xf) == ITMask.Mask);
3924     OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
3925     break;
3926   }
3927   case k_CoprocNum:
3928     OS << "<coprocessor number: " << getCoproc() << ">";
3929     break;
3930   case k_CoprocReg:
3931     OS << "<coprocessor register: " << getCoproc() << ">";
3932     break;
3933   case k_CoprocOption:
3934     OS << "<coprocessor option: " << CoprocOption.Val << ">";
3935     break;
3936   case k_MSRMask:
3937     OS << "<mask: " << getMSRMask() << ">";
3938     break;
3939   case k_BankedReg:
3940     OS << "<banked reg: " << getBankedReg() << ">";
3941     break;
3942   case k_Immediate:
3943     OS << *getImm();
3944     break;
3945   case k_MemBarrierOpt:
3946     OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
3947     break;
3948   case k_InstSyncBarrierOpt:
3949     OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
3950     break;
3951   case k_TraceSyncBarrierOpt:
3952     OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">";
3953     break;
3954   case k_Memory:
3955     OS << "<memory";
3956     if (Memory.BaseRegNum)
3957       OS << " base:" << RegName(Memory.BaseRegNum);
3958     if (Memory.OffsetImm)
3959       OS << " offset-imm:" << *Memory.OffsetImm;
3960     if (Memory.OffsetRegNum)
3961       OS << " offset-reg:" << (Memory.isNegative ? "-" : "")
3962          << RegName(Memory.OffsetRegNum);
3963     if (Memory.ShiftType != ARM_AM::no_shift) {
3964       OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType);
3965       OS << " shift-imm:" << Memory.ShiftImm;
3966     }
3967     if (Memory.Alignment)
3968       OS << " alignment:" << Memory.Alignment;
3969     OS << ">";
3970     break;
3971   case k_PostIndexRegister:
3972     OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
3973        << RegName(PostIdxReg.RegNum);
3974     if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
3975       OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
3976          << PostIdxReg.ShiftImm;
3977     OS << ">";
3978     break;
3979   case k_ProcIFlags: {
3980     OS << "<ARM_PROC::";
3981     unsigned IFlags = getProcIFlags();
3982     for (int i=2; i >= 0; --i)
3983       if (IFlags & (1 << i))
3984         OS << ARM_PROC::IFlagsToString(1 << i);
3985     OS << ">";
3986     break;
3987   }
3988   case k_Register:
3989     OS << "<register " << RegName(getReg()) << ">";
3990     break;
3991   case k_ShifterImmediate:
3992     OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
3993        << " #" << ShifterImm.Imm << ">";
3994     break;
3995   case k_ShiftedRegister:
3996     OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " "
3997        << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " "
3998        << RegName(RegShiftedReg.ShiftReg) << ">";
3999     break;
4000   case k_ShiftedImmediate:
4001     OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " "
4002        << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #"
4003        << RegShiftedImm.ShiftImm << ">";
4004     break;
4005   case k_RotateImmediate:
4006     OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
4007     break;
4008   case k_ModifiedImmediate:
4009     OS << "<mod_imm #" << ModImm.Bits << ", #"
4010        <<  ModImm.Rot << ")>";
4011     break;
4012   case k_ConstantPoolImmediate:
4013     OS << "<constant_pool_imm #" << *getConstantPoolImm();
4014     break;
4015   case k_BitfieldDescriptor:
4016     OS << "<bitfield " << "lsb: " << Bitfield.LSB
4017        << ", width: " << Bitfield.Width << ">";
4018     break;
4019   case k_RegisterList:
4020   case k_RegisterListWithAPSR:
4021   case k_DPRRegisterList:
4022   case k_SPRRegisterList:
4023   case k_FPSRegisterListWithVPR:
4024   case k_FPDRegisterListWithVPR: {
4025     OS << "<register_list ";
4026 
4027     const SmallVectorImpl<unsigned> &RegList = getRegList();
4028     for (SmallVectorImpl<unsigned>::const_iterator
4029            I = RegList.begin(), E = RegList.end(); I != E; ) {
4030       OS << RegName(*I);
4031       if (++I < E) OS << ", ";
4032     }
4033 
4034     OS << ">";
4035     break;
4036   }
4037   case k_VectorList:
4038     OS << "<vector_list " << VectorList.Count << " * "
4039        << RegName(VectorList.RegNum) << ">";
4040     break;
4041   case k_VectorListAllLanes:
4042     OS << "<vector_list(all lanes) " << VectorList.Count << " * "
4043        << RegName(VectorList.RegNum) << ">";
4044     break;
4045   case k_VectorListIndexed:
4046     OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
4047        << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">";
4048     break;
4049   case k_Token:
4050     OS << "'" << getToken() << "'";
4051     break;
4052   case k_VectorIndex:
4053     OS << "<vectorindex " << getVectorIndex() << ">";
4054     break;
4055   }
4056 }
4057 
4058 /// @name Auto-generated Match Functions
4059 /// {
4060 
4061 static unsigned MatchRegisterName(StringRef Name);
4062 
4063 /// }
4064 
4065 bool ARMAsmParser::parseRegister(MCRegister &RegNo, SMLoc &StartLoc,
4066                                  SMLoc &EndLoc) {
4067   const AsmToken &Tok = getParser().getTok();
4068   StartLoc = Tok.getLoc();
4069   EndLoc = Tok.getEndLoc();
4070   RegNo = tryParseRegister();
4071 
4072   return (RegNo == (unsigned)-1);
4073 }
4074 
4075 OperandMatchResultTy ARMAsmParser::tryParseRegister(MCRegister &RegNo,
4076                                                     SMLoc &StartLoc,
4077                                                     SMLoc &EndLoc) {
4078   if (parseRegister(RegNo, StartLoc, EndLoc))
4079     return MatchOperand_NoMatch;
4080   return MatchOperand_Success;
4081 }
4082 
4083 /// Try to parse a register name.  The token must be an Identifier when called,
4084 /// and if it is a register name the token is eaten and the register number is
4085 /// returned.  Otherwise return -1.
4086 int ARMAsmParser::tryParseRegister() {
4087   MCAsmParser &Parser = getParser();
4088   const AsmToken &Tok = Parser.getTok();
4089   if (Tok.isNot(AsmToken::Identifier)) return -1;
4090 
4091   std::string lowerCase = Tok.getString().lower();
4092   unsigned RegNum = MatchRegisterName(lowerCase);
4093   if (!RegNum) {
4094     RegNum = StringSwitch<unsigned>(lowerCase)
4095       .Case("r13", ARM::SP)
4096       .Case("r14", ARM::LR)
4097       .Case("r15", ARM::PC)
4098       .Case("ip", ARM::R12)
4099       // Additional register name aliases for 'gas' compatibility.
4100       .Case("a1", ARM::R0)
4101       .Case("a2", ARM::R1)
4102       .Case("a3", ARM::R2)
4103       .Case("a4", ARM::R3)
4104       .Case("v1", ARM::R4)
4105       .Case("v2", ARM::R5)
4106       .Case("v3", ARM::R6)
4107       .Case("v4", ARM::R7)
4108       .Case("v5", ARM::R8)
4109       .Case("v6", ARM::R9)
4110       .Case("v7", ARM::R10)
4111       .Case("v8", ARM::R11)
4112       .Case("sb", ARM::R9)
4113       .Case("sl", ARM::R10)
4114       .Case("fp", ARM::R11)
4115       .Default(0);
4116   }
4117   if (!RegNum) {
4118     // Check for aliases registered via .req. Canonicalize to lower case.
4119     // That's more consistent since register names are case insensitive, and
4120     // it's how the original entry was passed in from MC/MCParser/AsmParser.
4121     StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
4122     // If no match, return failure.
4123     if (Entry == RegisterReqs.end())
4124       return -1;
4125     Parser.Lex(); // Eat identifier token.
4126     return Entry->getValue();
4127   }
4128 
4129   // Some FPUs only have 16 D registers, so D16-D31 are invalid
4130   if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31)
4131     return -1;
4132 
4133   Parser.Lex(); // Eat identifier token.
4134 
4135   return RegNum;
4136 }
4137 
4138 // Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
4139 // If a recoverable error occurs, return 1. If an irrecoverable error
4140 // occurs, return -1. An irrecoverable error is one where tokens have been
4141 // consumed in the process of trying to parse the shifter (i.e., when it is
4142 // indeed a shifter operand, but malformed).
4143 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
4144   MCAsmParser &Parser = getParser();
4145   SMLoc S = Parser.getTok().getLoc();
4146   const AsmToken &Tok = Parser.getTok();
4147   if (Tok.isNot(AsmToken::Identifier))
4148     return -1;
4149 
4150   std::string lowerCase = Tok.getString().lower();
4151   ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
4152       .Case("asl", ARM_AM::lsl)
4153       .Case("lsl", ARM_AM::lsl)
4154       .Case("lsr", ARM_AM::lsr)
4155       .Case("asr", ARM_AM::asr)
4156       .Case("ror", ARM_AM::ror)
4157       .Case("rrx", ARM_AM::rrx)
4158       .Default(ARM_AM::no_shift);
4159 
4160   if (ShiftTy == ARM_AM::no_shift)
4161     return 1;
4162 
4163   Parser.Lex(); // Eat the operator.
4164 
4165   // The source register for the shift has already been added to the
4166   // operand list, so we need to pop it off and combine it into the shifted
4167   // register operand instead.
4168   std::unique_ptr<ARMOperand> PrevOp(
4169       (ARMOperand *)Operands.pop_back_val().release());
4170   if (!PrevOp->isReg())
4171     return Error(PrevOp->getStartLoc(), "shift must be of a register");
4172   int SrcReg = PrevOp->getReg();
4173 
4174   SMLoc EndLoc;
4175   int64_t Imm = 0;
4176   int ShiftReg = 0;
4177   if (ShiftTy == ARM_AM::rrx) {
4178     // RRX Doesn't have an explicit shift amount. The encoder expects
4179     // the shift register to be the same as the source register. Seems odd,
4180     // but OK.
4181     ShiftReg = SrcReg;
4182   } else {
4183     // Figure out if this is shifted by a constant or a register (for non-RRX).
4184     if (Parser.getTok().is(AsmToken::Hash) ||
4185         Parser.getTok().is(AsmToken::Dollar)) {
4186       Parser.Lex(); // Eat hash.
4187       SMLoc ImmLoc = Parser.getTok().getLoc();
4188       const MCExpr *ShiftExpr = nullptr;
4189       if (getParser().parseExpression(ShiftExpr, EndLoc)) {
4190         Error(ImmLoc, "invalid immediate shift value");
4191         return -1;
4192       }
4193       // The expression must be evaluatable as an immediate.
4194       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
4195       if (!CE) {
4196         Error(ImmLoc, "invalid immediate shift value");
4197         return -1;
4198       }
4199       // Range check the immediate.
4200       // lsl, ror: 0 <= imm <= 31
4201       // lsr, asr: 0 <= imm <= 32
4202       Imm = CE->getValue();
4203       if (Imm < 0 ||
4204           ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
4205           ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
4206         Error(ImmLoc, "immediate shift value out of range");
4207         return -1;
4208       }
4209       // shift by zero is a nop. Always send it through as lsl.
4210       // ('as' compatibility)
4211       if (Imm == 0)
4212         ShiftTy = ARM_AM::lsl;
4213     } else if (Parser.getTok().is(AsmToken::Identifier)) {
4214       SMLoc L = Parser.getTok().getLoc();
4215       EndLoc = Parser.getTok().getEndLoc();
4216       ShiftReg = tryParseRegister();
4217       if (ShiftReg == -1) {
4218         Error(L, "expected immediate or register in shift operand");
4219         return -1;
4220       }
4221     } else {
4222       Error(Parser.getTok().getLoc(),
4223             "expected immediate or register in shift operand");
4224       return -1;
4225     }
4226   }
4227 
4228   if (ShiftReg && ShiftTy != ARM_AM::rrx)
4229     Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
4230                                                          ShiftReg, Imm,
4231                                                          S, EndLoc));
4232   else
4233     Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
4234                                                           S, EndLoc));
4235 
4236   return 0;
4237 }
4238 
4239 /// Try to parse a register name.  The token must be an Identifier when called.
4240 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
4241 /// if there is a "writeback". 'true' if it's not a register.
4242 ///
4243 /// TODO this is likely to change to allow different register types and or to
4244 /// parse for a specific register type.
4245 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
4246   MCAsmParser &Parser = getParser();
4247   SMLoc RegStartLoc = Parser.getTok().getLoc();
4248   SMLoc RegEndLoc = Parser.getTok().getEndLoc();
4249   int RegNo = tryParseRegister();
4250   if (RegNo == -1)
4251     return true;
4252 
4253   Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc));
4254 
4255   const AsmToken &ExclaimTok = Parser.getTok();
4256   if (ExclaimTok.is(AsmToken::Exclaim)) {
4257     Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
4258                                                ExclaimTok.getLoc()));
4259     Parser.Lex(); // Eat exclaim token
4260     return false;
4261   }
4262 
4263   // Also check for an index operand. This is only legal for vector registers,
4264   // but that'll get caught OK in operand matching, so we don't need to
4265   // explicitly filter everything else out here.
4266   if (Parser.getTok().is(AsmToken::LBrac)) {
4267     SMLoc SIdx = Parser.getTok().getLoc();
4268     Parser.Lex(); // Eat left bracket token.
4269 
4270     const MCExpr *ImmVal;
4271     if (getParser().parseExpression(ImmVal))
4272       return true;
4273     const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
4274     if (!MCE)
4275       return TokError("immediate value expected for vector index");
4276 
4277     if (Parser.getTok().isNot(AsmToken::RBrac))
4278       return Error(Parser.getTok().getLoc(), "']' expected");
4279 
4280     SMLoc E = Parser.getTok().getEndLoc();
4281     Parser.Lex(); // Eat right bracket token.
4282 
4283     Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
4284                                                      SIdx, E,
4285                                                      getContext()));
4286   }
4287 
4288   return false;
4289 }
4290 
4291 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
4292 /// instruction with a symbolic operand name.
4293 /// We accept "crN" syntax for GAS compatibility.
4294 /// <operand-name> ::= <prefix><number>
4295 /// If CoprocOp is 'c', then:
4296 ///   <prefix> ::= c | cr
4297 /// If CoprocOp is 'p', then :
4298 ///   <prefix> ::= p
4299 /// <number> ::= integer in range [0, 15]
4300 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
4301   // Use the same layout as the tablegen'erated register name matcher. Ugly,
4302   // but efficient.
4303   if (Name.size() < 2 || Name[0] != CoprocOp)
4304     return -1;
4305   Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front();
4306 
4307   switch (Name.size()) {
4308   default: return -1;
4309   case 1:
4310     switch (Name[0]) {
4311     default:  return -1;
4312     case '0': return 0;
4313     case '1': return 1;
4314     case '2': return 2;
4315     case '3': return 3;
4316     case '4': return 4;
4317     case '5': return 5;
4318     case '6': return 6;
4319     case '7': return 7;
4320     case '8': return 8;
4321     case '9': return 9;
4322     }
4323   case 2:
4324     if (Name[0] != '1')
4325       return -1;
4326     switch (Name[1]) {
4327     default:  return -1;
4328     // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
4329     // However, old cores (v5/v6) did use them in that way.
4330     case '0': return 10;
4331     case '1': return 11;
4332     case '2': return 12;
4333     case '3': return 13;
4334     case '4': return 14;
4335     case '5': return 15;
4336     }
4337   }
4338 }
4339 
4340 /// parseITCondCode - Try to parse a condition code for an IT instruction.
4341 OperandMatchResultTy
4342 ARMAsmParser::parseITCondCode(OperandVector &Operands) {
4343   MCAsmParser &Parser = getParser();
4344   SMLoc S = Parser.getTok().getLoc();
4345   const AsmToken &Tok = Parser.getTok();
4346   if (!Tok.is(AsmToken::Identifier))
4347     return MatchOperand_NoMatch;
4348   unsigned CC = ARMCondCodeFromString(Tok.getString());
4349   if (CC == ~0U)
4350     return MatchOperand_NoMatch;
4351   Parser.Lex(); // Eat the token.
4352 
4353   Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
4354 
4355   return MatchOperand_Success;
4356 }
4357 
4358 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
4359 /// token must be an Identifier when called, and if it is a coprocessor
4360 /// number, the token is eaten and the operand is added to the operand list.
4361 OperandMatchResultTy
4362 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
4363   MCAsmParser &Parser = getParser();
4364   SMLoc S = Parser.getTok().getLoc();
4365   const AsmToken &Tok = Parser.getTok();
4366   if (Tok.isNot(AsmToken::Identifier))
4367     return MatchOperand_NoMatch;
4368 
4369   int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p');
4370   if (Num == -1)
4371     return MatchOperand_NoMatch;
4372   if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits()))
4373     return MatchOperand_NoMatch;
4374 
4375   Parser.Lex(); // Eat identifier token.
4376   Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
4377   return MatchOperand_Success;
4378 }
4379 
4380 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
4381 /// token must be an Identifier when called, and if it is a coprocessor
4382 /// number, the token is eaten and the operand is added to the operand list.
4383 OperandMatchResultTy
4384 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
4385   MCAsmParser &Parser = getParser();
4386   SMLoc S = Parser.getTok().getLoc();
4387   const AsmToken &Tok = Parser.getTok();
4388   if (Tok.isNot(AsmToken::Identifier))
4389     return MatchOperand_NoMatch;
4390 
4391   int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c');
4392   if (Reg == -1)
4393     return MatchOperand_NoMatch;
4394 
4395   Parser.Lex(); // Eat identifier token.
4396   Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
4397   return MatchOperand_Success;
4398 }
4399 
4400 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
4401 /// coproc_option : '{' imm0_255 '}'
4402 OperandMatchResultTy
4403 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
4404   MCAsmParser &Parser = getParser();
4405   SMLoc S = Parser.getTok().getLoc();
4406 
4407   // If this isn't a '{', this isn't a coprocessor immediate operand.
4408   if (Parser.getTok().isNot(AsmToken::LCurly))
4409     return MatchOperand_NoMatch;
4410   Parser.Lex(); // Eat the '{'
4411 
4412   const MCExpr *Expr;
4413   SMLoc Loc = Parser.getTok().getLoc();
4414   if (getParser().parseExpression(Expr)) {
4415     Error(Loc, "illegal expression");
4416     return MatchOperand_ParseFail;
4417   }
4418   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4419   if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
4420     Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
4421     return MatchOperand_ParseFail;
4422   }
4423   int Val = CE->getValue();
4424 
4425   // Check for and consume the closing '}'
4426   if (Parser.getTok().isNot(AsmToken::RCurly))
4427     return MatchOperand_ParseFail;
4428   SMLoc E = Parser.getTok().getEndLoc();
4429   Parser.Lex(); // Eat the '}'
4430 
4431   Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
4432   return MatchOperand_Success;
4433 }
4434 
4435 // For register list parsing, we need to map from raw GPR register numbering
4436 // to the enumeration values. The enumeration values aren't sorted by
4437 // register number due to our using "sp", "lr" and "pc" as canonical names.
4438 static unsigned getNextRegister(unsigned Reg) {
4439   // If this is a GPR, we need to do it manually, otherwise we can rely
4440   // on the sort ordering of the enumeration since the other reg-classes
4441   // are sane.
4442   if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4443     return Reg + 1;
4444   switch(Reg) {
4445   default: llvm_unreachable("Invalid GPR number!");
4446   case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
4447   case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
4448   case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
4449   case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
4450   case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
4451   case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
4452   case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
4453   case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
4454   }
4455 }
4456 
4457 // Insert an <Encoding, Register> pair in an ordered vector. Return true on
4458 // success, or false, if duplicate encoding found.
4459 static bool
4460 insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
4461                    unsigned Enc, unsigned Reg) {
4462   Regs.emplace_back(Enc, Reg);
4463   for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) {
4464     if (J->first == Enc) {
4465       Regs.erase(J.base());
4466       return false;
4467     }
4468     if (J->first < Enc)
4469       break;
4470     std::swap(*I, *J);
4471   }
4472   return true;
4473 }
4474 
4475 /// Parse a register list.
4476 bool ARMAsmParser::parseRegisterList(OperandVector &Operands, bool EnforceOrder,
4477                                      bool AllowRAAC) {
4478   MCAsmParser &Parser = getParser();
4479   if (Parser.getTok().isNot(AsmToken::LCurly))
4480     return TokError("Token is not a Left Curly Brace");
4481   SMLoc S = Parser.getTok().getLoc();
4482   Parser.Lex(); // Eat '{' token.
4483   SMLoc RegLoc = Parser.getTok().getLoc();
4484 
4485   // Check the first register in the list to see what register class
4486   // this is a list of.
4487   int Reg = tryParseRegister();
4488   if (Reg == -1)
4489     return Error(RegLoc, "register expected");
4490   if (!AllowRAAC && Reg == ARM::RA_AUTH_CODE)
4491     return Error(RegLoc, "pseudo-register not allowed");
4492   // The reglist instructions have at most 16 registers, so reserve
4493   // space for that many.
4494   int EReg = 0;
4495   SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
4496 
4497   // Allow Q regs and just interpret them as the two D sub-registers.
4498   if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4499     Reg = getDRegFromQReg(Reg);
4500     EReg = MRI->getEncodingValue(Reg);
4501     Registers.emplace_back(EReg, Reg);
4502     ++Reg;
4503   }
4504   const MCRegisterClass *RC;
4505   if (Reg == ARM::RA_AUTH_CODE ||
4506       ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4507     RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
4508   else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
4509     RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
4510   else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
4511     RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
4512   else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg))
4513     RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID];
4514   else
4515     return Error(RegLoc, "invalid register in register list");
4516 
4517   // Store the register.
4518   EReg = MRI->getEncodingValue(Reg);
4519   Registers.emplace_back(EReg, Reg);
4520 
4521   // This starts immediately after the first register token in the list,
4522   // so we can see either a comma or a minus (range separator) as a legal
4523   // next token.
4524   while (Parser.getTok().is(AsmToken::Comma) ||
4525          Parser.getTok().is(AsmToken::Minus)) {
4526     if (Parser.getTok().is(AsmToken::Minus)) {
4527       if (Reg == ARM::RA_AUTH_CODE)
4528         return Error(RegLoc, "pseudo-register not allowed");
4529       Parser.Lex(); // Eat the minus.
4530       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4531       int EndReg = tryParseRegister();
4532       if (EndReg == -1)
4533         return Error(AfterMinusLoc, "register expected");
4534       if (EndReg == ARM::RA_AUTH_CODE)
4535         return Error(AfterMinusLoc, "pseudo-register not allowed");
4536       // Allow Q regs and just interpret them as the two D sub-registers.
4537       if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4538         EndReg = getDRegFromQReg(EndReg) + 1;
4539       // If the register is the same as the start reg, there's nothing
4540       // more to do.
4541       if (Reg == EndReg)
4542         continue;
4543       // The register must be in the same register class as the first.
4544       if (!RC->contains(Reg))
4545         return Error(AfterMinusLoc, "invalid register in register list");
4546       // Ranges must go from low to high.
4547       if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
4548         return Error(AfterMinusLoc, "bad range in register list");
4549 
4550       // Add all the registers in the range to the register list.
4551       while (Reg != EndReg) {
4552         Reg = getNextRegister(Reg);
4553         EReg = MRI->getEncodingValue(Reg);
4554         if (!insertNoDuplicates(Registers, EReg, Reg)) {
4555           Warning(AfterMinusLoc, StringRef("duplicated register (") +
4556                                      ARMInstPrinter::getRegisterName(Reg) +
4557                                      ") in register list");
4558         }
4559       }
4560       continue;
4561     }
4562     Parser.Lex(); // Eat the comma.
4563     RegLoc = Parser.getTok().getLoc();
4564     int OldReg = Reg;
4565     const AsmToken RegTok = Parser.getTok();
4566     Reg = tryParseRegister();
4567     if (Reg == -1)
4568       return Error(RegLoc, "register expected");
4569     if (!AllowRAAC && Reg == ARM::RA_AUTH_CODE)
4570       return Error(RegLoc, "pseudo-register not allowed");
4571     // Allow Q regs and just interpret them as the two D sub-registers.
4572     bool isQReg = false;
4573     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4574       Reg = getDRegFromQReg(Reg);
4575       isQReg = true;
4576     }
4577     if (Reg != ARM::RA_AUTH_CODE && !RC->contains(Reg) &&
4578         RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() &&
4579         ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) {
4580       // switch the register classes, as GPRwithAPSRnospRegClassID is a partial
4581       // subset of GPRRegClassId except it contains APSR as well.
4582       RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID];
4583     }
4584     if (Reg == ARM::VPR &&
4585         (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] ||
4586          RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] ||
4587          RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) {
4588       RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID];
4589       EReg = MRI->getEncodingValue(Reg);
4590       if (!insertNoDuplicates(Registers, EReg, Reg)) {
4591         Warning(RegLoc, "duplicated register (" + RegTok.getString() +
4592                             ") in register list");
4593       }
4594       continue;
4595     }
4596     // The register must be in the same register class as the first.
4597     if ((Reg == ARM::RA_AUTH_CODE &&
4598          RC != &ARMMCRegisterClasses[ARM::GPRRegClassID]) ||
4599         (Reg != ARM::RA_AUTH_CODE && !RC->contains(Reg)))
4600       return Error(RegLoc, "invalid register in register list");
4601     // In most cases, the list must be monotonically increasing. An
4602     // exception is CLRM, which is order-independent anyway, so
4603     // there's no potential for confusion if you write clrm {r2,r1}
4604     // instead of clrm {r1,r2}.
4605     if (EnforceOrder &&
4606         MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
4607       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4608         Warning(RegLoc, "register list not in ascending order");
4609       else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg))
4610         return Error(RegLoc, "register list not in ascending order");
4611     }
4612     // VFP register lists must also be contiguous.
4613     if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
4614         RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] &&
4615         Reg != OldReg + 1)
4616       return Error(RegLoc, "non-contiguous register range");
4617     EReg = MRI->getEncodingValue(Reg);
4618     if (!insertNoDuplicates(Registers, EReg, Reg)) {
4619       Warning(RegLoc, "duplicated register (" + RegTok.getString() +
4620                           ") in register list");
4621     }
4622     if (isQReg) {
4623       EReg = MRI->getEncodingValue(++Reg);
4624       Registers.emplace_back(EReg, Reg);
4625     }
4626   }
4627 
4628   if (Parser.getTok().isNot(AsmToken::RCurly))
4629     return Error(Parser.getTok().getLoc(), "'}' expected");
4630   SMLoc E = Parser.getTok().getEndLoc();
4631   Parser.Lex(); // Eat '}' token.
4632 
4633   // Push the register list operand.
4634   Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
4635 
4636   // The ARM system instruction variants for LDM/STM have a '^' token here.
4637   if (Parser.getTok().is(AsmToken::Caret)) {
4638     Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
4639     Parser.Lex(); // Eat '^' token.
4640   }
4641 
4642   return false;
4643 }
4644 
4645 // Helper function to parse the lane index for vector lists.
4646 OperandMatchResultTy ARMAsmParser::
4647 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
4648   MCAsmParser &Parser = getParser();
4649   Index = 0; // Always return a defined index value.
4650   if (Parser.getTok().is(AsmToken::LBrac)) {
4651     Parser.Lex(); // Eat the '['.
4652     if (Parser.getTok().is(AsmToken::RBrac)) {
4653       // "Dn[]" is the 'all lanes' syntax.
4654       LaneKind = AllLanes;
4655       EndLoc = Parser.getTok().getEndLoc();
4656       Parser.Lex(); // Eat the ']'.
4657       return MatchOperand_Success;
4658     }
4659 
4660     // There's an optional '#' token here. Normally there wouldn't be, but
4661     // inline assemble puts one in, and it's friendly to accept that.
4662     if (Parser.getTok().is(AsmToken::Hash))
4663       Parser.Lex(); // Eat '#' or '$'.
4664 
4665     const MCExpr *LaneIndex;
4666     SMLoc Loc = Parser.getTok().getLoc();
4667     if (getParser().parseExpression(LaneIndex)) {
4668       Error(Loc, "illegal expression");
4669       return MatchOperand_ParseFail;
4670     }
4671     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
4672     if (!CE) {
4673       Error(Loc, "lane index must be empty or an integer");
4674       return MatchOperand_ParseFail;
4675     }
4676     if (Parser.getTok().isNot(AsmToken::RBrac)) {
4677       Error(Parser.getTok().getLoc(), "']' expected");
4678       return MatchOperand_ParseFail;
4679     }
4680     EndLoc = Parser.getTok().getEndLoc();
4681     Parser.Lex(); // Eat the ']'.
4682     int64_t Val = CE->getValue();
4683 
4684     // FIXME: Make this range check context sensitive for .8, .16, .32.
4685     if (Val < 0 || Val > 7) {
4686       Error(Parser.getTok().getLoc(), "lane index out of range");
4687       return MatchOperand_ParseFail;
4688     }
4689     Index = Val;
4690     LaneKind = IndexedLane;
4691     return MatchOperand_Success;
4692   }
4693   LaneKind = NoLanes;
4694   return MatchOperand_Success;
4695 }
4696 
4697 // parse a vector register list
4698 OperandMatchResultTy
4699 ARMAsmParser::parseVectorList(OperandVector &Operands) {
4700   MCAsmParser &Parser = getParser();
4701   VectorLaneTy LaneKind;
4702   unsigned LaneIndex;
4703   SMLoc S = Parser.getTok().getLoc();
4704   // As an extension (to match gas), support a plain D register or Q register
4705   // (without encosing curly braces) as a single or double entry list,
4706   // respectively.
4707   if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) {
4708     SMLoc E = Parser.getTok().getEndLoc();
4709     int Reg = tryParseRegister();
4710     if (Reg == -1)
4711       return MatchOperand_NoMatch;
4712     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
4713       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
4714       if (Res != MatchOperand_Success)
4715         return Res;
4716       switch (LaneKind) {
4717       case NoLanes:
4718         Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
4719         break;
4720       case AllLanes:
4721         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
4722                                                                 S, E));
4723         break;
4724       case IndexedLane:
4725         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
4726                                                                LaneIndex,
4727                                                                false, S, E));
4728         break;
4729       }
4730       return MatchOperand_Success;
4731     }
4732     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4733       Reg = getDRegFromQReg(Reg);
4734       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
4735       if (Res != MatchOperand_Success)
4736         return Res;
4737       switch (LaneKind) {
4738       case NoLanes:
4739         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
4740                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
4741         Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
4742         break;
4743       case AllLanes:
4744         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
4745                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
4746         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
4747                                                                 S, E));
4748         break;
4749       case IndexedLane:
4750         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
4751                                                                LaneIndex,
4752                                                                false, S, E));
4753         break;
4754       }
4755       return MatchOperand_Success;
4756     }
4757     Error(S, "vector register expected");
4758     return MatchOperand_ParseFail;
4759   }
4760 
4761   if (Parser.getTok().isNot(AsmToken::LCurly))
4762     return MatchOperand_NoMatch;
4763 
4764   Parser.Lex(); // Eat '{' token.
4765   SMLoc RegLoc = Parser.getTok().getLoc();
4766 
4767   int Reg = tryParseRegister();
4768   if (Reg == -1) {
4769     Error(RegLoc, "register expected");
4770     return MatchOperand_ParseFail;
4771   }
4772   unsigned Count = 1;
4773   int Spacing = 0;
4774   unsigned FirstReg = Reg;
4775 
4776   if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) {
4777       Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected");
4778       return MatchOperand_ParseFail;
4779   }
4780   // The list is of D registers, but we also allow Q regs and just interpret
4781   // them as the two D sub-registers.
4782   else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4783     FirstReg = Reg = getDRegFromQReg(Reg);
4784     Spacing = 1; // double-spacing requires explicit D registers, otherwise
4785                  // it's ambiguous with four-register single spaced.
4786     ++Reg;
4787     ++Count;
4788   }
4789 
4790   SMLoc E;
4791   if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
4792     return MatchOperand_ParseFail;
4793 
4794   while (Parser.getTok().is(AsmToken::Comma) ||
4795          Parser.getTok().is(AsmToken::Minus)) {
4796     if (Parser.getTok().is(AsmToken::Minus)) {
4797       if (!Spacing)
4798         Spacing = 1; // Register range implies a single spaced list.
4799       else if (Spacing == 2) {
4800         Error(Parser.getTok().getLoc(),
4801               "sequential registers in double spaced list");
4802         return MatchOperand_ParseFail;
4803       }
4804       Parser.Lex(); // Eat the minus.
4805       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4806       int EndReg = tryParseRegister();
4807       if (EndReg == -1) {
4808         Error(AfterMinusLoc, "register expected");
4809         return MatchOperand_ParseFail;
4810       }
4811       // Allow Q regs and just interpret them as the two D sub-registers.
4812       if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4813         EndReg = getDRegFromQReg(EndReg) + 1;
4814       // If the register is the same as the start reg, there's nothing
4815       // more to do.
4816       if (Reg == EndReg)
4817         continue;
4818       // The register must be in the same register class as the first.
4819       if ((hasMVE() &&
4820            !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) ||
4821           (!hasMVE() &&
4822            !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) {
4823         Error(AfterMinusLoc, "invalid register in register list");
4824         return MatchOperand_ParseFail;
4825       }
4826       // Ranges must go from low to high.
4827       if (Reg > EndReg) {
4828         Error(AfterMinusLoc, "bad range in register list");
4829         return MatchOperand_ParseFail;
4830       }
4831       // Parse the lane specifier if present.
4832       VectorLaneTy NextLaneKind;
4833       unsigned NextLaneIndex;
4834       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4835           MatchOperand_Success)
4836         return MatchOperand_ParseFail;
4837       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4838         Error(AfterMinusLoc, "mismatched lane index in register list");
4839         return MatchOperand_ParseFail;
4840       }
4841 
4842       // Add all the registers in the range to the register list.
4843       Count += EndReg - Reg;
4844       Reg = EndReg;
4845       continue;
4846     }
4847     Parser.Lex(); // Eat the comma.
4848     RegLoc = Parser.getTok().getLoc();
4849     int OldReg = Reg;
4850     Reg = tryParseRegister();
4851     if (Reg == -1) {
4852       Error(RegLoc, "register expected");
4853       return MatchOperand_ParseFail;
4854     }
4855 
4856     if (hasMVE()) {
4857       if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) {
4858         Error(RegLoc, "vector register in range Q0-Q7 expected");
4859         return MatchOperand_ParseFail;
4860       }
4861       Spacing = 1;
4862     }
4863     // vector register lists must be contiguous.
4864     // It's OK to use the enumeration values directly here rather, as the
4865     // VFP register classes have the enum sorted properly.
4866     //
4867     // The list is of D registers, but we also allow Q regs and just interpret
4868     // them as the two D sub-registers.
4869     else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4870       if (!Spacing)
4871         Spacing = 1; // Register range implies a single spaced list.
4872       else if (Spacing == 2) {
4873         Error(RegLoc,
4874               "invalid register in double-spaced list (must be 'D' register')");
4875         return MatchOperand_ParseFail;
4876       }
4877       Reg = getDRegFromQReg(Reg);
4878       if (Reg != OldReg + 1) {
4879         Error(RegLoc, "non-contiguous register range");
4880         return MatchOperand_ParseFail;
4881       }
4882       ++Reg;
4883       Count += 2;
4884       // Parse the lane specifier if present.
4885       VectorLaneTy NextLaneKind;
4886       unsigned NextLaneIndex;
4887       SMLoc LaneLoc = Parser.getTok().getLoc();
4888       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4889           MatchOperand_Success)
4890         return MatchOperand_ParseFail;
4891       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4892         Error(LaneLoc, "mismatched lane index in register list");
4893         return MatchOperand_ParseFail;
4894       }
4895       continue;
4896     }
4897     // Normal D register.
4898     // Figure out the register spacing (single or double) of the list if
4899     // we don't know it already.
4900     if (!Spacing)
4901       Spacing = 1 + (Reg == OldReg + 2);
4902 
4903     // Just check that it's contiguous and keep going.
4904     if (Reg != OldReg + Spacing) {
4905       Error(RegLoc, "non-contiguous register range");
4906       return MatchOperand_ParseFail;
4907     }
4908     ++Count;
4909     // Parse the lane specifier if present.
4910     VectorLaneTy NextLaneKind;
4911     unsigned NextLaneIndex;
4912     SMLoc EndLoc = Parser.getTok().getLoc();
4913     if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
4914       return MatchOperand_ParseFail;
4915     if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4916       Error(EndLoc, "mismatched lane index in register list");
4917       return MatchOperand_ParseFail;
4918     }
4919   }
4920 
4921   if (Parser.getTok().isNot(AsmToken::RCurly)) {
4922     Error(Parser.getTok().getLoc(), "'}' expected");
4923     return MatchOperand_ParseFail;
4924   }
4925   E = Parser.getTok().getEndLoc();
4926   Parser.Lex(); // Eat '}' token.
4927 
4928   switch (LaneKind) {
4929   case NoLanes:
4930   case AllLanes: {
4931     // Two-register operands have been converted to the
4932     // composite register classes.
4933     if (Count == 2 && !hasMVE()) {
4934       const MCRegisterClass *RC = (Spacing == 1) ?
4935         &ARMMCRegisterClasses[ARM::DPairRegClassID] :
4936         &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
4937       FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
4938     }
4939     auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList :
4940                    ARMOperand::CreateVectorListAllLanes);
4941     Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E));
4942     break;
4943   }
4944   case IndexedLane:
4945     Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
4946                                                            LaneIndex,
4947                                                            (Spacing == 2),
4948                                                            S, E));
4949     break;
4950   }
4951   return MatchOperand_Success;
4952 }
4953 
4954 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
4955 OperandMatchResultTy
4956 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
4957   MCAsmParser &Parser = getParser();
4958   SMLoc S = Parser.getTok().getLoc();
4959   const AsmToken &Tok = Parser.getTok();
4960   unsigned Opt;
4961 
4962   if (Tok.is(AsmToken::Identifier)) {
4963     StringRef OptStr = Tok.getString();
4964 
4965     Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
4966       .Case("sy",    ARM_MB::SY)
4967       .Case("st",    ARM_MB::ST)
4968       .Case("ld",    ARM_MB::LD)
4969       .Case("sh",    ARM_MB::ISH)
4970       .Case("ish",   ARM_MB::ISH)
4971       .Case("shst",  ARM_MB::ISHST)
4972       .Case("ishst", ARM_MB::ISHST)
4973       .Case("ishld", ARM_MB::ISHLD)
4974       .Case("nsh",   ARM_MB::NSH)
4975       .Case("un",    ARM_MB::NSH)
4976       .Case("nshst", ARM_MB::NSHST)
4977       .Case("nshld", ARM_MB::NSHLD)
4978       .Case("unst",  ARM_MB::NSHST)
4979       .Case("osh",   ARM_MB::OSH)
4980       .Case("oshst", ARM_MB::OSHST)
4981       .Case("oshld", ARM_MB::OSHLD)
4982       .Default(~0U);
4983 
4984     // ishld, oshld, nshld and ld are only available from ARMv8.
4985     if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
4986                         Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
4987       Opt = ~0U;
4988 
4989     if (Opt == ~0U)
4990       return MatchOperand_NoMatch;
4991 
4992     Parser.Lex(); // Eat identifier token.
4993   } else if (Tok.is(AsmToken::Hash) ||
4994              Tok.is(AsmToken::Dollar) ||
4995              Tok.is(AsmToken::Integer)) {
4996     if (Parser.getTok().isNot(AsmToken::Integer))
4997       Parser.Lex(); // Eat '#' or '$'.
4998     SMLoc Loc = Parser.getTok().getLoc();
4999 
5000     const MCExpr *MemBarrierID;
5001     if (getParser().parseExpression(MemBarrierID)) {
5002       Error(Loc, "illegal expression");
5003       return MatchOperand_ParseFail;
5004     }
5005 
5006     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
5007     if (!CE) {
5008       Error(Loc, "constant expression expected");
5009       return MatchOperand_ParseFail;
5010     }
5011 
5012     int Val = CE->getValue();
5013     if (Val & ~0xf) {
5014       Error(Loc, "immediate value out of range");
5015       return MatchOperand_ParseFail;
5016     }
5017 
5018     Opt = ARM_MB::RESERVED_0 + Val;
5019   } else
5020     return MatchOperand_ParseFail;
5021 
5022   Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
5023   return MatchOperand_Success;
5024 }
5025 
5026 OperandMatchResultTy
5027 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) {
5028   MCAsmParser &Parser = getParser();
5029   SMLoc S = Parser.getTok().getLoc();
5030   const AsmToken &Tok = Parser.getTok();
5031 
5032   if (Tok.isNot(AsmToken::Identifier))
5033      return MatchOperand_NoMatch;
5034 
5035   if (!Tok.getString().equals_insensitive("csync"))
5036     return MatchOperand_NoMatch;
5037 
5038   Parser.Lex(); // Eat identifier token.
5039 
5040   Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S));
5041   return MatchOperand_Success;
5042 }
5043 
5044 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
5045 OperandMatchResultTy
5046 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
5047   MCAsmParser &Parser = getParser();
5048   SMLoc S = Parser.getTok().getLoc();
5049   const AsmToken &Tok = Parser.getTok();
5050   unsigned Opt;
5051 
5052   if (Tok.is(AsmToken::Identifier)) {
5053     StringRef OptStr = Tok.getString();
5054 
5055     if (OptStr.equals_insensitive("sy"))
5056       Opt = ARM_ISB::SY;
5057     else
5058       return MatchOperand_NoMatch;
5059 
5060     Parser.Lex(); // Eat identifier token.
5061   } else if (Tok.is(AsmToken::Hash) ||
5062              Tok.is(AsmToken::Dollar) ||
5063              Tok.is(AsmToken::Integer)) {
5064     if (Parser.getTok().isNot(AsmToken::Integer))
5065       Parser.Lex(); // Eat '#' or '$'.
5066     SMLoc Loc = Parser.getTok().getLoc();
5067 
5068     const MCExpr *ISBarrierID;
5069     if (getParser().parseExpression(ISBarrierID)) {
5070       Error(Loc, "illegal expression");
5071       return MatchOperand_ParseFail;
5072     }
5073 
5074     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
5075     if (!CE) {
5076       Error(Loc, "constant expression expected");
5077       return MatchOperand_ParseFail;
5078     }
5079 
5080     int Val = CE->getValue();
5081     if (Val & ~0xf) {
5082       Error(Loc, "immediate value out of range");
5083       return MatchOperand_ParseFail;
5084     }
5085 
5086     Opt = ARM_ISB::RESERVED_0 + Val;
5087   } else
5088     return MatchOperand_ParseFail;
5089 
5090   Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
5091           (ARM_ISB::InstSyncBOpt)Opt, S));
5092   return MatchOperand_Success;
5093 }
5094 
5095 
5096 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
5097 OperandMatchResultTy
5098 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
5099   MCAsmParser &Parser = getParser();
5100   SMLoc S = Parser.getTok().getLoc();
5101   const AsmToken &Tok = Parser.getTok();
5102   if (!Tok.is(AsmToken::Identifier))
5103     return MatchOperand_NoMatch;
5104   StringRef IFlagsStr = Tok.getString();
5105 
5106   // An iflags string of "none" is interpreted to mean that none of the AIF
5107   // bits are set.  Not a terribly useful instruction, but a valid encoding.
5108   unsigned IFlags = 0;
5109   if (IFlagsStr != "none") {
5110         for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
5111       unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower())
5112         .Case("a", ARM_PROC::A)
5113         .Case("i", ARM_PROC::I)
5114         .Case("f", ARM_PROC::F)
5115         .Default(~0U);
5116 
5117       // If some specific iflag is already set, it means that some letter is
5118       // present more than once, this is not acceptable.
5119       if (Flag == ~0U || (IFlags & Flag))
5120         return MatchOperand_NoMatch;
5121 
5122       IFlags |= Flag;
5123     }
5124   }
5125 
5126   Parser.Lex(); // Eat identifier token.
5127   Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
5128   return MatchOperand_Success;
5129 }
5130 
5131 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
5132 OperandMatchResultTy
5133 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
5134   MCAsmParser &Parser = getParser();
5135   SMLoc S = Parser.getTok().getLoc();
5136   const AsmToken &Tok = Parser.getTok();
5137 
5138   if (Tok.is(AsmToken::Integer)) {
5139     int64_t Val = Tok.getIntVal();
5140     if (Val > 255 || Val < 0) {
5141       return MatchOperand_NoMatch;
5142     }
5143     unsigned SYSmvalue = Val & 0xFF;
5144     Parser.Lex();
5145     Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
5146     return MatchOperand_Success;
5147   }
5148 
5149   if (!Tok.is(AsmToken::Identifier))
5150     return MatchOperand_NoMatch;
5151   StringRef Mask = Tok.getString();
5152 
5153   if (isMClass()) {
5154     auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower());
5155     if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits()))
5156       return MatchOperand_NoMatch;
5157 
5158     unsigned SYSmvalue = TheReg->Encoding & 0xFFF;
5159 
5160     Parser.Lex(); // Eat identifier token.
5161     Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
5162     return MatchOperand_Success;
5163   }
5164 
5165   // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
5166   size_t Start = 0, Next = Mask.find('_');
5167   StringRef Flags = "";
5168   std::string SpecReg = Mask.slice(Start, Next).lower();
5169   if (Next != StringRef::npos)
5170     Flags = Mask.slice(Next+1, Mask.size());
5171 
5172   // FlagsVal contains the complete mask:
5173   // 3-0: Mask
5174   // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
5175   unsigned FlagsVal = 0;
5176 
5177   if (SpecReg == "apsr") {
5178     FlagsVal = StringSwitch<unsigned>(Flags)
5179     .Case("nzcvq",  0x8) // same as CPSR_f
5180     .Case("g",      0x4) // same as CPSR_s
5181     .Case("nzcvqg", 0xc) // same as CPSR_fs
5182     .Default(~0U);
5183 
5184     if (FlagsVal == ~0U) {
5185       if (!Flags.empty())
5186         return MatchOperand_NoMatch;
5187       else
5188         FlagsVal = 8; // No flag
5189     }
5190   } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
5191     // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
5192     if (Flags == "all" || Flags == "")
5193       Flags = "fc";
5194     for (int i = 0, e = Flags.size(); i != e; ++i) {
5195       unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
5196       .Case("c", 1)
5197       .Case("x", 2)
5198       .Case("s", 4)
5199       .Case("f", 8)
5200       .Default(~0U);
5201 
5202       // If some specific flag is already set, it means that some letter is
5203       // present more than once, this is not acceptable.
5204       if (Flag == ~0U || (FlagsVal & Flag))
5205         return MatchOperand_NoMatch;
5206       FlagsVal |= Flag;
5207     }
5208   } else // No match for special register.
5209     return MatchOperand_NoMatch;
5210 
5211   // Special register without flags is NOT equivalent to "fc" flags.
5212   // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
5213   // two lines would enable gas compatibility at the expense of breaking
5214   // round-tripping.
5215   //
5216   // if (!FlagsVal)
5217   //  FlagsVal = 0x9;
5218 
5219   // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
5220   if (SpecReg == "spsr")
5221     FlagsVal |= 16;
5222 
5223   Parser.Lex(); // Eat identifier token.
5224   Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
5225   return MatchOperand_Success;
5226 }
5227 
5228 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
5229 /// use in the MRS/MSR instructions added to support virtualization.
5230 OperandMatchResultTy
5231 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) {
5232   MCAsmParser &Parser = getParser();
5233   SMLoc S = Parser.getTok().getLoc();
5234   const AsmToken &Tok = Parser.getTok();
5235   if (!Tok.is(AsmToken::Identifier))
5236     return MatchOperand_NoMatch;
5237   StringRef RegName = Tok.getString();
5238 
5239   auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower());
5240   if (!TheReg)
5241     return MatchOperand_NoMatch;
5242   unsigned Encoding = TheReg->Encoding;
5243 
5244   Parser.Lex(); // Eat identifier token.
5245   Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S));
5246   return MatchOperand_Success;
5247 }
5248 
5249 OperandMatchResultTy
5250 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
5251                           int High) {
5252   MCAsmParser &Parser = getParser();
5253   const AsmToken &Tok = Parser.getTok();
5254   if (Tok.isNot(AsmToken::Identifier)) {
5255     Error(Parser.getTok().getLoc(), Op + " operand expected.");
5256     return MatchOperand_ParseFail;
5257   }
5258   StringRef ShiftName = Tok.getString();
5259   std::string LowerOp = Op.lower();
5260   std::string UpperOp = Op.upper();
5261   if (ShiftName != LowerOp && ShiftName != UpperOp) {
5262     Error(Parser.getTok().getLoc(), Op + " operand expected.");
5263     return MatchOperand_ParseFail;
5264   }
5265   Parser.Lex(); // Eat shift type token.
5266 
5267   // There must be a '#' and a shift amount.
5268   if (Parser.getTok().isNot(AsmToken::Hash) &&
5269       Parser.getTok().isNot(AsmToken::Dollar)) {
5270     Error(Parser.getTok().getLoc(), "'#' expected");
5271     return MatchOperand_ParseFail;
5272   }
5273   Parser.Lex(); // Eat hash token.
5274 
5275   const MCExpr *ShiftAmount;
5276   SMLoc Loc = Parser.getTok().getLoc();
5277   SMLoc EndLoc;
5278   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5279     Error(Loc, "illegal expression");
5280     return MatchOperand_ParseFail;
5281   }
5282   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5283   if (!CE) {
5284     Error(Loc, "constant expression expected");
5285     return MatchOperand_ParseFail;
5286   }
5287   int Val = CE->getValue();
5288   if (Val < Low || Val > High) {
5289     Error(Loc, "immediate value out of range");
5290     return MatchOperand_ParseFail;
5291   }
5292 
5293   Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
5294 
5295   return MatchOperand_Success;
5296 }
5297 
5298 OperandMatchResultTy
5299 ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
5300   MCAsmParser &Parser = getParser();
5301   const AsmToken &Tok = Parser.getTok();
5302   SMLoc S = Tok.getLoc();
5303   if (Tok.isNot(AsmToken::Identifier)) {
5304     Error(S, "'be' or 'le' operand expected");
5305     return MatchOperand_ParseFail;
5306   }
5307   int Val = StringSwitch<int>(Tok.getString().lower())
5308     .Case("be", 1)
5309     .Case("le", 0)
5310     .Default(-1);
5311   Parser.Lex(); // Eat the token.
5312 
5313   if (Val == -1) {
5314     Error(S, "'be' or 'le' operand expected");
5315     return MatchOperand_ParseFail;
5316   }
5317   Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val,
5318                                                                   getContext()),
5319                                            S, Tok.getEndLoc()));
5320   return MatchOperand_Success;
5321 }
5322 
5323 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
5324 /// instructions. Legal values are:
5325 ///     lsl #n  'n' in [0,31]
5326 ///     asr #n  'n' in [1,32]
5327 ///             n == 32 encoded as n == 0.
5328 OperandMatchResultTy
5329 ARMAsmParser::parseShifterImm(OperandVector &Operands) {
5330   MCAsmParser &Parser = getParser();
5331   const AsmToken &Tok = Parser.getTok();
5332   SMLoc S = Tok.getLoc();
5333   if (Tok.isNot(AsmToken::Identifier)) {
5334     Error(S, "shift operator 'asr' or 'lsl' expected");
5335     return MatchOperand_ParseFail;
5336   }
5337   StringRef ShiftName = Tok.getString();
5338   bool isASR;
5339   if (ShiftName == "lsl" || ShiftName == "LSL")
5340     isASR = false;
5341   else if (ShiftName == "asr" || ShiftName == "ASR")
5342     isASR = true;
5343   else {
5344     Error(S, "shift operator 'asr' or 'lsl' expected");
5345     return MatchOperand_ParseFail;
5346   }
5347   Parser.Lex(); // Eat the operator.
5348 
5349   // A '#' and a shift amount.
5350   if (Parser.getTok().isNot(AsmToken::Hash) &&
5351       Parser.getTok().isNot(AsmToken::Dollar)) {
5352     Error(Parser.getTok().getLoc(), "'#' expected");
5353     return MatchOperand_ParseFail;
5354   }
5355   Parser.Lex(); // Eat hash token.
5356   SMLoc ExLoc = Parser.getTok().getLoc();
5357 
5358   const MCExpr *ShiftAmount;
5359   SMLoc EndLoc;
5360   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5361     Error(ExLoc, "malformed shift expression");
5362     return MatchOperand_ParseFail;
5363   }
5364   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5365   if (!CE) {
5366     Error(ExLoc, "shift amount must be an immediate");
5367     return MatchOperand_ParseFail;
5368   }
5369 
5370   int64_t Val = CE->getValue();
5371   if (isASR) {
5372     // Shift amount must be in [1,32]
5373     if (Val < 1 || Val > 32) {
5374       Error(ExLoc, "'asr' shift amount must be in range [1,32]");
5375       return MatchOperand_ParseFail;
5376     }
5377     // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
5378     if (isThumb() && Val == 32) {
5379       Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
5380       return MatchOperand_ParseFail;
5381     }
5382     if (Val == 32) Val = 0;
5383   } else {
5384     // Shift amount must be in [1,32]
5385     if (Val < 0 || Val > 31) {
5386       Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
5387       return MatchOperand_ParseFail;
5388     }
5389   }
5390 
5391   Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
5392 
5393   return MatchOperand_Success;
5394 }
5395 
5396 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
5397 /// of instructions. Legal values are:
5398 ///     ror #n  'n' in {0, 8, 16, 24}
5399 OperandMatchResultTy
5400 ARMAsmParser::parseRotImm(OperandVector &Operands) {
5401   MCAsmParser &Parser = getParser();
5402   const AsmToken &Tok = Parser.getTok();
5403   SMLoc S = Tok.getLoc();
5404   if (Tok.isNot(AsmToken::Identifier))
5405     return MatchOperand_NoMatch;
5406   StringRef ShiftName = Tok.getString();
5407   if (ShiftName != "ror" && ShiftName != "ROR")
5408     return MatchOperand_NoMatch;
5409   Parser.Lex(); // Eat the operator.
5410 
5411   // A '#' and a rotate amount.
5412   if (Parser.getTok().isNot(AsmToken::Hash) &&
5413       Parser.getTok().isNot(AsmToken::Dollar)) {
5414     Error(Parser.getTok().getLoc(), "'#' expected");
5415     return MatchOperand_ParseFail;
5416   }
5417   Parser.Lex(); // Eat hash token.
5418   SMLoc ExLoc = Parser.getTok().getLoc();
5419 
5420   const MCExpr *ShiftAmount;
5421   SMLoc EndLoc;
5422   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5423     Error(ExLoc, "malformed rotate expression");
5424     return MatchOperand_ParseFail;
5425   }
5426   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5427   if (!CE) {
5428     Error(ExLoc, "rotate amount must be an immediate");
5429     return MatchOperand_ParseFail;
5430   }
5431 
5432   int64_t Val = CE->getValue();
5433   // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
5434   // normally, zero is represented in asm by omitting the rotate operand
5435   // entirely.
5436   if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
5437     Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
5438     return MatchOperand_ParseFail;
5439   }
5440 
5441   Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
5442 
5443   return MatchOperand_Success;
5444 }
5445 
5446 OperandMatchResultTy
5447 ARMAsmParser::parseModImm(OperandVector &Operands) {
5448   MCAsmParser &Parser = getParser();
5449   MCAsmLexer &Lexer = getLexer();
5450   int64_t Imm1, Imm2;
5451 
5452   SMLoc S = Parser.getTok().getLoc();
5453 
5454   // 1) A mod_imm operand can appear in the place of a register name:
5455   //   add r0, #mod_imm
5456   //   add r0, r0, #mod_imm
5457   // to correctly handle the latter, we bail out as soon as we see an
5458   // identifier.
5459   //
5460   // 2) Similarly, we do not want to parse into complex operands:
5461   //   mov r0, #mod_imm
5462   //   mov r0, :lower16:(_foo)
5463   if (Parser.getTok().is(AsmToken::Identifier) ||
5464       Parser.getTok().is(AsmToken::Colon))
5465     return MatchOperand_NoMatch;
5466 
5467   // Hash (dollar) is optional as per the ARMARM
5468   if (Parser.getTok().is(AsmToken::Hash) ||
5469       Parser.getTok().is(AsmToken::Dollar)) {
5470     // Avoid parsing into complex operands (#:)
5471     if (Lexer.peekTok().is(AsmToken::Colon))
5472       return MatchOperand_NoMatch;
5473 
5474     // Eat the hash (dollar)
5475     Parser.Lex();
5476   }
5477 
5478   SMLoc Sx1, Ex1;
5479   Sx1 = Parser.getTok().getLoc();
5480   const MCExpr *Imm1Exp;
5481   if (getParser().parseExpression(Imm1Exp, Ex1)) {
5482     Error(Sx1, "malformed expression");
5483     return MatchOperand_ParseFail;
5484   }
5485 
5486   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp);
5487 
5488   if (CE) {
5489     // Immediate must fit within 32-bits
5490     Imm1 = CE->getValue();
5491     int Enc = ARM_AM::getSOImmVal(Imm1);
5492     if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) {
5493       // We have a match!
5494       Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF),
5495                                                   (Enc & 0xF00) >> 7,
5496                                                   Sx1, Ex1));
5497       return MatchOperand_Success;
5498     }
5499 
5500     // We have parsed an immediate which is not for us, fallback to a plain
5501     // immediate. This can happen for instruction aliases. For an example,
5502     // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
5503     // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
5504     // instruction with a mod_imm operand. The alias is defined such that the
5505     // parser method is shared, that's why we have to do this here.
5506     if (Parser.getTok().is(AsmToken::EndOfStatement)) {
5507       Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
5508       return MatchOperand_Success;
5509     }
5510   } else {
5511     // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
5512     // MCFixup). Fallback to a plain immediate.
5513     Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
5514     return MatchOperand_Success;
5515   }
5516 
5517   // From this point onward, we expect the input to be a (#bits, #rot) pair
5518   if (Parser.getTok().isNot(AsmToken::Comma)) {
5519     Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]");
5520     return MatchOperand_ParseFail;
5521   }
5522 
5523   if (Imm1 & ~0xFF) {
5524     Error(Sx1, "immediate operand must a number in the range [0, 255]");
5525     return MatchOperand_ParseFail;
5526   }
5527 
5528   // Eat the comma
5529   Parser.Lex();
5530 
5531   // Repeat for #rot
5532   SMLoc Sx2, Ex2;
5533   Sx2 = Parser.getTok().getLoc();
5534 
5535   // Eat the optional hash (dollar)
5536   if (Parser.getTok().is(AsmToken::Hash) ||
5537       Parser.getTok().is(AsmToken::Dollar))
5538     Parser.Lex();
5539 
5540   const MCExpr *Imm2Exp;
5541   if (getParser().parseExpression(Imm2Exp, Ex2)) {
5542     Error(Sx2, "malformed expression");
5543     return MatchOperand_ParseFail;
5544   }
5545 
5546   CE = dyn_cast<MCConstantExpr>(Imm2Exp);
5547 
5548   if (CE) {
5549     Imm2 = CE->getValue();
5550     if (!(Imm2 & ~0x1E)) {
5551       // We have a match!
5552       Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2));
5553       return MatchOperand_Success;
5554     }
5555     Error(Sx2, "immediate operand must an even number in the range [0, 30]");
5556     return MatchOperand_ParseFail;
5557   } else {
5558     Error(Sx2, "constant expression expected");
5559     return MatchOperand_ParseFail;
5560   }
5561 }
5562 
5563 OperandMatchResultTy
5564 ARMAsmParser::parseBitfield(OperandVector &Operands) {
5565   MCAsmParser &Parser = getParser();
5566   SMLoc S = Parser.getTok().getLoc();
5567   // The bitfield descriptor is really two operands, the LSB and the width.
5568   if (Parser.getTok().isNot(AsmToken::Hash) &&
5569       Parser.getTok().isNot(AsmToken::Dollar)) {
5570     Error(Parser.getTok().getLoc(), "'#' expected");
5571     return MatchOperand_ParseFail;
5572   }
5573   Parser.Lex(); // Eat hash token.
5574 
5575   const MCExpr *LSBExpr;
5576   SMLoc E = Parser.getTok().getLoc();
5577   if (getParser().parseExpression(LSBExpr)) {
5578     Error(E, "malformed immediate expression");
5579     return MatchOperand_ParseFail;
5580   }
5581   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
5582   if (!CE) {
5583     Error(E, "'lsb' operand must be an immediate");
5584     return MatchOperand_ParseFail;
5585   }
5586 
5587   int64_t LSB = CE->getValue();
5588   // The LSB must be in the range [0,31]
5589   if (LSB < 0 || LSB > 31) {
5590     Error(E, "'lsb' operand must be in the range [0,31]");
5591     return MatchOperand_ParseFail;
5592   }
5593   E = Parser.getTok().getLoc();
5594 
5595   // Expect another immediate operand.
5596   if (Parser.getTok().isNot(AsmToken::Comma)) {
5597     Error(Parser.getTok().getLoc(), "too few operands");
5598     return MatchOperand_ParseFail;
5599   }
5600   Parser.Lex(); // Eat hash token.
5601   if (Parser.getTok().isNot(AsmToken::Hash) &&
5602       Parser.getTok().isNot(AsmToken::Dollar)) {
5603     Error(Parser.getTok().getLoc(), "'#' expected");
5604     return MatchOperand_ParseFail;
5605   }
5606   Parser.Lex(); // Eat hash token.
5607 
5608   const MCExpr *WidthExpr;
5609   SMLoc EndLoc;
5610   if (getParser().parseExpression(WidthExpr, EndLoc)) {
5611     Error(E, "malformed immediate expression");
5612     return MatchOperand_ParseFail;
5613   }
5614   CE = dyn_cast<MCConstantExpr>(WidthExpr);
5615   if (!CE) {
5616     Error(E, "'width' operand must be an immediate");
5617     return MatchOperand_ParseFail;
5618   }
5619 
5620   int64_t Width = CE->getValue();
5621   // The LSB must be in the range [1,32-lsb]
5622   if (Width < 1 || Width > 32 - LSB) {
5623     Error(E, "'width' operand must be in the range [1,32-lsb]");
5624     return MatchOperand_ParseFail;
5625   }
5626 
5627   Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
5628 
5629   return MatchOperand_Success;
5630 }
5631 
5632 OperandMatchResultTy
5633 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
5634   // Check for a post-index addressing register operand. Specifically:
5635   // postidx_reg := '+' register {, shift}
5636   //              | '-' register {, shift}
5637   //              | register {, shift}
5638 
5639   // This method must return MatchOperand_NoMatch without consuming any tokens
5640   // in the case where there is no match, as other alternatives take other
5641   // parse methods.
5642   MCAsmParser &Parser = getParser();
5643   AsmToken Tok = Parser.getTok();
5644   SMLoc S = Tok.getLoc();
5645   bool haveEaten = false;
5646   bool isAdd = true;
5647   if (Tok.is(AsmToken::Plus)) {
5648     Parser.Lex(); // Eat the '+' token.
5649     haveEaten = true;
5650   } else if (Tok.is(AsmToken::Minus)) {
5651     Parser.Lex(); // Eat the '-' token.
5652     isAdd = false;
5653     haveEaten = true;
5654   }
5655 
5656   SMLoc E = Parser.getTok().getEndLoc();
5657   int Reg = tryParseRegister();
5658   if (Reg == -1) {
5659     if (!haveEaten)
5660       return MatchOperand_NoMatch;
5661     Error(Parser.getTok().getLoc(), "register expected");
5662     return MatchOperand_ParseFail;
5663   }
5664 
5665   ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
5666   unsigned ShiftImm = 0;
5667   if (Parser.getTok().is(AsmToken::Comma)) {
5668     Parser.Lex(); // Eat the ','.
5669     if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
5670       return MatchOperand_ParseFail;
5671 
5672     // FIXME: Only approximates end...may include intervening whitespace.
5673     E = Parser.getTok().getLoc();
5674   }
5675 
5676   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
5677                                                   ShiftImm, S, E));
5678 
5679   return MatchOperand_Success;
5680 }
5681 
5682 OperandMatchResultTy
5683 ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
5684   // Check for a post-index addressing register operand. Specifically:
5685   // am3offset := '+' register
5686   //              | '-' register
5687   //              | register
5688   //              | # imm
5689   //              | # + imm
5690   //              | # - imm
5691 
5692   // This method must return MatchOperand_NoMatch without consuming any tokens
5693   // in the case where there is no match, as other alternatives take other
5694   // parse methods.
5695   MCAsmParser &Parser = getParser();
5696   AsmToken Tok = Parser.getTok();
5697   SMLoc S = Tok.getLoc();
5698 
5699   // Do immediates first, as we always parse those if we have a '#'.
5700   if (Parser.getTok().is(AsmToken::Hash) ||
5701       Parser.getTok().is(AsmToken::Dollar)) {
5702     Parser.Lex(); // Eat '#' or '$'.
5703     // Explicitly look for a '-', as we need to encode negative zero
5704     // differently.
5705     bool isNegative = Parser.getTok().is(AsmToken::Minus);
5706     const MCExpr *Offset;
5707     SMLoc E;
5708     if (getParser().parseExpression(Offset, E))
5709       return MatchOperand_ParseFail;
5710     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
5711     if (!CE) {
5712       Error(S, "constant expression expected");
5713       return MatchOperand_ParseFail;
5714     }
5715     // Negative zero is encoded as the flag value
5716     // std::numeric_limits<int32_t>::min().
5717     int32_t Val = CE->getValue();
5718     if (isNegative && Val == 0)
5719       Val = std::numeric_limits<int32_t>::min();
5720 
5721     Operands.push_back(
5722       ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E));
5723 
5724     return MatchOperand_Success;
5725   }
5726 
5727   bool haveEaten = false;
5728   bool isAdd = true;
5729   if (Tok.is(AsmToken::Plus)) {
5730     Parser.Lex(); // Eat the '+' token.
5731     haveEaten = true;
5732   } else if (Tok.is(AsmToken::Minus)) {
5733     Parser.Lex(); // Eat the '-' token.
5734     isAdd = false;
5735     haveEaten = true;
5736   }
5737 
5738   Tok = Parser.getTok();
5739   int Reg = tryParseRegister();
5740   if (Reg == -1) {
5741     if (!haveEaten)
5742       return MatchOperand_NoMatch;
5743     Error(Tok.getLoc(), "register expected");
5744     return MatchOperand_ParseFail;
5745   }
5746 
5747   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
5748                                                   0, S, Tok.getEndLoc()));
5749 
5750   return MatchOperand_Success;
5751 }
5752 
5753 /// Convert parsed operands to MCInst.  Needed here because this instruction
5754 /// only has two register operands, but multiplication is commutative so
5755 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
5756 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst,
5757                                     const OperandVector &Operands) {
5758   ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1);
5759   ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1);
5760   // If we have a three-operand form, make sure to set Rn to be the operand
5761   // that isn't the same as Rd.
5762   unsigned RegOp = 4;
5763   if (Operands.size() == 6 &&
5764       ((ARMOperand &)*Operands[4]).getReg() ==
5765           ((ARMOperand &)*Operands[3]).getReg())
5766     RegOp = 5;
5767   ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1);
5768   Inst.addOperand(Inst.getOperand(0));
5769   ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2);
5770 }
5771 
5772 void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
5773                                     const OperandVector &Operands) {
5774   int CondOp = -1, ImmOp = -1;
5775   switch(Inst.getOpcode()) {
5776     case ARM::tB:
5777     case ARM::tBcc:  CondOp = 1; ImmOp = 2; break;
5778 
5779     case ARM::t2B:
5780     case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
5781 
5782     default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
5783   }
5784   // first decide whether or not the branch should be conditional
5785   // by looking at it's location relative to an IT block
5786   if(inITBlock()) {
5787     // inside an IT block we cannot have any conditional branches. any
5788     // such instructions needs to be converted to unconditional form
5789     switch(Inst.getOpcode()) {
5790       case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
5791       case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
5792     }
5793   } else {
5794     // outside IT blocks we can only have unconditional branches with AL
5795     // condition code or conditional branches with non-AL condition code
5796     unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode();
5797     switch(Inst.getOpcode()) {
5798       case ARM::tB:
5799       case ARM::tBcc:
5800         Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
5801         break;
5802       case ARM::t2B:
5803       case ARM::t2Bcc:
5804         Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
5805         break;
5806     }
5807   }
5808 
5809   // now decide on encoding size based on branch target range
5810   switch(Inst.getOpcode()) {
5811     // classify tB as either t2B or t1B based on range of immediate operand
5812     case ARM::tB: {
5813       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5814       if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline())
5815         Inst.setOpcode(ARM::t2B);
5816       break;
5817     }
5818     // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
5819     case ARM::tBcc: {
5820       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5821       if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline())
5822         Inst.setOpcode(ARM::t2Bcc);
5823       break;
5824     }
5825   }
5826   ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1);
5827   ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2);
5828 }
5829 
5830 void ARMAsmParser::cvtMVEVMOVQtoDReg(
5831   MCInst &Inst, const OperandVector &Operands) {
5832 
5833   // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2
5834   assert(Operands.size() == 8);
5835 
5836   ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt
5837   ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2
5838   ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd
5839   ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx
5840   // skip second copy of Qd in Operands[6]
5841   ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2
5842   ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code
5843 }
5844 
5845 /// Parse an ARM memory expression, return false if successful else return true
5846 /// or an error.  The first token must be a '[' when called.
5847 bool ARMAsmParser::parseMemory(OperandVector &Operands) {
5848   MCAsmParser &Parser = getParser();
5849   SMLoc S, E;
5850   if (Parser.getTok().isNot(AsmToken::LBrac))
5851     return TokError("Token is not a Left Bracket");
5852   S = Parser.getTok().getLoc();
5853   Parser.Lex(); // Eat left bracket token.
5854 
5855   const AsmToken &BaseRegTok = Parser.getTok();
5856   int BaseRegNum = tryParseRegister();
5857   if (BaseRegNum == -1)
5858     return Error(BaseRegTok.getLoc(), "register expected");
5859 
5860   // The next token must either be a comma, a colon or a closing bracket.
5861   const AsmToken &Tok = Parser.getTok();
5862   if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
5863       !Tok.is(AsmToken::RBrac))
5864     return Error(Tok.getLoc(), "malformed memory operand");
5865 
5866   if (Tok.is(AsmToken::RBrac)) {
5867     E = Tok.getEndLoc();
5868     Parser.Lex(); // Eat right bracket token.
5869 
5870     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5871                                              ARM_AM::no_shift, 0, 0, false,
5872                                              S, E));
5873 
5874     // If there's a pre-indexing writeback marker, '!', just add it as a token
5875     // operand. It's rather odd, but syntactically valid.
5876     if (Parser.getTok().is(AsmToken::Exclaim)) {
5877       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5878       Parser.Lex(); // Eat the '!'.
5879     }
5880 
5881     return false;
5882   }
5883 
5884   assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
5885          "Lost colon or comma in memory operand?!");
5886   if (Tok.is(AsmToken::Comma)) {
5887     Parser.Lex(); // Eat the comma.
5888   }
5889 
5890   // If we have a ':', it's an alignment specifier.
5891   if (Parser.getTok().is(AsmToken::Colon)) {
5892     Parser.Lex(); // Eat the ':'.
5893     E = Parser.getTok().getLoc();
5894     SMLoc AlignmentLoc = Tok.getLoc();
5895 
5896     const MCExpr *Expr;
5897     if (getParser().parseExpression(Expr))
5898      return true;
5899 
5900     // The expression has to be a constant. Memory references with relocations
5901     // don't come through here, as they use the <label> forms of the relevant
5902     // instructions.
5903     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5904     if (!CE)
5905       return Error (E, "constant expression expected");
5906 
5907     unsigned Align = 0;
5908     switch (CE->getValue()) {
5909     default:
5910       return Error(E,
5911                    "alignment specifier must be 16, 32, 64, 128, or 256 bits");
5912     case 16:  Align = 2; break;
5913     case 32:  Align = 4; break;
5914     case 64:  Align = 8; break;
5915     case 128: Align = 16; break;
5916     case 256: Align = 32; break;
5917     }
5918 
5919     // Now we should have the closing ']'
5920     if (Parser.getTok().isNot(AsmToken::RBrac))
5921       return Error(Parser.getTok().getLoc(), "']' expected");
5922     E = Parser.getTok().getEndLoc();
5923     Parser.Lex(); // Eat right bracket token.
5924 
5925     // Don't worry about range checking the value here. That's handled by
5926     // the is*() predicates.
5927     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5928                                              ARM_AM::no_shift, 0, Align,
5929                                              false, S, E, AlignmentLoc));
5930 
5931     // If there's a pre-indexing writeback marker, '!', just add it as a token
5932     // operand.
5933     if (Parser.getTok().is(AsmToken::Exclaim)) {
5934       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5935       Parser.Lex(); // Eat the '!'.
5936     }
5937 
5938     return false;
5939   }
5940 
5941   // If we have a '#' or '$', it's an immediate offset, else assume it's a
5942   // register offset. Be friendly and also accept a plain integer or expression
5943   // (without a leading hash) for gas compatibility.
5944   if (Parser.getTok().is(AsmToken::Hash) ||
5945       Parser.getTok().is(AsmToken::Dollar) ||
5946       Parser.getTok().is(AsmToken::LParen) ||
5947       Parser.getTok().is(AsmToken::Integer)) {
5948     if (Parser.getTok().is(AsmToken::Hash) ||
5949         Parser.getTok().is(AsmToken::Dollar))
5950       Parser.Lex(); // Eat '#' or '$'
5951     E = Parser.getTok().getLoc();
5952 
5953     bool isNegative = getParser().getTok().is(AsmToken::Minus);
5954     const MCExpr *Offset, *AdjustedOffset;
5955     if (getParser().parseExpression(Offset))
5956      return true;
5957 
5958     if (const auto *CE = dyn_cast<MCConstantExpr>(Offset)) {
5959       // If the constant was #-0, represent it as
5960       // std::numeric_limits<int32_t>::min().
5961       int32_t Val = CE->getValue();
5962       if (isNegative && Val == 0)
5963         CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
5964                                     getContext());
5965       // Don't worry about range checking the value here. That's handled by
5966       // the is*() predicates.
5967       AdjustedOffset = CE;
5968     } else
5969       AdjustedOffset = Offset;
5970     Operands.push_back(ARMOperand::CreateMem(
5971         BaseRegNum, AdjustedOffset, 0, ARM_AM::no_shift, 0, 0, false, S, E));
5972 
5973     // Now we should have the closing ']'
5974     if (Parser.getTok().isNot(AsmToken::RBrac))
5975       return Error(Parser.getTok().getLoc(), "']' expected");
5976     E = Parser.getTok().getEndLoc();
5977     Parser.Lex(); // Eat right bracket token.
5978 
5979     // If there's a pre-indexing writeback marker, '!', just add it as a token
5980     // operand.
5981     if (Parser.getTok().is(AsmToken::Exclaim)) {
5982       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5983       Parser.Lex(); // Eat the '!'.
5984     }
5985 
5986     return false;
5987   }
5988 
5989   // The register offset is optionally preceded by a '+' or '-'
5990   bool isNegative = false;
5991   if (Parser.getTok().is(AsmToken::Minus)) {
5992     isNegative = true;
5993     Parser.Lex(); // Eat the '-'.
5994   } else if (Parser.getTok().is(AsmToken::Plus)) {
5995     // Nothing to do.
5996     Parser.Lex(); // Eat the '+'.
5997   }
5998 
5999   E = Parser.getTok().getLoc();
6000   int OffsetRegNum = tryParseRegister();
6001   if (OffsetRegNum == -1)
6002     return Error(E, "register expected");
6003 
6004   // If there's a shift operator, handle it.
6005   ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
6006   unsigned ShiftImm = 0;
6007   if (Parser.getTok().is(AsmToken::Comma)) {
6008     Parser.Lex(); // Eat the ','.
6009     if (parseMemRegOffsetShift(ShiftType, ShiftImm))
6010       return true;
6011   }
6012 
6013   // Now we should have the closing ']'
6014   if (Parser.getTok().isNot(AsmToken::RBrac))
6015     return Error(Parser.getTok().getLoc(), "']' expected");
6016   E = Parser.getTok().getEndLoc();
6017   Parser.Lex(); // Eat right bracket token.
6018 
6019   Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum,
6020                                            ShiftType, ShiftImm, 0, isNegative,
6021                                            S, E));
6022 
6023   // If there's a pre-indexing writeback marker, '!', just add it as a token
6024   // operand.
6025   if (Parser.getTok().is(AsmToken::Exclaim)) {
6026     Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
6027     Parser.Lex(); // Eat the '!'.
6028   }
6029 
6030   return false;
6031 }
6032 
6033 /// parseMemRegOffsetShift - one of these two:
6034 ///   ( lsl | lsr | asr | ror ) , # shift_amount
6035 ///   rrx
6036 /// return true if it parses a shift otherwise it returns false.
6037 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
6038                                           unsigned &Amount) {
6039   MCAsmParser &Parser = getParser();
6040   SMLoc Loc = Parser.getTok().getLoc();
6041   const AsmToken &Tok = Parser.getTok();
6042   if (Tok.isNot(AsmToken::Identifier))
6043     return Error(Loc, "illegal shift operator");
6044   StringRef ShiftName = Tok.getString();
6045   if (ShiftName == "lsl" || ShiftName == "LSL" ||
6046       ShiftName == "asl" || ShiftName == "ASL")
6047     St = ARM_AM::lsl;
6048   else if (ShiftName == "lsr" || ShiftName == "LSR")
6049     St = ARM_AM::lsr;
6050   else if (ShiftName == "asr" || ShiftName == "ASR")
6051     St = ARM_AM::asr;
6052   else if (ShiftName == "ror" || ShiftName == "ROR")
6053     St = ARM_AM::ror;
6054   else if (ShiftName == "rrx" || ShiftName == "RRX")
6055     St = ARM_AM::rrx;
6056   else if (ShiftName == "uxtw" || ShiftName == "UXTW")
6057     St = ARM_AM::uxtw;
6058   else
6059     return Error(Loc, "illegal shift operator");
6060   Parser.Lex(); // Eat shift type token.
6061 
6062   // rrx stands alone.
6063   Amount = 0;
6064   if (St != ARM_AM::rrx) {
6065     Loc = Parser.getTok().getLoc();
6066     // A '#' and a shift amount.
6067     const AsmToken &HashTok = Parser.getTok();
6068     if (HashTok.isNot(AsmToken::Hash) &&
6069         HashTok.isNot(AsmToken::Dollar))
6070       return Error(HashTok.getLoc(), "'#' expected");
6071     Parser.Lex(); // Eat hash token.
6072 
6073     const MCExpr *Expr;
6074     if (getParser().parseExpression(Expr))
6075       return true;
6076     // Range check the immediate.
6077     // lsl, ror: 0 <= imm <= 31
6078     // lsr, asr: 0 <= imm <= 32
6079     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
6080     if (!CE)
6081       return Error(Loc, "shift amount must be an immediate");
6082     int64_t Imm = CE->getValue();
6083     if (Imm < 0 ||
6084         ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
6085         ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
6086       return Error(Loc, "immediate shift value out of range");
6087     // If <ShiftTy> #0, turn it into a no_shift.
6088     if (Imm == 0)
6089       St = ARM_AM::lsl;
6090     // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
6091     if (Imm == 32)
6092       Imm = 0;
6093     Amount = Imm;
6094   }
6095 
6096   return false;
6097 }
6098 
6099 /// parseFPImm - A floating point immediate expression operand.
6100 OperandMatchResultTy
6101 ARMAsmParser::parseFPImm(OperandVector &Operands) {
6102   MCAsmParser &Parser = getParser();
6103   // Anything that can accept a floating point constant as an operand
6104   // needs to go through here, as the regular parseExpression is
6105   // integer only.
6106   //
6107   // This routine still creates a generic Immediate operand, containing
6108   // a bitcast of the 64-bit floating point value. The various operands
6109   // that accept floats can check whether the value is valid for them
6110   // via the standard is*() predicates.
6111 
6112   SMLoc S = Parser.getTok().getLoc();
6113 
6114   if (Parser.getTok().isNot(AsmToken::Hash) &&
6115       Parser.getTok().isNot(AsmToken::Dollar))
6116     return MatchOperand_NoMatch;
6117 
6118   // Disambiguate the VMOV forms that can accept an FP immediate.
6119   // vmov.f32 <sreg>, #imm
6120   // vmov.f64 <dreg>, #imm
6121   // vmov.f32 <dreg>, #imm  @ vector f32x2
6122   // vmov.f32 <qreg>, #imm  @ vector f32x4
6123   //
6124   // There are also the NEON VMOV instructions which expect an
6125   // integer constant. Make sure we don't try to parse an FPImm
6126   // for these:
6127   // vmov.i{8|16|32|64} <dreg|qreg>, #imm
6128   ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]);
6129   bool isVmovf = TyOp.isToken() &&
6130                  (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" ||
6131                   TyOp.getToken() == ".f16");
6132   ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]);
6133   bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" ||
6134                                          Mnemonic.getToken() == "fconsts");
6135   if (!(isVmovf || isFconst))
6136     return MatchOperand_NoMatch;
6137 
6138   Parser.Lex(); // Eat '#' or '$'.
6139 
6140   // Handle negation, as that still comes through as a separate token.
6141   bool isNegative = false;
6142   if (Parser.getTok().is(AsmToken::Minus)) {
6143     isNegative = true;
6144     Parser.Lex();
6145   }
6146   const AsmToken &Tok = Parser.getTok();
6147   SMLoc Loc = Tok.getLoc();
6148   if (Tok.is(AsmToken::Real) && isVmovf) {
6149     APFloat RealVal(APFloat::IEEEsingle(), Tok.getString());
6150     uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
6151     // If we had a '-' in front, toggle the sign bit.
6152     IntVal ^= (uint64_t)isNegative << 31;
6153     Parser.Lex(); // Eat the token.
6154     Operands.push_back(ARMOperand::CreateImm(
6155           MCConstantExpr::create(IntVal, getContext()),
6156           S, Parser.getTok().getLoc()));
6157     return MatchOperand_Success;
6158   }
6159   // Also handle plain integers. Instructions which allow floating point
6160   // immediates also allow a raw encoded 8-bit value.
6161   if (Tok.is(AsmToken::Integer) && isFconst) {
6162     int64_t Val = Tok.getIntVal();
6163     Parser.Lex(); // Eat the token.
6164     if (Val > 255 || Val < 0) {
6165       Error(Loc, "encoded floating point value out of range");
6166       return MatchOperand_ParseFail;
6167     }
6168     float RealVal = ARM_AM::getFPImmFloat(Val);
6169     Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();
6170 
6171     Operands.push_back(ARMOperand::CreateImm(
6172         MCConstantExpr::create(Val, getContext()), S,
6173         Parser.getTok().getLoc()));
6174     return MatchOperand_Success;
6175   }
6176 
6177   Error(Loc, "invalid floating point immediate");
6178   return MatchOperand_ParseFail;
6179 }
6180 
6181 /// Parse a arm instruction operand.  For now this parses the operand regardless
6182 /// of the mnemonic.
6183 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
6184   MCAsmParser &Parser = getParser();
6185   SMLoc S, E;
6186 
6187   // Check if the current operand has a custom associated parser, if so, try to
6188   // custom parse the operand, or fallback to the general approach.
6189   OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
6190   if (ResTy == MatchOperand_Success)
6191     return false;
6192   // If there wasn't a custom match, try the generic matcher below. Otherwise,
6193   // there was a match, but an error occurred, in which case, just return that
6194   // the operand parsing failed.
6195   if (ResTy == MatchOperand_ParseFail)
6196     return true;
6197 
6198   switch (getLexer().getKind()) {
6199   default:
6200     Error(Parser.getTok().getLoc(), "unexpected token in operand");
6201     return true;
6202   case AsmToken::Identifier: {
6203     // If we've seen a branch mnemonic, the next operand must be a label.  This
6204     // is true even if the label is a register name.  So "br r1" means branch to
6205     // label "r1".
6206     bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
6207     if (!ExpectLabel) {
6208       if (!tryParseRegisterWithWriteBack(Operands))
6209         return false;
6210       int Res = tryParseShiftRegister(Operands);
6211       if (Res == 0) // success
6212         return false;
6213       else if (Res == -1) // irrecoverable error
6214         return true;
6215       // If this is VMRS, check for the apsr_nzcv operand.
6216       if (Mnemonic == "vmrs" &&
6217           Parser.getTok().getString().equals_insensitive("apsr_nzcv")) {
6218         S = Parser.getTok().getLoc();
6219         Parser.Lex();
6220         Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
6221         return false;
6222       }
6223     }
6224 
6225     // Fall though for the Identifier case that is not a register or a
6226     // special name.
6227     [[fallthrough]];
6228   }
6229   case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
6230   case AsmToken::Integer: // things like 1f and 2b as a branch targets
6231   case AsmToken::String:  // quoted label names.
6232   case AsmToken::Dot: {   // . as a branch target
6233     // This was not a register so parse other operands that start with an
6234     // identifier (like labels) as expressions and create them as immediates.
6235     const MCExpr *IdVal;
6236     S = Parser.getTok().getLoc();
6237     if (getParser().parseExpression(IdVal))
6238       return true;
6239     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6240     Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
6241     return false;
6242   }
6243   case AsmToken::LBrac:
6244     return parseMemory(Operands);
6245   case AsmToken::LCurly:
6246     return parseRegisterList(Operands, !Mnemonic.startswith("clr"));
6247   case AsmToken::Dollar:
6248   case AsmToken::Hash: {
6249     // #42 -> immediate
6250     // $ 42 -> immediate
6251     // $foo -> symbol name
6252     // $42 -> symbol name
6253     S = Parser.getTok().getLoc();
6254 
6255     // Favor the interpretation of $-prefixed operands as symbol names.
6256     // Cases where immediates are explicitly expected are handled by their
6257     // specific ParseMethod implementations.
6258     auto AdjacentToken = getLexer().peekTok(/*ShouldSkipSpace=*/false);
6259     bool ExpectIdentifier = Parser.getTok().is(AsmToken::Dollar) &&
6260                             (AdjacentToken.is(AsmToken::Identifier) ||
6261                              AdjacentToken.is(AsmToken::Integer));
6262     if (!ExpectIdentifier) {
6263       // Token is not part of identifier. Drop leading $ or # before parsing
6264       // expression.
6265       Parser.Lex();
6266     }
6267 
6268     if (Parser.getTok().isNot(AsmToken::Colon)) {
6269       bool IsNegative = Parser.getTok().is(AsmToken::Minus);
6270       const MCExpr *ImmVal;
6271       if (getParser().parseExpression(ImmVal))
6272         return true;
6273       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
6274       if (CE) {
6275         int32_t Val = CE->getValue();
6276         if (IsNegative && Val == 0)
6277           ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
6278                                           getContext());
6279       }
6280       E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6281       Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
6282 
6283       // There can be a trailing '!' on operands that we want as a separate
6284       // '!' Token operand. Handle that here. For example, the compatibility
6285       // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
6286       if (Parser.getTok().is(AsmToken::Exclaim)) {
6287         Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
6288                                                    Parser.getTok().getLoc()));
6289         Parser.Lex(); // Eat exclaim token
6290       }
6291       return false;
6292     }
6293     // w/ a ':' after the '#', it's just like a plain ':'.
6294     [[fallthrough]];
6295   }
6296   case AsmToken::Colon: {
6297     S = Parser.getTok().getLoc();
6298     // ":lower16:" and ":upper16:" expression prefixes
6299     // FIXME: Check it's an expression prefix,
6300     // e.g. (FOO - :lower16:BAR) isn't legal.
6301     ARMMCExpr::VariantKind RefKind;
6302     if (parsePrefix(RefKind))
6303       return true;
6304 
6305     const MCExpr *SubExprVal;
6306     if (getParser().parseExpression(SubExprVal))
6307       return true;
6308 
6309     const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal,
6310                                               getContext());
6311     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6312     Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
6313     return false;
6314   }
6315   case AsmToken::Equal: {
6316     S = Parser.getTok().getLoc();
6317     if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
6318       return Error(S, "unexpected token in operand");
6319     Parser.Lex(); // Eat '='
6320     const MCExpr *SubExprVal;
6321     if (getParser().parseExpression(SubExprVal))
6322       return true;
6323     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6324 
6325     // execute-only: we assume that assembly programmers know what they are
6326     // doing and allow literal pool creation here
6327     Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E));
6328     return false;
6329   }
6330   }
6331 }
6332 
6333 bool ARMAsmParser::parseImmExpr(int64_t &Out) {
6334   const MCExpr *Expr = nullptr;
6335   SMLoc L = getParser().getTok().getLoc();
6336   if (check(getParser().parseExpression(Expr), L, "expected expression"))
6337     return true;
6338   const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
6339   if (check(!Value, L, "expected constant expression"))
6340     return true;
6341   Out = Value->getValue();
6342   return false;
6343 }
6344 
6345 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
6346 //  :lower16: and :upper16:.
6347 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
6348   MCAsmParser &Parser = getParser();
6349   RefKind = ARMMCExpr::VK_ARM_None;
6350 
6351   // consume an optional '#' (GNU compatibility)
6352   if (getLexer().is(AsmToken::Hash))
6353     Parser.Lex();
6354 
6355   // :lower16: and :upper16: modifiers
6356   assert(getLexer().is(AsmToken::Colon) && "expected a :");
6357   Parser.Lex(); // Eat ':'
6358 
6359   if (getLexer().isNot(AsmToken::Identifier)) {
6360     Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
6361     return true;
6362   }
6363 
6364   enum {
6365     COFF = (1 << MCContext::IsCOFF),
6366     ELF = (1 << MCContext::IsELF),
6367     MACHO = (1 << MCContext::IsMachO),
6368     WASM = (1 << MCContext::IsWasm),
6369   };
6370   static const struct PrefixEntry {
6371     const char *Spelling;
6372     ARMMCExpr::VariantKind VariantKind;
6373     uint8_t SupportedFormats;
6374   } PrefixEntries[] = {
6375     { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO },
6376     { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO },
6377   };
6378 
6379   StringRef IDVal = Parser.getTok().getIdentifier();
6380 
6381   const auto &Prefix =
6382       llvm::find_if(PrefixEntries, [&IDVal](const PrefixEntry &PE) {
6383         return PE.Spelling == IDVal;
6384       });
6385   if (Prefix == std::end(PrefixEntries)) {
6386     Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
6387     return true;
6388   }
6389 
6390   uint8_t CurrentFormat;
6391   switch (getContext().getObjectFileType()) {
6392   case MCContext::IsMachO:
6393     CurrentFormat = MACHO;
6394     break;
6395   case MCContext::IsELF:
6396     CurrentFormat = ELF;
6397     break;
6398   case MCContext::IsCOFF:
6399     CurrentFormat = COFF;
6400     break;
6401   case MCContext::IsWasm:
6402     CurrentFormat = WASM;
6403     break;
6404   case MCContext::IsGOFF:
6405   case MCContext::IsSPIRV:
6406   case MCContext::IsXCOFF:
6407   case MCContext::IsDXContainer:
6408     llvm_unreachable("unexpected object format");
6409     break;
6410   }
6411 
6412   if (~Prefix->SupportedFormats & CurrentFormat) {
6413     Error(Parser.getTok().getLoc(),
6414           "cannot represent relocation in the current file format");
6415     return true;
6416   }
6417 
6418   RefKind = Prefix->VariantKind;
6419   Parser.Lex();
6420 
6421   if (getLexer().isNot(AsmToken::Colon)) {
6422     Error(Parser.getTok().getLoc(), "unexpected token after prefix");
6423     return true;
6424   }
6425   Parser.Lex(); // Eat the last ':'
6426 
6427   return false;
6428 }
6429 
6430 /// Given a mnemonic, split out possible predication code and carry
6431 /// setting letters to form a canonical mnemonic and flags.
6432 //
6433 // FIXME: Would be nice to autogen this.
6434 // FIXME: This is a bit of a maze of special cases.
6435 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
6436                                       StringRef ExtraToken,
6437                                       unsigned &PredicationCode,
6438                                       unsigned &VPTPredicationCode,
6439                                       bool &CarrySetting,
6440                                       unsigned &ProcessorIMod,
6441                                       StringRef &ITMask) {
6442   PredicationCode = ARMCC::AL;
6443   VPTPredicationCode = ARMVCC::None;
6444   CarrySetting = false;
6445   ProcessorIMod = 0;
6446 
6447   // Ignore some mnemonics we know aren't predicated forms.
6448   //
6449   // FIXME: Would be nice to autogen this.
6450   if ((Mnemonic == "movs" && isThumb()) ||
6451       Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
6452       Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
6453       Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
6454       Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
6455       Mnemonic == "vaclt" || Mnemonic == "vacle"  || Mnemonic == "hlt" ||
6456       Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
6457       Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
6458       Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
6459       Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
6460       Mnemonic == "vcvta" || Mnemonic == "vcvtn"  || Mnemonic == "vcvtp" ||
6461       Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
6462       Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" ||
6463       Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" ||
6464       Mnemonic == "bxns"  || Mnemonic == "blxns" ||
6465       Mnemonic == "vdot"  || Mnemonic == "vmmla" ||
6466       Mnemonic == "vudot" || Mnemonic == "vsdot" ||
6467       Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
6468       Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
6469       Mnemonic == "wls"   || Mnemonic == "le"    || Mnemonic == "dls" ||
6470       Mnemonic == "csel"  || Mnemonic == "csinc" ||
6471       Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" ||
6472       Mnemonic == "cinv"  || Mnemonic == "cneg"  || Mnemonic == "cset" ||
6473       Mnemonic == "csetm" ||
6474       Mnemonic == "aut"   || Mnemonic == "pac" || Mnemonic == "pacbti" ||
6475       Mnemonic == "bti")
6476     return Mnemonic;
6477 
6478   // First, split out any predication code. Ignore mnemonics we know aren't
6479   // predicated but do have a carry-set and so weren't caught above.
6480   if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
6481       Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
6482       Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
6483       Mnemonic != "sbcs" && Mnemonic != "rscs" &&
6484       !(hasMVE() &&
6485         (Mnemonic == "vmine" ||
6486          Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" ||
6487          Mnemonic == "vrshle" || Mnemonic == "vrshlt" ||
6488          Mnemonic == "vmvne" || Mnemonic == "vorne" ||
6489          Mnemonic == "vnege" || Mnemonic == "vnegt" ||
6490          Mnemonic == "vmule" || Mnemonic == "vmult" ||
6491          Mnemonic == "vrintne" ||
6492          Mnemonic == "vcmult" || Mnemonic == "vcmule" ||
6493          Mnemonic == "vpsele" || Mnemonic == "vpselt" ||
6494          Mnemonic.startswith("vq")))) {
6495     unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2));
6496     if (CC != ~0U) {
6497       Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
6498       PredicationCode = CC;
6499     }
6500   }
6501 
6502   // Next, determine if we have a carry setting bit. We explicitly ignore all
6503   // the instructions we know end in 's'.
6504   if (Mnemonic.endswith("s") &&
6505       !(Mnemonic == "cps" || Mnemonic == "mls" ||
6506         Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
6507         Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
6508         Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
6509         Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
6510         Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
6511         Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
6512         Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
6513         Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
6514         Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" ||
6515         Mnemonic == "vmlas" ||
6516         (Mnemonic == "movs" && isThumb()))) {
6517     Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
6518     CarrySetting = true;
6519   }
6520 
6521   // The "cps" instruction can have a interrupt mode operand which is glued into
6522   // the mnemonic. Check if this is the case, split it and parse the imod op
6523   if (Mnemonic.startswith("cps")) {
6524     // Split out any imod code.
6525     unsigned IMod =
6526       StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
6527       .Case("ie", ARM_PROC::IE)
6528       .Case("id", ARM_PROC::ID)
6529       .Default(~0U);
6530     if (IMod != ~0U) {
6531       Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
6532       ProcessorIMod = IMod;
6533     }
6534   }
6535 
6536   if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" &&
6537       Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" &&
6538       Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" &&
6539       Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" &&
6540       Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" &&
6541       Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" &&
6542       Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") {
6543     unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1));
6544     if (CC != ~0U) {
6545       Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1);
6546       VPTPredicationCode = CC;
6547     }
6548     return Mnemonic;
6549   }
6550 
6551   // The "it" instruction has the condition mask on the end of the mnemonic.
6552   if (Mnemonic.startswith("it")) {
6553     ITMask = Mnemonic.slice(2, Mnemonic.size());
6554     Mnemonic = Mnemonic.slice(0, 2);
6555   }
6556 
6557   if (Mnemonic.startswith("vpst")) {
6558     ITMask = Mnemonic.slice(4, Mnemonic.size());
6559     Mnemonic = Mnemonic.slice(0, 4);
6560   }
6561   else if (Mnemonic.startswith("vpt")) {
6562     ITMask = Mnemonic.slice(3, Mnemonic.size());
6563     Mnemonic = Mnemonic.slice(0, 3);
6564   }
6565 
6566   return Mnemonic;
6567 }
6568 
6569 /// Given a canonical mnemonic, determine if the instruction ever allows
6570 /// inclusion of carry set or predication code operands.
6571 //
6572 // FIXME: It would be nice to autogen this.
6573 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic,
6574                                          StringRef ExtraToken,
6575                                          StringRef FullInst,
6576                                          bool &CanAcceptCarrySet,
6577                                          bool &CanAcceptPredicationCode,
6578                                          bool &CanAcceptVPTPredicationCode) {
6579   CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken);
6580 
6581   CanAcceptCarrySet =
6582       Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
6583       Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
6584       Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" ||
6585       Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" ||
6586       Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" ||
6587       Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" ||
6588       Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" ||
6589       (!isThumb() &&
6590        (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" ||
6591         Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull"));
6592 
6593   if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
6594       Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" ||
6595       Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" ||
6596       Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") ||
6597       Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" ||
6598       Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" ||
6599       Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" ||
6600       Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" ||
6601       Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" ||
6602       Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
6603       (FullInst.startswith("vmull") && FullInst.endswith(".p64")) ||
6604       Mnemonic == "vmovx" || Mnemonic == "vins" ||
6605       Mnemonic == "vudot" || Mnemonic == "vsdot" ||
6606       Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
6607       Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
6608       Mnemonic == "vfmat" || Mnemonic == "vfmab" ||
6609       Mnemonic == "vdot"  || Mnemonic == "vmmla" ||
6610       Mnemonic == "sb"    || Mnemonic == "ssbb"  ||
6611       Mnemonic == "pssbb" || Mnemonic == "vsmmla" ||
6612       Mnemonic == "vummla" || Mnemonic == "vusmmla" ||
6613       Mnemonic == "vusdot" || Mnemonic == "vsudot" ||
6614       Mnemonic == "bfcsel" || Mnemonic == "wls" ||
6615       Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" ||
6616       Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" ||
6617       Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" ||
6618       Mnemonic == "cset" || Mnemonic == "csetm" ||
6619       (hasCDE() && MS.isCDEInstr(Mnemonic) &&
6620        !MS.isITPredicableCDEInstr(Mnemonic)) ||
6621       Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") ||
6622       Mnemonic == "pac" || Mnemonic == "pacbti" || Mnemonic == "aut" ||
6623       Mnemonic == "bti" ||
6624       (hasMVE() &&
6625        (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") ||
6626         Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") ||
6627         Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") ||
6628         Mnemonic.startswith("letp")))) {
6629     // These mnemonics are never predicable
6630     CanAcceptPredicationCode = false;
6631   } else if (!isThumb()) {
6632     // Some instructions are only predicable in Thumb mode
6633     CanAcceptPredicationCode =
6634         Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
6635         Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
6636         Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" &&
6637         Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" &&
6638         Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
6639         Mnemonic != "stc2" && Mnemonic != "stc2l" &&
6640         Mnemonic != "tsb" &&
6641         !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
6642   } else if (isThumbOne()) {
6643     if (hasV6MOps())
6644       CanAcceptPredicationCode = Mnemonic != "movs";
6645     else
6646       CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
6647   } else
6648     CanAcceptPredicationCode = true;
6649 }
6650 
6651 // Some Thumb instructions have two operand forms that are not
6652 // available as three operand, convert to two operand form if possible.
6653 //
6654 // FIXME: We would really like to be able to tablegen'erate this.
6655 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic,
6656                                                  bool CarrySetting,
6657                                                  OperandVector &Operands) {
6658   if (Operands.size() != 6)
6659     return;
6660 
6661   const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6662         auto &Op4 = static_cast<ARMOperand &>(*Operands[4]);
6663   if (!Op3.isReg() || !Op4.isReg())
6664     return;
6665 
6666   auto Op3Reg = Op3.getReg();
6667   auto Op4Reg = Op4.getReg();
6668 
6669   // For most Thumb2 cases we just generate the 3 operand form and reduce
6670   // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr)
6671   // won't accept SP or PC so we do the transformation here taking care
6672   // with immediate range in the 'add sp, sp #imm' case.
6673   auto &Op5 = static_cast<ARMOperand &>(*Operands[5]);
6674   if (isThumbTwo()) {
6675     if (Mnemonic != "add")
6676       return;
6677     bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC ||
6678                         (Op5.isReg() && Op5.getReg() == ARM::PC);
6679     if (!TryTransform) {
6680       TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP ||
6681                       (Op5.isReg() && Op5.getReg() == ARM::SP)) &&
6682                      !(Op3Reg == ARM::SP && Op4Reg == ARM::SP &&
6683                        Op5.isImm() && !Op5.isImm0_508s4());
6684     }
6685     if (!TryTransform)
6686       return;
6687   } else if (!isThumbOne())
6688     return;
6689 
6690   if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" ||
6691         Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
6692         Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" ||
6693         Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic"))
6694     return;
6695 
6696   // If first 2 operands of a 3 operand instruction are the same
6697   // then transform to 2 operand version of the same instruction
6698   // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
6699   bool Transform = Op3Reg == Op4Reg;
6700 
6701   // For communtative operations, we might be able to transform if we swap
6702   // Op4 and Op5.  The 'ADD Rdm, SP, Rdm' form is already handled specially
6703   // as tADDrsp.
6704   const ARMOperand *LastOp = &Op5;
6705   bool Swap = false;
6706   if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() &&
6707       ((Mnemonic == "add" && Op4Reg != ARM::SP) ||
6708        Mnemonic == "and" || Mnemonic == "eor" ||
6709        Mnemonic == "adc" || Mnemonic == "orr")) {
6710     Swap = true;
6711     LastOp = &Op4;
6712     Transform = true;
6713   }
6714 
6715   // If both registers are the same then remove one of them from
6716   // the operand list, with certain exceptions.
6717   if (Transform) {
6718     // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the
6719     // 2 operand forms don't exist.
6720     if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") &&
6721         LastOp->isReg())
6722       Transform = false;
6723 
6724     // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into
6725     // 3-bits because the ARMARM says not to.
6726     if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7())
6727       Transform = false;
6728   }
6729 
6730   if (Transform) {
6731     if (Swap)
6732       std::swap(Op4, Op5);
6733     Operands.erase(Operands.begin() + 3);
6734   }
6735 }
6736 
6737 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
6738                                           OperandVector &Operands) {
6739   // FIXME: This is all horribly hacky. We really need a better way to deal
6740   // with optional operands like this in the matcher table.
6741 
6742   // The 'mov' mnemonic is special. One variant has a cc_out operand, while
6743   // another does not. Specifically, the MOVW instruction does not. So we
6744   // special case it here and remove the defaulted (non-setting) cc_out
6745   // operand if that's the instruction we're trying to match.
6746   //
6747   // We do this as post-processing of the explicit operands rather than just
6748   // conditionally adding the cc_out in the first place because we need
6749   // to check the type of the parsed immediate operand.
6750   if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
6751       !static_cast<ARMOperand &>(*Operands[4]).isModImm() &&
6752       static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
6753       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
6754     return true;
6755 
6756   // Register-register 'add' for thumb does not have a cc_out operand
6757   // when there are only two register operands.
6758   if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
6759       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6760       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6761       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
6762     return true;
6763   // Register-register 'add' for thumb does not have a cc_out operand
6764   // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
6765   // have to check the immediate range here since Thumb2 has a variant
6766   // that can handle a different range and has a cc_out operand.
6767   if (((isThumb() && Mnemonic == "add") ||
6768        (isThumbTwo() && Mnemonic == "sub")) &&
6769       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6770       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6771       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP &&
6772       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6773       ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) ||
6774        static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4()))
6775     return true;
6776   // For Thumb2, add/sub immediate does not have a cc_out operand for the
6777   // imm0_4095 variant. That's the least-preferred variant when
6778   // selecting via the generic "add" mnemonic, so to know that we
6779   // should remove the cc_out operand, we have to explicitly check that
6780   // it's not one of the other variants. Ugh.
6781   if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
6782       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6783       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6784       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
6785     // Nest conditions rather than one big 'if' statement for readability.
6786     //
6787     // If both registers are low, we're in an IT block, and the immediate is
6788     // in range, we should use encoding T1 instead, which has a cc_out.
6789     if (inITBlock() &&
6790         isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) &&
6791         isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) &&
6792         static_cast<ARMOperand &>(*Operands[5]).isImm0_7())
6793       return false;
6794     // Check against T3. If the second register is the PC, this is an
6795     // alternate form of ADR, which uses encoding T4, so check for that too.
6796     if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC &&
6797         (static_cast<ARMOperand &>(*Operands[5]).isT2SOImm() ||
6798          static_cast<ARMOperand &>(*Operands[5]).isT2SOImmNeg()))
6799       return false;
6800 
6801     // Otherwise, we use encoding T4, which does not have a cc_out
6802     // operand.
6803     return true;
6804   }
6805 
6806   // The thumb2 multiply instruction doesn't have a CCOut register, so
6807   // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
6808   // use the 16-bit encoding or not.
6809   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
6810       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6811       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6812       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6813       static_cast<ARMOperand &>(*Operands[5]).isReg() &&
6814       // If the registers aren't low regs, the destination reg isn't the
6815       // same as one of the source regs, or the cc_out operand is zero
6816       // outside of an IT block, we have to use the 32-bit encoding, so
6817       // remove the cc_out operand.
6818       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
6819        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
6820        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) ||
6821        !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() !=
6822                             static_cast<ARMOperand &>(*Operands[5]).getReg() &&
6823                         static_cast<ARMOperand &>(*Operands[3]).getReg() !=
6824                             static_cast<ARMOperand &>(*Operands[4]).getReg())))
6825     return true;
6826 
6827   // Also check the 'mul' syntax variant that doesn't specify an explicit
6828   // destination register.
6829   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
6830       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6831       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6832       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6833       // If the registers aren't low regs  or the cc_out operand is zero
6834       // outside of an IT block, we have to use the 32-bit encoding, so
6835       // remove the cc_out operand.
6836       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
6837        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
6838        !inITBlock()))
6839     return true;
6840 
6841   // Register-register 'add/sub' for thumb does not have a cc_out operand
6842   // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
6843   // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
6844   // right, this will result in better diagnostics (which operand is off)
6845   // anyway.
6846   if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
6847       (Operands.size() == 5 || Operands.size() == 6) &&
6848       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6849       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP &&
6850       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6851       (static_cast<ARMOperand &>(*Operands[4]).isImm() ||
6852        (Operands.size() == 6 &&
6853         static_cast<ARMOperand &>(*Operands[5]).isImm()))) {
6854     // Thumb2 (add|sub){s}{p}.w GPRnopc, sp, #{T2SOImm} has cc_out
6855     return (!(isThumbTwo() &&
6856               (static_cast<ARMOperand &>(*Operands[4]).isT2SOImm() ||
6857                static_cast<ARMOperand &>(*Operands[4]).isT2SOImmNeg())));
6858   }
6859   // Fixme: Should join all the thumb+thumb2 (add|sub) in a single if case
6860   // Thumb2 ADD r0, #4095 -> ADDW r0, r0, #4095 (T4)
6861   // Thumb2 SUB r0, #4095 -> SUBW r0, r0, #4095
6862   if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
6863       (Operands.size() == 5) &&
6864       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6865       static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::SP &&
6866       static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::PC &&
6867       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6868       static_cast<ARMOperand &>(*Operands[4]).isImm()) {
6869     const ARMOperand &IMM = static_cast<ARMOperand &>(*Operands[4]);
6870     if (IMM.isT2SOImm() || IMM.isT2SOImmNeg())
6871       return false; // add.w / sub.w
6872     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IMM.getImm())) {
6873       const int64_t Value = CE->getValue();
6874       // Thumb1 imm8 sub / add
6875       if ((Value < ((1 << 7) - 1) << 2) && inITBlock() && (!(Value & 3)) &&
6876           isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()))
6877         return false;
6878       return true; // Thumb2 T4 addw / subw
6879     }
6880   }
6881   return false;
6882 }
6883 
6884 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic,
6885                                               OperandVector &Operands) {
6886   // VRINT{Z, X} have a predicate operand in VFP, but not in NEON
6887   unsigned RegIdx = 3;
6888   if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) ||
6889       Mnemonic == "vrintr") &&
6890       (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" ||
6891        static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) {
6892     if (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
6893         (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" ||
6894          static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16"))
6895       RegIdx = 4;
6896 
6897     if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() &&
6898         (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
6899              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) ||
6900          ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
6901              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg())))
6902       return true;
6903   }
6904   return false;
6905 }
6906 
6907 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic,
6908                                                     OperandVector &Operands) {
6909   if (!hasMVE() || Operands.size() < 3)
6910     return true;
6911 
6912   if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") ||
6913       Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4"))
6914     return true;
6915 
6916   if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot"))
6917     return false;
6918 
6919   if (Mnemonic.startswith("vmov") &&
6920       !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") ||
6921         Mnemonic.startswith("vmovx"))) {
6922     for (auto &Operand : Operands) {
6923       if (static_cast<ARMOperand &>(*Operand).isVectorIndex() ||
6924           ((*Operand).isReg() &&
6925            (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(
6926              (*Operand).getReg()) ||
6927             ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
6928               (*Operand).getReg())))) {
6929         return true;
6930       }
6931     }
6932     return false;
6933   } else {
6934     for (auto &Operand : Operands) {
6935       // We check the larger class QPR instead of just the legal class
6936       // MQPR, to more accurately report errors when using Q registers
6937       // outside of the allowed range.
6938       if (static_cast<ARMOperand &>(*Operand).isVectorIndex() ||
6939           (Operand->isReg() &&
6940            (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
6941              Operand->getReg()))))
6942         return false;
6943     }
6944     return true;
6945   }
6946 }
6947 
6948 static bool isDataTypeToken(StringRef Tok) {
6949   return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
6950     Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
6951     Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
6952     Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
6953     Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
6954     Tok == ".f" || Tok == ".d";
6955 }
6956 
6957 // FIXME: This bit should probably be handled via an explicit match class
6958 // in the .td files that matches the suffix instead of having it be
6959 // a literal string token the way it is now.
6960 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
6961   return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
6962 }
6963 
6964 static void applyMnemonicAliases(StringRef &Mnemonic,
6965                                  const FeatureBitset &Features,
6966                                  unsigned VariantID);
6967 
6968 // The GNU assembler has aliases of ldrd and strd with the second register
6969 // omitted. We don't have a way to do that in tablegen, so fix it up here.
6970 //
6971 // We have to be careful to not emit an invalid Rt2 here, because the rest of
6972 // the assembly parser could then generate confusing diagnostics refering to
6973 // it. If we do find anything that prevents us from doing the transformation we
6974 // bail out, and let the assembly parser report an error on the instruction as
6975 // it is written.
6976 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic,
6977                                      OperandVector &Operands) {
6978   if (Mnemonic != "ldrd" && Mnemonic != "strd")
6979     return;
6980   if (Operands.size() < 4)
6981     return;
6982 
6983   ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
6984   ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6985 
6986   if (!Op2.isReg())
6987     return;
6988   if (!Op3.isGPRMem())
6989     return;
6990 
6991   const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID);
6992   if (!GPR.contains(Op2.getReg()))
6993     return;
6994 
6995   unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg());
6996   if (!isThumb() && (RtEncoding & 1)) {
6997     // In ARM mode, the registers must be from an aligned pair, this
6998     // restriction does not apply in Thumb mode.
6999     return;
7000   }
7001   if (Op2.getReg() == ARM::PC)
7002     return;
7003   unsigned PairedReg = GPR.getRegister(RtEncoding + 1);
7004   if (!PairedReg || PairedReg == ARM::PC ||
7005       (PairedReg == ARM::SP && !hasV8Ops()))
7006     return;
7007 
7008   Operands.insert(
7009       Operands.begin() + 3,
7010       ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc()));
7011 }
7012 
7013 // Dual-register instruction have the following syntax:
7014 // <mnemonic> <predicate>? <coproc>, <Rdest>, <Rdest+1>, <Rsrc>, ..., #imm
7015 // This function tries to remove <Rdest+1> and replace <Rdest> with a pair
7016 // operand. If the conversion fails an error is diagnosed, and the function
7017 // returns true.
7018 bool ARMAsmParser::CDEConvertDualRegOperand(StringRef Mnemonic,
7019                                             OperandVector &Operands) {
7020   assert(MS.isCDEDualRegInstr(Mnemonic));
7021   bool isPredicable =
7022       Mnemonic == "cx1da" || Mnemonic == "cx2da" || Mnemonic == "cx3da";
7023   size_t NumPredOps = isPredicable ? 1 : 0;
7024 
7025   if (Operands.size() <= 3 + NumPredOps)
7026     return false;
7027 
7028   StringRef Op2Diag(
7029       "operand must be an even-numbered register in the range [r0, r10]");
7030 
7031   const MCParsedAsmOperand &Op2 = *Operands[2 + NumPredOps];
7032   if (!Op2.isReg())
7033     return Error(Op2.getStartLoc(), Op2Diag);
7034 
7035   unsigned RNext;
7036   unsigned RPair;
7037   switch (Op2.getReg()) {
7038   default:
7039     return Error(Op2.getStartLoc(), Op2Diag);
7040   case ARM::R0:
7041     RNext = ARM::R1;
7042     RPair = ARM::R0_R1;
7043     break;
7044   case ARM::R2:
7045     RNext = ARM::R3;
7046     RPair = ARM::R2_R3;
7047     break;
7048   case ARM::R4:
7049     RNext = ARM::R5;
7050     RPair = ARM::R4_R5;
7051     break;
7052   case ARM::R6:
7053     RNext = ARM::R7;
7054     RPair = ARM::R6_R7;
7055     break;
7056   case ARM::R8:
7057     RNext = ARM::R9;
7058     RPair = ARM::R8_R9;
7059     break;
7060   case ARM::R10:
7061     RNext = ARM::R11;
7062     RPair = ARM::R10_R11;
7063     break;
7064   }
7065 
7066   const MCParsedAsmOperand &Op3 = *Operands[3 + NumPredOps];
7067   if (!Op3.isReg() || Op3.getReg() != RNext)
7068     return Error(Op3.getStartLoc(), "operand must be a consecutive register");
7069 
7070   Operands.erase(Operands.begin() + 3 + NumPredOps);
7071   Operands[2 + NumPredOps] =
7072       ARMOperand::CreateReg(RPair, Op2.getStartLoc(), Op2.getEndLoc());
7073   return false;
7074 }
7075 
7076 /// Parse an arm instruction mnemonic followed by its operands.
7077 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
7078                                     SMLoc NameLoc, OperandVector &Operands) {
7079   MCAsmParser &Parser = getParser();
7080 
7081   // Apply mnemonic aliases before doing anything else, as the destination
7082   // mnemonic may include suffices and we want to handle them normally.
7083   // The generic tblgen'erated code does this later, at the start of
7084   // MatchInstructionImpl(), but that's too late for aliases that include
7085   // any sort of suffix.
7086   const FeatureBitset &AvailableFeatures = getAvailableFeatures();
7087   unsigned AssemblerDialect = getParser().getAssemblerDialect();
7088   applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
7089 
7090   // First check for the ARM-specific .req directive.
7091   if (Parser.getTok().is(AsmToken::Identifier) &&
7092       Parser.getTok().getIdentifier().lower() == ".req") {
7093     parseDirectiveReq(Name, NameLoc);
7094     // We always return 'error' for this, as we're done with this
7095     // statement and don't need to match the 'instruction."
7096     return true;
7097   }
7098 
7099   // Create the leading tokens for the mnemonic, split by '.' characters.
7100   size_t Start = 0, Next = Name.find('.');
7101   StringRef Mnemonic = Name.slice(Start, Next);
7102   StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1));
7103 
7104   // Split out the predication code and carry setting flag from the mnemonic.
7105   unsigned PredicationCode;
7106   unsigned VPTPredicationCode;
7107   unsigned ProcessorIMod;
7108   bool CarrySetting;
7109   StringRef ITMask;
7110   Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode,
7111                            CarrySetting, ProcessorIMod, ITMask);
7112 
7113   // In Thumb1, only the branch (B) instruction can be predicated.
7114   if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
7115     return Error(NameLoc, "conditional execution not supported in Thumb1");
7116   }
7117 
7118   Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
7119 
7120   // Handle the mask for IT and VPT instructions. In ARMOperand and
7121   // MCOperand, this is stored in a format independent of the
7122   // condition code: the lowest set bit indicates the end of the
7123   // encoding, and above that, a 1 bit indicates 'else', and an 0
7124   // indicates 'then'. E.g.
7125   //    IT    -> 1000
7126   //    ITx   -> x100    (ITT -> 0100, ITE -> 1100)
7127   //    ITxy  -> xy10    (e.g. ITET -> 1010)
7128   //    ITxyz -> xyz1    (e.g. ITEET -> 1101)
7129   // Note: See the ARM::PredBlockMask enum in
7130   //   /lib/Target/ARM/Utils/ARMBaseInfo.h
7131   if (Mnemonic == "it" || Mnemonic.startswith("vpt") ||
7132       Mnemonic.startswith("vpst")) {
7133     SMLoc Loc = Mnemonic == "it"  ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) :
7134                 Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) :
7135                                     SMLoc::getFromPointer(NameLoc.getPointer() + 4);
7136     if (ITMask.size() > 3) {
7137       if (Mnemonic == "it")
7138         return Error(Loc, "too many conditions on IT instruction");
7139       return Error(Loc, "too many conditions on VPT instruction");
7140     }
7141     unsigned Mask = 8;
7142     for (char Pos : llvm::reverse(ITMask)) {
7143       if (Pos != 't' && Pos != 'e') {
7144         return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
7145       }
7146       Mask >>= 1;
7147       if (Pos == 'e')
7148         Mask |= 8;
7149     }
7150     Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
7151   }
7152 
7153   // FIXME: This is all a pretty gross hack. We should automatically handle
7154   // optional operands like this via tblgen.
7155 
7156   // Next, add the CCOut and ConditionCode operands, if needed.
7157   //
7158   // For mnemonics which can ever incorporate a carry setting bit or predication
7159   // code, our matching model involves us always generating CCOut and
7160   // ConditionCode operands to match the mnemonic "as written" and then we let
7161   // the matcher deal with finding the right instruction or generating an
7162   // appropriate error.
7163   bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode;
7164   getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet,
7165                         CanAcceptPredicationCode, CanAcceptVPTPredicationCode);
7166 
7167   // If we had a carry-set on an instruction that can't do that, issue an
7168   // error.
7169   if (!CanAcceptCarrySet && CarrySetting) {
7170     return Error(NameLoc, "instruction '" + Mnemonic +
7171                  "' can not set flags, but 's' suffix specified");
7172   }
7173   // If we had a predication code on an instruction that can't do that, issue an
7174   // error.
7175   if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
7176     return Error(NameLoc, "instruction '" + Mnemonic +
7177                  "' is not predicable, but condition code specified");
7178   }
7179 
7180   // If we had a VPT predication code on an instruction that can't do that, issue an
7181   // error.
7182   if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) {
7183     return Error(NameLoc, "instruction '" + Mnemonic +
7184                  "' is not VPT predicable, but VPT code T/E is specified");
7185   }
7186 
7187   // Add the carry setting operand, if necessary.
7188   if (CanAcceptCarrySet) {
7189     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
7190     Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
7191                                                Loc));
7192   }
7193 
7194   // Add the predication code operand, if necessary.
7195   if (CanAcceptPredicationCode) {
7196     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
7197                                       CarrySetting);
7198     Operands.push_back(ARMOperand::CreateCondCode(
7199                        ARMCC::CondCodes(PredicationCode), Loc));
7200   }
7201 
7202   // Add the VPT predication code operand, if necessary.
7203   // FIXME: We don't add them for the instructions filtered below as these can
7204   // have custom operands which need special parsing.  This parsing requires
7205   // the operand to be in the same place in the OperandVector as their
7206   // definition in tblgen.  Since these instructions may also have the
7207   // scalar predication operand we do not add the vector one and leave until
7208   // now to fix it up.
7209   if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" &&
7210       !Mnemonic.startswith("vcmp") &&
7211       !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" &&
7212         Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) {
7213     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
7214                                       CarrySetting);
7215     Operands.push_back(ARMOperand::CreateVPTPred(
7216                          ARMVCC::VPTCodes(VPTPredicationCode), Loc));
7217   }
7218 
7219   // Add the processor imod operand, if necessary.
7220   if (ProcessorIMod) {
7221     Operands.push_back(ARMOperand::CreateImm(
7222           MCConstantExpr::create(ProcessorIMod, getContext()),
7223                                  NameLoc, NameLoc));
7224   } else if (Mnemonic == "cps" && isMClass()) {
7225     return Error(NameLoc, "instruction 'cps' requires effect for M-class");
7226   }
7227 
7228   // Add the remaining tokens in the mnemonic.
7229   while (Next != StringRef::npos) {
7230     Start = Next;
7231     Next = Name.find('.', Start + 1);
7232     ExtraToken = Name.slice(Start, Next);
7233 
7234     // Some NEON instructions have an optional datatype suffix that is
7235     // completely ignored. Check for that.
7236     if (isDataTypeToken(ExtraToken) &&
7237         doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
7238       continue;
7239 
7240     // For for ARM mode generate an error if the .n qualifier is used.
7241     if (ExtraToken == ".n" && !isThumb()) {
7242       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
7243       return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
7244                    "arm mode");
7245     }
7246 
7247     // The .n qualifier is always discarded as that is what the tables
7248     // and matcher expect.  In ARM mode the .w qualifier has no effect,
7249     // so discard it to avoid errors that can be caused by the matcher.
7250     if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
7251       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
7252       Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
7253     }
7254   }
7255 
7256   // Read the remaining operands.
7257   if (getLexer().isNot(AsmToken::EndOfStatement)) {
7258     // Read the first operand.
7259     if (parseOperand(Operands, Mnemonic)) {
7260       return true;
7261     }
7262 
7263     while (parseOptionalToken(AsmToken::Comma)) {
7264       // Parse and remember the operand.
7265       if (parseOperand(Operands, Mnemonic)) {
7266         return true;
7267       }
7268     }
7269   }
7270 
7271   if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
7272     return true;
7273 
7274   tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands);
7275 
7276   if (hasCDE() && MS.isCDEInstr(Mnemonic)) {
7277     // Dual-register instructions use even-odd register pairs as their
7278     // destination operand, in assembly such pair is spelled as two
7279     // consecutive registers, without any special syntax. ConvertDualRegOperand
7280     // tries to convert such operand into register pair, e.g. r2, r3 -> r2_r3.
7281     // It returns true, if an error message has been emitted. If the function
7282     // returns false, the function either succeeded or an error (e.g. missing
7283     // operand) will be diagnosed elsewhere.
7284     if (MS.isCDEDualRegInstr(Mnemonic)) {
7285       bool GotError = CDEConvertDualRegOperand(Mnemonic, Operands);
7286       if (GotError)
7287         return GotError;
7288     }
7289   }
7290 
7291   // Some instructions, mostly Thumb, have forms for the same mnemonic that
7292   // do and don't have a cc_out optional-def operand. With some spot-checks
7293   // of the operand list, we can figure out which variant we're trying to
7294   // parse and adjust accordingly before actually matching. We shouldn't ever
7295   // try to remove a cc_out operand that was explicitly set on the
7296   // mnemonic, of course (CarrySetting == true). Reason number #317 the
7297   // table driven matcher doesn't fit well with the ARM instruction set.
7298   if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands))
7299     Operands.erase(Operands.begin() + 1);
7300 
7301   // Some instructions have the same mnemonic, but don't always
7302   // have a predicate. Distinguish them here and delete the
7303   // appropriate predicate if needed.  This could be either the scalar
7304   // predication code or the vector predication code.
7305   if (PredicationCode == ARMCC::AL &&
7306       shouldOmitPredicateOperand(Mnemonic, Operands))
7307     Operands.erase(Operands.begin() + 1);
7308 
7309 
7310   if (hasMVE()) {
7311     if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) &&
7312         Mnemonic == "vmov" && PredicationCode == ARMCC::LT) {
7313       // Very nasty hack to deal with the vector predicated variant of vmovlt
7314       // the scalar predicated vmov with condition 'lt'.  We can not tell them
7315       // apart until we have parsed their operands.
7316       Operands.erase(Operands.begin() + 1);
7317       Operands.erase(Operands.begin());
7318       SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7319       SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
7320                                          Mnemonic.size() - 1 + CarrySetting);
7321       Operands.insert(Operands.begin(),
7322                       ARMOperand::CreateVPTPred(ARMVCC::None, PLoc));
7323       Operands.insert(Operands.begin(),
7324                       ARMOperand::CreateToken(StringRef("vmovlt"), MLoc));
7325     } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE &&
7326                !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7327       // Another nasty hack to deal with the ambiguity between vcvt with scalar
7328       // predication 'ne' and vcvtn with vector predication 'e'.  As above we
7329       // can only distinguish between the two after we have parsed their
7330       // operands.
7331       Operands.erase(Operands.begin() + 1);
7332       Operands.erase(Operands.begin());
7333       SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7334       SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
7335                                          Mnemonic.size() - 1 + CarrySetting);
7336       Operands.insert(Operands.begin(),
7337                       ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc));
7338       Operands.insert(Operands.begin(),
7339                       ARMOperand::CreateToken(StringRef("vcvtn"), MLoc));
7340     } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT &&
7341                !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7342       // Another hack, this time to distinguish between scalar predicated vmul
7343       // with 'lt' predication code and the vector instruction vmullt with
7344       // vector predication code "none"
7345       Operands.erase(Operands.begin() + 1);
7346       Operands.erase(Operands.begin());
7347       SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7348       Operands.insert(Operands.begin(),
7349                       ARMOperand::CreateToken(StringRef("vmullt"), MLoc));
7350     }
7351     // For vmov and vcmp, as mentioned earlier, we did not add the vector
7352     // predication code, since these may contain operands that require
7353     // special parsing.  So now we have to see if they require vector
7354     // predication and replace the scalar one with the vector predication
7355     // operand if that is the case.
7356     else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") ||
7357              (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") &&
7358               !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") &&
7359               !Mnemonic.startswith("vcvtm"))) {
7360       if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7361         // We could not split the vector predicate off vcvt because it might
7362         // have been the scalar vcvtt instruction.  Now we know its a vector
7363         // instruction, we still need to check whether its the vector
7364         // predicated vcvt with 'Then' predication or the vector vcvtt.  We can
7365         // distinguish the two based on the suffixes, if it is any of
7366         // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt.
7367         if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) {
7368           auto Sz1 = static_cast<ARMOperand &>(*Operands[2]);
7369           auto Sz2 = static_cast<ARMOperand &>(*Operands[3]);
7370           if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") &&
7371               Sz2.isToken() && Sz2.getToken().startswith(".f"))) {
7372             Operands.erase(Operands.begin());
7373             SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7374             VPTPredicationCode = ARMVCC::Then;
7375 
7376             Mnemonic = Mnemonic.substr(0, 4);
7377             Operands.insert(Operands.begin(),
7378                             ARMOperand::CreateToken(Mnemonic, MLoc));
7379           }
7380         }
7381         Operands.erase(Operands.begin() + 1);
7382         SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
7383                                           Mnemonic.size() + CarrySetting);
7384         Operands.insert(Operands.begin() + 1,
7385                         ARMOperand::CreateVPTPred(
7386                             ARMVCC::VPTCodes(VPTPredicationCode), PLoc));
7387       }
7388     } else if (CanAcceptVPTPredicationCode) {
7389       // For all other instructions, make sure only one of the two
7390       // predication operands is left behind, depending on whether we should
7391       // use the vector predication.
7392       if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7393         if (CanAcceptPredicationCode)
7394           Operands.erase(Operands.begin() + 2);
7395         else
7396           Operands.erase(Operands.begin() + 1);
7397       } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) {
7398         Operands.erase(Operands.begin() + 1);
7399       }
7400     }
7401   }
7402 
7403   if (VPTPredicationCode != ARMVCC::None) {
7404     bool usedVPTPredicationCode = false;
7405     for (unsigned I = 1; I < Operands.size(); ++I)
7406       if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred())
7407         usedVPTPredicationCode = true;
7408     if (!usedVPTPredicationCode) {
7409       // If we have a VPT predication code and we haven't just turned it
7410       // into an operand, then it was a mistake for splitMnemonic to
7411       // separate it from the rest of the mnemonic in the first place,
7412       // and this may lead to wrong disassembly (e.g. scalar floating
7413       // point VCMPE is actually a different instruction from VCMP, so
7414       // we mustn't treat them the same). In that situation, glue it
7415       // back on.
7416       Mnemonic = Name.slice(0, Mnemonic.size() + 1);
7417       Operands.erase(Operands.begin());
7418       Operands.insert(Operands.begin(),
7419                       ARMOperand::CreateToken(Mnemonic, NameLoc));
7420     }
7421   }
7422 
7423     // ARM mode 'blx' need special handling, as the register operand version
7424     // is predicable, but the label operand version is not. So, we can't rely
7425     // on the Mnemonic based checking to correctly figure out when to put
7426     // a k_CondCode operand in the list. If we're trying to match the label
7427     // version, remove the k_CondCode operand here.
7428     if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
7429         static_cast<ARMOperand &>(*Operands[2]).isImm())
7430       Operands.erase(Operands.begin() + 1);
7431 
7432     // Adjust operands of ldrexd/strexd to MCK_GPRPair.
7433     // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
7434     // a single GPRPair reg operand is used in the .td file to replace the two
7435     // GPRs. However, when parsing from asm, the two GRPs cannot be
7436     // automatically
7437     // expressed as a GPRPair, so we have to manually merge them.
7438     // FIXME: We would really like to be able to tablegen'erate this.
7439     if (!isThumb() && Operands.size() > 4 &&
7440         (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
7441          Mnemonic == "stlexd")) {
7442       bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
7443       unsigned Idx = isLoad ? 2 : 3;
7444       ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]);
7445       ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]);
7446 
7447       const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID);
7448       // Adjust only if Op1 and Op2 are GPRs.
7449       if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) &&
7450           MRC.contains(Op2.getReg())) {
7451         unsigned Reg1 = Op1.getReg();
7452         unsigned Reg2 = Op2.getReg();
7453         unsigned Rt = MRI->getEncodingValue(Reg1);
7454         unsigned Rt2 = MRI->getEncodingValue(Reg2);
7455 
7456         // Rt2 must be Rt + 1 and Rt must be even.
7457         if (Rt + 1 != Rt2 || (Rt & 1)) {
7458           return Error(Op2.getStartLoc(),
7459                        isLoad ? "destination operands must be sequential"
7460                               : "source operands must be sequential");
7461         }
7462         unsigned NewReg = MRI->getMatchingSuperReg(
7463             Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID)));
7464         Operands[Idx] =
7465             ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc());
7466         Operands.erase(Operands.begin() + Idx + 1);
7467       }
7468   }
7469 
7470   // GNU Assembler extension (compatibility).
7471   fixupGNULDRDAlias(Mnemonic, Operands);
7472 
7473   // FIXME: As said above, this is all a pretty gross hack.  This instruction
7474   // does not fit with other "subs" and tblgen.
7475   // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
7476   // so the Mnemonic is the original name "subs" and delete the predicate
7477   // operand so it will match the table entry.
7478   if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
7479       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
7480       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC &&
7481       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
7482       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR &&
7483       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
7484     Operands.front() = ARMOperand::CreateToken(Name, NameLoc);
7485     Operands.erase(Operands.begin() + 1);
7486   }
7487   return false;
7488 }
7489 
7490 // Validate context-sensitive operand constraints.
7491 
7492 // return 'true' if register list contains non-low GPR registers,
7493 // 'false' otherwise. If Reg is in the register list or is HiReg, set
7494 // 'containsReg' to true.
7495 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo,
7496                                  unsigned Reg, unsigned HiReg,
7497                                  bool &containsReg) {
7498   containsReg = false;
7499   for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
7500     unsigned OpReg = Inst.getOperand(i).getReg();
7501     if (OpReg == Reg)
7502       containsReg = true;
7503     // Anything other than a low register isn't legal here.
7504     if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
7505       return true;
7506   }
7507   return false;
7508 }
7509 
7510 // Check if the specified regisgter is in the register list of the inst,
7511 // starting at the indicated operand number.
7512 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) {
7513   for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) {
7514     unsigned OpReg = Inst.getOperand(i).getReg();
7515     if (OpReg == Reg)
7516       return true;
7517   }
7518   return false;
7519 }
7520 
7521 // Return true if instruction has the interesting property of being
7522 // allowed in IT blocks, but not being predicable.
7523 static bool instIsBreakpoint(const MCInst &Inst) {
7524     return Inst.getOpcode() == ARM::tBKPT ||
7525            Inst.getOpcode() == ARM::BKPT ||
7526            Inst.getOpcode() == ARM::tHLT ||
7527            Inst.getOpcode() == ARM::HLT;
7528 }
7529 
7530 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst,
7531                                        const OperandVector &Operands,
7532                                        unsigned ListNo, bool IsARPop) {
7533   const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
7534   bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
7535 
7536   bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
7537   bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR);
7538   bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
7539 
7540   if (!IsARPop && ListContainsSP)
7541     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7542                  "SP may not be in the register list");
7543   else if (ListContainsPC && ListContainsLR)
7544     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7545                  "PC and LR may not be in the register list simultaneously");
7546   return false;
7547 }
7548 
7549 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst,
7550                                        const OperandVector &Operands,
7551                                        unsigned ListNo) {
7552   const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
7553   bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
7554 
7555   bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
7556   bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
7557 
7558   if (ListContainsSP && ListContainsPC)
7559     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7560                  "SP and PC may not be in the register list");
7561   else if (ListContainsSP)
7562     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7563                  "SP may not be in the register list");
7564   else if (ListContainsPC)
7565     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7566                  "PC may not be in the register list");
7567   return false;
7568 }
7569 
7570 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst,
7571                                     const OperandVector &Operands,
7572                                     bool Load, bool ARMMode, bool Writeback) {
7573   unsigned RtIndex = Load || !Writeback ? 0 : 1;
7574   unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg());
7575   unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg());
7576 
7577   if (ARMMode) {
7578     // Rt can't be R14.
7579     if (Rt == 14)
7580       return Error(Operands[3]->getStartLoc(),
7581                   "Rt can't be R14");
7582 
7583     // Rt must be even-numbered.
7584     if ((Rt & 1) == 1)
7585       return Error(Operands[3]->getStartLoc(),
7586                    "Rt must be even-numbered");
7587 
7588     // Rt2 must be Rt + 1.
7589     if (Rt2 != Rt + 1) {
7590       if (Load)
7591         return Error(Operands[3]->getStartLoc(),
7592                      "destination operands must be sequential");
7593       else
7594         return Error(Operands[3]->getStartLoc(),
7595                      "source operands must be sequential");
7596     }
7597 
7598     // FIXME: Diagnose m == 15
7599     // FIXME: Diagnose ldrd with m == t || m == t2.
7600   }
7601 
7602   if (!ARMMode && Load) {
7603     if (Rt2 == Rt)
7604       return Error(Operands[3]->getStartLoc(),
7605                    "destination operands can't be identical");
7606   }
7607 
7608   if (Writeback) {
7609     unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
7610 
7611     if (Rn == Rt || Rn == Rt2) {
7612       if (Load)
7613         return Error(Operands[3]->getStartLoc(),
7614                      "base register needs to be different from destination "
7615                      "registers");
7616       else
7617         return Error(Operands[3]->getStartLoc(),
7618                      "source register and base register can't be identical");
7619     }
7620 
7621     // FIXME: Diagnose ldrd/strd with writeback and n == 15.
7622     // (Except the immediate form of ldrd?)
7623   }
7624 
7625   return false;
7626 }
7627 
7628 static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) {
7629   for (unsigned i = 0; i < MCID.NumOperands; ++i) {
7630     if (ARM::isVpred(MCID.operands()[i].OperandType))
7631       return i;
7632   }
7633   return -1;
7634 }
7635 
7636 static bool isVectorPredicable(const MCInstrDesc &MCID) {
7637   return findFirstVectorPredOperandIdx(MCID) != -1;
7638 }
7639 
7640 // FIXME: We would really like to be able to tablegen'erate this.
7641 bool ARMAsmParser::validateInstruction(MCInst &Inst,
7642                                        const OperandVector &Operands) {
7643   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
7644   SMLoc Loc = Operands[0]->getStartLoc();
7645 
7646   // Check the IT block state first.
7647   // NOTE: BKPT and HLT instructions have the interesting property of being
7648   // allowed in IT blocks, but not being predicable. They just always execute.
7649   if (inITBlock() && !instIsBreakpoint(Inst)) {
7650     // The instruction must be predicable.
7651     if (!MCID.isPredicable())
7652       return Error(Loc, "instructions in IT block must be predicable");
7653     ARMCC::CondCodes Cond = ARMCC::CondCodes(
7654         Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm());
7655     if (Cond != currentITCond()) {
7656       // Find the condition code Operand to get its SMLoc information.
7657       SMLoc CondLoc;
7658       for (unsigned I = 1; I < Operands.size(); ++I)
7659         if (static_cast<ARMOperand &>(*Operands[I]).isCondCode())
7660           CondLoc = Operands[I]->getStartLoc();
7661       return Error(CondLoc, "incorrect condition in IT block; got '" +
7662                                 StringRef(ARMCondCodeToString(Cond)) +
7663                                 "', but expected '" +
7664                                 ARMCondCodeToString(currentITCond()) + "'");
7665     }
7666   // Check for non-'al' condition codes outside of the IT block.
7667   } else if (isThumbTwo() && MCID.isPredicable() &&
7668              Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
7669              ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
7670              Inst.getOpcode() != ARM::t2Bcc &&
7671              Inst.getOpcode() != ARM::t2BFic) {
7672     return Error(Loc, "predicated instructions must be in IT block");
7673   } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() &&
7674              Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
7675                  ARMCC::AL) {
7676     return Warning(Loc, "predicated instructions should be in IT block");
7677   } else if (!MCID.isPredicable()) {
7678     // Check the instruction doesn't have a predicate operand anyway
7679     // that it's not allowed to use. Sometimes this happens in order
7680     // to keep instructions the same shape even though one cannot
7681     // legally be predicated, e.g. vmul.f16 vs vmul.f32.
7682     for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
7683       if (MCID.operands()[i].isPredicate()) {
7684         if (Inst.getOperand(i).getImm() != ARMCC::AL)
7685           return Error(Loc, "instruction is not predicable");
7686         break;
7687       }
7688     }
7689   }
7690 
7691   // PC-setting instructions in an IT block, but not the last instruction of
7692   // the block, are UNPREDICTABLE.
7693   if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) {
7694     return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block");
7695   }
7696 
7697   if (inVPTBlock() && !instIsBreakpoint(Inst)) {
7698     unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition);
7699     if (!isVectorPredicable(MCID))
7700       return Error(Loc, "instruction in VPT block must be predicable");
7701     unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm();
7702     unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then;
7703     if (Pred != VPTPred) {
7704       SMLoc PredLoc;
7705       for (unsigned I = 1; I < Operands.size(); ++I)
7706         if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred())
7707           PredLoc = Operands[I]->getStartLoc();
7708       return Error(PredLoc, "incorrect predication in VPT block; got '" +
7709                    StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) +
7710                    "', but expected '" +
7711                    ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'");
7712     }
7713   }
7714   else if (isVectorPredicable(MCID) &&
7715            Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() !=
7716            ARMVCC::None)
7717     return Error(Loc, "VPT predicated instructions must be in VPT block");
7718 
7719   const unsigned Opcode = Inst.getOpcode();
7720   switch (Opcode) {
7721   case ARM::t2IT: {
7722     // Encoding is unpredictable if it ever results in a notional 'NV'
7723     // predicate. Since we don't parse 'NV' directly this means an 'AL'
7724     // predicate with an "else" mask bit.
7725     unsigned Cond = Inst.getOperand(0).getImm();
7726     unsigned Mask = Inst.getOperand(1).getImm();
7727 
7728     // Conditions only allowing a 't' are those with no set bit except
7729     // the lowest-order one that indicates the end of the sequence. In
7730     // other words, powers of 2.
7731     if (Cond == ARMCC::AL && llvm::popcount(Mask) != 1)
7732       return Error(Loc, "unpredictable IT predicate sequence");
7733     break;
7734   }
7735   case ARM::LDRD:
7736     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
7737                          /*Writeback*/false))
7738       return true;
7739     break;
7740   case ARM::LDRD_PRE:
7741   case ARM::LDRD_POST:
7742     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
7743                          /*Writeback*/true))
7744       return true;
7745     break;
7746   case ARM::t2LDRDi8:
7747     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
7748                          /*Writeback*/false))
7749       return true;
7750     break;
7751   case ARM::t2LDRD_PRE:
7752   case ARM::t2LDRD_POST:
7753     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
7754                          /*Writeback*/true))
7755       return true;
7756     break;
7757   case ARM::t2BXJ: {
7758     const unsigned RmReg = Inst.getOperand(0).getReg();
7759     // Rm = SP is no longer unpredictable in v8-A
7760     if (RmReg == ARM::SP && !hasV8Ops())
7761       return Error(Operands[2]->getStartLoc(),
7762                    "r13 (SP) is an unpredictable operand to BXJ");
7763     return false;
7764   }
7765   case ARM::STRD:
7766     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
7767                          /*Writeback*/false))
7768       return true;
7769     break;
7770   case ARM::STRD_PRE:
7771   case ARM::STRD_POST:
7772     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
7773                          /*Writeback*/true))
7774       return true;
7775     break;
7776   case ARM::t2STRD_PRE:
7777   case ARM::t2STRD_POST:
7778     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false,
7779                          /*Writeback*/true))
7780       return true;
7781     break;
7782   case ARM::STR_PRE_IMM:
7783   case ARM::STR_PRE_REG:
7784   case ARM::t2STR_PRE:
7785   case ARM::STR_POST_IMM:
7786   case ARM::STR_POST_REG:
7787   case ARM::t2STR_POST:
7788   case ARM::STRH_PRE:
7789   case ARM::t2STRH_PRE:
7790   case ARM::STRH_POST:
7791   case ARM::t2STRH_POST:
7792   case ARM::STRB_PRE_IMM:
7793   case ARM::STRB_PRE_REG:
7794   case ARM::t2STRB_PRE:
7795   case ARM::STRB_POST_IMM:
7796   case ARM::STRB_POST_REG:
7797   case ARM::t2STRB_POST: {
7798     // Rt must be different from Rn.
7799     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
7800     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
7801 
7802     if (Rt == Rn)
7803       return Error(Operands[3]->getStartLoc(),
7804                    "source register and base register can't be identical");
7805     return false;
7806   }
7807   case ARM::t2LDR_PRE_imm:
7808   case ARM::t2LDR_POST_imm:
7809   case ARM::t2STR_PRE_imm:
7810   case ARM::t2STR_POST_imm: {
7811     // Rt must be different from Rn.
7812     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
7813     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(1).getReg());
7814 
7815     if (Rt == Rn)
7816       return Error(Operands[3]->getStartLoc(),
7817                    "destination register and base register can't be identical");
7818     if (Inst.getOpcode() == ARM::t2LDR_POST_imm ||
7819         Inst.getOpcode() == ARM::t2STR_POST_imm) {
7820       int Imm = Inst.getOperand(2).getImm();
7821       if (Imm > 255 || Imm < -255)
7822         return Error(Operands[5]->getStartLoc(),
7823                      "operand must be in range [-255, 255]");
7824     }
7825     if (Inst.getOpcode() == ARM::t2STR_PRE_imm ||
7826         Inst.getOpcode() == ARM::t2STR_POST_imm) {
7827       if (Inst.getOperand(0).getReg() == ARM::PC) {
7828         return Error(Operands[3]->getStartLoc(),
7829                      "operand must be a register in range [r0, r14]");
7830       }
7831     }
7832     return false;
7833   }
7834   case ARM::LDR_PRE_IMM:
7835   case ARM::LDR_PRE_REG:
7836   case ARM::t2LDR_PRE:
7837   case ARM::LDR_POST_IMM:
7838   case ARM::LDR_POST_REG:
7839   case ARM::t2LDR_POST:
7840   case ARM::LDRH_PRE:
7841   case ARM::t2LDRH_PRE:
7842   case ARM::LDRH_POST:
7843   case ARM::t2LDRH_POST:
7844   case ARM::LDRSH_PRE:
7845   case ARM::t2LDRSH_PRE:
7846   case ARM::LDRSH_POST:
7847   case ARM::t2LDRSH_POST:
7848   case ARM::LDRB_PRE_IMM:
7849   case ARM::LDRB_PRE_REG:
7850   case ARM::t2LDRB_PRE:
7851   case ARM::LDRB_POST_IMM:
7852   case ARM::LDRB_POST_REG:
7853   case ARM::t2LDRB_POST:
7854   case ARM::LDRSB_PRE:
7855   case ARM::t2LDRSB_PRE:
7856   case ARM::LDRSB_POST:
7857   case ARM::t2LDRSB_POST: {
7858     // Rt must be different from Rn.
7859     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
7860     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
7861 
7862     if (Rt == Rn)
7863       return Error(Operands[3]->getStartLoc(),
7864                    "destination register and base register can't be identical");
7865     return false;
7866   }
7867 
7868   case ARM::MVE_VLDRBU8_rq:
7869   case ARM::MVE_VLDRBU16_rq:
7870   case ARM::MVE_VLDRBS16_rq:
7871   case ARM::MVE_VLDRBU32_rq:
7872   case ARM::MVE_VLDRBS32_rq:
7873   case ARM::MVE_VLDRHU16_rq:
7874   case ARM::MVE_VLDRHU16_rq_u:
7875   case ARM::MVE_VLDRHU32_rq:
7876   case ARM::MVE_VLDRHU32_rq_u:
7877   case ARM::MVE_VLDRHS32_rq:
7878   case ARM::MVE_VLDRHS32_rq_u:
7879   case ARM::MVE_VLDRWU32_rq:
7880   case ARM::MVE_VLDRWU32_rq_u:
7881   case ARM::MVE_VLDRDU64_rq:
7882   case ARM::MVE_VLDRDU64_rq_u:
7883   case ARM::MVE_VLDRWU32_qi:
7884   case ARM::MVE_VLDRWU32_qi_pre:
7885   case ARM::MVE_VLDRDU64_qi:
7886   case ARM::MVE_VLDRDU64_qi_pre: {
7887     // Qd must be different from Qm.
7888     unsigned QdIdx = 0, QmIdx = 2;
7889     bool QmIsPointer = false;
7890     switch (Opcode) {
7891     case ARM::MVE_VLDRWU32_qi:
7892     case ARM::MVE_VLDRDU64_qi:
7893       QmIdx = 1;
7894       QmIsPointer = true;
7895       break;
7896     case ARM::MVE_VLDRWU32_qi_pre:
7897     case ARM::MVE_VLDRDU64_qi_pre:
7898       QdIdx = 1;
7899       QmIsPointer = true;
7900       break;
7901     }
7902 
7903     const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg());
7904     const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg());
7905 
7906     if (Qd == Qm) {
7907       return Error(Operands[3]->getStartLoc(),
7908                    Twine("destination vector register and vector ") +
7909                    (QmIsPointer ? "pointer" : "offset") +
7910                    " register can't be identical");
7911     }
7912     return false;
7913   }
7914 
7915   case ARM::SBFX:
7916   case ARM::t2SBFX:
7917   case ARM::UBFX:
7918   case ARM::t2UBFX: {
7919     // Width must be in range [1, 32-lsb].
7920     unsigned LSB = Inst.getOperand(2).getImm();
7921     unsigned Widthm1 = Inst.getOperand(3).getImm();
7922     if (Widthm1 >= 32 - LSB)
7923       return Error(Operands[5]->getStartLoc(),
7924                    "bitfield width must be in range [1,32-lsb]");
7925     return false;
7926   }
7927   // Notionally handles ARM::tLDMIA_UPD too.
7928   case ARM::tLDMIA: {
7929     // If we're parsing Thumb2, the .w variant is available and handles
7930     // most cases that are normally illegal for a Thumb1 LDM instruction.
7931     // We'll make the transformation in processInstruction() if necessary.
7932     //
7933     // Thumb LDM instructions are writeback iff the base register is not
7934     // in the register list.
7935     unsigned Rn = Inst.getOperand(0).getReg();
7936     bool HasWritebackToken =
7937         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
7938          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
7939     bool ListContainsBase;
7940     if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
7941       return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
7942                    "registers must be in range r0-r7");
7943     // If we should have writeback, then there should be a '!' token.
7944     if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
7945       return Error(Operands[2]->getStartLoc(),
7946                    "writeback operator '!' expected");
7947     // If we should not have writeback, there must not be a '!'. This is
7948     // true even for the 32-bit wide encodings.
7949     if (ListContainsBase && HasWritebackToken)
7950       return Error(Operands[3]->getStartLoc(),
7951                    "writeback operator '!' not allowed when base register "
7952                    "in register list");
7953 
7954     if (validatetLDMRegList(Inst, Operands, 3))
7955       return true;
7956     break;
7957   }
7958   case ARM::LDMIA_UPD:
7959   case ARM::LDMDB_UPD:
7960   case ARM::LDMIB_UPD:
7961   case ARM::LDMDA_UPD:
7962     // ARM variants loading and updating the same register are only officially
7963     // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
7964     if (!hasV7Ops())
7965       break;
7966     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
7967       return Error(Operands.back()->getStartLoc(),
7968                    "writeback register not allowed in register list");
7969     break;
7970   case ARM::t2LDMIA:
7971   case ARM::t2LDMDB:
7972     if (validatetLDMRegList(Inst, Operands, 3))
7973       return true;
7974     break;
7975   case ARM::t2STMIA:
7976   case ARM::t2STMDB:
7977     if (validatetSTMRegList(Inst, Operands, 3))
7978       return true;
7979     break;
7980   case ARM::t2LDMIA_UPD:
7981   case ARM::t2LDMDB_UPD:
7982   case ARM::t2STMIA_UPD:
7983   case ARM::t2STMDB_UPD:
7984     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
7985       return Error(Operands.back()->getStartLoc(),
7986                    "writeback register not allowed in register list");
7987 
7988     if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
7989       if (validatetLDMRegList(Inst, Operands, 3))
7990         return true;
7991     } else {
7992       if (validatetSTMRegList(Inst, Operands, 3))
7993         return true;
7994     }
7995     break;
7996 
7997   case ARM::sysLDMIA_UPD:
7998   case ARM::sysLDMDA_UPD:
7999   case ARM::sysLDMDB_UPD:
8000   case ARM::sysLDMIB_UPD:
8001     if (!listContainsReg(Inst, 3, ARM::PC))
8002       return Error(Operands[4]->getStartLoc(),
8003                    "writeback register only allowed on system LDM "
8004                    "if PC in register-list");
8005     break;
8006   case ARM::sysSTMIA_UPD:
8007   case ARM::sysSTMDA_UPD:
8008   case ARM::sysSTMDB_UPD:
8009   case ARM::sysSTMIB_UPD:
8010     return Error(Operands[2]->getStartLoc(),
8011                  "system STM cannot have writeback register");
8012   case ARM::tMUL:
8013     // The second source operand must be the same register as the destination
8014     // operand.
8015     //
8016     // In this case, we must directly check the parsed operands because the
8017     // cvtThumbMultiply() function is written in such a way that it guarantees
8018     // this first statement is always true for the new Inst.  Essentially, the
8019     // destination is unconditionally copied into the second source operand
8020     // without checking to see if it matches what we actually parsed.
8021     if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() !=
8022                                  ((ARMOperand &)*Operands[5]).getReg()) &&
8023         (((ARMOperand &)*Operands[3]).getReg() !=
8024          ((ARMOperand &)*Operands[4]).getReg())) {
8025       return Error(Operands[3]->getStartLoc(),
8026                    "destination register must match source register");
8027     }
8028     break;
8029 
8030   // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
8031   // so only issue a diagnostic for thumb1. The instructions will be
8032   // switched to the t2 encodings in processInstruction() if necessary.
8033   case ARM::tPOP: {
8034     bool ListContainsBase;
8035     if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
8036         !isThumbTwo())
8037       return Error(Operands[2]->getStartLoc(),
8038                    "registers must be in range r0-r7 or pc");
8039     if (validatetLDMRegList(Inst, Operands, 2, !isMClass()))
8040       return true;
8041     break;
8042   }
8043   case ARM::tPUSH: {
8044     bool ListContainsBase;
8045     if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
8046         !isThumbTwo())
8047       return Error(Operands[2]->getStartLoc(),
8048                    "registers must be in range r0-r7 or lr");
8049     if (validatetSTMRegList(Inst, Operands, 2))
8050       return true;
8051     break;
8052   }
8053   case ARM::tSTMIA_UPD: {
8054     bool ListContainsBase, InvalidLowList;
8055     InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
8056                                           0, ListContainsBase);
8057     if (InvalidLowList && !isThumbTwo())
8058       return Error(Operands[4]->getStartLoc(),
8059                    "registers must be in range r0-r7");
8060 
8061     // This would be converted to a 32-bit stm, but that's not valid if the
8062     // writeback register is in the list.
8063     if (InvalidLowList && ListContainsBase)
8064       return Error(Operands[4]->getStartLoc(),
8065                    "writeback operator '!' not allowed when base register "
8066                    "in register list");
8067 
8068     if (validatetSTMRegList(Inst, Operands, 4))
8069       return true;
8070     break;
8071   }
8072   case ARM::tADDrSP:
8073     // If the non-SP source operand and the destination operand are not the
8074     // same, we need thumb2 (for the wide encoding), or we have an error.
8075     if (!isThumbTwo() &&
8076         Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
8077       return Error(Operands[4]->getStartLoc(),
8078                    "source register must be the same as destination");
8079     }
8080     break;
8081 
8082   case ARM::t2ADDrr:
8083   case ARM::t2ADDrs:
8084   case ARM::t2SUBrr:
8085   case ARM::t2SUBrs:
8086     if (Inst.getOperand(0).getReg() == ARM::SP &&
8087         Inst.getOperand(1).getReg() != ARM::SP)
8088       return Error(Operands[4]->getStartLoc(),
8089                    "source register must be sp if destination is sp");
8090     break;
8091 
8092   // Final range checking for Thumb unconditional branch instructions.
8093   case ARM::tB:
8094     if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>())
8095       return Error(Operands[2]->getStartLoc(), "branch target out of range");
8096     break;
8097   case ARM::t2B: {
8098     int op = (Operands[2]->isImm()) ? 2 : 3;
8099     ARMOperand &Operand = static_cast<ARMOperand &>(*Operands[op]);
8100     // Delay the checks of symbolic expressions until they are resolved.
8101     if (!isa<MCBinaryExpr>(Operand.getImm()) &&
8102         !Operand.isSignedOffset<24, 1>())
8103       return Error(Operands[op]->getStartLoc(), "branch target out of range");
8104     break;
8105   }
8106   // Final range checking for Thumb conditional branch instructions.
8107   case ARM::tBcc:
8108     if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>())
8109       return Error(Operands[2]->getStartLoc(), "branch target out of range");
8110     break;
8111   case ARM::t2Bcc: {
8112     int Op = (Operands[2]->isImm()) ? 2 : 3;
8113     if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>())
8114       return Error(Operands[Op]->getStartLoc(), "branch target out of range");
8115     break;
8116   }
8117   case ARM::tCBZ:
8118   case ARM::tCBNZ: {
8119     if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>())
8120       return Error(Operands[2]->getStartLoc(), "branch target out of range");
8121     break;
8122   }
8123   case ARM::MOVi16:
8124   case ARM::MOVTi16:
8125   case ARM::t2MOVi16:
8126   case ARM::t2MOVTi16:
8127     {
8128     // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
8129     // especially when we turn it into a movw and the expression <symbol> does
8130     // not have a :lower16: or :upper16 as part of the expression.  We don't
8131     // want the behavior of silently truncating, which can be unexpected and
8132     // lead to bugs that are difficult to find since this is an easy mistake
8133     // to make.
8134     int i = (Operands[3]->isImm()) ? 3 : 4;
8135     ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]);
8136     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
8137     if (CE) break;
8138     const MCExpr *E = dyn_cast<MCExpr>(Op.getImm());
8139     if (!E) break;
8140     const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E);
8141     if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
8142                        ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16))
8143       return Error(
8144           Op.getStartLoc(),
8145           "immediate expression for mov requires :lower16: or :upper16");
8146     break;
8147   }
8148   case ARM::HINT:
8149   case ARM::t2HINT: {
8150     unsigned Imm8 = Inst.getOperand(0).getImm();
8151     unsigned Pred = Inst.getOperand(1).getImm();
8152     // ESB is not predicable (pred must be AL). Without the RAS extension, this
8153     // behaves as any other unallocated hint.
8154     if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS())
8155       return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not "
8156                                                "predicable, but condition "
8157                                                "code specified");
8158     if (Imm8 == 0x14 && Pred != ARMCC::AL)
8159       return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not "
8160                                                "predicable, but condition "
8161                                                "code specified");
8162     break;
8163   }
8164   case ARM::t2BFi:
8165   case ARM::t2BFr:
8166   case ARM::t2BFLi:
8167   case ARM::t2BFLr: {
8168     if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() ||
8169         (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0))
8170       return Error(Operands[2]->getStartLoc(),
8171                    "branch location out of range or not a multiple of 2");
8172 
8173     if (Opcode == ARM::t2BFi) {
8174       if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>())
8175         return Error(Operands[3]->getStartLoc(),
8176                      "branch target out of range or not a multiple of 2");
8177     } else if (Opcode == ARM::t2BFLi) {
8178       if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>())
8179         return Error(Operands[3]->getStartLoc(),
8180                      "branch target out of range or not a multiple of 2");
8181     }
8182     break;
8183   }
8184   case ARM::t2BFic: {
8185     if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() ||
8186         (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0))
8187       return Error(Operands[1]->getStartLoc(),
8188                    "branch location out of range or not a multiple of 2");
8189 
8190     if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>())
8191       return Error(Operands[2]->getStartLoc(),
8192                    "branch target out of range or not a multiple of 2");
8193 
8194     assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() &&
8195            "branch location and else branch target should either both be "
8196            "immediates or both labels");
8197 
8198     if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) {
8199       int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm();
8200       if (Diff != 4 && Diff != 2)
8201         return Error(
8202             Operands[3]->getStartLoc(),
8203             "else branch target must be 2 or 4 greater than the branch location");
8204     }
8205     break;
8206   }
8207   case ARM::t2CLRM: {
8208     for (unsigned i = 2; i < Inst.getNumOperands(); i++) {
8209       if (Inst.getOperand(i).isReg() &&
8210           !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(
8211               Inst.getOperand(i).getReg())) {
8212         return Error(Operands[2]->getStartLoc(),
8213                      "invalid register in register list. Valid registers are "
8214                      "r0-r12, lr/r14 and APSR.");
8215       }
8216     }
8217     break;
8218   }
8219   case ARM::DSB:
8220   case ARM::t2DSB: {
8221 
8222     if (Inst.getNumOperands() < 2)
8223       break;
8224 
8225     unsigned Option = Inst.getOperand(0).getImm();
8226     unsigned Pred = Inst.getOperand(1).getImm();
8227 
8228     // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL).
8229     if (Option == 0 && Pred != ARMCC::AL)
8230       return Error(Operands[1]->getStartLoc(),
8231                    "instruction 'ssbb' is not predicable, but condition code "
8232                    "specified");
8233     if (Option == 4 && Pred != ARMCC::AL)
8234       return Error(Operands[1]->getStartLoc(),
8235                    "instruction 'pssbb' is not predicable, but condition code "
8236                    "specified");
8237     break;
8238   }
8239   case ARM::VMOVRRS: {
8240     // Source registers must be sequential.
8241     const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg());
8242     const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg());
8243     if (Sm1 != Sm + 1)
8244       return Error(Operands[5]->getStartLoc(),
8245                    "source operands must be sequential");
8246     break;
8247   }
8248   case ARM::VMOVSRR: {
8249     // Destination registers must be sequential.
8250     const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg());
8251     const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
8252     if (Sm1 != Sm + 1)
8253       return Error(Operands[3]->getStartLoc(),
8254                    "destination operands must be sequential");
8255     break;
8256   }
8257   case ARM::VLDMDIA:
8258   case ARM::VSTMDIA: {
8259     ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]);
8260     auto &RegList = Op.getRegList();
8261     if (RegList.size() < 1 || RegList.size() > 16)
8262       return Error(Operands[3]->getStartLoc(),
8263                    "list of registers must be at least 1 and at most 16");
8264     break;
8265   }
8266   case ARM::MVE_VQDMULLs32bh:
8267   case ARM::MVE_VQDMULLs32th:
8268   case ARM::MVE_VCMULf32:
8269   case ARM::MVE_VMULLBs32:
8270   case ARM::MVE_VMULLTs32:
8271   case ARM::MVE_VMULLBu32:
8272   case ARM::MVE_VMULLTu32: {
8273     if (Operands[3]->getReg() == Operands[4]->getReg()) {
8274       return Error (Operands[3]->getStartLoc(),
8275                     "Qd register and Qn register can't be identical");
8276     }
8277     if (Operands[3]->getReg() == Operands[5]->getReg()) {
8278       return Error (Operands[3]->getStartLoc(),
8279                     "Qd register and Qm register can't be identical");
8280     }
8281     break;
8282   }
8283   case ARM::MVE_VREV64_8:
8284   case ARM::MVE_VREV64_16:
8285   case ARM::MVE_VREV64_32:
8286   case ARM::MVE_VQDMULL_qr_s32bh:
8287   case ARM::MVE_VQDMULL_qr_s32th: {
8288     if (Operands[3]->getReg() == Operands[4]->getReg()) {
8289       return Error (Operands[3]->getStartLoc(),
8290                     "Qd register and Qn register can't be identical");
8291     }
8292     break;
8293   }
8294   case ARM::MVE_VCADDi32:
8295   case ARM::MVE_VCADDf32:
8296   case ARM::MVE_VHCADDs32: {
8297     if (Operands[3]->getReg() == Operands[5]->getReg()) {
8298       return Error (Operands[3]->getStartLoc(),
8299                     "Qd register and Qm register can't be identical");
8300     }
8301     break;
8302   }
8303   case ARM::MVE_VMOV_rr_q: {
8304     if (Operands[4]->getReg() != Operands[6]->getReg())
8305       return Error (Operands[4]->getStartLoc(), "Q-registers must be the same");
8306     if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() !=
8307         static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2)
8308       return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
8309     break;
8310   }
8311   case ARM::MVE_VMOV_q_rr: {
8312     if (Operands[2]->getReg() != Operands[4]->getReg())
8313       return Error (Operands[2]->getStartLoc(), "Q-registers must be the same");
8314     if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() !=
8315         static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2)
8316       return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
8317     break;
8318   }
8319   case ARM::UMAAL:
8320   case ARM::UMLAL:
8321   case ARM::UMULL:
8322   case ARM::t2UMAAL:
8323   case ARM::t2UMLAL:
8324   case ARM::t2UMULL:
8325   case ARM::SMLAL:
8326   case ARM::SMLALBB:
8327   case ARM::SMLALBT:
8328   case ARM::SMLALD:
8329   case ARM::SMLALDX:
8330   case ARM::SMLALTB:
8331   case ARM::SMLALTT:
8332   case ARM::SMLSLD:
8333   case ARM::SMLSLDX:
8334   case ARM::SMULL:
8335   case ARM::t2SMLAL:
8336   case ARM::t2SMLALBB:
8337   case ARM::t2SMLALBT:
8338   case ARM::t2SMLALD:
8339   case ARM::t2SMLALDX:
8340   case ARM::t2SMLALTB:
8341   case ARM::t2SMLALTT:
8342   case ARM::t2SMLSLD:
8343   case ARM::t2SMLSLDX:
8344   case ARM::t2SMULL: {
8345     unsigned RdHi = Inst.getOperand(0).getReg();
8346     unsigned RdLo = Inst.getOperand(1).getReg();
8347     if(RdHi == RdLo) {
8348       return Error(Loc,
8349                    "unpredictable instruction, RdHi and RdLo must be different");
8350     }
8351     break;
8352   }
8353 
8354   case ARM::CDE_CX1:
8355   case ARM::CDE_CX1A:
8356   case ARM::CDE_CX1D:
8357   case ARM::CDE_CX1DA:
8358   case ARM::CDE_CX2:
8359   case ARM::CDE_CX2A:
8360   case ARM::CDE_CX2D:
8361   case ARM::CDE_CX2DA:
8362   case ARM::CDE_CX3:
8363   case ARM::CDE_CX3A:
8364   case ARM::CDE_CX3D:
8365   case ARM::CDE_CX3DA:
8366   case ARM::CDE_VCX1_vec:
8367   case ARM::CDE_VCX1_fpsp:
8368   case ARM::CDE_VCX1_fpdp:
8369   case ARM::CDE_VCX1A_vec:
8370   case ARM::CDE_VCX1A_fpsp:
8371   case ARM::CDE_VCX1A_fpdp:
8372   case ARM::CDE_VCX2_vec:
8373   case ARM::CDE_VCX2_fpsp:
8374   case ARM::CDE_VCX2_fpdp:
8375   case ARM::CDE_VCX2A_vec:
8376   case ARM::CDE_VCX2A_fpsp:
8377   case ARM::CDE_VCX2A_fpdp:
8378   case ARM::CDE_VCX3_vec:
8379   case ARM::CDE_VCX3_fpsp:
8380   case ARM::CDE_VCX3_fpdp:
8381   case ARM::CDE_VCX3A_vec:
8382   case ARM::CDE_VCX3A_fpsp:
8383   case ARM::CDE_VCX3A_fpdp: {
8384     assert(Inst.getOperand(1).isImm() &&
8385            "CDE operand 1 must be a coprocessor ID");
8386     int64_t Coproc = Inst.getOperand(1).getImm();
8387     if (Coproc < 8 && !ARM::isCDECoproc(Coproc, *STI))
8388       return Error(Operands[1]->getStartLoc(),
8389                    "coprocessor must be configured as CDE");
8390     else if (Coproc >= 8)
8391       return Error(Operands[1]->getStartLoc(),
8392                    "coprocessor must be in the range [p0, p7]");
8393     break;
8394   }
8395 
8396   case ARM::t2CDP:
8397   case ARM::t2CDP2:
8398   case ARM::t2LDC2L_OFFSET:
8399   case ARM::t2LDC2L_OPTION:
8400   case ARM::t2LDC2L_POST:
8401   case ARM::t2LDC2L_PRE:
8402   case ARM::t2LDC2_OFFSET:
8403   case ARM::t2LDC2_OPTION:
8404   case ARM::t2LDC2_POST:
8405   case ARM::t2LDC2_PRE:
8406   case ARM::t2LDCL_OFFSET:
8407   case ARM::t2LDCL_OPTION:
8408   case ARM::t2LDCL_POST:
8409   case ARM::t2LDCL_PRE:
8410   case ARM::t2LDC_OFFSET:
8411   case ARM::t2LDC_OPTION:
8412   case ARM::t2LDC_POST:
8413   case ARM::t2LDC_PRE:
8414   case ARM::t2MCR:
8415   case ARM::t2MCR2:
8416   case ARM::t2MCRR:
8417   case ARM::t2MCRR2:
8418   case ARM::t2MRC:
8419   case ARM::t2MRC2:
8420   case ARM::t2MRRC:
8421   case ARM::t2MRRC2:
8422   case ARM::t2STC2L_OFFSET:
8423   case ARM::t2STC2L_OPTION:
8424   case ARM::t2STC2L_POST:
8425   case ARM::t2STC2L_PRE:
8426   case ARM::t2STC2_OFFSET:
8427   case ARM::t2STC2_OPTION:
8428   case ARM::t2STC2_POST:
8429   case ARM::t2STC2_PRE:
8430   case ARM::t2STCL_OFFSET:
8431   case ARM::t2STCL_OPTION:
8432   case ARM::t2STCL_POST:
8433   case ARM::t2STCL_PRE:
8434   case ARM::t2STC_OFFSET:
8435   case ARM::t2STC_OPTION:
8436   case ARM::t2STC_POST:
8437   case ARM::t2STC_PRE: {
8438     unsigned Opcode = Inst.getOpcode();
8439     // Inst.getOperand indexes operands in the (oops ...) and (iops ...) dags,
8440     // CopInd is the index of the coprocessor operand.
8441     size_t CopInd = 0;
8442     if (Opcode == ARM::t2MRRC || Opcode == ARM::t2MRRC2)
8443       CopInd = 2;
8444     else if (Opcode == ARM::t2MRC || Opcode == ARM::t2MRC2)
8445       CopInd = 1;
8446     assert(Inst.getOperand(CopInd).isImm() &&
8447            "Operand must be a coprocessor ID");
8448     int64_t Coproc = Inst.getOperand(CopInd).getImm();
8449     // Operands[2] is the coprocessor operand at syntactic level
8450     if (ARM::isCDECoproc(Coproc, *STI))
8451       return Error(Operands[2]->getStartLoc(),
8452                    "coprocessor must be configured as GCP");
8453     break;
8454   }
8455   }
8456 
8457   return false;
8458 }
8459 
8460 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
8461   switch(Opc) {
8462   default: llvm_unreachable("unexpected opcode!");
8463   // VST1LN
8464   case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
8465   case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
8466   case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
8467   case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
8468   case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
8469   case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
8470   case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
8471   case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
8472   case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
8473 
8474   // VST2LN
8475   case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
8476   case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
8477   case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
8478   case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
8479   case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
8480 
8481   case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
8482   case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
8483   case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
8484   case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
8485   case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
8486 
8487   case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
8488   case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
8489   case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
8490   case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
8491   case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
8492 
8493   // VST3LN
8494   case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
8495   case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
8496   case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
8497   case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
8498   case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
8499   case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
8500   case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
8501   case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
8502   case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
8503   case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
8504   case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
8505   case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
8506   case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
8507   case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
8508   case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
8509 
8510   // VST3
8511   case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
8512   case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
8513   case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
8514   case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
8515   case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
8516   case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
8517   case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
8518   case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
8519   case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
8520   case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
8521   case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
8522   case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
8523   case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
8524   case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
8525   case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
8526   case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
8527   case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
8528   case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
8529 
8530   // VST4LN
8531   case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
8532   case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
8533   case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
8534   case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
8535   case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
8536   case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
8537   case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
8538   case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
8539   case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
8540   case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
8541   case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
8542   case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
8543   case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
8544   case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
8545   case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
8546 
8547   // VST4
8548   case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
8549   case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
8550   case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
8551   case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
8552   case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
8553   case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
8554   case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
8555   case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
8556   case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
8557   case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
8558   case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
8559   case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
8560   case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
8561   case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
8562   case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
8563   case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
8564   case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
8565   case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
8566   }
8567 }
8568 
8569 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
8570   switch(Opc) {
8571   default: llvm_unreachable("unexpected opcode!");
8572   // VLD1LN
8573   case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
8574   case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
8575   case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
8576   case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
8577   case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
8578   case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
8579   case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
8580   case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
8581   case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
8582 
8583   // VLD2LN
8584   case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
8585   case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
8586   case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
8587   case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
8588   case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
8589   case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
8590   case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
8591   case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
8592   case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
8593   case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
8594   case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
8595   case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
8596   case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
8597   case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
8598   case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
8599 
8600   // VLD3DUP
8601   case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
8602   case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
8603   case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
8604   case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
8605   case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
8606   case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
8607   case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
8608   case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
8609   case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
8610   case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
8611   case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
8612   case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
8613   case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
8614   case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
8615   case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
8616   case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
8617   case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
8618   case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
8619 
8620   // VLD3LN
8621   case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
8622   case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
8623   case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
8624   case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
8625   case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
8626   case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
8627   case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
8628   case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
8629   case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
8630   case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
8631   case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
8632   case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
8633   case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
8634   case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
8635   case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
8636 
8637   // VLD3
8638   case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
8639   case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
8640   case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
8641   case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
8642   case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
8643   case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
8644   case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
8645   case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
8646   case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
8647   case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
8648   case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
8649   case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
8650   case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
8651   case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
8652   case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
8653   case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
8654   case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
8655   case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
8656 
8657   // VLD4LN
8658   case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
8659   case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
8660   case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
8661   case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
8662   case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
8663   case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
8664   case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
8665   case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
8666   case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
8667   case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
8668   case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
8669   case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
8670   case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
8671   case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
8672   case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
8673 
8674   // VLD4DUP
8675   case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
8676   case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
8677   case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
8678   case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
8679   case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
8680   case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
8681   case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
8682   case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
8683   case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
8684   case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
8685   case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
8686   case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
8687   case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
8688   case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
8689   case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
8690   case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
8691   case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
8692   case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
8693 
8694   // VLD4
8695   case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
8696   case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
8697   case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
8698   case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
8699   case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
8700   case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
8701   case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
8702   case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
8703   case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
8704   case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
8705   case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
8706   case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
8707   case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
8708   case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
8709   case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
8710   case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
8711   case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
8712   case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
8713   }
8714 }
8715 
8716 bool ARMAsmParser::processInstruction(MCInst &Inst,
8717                                       const OperandVector &Operands,
8718                                       MCStreamer &Out) {
8719   // Check if we have the wide qualifier, because if it's present we
8720   // must avoid selecting a 16-bit thumb instruction.
8721   bool HasWideQualifier = false;
8722   for (auto &Op : Operands) {
8723     ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op);
8724     if (ARMOp.isToken() && ARMOp.getToken() == ".w") {
8725       HasWideQualifier = true;
8726       break;
8727     }
8728   }
8729 
8730   switch (Inst.getOpcode()) {
8731   // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
8732   case ARM::LDRT_POST:
8733   case ARM::LDRBT_POST: {
8734     const unsigned Opcode =
8735       (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
8736                                            : ARM::LDRBT_POST_IMM;
8737     MCInst TmpInst;
8738     TmpInst.setOpcode(Opcode);
8739     TmpInst.addOperand(Inst.getOperand(0));
8740     TmpInst.addOperand(Inst.getOperand(1));
8741     TmpInst.addOperand(Inst.getOperand(1));
8742     TmpInst.addOperand(MCOperand::createReg(0));
8743     TmpInst.addOperand(MCOperand::createImm(0));
8744     TmpInst.addOperand(Inst.getOperand(2));
8745     TmpInst.addOperand(Inst.getOperand(3));
8746     Inst = TmpInst;
8747     return true;
8748   }
8749   // Alias for 'ldr{sb,h,sh}t Rt, [Rn] {, #imm}' for ommitted immediate.
8750   case ARM::LDRSBTii:
8751   case ARM::LDRHTii:
8752   case ARM::LDRSHTii: {
8753     MCInst TmpInst;
8754 
8755     if (Inst.getOpcode() == ARM::LDRSBTii)
8756       TmpInst.setOpcode(ARM::LDRSBTi);
8757     else if (Inst.getOpcode() == ARM::LDRHTii)
8758       TmpInst.setOpcode(ARM::LDRHTi);
8759     else if (Inst.getOpcode() == ARM::LDRSHTii)
8760       TmpInst.setOpcode(ARM::LDRSHTi);
8761     TmpInst.addOperand(Inst.getOperand(0));
8762     TmpInst.addOperand(Inst.getOperand(1));
8763     TmpInst.addOperand(Inst.getOperand(1));
8764     TmpInst.addOperand(MCOperand::createImm(256));
8765     TmpInst.addOperand(Inst.getOperand(2));
8766     Inst = TmpInst;
8767     return true;
8768   }
8769   // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
8770   case ARM::STRT_POST:
8771   case ARM::STRBT_POST: {
8772     const unsigned Opcode =
8773       (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
8774                                            : ARM::STRBT_POST_IMM;
8775     MCInst TmpInst;
8776     TmpInst.setOpcode(Opcode);
8777     TmpInst.addOperand(Inst.getOperand(1));
8778     TmpInst.addOperand(Inst.getOperand(0));
8779     TmpInst.addOperand(Inst.getOperand(1));
8780     TmpInst.addOperand(MCOperand::createReg(0));
8781     TmpInst.addOperand(MCOperand::createImm(0));
8782     TmpInst.addOperand(Inst.getOperand(2));
8783     TmpInst.addOperand(Inst.getOperand(3));
8784     Inst = TmpInst;
8785     return true;
8786   }
8787   // Alias for alternate form of 'ADR Rd, #imm' instruction.
8788   case ARM::ADDri: {
8789     if (Inst.getOperand(1).getReg() != ARM::PC ||
8790         Inst.getOperand(5).getReg() != 0 ||
8791         !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm()))
8792       return false;
8793     MCInst TmpInst;
8794     TmpInst.setOpcode(ARM::ADR);
8795     TmpInst.addOperand(Inst.getOperand(0));
8796     if (Inst.getOperand(2).isImm()) {
8797       // Immediate (mod_imm) will be in its encoded form, we must unencode it
8798       // before passing it to the ADR instruction.
8799       unsigned Enc = Inst.getOperand(2).getImm();
8800       TmpInst.addOperand(MCOperand::createImm(
8801         ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7)));
8802     } else {
8803       // Turn PC-relative expression into absolute expression.
8804       // Reading PC provides the start of the current instruction + 8 and
8805       // the transform to adr is biased by that.
8806       MCSymbol *Dot = getContext().createTempSymbol();
8807       Out.emitLabel(Dot);
8808       const MCExpr *OpExpr = Inst.getOperand(2).getExpr();
8809       const MCExpr *InstPC = MCSymbolRefExpr::create(Dot,
8810                                                      MCSymbolRefExpr::VK_None,
8811                                                      getContext());
8812       const MCExpr *Const8 = MCConstantExpr::create(8, getContext());
8813       const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8,
8814                                                      getContext());
8815       const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr,
8816                                                         getContext());
8817       TmpInst.addOperand(MCOperand::createExpr(FixupAddr));
8818     }
8819     TmpInst.addOperand(Inst.getOperand(3));
8820     TmpInst.addOperand(Inst.getOperand(4));
8821     Inst = TmpInst;
8822     return true;
8823   }
8824   // Aliases for imm syntax of LDR instructions.
8825   case ARM::t2LDR_PRE_imm:
8826   case ARM::t2LDR_POST_imm: {
8827     MCInst TmpInst;
8828     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2LDR_PRE_imm ? ARM::t2LDR_PRE
8829                                                              : ARM::t2LDR_POST);
8830     TmpInst.addOperand(Inst.getOperand(0)); // Rt
8831     TmpInst.addOperand(Inst.getOperand(4)); // Rt_wb
8832     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8833     TmpInst.addOperand(Inst.getOperand(2)); // imm
8834     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8835     Inst = TmpInst;
8836     return true;
8837   }
8838   // Aliases for imm syntax of STR instructions.
8839   case ARM::t2STR_PRE_imm:
8840   case ARM::t2STR_POST_imm: {
8841     MCInst TmpInst;
8842     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2STR_PRE_imm ? ARM::t2STR_PRE
8843                                                              : ARM::t2STR_POST);
8844     TmpInst.addOperand(Inst.getOperand(4)); // Rt_wb
8845     TmpInst.addOperand(Inst.getOperand(0)); // Rt
8846     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8847     TmpInst.addOperand(Inst.getOperand(2)); // imm
8848     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8849     Inst = TmpInst;
8850     return true;
8851   }
8852   // Aliases for alternate PC+imm syntax of LDR instructions.
8853   case ARM::t2LDRpcrel:
8854     // Select the narrow version if the immediate will fit.
8855     if (Inst.getOperand(1).getImm() > 0 &&
8856         Inst.getOperand(1).getImm() <= 0xff &&
8857         !HasWideQualifier)
8858       Inst.setOpcode(ARM::tLDRpci);
8859     else
8860       Inst.setOpcode(ARM::t2LDRpci);
8861     return true;
8862   case ARM::t2LDRBpcrel:
8863     Inst.setOpcode(ARM::t2LDRBpci);
8864     return true;
8865   case ARM::t2LDRHpcrel:
8866     Inst.setOpcode(ARM::t2LDRHpci);
8867     return true;
8868   case ARM::t2LDRSBpcrel:
8869     Inst.setOpcode(ARM::t2LDRSBpci);
8870     return true;
8871   case ARM::t2LDRSHpcrel:
8872     Inst.setOpcode(ARM::t2LDRSHpci);
8873     return true;
8874   case ARM::LDRConstPool:
8875   case ARM::tLDRConstPool:
8876   case ARM::t2LDRConstPool: {
8877     // Pseudo instruction ldr rt, =immediate is converted to a
8878     // MOV rt, immediate if immediate is known and representable
8879     // otherwise we create a constant pool entry that we load from.
8880     MCInst TmpInst;
8881     if (Inst.getOpcode() == ARM::LDRConstPool)
8882       TmpInst.setOpcode(ARM::LDRi12);
8883     else if (Inst.getOpcode() == ARM::tLDRConstPool)
8884       TmpInst.setOpcode(ARM::tLDRpci);
8885     else if (Inst.getOpcode() == ARM::t2LDRConstPool)
8886       TmpInst.setOpcode(ARM::t2LDRpci);
8887     const ARMOperand &PoolOperand =
8888       (HasWideQualifier ?
8889        static_cast<ARMOperand &>(*Operands[4]) :
8890        static_cast<ARMOperand &>(*Operands[3]));
8891     const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm();
8892     // If SubExprVal is a constant we may be able to use a MOV
8893     if (isa<MCConstantExpr>(SubExprVal) &&
8894         Inst.getOperand(0).getReg() != ARM::PC &&
8895         Inst.getOperand(0).getReg() != ARM::SP) {
8896       int64_t Value =
8897         (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue();
8898       bool UseMov  = true;
8899       bool MovHasS = true;
8900       if (Inst.getOpcode() == ARM::LDRConstPool) {
8901         // ARM Constant
8902         if (ARM_AM::getSOImmVal(Value) != -1) {
8903           Value = ARM_AM::getSOImmVal(Value);
8904           TmpInst.setOpcode(ARM::MOVi);
8905         }
8906         else if (ARM_AM::getSOImmVal(~Value) != -1) {
8907           Value = ARM_AM::getSOImmVal(~Value);
8908           TmpInst.setOpcode(ARM::MVNi);
8909         }
8910         else if (hasV6T2Ops() &&
8911                  Value >=0 && Value < 65536) {
8912           TmpInst.setOpcode(ARM::MOVi16);
8913           MovHasS = false;
8914         }
8915         else
8916           UseMov = false;
8917       }
8918       else {
8919         // Thumb/Thumb2 Constant
8920         if (hasThumb2() &&
8921             ARM_AM::getT2SOImmVal(Value) != -1)
8922           TmpInst.setOpcode(ARM::t2MOVi);
8923         else if (hasThumb2() &&
8924                  ARM_AM::getT2SOImmVal(~Value) != -1) {
8925           TmpInst.setOpcode(ARM::t2MVNi);
8926           Value = ~Value;
8927         }
8928         else if (hasV8MBaseline() &&
8929                  Value >=0 && Value < 65536) {
8930           TmpInst.setOpcode(ARM::t2MOVi16);
8931           MovHasS = false;
8932         }
8933         else
8934           UseMov = false;
8935       }
8936       if (UseMov) {
8937         TmpInst.addOperand(Inst.getOperand(0));           // Rt
8938         TmpInst.addOperand(MCOperand::createImm(Value));  // Immediate
8939         TmpInst.addOperand(Inst.getOperand(2));           // CondCode
8940         TmpInst.addOperand(Inst.getOperand(3));           // CondCode
8941         if (MovHasS)
8942           TmpInst.addOperand(MCOperand::createReg(0));    // S
8943         Inst = TmpInst;
8944         return true;
8945       }
8946     }
8947     // No opportunity to use MOV/MVN create constant pool
8948     const MCExpr *CPLoc =
8949       getTargetStreamer().addConstantPoolEntry(SubExprVal,
8950                                                PoolOperand.getStartLoc());
8951     TmpInst.addOperand(Inst.getOperand(0));           // Rt
8952     TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool
8953     if (TmpInst.getOpcode() == ARM::LDRi12)
8954       TmpInst.addOperand(MCOperand::createImm(0));    // unused offset
8955     TmpInst.addOperand(Inst.getOperand(2));           // CondCode
8956     TmpInst.addOperand(Inst.getOperand(3));           // CondCode
8957     Inst = TmpInst;
8958     return true;
8959   }
8960   // Handle NEON VST complex aliases.
8961   case ARM::VST1LNdWB_register_Asm_8:
8962   case ARM::VST1LNdWB_register_Asm_16:
8963   case ARM::VST1LNdWB_register_Asm_32: {
8964     MCInst TmpInst;
8965     // Shuffle the operands around so the lane index operand is in the
8966     // right place.
8967     unsigned Spacing;
8968     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8969     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8970     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8971     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8972     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8973     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8974     TmpInst.addOperand(Inst.getOperand(1)); // lane
8975     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8976     TmpInst.addOperand(Inst.getOperand(6));
8977     Inst = TmpInst;
8978     return true;
8979   }
8980 
8981   case ARM::VST2LNdWB_register_Asm_8:
8982   case ARM::VST2LNdWB_register_Asm_16:
8983   case ARM::VST2LNdWB_register_Asm_32:
8984   case ARM::VST2LNqWB_register_Asm_16:
8985   case ARM::VST2LNqWB_register_Asm_32: {
8986     MCInst TmpInst;
8987     // Shuffle the operands around so the lane index operand is in the
8988     // right place.
8989     unsigned Spacing;
8990     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8991     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8992     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8993     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8994     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8995     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8996     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8997                                             Spacing));
8998     TmpInst.addOperand(Inst.getOperand(1)); // lane
8999     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9000     TmpInst.addOperand(Inst.getOperand(6));
9001     Inst = TmpInst;
9002     return true;
9003   }
9004 
9005   case ARM::VST3LNdWB_register_Asm_8:
9006   case ARM::VST3LNdWB_register_Asm_16:
9007   case ARM::VST3LNdWB_register_Asm_32:
9008   case ARM::VST3LNqWB_register_Asm_16:
9009   case ARM::VST3LNqWB_register_Asm_32: {
9010     MCInst TmpInst;
9011     // Shuffle the operands around so the lane index operand is in the
9012     // right place.
9013     unsigned Spacing;
9014     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9015     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9016     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9017     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9018     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9019     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9020     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9021                                             Spacing));
9022     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9023                                             Spacing * 2));
9024     TmpInst.addOperand(Inst.getOperand(1)); // lane
9025     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9026     TmpInst.addOperand(Inst.getOperand(6));
9027     Inst = TmpInst;
9028     return true;
9029   }
9030 
9031   case ARM::VST4LNdWB_register_Asm_8:
9032   case ARM::VST4LNdWB_register_Asm_16:
9033   case ARM::VST4LNdWB_register_Asm_32:
9034   case ARM::VST4LNqWB_register_Asm_16:
9035   case ARM::VST4LNqWB_register_Asm_32: {
9036     MCInst TmpInst;
9037     // Shuffle the operands around so the lane index operand is in the
9038     // right place.
9039     unsigned Spacing;
9040     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9041     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9042     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9043     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9044     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9045     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9046     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9047                                             Spacing));
9048     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9049                                             Spacing * 2));
9050     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9051                                             Spacing * 3));
9052     TmpInst.addOperand(Inst.getOperand(1)); // lane
9053     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9054     TmpInst.addOperand(Inst.getOperand(6));
9055     Inst = TmpInst;
9056     return true;
9057   }
9058 
9059   case ARM::VST1LNdWB_fixed_Asm_8:
9060   case ARM::VST1LNdWB_fixed_Asm_16:
9061   case ARM::VST1LNdWB_fixed_Asm_32: {
9062     MCInst TmpInst;
9063     // Shuffle the operands around so the lane index operand is in the
9064     // right place.
9065     unsigned Spacing;
9066     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9067     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9068     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9069     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9070     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9071     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9072     TmpInst.addOperand(Inst.getOperand(1)); // lane
9073     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9074     TmpInst.addOperand(Inst.getOperand(5));
9075     Inst = TmpInst;
9076     return true;
9077   }
9078 
9079   case ARM::VST2LNdWB_fixed_Asm_8:
9080   case ARM::VST2LNdWB_fixed_Asm_16:
9081   case ARM::VST2LNdWB_fixed_Asm_32:
9082   case ARM::VST2LNqWB_fixed_Asm_16:
9083   case ARM::VST2LNqWB_fixed_Asm_32: {
9084     MCInst TmpInst;
9085     // Shuffle the operands around so the lane index operand is in the
9086     // right place.
9087     unsigned Spacing;
9088     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9089     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9090     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9091     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9092     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9093     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9094     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9095                                             Spacing));
9096     TmpInst.addOperand(Inst.getOperand(1)); // lane
9097     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9098     TmpInst.addOperand(Inst.getOperand(5));
9099     Inst = TmpInst;
9100     return true;
9101   }
9102 
9103   case ARM::VST3LNdWB_fixed_Asm_8:
9104   case ARM::VST3LNdWB_fixed_Asm_16:
9105   case ARM::VST3LNdWB_fixed_Asm_32:
9106   case ARM::VST3LNqWB_fixed_Asm_16:
9107   case ARM::VST3LNqWB_fixed_Asm_32: {
9108     MCInst TmpInst;
9109     // Shuffle the operands around so the lane index operand is in the
9110     // right place.
9111     unsigned Spacing;
9112     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9113     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9114     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9115     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9116     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9117     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9118     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9119                                             Spacing));
9120     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9121                                             Spacing * 2));
9122     TmpInst.addOperand(Inst.getOperand(1)); // lane
9123     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9124     TmpInst.addOperand(Inst.getOperand(5));
9125     Inst = TmpInst;
9126     return true;
9127   }
9128 
9129   case ARM::VST4LNdWB_fixed_Asm_8:
9130   case ARM::VST4LNdWB_fixed_Asm_16:
9131   case ARM::VST4LNdWB_fixed_Asm_32:
9132   case ARM::VST4LNqWB_fixed_Asm_16:
9133   case ARM::VST4LNqWB_fixed_Asm_32: {
9134     MCInst TmpInst;
9135     // Shuffle the operands around so the lane index operand is in the
9136     // right place.
9137     unsigned Spacing;
9138     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9139     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9140     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9141     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9142     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9143     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9144     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9145                                             Spacing));
9146     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9147                                             Spacing * 2));
9148     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9149                                             Spacing * 3));
9150     TmpInst.addOperand(Inst.getOperand(1)); // lane
9151     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9152     TmpInst.addOperand(Inst.getOperand(5));
9153     Inst = TmpInst;
9154     return true;
9155   }
9156 
9157   case ARM::VST1LNdAsm_8:
9158   case ARM::VST1LNdAsm_16:
9159   case ARM::VST1LNdAsm_32: {
9160     MCInst TmpInst;
9161     // Shuffle the operands around so the lane index operand is in the
9162     // right place.
9163     unsigned Spacing;
9164     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9165     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9166     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9167     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9168     TmpInst.addOperand(Inst.getOperand(1)); // lane
9169     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9170     TmpInst.addOperand(Inst.getOperand(5));
9171     Inst = TmpInst;
9172     return true;
9173   }
9174 
9175   case ARM::VST2LNdAsm_8:
9176   case ARM::VST2LNdAsm_16:
9177   case ARM::VST2LNdAsm_32:
9178   case ARM::VST2LNqAsm_16:
9179   case ARM::VST2LNqAsm_32: {
9180     MCInst TmpInst;
9181     // Shuffle the operands around so the lane index operand is in the
9182     // right place.
9183     unsigned Spacing;
9184     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9185     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9186     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9187     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9188     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9189                                             Spacing));
9190     TmpInst.addOperand(Inst.getOperand(1)); // lane
9191     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9192     TmpInst.addOperand(Inst.getOperand(5));
9193     Inst = TmpInst;
9194     return true;
9195   }
9196 
9197   case ARM::VST3LNdAsm_8:
9198   case ARM::VST3LNdAsm_16:
9199   case ARM::VST3LNdAsm_32:
9200   case ARM::VST3LNqAsm_16:
9201   case ARM::VST3LNqAsm_32: {
9202     MCInst TmpInst;
9203     // Shuffle the operands around so the lane index operand is in the
9204     // right place.
9205     unsigned Spacing;
9206     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9207     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9208     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9209     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9210     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9211                                             Spacing));
9212     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9213                                             Spacing * 2));
9214     TmpInst.addOperand(Inst.getOperand(1)); // lane
9215     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9216     TmpInst.addOperand(Inst.getOperand(5));
9217     Inst = TmpInst;
9218     return true;
9219   }
9220 
9221   case ARM::VST4LNdAsm_8:
9222   case ARM::VST4LNdAsm_16:
9223   case ARM::VST4LNdAsm_32:
9224   case ARM::VST4LNqAsm_16:
9225   case ARM::VST4LNqAsm_32: {
9226     MCInst TmpInst;
9227     // Shuffle the operands around so the lane index operand is in the
9228     // right place.
9229     unsigned Spacing;
9230     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9231     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9232     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9233     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9234     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9235                                             Spacing));
9236     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9237                                             Spacing * 2));
9238     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9239                                             Spacing * 3));
9240     TmpInst.addOperand(Inst.getOperand(1)); // lane
9241     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9242     TmpInst.addOperand(Inst.getOperand(5));
9243     Inst = TmpInst;
9244     return true;
9245   }
9246 
9247   // Handle NEON VLD complex aliases.
9248   case ARM::VLD1LNdWB_register_Asm_8:
9249   case ARM::VLD1LNdWB_register_Asm_16:
9250   case ARM::VLD1LNdWB_register_Asm_32: {
9251     MCInst TmpInst;
9252     // Shuffle the operands around so the lane index operand is in the
9253     // right place.
9254     unsigned Spacing;
9255     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9256     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9257     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9258     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9259     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9260     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9261     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9262     TmpInst.addOperand(Inst.getOperand(1)); // lane
9263     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9264     TmpInst.addOperand(Inst.getOperand(6));
9265     Inst = TmpInst;
9266     return true;
9267   }
9268 
9269   case ARM::VLD2LNdWB_register_Asm_8:
9270   case ARM::VLD2LNdWB_register_Asm_16:
9271   case ARM::VLD2LNdWB_register_Asm_32:
9272   case ARM::VLD2LNqWB_register_Asm_16:
9273   case ARM::VLD2LNqWB_register_Asm_32: {
9274     MCInst TmpInst;
9275     // Shuffle the operands around so the lane index operand is in the
9276     // right place.
9277     unsigned Spacing;
9278     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9279     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9280     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9281                                             Spacing));
9282     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9283     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9284     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9285     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9286     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9287     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9288                                             Spacing));
9289     TmpInst.addOperand(Inst.getOperand(1)); // lane
9290     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9291     TmpInst.addOperand(Inst.getOperand(6));
9292     Inst = TmpInst;
9293     return true;
9294   }
9295 
9296   case ARM::VLD3LNdWB_register_Asm_8:
9297   case ARM::VLD3LNdWB_register_Asm_16:
9298   case ARM::VLD3LNdWB_register_Asm_32:
9299   case ARM::VLD3LNqWB_register_Asm_16:
9300   case ARM::VLD3LNqWB_register_Asm_32: {
9301     MCInst TmpInst;
9302     // Shuffle the operands around so the lane index operand is in the
9303     // right place.
9304     unsigned Spacing;
9305     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9306     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9307     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9308                                             Spacing));
9309     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9310                                             Spacing * 2));
9311     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9312     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9313     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9314     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9315     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9316     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9317                                             Spacing));
9318     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9319                                             Spacing * 2));
9320     TmpInst.addOperand(Inst.getOperand(1)); // lane
9321     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9322     TmpInst.addOperand(Inst.getOperand(6));
9323     Inst = TmpInst;
9324     return true;
9325   }
9326 
9327   case ARM::VLD4LNdWB_register_Asm_8:
9328   case ARM::VLD4LNdWB_register_Asm_16:
9329   case ARM::VLD4LNdWB_register_Asm_32:
9330   case ARM::VLD4LNqWB_register_Asm_16:
9331   case ARM::VLD4LNqWB_register_Asm_32: {
9332     MCInst TmpInst;
9333     // Shuffle the operands around so the lane index operand is in the
9334     // right place.
9335     unsigned Spacing;
9336     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9337     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9338     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9339                                             Spacing));
9340     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9341                                             Spacing * 2));
9342     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9343                                             Spacing * 3));
9344     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9345     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9346     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9347     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9348     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9349     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9350                                             Spacing));
9351     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9352                                             Spacing * 2));
9353     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9354                                             Spacing * 3));
9355     TmpInst.addOperand(Inst.getOperand(1)); // lane
9356     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9357     TmpInst.addOperand(Inst.getOperand(6));
9358     Inst = TmpInst;
9359     return true;
9360   }
9361 
9362   case ARM::VLD1LNdWB_fixed_Asm_8:
9363   case ARM::VLD1LNdWB_fixed_Asm_16:
9364   case ARM::VLD1LNdWB_fixed_Asm_32: {
9365     MCInst TmpInst;
9366     // Shuffle the operands around so the lane index operand is in the
9367     // right place.
9368     unsigned Spacing;
9369     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9370     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9371     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9372     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9373     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9374     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9375     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9376     TmpInst.addOperand(Inst.getOperand(1)); // lane
9377     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9378     TmpInst.addOperand(Inst.getOperand(5));
9379     Inst = TmpInst;
9380     return true;
9381   }
9382 
9383   case ARM::VLD2LNdWB_fixed_Asm_8:
9384   case ARM::VLD2LNdWB_fixed_Asm_16:
9385   case ARM::VLD2LNdWB_fixed_Asm_32:
9386   case ARM::VLD2LNqWB_fixed_Asm_16:
9387   case ARM::VLD2LNqWB_fixed_Asm_32: {
9388     MCInst TmpInst;
9389     // Shuffle the operands around so the lane index operand is in the
9390     // right place.
9391     unsigned Spacing;
9392     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9393     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9394     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9395                                             Spacing));
9396     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9397     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9398     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9399     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9400     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9401     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9402                                             Spacing));
9403     TmpInst.addOperand(Inst.getOperand(1)); // lane
9404     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9405     TmpInst.addOperand(Inst.getOperand(5));
9406     Inst = TmpInst;
9407     return true;
9408   }
9409 
9410   case ARM::VLD3LNdWB_fixed_Asm_8:
9411   case ARM::VLD3LNdWB_fixed_Asm_16:
9412   case ARM::VLD3LNdWB_fixed_Asm_32:
9413   case ARM::VLD3LNqWB_fixed_Asm_16:
9414   case ARM::VLD3LNqWB_fixed_Asm_32: {
9415     MCInst TmpInst;
9416     // Shuffle the operands around so the lane index operand is in the
9417     // right place.
9418     unsigned Spacing;
9419     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9420     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9421     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9422                                             Spacing));
9423     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9424                                             Spacing * 2));
9425     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9426     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9427     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9428     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9429     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9430     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9431                                             Spacing));
9432     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9433                                             Spacing * 2));
9434     TmpInst.addOperand(Inst.getOperand(1)); // lane
9435     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9436     TmpInst.addOperand(Inst.getOperand(5));
9437     Inst = TmpInst;
9438     return true;
9439   }
9440 
9441   case ARM::VLD4LNdWB_fixed_Asm_8:
9442   case ARM::VLD4LNdWB_fixed_Asm_16:
9443   case ARM::VLD4LNdWB_fixed_Asm_32:
9444   case ARM::VLD4LNqWB_fixed_Asm_16:
9445   case ARM::VLD4LNqWB_fixed_Asm_32: {
9446     MCInst TmpInst;
9447     // Shuffle the operands around so the lane index operand is in the
9448     // right place.
9449     unsigned Spacing;
9450     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9451     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9452     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9453                                             Spacing));
9454     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9455                                             Spacing * 2));
9456     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9457                                             Spacing * 3));
9458     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9459     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9460     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9461     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9462     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9463     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9464                                             Spacing));
9465     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9466                                             Spacing * 2));
9467     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9468                                             Spacing * 3));
9469     TmpInst.addOperand(Inst.getOperand(1)); // lane
9470     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9471     TmpInst.addOperand(Inst.getOperand(5));
9472     Inst = TmpInst;
9473     return true;
9474   }
9475 
9476   case ARM::VLD1LNdAsm_8:
9477   case ARM::VLD1LNdAsm_16:
9478   case ARM::VLD1LNdAsm_32: {
9479     MCInst TmpInst;
9480     // Shuffle the operands around so the lane index operand is in the
9481     // right place.
9482     unsigned Spacing;
9483     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9484     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9485     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9486     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9487     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9488     TmpInst.addOperand(Inst.getOperand(1)); // lane
9489     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9490     TmpInst.addOperand(Inst.getOperand(5));
9491     Inst = TmpInst;
9492     return true;
9493   }
9494 
9495   case ARM::VLD2LNdAsm_8:
9496   case ARM::VLD2LNdAsm_16:
9497   case ARM::VLD2LNdAsm_32:
9498   case ARM::VLD2LNqAsm_16:
9499   case ARM::VLD2LNqAsm_32: {
9500     MCInst TmpInst;
9501     // Shuffle the operands around so the lane index operand is in the
9502     // right place.
9503     unsigned Spacing;
9504     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9505     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9506     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9507                                             Spacing));
9508     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9509     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9510     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9511     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9512                                             Spacing));
9513     TmpInst.addOperand(Inst.getOperand(1)); // lane
9514     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9515     TmpInst.addOperand(Inst.getOperand(5));
9516     Inst = TmpInst;
9517     return true;
9518   }
9519 
9520   case ARM::VLD3LNdAsm_8:
9521   case ARM::VLD3LNdAsm_16:
9522   case ARM::VLD3LNdAsm_32:
9523   case ARM::VLD3LNqAsm_16:
9524   case ARM::VLD3LNqAsm_32: {
9525     MCInst TmpInst;
9526     // Shuffle the operands around so the lane index operand is in the
9527     // right place.
9528     unsigned Spacing;
9529     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9530     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9531     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9532                                             Spacing));
9533     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9534                                             Spacing * 2));
9535     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9536     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9537     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9538     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9539                                             Spacing));
9540     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9541                                             Spacing * 2));
9542     TmpInst.addOperand(Inst.getOperand(1)); // lane
9543     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9544     TmpInst.addOperand(Inst.getOperand(5));
9545     Inst = TmpInst;
9546     return true;
9547   }
9548 
9549   case ARM::VLD4LNdAsm_8:
9550   case ARM::VLD4LNdAsm_16:
9551   case ARM::VLD4LNdAsm_32:
9552   case ARM::VLD4LNqAsm_16:
9553   case ARM::VLD4LNqAsm_32: {
9554     MCInst TmpInst;
9555     // Shuffle the operands around so the lane index operand is in the
9556     // right place.
9557     unsigned Spacing;
9558     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9559     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9560     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9561                                             Spacing));
9562     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9563                                             Spacing * 2));
9564     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9565                                             Spacing * 3));
9566     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9567     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9568     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9569     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9570                                             Spacing));
9571     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9572                                             Spacing * 2));
9573     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9574                                             Spacing * 3));
9575     TmpInst.addOperand(Inst.getOperand(1)); // lane
9576     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9577     TmpInst.addOperand(Inst.getOperand(5));
9578     Inst = TmpInst;
9579     return true;
9580   }
9581 
9582   // VLD3DUP single 3-element structure to all lanes instructions.
9583   case ARM::VLD3DUPdAsm_8:
9584   case ARM::VLD3DUPdAsm_16:
9585   case ARM::VLD3DUPdAsm_32:
9586   case ARM::VLD3DUPqAsm_8:
9587   case ARM::VLD3DUPqAsm_16:
9588   case ARM::VLD3DUPqAsm_32: {
9589     MCInst TmpInst;
9590     unsigned Spacing;
9591     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9592     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9593     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9594                                             Spacing));
9595     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9596                                             Spacing * 2));
9597     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9598     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9599     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9600     TmpInst.addOperand(Inst.getOperand(4));
9601     Inst = TmpInst;
9602     return true;
9603   }
9604 
9605   case ARM::VLD3DUPdWB_fixed_Asm_8:
9606   case ARM::VLD3DUPdWB_fixed_Asm_16:
9607   case ARM::VLD3DUPdWB_fixed_Asm_32:
9608   case ARM::VLD3DUPqWB_fixed_Asm_8:
9609   case ARM::VLD3DUPqWB_fixed_Asm_16:
9610   case ARM::VLD3DUPqWB_fixed_Asm_32: {
9611     MCInst TmpInst;
9612     unsigned Spacing;
9613     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9614     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9615     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9616                                             Spacing));
9617     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9618                                             Spacing * 2));
9619     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9620     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9621     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9622     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9623     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9624     TmpInst.addOperand(Inst.getOperand(4));
9625     Inst = TmpInst;
9626     return true;
9627   }
9628 
9629   case ARM::VLD3DUPdWB_register_Asm_8:
9630   case ARM::VLD3DUPdWB_register_Asm_16:
9631   case ARM::VLD3DUPdWB_register_Asm_32:
9632   case ARM::VLD3DUPqWB_register_Asm_8:
9633   case ARM::VLD3DUPqWB_register_Asm_16:
9634   case ARM::VLD3DUPqWB_register_Asm_32: {
9635     MCInst TmpInst;
9636     unsigned Spacing;
9637     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9638     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9639     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9640                                             Spacing));
9641     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9642                                             Spacing * 2));
9643     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9644     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9645     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9646     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9647     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9648     TmpInst.addOperand(Inst.getOperand(5));
9649     Inst = TmpInst;
9650     return true;
9651   }
9652 
9653   // VLD3 multiple 3-element structure instructions.
9654   case ARM::VLD3dAsm_8:
9655   case ARM::VLD3dAsm_16:
9656   case ARM::VLD3dAsm_32:
9657   case ARM::VLD3qAsm_8:
9658   case ARM::VLD3qAsm_16:
9659   case ARM::VLD3qAsm_32: {
9660     MCInst TmpInst;
9661     unsigned Spacing;
9662     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9663     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9664     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9665                                             Spacing));
9666     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9667                                             Spacing * 2));
9668     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9669     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9670     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9671     TmpInst.addOperand(Inst.getOperand(4));
9672     Inst = TmpInst;
9673     return true;
9674   }
9675 
9676   case ARM::VLD3dWB_fixed_Asm_8:
9677   case ARM::VLD3dWB_fixed_Asm_16:
9678   case ARM::VLD3dWB_fixed_Asm_32:
9679   case ARM::VLD3qWB_fixed_Asm_8:
9680   case ARM::VLD3qWB_fixed_Asm_16:
9681   case ARM::VLD3qWB_fixed_Asm_32: {
9682     MCInst TmpInst;
9683     unsigned Spacing;
9684     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9685     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9686     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9687                                             Spacing));
9688     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9689                                             Spacing * 2));
9690     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9691     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9692     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9693     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9694     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9695     TmpInst.addOperand(Inst.getOperand(4));
9696     Inst = TmpInst;
9697     return true;
9698   }
9699 
9700   case ARM::VLD3dWB_register_Asm_8:
9701   case ARM::VLD3dWB_register_Asm_16:
9702   case ARM::VLD3dWB_register_Asm_32:
9703   case ARM::VLD3qWB_register_Asm_8:
9704   case ARM::VLD3qWB_register_Asm_16:
9705   case ARM::VLD3qWB_register_Asm_32: {
9706     MCInst TmpInst;
9707     unsigned Spacing;
9708     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9709     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9710     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9711                                             Spacing));
9712     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9713                                             Spacing * 2));
9714     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9715     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9716     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9717     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9718     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9719     TmpInst.addOperand(Inst.getOperand(5));
9720     Inst = TmpInst;
9721     return true;
9722   }
9723 
9724   // VLD4DUP single 3-element structure to all lanes instructions.
9725   case ARM::VLD4DUPdAsm_8:
9726   case ARM::VLD4DUPdAsm_16:
9727   case ARM::VLD4DUPdAsm_32:
9728   case ARM::VLD4DUPqAsm_8:
9729   case ARM::VLD4DUPqAsm_16:
9730   case ARM::VLD4DUPqAsm_32: {
9731     MCInst TmpInst;
9732     unsigned Spacing;
9733     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9734     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9735     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9736                                             Spacing));
9737     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9738                                             Spacing * 2));
9739     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9740                                             Spacing * 3));
9741     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9742     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9743     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9744     TmpInst.addOperand(Inst.getOperand(4));
9745     Inst = TmpInst;
9746     return true;
9747   }
9748 
9749   case ARM::VLD4DUPdWB_fixed_Asm_8:
9750   case ARM::VLD4DUPdWB_fixed_Asm_16:
9751   case ARM::VLD4DUPdWB_fixed_Asm_32:
9752   case ARM::VLD4DUPqWB_fixed_Asm_8:
9753   case ARM::VLD4DUPqWB_fixed_Asm_16:
9754   case ARM::VLD4DUPqWB_fixed_Asm_32: {
9755     MCInst TmpInst;
9756     unsigned Spacing;
9757     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9758     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9759     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9760                                             Spacing));
9761     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9762                                             Spacing * 2));
9763     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9764                                             Spacing * 3));
9765     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9766     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9767     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9768     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9769     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9770     TmpInst.addOperand(Inst.getOperand(4));
9771     Inst = TmpInst;
9772     return true;
9773   }
9774 
9775   case ARM::VLD4DUPdWB_register_Asm_8:
9776   case ARM::VLD4DUPdWB_register_Asm_16:
9777   case ARM::VLD4DUPdWB_register_Asm_32:
9778   case ARM::VLD4DUPqWB_register_Asm_8:
9779   case ARM::VLD4DUPqWB_register_Asm_16:
9780   case ARM::VLD4DUPqWB_register_Asm_32: {
9781     MCInst TmpInst;
9782     unsigned Spacing;
9783     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9784     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9785     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9786                                             Spacing));
9787     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9788                                             Spacing * 2));
9789     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9790                                             Spacing * 3));
9791     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9792     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9793     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9794     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9795     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9796     TmpInst.addOperand(Inst.getOperand(5));
9797     Inst = TmpInst;
9798     return true;
9799   }
9800 
9801   // VLD4 multiple 4-element structure instructions.
9802   case ARM::VLD4dAsm_8:
9803   case ARM::VLD4dAsm_16:
9804   case ARM::VLD4dAsm_32:
9805   case ARM::VLD4qAsm_8:
9806   case ARM::VLD4qAsm_16:
9807   case ARM::VLD4qAsm_32: {
9808     MCInst TmpInst;
9809     unsigned Spacing;
9810     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9811     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9812     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9813                                             Spacing));
9814     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9815                                             Spacing * 2));
9816     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9817                                             Spacing * 3));
9818     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9819     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9820     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9821     TmpInst.addOperand(Inst.getOperand(4));
9822     Inst = TmpInst;
9823     return true;
9824   }
9825 
9826   case ARM::VLD4dWB_fixed_Asm_8:
9827   case ARM::VLD4dWB_fixed_Asm_16:
9828   case ARM::VLD4dWB_fixed_Asm_32:
9829   case ARM::VLD4qWB_fixed_Asm_8:
9830   case ARM::VLD4qWB_fixed_Asm_16:
9831   case ARM::VLD4qWB_fixed_Asm_32: {
9832     MCInst TmpInst;
9833     unsigned Spacing;
9834     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9835     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9836     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9837                                             Spacing));
9838     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9839                                             Spacing * 2));
9840     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9841                                             Spacing * 3));
9842     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9843     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9844     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9845     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9846     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9847     TmpInst.addOperand(Inst.getOperand(4));
9848     Inst = TmpInst;
9849     return true;
9850   }
9851 
9852   case ARM::VLD4dWB_register_Asm_8:
9853   case ARM::VLD4dWB_register_Asm_16:
9854   case ARM::VLD4dWB_register_Asm_32:
9855   case ARM::VLD4qWB_register_Asm_8:
9856   case ARM::VLD4qWB_register_Asm_16:
9857   case ARM::VLD4qWB_register_Asm_32: {
9858     MCInst TmpInst;
9859     unsigned Spacing;
9860     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9861     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9862     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9863                                             Spacing));
9864     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9865                                             Spacing * 2));
9866     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9867                                             Spacing * 3));
9868     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9869     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9870     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9871     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9872     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9873     TmpInst.addOperand(Inst.getOperand(5));
9874     Inst = TmpInst;
9875     return true;
9876   }
9877 
9878   // VST3 multiple 3-element structure instructions.
9879   case ARM::VST3dAsm_8:
9880   case ARM::VST3dAsm_16:
9881   case ARM::VST3dAsm_32:
9882   case ARM::VST3qAsm_8:
9883   case ARM::VST3qAsm_16:
9884   case ARM::VST3qAsm_32: {
9885     MCInst TmpInst;
9886     unsigned Spacing;
9887     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9888     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9889     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9890     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9891     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9892                                             Spacing));
9893     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9894                                             Spacing * 2));
9895     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9896     TmpInst.addOperand(Inst.getOperand(4));
9897     Inst = TmpInst;
9898     return true;
9899   }
9900 
9901   case ARM::VST3dWB_fixed_Asm_8:
9902   case ARM::VST3dWB_fixed_Asm_16:
9903   case ARM::VST3dWB_fixed_Asm_32:
9904   case ARM::VST3qWB_fixed_Asm_8:
9905   case ARM::VST3qWB_fixed_Asm_16:
9906   case ARM::VST3qWB_fixed_Asm_32: {
9907     MCInst TmpInst;
9908     unsigned Spacing;
9909     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9910     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9911     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9912     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9913     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9914     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9915     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9916                                             Spacing));
9917     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9918                                             Spacing * 2));
9919     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9920     TmpInst.addOperand(Inst.getOperand(4));
9921     Inst = TmpInst;
9922     return true;
9923   }
9924 
9925   case ARM::VST3dWB_register_Asm_8:
9926   case ARM::VST3dWB_register_Asm_16:
9927   case ARM::VST3dWB_register_Asm_32:
9928   case ARM::VST3qWB_register_Asm_8:
9929   case ARM::VST3qWB_register_Asm_16:
9930   case ARM::VST3qWB_register_Asm_32: {
9931     MCInst TmpInst;
9932     unsigned Spacing;
9933     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9934     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9935     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9936     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9937     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9938     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9939     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9940                                             Spacing));
9941     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9942                                             Spacing * 2));
9943     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9944     TmpInst.addOperand(Inst.getOperand(5));
9945     Inst = TmpInst;
9946     return true;
9947   }
9948 
9949   // VST4 multiple 3-element structure instructions.
9950   case ARM::VST4dAsm_8:
9951   case ARM::VST4dAsm_16:
9952   case ARM::VST4dAsm_32:
9953   case ARM::VST4qAsm_8:
9954   case ARM::VST4qAsm_16:
9955   case ARM::VST4qAsm_32: {
9956     MCInst TmpInst;
9957     unsigned Spacing;
9958     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9959     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9960     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9961     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9962     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9963                                             Spacing));
9964     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9965                                             Spacing * 2));
9966     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9967                                             Spacing * 3));
9968     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9969     TmpInst.addOperand(Inst.getOperand(4));
9970     Inst = TmpInst;
9971     return true;
9972   }
9973 
9974   case ARM::VST4dWB_fixed_Asm_8:
9975   case ARM::VST4dWB_fixed_Asm_16:
9976   case ARM::VST4dWB_fixed_Asm_32:
9977   case ARM::VST4qWB_fixed_Asm_8:
9978   case ARM::VST4qWB_fixed_Asm_16:
9979   case ARM::VST4qWB_fixed_Asm_32: {
9980     MCInst TmpInst;
9981     unsigned Spacing;
9982     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9983     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9984     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9985     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9986     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9987     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9988     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9989                                             Spacing));
9990     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9991                                             Spacing * 2));
9992     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9993                                             Spacing * 3));
9994     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9995     TmpInst.addOperand(Inst.getOperand(4));
9996     Inst = TmpInst;
9997     return true;
9998   }
9999 
10000   case ARM::VST4dWB_register_Asm_8:
10001   case ARM::VST4dWB_register_Asm_16:
10002   case ARM::VST4dWB_register_Asm_32:
10003   case ARM::VST4qWB_register_Asm_8:
10004   case ARM::VST4qWB_register_Asm_16:
10005   case ARM::VST4qWB_register_Asm_32: {
10006     MCInst TmpInst;
10007     unsigned Spacing;
10008     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
10009     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10010     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
10011     TmpInst.addOperand(Inst.getOperand(2)); // alignment
10012     TmpInst.addOperand(Inst.getOperand(3)); // Rm
10013     TmpInst.addOperand(Inst.getOperand(0)); // Vd
10014     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
10015                                             Spacing));
10016     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
10017                                             Spacing * 2));
10018     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
10019                                             Spacing * 3));
10020     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
10021     TmpInst.addOperand(Inst.getOperand(5));
10022     Inst = TmpInst;
10023     return true;
10024   }
10025 
10026   // Handle encoding choice for the shift-immediate instructions.
10027   case ARM::t2LSLri:
10028   case ARM::t2LSRri:
10029   case ARM::t2ASRri:
10030     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10031         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10032         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10033         !HasWideQualifier) {
10034       unsigned NewOpc;
10035       switch (Inst.getOpcode()) {
10036       default: llvm_unreachable("unexpected opcode");
10037       case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
10038       case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
10039       case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
10040       }
10041       // The Thumb1 operands aren't in the same order. Awesome, eh?
10042       MCInst TmpInst;
10043       TmpInst.setOpcode(NewOpc);
10044       TmpInst.addOperand(Inst.getOperand(0));
10045       TmpInst.addOperand(Inst.getOperand(5));
10046       TmpInst.addOperand(Inst.getOperand(1));
10047       TmpInst.addOperand(Inst.getOperand(2));
10048       TmpInst.addOperand(Inst.getOperand(3));
10049       TmpInst.addOperand(Inst.getOperand(4));
10050       Inst = TmpInst;
10051       return true;
10052     }
10053     return false;
10054 
10055   // Handle the Thumb2 mode MOV complex aliases.
10056   case ARM::t2MOVsr:
10057   case ARM::t2MOVSsr: {
10058     // Which instruction to expand to depends on the CCOut operand and
10059     // whether we're in an IT block if the register operands are low
10060     // registers.
10061     bool isNarrow = false;
10062     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10063         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10064         isARMLowRegister(Inst.getOperand(2).getReg()) &&
10065         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
10066         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) &&
10067         !HasWideQualifier)
10068       isNarrow = true;
10069     MCInst TmpInst;
10070     unsigned newOpc;
10071     switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
10072     default: llvm_unreachable("unexpected opcode!");
10073     case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
10074     case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
10075     case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
10076     case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
10077     }
10078     TmpInst.setOpcode(newOpc);
10079     TmpInst.addOperand(Inst.getOperand(0)); // Rd
10080     if (isNarrow)
10081       TmpInst.addOperand(MCOperand::createReg(
10082           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
10083     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10084     TmpInst.addOperand(Inst.getOperand(2)); // Rm
10085     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
10086     TmpInst.addOperand(Inst.getOperand(5));
10087     if (!isNarrow)
10088       TmpInst.addOperand(MCOperand::createReg(
10089           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
10090     Inst = TmpInst;
10091     return true;
10092   }
10093   case ARM::t2MOVsi:
10094   case ARM::t2MOVSsi: {
10095     // Which instruction to expand to depends on the CCOut operand and
10096     // whether we're in an IT block if the register operands are low
10097     // registers.
10098     bool isNarrow = false;
10099     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10100         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10101         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) &&
10102         !HasWideQualifier)
10103       isNarrow = true;
10104     MCInst TmpInst;
10105     unsigned newOpc;
10106     unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
10107     unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
10108     bool isMov = false;
10109     // MOV rd, rm, LSL #0 is actually a MOV instruction
10110     if (Shift == ARM_AM::lsl && Amount == 0) {
10111       isMov = true;
10112       // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of
10113       // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is
10114       // unpredictable in an IT block so the 32-bit encoding T3 has to be used
10115       // instead.
10116       if (inITBlock()) {
10117         isNarrow = false;
10118       }
10119       newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr;
10120     } else {
10121       switch(Shift) {
10122       default: llvm_unreachable("unexpected opcode!");
10123       case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
10124       case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
10125       case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
10126       case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
10127       case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
10128       }
10129     }
10130     if (Amount == 32) Amount = 0;
10131     TmpInst.setOpcode(newOpc);
10132     TmpInst.addOperand(Inst.getOperand(0)); // Rd
10133     if (isNarrow && !isMov)
10134       TmpInst.addOperand(MCOperand::createReg(
10135           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
10136     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10137     if (newOpc != ARM::t2RRX && !isMov)
10138       TmpInst.addOperand(MCOperand::createImm(Amount));
10139     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
10140     TmpInst.addOperand(Inst.getOperand(4));
10141     if (!isNarrow)
10142       TmpInst.addOperand(MCOperand::createReg(
10143           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
10144     Inst = TmpInst;
10145     return true;
10146   }
10147   // Handle the ARM mode MOV complex aliases.
10148   case ARM::ASRr:
10149   case ARM::LSRr:
10150   case ARM::LSLr:
10151   case ARM::RORr: {
10152     ARM_AM::ShiftOpc ShiftTy;
10153     switch(Inst.getOpcode()) {
10154     default: llvm_unreachable("unexpected opcode!");
10155     case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
10156     case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
10157     case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
10158     case ARM::RORr: ShiftTy = ARM_AM::ror; break;
10159     }
10160     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
10161     MCInst TmpInst;
10162     TmpInst.setOpcode(ARM::MOVsr);
10163     TmpInst.addOperand(Inst.getOperand(0)); // Rd
10164     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10165     TmpInst.addOperand(Inst.getOperand(2)); // Rm
10166     TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
10167     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
10168     TmpInst.addOperand(Inst.getOperand(4));
10169     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
10170     Inst = TmpInst;
10171     return true;
10172   }
10173   case ARM::ASRi:
10174   case ARM::LSRi:
10175   case ARM::LSLi:
10176   case ARM::RORi: {
10177     ARM_AM::ShiftOpc ShiftTy;
10178     switch(Inst.getOpcode()) {
10179     default: llvm_unreachable("unexpected opcode!");
10180     case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
10181     case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
10182     case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
10183     case ARM::RORi: ShiftTy = ARM_AM::ror; break;
10184     }
10185     // A shift by zero is a plain MOVr, not a MOVsi.
10186     unsigned Amt = Inst.getOperand(2).getImm();
10187     unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
10188     // A shift by 32 should be encoded as 0 when permitted
10189     if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
10190       Amt = 0;
10191     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
10192     MCInst TmpInst;
10193     TmpInst.setOpcode(Opc);
10194     TmpInst.addOperand(Inst.getOperand(0)); // Rd
10195     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10196     if (Opc == ARM::MOVsi)
10197       TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
10198     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
10199     TmpInst.addOperand(Inst.getOperand(4));
10200     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
10201     Inst = TmpInst;
10202     return true;
10203   }
10204   case ARM::RRXi: {
10205     unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
10206     MCInst TmpInst;
10207     TmpInst.setOpcode(ARM::MOVsi);
10208     TmpInst.addOperand(Inst.getOperand(0)); // Rd
10209     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10210     TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
10211     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10212     TmpInst.addOperand(Inst.getOperand(3));
10213     TmpInst.addOperand(Inst.getOperand(4)); // cc_out
10214     Inst = TmpInst;
10215     return true;
10216   }
10217   case ARM::t2LDMIA_UPD: {
10218     // If this is a load of a single register, then we should use
10219     // a post-indexed LDR instruction instead, per the ARM ARM.
10220     if (Inst.getNumOperands() != 5)
10221       return false;
10222     MCInst TmpInst;
10223     TmpInst.setOpcode(ARM::t2LDR_POST);
10224     TmpInst.addOperand(Inst.getOperand(4)); // Rt
10225     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10226     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10227     TmpInst.addOperand(MCOperand::createImm(4));
10228     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10229     TmpInst.addOperand(Inst.getOperand(3));
10230     Inst = TmpInst;
10231     return true;
10232   }
10233   case ARM::t2STMDB_UPD: {
10234     // If this is a store of a single register, then we should use
10235     // a pre-indexed STR instruction instead, per the ARM ARM.
10236     if (Inst.getNumOperands() != 5)
10237       return false;
10238     MCInst TmpInst;
10239     TmpInst.setOpcode(ARM::t2STR_PRE);
10240     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10241     TmpInst.addOperand(Inst.getOperand(4)); // Rt
10242     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10243     TmpInst.addOperand(MCOperand::createImm(-4));
10244     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10245     TmpInst.addOperand(Inst.getOperand(3));
10246     Inst = TmpInst;
10247     return true;
10248   }
10249   case ARM::LDMIA_UPD:
10250     // If this is a load of a single register via a 'pop', then we should use
10251     // a post-indexed LDR instruction instead, per the ARM ARM.
10252     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" &&
10253         Inst.getNumOperands() == 5) {
10254       MCInst TmpInst;
10255       TmpInst.setOpcode(ARM::LDR_POST_IMM);
10256       TmpInst.addOperand(Inst.getOperand(4)); // Rt
10257       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10258       TmpInst.addOperand(Inst.getOperand(1)); // Rn
10259       TmpInst.addOperand(MCOperand::createReg(0));  // am2offset
10260       TmpInst.addOperand(MCOperand::createImm(4));
10261       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10262       TmpInst.addOperand(Inst.getOperand(3));
10263       Inst = TmpInst;
10264       return true;
10265     }
10266     break;
10267   case ARM::STMDB_UPD:
10268     // If this is a store of a single register via a 'push', then we should use
10269     // a pre-indexed STR instruction instead, per the ARM ARM.
10270     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" &&
10271         Inst.getNumOperands() == 5) {
10272       MCInst TmpInst;
10273       TmpInst.setOpcode(ARM::STR_PRE_IMM);
10274       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10275       TmpInst.addOperand(Inst.getOperand(4)); // Rt
10276       TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
10277       TmpInst.addOperand(MCOperand::createImm(-4));
10278       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10279       TmpInst.addOperand(Inst.getOperand(3));
10280       Inst = TmpInst;
10281     }
10282     break;
10283   case ARM::t2ADDri12:
10284   case ARM::t2SUBri12:
10285   case ARM::t2ADDspImm12:
10286   case ARM::t2SUBspImm12: {
10287     // If the immediate fits for encoding T3 and the generic
10288     // mnemonic was used, encoding T3 is preferred.
10289     const StringRef Token = static_cast<ARMOperand &>(*Operands[0]).getToken();
10290     if ((Token != "add" && Token != "sub") ||
10291         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
10292       break;
10293     switch (Inst.getOpcode()) {
10294     case ARM::t2ADDri12:
10295       Inst.setOpcode(ARM::t2ADDri);
10296       break;
10297     case ARM::t2SUBri12:
10298       Inst.setOpcode(ARM::t2SUBri);
10299       break;
10300     case ARM::t2ADDspImm12:
10301       Inst.setOpcode(ARM::t2ADDspImm);
10302       break;
10303     case ARM::t2SUBspImm12:
10304       Inst.setOpcode(ARM::t2SUBspImm);
10305       break;
10306     }
10307 
10308     Inst.addOperand(MCOperand::createReg(0)); // cc_out
10309     return true;
10310   }
10311   case ARM::tADDi8:
10312     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
10313     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
10314     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
10315     // to encoding T1 if <Rd> is omitted."
10316     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
10317       Inst.setOpcode(ARM::tADDi3);
10318       return true;
10319     }
10320     break;
10321   case ARM::tSUBi8:
10322     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
10323     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
10324     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
10325     // to encoding T1 if <Rd> is omitted."
10326     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
10327       Inst.setOpcode(ARM::tSUBi3);
10328       return true;
10329     }
10330     break;
10331   case ARM::t2ADDri:
10332   case ARM::t2SUBri: {
10333     // If the destination and first source operand are the same, and
10334     // the flags are compatible with the current IT status, use encoding T2
10335     // instead of T3. For compatibility with the system 'as'. Make sure the
10336     // wide encoding wasn't explicit.
10337     if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
10338         !isARMLowRegister(Inst.getOperand(0).getReg()) ||
10339         (Inst.getOperand(2).isImm() &&
10340          (unsigned)Inst.getOperand(2).getImm() > 255) ||
10341         Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) ||
10342         HasWideQualifier)
10343       break;
10344     MCInst TmpInst;
10345     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
10346                       ARM::tADDi8 : ARM::tSUBi8);
10347     TmpInst.addOperand(Inst.getOperand(0));
10348     TmpInst.addOperand(Inst.getOperand(5));
10349     TmpInst.addOperand(Inst.getOperand(0));
10350     TmpInst.addOperand(Inst.getOperand(2));
10351     TmpInst.addOperand(Inst.getOperand(3));
10352     TmpInst.addOperand(Inst.getOperand(4));
10353     Inst = TmpInst;
10354     return true;
10355   }
10356   case ARM::t2ADDspImm:
10357   case ARM::t2SUBspImm: {
10358     // Prefer T1 encoding if possible
10359     if (Inst.getOperand(5).getReg() != 0 || HasWideQualifier)
10360       break;
10361     unsigned V = Inst.getOperand(2).getImm();
10362     if (V & 3 || V > ((1 << 7) - 1) << 2)
10363       break;
10364     MCInst TmpInst;
10365     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDspImm ? ARM::tADDspi
10366                                                           : ARM::tSUBspi);
10367     TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // destination reg
10368     TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // source reg
10369     TmpInst.addOperand(MCOperand::createImm(V / 4));   // immediate
10370     TmpInst.addOperand(Inst.getOperand(3));            // pred
10371     TmpInst.addOperand(Inst.getOperand(4));
10372     Inst = TmpInst;
10373     return true;
10374   }
10375   case ARM::t2ADDrr: {
10376     // If the destination and first source operand are the same, and
10377     // there's no setting of the flags, use encoding T2 instead of T3.
10378     // Note that this is only for ADD, not SUB. This mirrors the system
10379     // 'as' behaviour.  Also take advantage of ADD being commutative.
10380     // Make sure the wide encoding wasn't explicit.
10381     bool Swap = false;
10382     auto DestReg = Inst.getOperand(0).getReg();
10383     bool Transform = DestReg == Inst.getOperand(1).getReg();
10384     if (!Transform && DestReg == Inst.getOperand(2).getReg()) {
10385       Transform = true;
10386       Swap = true;
10387     }
10388     if (!Transform ||
10389         Inst.getOperand(5).getReg() != 0 ||
10390         HasWideQualifier)
10391       break;
10392     MCInst TmpInst;
10393     TmpInst.setOpcode(ARM::tADDhirr);
10394     TmpInst.addOperand(Inst.getOperand(0));
10395     TmpInst.addOperand(Inst.getOperand(0));
10396     TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2));
10397     TmpInst.addOperand(Inst.getOperand(3));
10398     TmpInst.addOperand(Inst.getOperand(4));
10399     Inst = TmpInst;
10400     return true;
10401   }
10402   case ARM::tADDrSP:
10403     // If the non-SP source operand and the destination operand are not the
10404     // same, we need to use the 32-bit encoding if it's available.
10405     if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
10406       Inst.setOpcode(ARM::t2ADDrr);
10407       Inst.addOperand(MCOperand::createReg(0)); // cc_out
10408       return true;
10409     }
10410     break;
10411   case ARM::tB:
10412     // A Thumb conditional branch outside of an IT block is a tBcc.
10413     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
10414       Inst.setOpcode(ARM::tBcc);
10415       return true;
10416     }
10417     break;
10418   case ARM::t2B:
10419     // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
10420     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
10421       Inst.setOpcode(ARM::t2Bcc);
10422       return true;
10423     }
10424     break;
10425   case ARM::t2Bcc:
10426     // If the conditional is AL or we're in an IT block, we really want t2B.
10427     if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
10428       Inst.setOpcode(ARM::t2B);
10429       return true;
10430     }
10431     break;
10432   case ARM::tBcc:
10433     // If the conditional is AL, we really want tB.
10434     if (Inst.getOperand(1).getImm() == ARMCC::AL) {
10435       Inst.setOpcode(ARM::tB);
10436       return true;
10437     }
10438     break;
10439   case ARM::tLDMIA: {
10440     // If the register list contains any high registers, or if the writeback
10441     // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
10442     // instead if we're in Thumb2. Otherwise, this should have generated
10443     // an error in validateInstruction().
10444     unsigned Rn = Inst.getOperand(0).getReg();
10445     bool hasWritebackToken =
10446         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
10447          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
10448     bool listContainsBase;
10449     if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
10450         (!listContainsBase && !hasWritebackToken) ||
10451         (listContainsBase && hasWritebackToken)) {
10452       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
10453       assert(isThumbTwo());
10454       Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
10455       // If we're switching to the updating version, we need to insert
10456       // the writeback tied operand.
10457       if (hasWritebackToken)
10458         Inst.insert(Inst.begin(),
10459                     MCOperand::createReg(Inst.getOperand(0).getReg()));
10460       return true;
10461     }
10462     break;
10463   }
10464   case ARM::tSTMIA_UPD: {
10465     // If the register list contains any high registers, we need to use
10466     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
10467     // should have generated an error in validateInstruction().
10468     unsigned Rn = Inst.getOperand(0).getReg();
10469     bool listContainsBase;
10470     if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
10471       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
10472       assert(isThumbTwo());
10473       Inst.setOpcode(ARM::t2STMIA_UPD);
10474       return true;
10475     }
10476     break;
10477   }
10478   case ARM::tPOP: {
10479     bool listContainsBase;
10480     // If the register list contains any high registers, we need to use
10481     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
10482     // should have generated an error in validateInstruction().
10483     if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
10484       return false;
10485     assert(isThumbTwo());
10486     Inst.setOpcode(ARM::t2LDMIA_UPD);
10487     // Add the base register and writeback operands.
10488     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10489     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10490     return true;
10491   }
10492   case ARM::tPUSH: {
10493     bool listContainsBase;
10494     if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
10495       return false;
10496     assert(isThumbTwo());
10497     Inst.setOpcode(ARM::t2STMDB_UPD);
10498     // Add the base register and writeback operands.
10499     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10500     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10501     return true;
10502   }
10503   case ARM::t2MOVi:
10504     // If we can use the 16-bit encoding and the user didn't explicitly
10505     // request the 32-bit variant, transform it here.
10506     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10507         (Inst.getOperand(1).isImm() &&
10508          (unsigned)Inst.getOperand(1).getImm() <= 255) &&
10509         Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10510         !HasWideQualifier) {
10511       // The operands aren't in the same order for tMOVi8...
10512       MCInst TmpInst;
10513       TmpInst.setOpcode(ARM::tMOVi8);
10514       TmpInst.addOperand(Inst.getOperand(0));
10515       TmpInst.addOperand(Inst.getOperand(4));
10516       TmpInst.addOperand(Inst.getOperand(1));
10517       TmpInst.addOperand(Inst.getOperand(2));
10518       TmpInst.addOperand(Inst.getOperand(3));
10519       Inst = TmpInst;
10520       return true;
10521     }
10522     break;
10523 
10524   case ARM::t2MOVr:
10525     // If we can use the 16-bit encoding and the user didn't explicitly
10526     // request the 32-bit variant, transform it here.
10527     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10528         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10529         Inst.getOperand(2).getImm() == ARMCC::AL &&
10530         Inst.getOperand(4).getReg() == ARM::CPSR &&
10531         !HasWideQualifier) {
10532       // The operands aren't the same for tMOV[S]r... (no cc_out)
10533       MCInst TmpInst;
10534       unsigned Op = Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr;
10535       TmpInst.setOpcode(Op);
10536       TmpInst.addOperand(Inst.getOperand(0));
10537       TmpInst.addOperand(Inst.getOperand(1));
10538       if (Op == ARM::tMOVr) {
10539         TmpInst.addOperand(Inst.getOperand(2));
10540         TmpInst.addOperand(Inst.getOperand(3));
10541       }
10542       Inst = TmpInst;
10543       return true;
10544     }
10545     break;
10546 
10547   case ARM::t2SXTH:
10548   case ARM::t2SXTB:
10549   case ARM::t2UXTH:
10550   case ARM::t2UXTB:
10551     // If we can use the 16-bit encoding and the user didn't explicitly
10552     // request the 32-bit variant, transform it here.
10553     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10554         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10555         Inst.getOperand(2).getImm() == 0 &&
10556         !HasWideQualifier) {
10557       unsigned NewOpc;
10558       switch (Inst.getOpcode()) {
10559       default: llvm_unreachable("Illegal opcode!");
10560       case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
10561       case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
10562       case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
10563       case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
10564       }
10565       // The operands aren't the same for thumb1 (no rotate operand).
10566       MCInst TmpInst;
10567       TmpInst.setOpcode(NewOpc);
10568       TmpInst.addOperand(Inst.getOperand(0));
10569       TmpInst.addOperand(Inst.getOperand(1));
10570       TmpInst.addOperand(Inst.getOperand(3));
10571       TmpInst.addOperand(Inst.getOperand(4));
10572       Inst = TmpInst;
10573       return true;
10574     }
10575     break;
10576 
10577   case ARM::MOVsi: {
10578     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
10579     // rrx shifts and asr/lsr of #32 is encoded as 0
10580     if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
10581       return false;
10582     if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
10583       // Shifting by zero is accepted as a vanilla 'MOVr'
10584       MCInst TmpInst;
10585       TmpInst.setOpcode(ARM::MOVr);
10586       TmpInst.addOperand(Inst.getOperand(0));
10587       TmpInst.addOperand(Inst.getOperand(1));
10588       TmpInst.addOperand(Inst.getOperand(3));
10589       TmpInst.addOperand(Inst.getOperand(4));
10590       TmpInst.addOperand(Inst.getOperand(5));
10591       Inst = TmpInst;
10592       return true;
10593     }
10594     return false;
10595   }
10596   case ARM::ANDrsi:
10597   case ARM::ORRrsi:
10598   case ARM::EORrsi:
10599   case ARM::BICrsi:
10600   case ARM::SUBrsi:
10601   case ARM::ADDrsi: {
10602     unsigned newOpc;
10603     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
10604     if (SOpc == ARM_AM::rrx) return false;
10605     switch (Inst.getOpcode()) {
10606     default: llvm_unreachable("unexpected opcode!");
10607     case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
10608     case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
10609     case ARM::EORrsi: newOpc = ARM::EORrr; break;
10610     case ARM::BICrsi: newOpc = ARM::BICrr; break;
10611     case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
10612     case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
10613     }
10614     // If the shift is by zero, use the non-shifted instruction definition.
10615     // The exception is for right shifts, where 0 == 32
10616     if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
10617         !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
10618       MCInst TmpInst;
10619       TmpInst.setOpcode(newOpc);
10620       TmpInst.addOperand(Inst.getOperand(0));
10621       TmpInst.addOperand(Inst.getOperand(1));
10622       TmpInst.addOperand(Inst.getOperand(2));
10623       TmpInst.addOperand(Inst.getOperand(4));
10624       TmpInst.addOperand(Inst.getOperand(5));
10625       TmpInst.addOperand(Inst.getOperand(6));
10626       Inst = TmpInst;
10627       return true;
10628     }
10629     return false;
10630   }
10631   case ARM::ITasm:
10632   case ARM::t2IT: {
10633     // Set up the IT block state according to the IT instruction we just
10634     // matched.
10635     assert(!inITBlock() && "nested IT blocks?!");
10636     startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()),
10637                          Inst.getOperand(1).getImm());
10638     break;
10639   }
10640   case ARM::t2LSLrr:
10641   case ARM::t2LSRrr:
10642   case ARM::t2ASRrr:
10643   case ARM::t2SBCrr:
10644   case ARM::t2RORrr:
10645   case ARM::t2BICrr:
10646     // Assemblers should use the narrow encodings of these instructions when permissible.
10647     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
10648          isARMLowRegister(Inst.getOperand(2).getReg())) &&
10649         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
10650         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10651         !HasWideQualifier) {
10652       unsigned NewOpc;
10653       switch (Inst.getOpcode()) {
10654         default: llvm_unreachable("unexpected opcode");
10655         case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
10656         case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
10657         case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
10658         case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
10659         case ARM::t2RORrr: NewOpc = ARM::tROR; break;
10660         case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
10661       }
10662       MCInst TmpInst;
10663       TmpInst.setOpcode(NewOpc);
10664       TmpInst.addOperand(Inst.getOperand(0));
10665       TmpInst.addOperand(Inst.getOperand(5));
10666       TmpInst.addOperand(Inst.getOperand(1));
10667       TmpInst.addOperand(Inst.getOperand(2));
10668       TmpInst.addOperand(Inst.getOperand(3));
10669       TmpInst.addOperand(Inst.getOperand(4));
10670       Inst = TmpInst;
10671       return true;
10672     }
10673     return false;
10674 
10675   case ARM::t2ANDrr:
10676   case ARM::t2EORrr:
10677   case ARM::t2ADCrr:
10678   case ARM::t2ORRrr:
10679     // Assemblers should use the narrow encodings of these instructions when permissible.
10680     // These instructions are special in that they are commutable, so shorter encodings
10681     // are available more often.
10682     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
10683          isARMLowRegister(Inst.getOperand(2).getReg())) &&
10684         (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
10685          Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
10686         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10687         !HasWideQualifier) {
10688       unsigned NewOpc;
10689       switch (Inst.getOpcode()) {
10690         default: llvm_unreachable("unexpected opcode");
10691         case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
10692         case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
10693         case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
10694         case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
10695       }
10696       MCInst TmpInst;
10697       TmpInst.setOpcode(NewOpc);
10698       TmpInst.addOperand(Inst.getOperand(0));
10699       TmpInst.addOperand(Inst.getOperand(5));
10700       if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
10701         TmpInst.addOperand(Inst.getOperand(1));
10702         TmpInst.addOperand(Inst.getOperand(2));
10703       } else {
10704         TmpInst.addOperand(Inst.getOperand(2));
10705         TmpInst.addOperand(Inst.getOperand(1));
10706       }
10707       TmpInst.addOperand(Inst.getOperand(3));
10708       TmpInst.addOperand(Inst.getOperand(4));
10709       Inst = TmpInst;
10710       return true;
10711     }
10712     return false;
10713   case ARM::MVE_VPST:
10714   case ARM::MVE_VPTv16i8:
10715   case ARM::MVE_VPTv8i16:
10716   case ARM::MVE_VPTv4i32:
10717   case ARM::MVE_VPTv16u8:
10718   case ARM::MVE_VPTv8u16:
10719   case ARM::MVE_VPTv4u32:
10720   case ARM::MVE_VPTv16s8:
10721   case ARM::MVE_VPTv8s16:
10722   case ARM::MVE_VPTv4s32:
10723   case ARM::MVE_VPTv4f32:
10724   case ARM::MVE_VPTv8f16:
10725   case ARM::MVE_VPTv16i8r:
10726   case ARM::MVE_VPTv8i16r:
10727   case ARM::MVE_VPTv4i32r:
10728   case ARM::MVE_VPTv16u8r:
10729   case ARM::MVE_VPTv8u16r:
10730   case ARM::MVE_VPTv4u32r:
10731   case ARM::MVE_VPTv16s8r:
10732   case ARM::MVE_VPTv8s16r:
10733   case ARM::MVE_VPTv4s32r:
10734   case ARM::MVE_VPTv4f32r:
10735   case ARM::MVE_VPTv8f16r: {
10736     assert(!inVPTBlock() && "Nested VPT blocks are not allowed");
10737     MCOperand &MO = Inst.getOperand(0);
10738     VPTState.Mask = MO.getImm();
10739     VPTState.CurPosition = 0;
10740     break;
10741   }
10742   }
10743   return false;
10744 }
10745 
10746 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
10747   // 16-bit thumb arithmetic instructions either require or preclude the 'S'
10748   // suffix depending on whether they're in an IT block or not.
10749   unsigned Opc = Inst.getOpcode();
10750   const MCInstrDesc &MCID = MII.get(Opc);
10751   if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
10752     assert(MCID.hasOptionalDef() &&
10753            "optionally flag setting instruction missing optional def operand");
10754     assert(MCID.NumOperands == Inst.getNumOperands() &&
10755            "operand count mismatch!");
10756     // Find the optional-def operand (cc_out).
10757     unsigned OpNo;
10758     for (OpNo = 0;
10759          !MCID.operands()[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
10760          ++OpNo)
10761       ;
10762     // If we're parsing Thumb1, reject it completely.
10763     if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
10764       return Match_RequiresFlagSetting;
10765     // If we're parsing Thumb2, which form is legal depends on whether we're
10766     // in an IT block.
10767     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
10768         !inITBlock())
10769       return Match_RequiresITBlock;
10770     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
10771         inITBlock())
10772       return Match_RequiresNotITBlock;
10773     // LSL with zero immediate is not allowed in an IT block
10774     if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock())
10775       return Match_RequiresNotITBlock;
10776   } else if (isThumbOne()) {
10777     // Some high-register supporting Thumb1 encodings only allow both registers
10778     // to be from r0-r7 when in Thumb2.
10779     if (Opc == ARM::tADDhirr && !hasV6MOps() &&
10780         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10781         isARMLowRegister(Inst.getOperand(2).getReg()))
10782       return Match_RequiresThumb2;
10783     // Others only require ARMv6 or later.
10784     else if (Opc == ARM::tMOVr && !hasV6Ops() &&
10785              isARMLowRegister(Inst.getOperand(0).getReg()) &&
10786              isARMLowRegister(Inst.getOperand(1).getReg()))
10787       return Match_RequiresV6;
10788   }
10789 
10790   // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex
10791   // than the loop below can handle, so it uses the GPRnopc register class and
10792   // we do SP handling here.
10793   if (Opc == ARM::t2MOVr && !hasV8Ops())
10794   {
10795     // SP as both source and destination is not allowed
10796     if (Inst.getOperand(0).getReg() == ARM::SP &&
10797         Inst.getOperand(1).getReg() == ARM::SP)
10798       return Match_RequiresV8;
10799     // When flags-setting SP as either source or destination is not allowed
10800     if (Inst.getOperand(4).getReg() == ARM::CPSR &&
10801         (Inst.getOperand(0).getReg() == ARM::SP ||
10802          Inst.getOperand(1).getReg() == ARM::SP))
10803       return Match_RequiresV8;
10804   }
10805 
10806   switch (Inst.getOpcode()) {
10807   case ARM::VMRS:
10808   case ARM::VMSR:
10809   case ARM::VMRS_FPCXTS:
10810   case ARM::VMRS_FPCXTNS:
10811   case ARM::VMSR_FPCXTS:
10812   case ARM::VMSR_FPCXTNS:
10813   case ARM::VMRS_FPSCR_NZCVQC:
10814   case ARM::VMSR_FPSCR_NZCVQC:
10815   case ARM::FMSTAT:
10816   case ARM::VMRS_VPR:
10817   case ARM::VMRS_P0:
10818   case ARM::VMSR_VPR:
10819   case ARM::VMSR_P0:
10820     // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of
10821     // ARMv8-A.
10822     if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP &&
10823         (isThumb() && !hasV8Ops()))
10824       return Match_InvalidOperand;
10825     break;
10826   case ARM::t2TBB:
10827   case ARM::t2TBH:
10828     // Rn = sp is only allowed with ARMv8-A
10829     if (!hasV8Ops() && (Inst.getOperand(0).getReg() == ARM::SP))
10830       return Match_RequiresV8;
10831     break;
10832   default:
10833     break;
10834   }
10835 
10836   for (unsigned I = 0; I < MCID.NumOperands; ++I)
10837     if (MCID.operands()[I].RegClass == ARM::rGPRRegClassID) {
10838       // rGPRRegClass excludes PC, and also excluded SP before ARMv8
10839       const auto &Op = Inst.getOperand(I);
10840       if (!Op.isReg()) {
10841         // This can happen in awkward cases with tied operands, e.g. a
10842         // writeback load/store with a complex addressing mode in
10843         // which there's an output operand corresponding to the
10844         // updated written-back base register: the Tablegen-generated
10845         // AsmMatcher will have written a placeholder operand to that
10846         // slot in the form of an immediate 0, because it can't
10847         // generate the register part of the complex addressing-mode
10848         // operand ahead of time.
10849         continue;
10850       }
10851 
10852       unsigned Reg = Op.getReg();
10853       if ((Reg == ARM::SP) && !hasV8Ops())
10854         return Match_RequiresV8;
10855       else if (Reg == ARM::PC)
10856         return Match_InvalidOperand;
10857     }
10858 
10859   return Match_Success;
10860 }
10861 
10862 namespace llvm {
10863 
10864 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) {
10865   return true; // In an assembly source, no need to second-guess
10866 }
10867 
10868 } // end namespace llvm
10869 
10870 // Returns true if Inst is unpredictable if it is in and IT block, but is not
10871 // the last instruction in the block.
10872 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const {
10873   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10874 
10875   // All branch & call instructions terminate IT blocks with the exception of
10876   // SVC.
10877   if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) ||
10878       MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch())
10879     return true;
10880 
10881   // Any arithmetic instruction which writes to the PC also terminates the IT
10882   // block.
10883   if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI))
10884     return true;
10885 
10886   return false;
10887 }
10888 
10889 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst,
10890                                           SmallVectorImpl<NearMissInfo> &NearMisses,
10891                                           bool MatchingInlineAsm,
10892                                           bool &EmitInITBlock,
10893                                           MCStreamer &Out) {
10894   // If we can't use an implicit IT block here, just match as normal.
10895   if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb())
10896     return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
10897 
10898   // Try to match the instruction in an extension of the current IT block (if
10899   // there is one).
10900   if (inImplicitITBlock()) {
10901     extendImplicitITBlock(ITState.Cond);
10902     if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
10903             Match_Success) {
10904       // The match succeded, but we still have to check that the instruction is
10905       // valid in this implicit IT block.
10906       const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10907       if (MCID.isPredicable()) {
10908         ARMCC::CondCodes InstCond =
10909             (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10910                 .getImm();
10911         ARMCC::CondCodes ITCond = currentITCond();
10912         if (InstCond == ITCond) {
10913           EmitInITBlock = true;
10914           return Match_Success;
10915         } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) {
10916           invertCurrentITCondition();
10917           EmitInITBlock = true;
10918           return Match_Success;
10919         }
10920       }
10921     }
10922     rewindImplicitITPosition();
10923   }
10924 
10925   // Finish the current IT block, and try to match outside any IT block.
10926   flushPendingInstructions(Out);
10927   unsigned PlainMatchResult =
10928       MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
10929   if (PlainMatchResult == Match_Success) {
10930     const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10931     if (MCID.isPredicable()) {
10932       ARMCC::CondCodes InstCond =
10933           (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10934               .getImm();
10935       // Some forms of the branch instruction have their own condition code
10936       // fields, so can be conditionally executed without an IT block.
10937       if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) {
10938         EmitInITBlock = false;
10939         return Match_Success;
10940       }
10941       if (InstCond == ARMCC::AL) {
10942         EmitInITBlock = false;
10943         return Match_Success;
10944       }
10945     } else {
10946       EmitInITBlock = false;
10947       return Match_Success;
10948     }
10949   }
10950 
10951   // Try to match in a new IT block. The matcher doesn't check the actual
10952   // condition, so we create an IT block with a dummy condition, and fix it up
10953   // once we know the actual condition.
10954   startImplicitITBlock();
10955   if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
10956       Match_Success) {
10957     const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10958     if (MCID.isPredicable()) {
10959       ITState.Cond =
10960           (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10961               .getImm();
10962       EmitInITBlock = true;
10963       return Match_Success;
10964     }
10965   }
10966   discardImplicitITBlock();
10967 
10968   // If none of these succeed, return the error we got when trying to match
10969   // outside any IT blocks.
10970   EmitInITBlock = false;
10971   return PlainMatchResult;
10972 }
10973 
10974 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,
10975                                          unsigned VariantID = 0);
10976 
10977 static const char *getSubtargetFeatureName(uint64_t Val);
10978 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
10979                                            OperandVector &Operands,
10980                                            MCStreamer &Out, uint64_t &ErrorInfo,
10981                                            bool MatchingInlineAsm) {
10982   MCInst Inst;
10983   unsigned MatchResult;
10984   bool PendConditionalInstruction = false;
10985 
10986   SmallVector<NearMissInfo, 4> NearMisses;
10987   MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm,
10988                                  PendConditionalInstruction, Out);
10989 
10990   switch (MatchResult) {
10991   case Match_Success:
10992     LLVM_DEBUG(dbgs() << "Parsed as: ";
10993                Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
10994                dbgs() << "\n");
10995 
10996     // Context sensitive operand constraints aren't handled by the matcher,
10997     // so check them here.
10998     if (validateInstruction(Inst, Operands)) {
10999       // Still progress the IT block, otherwise one wrong condition causes
11000       // nasty cascading errors.
11001       forwardITPosition();
11002       forwardVPTPosition();
11003       return true;
11004     }
11005 
11006     {
11007       // Some instructions need post-processing to, for example, tweak which
11008       // encoding is selected. Loop on it while changes happen so the
11009       // individual transformations can chain off each other. E.g.,
11010       // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
11011       while (processInstruction(Inst, Operands, Out))
11012         LLVM_DEBUG(dbgs() << "Changed to: ";
11013                    Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
11014                    dbgs() << "\n");
11015     }
11016 
11017     // Only move forward at the very end so that everything in validate
11018     // and process gets a consistent answer about whether we're in an IT
11019     // block.
11020     forwardITPosition();
11021     forwardVPTPosition();
11022 
11023     // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
11024     // doesn't actually encode.
11025     if (Inst.getOpcode() == ARM::ITasm)
11026       return false;
11027 
11028     Inst.setLoc(IDLoc);
11029     if (PendConditionalInstruction) {
11030       PendingConditionalInsts.push_back(Inst);
11031       if (isITBlockFull() || isITBlockTerminator(Inst))
11032         flushPendingInstructions(Out);
11033     } else {
11034       Out.emitInstruction(Inst, getSTI());
11035     }
11036     return false;
11037   case Match_NearMisses:
11038     ReportNearMisses(NearMisses, IDLoc, Operands);
11039     return true;
11040   case Match_MnemonicFail: {
11041     FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
11042     std::string Suggestion = ARMMnemonicSpellCheck(
11043       ((ARMOperand &)*Operands[0]).getToken(), FBS);
11044     return Error(IDLoc, "invalid instruction" + Suggestion,
11045                  ((ARMOperand &)*Operands[0]).getLocRange());
11046   }
11047   }
11048 
11049   llvm_unreachable("Implement any new match types added!");
11050 }
11051 
11052 /// parseDirective parses the arm specific directives
11053 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
11054   const MCContext::Environment Format = getContext().getObjectFileType();
11055   bool IsMachO = Format == MCContext::IsMachO;
11056   bool IsCOFF = Format == MCContext::IsCOFF;
11057 
11058   std::string IDVal = DirectiveID.getIdentifier().lower();
11059   if (IDVal == ".word")
11060     parseLiteralValues(4, DirectiveID.getLoc());
11061   else if (IDVal == ".short" || IDVal == ".hword")
11062     parseLiteralValues(2, DirectiveID.getLoc());
11063   else if (IDVal == ".thumb")
11064     parseDirectiveThumb(DirectiveID.getLoc());
11065   else if (IDVal == ".arm")
11066     parseDirectiveARM(DirectiveID.getLoc());
11067   else if (IDVal == ".thumb_func")
11068     parseDirectiveThumbFunc(DirectiveID.getLoc());
11069   else if (IDVal == ".code")
11070     parseDirectiveCode(DirectiveID.getLoc());
11071   else if (IDVal == ".syntax")
11072     parseDirectiveSyntax(DirectiveID.getLoc());
11073   else if (IDVal == ".unreq")
11074     parseDirectiveUnreq(DirectiveID.getLoc());
11075   else if (IDVal == ".fnend")
11076     parseDirectiveFnEnd(DirectiveID.getLoc());
11077   else if (IDVal == ".cantunwind")
11078     parseDirectiveCantUnwind(DirectiveID.getLoc());
11079   else if (IDVal == ".personality")
11080     parseDirectivePersonality(DirectiveID.getLoc());
11081   else if (IDVal == ".handlerdata")
11082     parseDirectiveHandlerData(DirectiveID.getLoc());
11083   else if (IDVal == ".setfp")
11084     parseDirectiveSetFP(DirectiveID.getLoc());
11085   else if (IDVal == ".pad")
11086     parseDirectivePad(DirectiveID.getLoc());
11087   else if (IDVal == ".save")
11088     parseDirectiveRegSave(DirectiveID.getLoc(), false);
11089   else if (IDVal == ".vsave")
11090     parseDirectiveRegSave(DirectiveID.getLoc(), true);
11091   else if (IDVal == ".ltorg" || IDVal == ".pool")
11092     parseDirectiveLtorg(DirectiveID.getLoc());
11093   else if (IDVal == ".even")
11094     parseDirectiveEven(DirectiveID.getLoc());
11095   else if (IDVal == ".personalityindex")
11096     parseDirectivePersonalityIndex(DirectiveID.getLoc());
11097   else if (IDVal == ".unwind_raw")
11098     parseDirectiveUnwindRaw(DirectiveID.getLoc());
11099   else if (IDVal == ".movsp")
11100     parseDirectiveMovSP(DirectiveID.getLoc());
11101   else if (IDVal == ".arch_extension")
11102     parseDirectiveArchExtension(DirectiveID.getLoc());
11103   else if (IDVal == ".align")
11104     return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure.
11105   else if (IDVal == ".thumb_set")
11106     parseDirectiveThumbSet(DirectiveID.getLoc());
11107   else if (IDVal == ".inst")
11108     parseDirectiveInst(DirectiveID.getLoc());
11109   else if (IDVal == ".inst.n")
11110     parseDirectiveInst(DirectiveID.getLoc(), 'n');
11111   else if (IDVal == ".inst.w")
11112     parseDirectiveInst(DirectiveID.getLoc(), 'w');
11113   else if (!IsMachO && !IsCOFF) {
11114     if (IDVal == ".arch")
11115       parseDirectiveArch(DirectiveID.getLoc());
11116     else if (IDVal == ".cpu")
11117       parseDirectiveCPU(DirectiveID.getLoc());
11118     else if (IDVal == ".eabi_attribute")
11119       parseDirectiveEabiAttr(DirectiveID.getLoc());
11120     else if (IDVal == ".fpu")
11121       parseDirectiveFPU(DirectiveID.getLoc());
11122     else if (IDVal == ".fnstart")
11123       parseDirectiveFnStart(DirectiveID.getLoc());
11124     else if (IDVal == ".object_arch")
11125       parseDirectiveObjectArch(DirectiveID.getLoc());
11126     else if (IDVal == ".tlsdescseq")
11127       parseDirectiveTLSDescSeq(DirectiveID.getLoc());
11128     else
11129       return true;
11130   } else if (IsCOFF) {
11131     if (IDVal == ".seh_stackalloc")
11132       parseDirectiveSEHAllocStack(DirectiveID.getLoc(), /*Wide=*/false);
11133     else if (IDVal == ".seh_stackalloc_w")
11134       parseDirectiveSEHAllocStack(DirectiveID.getLoc(), /*Wide=*/true);
11135     else if (IDVal == ".seh_save_regs")
11136       parseDirectiveSEHSaveRegs(DirectiveID.getLoc(), /*Wide=*/false);
11137     else if (IDVal == ".seh_save_regs_w")
11138       parseDirectiveSEHSaveRegs(DirectiveID.getLoc(), /*Wide=*/true);
11139     else if (IDVal == ".seh_save_sp")
11140       parseDirectiveSEHSaveSP(DirectiveID.getLoc());
11141     else if (IDVal == ".seh_save_fregs")
11142       parseDirectiveSEHSaveFRegs(DirectiveID.getLoc());
11143     else if (IDVal == ".seh_save_lr")
11144       parseDirectiveSEHSaveLR(DirectiveID.getLoc());
11145     else if (IDVal == ".seh_endprologue")
11146       parseDirectiveSEHPrologEnd(DirectiveID.getLoc(), /*Fragment=*/false);
11147     else if (IDVal == ".seh_endprologue_fragment")
11148       parseDirectiveSEHPrologEnd(DirectiveID.getLoc(), /*Fragment=*/true);
11149     else if (IDVal == ".seh_nop")
11150       parseDirectiveSEHNop(DirectiveID.getLoc(), /*Wide=*/false);
11151     else if (IDVal == ".seh_nop_w")
11152       parseDirectiveSEHNop(DirectiveID.getLoc(), /*Wide=*/true);
11153     else if (IDVal == ".seh_startepilogue")
11154       parseDirectiveSEHEpilogStart(DirectiveID.getLoc(), /*Condition=*/false);
11155     else if (IDVal == ".seh_startepilogue_cond")
11156       parseDirectiveSEHEpilogStart(DirectiveID.getLoc(), /*Condition=*/true);
11157     else if (IDVal == ".seh_endepilogue")
11158       parseDirectiveSEHEpilogEnd(DirectiveID.getLoc());
11159     else if (IDVal == ".seh_custom")
11160       parseDirectiveSEHCustom(DirectiveID.getLoc());
11161     else
11162       return true;
11163   } else
11164     return true;
11165   return false;
11166 }
11167 
11168 /// parseLiteralValues
11169 ///  ::= .hword expression [, expression]*
11170 ///  ::= .short expression [, expression]*
11171 ///  ::= .word expression [, expression]*
11172 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
11173   auto parseOne = [&]() -> bool {
11174     const MCExpr *Value;
11175     if (getParser().parseExpression(Value))
11176       return true;
11177     getParser().getStreamer().emitValue(Value, Size, L);
11178     return false;
11179   };
11180   return (parseMany(parseOne));
11181 }
11182 
11183 /// parseDirectiveThumb
11184 ///  ::= .thumb
11185 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
11186   if (parseEOL() || check(!hasThumb(), L, "target does not support Thumb mode"))
11187     return true;
11188 
11189   if (!isThumb())
11190     SwitchMode();
11191 
11192   getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
11193   return false;
11194 }
11195 
11196 /// parseDirectiveARM
11197 ///  ::= .arm
11198 bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
11199   if (parseEOL() || check(!hasARM(), L, "target does not support ARM mode"))
11200     return true;
11201 
11202   if (isThumb())
11203     SwitchMode();
11204   getParser().getStreamer().emitAssemblerFlag(MCAF_Code32);
11205   return false;
11206 }
11207 
11208 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol, SMLoc IDLoc) {
11209   // We need to flush the current implicit IT block on a label, because it is
11210   // not legal to branch into an IT block.
11211   flushPendingInstructions(getStreamer());
11212 }
11213 
11214 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
11215   if (NextSymbolIsThumb) {
11216     getParser().getStreamer().emitThumbFunc(Symbol);
11217     NextSymbolIsThumb = false;
11218   }
11219 }
11220 
11221 /// parseDirectiveThumbFunc
11222 ///  ::= .thumbfunc symbol_name
11223 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
11224   MCAsmParser &Parser = getParser();
11225   const auto Format = getContext().getObjectFileType();
11226   bool IsMachO = Format == MCContext::IsMachO;
11227 
11228   // Darwin asm has (optionally) function name after .thumb_func direction
11229   // ELF doesn't
11230 
11231   if (IsMachO) {
11232     if (Parser.getTok().is(AsmToken::Identifier) ||
11233         Parser.getTok().is(AsmToken::String)) {
11234       MCSymbol *Func = getParser().getContext().getOrCreateSymbol(
11235           Parser.getTok().getIdentifier());
11236       getParser().getStreamer().emitThumbFunc(Func);
11237       Parser.Lex();
11238       if (parseEOL())
11239         return true;
11240       return false;
11241     }
11242   }
11243 
11244   if (parseEOL())
11245     return true;
11246 
11247   // .thumb_func implies .thumb
11248   if (!isThumb())
11249     SwitchMode();
11250 
11251   getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
11252 
11253   NextSymbolIsThumb = true;
11254   return false;
11255 }
11256 
11257 /// parseDirectiveSyntax
11258 ///  ::= .syntax unified | divided
11259 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
11260   MCAsmParser &Parser = getParser();
11261   const AsmToken &Tok = Parser.getTok();
11262   if (Tok.isNot(AsmToken::Identifier)) {
11263     Error(L, "unexpected token in .syntax directive");
11264     return false;
11265   }
11266 
11267   StringRef Mode = Tok.getString();
11268   Parser.Lex();
11269   if (check(Mode == "divided" || Mode == "DIVIDED", L,
11270             "'.syntax divided' arm assembly not supported") ||
11271       check(Mode != "unified" && Mode != "UNIFIED", L,
11272             "unrecognized syntax mode in .syntax directive") ||
11273       parseEOL())
11274     return true;
11275 
11276   // TODO tell the MC streamer the mode
11277   // getParser().getStreamer().Emit???();
11278   return false;
11279 }
11280 
11281 /// parseDirectiveCode
11282 ///  ::= .code 16 | 32
11283 bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
11284   MCAsmParser &Parser = getParser();
11285   const AsmToken &Tok = Parser.getTok();
11286   if (Tok.isNot(AsmToken::Integer))
11287     return Error(L, "unexpected token in .code directive");
11288   int64_t Val = Parser.getTok().getIntVal();
11289   if (Val != 16 && Val != 32) {
11290     Error(L, "invalid operand to .code directive");
11291     return false;
11292   }
11293   Parser.Lex();
11294 
11295   if (parseEOL())
11296     return true;
11297 
11298   if (Val == 16) {
11299     if (!hasThumb())
11300       return Error(L, "target does not support Thumb mode");
11301 
11302     if (!isThumb())
11303       SwitchMode();
11304     getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
11305   } else {
11306     if (!hasARM())
11307       return Error(L, "target does not support ARM mode");
11308 
11309     if (isThumb())
11310       SwitchMode();
11311     getParser().getStreamer().emitAssemblerFlag(MCAF_Code32);
11312   }
11313 
11314   return false;
11315 }
11316 
11317 /// parseDirectiveReq
11318 ///  ::= name .req registername
11319 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
11320   MCAsmParser &Parser = getParser();
11321   Parser.Lex(); // Eat the '.req' token.
11322   MCRegister Reg;
11323   SMLoc SRegLoc, ERegLoc;
11324   if (check(parseRegister(Reg, SRegLoc, ERegLoc), SRegLoc,
11325             "register name expected") ||
11326       parseEOL())
11327     return true;
11328 
11329   if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg)
11330     return Error(SRegLoc,
11331                  "redefinition of '" + Name + "' does not match original.");
11332 
11333   return false;
11334 }
11335 
11336 /// parseDirectiveUneq
11337 ///  ::= .unreq registername
11338 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
11339   MCAsmParser &Parser = getParser();
11340   if (Parser.getTok().isNot(AsmToken::Identifier))
11341     return Error(L, "unexpected input in .unreq directive.");
11342   RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
11343   Parser.Lex(); // Eat the identifier.
11344   return parseEOL();
11345 }
11346 
11347 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was
11348 // before, if supported by the new target, or emit mapping symbols for the mode
11349 // switch.
11350 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) {
11351   if (WasThumb != isThumb()) {
11352     if (WasThumb && hasThumb()) {
11353       // Stay in Thumb mode
11354       SwitchMode();
11355     } else if (!WasThumb && hasARM()) {
11356       // Stay in ARM mode
11357       SwitchMode();
11358     } else {
11359       // Mode switch forced, because the new arch doesn't support the old mode.
11360       getParser().getStreamer().emitAssemblerFlag(isThumb() ? MCAF_Code16
11361                                                             : MCAF_Code32);
11362       // Warn about the implcit mode switch. GAS does not switch modes here,
11363       // but instead stays in the old mode, reporting an error on any following
11364       // instructions as the mode does not exist on the target.
11365       Warning(Loc, Twine("new target does not support ") +
11366                        (WasThumb ? "thumb" : "arm") + " mode, switching to " +
11367                        (!WasThumb ? "thumb" : "arm") + " mode");
11368     }
11369   }
11370 }
11371 
11372 /// parseDirectiveArch
11373 ///  ::= .arch token
11374 bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
11375   StringRef Arch = getParser().parseStringToEndOfStatement().trim();
11376   ARM::ArchKind ID = ARM::parseArch(Arch);
11377 
11378   if (ID == ARM::ArchKind::INVALID)
11379     return Error(L, "Unknown arch name");
11380 
11381   bool WasThumb = isThumb();
11382   Triple T;
11383   MCSubtargetInfo &STI = copySTI();
11384   STI.setDefaultFeatures("", /*TuneCPU*/ "",
11385                          ("+" + ARM::getArchName(ID)).str());
11386   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
11387   FixModeAfterArchChange(WasThumb, L);
11388 
11389   getTargetStreamer().emitArch(ID);
11390   return false;
11391 }
11392 
11393 /// parseDirectiveEabiAttr
11394 ///  ::= .eabi_attribute int, int [, "str"]
11395 ///  ::= .eabi_attribute Tag_name, int [, "str"]
11396 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
11397   MCAsmParser &Parser = getParser();
11398   int64_t Tag;
11399   SMLoc TagLoc;
11400   TagLoc = Parser.getTok().getLoc();
11401   if (Parser.getTok().is(AsmToken::Identifier)) {
11402     StringRef Name = Parser.getTok().getIdentifier();
11403     std::optional<unsigned> Ret = ELFAttrs::attrTypeFromString(
11404         Name, ARMBuildAttrs::getARMAttributeTags());
11405     if (!Ret) {
11406       Error(TagLoc, "attribute name not recognised: " + Name);
11407       return false;
11408     }
11409     Tag = *Ret;
11410     Parser.Lex();
11411   } else {
11412     const MCExpr *AttrExpr;
11413 
11414     TagLoc = Parser.getTok().getLoc();
11415     if (Parser.parseExpression(AttrExpr))
11416       return true;
11417 
11418     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
11419     if (check(!CE, TagLoc, "expected numeric constant"))
11420       return true;
11421 
11422     Tag = CE->getValue();
11423   }
11424 
11425   if (Parser.parseToken(AsmToken::Comma, "comma expected"))
11426     return true;
11427 
11428   StringRef StringValue = "";
11429   bool IsStringValue = false;
11430 
11431   int64_t IntegerValue = 0;
11432   bool IsIntegerValue = false;
11433 
11434   if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name)
11435     IsStringValue = true;
11436   else if (Tag == ARMBuildAttrs::compatibility) {
11437     IsStringValue = true;
11438     IsIntegerValue = true;
11439   } else if (Tag < 32 || Tag % 2 == 0)
11440     IsIntegerValue = true;
11441   else if (Tag % 2 == 1)
11442     IsStringValue = true;
11443   else
11444     llvm_unreachable("invalid tag type");
11445 
11446   if (IsIntegerValue) {
11447     const MCExpr *ValueExpr;
11448     SMLoc ValueExprLoc = Parser.getTok().getLoc();
11449     if (Parser.parseExpression(ValueExpr))
11450       return true;
11451 
11452     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
11453     if (!CE)
11454       return Error(ValueExprLoc, "expected numeric constant");
11455     IntegerValue = CE->getValue();
11456   }
11457 
11458   if (Tag == ARMBuildAttrs::compatibility) {
11459     if (Parser.parseToken(AsmToken::Comma, "comma expected"))
11460       return true;
11461   }
11462 
11463   std::string EscapedValue;
11464   if (IsStringValue) {
11465     if (Parser.getTok().isNot(AsmToken::String))
11466       return Error(Parser.getTok().getLoc(), "bad string constant");
11467 
11468     if (Tag == ARMBuildAttrs::also_compatible_with) {
11469       if (Parser.parseEscapedString(EscapedValue))
11470         return Error(Parser.getTok().getLoc(), "bad escaped string constant");
11471 
11472       StringValue = EscapedValue;
11473     } else {
11474       StringValue = Parser.getTok().getStringContents();
11475       Parser.Lex();
11476     }
11477   }
11478 
11479   if (Parser.parseEOL())
11480     return true;
11481 
11482   if (IsIntegerValue && IsStringValue) {
11483     assert(Tag == ARMBuildAttrs::compatibility);
11484     getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
11485   } else if (IsIntegerValue)
11486     getTargetStreamer().emitAttribute(Tag, IntegerValue);
11487   else if (IsStringValue)
11488     getTargetStreamer().emitTextAttribute(Tag, StringValue);
11489   return false;
11490 }
11491 
11492 /// parseDirectiveCPU
11493 ///  ::= .cpu str
11494 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
11495   StringRef CPU = getParser().parseStringToEndOfStatement().trim();
11496   getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
11497 
11498   // FIXME: This is using table-gen data, but should be moved to
11499   // ARMTargetParser once that is table-gen'd.
11500   if (!getSTI().isCPUStringValid(CPU))
11501     return Error(L, "Unknown CPU name");
11502 
11503   bool WasThumb = isThumb();
11504   MCSubtargetInfo &STI = copySTI();
11505   STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, "");
11506   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
11507   FixModeAfterArchChange(WasThumb, L);
11508 
11509   return false;
11510 }
11511 
11512 /// parseDirectiveFPU
11513 ///  ::= .fpu str
11514 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
11515   SMLoc FPUNameLoc = getTok().getLoc();
11516   StringRef FPU = getParser().parseStringToEndOfStatement().trim();
11517 
11518   unsigned ID = ARM::parseFPU(FPU);
11519   std::vector<StringRef> Features;
11520   if (!ARM::getFPUFeatures(ID, Features))
11521     return Error(FPUNameLoc, "Unknown FPU name");
11522 
11523   MCSubtargetInfo &STI = copySTI();
11524   for (auto Feature : Features)
11525     STI.ApplyFeatureFlag(Feature);
11526   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
11527 
11528   getTargetStreamer().emitFPU(ID);
11529   return false;
11530 }
11531 
11532 /// parseDirectiveFnStart
11533 ///  ::= .fnstart
11534 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
11535   if (parseEOL())
11536     return true;
11537 
11538   if (UC.hasFnStart()) {
11539     Error(L, ".fnstart starts before the end of previous one");
11540     UC.emitFnStartLocNotes();
11541     return true;
11542   }
11543 
11544   // Reset the unwind directives parser state
11545   UC.reset();
11546 
11547   getTargetStreamer().emitFnStart();
11548 
11549   UC.recordFnStart(L);
11550   return false;
11551 }
11552 
11553 /// parseDirectiveFnEnd
11554 ///  ::= .fnend
11555 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
11556   if (parseEOL())
11557     return true;
11558   // Check the ordering of unwind directives
11559   if (!UC.hasFnStart())
11560     return Error(L, ".fnstart must precede .fnend directive");
11561 
11562   // Reset the unwind directives parser state
11563   getTargetStreamer().emitFnEnd();
11564 
11565   UC.reset();
11566   return false;
11567 }
11568 
11569 /// parseDirectiveCantUnwind
11570 ///  ::= .cantunwind
11571 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
11572   if (parseEOL())
11573     return true;
11574 
11575   UC.recordCantUnwind(L);
11576   // Check the ordering of unwind directives
11577   if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive"))
11578     return true;
11579 
11580   if (UC.hasHandlerData()) {
11581     Error(L, ".cantunwind can't be used with .handlerdata directive");
11582     UC.emitHandlerDataLocNotes();
11583     return true;
11584   }
11585   if (UC.hasPersonality()) {
11586     Error(L, ".cantunwind can't be used with .personality directive");
11587     UC.emitPersonalityLocNotes();
11588     return true;
11589   }
11590 
11591   getTargetStreamer().emitCantUnwind();
11592   return false;
11593 }
11594 
11595 /// parseDirectivePersonality
11596 ///  ::= .personality name
11597 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
11598   MCAsmParser &Parser = getParser();
11599   bool HasExistingPersonality = UC.hasPersonality();
11600 
11601   // Parse the name of the personality routine
11602   if (Parser.getTok().isNot(AsmToken::Identifier))
11603     return Error(L, "unexpected input in .personality directive.");
11604   StringRef Name(Parser.getTok().getIdentifier());
11605   Parser.Lex();
11606 
11607   if (parseEOL())
11608     return true;
11609 
11610   UC.recordPersonality(L);
11611 
11612   // Check the ordering of unwind directives
11613   if (!UC.hasFnStart())
11614     return Error(L, ".fnstart must precede .personality directive");
11615   if (UC.cantUnwind()) {
11616     Error(L, ".personality can't be used with .cantunwind directive");
11617     UC.emitCantUnwindLocNotes();
11618     return true;
11619   }
11620   if (UC.hasHandlerData()) {
11621     Error(L, ".personality must precede .handlerdata directive");
11622     UC.emitHandlerDataLocNotes();
11623     return true;
11624   }
11625   if (HasExistingPersonality) {
11626     Error(L, "multiple personality directives");
11627     UC.emitPersonalityLocNotes();
11628     return true;
11629   }
11630 
11631   MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name);
11632   getTargetStreamer().emitPersonality(PR);
11633   return false;
11634 }
11635 
11636 /// parseDirectiveHandlerData
11637 ///  ::= .handlerdata
11638 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
11639   if (parseEOL())
11640     return true;
11641 
11642   UC.recordHandlerData(L);
11643   // Check the ordering of unwind directives
11644   if (!UC.hasFnStart())
11645     return Error(L, ".fnstart must precede .personality directive");
11646   if (UC.cantUnwind()) {
11647     Error(L, ".handlerdata can't be used with .cantunwind directive");
11648     UC.emitCantUnwindLocNotes();
11649     return true;
11650   }
11651 
11652   getTargetStreamer().emitHandlerData();
11653   return false;
11654 }
11655 
11656 /// parseDirectiveSetFP
11657 ///  ::= .setfp fpreg, spreg [, offset]
11658 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
11659   MCAsmParser &Parser = getParser();
11660   // Check the ordering of unwind directives
11661   if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") ||
11662       check(UC.hasHandlerData(), L,
11663             ".setfp must precede .handlerdata directive"))
11664     return true;
11665 
11666   // Parse fpreg
11667   SMLoc FPRegLoc = Parser.getTok().getLoc();
11668   int FPReg = tryParseRegister();
11669 
11670   if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") ||
11671       Parser.parseToken(AsmToken::Comma, "comma expected"))
11672     return true;
11673 
11674   // Parse spreg
11675   SMLoc SPRegLoc = Parser.getTok().getLoc();
11676   int SPReg = tryParseRegister();
11677   if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") ||
11678       check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc,
11679             "register should be either $sp or the latest fp register"))
11680     return true;
11681 
11682   // Update the frame pointer register
11683   UC.saveFPReg(FPReg);
11684 
11685   // Parse offset
11686   int64_t Offset = 0;
11687   if (Parser.parseOptionalToken(AsmToken::Comma)) {
11688     if (Parser.getTok().isNot(AsmToken::Hash) &&
11689         Parser.getTok().isNot(AsmToken::Dollar))
11690       return Error(Parser.getTok().getLoc(), "'#' expected");
11691     Parser.Lex(); // skip hash token.
11692 
11693     const MCExpr *OffsetExpr;
11694     SMLoc ExLoc = Parser.getTok().getLoc();
11695     SMLoc EndLoc;
11696     if (getParser().parseExpression(OffsetExpr, EndLoc))
11697       return Error(ExLoc, "malformed setfp offset");
11698     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11699     if (check(!CE, ExLoc, "setfp offset must be an immediate"))
11700       return true;
11701     Offset = CE->getValue();
11702   }
11703 
11704   if (Parser.parseToken(AsmToken::EndOfStatement))
11705     return true;
11706 
11707   getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
11708                                 static_cast<unsigned>(SPReg), Offset);
11709   return false;
11710 }
11711 
11712 /// parseDirective
11713 ///  ::= .pad offset
11714 bool ARMAsmParser::parseDirectivePad(SMLoc L) {
11715   MCAsmParser &Parser = getParser();
11716   // Check the ordering of unwind directives
11717   if (!UC.hasFnStart())
11718     return Error(L, ".fnstart must precede .pad directive");
11719   if (UC.hasHandlerData())
11720     return Error(L, ".pad must precede .handlerdata directive");
11721 
11722   // Parse the offset
11723   if (Parser.getTok().isNot(AsmToken::Hash) &&
11724       Parser.getTok().isNot(AsmToken::Dollar))
11725     return Error(Parser.getTok().getLoc(), "'#' expected");
11726   Parser.Lex(); // skip hash token.
11727 
11728   const MCExpr *OffsetExpr;
11729   SMLoc ExLoc = Parser.getTok().getLoc();
11730   SMLoc EndLoc;
11731   if (getParser().parseExpression(OffsetExpr, EndLoc))
11732     return Error(ExLoc, "malformed pad offset");
11733   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11734   if (!CE)
11735     return Error(ExLoc, "pad offset must be an immediate");
11736 
11737   if (parseEOL())
11738     return true;
11739 
11740   getTargetStreamer().emitPad(CE->getValue());
11741   return false;
11742 }
11743 
11744 /// parseDirectiveRegSave
11745 ///  ::= .save  { registers }
11746 ///  ::= .vsave { registers }
11747 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
11748   // Check the ordering of unwind directives
11749   if (!UC.hasFnStart())
11750     return Error(L, ".fnstart must precede .save or .vsave directives");
11751   if (UC.hasHandlerData())
11752     return Error(L, ".save or .vsave must precede .handlerdata directive");
11753 
11754   // RAII object to make sure parsed operands are deleted.
11755   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
11756 
11757   // Parse the register list
11758   if (parseRegisterList(Operands, true, true) || parseEOL())
11759     return true;
11760   ARMOperand &Op = (ARMOperand &)*Operands[0];
11761   if (!IsVector && !Op.isRegList())
11762     return Error(L, ".save expects GPR registers");
11763   if (IsVector && !Op.isDPRRegList())
11764     return Error(L, ".vsave expects DPR registers");
11765 
11766   getTargetStreamer().emitRegSave(Op.getRegList(), IsVector);
11767   return false;
11768 }
11769 
11770 /// parseDirectiveInst
11771 ///  ::= .inst opcode [, ...]
11772 ///  ::= .inst.n opcode [, ...]
11773 ///  ::= .inst.w opcode [, ...]
11774 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
11775   int Width = 4;
11776 
11777   if (isThumb()) {
11778     switch (Suffix) {
11779     case 'n':
11780       Width = 2;
11781       break;
11782     case 'w':
11783       break;
11784     default:
11785       Width = 0;
11786       break;
11787     }
11788   } else {
11789     if (Suffix)
11790       return Error(Loc, "width suffixes are invalid in ARM mode");
11791   }
11792 
11793   auto parseOne = [&]() -> bool {
11794     const MCExpr *Expr;
11795     if (getParser().parseExpression(Expr))
11796       return true;
11797     const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
11798     if (!Value) {
11799       return Error(Loc, "expected constant expression");
11800     }
11801 
11802     char CurSuffix = Suffix;
11803     switch (Width) {
11804     case 2:
11805       if (Value->getValue() > 0xffff)
11806         return Error(Loc, "inst.n operand is too big, use inst.w instead");
11807       break;
11808     case 4:
11809       if (Value->getValue() > 0xffffffff)
11810         return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") +
11811                               " operand is too big");
11812       break;
11813     case 0:
11814       // Thumb mode, no width indicated. Guess from the opcode, if possible.
11815       if (Value->getValue() < 0xe800)
11816         CurSuffix = 'n';
11817       else if (Value->getValue() >= 0xe8000000)
11818         CurSuffix = 'w';
11819       else
11820         return Error(Loc, "cannot determine Thumb instruction size, "
11821                           "use inst.n/inst.w instead");
11822       break;
11823     default:
11824       llvm_unreachable("only supported widths are 2 and 4");
11825     }
11826 
11827     getTargetStreamer().emitInst(Value->getValue(), CurSuffix);
11828     return false;
11829   };
11830 
11831   if (parseOptionalToken(AsmToken::EndOfStatement))
11832     return Error(Loc, "expected expression following directive");
11833   if (parseMany(parseOne))
11834     return true;
11835   return false;
11836 }
11837 
11838 /// parseDirectiveLtorg
11839 ///  ::= .ltorg | .pool
11840 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
11841   if (parseEOL())
11842     return true;
11843   getTargetStreamer().emitCurrentConstantPool();
11844   return false;
11845 }
11846 
11847 bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
11848   const MCSection *Section = getStreamer().getCurrentSectionOnly();
11849 
11850   if (parseEOL())
11851     return true;
11852 
11853   if (!Section) {
11854     getStreamer().initSections(false, getSTI());
11855     Section = getStreamer().getCurrentSectionOnly();
11856   }
11857 
11858   assert(Section && "must have section to emit alignment");
11859   if (Section->useCodeAlign())
11860     getStreamer().emitCodeAlignment(Align(2), &getSTI());
11861   else
11862     getStreamer().emitValueToAlignment(Align(2));
11863 
11864   return false;
11865 }
11866 
11867 /// parseDirectivePersonalityIndex
11868 ///   ::= .personalityindex index
11869 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
11870   MCAsmParser &Parser = getParser();
11871   bool HasExistingPersonality = UC.hasPersonality();
11872 
11873   const MCExpr *IndexExpression;
11874   SMLoc IndexLoc = Parser.getTok().getLoc();
11875   if (Parser.parseExpression(IndexExpression) || parseEOL()) {
11876     return true;
11877   }
11878 
11879   UC.recordPersonalityIndex(L);
11880 
11881   if (!UC.hasFnStart()) {
11882     return Error(L, ".fnstart must precede .personalityindex directive");
11883   }
11884   if (UC.cantUnwind()) {
11885     Error(L, ".personalityindex cannot be used with .cantunwind");
11886     UC.emitCantUnwindLocNotes();
11887     return true;
11888   }
11889   if (UC.hasHandlerData()) {
11890     Error(L, ".personalityindex must precede .handlerdata directive");
11891     UC.emitHandlerDataLocNotes();
11892     return true;
11893   }
11894   if (HasExistingPersonality) {
11895     Error(L, "multiple personality directives");
11896     UC.emitPersonalityLocNotes();
11897     return true;
11898   }
11899 
11900   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
11901   if (!CE)
11902     return Error(IndexLoc, "index must be a constant number");
11903   if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX)
11904     return Error(IndexLoc,
11905                  "personality routine index should be in range [0-3]");
11906 
11907   getTargetStreamer().emitPersonalityIndex(CE->getValue());
11908   return false;
11909 }
11910 
11911 /// parseDirectiveUnwindRaw
11912 ///   ::= .unwind_raw offset, opcode [, opcode...]
11913 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
11914   MCAsmParser &Parser = getParser();
11915   int64_t StackOffset;
11916   const MCExpr *OffsetExpr;
11917   SMLoc OffsetLoc = getLexer().getLoc();
11918 
11919   if (!UC.hasFnStart())
11920     return Error(L, ".fnstart must precede .unwind_raw directives");
11921   if (getParser().parseExpression(OffsetExpr))
11922     return Error(OffsetLoc, "expected expression");
11923 
11924   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11925   if (!CE)
11926     return Error(OffsetLoc, "offset must be a constant");
11927 
11928   StackOffset = CE->getValue();
11929 
11930   if (Parser.parseToken(AsmToken::Comma, "expected comma"))
11931     return true;
11932 
11933   SmallVector<uint8_t, 16> Opcodes;
11934 
11935   auto parseOne = [&]() -> bool {
11936     const MCExpr *OE = nullptr;
11937     SMLoc OpcodeLoc = getLexer().getLoc();
11938     if (check(getLexer().is(AsmToken::EndOfStatement) ||
11939                   Parser.parseExpression(OE),
11940               OpcodeLoc, "expected opcode expression"))
11941       return true;
11942     const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
11943     if (!OC)
11944       return Error(OpcodeLoc, "opcode value must be a constant");
11945     const int64_t Opcode = OC->getValue();
11946     if (Opcode & ~0xff)
11947       return Error(OpcodeLoc, "invalid opcode");
11948     Opcodes.push_back(uint8_t(Opcode));
11949     return false;
11950   };
11951 
11952   // Must have at least 1 element
11953   SMLoc OpcodeLoc = getLexer().getLoc();
11954   if (parseOptionalToken(AsmToken::EndOfStatement))
11955     return Error(OpcodeLoc, "expected opcode expression");
11956   if (parseMany(parseOne))
11957     return true;
11958 
11959   getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
11960   return false;
11961 }
11962 
11963 /// parseDirectiveTLSDescSeq
11964 ///   ::= .tlsdescseq tls-variable
11965 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
11966   MCAsmParser &Parser = getParser();
11967 
11968   if (getLexer().isNot(AsmToken::Identifier))
11969     return TokError("expected variable after '.tlsdescseq' directive");
11970 
11971   const MCSymbolRefExpr *SRE =
11972     MCSymbolRefExpr::create(Parser.getTok().getIdentifier(),
11973                             MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
11974   Lex();
11975 
11976   if (parseEOL())
11977     return true;
11978 
11979   getTargetStreamer().annotateTLSDescriptorSequence(SRE);
11980   return false;
11981 }
11982 
11983 /// parseDirectiveMovSP
11984 ///  ::= .movsp reg [, #offset]
11985 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
11986   MCAsmParser &Parser = getParser();
11987   if (!UC.hasFnStart())
11988     return Error(L, ".fnstart must precede .movsp directives");
11989   if (UC.getFPReg() != ARM::SP)
11990     return Error(L, "unexpected .movsp directive");
11991 
11992   SMLoc SPRegLoc = Parser.getTok().getLoc();
11993   int SPReg = tryParseRegister();
11994   if (SPReg == -1)
11995     return Error(SPRegLoc, "register expected");
11996   if (SPReg == ARM::SP || SPReg == ARM::PC)
11997     return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");
11998 
11999   int64_t Offset = 0;
12000   if (Parser.parseOptionalToken(AsmToken::Comma)) {
12001     if (Parser.parseToken(AsmToken::Hash, "expected #constant"))
12002       return true;
12003 
12004     const MCExpr *OffsetExpr;
12005     SMLoc OffsetLoc = Parser.getTok().getLoc();
12006 
12007     if (Parser.parseExpression(OffsetExpr))
12008       return Error(OffsetLoc, "malformed offset expression");
12009 
12010     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
12011     if (!CE)
12012       return Error(OffsetLoc, "offset must be an immediate constant");
12013 
12014     Offset = CE->getValue();
12015   }
12016 
12017   if (parseEOL())
12018     return true;
12019 
12020   getTargetStreamer().emitMovSP(SPReg, Offset);
12021   UC.saveFPReg(SPReg);
12022 
12023   return false;
12024 }
12025 
12026 /// parseDirectiveObjectArch
12027 ///   ::= .object_arch name
12028 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
12029   MCAsmParser &Parser = getParser();
12030   if (getLexer().isNot(AsmToken::Identifier))
12031     return Error(getLexer().getLoc(), "unexpected token");
12032 
12033   StringRef Arch = Parser.getTok().getString();
12034   SMLoc ArchLoc = Parser.getTok().getLoc();
12035   Lex();
12036 
12037   ARM::ArchKind ID = ARM::parseArch(Arch);
12038 
12039   if (ID == ARM::ArchKind::INVALID)
12040     return Error(ArchLoc, "unknown architecture '" + Arch + "'");
12041   if (parseToken(AsmToken::EndOfStatement))
12042     return true;
12043 
12044   getTargetStreamer().emitObjectArch(ID);
12045   return false;
12046 }
12047 
12048 /// parseDirectiveAlign
12049 ///   ::= .align
12050 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
12051   // NOTE: if this is not the end of the statement, fall back to the target
12052   // agnostic handling for this directive which will correctly handle this.
12053   if (parseOptionalToken(AsmToken::EndOfStatement)) {
12054     // '.align' is target specifically handled to mean 2**2 byte alignment.
12055     const MCSection *Section = getStreamer().getCurrentSectionOnly();
12056     assert(Section && "must have section to emit alignment");
12057     if (Section->useCodeAlign())
12058       getStreamer().emitCodeAlignment(Align(4), &getSTI(), 0);
12059     else
12060       getStreamer().emitValueToAlignment(Align(4), 0, 1, 0);
12061     return false;
12062   }
12063   return true;
12064 }
12065 
12066 /// parseDirectiveThumbSet
12067 ///  ::= .thumb_set name, value
12068 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
12069   MCAsmParser &Parser = getParser();
12070 
12071   StringRef Name;
12072   if (check(Parser.parseIdentifier(Name),
12073             "expected identifier after '.thumb_set'") ||
12074       parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'"))
12075     return true;
12076 
12077   MCSymbol *Sym;
12078   const MCExpr *Value;
12079   if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true,
12080                                                Parser, Sym, Value))
12081     return true;
12082 
12083   getTargetStreamer().emitThumbSet(Sym, Value);
12084   return false;
12085 }
12086 
12087 /// parseDirectiveSEHAllocStack
12088 /// ::= .seh_stackalloc
12089 /// ::= .seh_stackalloc_w
12090 bool ARMAsmParser::parseDirectiveSEHAllocStack(SMLoc L, bool Wide) {
12091   int64_t Size;
12092   if (parseImmExpr(Size))
12093     return true;
12094   getTargetStreamer().emitARMWinCFIAllocStack(Size, Wide);
12095   return false;
12096 }
12097 
12098 /// parseDirectiveSEHSaveRegs
12099 /// ::= .seh_save_regs
12100 /// ::= .seh_save_regs_w
12101 bool ARMAsmParser::parseDirectiveSEHSaveRegs(SMLoc L, bool Wide) {
12102   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
12103 
12104   if (parseRegisterList(Operands) || parseEOL())
12105     return true;
12106   ARMOperand &Op = (ARMOperand &)*Operands[0];
12107   if (!Op.isRegList())
12108     return Error(L, ".seh_save_regs{_w} expects GPR registers");
12109   const SmallVectorImpl<unsigned> &RegList = Op.getRegList();
12110   uint32_t Mask = 0;
12111   for (size_t i = 0; i < RegList.size(); ++i) {
12112     unsigned Reg = MRI->getEncodingValue(RegList[i]);
12113     if (Reg == 15) // pc -> lr
12114       Reg = 14;
12115     if (Reg == 13)
12116       return Error(L, ".seh_save_regs{_w} can't include SP");
12117     assert(Reg < 16U && "Register out of range");
12118     unsigned Bit = (1u << Reg);
12119     Mask |= Bit;
12120   }
12121   if (!Wide && (Mask & 0x1f00) != 0)
12122     return Error(L,
12123                  ".seh_save_regs cannot save R8-R12, needs .seh_save_regs_w");
12124   getTargetStreamer().emitARMWinCFISaveRegMask(Mask, Wide);
12125   return false;
12126 }
12127 
12128 /// parseDirectiveSEHSaveSP
12129 /// ::= .seh_save_sp
12130 bool ARMAsmParser::parseDirectiveSEHSaveSP(SMLoc L) {
12131   int Reg = tryParseRegister();
12132   if (Reg == -1 || !MRI->getRegClass(ARM::GPRRegClassID).contains(Reg))
12133     return Error(L, "expected GPR");
12134   unsigned Index = MRI->getEncodingValue(Reg);
12135   if (Index > 14 || Index == 13)
12136     return Error(L, "invalid register for .seh_save_sp");
12137   getTargetStreamer().emitARMWinCFISaveSP(Index);
12138   return false;
12139 }
12140 
12141 /// parseDirectiveSEHSaveFRegs
12142 /// ::= .seh_save_fregs
12143 bool ARMAsmParser::parseDirectiveSEHSaveFRegs(SMLoc L) {
12144   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
12145 
12146   if (parseRegisterList(Operands) || parseEOL())
12147     return true;
12148   ARMOperand &Op = (ARMOperand &)*Operands[0];
12149   if (!Op.isDPRRegList())
12150     return Error(L, ".seh_save_fregs expects DPR registers");
12151   const SmallVectorImpl<unsigned> &RegList = Op.getRegList();
12152   uint32_t Mask = 0;
12153   for (size_t i = 0; i < RegList.size(); ++i) {
12154     unsigned Reg = MRI->getEncodingValue(RegList[i]);
12155     assert(Reg < 32U && "Register out of range");
12156     unsigned Bit = (1u << Reg);
12157     Mask |= Bit;
12158   }
12159 
12160   if (Mask == 0)
12161     return Error(L, ".seh_save_fregs missing registers");
12162 
12163   unsigned First = 0;
12164   while ((Mask & 1) == 0) {
12165     First++;
12166     Mask >>= 1;
12167   }
12168   if (((Mask + 1) & Mask) != 0)
12169     return Error(L,
12170                  ".seh_save_fregs must take a contiguous range of registers");
12171   unsigned Last = First;
12172   while ((Mask & 2) != 0) {
12173     Last++;
12174     Mask >>= 1;
12175   }
12176   if (First < 16 && Last >= 16)
12177     return Error(L, ".seh_save_fregs must be all d0-d15 or d16-d31");
12178   getTargetStreamer().emitARMWinCFISaveFRegs(First, Last);
12179   return false;
12180 }
12181 
12182 /// parseDirectiveSEHSaveLR
12183 /// ::= .seh_save_lr
12184 bool ARMAsmParser::parseDirectiveSEHSaveLR(SMLoc L) {
12185   int64_t Offset;
12186   if (parseImmExpr(Offset))
12187     return true;
12188   getTargetStreamer().emitARMWinCFISaveLR(Offset);
12189   return false;
12190 }
12191 
12192 /// parseDirectiveSEHPrologEnd
12193 /// ::= .seh_endprologue
12194 /// ::= .seh_endprologue_fragment
12195 bool ARMAsmParser::parseDirectiveSEHPrologEnd(SMLoc L, bool Fragment) {
12196   getTargetStreamer().emitARMWinCFIPrologEnd(Fragment);
12197   return false;
12198 }
12199 
12200 /// parseDirectiveSEHNop
12201 /// ::= .seh_nop
12202 /// ::= .seh_nop_w
12203 bool ARMAsmParser::parseDirectiveSEHNop(SMLoc L, bool Wide) {
12204   getTargetStreamer().emitARMWinCFINop(Wide);
12205   return false;
12206 }
12207 
12208 /// parseDirectiveSEHEpilogStart
12209 /// ::= .seh_startepilogue
12210 /// ::= .seh_startepilogue_cond
12211 bool ARMAsmParser::parseDirectiveSEHEpilogStart(SMLoc L, bool Condition) {
12212   unsigned CC = ARMCC::AL;
12213   if (Condition) {
12214     MCAsmParser &Parser = getParser();
12215     SMLoc S = Parser.getTok().getLoc();
12216     const AsmToken &Tok = Parser.getTok();
12217     if (!Tok.is(AsmToken::Identifier))
12218       return Error(S, ".seh_startepilogue_cond missing condition");
12219     CC = ARMCondCodeFromString(Tok.getString());
12220     if (CC == ~0U)
12221       return Error(S, "invalid condition");
12222     Parser.Lex(); // Eat the token.
12223   }
12224 
12225   getTargetStreamer().emitARMWinCFIEpilogStart(CC);
12226   return false;
12227 }
12228 
12229 /// parseDirectiveSEHEpilogEnd
12230 /// ::= .seh_endepilogue
12231 bool ARMAsmParser::parseDirectiveSEHEpilogEnd(SMLoc L) {
12232   getTargetStreamer().emitARMWinCFIEpilogEnd();
12233   return false;
12234 }
12235 
12236 /// parseDirectiveSEHCustom
12237 /// ::= .seh_custom
12238 bool ARMAsmParser::parseDirectiveSEHCustom(SMLoc L) {
12239   unsigned Opcode = 0;
12240   do {
12241     int64_t Byte;
12242     if (parseImmExpr(Byte))
12243       return true;
12244     if (Byte > 0xff || Byte < 0)
12245       return Error(L, "Invalid byte value in .seh_custom");
12246     if (Opcode > 0x00ffffff)
12247       return Error(L, "Too many bytes in .seh_custom");
12248     // Store the bytes as one big endian number in Opcode. In a multi byte
12249     // opcode sequence, the first byte can't be zero.
12250     Opcode = (Opcode << 8) | Byte;
12251   } while (parseOptionalToken(AsmToken::Comma));
12252   getTargetStreamer().emitARMWinCFICustom(Opcode);
12253   return false;
12254 }
12255 
12256 /// Force static initialization.
12257 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmParser() {
12258   RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget());
12259   RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget());
12260   RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget());
12261   RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget());
12262 }
12263 
12264 #define GET_REGISTER_MATCHER
12265 #define GET_SUBTARGET_FEATURE_NAME
12266 #define GET_MATCHER_IMPLEMENTATION
12267 #define GET_MNEMONIC_SPELL_CHECKER
12268 #include "ARMGenAsmMatcher.inc"
12269 
12270 // Some diagnostics need to vary with subtarget features, so they are handled
12271 // here. For example, the DPR class has either 16 or 32 registers, depending
12272 // on the FPU available.
12273 const char *
12274 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) {
12275   switch (MatchError) {
12276   // rGPR contains sp starting with ARMv8.
12277   case Match_rGPR:
12278     return hasV8Ops() ? "operand must be a register in range [r0, r14]"
12279                       : "operand must be a register in range [r0, r12] or r14";
12280   // DPR contains 16 registers for some FPUs, and 32 for others.
12281   case Match_DPR:
12282     return hasD32() ? "operand must be a register in range [d0, d31]"
12283                     : "operand must be a register in range [d0, d15]";
12284   case Match_DPR_RegList:
12285     return hasD32() ? "operand must be a list of registers in range [d0, d31]"
12286                     : "operand must be a list of registers in range [d0, d15]";
12287 
12288   // For all other diags, use the static string from tablegen.
12289   default:
12290     return getMatchKindDiag(MatchError);
12291   }
12292 }
12293 
12294 // Process the list of near-misses, throwing away ones we don't want to report
12295 // to the user, and converting the rest to a source location and string that
12296 // should be reported.
12297 void
12298 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
12299                                SmallVectorImpl<NearMissMessage> &NearMissesOut,
12300                                SMLoc IDLoc, OperandVector &Operands) {
12301   // TODO: If operand didn't match, sub in a dummy one and run target
12302   // predicate, so that we can avoid reporting near-misses that are invalid?
12303   // TODO: Many operand types dont have SuperClasses set, so we report
12304   // redundant ones.
12305   // TODO: Some operands are superclasses of registers (e.g.
12306   // MCK_RegShiftedImm), we don't have any way to represent that currently.
12307   // TODO: This is not all ARM-specific, can some of it be factored out?
12308 
12309   // Record some information about near-misses that we have already seen, so
12310   // that we can avoid reporting redundant ones. For example, if there are
12311   // variants of an instruction that take 8- and 16-bit immediates, we want
12312   // to only report the widest one.
12313   std::multimap<unsigned, unsigned> OperandMissesSeen;
12314   SmallSet<FeatureBitset, 4> FeatureMissesSeen;
12315   bool ReportedTooFewOperands = false;
12316 
12317   // Process the near-misses in reverse order, so that we see more general ones
12318   // first, and so can avoid emitting more specific ones.
12319   for (NearMissInfo &I : reverse(NearMissesIn)) {
12320     switch (I.getKind()) {
12321     case NearMissInfo::NearMissOperand: {
12322       SMLoc OperandLoc =
12323           ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc();
12324       const char *OperandDiag =
12325           getCustomOperandDiag((ARMMatchResultTy)I.getOperandError());
12326 
12327       // If we have already emitted a message for a superclass, don't also report
12328       // the sub-class. We consider all operand classes that we don't have a
12329       // specialised diagnostic for to be equal for the propose of this check,
12330       // so that we don't report the generic error multiple times on the same
12331       // operand.
12332       unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U;
12333       auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex());
12334       if (std::any_of(PrevReports.first, PrevReports.second,
12335                       [DupCheckMatchClass](
12336                           const std::pair<unsigned, unsigned> Pair) {
12337             if (DupCheckMatchClass == ~0U || Pair.second == ~0U)
12338               return Pair.second == DupCheckMatchClass;
12339             else
12340               return isSubclass((MatchClassKind)DupCheckMatchClass,
12341                                 (MatchClassKind)Pair.second);
12342           }))
12343         break;
12344       OperandMissesSeen.insert(
12345           std::make_pair(I.getOperandIndex(), DupCheckMatchClass));
12346 
12347       NearMissMessage Message;
12348       Message.Loc = OperandLoc;
12349       if (OperandDiag) {
12350         Message.Message = OperandDiag;
12351       } else if (I.getOperandClass() == InvalidMatchClass) {
12352         Message.Message = "too many operands for instruction";
12353       } else {
12354         Message.Message = "invalid operand for instruction";
12355         LLVM_DEBUG(
12356             dbgs() << "Missing diagnostic string for operand class "
12357                    << getMatchClassName((MatchClassKind)I.getOperandClass())
12358                    << I.getOperandClass() << ", error " << I.getOperandError()
12359                    << ", opcode " << MII.getName(I.getOpcode()) << "\n");
12360       }
12361       NearMissesOut.emplace_back(Message);
12362       break;
12363     }
12364     case NearMissInfo::NearMissFeature: {
12365       const FeatureBitset &MissingFeatures = I.getFeatures();
12366       // Don't report the same set of features twice.
12367       if (FeatureMissesSeen.count(MissingFeatures))
12368         break;
12369       FeatureMissesSeen.insert(MissingFeatures);
12370 
12371       // Special case: don't report a feature set which includes arm-mode for
12372       // targets that don't have ARM mode.
12373       if (MissingFeatures.test(Feature_IsARMBit) && !hasARM())
12374         break;
12375       // Don't report any near-misses that both require switching instruction
12376       // set, and adding other subtarget features.
12377       if (isThumb() && MissingFeatures.test(Feature_IsARMBit) &&
12378           MissingFeatures.count() > 1)
12379         break;
12380       if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) &&
12381           MissingFeatures.count() > 1)
12382         break;
12383       if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) &&
12384           (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit,
12385                                              Feature_IsThumbBit})).any())
12386         break;
12387       if (isMClass() && MissingFeatures.test(Feature_HasNEONBit))
12388         break;
12389 
12390       NearMissMessage Message;
12391       Message.Loc = IDLoc;
12392       raw_svector_ostream OS(Message.Message);
12393 
12394       OS << "instruction requires:";
12395       for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i)
12396         if (MissingFeatures.test(i))
12397           OS << ' ' << getSubtargetFeatureName(i);
12398 
12399       NearMissesOut.emplace_back(Message);
12400 
12401       break;
12402     }
12403     case NearMissInfo::NearMissPredicate: {
12404       NearMissMessage Message;
12405       Message.Loc = IDLoc;
12406       switch (I.getPredicateError()) {
12407       case Match_RequiresNotITBlock:
12408         Message.Message = "flag setting instruction only valid outside IT block";
12409         break;
12410       case Match_RequiresITBlock:
12411         Message.Message = "instruction only valid inside IT block";
12412         break;
12413       case Match_RequiresV6:
12414         Message.Message = "instruction variant requires ARMv6 or later";
12415         break;
12416       case Match_RequiresThumb2:
12417         Message.Message = "instruction variant requires Thumb2";
12418         break;
12419       case Match_RequiresV8:
12420         Message.Message = "instruction variant requires ARMv8 or later";
12421         break;
12422       case Match_RequiresFlagSetting:
12423         Message.Message = "no flag-preserving variant of this instruction available";
12424         break;
12425       case Match_InvalidOperand:
12426         Message.Message = "invalid operand for instruction";
12427         break;
12428       default:
12429         llvm_unreachable("Unhandled target predicate error");
12430         break;
12431       }
12432       NearMissesOut.emplace_back(Message);
12433       break;
12434     }
12435     case NearMissInfo::NearMissTooFewOperands: {
12436       if (!ReportedTooFewOperands) {
12437         SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc();
12438         NearMissesOut.emplace_back(NearMissMessage{
12439             EndLoc, StringRef("too few operands for instruction")});
12440         ReportedTooFewOperands = true;
12441       }
12442       break;
12443     }
12444     case NearMissInfo::NoNearMiss:
12445       // This should never leave the matcher.
12446       llvm_unreachable("not a near-miss");
12447       break;
12448     }
12449   }
12450 }
12451 
12452 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses,
12453                                     SMLoc IDLoc, OperandVector &Operands) {
12454   SmallVector<NearMissMessage, 4> Messages;
12455   FilterNearMisses(NearMisses, Messages, IDLoc, Operands);
12456 
12457   if (Messages.size() == 0) {
12458     // No near-misses were found, so the best we can do is "invalid
12459     // instruction".
12460     Error(IDLoc, "invalid instruction");
12461   } else if (Messages.size() == 1) {
12462     // One near miss was found, report it as the sole error.
12463     Error(Messages[0].Loc, Messages[0].Message);
12464   } else {
12465     // More than one near miss, so report a generic "invalid instruction"
12466     // error, followed by notes for each of the near-misses.
12467     Error(IDLoc, "invalid instruction, any one of the following would fix this:");
12468     for (auto &M : Messages) {
12469       Note(M.Loc, M.Message);
12470     }
12471   }
12472 }
12473 
12474 bool ARMAsmParser::enableArchExtFeature(StringRef Name, SMLoc &ExtLoc) {
12475   // FIXME: This structure should be moved inside ARMTargetParser
12476   // when we start to table-generate them, and we can use the ARM
12477   // flags below, that were generated by table-gen.
12478   static const struct {
12479     const uint64_t Kind;
12480     const FeatureBitset ArchCheck;
12481     const FeatureBitset Features;
12482   } Extensions[] = {
12483       {ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC}},
12484       {ARM::AEK_AES,
12485        {Feature_HasV8Bit},
12486        {ARM::FeatureAES, ARM::FeatureNEON, ARM::FeatureFPARMv8}},
12487       {ARM::AEK_SHA2,
12488        {Feature_HasV8Bit},
12489        {ARM::FeatureSHA2, ARM::FeatureNEON, ARM::FeatureFPARMv8}},
12490       {ARM::AEK_CRYPTO,
12491        {Feature_HasV8Bit},
12492        {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8}},
12493       {ARM::AEK_FP,
12494        {Feature_HasV8Bit},
12495        {ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8}},
12496       {(ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM),
12497        {Feature_HasV7Bit, Feature_IsNotMClassBit},
12498        {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM}},
12499       {ARM::AEK_MP,
12500        {Feature_HasV7Bit, Feature_IsNotMClassBit},
12501        {ARM::FeatureMP}},
12502       {ARM::AEK_SIMD,
12503        {Feature_HasV8Bit},
12504        {ARM::FeatureNEON, ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8}},
12505       {ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone}},
12506       // FIXME: Only available in A-class, isel not predicated
12507       {ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization}},
12508       {ARM::AEK_FP16,
12509        {Feature_HasV8_2aBit},
12510        {ARM::FeatureFPARMv8, ARM::FeatureFullFP16}},
12511       {ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS}},
12512       {ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB}},
12513       {ARM::AEK_PACBTI, {Feature_HasV8_1MMainlineBit}, {ARM::FeaturePACBTI}},
12514       // FIXME: Unsupported extensions.
12515       {ARM::AEK_OS, {}, {}},
12516       {ARM::AEK_IWMMXT, {}, {}},
12517       {ARM::AEK_IWMMXT2, {}, {}},
12518       {ARM::AEK_MAVERICK, {}, {}},
12519       {ARM::AEK_XSCALE, {}, {}},
12520   };
12521   bool EnableFeature = true;
12522   if (Name.startswith_insensitive("no")) {
12523     EnableFeature = false;
12524     Name = Name.substr(2);
12525   }
12526   uint64_t FeatureKind = ARM::parseArchExt(Name);
12527   if (FeatureKind == ARM::AEK_INVALID)
12528     return Error(ExtLoc, "unknown architectural extension: " + Name);
12529 
12530   for (const auto &Extension : Extensions) {
12531     if (Extension.Kind != FeatureKind)
12532       continue;
12533 
12534     if (Extension.Features.none())
12535       return Error(ExtLoc, "unsupported architectural extension: " + Name);
12536 
12537     if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck)
12538       return Error(ExtLoc, "architectural extension '" + Name +
12539                                "' is not "
12540                                "allowed for the current base architecture");
12541 
12542     MCSubtargetInfo &STI = copySTI();
12543     if (EnableFeature) {
12544       STI.SetFeatureBitsTransitively(Extension.Features);
12545     } else {
12546       STI.ClearFeatureBitsTransitively(Extension.Features);
12547     }
12548     FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits());
12549     setAvailableFeatures(Features);
12550     return true;
12551   }
12552   return false;
12553 }
12554 
12555 /// parseDirectiveArchExtension
12556 ///   ::= .arch_extension [no]feature
12557 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
12558 
12559   MCAsmParser &Parser = getParser();
12560 
12561   if (getLexer().isNot(AsmToken::Identifier))
12562     return Error(getLexer().getLoc(), "expected architecture extension name");
12563 
12564   StringRef Name = Parser.getTok().getString();
12565   SMLoc ExtLoc = Parser.getTok().getLoc();
12566   Lex();
12567 
12568   if (parseEOL())
12569     return true;
12570 
12571   if (Name == "nocrypto") {
12572     enableArchExtFeature("nosha2", ExtLoc);
12573     enableArchExtFeature("noaes", ExtLoc);
12574   }
12575 
12576   if (enableArchExtFeature(Name, ExtLoc))
12577     return false;
12578 
12579   return Error(ExtLoc, "unknown architectural extension: " + Name);
12580 }
12581 
12582 // Define this matcher function after the auto-generated include so we
12583 // have the match class enum definitions.
12584 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
12585                                                   unsigned Kind) {
12586   ARMOperand &Op = static_cast<ARMOperand &>(AsmOp);
12587   // If the kind is a token for a literal immediate, check if our asm
12588   // operand matches. This is for InstAliases which have a fixed-value
12589   // immediate in the syntax.
12590   switch (Kind) {
12591   default: break;
12592   case MCK__HASH_0:
12593     if (Op.isImm())
12594       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
12595         if (CE->getValue() == 0)
12596           return Match_Success;
12597     break;
12598   case MCK__HASH_8:
12599     if (Op.isImm())
12600       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
12601         if (CE->getValue() == 8)
12602           return Match_Success;
12603     break;
12604   case MCK__HASH_16:
12605     if (Op.isImm())
12606       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
12607         if (CE->getValue() == 16)
12608           return Match_Success;
12609     break;
12610   case MCK_ModImm:
12611     if (Op.isImm()) {
12612       const MCExpr *SOExpr = Op.getImm();
12613       int64_t Value;
12614       if (!SOExpr->evaluateAsAbsolute(Value))
12615         return Match_Success;
12616       assert((Value >= std::numeric_limits<int32_t>::min() &&
12617               Value <= std::numeric_limits<uint32_t>::max()) &&
12618              "expression value must be representable in 32 bits");
12619     }
12620     break;
12621   case MCK_rGPR:
12622     if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP)
12623       return Match_Success;
12624     return Match_rGPR;
12625   case MCK_GPRPair:
12626     if (Op.isReg() &&
12627         MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg()))
12628       return Match_Success;
12629     break;
12630   }
12631   return Match_InvalidOperand;
12632 }
12633 
12634 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic,
12635                                            StringRef ExtraToken) {
12636   if (!hasMVE())
12637     return false;
12638 
12639   return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") ||
12640          Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") ||
12641          Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") ||
12642          Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") ||
12643          Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") ||
12644          Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") ||
12645          Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") ||
12646          Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") ||
12647          Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") ||
12648          Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") ||
12649          Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") ||
12650          Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") ||
12651          Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") ||
12652          Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") ||
12653          Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") ||
12654          Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") ||
12655          Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") ||
12656          Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") ||
12657          Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") ||
12658          Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") ||
12659          Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") ||
12660          Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") ||
12661          Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") ||
12662          Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") ||
12663          Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") ||
12664          Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") ||
12665          Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") ||
12666          Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") ||
12667          Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") ||
12668          Mnemonic.startswith("vqabs") ||
12669          (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") ||
12670          Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") ||
12671          Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") ||
12672          Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") ||
12673          Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") ||
12674          Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") ||
12675          Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") ||
12676          Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") ||
12677          Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") ||
12678          Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") ||
12679          Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") ||
12680          Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") ||
12681          Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") ||
12682          Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") ||
12683          Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") ||
12684          Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") ||
12685          Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") ||
12686          Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") ||
12687          Mnemonic.startswith("vldrb") ||
12688          (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") ||
12689          (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") ||
12690          Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") ||
12691          Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") ||
12692          Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") ||
12693          Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") ||
12694          Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") ||
12695          Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") ||
12696          Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") ||
12697          Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") ||
12698          Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") ||
12699          Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") ||
12700          Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") ||
12701          Mnemonic.startswith("vcvt") ||
12702          MS.isVPTPredicableCDEInstr(Mnemonic) ||
12703          (Mnemonic.startswith("vmov") &&
12704           !(ExtraToken == ".f16" || ExtraToken == ".32" ||
12705             ExtraToken == ".16" || ExtraToken == ".8"));
12706 }
12707