1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMBaseInstrInfo.h" 10 #include "ARMFeatures.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMBaseInfo.h" 13 #include "MCTargetDesc/ARMInstPrinter.h" 14 #include "MCTargetDesc/ARMMCExpr.h" 15 #include "MCTargetDesc/ARMMCTargetDesc.h" 16 #include "TargetInfo/ARMTargetInfo.h" 17 #include "Utils/ARMBaseInfo.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/StringSet.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/MC/MCContext.h" 31 #include "llvm/MC/MCExpr.h" 32 #include "llvm/MC/MCInst.h" 33 #include "llvm/MC/MCInstrDesc.h" 34 #include "llvm/MC/MCInstrInfo.h" 35 #include "llvm/MC/MCParser/MCAsmLexer.h" 36 #include "llvm/MC/MCParser/MCAsmParser.h" 37 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 38 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 39 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 40 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 41 #include "llvm/MC/MCRegisterInfo.h" 42 #include "llvm/MC/MCSection.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSubtargetInfo.h" 45 #include "llvm/MC/MCSymbol.h" 46 #include "llvm/MC/SubtargetFeature.h" 47 #include "llvm/MC/TargetRegistry.h" 48 #include "llvm/Support/ARMBuildAttributes.h" 49 #include "llvm/Support/ARMEHABI.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/SMLoc.h" 56 #include "llvm/Support/TargetParser.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstddef> 61 #include <cstdint> 62 #include <iterator> 63 #include <limits> 64 #include <memory> 65 #include <string> 66 #include <utility> 67 #include <vector> 68 69 #define DEBUG_TYPE "asm-parser" 70 71 using namespace llvm; 72 73 namespace llvm { 74 extern const MCInstrDesc ARMInsts[]; 75 } // end namespace llvm 76 77 namespace { 78 79 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 80 81 static cl::opt<ImplicitItModeTy> ImplicitItMode( 82 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 83 cl::desc("Allow conditional instructions outdside of an IT block"), 84 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 85 "Accept in both ISAs, emit implicit ITs in Thumb"), 86 clEnumValN(ImplicitItModeTy::Never, "never", 87 "Warn in ARM, reject in Thumb"), 88 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 89 "Accept in ARM, reject in Thumb"), 90 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 91 "Warn in ARM, emit implicit ITs in Thumb"))); 92 93 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 94 cl::init(false)); 95 96 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 97 98 static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) { 99 // Position==0 means we're not in an IT block at all. Position==1 100 // means we want the first state bit, which is always 0 (Then). 101 // Position==2 means we want the second state bit, stored at bit 3 102 // of Mask, and so on downwards. So (5 - Position) will shift the 103 // right bit down to bit 0, including the always-0 bit at bit 4 for 104 // the mandatory initial Then. 105 return (Mask >> (5 - Position) & 1); 106 } 107 108 class UnwindContext { 109 using Locs = SmallVector<SMLoc, 4>; 110 111 MCAsmParser &Parser; 112 Locs FnStartLocs; 113 Locs CantUnwindLocs; 114 Locs PersonalityLocs; 115 Locs PersonalityIndexLocs; 116 Locs HandlerDataLocs; 117 int FPReg; 118 119 public: 120 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 121 122 bool hasFnStart() const { return !FnStartLocs.empty(); } 123 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 124 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 125 126 bool hasPersonality() const { 127 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 128 } 129 130 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 131 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 132 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 133 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 134 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 135 136 void saveFPReg(int Reg) { FPReg = Reg; } 137 int getFPReg() const { return FPReg; } 138 139 void emitFnStartLocNotes() const { 140 for (const SMLoc &Loc : FnStartLocs) 141 Parser.Note(Loc, ".fnstart was specified here"); 142 } 143 144 void emitCantUnwindLocNotes() const { 145 for (const SMLoc &Loc : CantUnwindLocs) 146 Parser.Note(Loc, ".cantunwind was specified here"); 147 } 148 149 void emitHandlerDataLocNotes() const { 150 for (const SMLoc &Loc : HandlerDataLocs) 151 Parser.Note(Loc, ".handlerdata was specified here"); 152 } 153 154 void emitPersonalityLocNotes() const { 155 for (Locs::const_iterator PI = PersonalityLocs.begin(), 156 PE = PersonalityLocs.end(), 157 PII = PersonalityIndexLocs.begin(), 158 PIE = PersonalityIndexLocs.end(); 159 PI != PE || PII != PIE;) { 160 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 161 Parser.Note(*PI++, ".personality was specified here"); 162 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 163 Parser.Note(*PII++, ".personalityindex was specified here"); 164 else 165 llvm_unreachable(".personality and .personalityindex cannot be " 166 "at the same location"); 167 } 168 } 169 170 void reset() { 171 FnStartLocs = Locs(); 172 CantUnwindLocs = Locs(); 173 PersonalityLocs = Locs(); 174 HandlerDataLocs = Locs(); 175 PersonalityIndexLocs = Locs(); 176 FPReg = ARM::SP; 177 } 178 }; 179 180 // Various sets of ARM instruction mnemonics which are used by the asm parser 181 class ARMMnemonicSets { 182 StringSet<> CDE; 183 StringSet<> CDEWithVPTSuffix; 184 public: 185 ARMMnemonicSets(const MCSubtargetInfo &STI); 186 187 /// Returns true iff a given mnemonic is a CDE instruction 188 bool isCDEInstr(StringRef Mnemonic) { 189 // Quick check before searching the set 190 if (!Mnemonic.startswith("cx") && !Mnemonic.startswith("vcx")) 191 return false; 192 return CDE.count(Mnemonic); 193 } 194 195 /// Returns true iff a given mnemonic is a VPT-predicable CDE instruction 196 /// (possibly with a predication suffix "e" or "t") 197 bool isVPTPredicableCDEInstr(StringRef Mnemonic) { 198 if (!Mnemonic.startswith("vcx")) 199 return false; 200 return CDEWithVPTSuffix.count(Mnemonic); 201 } 202 203 /// Returns true iff a given mnemonic is an IT-predicable CDE instruction 204 /// (possibly with a condition suffix) 205 bool isITPredicableCDEInstr(StringRef Mnemonic) { 206 if (!Mnemonic.startswith("cx")) 207 return false; 208 return Mnemonic.startswith("cx1a") || Mnemonic.startswith("cx1da") || 209 Mnemonic.startswith("cx2a") || Mnemonic.startswith("cx2da") || 210 Mnemonic.startswith("cx3a") || Mnemonic.startswith("cx3da"); 211 } 212 213 /// Return true iff a given mnemonic is an integer CDE instruction with 214 /// dual-register destination 215 bool isCDEDualRegInstr(StringRef Mnemonic) { 216 if (!Mnemonic.startswith("cx")) 217 return false; 218 return Mnemonic == "cx1d" || Mnemonic == "cx1da" || 219 Mnemonic == "cx2d" || Mnemonic == "cx2da" || 220 Mnemonic == "cx3d" || Mnemonic == "cx3da"; 221 } 222 }; 223 224 ARMMnemonicSets::ARMMnemonicSets(const MCSubtargetInfo &STI) { 225 for (StringRef Mnemonic: { "cx1", "cx1a", "cx1d", "cx1da", 226 "cx2", "cx2a", "cx2d", "cx2da", 227 "cx3", "cx3a", "cx3d", "cx3da", }) 228 CDE.insert(Mnemonic); 229 for (StringRef Mnemonic : 230 {"vcx1", "vcx1a", "vcx2", "vcx2a", "vcx3", "vcx3a"}) { 231 CDE.insert(Mnemonic); 232 CDEWithVPTSuffix.insert(Mnemonic); 233 CDEWithVPTSuffix.insert(std::string(Mnemonic) + "t"); 234 CDEWithVPTSuffix.insert(std::string(Mnemonic) + "e"); 235 } 236 } 237 238 class ARMAsmParser : public MCTargetAsmParser { 239 const MCRegisterInfo *MRI; 240 UnwindContext UC; 241 ARMMnemonicSets MS; 242 243 ARMTargetStreamer &getTargetStreamer() { 244 assert(getParser().getStreamer().getTargetStreamer() && 245 "do not have a target streamer"); 246 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 247 return static_cast<ARMTargetStreamer &>(TS); 248 } 249 250 // Map of register aliases registers via the .req directive. 251 StringMap<unsigned> RegisterReqs; 252 253 bool NextSymbolIsThumb; 254 255 bool useImplicitITThumb() const { 256 return ImplicitItMode == ImplicitItModeTy::Always || 257 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 258 } 259 260 bool useImplicitITARM() const { 261 return ImplicitItMode == ImplicitItModeTy::Always || 262 ImplicitItMode == ImplicitItModeTy::ARMOnly; 263 } 264 265 struct { 266 ARMCC::CondCodes Cond; // Condition for IT block. 267 unsigned Mask:4; // Condition mask for instructions. 268 // Starting at first 1 (from lsb). 269 // '1' condition as indicated in IT. 270 // '0' inverse of condition (else). 271 // Count of instructions in IT block is 272 // 4 - trailingzeroes(mask) 273 // Note that this does not have the same encoding 274 // as in the IT instruction, which also depends 275 // on the low bit of the condition code. 276 277 unsigned CurPosition; // Current position in parsing of IT 278 // block. In range [0,4], with 0 being the IT 279 // instruction itself. Initialized according to 280 // count of instructions in block. ~0U if no 281 // active IT block. 282 283 bool IsExplicit; // true - The IT instruction was present in the 284 // input, we should not modify it. 285 // false - The IT instruction was added 286 // implicitly, we can extend it if that 287 // would be legal. 288 } ITState; 289 290 SmallVector<MCInst, 4> PendingConditionalInsts; 291 292 void flushPendingInstructions(MCStreamer &Out) override { 293 if (!inImplicitITBlock()) { 294 assert(PendingConditionalInsts.size() == 0); 295 return; 296 } 297 298 // Emit the IT instruction 299 MCInst ITInst; 300 ITInst.setOpcode(ARM::t2IT); 301 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 302 ITInst.addOperand(MCOperand::createImm(ITState.Mask)); 303 Out.emitInstruction(ITInst, getSTI()); 304 305 // Emit the conditonal instructions 306 assert(PendingConditionalInsts.size() <= 4); 307 for (const MCInst &Inst : PendingConditionalInsts) { 308 Out.emitInstruction(Inst, getSTI()); 309 } 310 PendingConditionalInsts.clear(); 311 312 // Clear the IT state 313 ITState.Mask = 0; 314 ITState.CurPosition = ~0U; 315 } 316 317 bool inITBlock() { return ITState.CurPosition != ~0U; } 318 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 319 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 320 321 bool lastInITBlock() { 322 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 323 } 324 325 void forwardITPosition() { 326 if (!inITBlock()) return; 327 // Move to the next instruction in the IT block, if there is one. If not, 328 // mark the block as done, except for implicit IT blocks, which we leave 329 // open until we find an instruction that can't be added to it. 330 unsigned TZ = countTrailingZeros(ITState.Mask); 331 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 332 ITState.CurPosition = ~0U; // Done with the IT block after this. 333 } 334 335 // Rewind the state of the current IT block, removing the last slot from it. 336 void rewindImplicitITPosition() { 337 assert(inImplicitITBlock()); 338 assert(ITState.CurPosition > 1); 339 ITState.CurPosition--; 340 unsigned TZ = countTrailingZeros(ITState.Mask); 341 unsigned NewMask = 0; 342 NewMask |= ITState.Mask & (0xC << TZ); 343 NewMask |= 0x2 << TZ; 344 ITState.Mask = NewMask; 345 } 346 347 // Rewind the state of the current IT block, removing the last slot from it. 348 // If we were at the first slot, this closes the IT block. 349 void discardImplicitITBlock() { 350 assert(inImplicitITBlock()); 351 assert(ITState.CurPosition == 1); 352 ITState.CurPosition = ~0U; 353 } 354 355 // Return the low-subreg of a given Q register. 356 unsigned getDRegFromQReg(unsigned QReg) const { 357 return MRI->getSubReg(QReg, ARM::dsub_0); 358 } 359 360 // Get the condition code corresponding to the current IT block slot. 361 ARMCC::CondCodes currentITCond() { 362 unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition); 363 return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond; 364 } 365 366 // Invert the condition of the current IT block slot without changing any 367 // other slots in the same block. 368 void invertCurrentITCondition() { 369 if (ITState.CurPosition == 1) { 370 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 371 } else { 372 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 373 } 374 } 375 376 // Returns true if the current IT block is full (all 4 slots used). 377 bool isITBlockFull() { 378 return inITBlock() && (ITState.Mask & 1); 379 } 380 381 // Extend the current implicit IT block to have one more slot with the given 382 // condition code. 383 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 384 assert(inImplicitITBlock()); 385 assert(!isITBlockFull()); 386 assert(Cond == ITState.Cond || 387 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 388 unsigned TZ = countTrailingZeros(ITState.Mask); 389 unsigned NewMask = 0; 390 // Keep any existing condition bits. 391 NewMask |= ITState.Mask & (0xE << TZ); 392 // Insert the new condition bit. 393 NewMask |= (Cond != ITState.Cond) << TZ; 394 // Move the trailing 1 down one bit. 395 NewMask |= 1 << (TZ - 1); 396 ITState.Mask = NewMask; 397 } 398 399 // Create a new implicit IT block with a dummy condition code. 400 void startImplicitITBlock() { 401 assert(!inITBlock()); 402 ITState.Cond = ARMCC::AL; 403 ITState.Mask = 8; 404 ITState.CurPosition = 1; 405 ITState.IsExplicit = false; 406 } 407 408 // Create a new explicit IT block with the given condition and mask. 409 // The mask should be in the format used in ARMOperand and 410 // MCOperand, with a 1 implying 'e', regardless of the low bit of 411 // the condition. 412 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 413 assert(!inITBlock()); 414 ITState.Cond = Cond; 415 ITState.Mask = Mask; 416 ITState.CurPosition = 0; 417 ITState.IsExplicit = true; 418 } 419 420 struct { 421 unsigned Mask : 4; 422 unsigned CurPosition; 423 } VPTState; 424 bool inVPTBlock() { return VPTState.CurPosition != ~0U; } 425 void forwardVPTPosition() { 426 if (!inVPTBlock()) return; 427 unsigned TZ = countTrailingZeros(VPTState.Mask); 428 if (++VPTState.CurPosition == 5 - TZ) 429 VPTState.CurPosition = ~0U; 430 } 431 432 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 433 return getParser().Note(L, Msg, Range); 434 } 435 436 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 437 return getParser().Warning(L, Msg, Range); 438 } 439 440 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 441 return getParser().Error(L, Msg, Range); 442 } 443 444 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 445 unsigned ListNo, bool IsARPop = false); 446 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 447 unsigned ListNo); 448 449 int tryParseRegister(); 450 bool tryParseRegisterWithWriteBack(OperandVector &); 451 int tryParseShiftRegister(OperandVector &); 452 bool parseRegisterList(OperandVector &, bool EnforceOrder = true, 453 bool AllowRAAC = false); 454 bool parseMemory(OperandVector &); 455 bool parseOperand(OperandVector &, StringRef Mnemonic); 456 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 457 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 458 unsigned &ShiftAmount); 459 bool parseLiteralValues(unsigned Size, SMLoc L); 460 bool parseDirectiveThumb(SMLoc L); 461 bool parseDirectiveARM(SMLoc L); 462 bool parseDirectiveThumbFunc(SMLoc L); 463 bool parseDirectiveCode(SMLoc L); 464 bool parseDirectiveSyntax(SMLoc L); 465 bool parseDirectiveReq(StringRef Name, SMLoc L); 466 bool parseDirectiveUnreq(SMLoc L); 467 bool parseDirectiveArch(SMLoc L); 468 bool parseDirectiveEabiAttr(SMLoc L); 469 bool parseDirectiveCPU(SMLoc L); 470 bool parseDirectiveFPU(SMLoc L); 471 bool parseDirectiveFnStart(SMLoc L); 472 bool parseDirectiveFnEnd(SMLoc L); 473 bool parseDirectiveCantUnwind(SMLoc L); 474 bool parseDirectivePersonality(SMLoc L); 475 bool parseDirectiveHandlerData(SMLoc L); 476 bool parseDirectiveSetFP(SMLoc L); 477 bool parseDirectivePad(SMLoc L); 478 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 479 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 480 bool parseDirectiveLtorg(SMLoc L); 481 bool parseDirectiveEven(SMLoc L); 482 bool parseDirectivePersonalityIndex(SMLoc L); 483 bool parseDirectiveUnwindRaw(SMLoc L); 484 bool parseDirectiveTLSDescSeq(SMLoc L); 485 bool parseDirectiveMovSP(SMLoc L); 486 bool parseDirectiveObjectArch(SMLoc L); 487 bool parseDirectiveArchExtension(SMLoc L); 488 bool parseDirectiveAlign(SMLoc L); 489 bool parseDirectiveThumbSet(SMLoc L); 490 491 bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken); 492 StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken, 493 unsigned &PredicationCode, 494 unsigned &VPTPredicationCode, bool &CarrySetting, 495 unsigned &ProcessorIMod, StringRef &ITMask); 496 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken, 497 StringRef FullInst, bool &CanAcceptCarrySet, 498 bool &CanAcceptPredicationCode, 499 bool &CanAcceptVPTPredicationCode); 500 bool enableArchExtFeature(StringRef Name, SMLoc &ExtLoc); 501 502 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 503 OperandVector &Operands); 504 bool CDEConvertDualRegOperand(StringRef Mnemonic, OperandVector &Operands); 505 506 bool isThumb() const { 507 // FIXME: Can tablegen auto-generate this? 508 return getSTI().getFeatureBits()[ARM::ModeThumb]; 509 } 510 511 bool isThumbOne() const { 512 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 513 } 514 515 bool isThumbTwo() const { 516 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 517 } 518 519 bool hasThumb() const { 520 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 521 } 522 523 bool hasThumb2() const { 524 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 525 } 526 527 bool hasV6Ops() const { 528 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 529 } 530 531 bool hasV6T2Ops() const { 532 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 533 } 534 535 bool hasV6MOps() const { 536 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 537 } 538 539 bool hasV7Ops() const { 540 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 541 } 542 543 bool hasV8Ops() const { 544 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 545 } 546 547 bool hasV8MBaseline() const { 548 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 549 } 550 551 bool hasV8MMainline() const { 552 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 553 } 554 bool hasV8_1MMainline() const { 555 return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps]; 556 } 557 bool hasMVE() const { 558 return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps]; 559 } 560 bool hasMVEFloat() const { 561 return getSTI().getFeatureBits()[ARM::HasMVEFloatOps]; 562 } 563 bool hasCDE() const { 564 return getSTI().getFeatureBits()[ARM::HasCDEOps]; 565 } 566 bool has8MSecExt() const { 567 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 568 } 569 570 bool hasARM() const { 571 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 572 } 573 574 bool hasDSP() const { 575 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 576 } 577 578 bool hasD32() const { 579 return getSTI().getFeatureBits()[ARM::FeatureD32]; 580 } 581 582 bool hasV8_1aOps() const { 583 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 584 } 585 586 bool hasRAS() const { 587 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 588 } 589 590 void SwitchMode() { 591 MCSubtargetInfo &STI = copySTI(); 592 auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 593 setAvailableFeatures(FB); 594 } 595 596 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 597 598 bool isMClass() const { 599 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 600 } 601 602 /// @name Auto-generated Match Functions 603 /// { 604 605 #define GET_ASSEMBLER_HEADER 606 #include "ARMGenAsmMatcher.inc" 607 608 /// } 609 610 OperandMatchResultTy parseITCondCode(OperandVector &); 611 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 612 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 613 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 614 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 615 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &); 616 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 617 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 618 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 619 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 620 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 621 int High); 622 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 623 return parsePKHImm(O, "lsl", 0, 31); 624 } 625 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 626 return parsePKHImm(O, "asr", 1, 32); 627 } 628 OperandMatchResultTy parseSetEndImm(OperandVector &); 629 OperandMatchResultTy parseShifterImm(OperandVector &); 630 OperandMatchResultTy parseRotImm(OperandVector &); 631 OperandMatchResultTy parseModImm(OperandVector &); 632 OperandMatchResultTy parseBitfield(OperandVector &); 633 OperandMatchResultTy parsePostIdxReg(OperandVector &); 634 OperandMatchResultTy parseAM3Offset(OperandVector &); 635 OperandMatchResultTy parseFPImm(OperandVector &); 636 OperandMatchResultTy parseVectorList(OperandVector &); 637 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 638 SMLoc &EndLoc); 639 640 // Asm Match Converter Methods 641 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 642 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 643 void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &); 644 645 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 646 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 647 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 648 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 649 bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 650 bool isITBlockTerminator(MCInst &Inst) const; 651 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); 652 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, 653 bool Load, bool ARMMode, bool Writeback); 654 655 public: 656 enum ARMMatchResultTy { 657 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 658 Match_RequiresNotITBlock, 659 Match_RequiresV6, 660 Match_RequiresThumb2, 661 Match_RequiresV8, 662 Match_RequiresFlagSetting, 663 #define GET_OPERAND_DIAGNOSTIC_TYPES 664 #include "ARMGenAsmMatcher.inc" 665 666 }; 667 668 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 669 const MCInstrInfo &MII, const MCTargetOptions &Options) 670 : MCTargetAsmParser(Options, STI, MII), UC(Parser), MS(STI) { 671 MCAsmParserExtension::Initialize(Parser); 672 673 // Cache the MCRegisterInfo. 674 MRI = getContext().getRegisterInfo(); 675 676 // Initialize the set of available features. 677 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 678 679 // Add build attributes based on the selected target. 680 if (AddBuildAttributes) 681 getTargetStreamer().emitTargetAttributes(STI); 682 683 // Not in an ITBlock to start with. 684 ITState.CurPosition = ~0U; 685 686 VPTState.CurPosition = ~0U; 687 688 NextSymbolIsThumb = false; 689 } 690 691 // Implementation of the MCTargetAsmParser interface: 692 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 693 OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc, 694 SMLoc &EndLoc) override; 695 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 696 SMLoc NameLoc, OperandVector &Operands) override; 697 bool ParseDirective(AsmToken DirectiveID) override; 698 699 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 700 unsigned Kind) override; 701 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 702 703 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 704 OperandVector &Operands, MCStreamer &Out, 705 uint64_t &ErrorInfo, 706 bool MatchingInlineAsm) override; 707 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 708 SmallVectorImpl<NearMissInfo> &NearMisses, 709 bool MatchingInlineAsm, bool &EmitInITBlock, 710 MCStreamer &Out); 711 712 struct NearMissMessage { 713 SMLoc Loc; 714 SmallString<128> Message; 715 }; 716 717 const char *getCustomOperandDiag(ARMMatchResultTy MatchError); 718 719 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 720 SmallVectorImpl<NearMissMessage> &NearMissesOut, 721 SMLoc IDLoc, OperandVector &Operands); 722 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, 723 OperandVector &Operands); 724 725 void doBeforeLabelEmit(MCSymbol *Symbol) override; 726 727 void onLabelParsed(MCSymbol *Symbol) override; 728 }; 729 730 /// ARMOperand - Instances of this class represent a parsed ARM machine 731 /// operand. 732 class ARMOperand : public MCParsedAsmOperand { 733 enum KindTy { 734 k_CondCode, 735 k_VPTPred, 736 k_CCOut, 737 k_ITCondMask, 738 k_CoprocNum, 739 k_CoprocReg, 740 k_CoprocOption, 741 k_Immediate, 742 k_MemBarrierOpt, 743 k_InstSyncBarrierOpt, 744 k_TraceSyncBarrierOpt, 745 k_Memory, 746 k_PostIndexRegister, 747 k_MSRMask, 748 k_BankedReg, 749 k_ProcIFlags, 750 k_VectorIndex, 751 k_Register, 752 k_RegisterList, 753 k_RegisterListWithAPSR, 754 k_DPRRegisterList, 755 k_SPRRegisterList, 756 k_FPSRegisterListWithVPR, 757 k_FPDRegisterListWithVPR, 758 k_VectorList, 759 k_VectorListAllLanes, 760 k_VectorListIndexed, 761 k_ShiftedRegister, 762 k_ShiftedImmediate, 763 k_ShifterImmediate, 764 k_RotateImmediate, 765 k_ModifiedImmediate, 766 k_ConstantPoolImmediate, 767 k_BitfieldDescriptor, 768 k_Token, 769 } Kind; 770 771 SMLoc StartLoc, EndLoc, AlignmentLoc; 772 SmallVector<unsigned, 8> Registers; 773 774 struct CCOp { 775 ARMCC::CondCodes Val; 776 }; 777 778 struct VCCOp { 779 ARMVCC::VPTCodes Val; 780 }; 781 782 struct CopOp { 783 unsigned Val; 784 }; 785 786 struct CoprocOptionOp { 787 unsigned Val; 788 }; 789 790 struct ITMaskOp { 791 unsigned Mask:4; 792 }; 793 794 struct MBOptOp { 795 ARM_MB::MemBOpt Val; 796 }; 797 798 struct ISBOptOp { 799 ARM_ISB::InstSyncBOpt Val; 800 }; 801 802 struct TSBOptOp { 803 ARM_TSB::TraceSyncBOpt Val; 804 }; 805 806 struct IFlagsOp { 807 ARM_PROC::IFlags Val; 808 }; 809 810 struct MMaskOp { 811 unsigned Val; 812 }; 813 814 struct BankedRegOp { 815 unsigned Val; 816 }; 817 818 struct TokOp { 819 const char *Data; 820 unsigned Length; 821 }; 822 823 struct RegOp { 824 unsigned RegNum; 825 }; 826 827 // A vector register list is a sequential list of 1 to 4 registers. 828 struct VectorListOp { 829 unsigned RegNum; 830 unsigned Count; 831 unsigned LaneIndex; 832 bool isDoubleSpaced; 833 }; 834 835 struct VectorIndexOp { 836 unsigned Val; 837 }; 838 839 struct ImmOp { 840 const MCExpr *Val; 841 }; 842 843 /// Combined record for all forms of ARM address expressions. 844 struct MemoryOp { 845 unsigned BaseRegNum; 846 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 847 // was specified. 848 const MCExpr *OffsetImm; // Offset immediate value 849 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 850 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 851 unsigned ShiftImm; // shift for OffsetReg. 852 unsigned Alignment; // 0 = no alignment specified 853 // n = alignment in bytes (2, 4, 8, 16, or 32) 854 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 855 }; 856 857 struct PostIdxRegOp { 858 unsigned RegNum; 859 bool isAdd; 860 ARM_AM::ShiftOpc ShiftTy; 861 unsigned ShiftImm; 862 }; 863 864 struct ShifterImmOp { 865 bool isASR; 866 unsigned Imm; 867 }; 868 869 struct RegShiftedRegOp { 870 ARM_AM::ShiftOpc ShiftTy; 871 unsigned SrcReg; 872 unsigned ShiftReg; 873 unsigned ShiftImm; 874 }; 875 876 struct RegShiftedImmOp { 877 ARM_AM::ShiftOpc ShiftTy; 878 unsigned SrcReg; 879 unsigned ShiftImm; 880 }; 881 882 struct RotImmOp { 883 unsigned Imm; 884 }; 885 886 struct ModImmOp { 887 unsigned Bits; 888 unsigned Rot; 889 }; 890 891 struct BitfieldOp { 892 unsigned LSB; 893 unsigned Width; 894 }; 895 896 union { 897 struct CCOp CC; 898 struct VCCOp VCC; 899 struct CopOp Cop; 900 struct CoprocOptionOp CoprocOption; 901 struct MBOptOp MBOpt; 902 struct ISBOptOp ISBOpt; 903 struct TSBOptOp TSBOpt; 904 struct ITMaskOp ITMask; 905 struct IFlagsOp IFlags; 906 struct MMaskOp MMask; 907 struct BankedRegOp BankedReg; 908 struct TokOp Tok; 909 struct RegOp Reg; 910 struct VectorListOp VectorList; 911 struct VectorIndexOp VectorIndex; 912 struct ImmOp Imm; 913 struct MemoryOp Memory; 914 struct PostIdxRegOp PostIdxReg; 915 struct ShifterImmOp ShifterImm; 916 struct RegShiftedRegOp RegShiftedReg; 917 struct RegShiftedImmOp RegShiftedImm; 918 struct RotImmOp RotImm; 919 struct ModImmOp ModImm; 920 struct BitfieldOp Bitfield; 921 }; 922 923 public: 924 ARMOperand(KindTy K) : Kind(K) {} 925 926 /// getStartLoc - Get the location of the first token of this operand. 927 SMLoc getStartLoc() const override { return StartLoc; } 928 929 /// getEndLoc - Get the location of the last token of this operand. 930 SMLoc getEndLoc() const override { return EndLoc; } 931 932 /// getLocRange - Get the range between the first and last token of this 933 /// operand. 934 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 935 936 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 937 SMLoc getAlignmentLoc() const { 938 assert(Kind == k_Memory && "Invalid access!"); 939 return AlignmentLoc; 940 } 941 942 ARMCC::CondCodes getCondCode() const { 943 assert(Kind == k_CondCode && "Invalid access!"); 944 return CC.Val; 945 } 946 947 ARMVCC::VPTCodes getVPTPred() const { 948 assert(isVPTPred() && "Invalid access!"); 949 return VCC.Val; 950 } 951 952 unsigned getCoproc() const { 953 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 954 return Cop.Val; 955 } 956 957 StringRef getToken() const { 958 assert(Kind == k_Token && "Invalid access!"); 959 return StringRef(Tok.Data, Tok.Length); 960 } 961 962 unsigned getReg() const override { 963 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 964 return Reg.RegNum; 965 } 966 967 const SmallVectorImpl<unsigned> &getRegList() const { 968 assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR || 969 Kind == k_DPRRegisterList || Kind == k_SPRRegisterList || 970 Kind == k_FPSRegisterListWithVPR || 971 Kind == k_FPDRegisterListWithVPR) && 972 "Invalid access!"); 973 return Registers; 974 } 975 976 const MCExpr *getImm() const { 977 assert(isImm() && "Invalid access!"); 978 return Imm.Val; 979 } 980 981 const MCExpr *getConstantPoolImm() const { 982 assert(isConstantPoolImm() && "Invalid access!"); 983 return Imm.Val; 984 } 985 986 unsigned getVectorIndex() const { 987 assert(Kind == k_VectorIndex && "Invalid access!"); 988 return VectorIndex.Val; 989 } 990 991 ARM_MB::MemBOpt getMemBarrierOpt() const { 992 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 993 return MBOpt.Val; 994 } 995 996 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 997 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 998 return ISBOpt.Val; 999 } 1000 1001 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const { 1002 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!"); 1003 return TSBOpt.Val; 1004 } 1005 1006 ARM_PROC::IFlags getProcIFlags() const { 1007 assert(Kind == k_ProcIFlags && "Invalid access!"); 1008 return IFlags.Val; 1009 } 1010 1011 unsigned getMSRMask() const { 1012 assert(Kind == k_MSRMask && "Invalid access!"); 1013 return MMask.Val; 1014 } 1015 1016 unsigned getBankedReg() const { 1017 assert(Kind == k_BankedReg && "Invalid access!"); 1018 return BankedReg.Val; 1019 } 1020 1021 bool isCoprocNum() const { return Kind == k_CoprocNum; } 1022 bool isCoprocReg() const { return Kind == k_CoprocReg; } 1023 bool isCoprocOption() const { return Kind == k_CoprocOption; } 1024 bool isCondCode() const { return Kind == k_CondCode; } 1025 bool isVPTPred() const { return Kind == k_VPTPred; } 1026 bool isCCOut() const { return Kind == k_CCOut; } 1027 bool isITMask() const { return Kind == k_ITCondMask; } 1028 bool isITCondCode() const { return Kind == k_CondCode; } 1029 bool isImm() const override { 1030 return Kind == k_Immediate; 1031 } 1032 1033 bool isARMBranchTarget() const { 1034 if (!isImm()) return false; 1035 1036 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 1037 return CE->getValue() % 4 == 0; 1038 return true; 1039 } 1040 1041 1042 bool isThumbBranchTarget() const { 1043 if (!isImm()) return false; 1044 1045 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 1046 return CE->getValue() % 2 == 0; 1047 return true; 1048 } 1049 1050 // checks whether this operand is an unsigned offset which fits is a field 1051 // of specified width and scaled by a specific number of bits 1052 template<unsigned width, unsigned scale> 1053 bool isUnsignedOffset() const { 1054 if (!isImm()) return false; 1055 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1056 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1057 int64_t Val = CE->getValue(); 1058 int64_t Align = 1LL << scale; 1059 int64_t Max = Align * ((1LL << width) - 1); 1060 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 1061 } 1062 return false; 1063 } 1064 1065 // checks whether this operand is an signed offset which fits is a field 1066 // of specified width and scaled by a specific number of bits 1067 template<unsigned width, unsigned scale> 1068 bool isSignedOffset() const { 1069 if (!isImm()) return false; 1070 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1071 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1072 int64_t Val = CE->getValue(); 1073 int64_t Align = 1LL << scale; 1074 int64_t Max = Align * ((1LL << (width-1)) - 1); 1075 int64_t Min = -Align * (1LL << (width-1)); 1076 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 1077 } 1078 return false; 1079 } 1080 1081 // checks whether this operand is an offset suitable for the LE / 1082 // LETP instructions in Arm v8.1M 1083 bool isLEOffset() const { 1084 if (!isImm()) return false; 1085 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1086 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1087 int64_t Val = CE->getValue(); 1088 return Val < 0 && Val >= -4094 && (Val & 1) == 0; 1089 } 1090 return false; 1091 } 1092 1093 // checks whether this operand is a memory operand computed as an offset 1094 // applied to PC. the offset may have 8 bits of magnitude and is represented 1095 // with two bits of shift. textually it may be either [pc, #imm], #imm or 1096 // relocable expression... 1097 bool isThumbMemPC() const { 1098 int64_t Val = 0; 1099 if (isImm()) { 1100 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1101 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 1102 if (!CE) return false; 1103 Val = CE->getValue(); 1104 } 1105 else if (isGPRMem()) { 1106 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 1107 if(Memory.BaseRegNum != ARM::PC) return false; 1108 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 1109 Val = CE->getValue(); 1110 else 1111 return false; 1112 } 1113 else return false; 1114 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 1115 } 1116 1117 bool isFPImm() const { 1118 if (!isImm()) return false; 1119 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1120 if (!CE) return false; 1121 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1122 return Val != -1; 1123 } 1124 1125 template<int64_t N, int64_t M> 1126 bool isImmediate() const { 1127 if (!isImm()) return false; 1128 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1129 if (!CE) return false; 1130 int64_t Value = CE->getValue(); 1131 return Value >= N && Value <= M; 1132 } 1133 1134 template<int64_t N, int64_t M> 1135 bool isImmediateS4() const { 1136 if (!isImm()) return false; 1137 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1138 if (!CE) return false; 1139 int64_t Value = CE->getValue(); 1140 return ((Value & 3) == 0) && Value >= N && Value <= M; 1141 } 1142 template<int64_t N, int64_t M> 1143 bool isImmediateS2() const { 1144 if (!isImm()) return false; 1145 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1146 if (!CE) return false; 1147 int64_t Value = CE->getValue(); 1148 return ((Value & 1) == 0) && Value >= N && Value <= M; 1149 } 1150 bool isFBits16() const { 1151 return isImmediate<0, 17>(); 1152 } 1153 bool isFBits32() const { 1154 return isImmediate<1, 33>(); 1155 } 1156 bool isImm8s4() const { 1157 return isImmediateS4<-1020, 1020>(); 1158 } 1159 bool isImm7s4() const { 1160 return isImmediateS4<-508, 508>(); 1161 } 1162 bool isImm7Shift0() const { 1163 return isImmediate<-127, 127>(); 1164 } 1165 bool isImm7Shift1() const { 1166 return isImmediateS2<-255, 255>(); 1167 } 1168 bool isImm7Shift2() const { 1169 return isImmediateS4<-511, 511>(); 1170 } 1171 bool isImm7() const { 1172 return isImmediate<-127, 127>(); 1173 } 1174 bool isImm0_1020s4() const { 1175 return isImmediateS4<0, 1020>(); 1176 } 1177 bool isImm0_508s4() const { 1178 return isImmediateS4<0, 508>(); 1179 } 1180 bool isImm0_508s4Neg() const { 1181 if (!isImm()) return false; 1182 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1183 if (!CE) return false; 1184 int64_t Value = -CE->getValue(); 1185 // explicitly exclude zero. we want that to use the normal 0_508 version. 1186 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 1187 } 1188 1189 bool isImm0_4095Neg() const { 1190 if (!isImm()) return false; 1191 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1192 if (!CE) return false; 1193 // isImm0_4095Neg is used with 32-bit immediates only. 1194 // 32-bit immediates are zero extended to 64-bit when parsed, 1195 // thus simple -CE->getValue() results in a big negative number, 1196 // not a small positive number as intended 1197 if ((CE->getValue() >> 32) > 0) return false; 1198 uint32_t Value = -static_cast<uint32_t>(CE->getValue()); 1199 return Value > 0 && Value < 4096; 1200 } 1201 1202 bool isImm0_7() const { 1203 return isImmediate<0, 7>(); 1204 } 1205 1206 bool isImm1_16() const { 1207 return isImmediate<1, 16>(); 1208 } 1209 1210 bool isImm1_32() const { 1211 return isImmediate<1, 32>(); 1212 } 1213 1214 bool isImm8_255() const { 1215 return isImmediate<8, 255>(); 1216 } 1217 1218 bool isImm256_65535Expr() const { 1219 if (!isImm()) return false; 1220 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1221 // If it's not a constant expression, it'll generate a fixup and be 1222 // handled later. 1223 if (!CE) return true; 1224 int64_t Value = CE->getValue(); 1225 return Value >= 256 && Value < 65536; 1226 } 1227 1228 bool isImm0_65535Expr() const { 1229 if (!isImm()) return false; 1230 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1231 // If it's not a constant expression, it'll generate a fixup and be 1232 // handled later. 1233 if (!CE) return true; 1234 int64_t Value = CE->getValue(); 1235 return Value >= 0 && Value < 65536; 1236 } 1237 1238 bool isImm24bit() const { 1239 return isImmediate<0, 0xffffff + 1>(); 1240 } 1241 1242 bool isImmThumbSR() const { 1243 return isImmediate<1, 33>(); 1244 } 1245 1246 template<int shift> 1247 bool isExpImmValue(uint64_t Value) const { 1248 uint64_t mask = (1 << shift) - 1; 1249 if ((Value & mask) != 0 || (Value >> shift) > 0xff) 1250 return false; 1251 return true; 1252 } 1253 1254 template<int shift> 1255 bool isExpImm() const { 1256 if (!isImm()) return false; 1257 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1258 if (!CE) return false; 1259 1260 return isExpImmValue<shift>(CE->getValue()); 1261 } 1262 1263 template<int shift, int size> 1264 bool isInvertedExpImm() const { 1265 if (!isImm()) return false; 1266 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1267 if (!CE) return false; 1268 1269 uint64_t OriginalValue = CE->getValue(); 1270 uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1); 1271 return isExpImmValue<shift>(InvertedValue); 1272 } 1273 1274 bool isPKHLSLImm() const { 1275 return isImmediate<0, 32>(); 1276 } 1277 1278 bool isPKHASRImm() const { 1279 return isImmediate<0, 33>(); 1280 } 1281 1282 bool isAdrLabel() const { 1283 // If we have an immediate that's not a constant, treat it as a label 1284 // reference needing a fixup. 1285 if (isImm() && !isa<MCConstantExpr>(getImm())) 1286 return true; 1287 1288 // If it is a constant, it must fit into a modified immediate encoding. 1289 if (!isImm()) return false; 1290 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1291 if (!CE) return false; 1292 int64_t Value = CE->getValue(); 1293 return (ARM_AM::getSOImmVal(Value) != -1 || 1294 ARM_AM::getSOImmVal(-Value) != -1); 1295 } 1296 1297 bool isT2SOImm() const { 1298 // If we have an immediate that's not a constant, treat it as an expression 1299 // needing a fixup. 1300 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1301 // We want to avoid matching :upper16: and :lower16: as we want these 1302 // expressions to match in isImm0_65535Expr() 1303 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1304 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1305 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1306 } 1307 if (!isImm()) return false; 1308 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1309 if (!CE) return false; 1310 int64_t Value = CE->getValue(); 1311 return ARM_AM::getT2SOImmVal(Value) != -1; 1312 } 1313 1314 bool isT2SOImmNot() const { 1315 if (!isImm()) return false; 1316 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1317 if (!CE) return false; 1318 int64_t Value = CE->getValue(); 1319 return ARM_AM::getT2SOImmVal(Value) == -1 && 1320 ARM_AM::getT2SOImmVal(~Value) != -1; 1321 } 1322 1323 bool isT2SOImmNeg() const { 1324 if (!isImm()) return false; 1325 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1326 if (!CE) return false; 1327 int64_t Value = CE->getValue(); 1328 // Only use this when not representable as a plain so_imm. 1329 return ARM_AM::getT2SOImmVal(Value) == -1 && 1330 ARM_AM::getT2SOImmVal(-Value) != -1; 1331 } 1332 1333 bool isSetEndImm() const { 1334 if (!isImm()) return false; 1335 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1336 if (!CE) return false; 1337 int64_t Value = CE->getValue(); 1338 return Value == 1 || Value == 0; 1339 } 1340 1341 bool isReg() const override { return Kind == k_Register; } 1342 bool isRegList() const { return Kind == k_RegisterList; } 1343 bool isRegListWithAPSR() const { 1344 return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList; 1345 } 1346 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1347 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1348 bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; } 1349 bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; } 1350 bool isToken() const override { return Kind == k_Token; } 1351 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1352 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1353 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; } 1354 bool isMem() const override { 1355 return isGPRMem() || isMVEMem(); 1356 } 1357 bool isMVEMem() const { 1358 if (Kind != k_Memory) 1359 return false; 1360 if (Memory.BaseRegNum && 1361 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) && 1362 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum)) 1363 return false; 1364 if (Memory.OffsetRegNum && 1365 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1366 Memory.OffsetRegNum)) 1367 return false; 1368 return true; 1369 } 1370 bool isGPRMem() const { 1371 if (Kind != k_Memory) 1372 return false; 1373 if (Memory.BaseRegNum && 1374 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) 1375 return false; 1376 if (Memory.OffsetRegNum && 1377 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) 1378 return false; 1379 return true; 1380 } 1381 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1382 bool isRegShiftedReg() const { 1383 return Kind == k_ShiftedRegister && 1384 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1385 RegShiftedReg.SrcReg) && 1386 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1387 RegShiftedReg.ShiftReg); 1388 } 1389 bool isRegShiftedImm() const { 1390 return Kind == k_ShiftedImmediate && 1391 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1392 RegShiftedImm.SrcReg); 1393 } 1394 bool isRotImm() const { return Kind == k_RotateImmediate; } 1395 1396 template<unsigned Min, unsigned Max> 1397 bool isPowerTwoInRange() const { 1398 if (!isImm()) return false; 1399 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1400 if (!CE) return false; 1401 int64_t Value = CE->getValue(); 1402 return Value > 0 && countPopulation((uint64_t)Value) == 1 && 1403 Value >= Min && Value <= Max; 1404 } 1405 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1406 1407 bool isModImmNot() const { 1408 if (!isImm()) return false; 1409 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1410 if (!CE) return false; 1411 int64_t Value = CE->getValue(); 1412 return ARM_AM::getSOImmVal(~Value) != -1; 1413 } 1414 1415 bool isModImmNeg() const { 1416 if (!isImm()) return false; 1417 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1418 if (!CE) return false; 1419 int64_t Value = CE->getValue(); 1420 return ARM_AM::getSOImmVal(Value) == -1 && 1421 ARM_AM::getSOImmVal(-Value) != -1; 1422 } 1423 1424 bool isThumbModImmNeg1_7() const { 1425 if (!isImm()) return false; 1426 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1427 if (!CE) return false; 1428 int32_t Value = -(int32_t)CE->getValue(); 1429 return 0 < Value && Value < 8; 1430 } 1431 1432 bool isThumbModImmNeg8_255() const { 1433 if (!isImm()) return false; 1434 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1435 if (!CE) return false; 1436 int32_t Value = -(int32_t)CE->getValue(); 1437 return 7 < Value && Value < 256; 1438 } 1439 1440 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1441 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1442 bool isPostIdxRegShifted() const { 1443 return Kind == k_PostIndexRegister && 1444 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); 1445 } 1446 bool isPostIdxReg() const { 1447 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; 1448 } 1449 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1450 if (!isGPRMem()) 1451 return false; 1452 // No offset of any kind. 1453 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1454 (alignOK || Memory.Alignment == Alignment); 1455 } 1456 bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const { 1457 if (!isGPRMem()) 1458 return false; 1459 1460 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1461 Memory.BaseRegNum)) 1462 return false; 1463 1464 // No offset of any kind. 1465 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1466 (alignOK || Memory.Alignment == Alignment); 1467 } 1468 bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const { 1469 if (!isGPRMem()) 1470 return false; 1471 1472 if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains( 1473 Memory.BaseRegNum)) 1474 return false; 1475 1476 // No offset of any kind. 1477 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1478 (alignOK || Memory.Alignment == Alignment); 1479 } 1480 bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const { 1481 if (!isGPRMem()) 1482 return false; 1483 1484 if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains( 1485 Memory.BaseRegNum)) 1486 return false; 1487 1488 // No offset of any kind. 1489 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1490 (alignOK || Memory.Alignment == Alignment); 1491 } 1492 bool isMemPCRelImm12() const { 1493 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1494 return false; 1495 // Base register must be PC. 1496 if (Memory.BaseRegNum != ARM::PC) 1497 return false; 1498 // Immediate offset in range [-4095, 4095]. 1499 if (!Memory.OffsetImm) return true; 1500 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1501 int64_t Val = CE->getValue(); 1502 return (Val > -4096 && Val < 4096) || 1503 (Val == std::numeric_limits<int32_t>::min()); 1504 } 1505 return false; 1506 } 1507 1508 bool isAlignedMemory() const { 1509 return isMemNoOffset(true); 1510 } 1511 1512 bool isAlignedMemoryNone() const { 1513 return isMemNoOffset(false, 0); 1514 } 1515 1516 bool isDupAlignedMemoryNone() const { 1517 return isMemNoOffset(false, 0); 1518 } 1519 1520 bool isAlignedMemory16() const { 1521 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1522 return true; 1523 return isMemNoOffset(false, 0); 1524 } 1525 1526 bool isDupAlignedMemory16() const { 1527 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1528 return true; 1529 return isMemNoOffset(false, 0); 1530 } 1531 1532 bool isAlignedMemory32() const { 1533 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1534 return true; 1535 return isMemNoOffset(false, 0); 1536 } 1537 1538 bool isDupAlignedMemory32() const { 1539 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1540 return true; 1541 return isMemNoOffset(false, 0); 1542 } 1543 1544 bool isAlignedMemory64() const { 1545 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1546 return true; 1547 return isMemNoOffset(false, 0); 1548 } 1549 1550 bool isDupAlignedMemory64() const { 1551 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1552 return true; 1553 return isMemNoOffset(false, 0); 1554 } 1555 1556 bool isAlignedMemory64or128() const { 1557 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1558 return true; 1559 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1560 return true; 1561 return isMemNoOffset(false, 0); 1562 } 1563 1564 bool isDupAlignedMemory64or128() const { 1565 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1566 return true; 1567 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1568 return true; 1569 return isMemNoOffset(false, 0); 1570 } 1571 1572 bool isAlignedMemory64or128or256() const { 1573 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1574 return true; 1575 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1576 return true; 1577 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1578 return true; 1579 return isMemNoOffset(false, 0); 1580 } 1581 1582 bool isAddrMode2() const { 1583 if (!isGPRMem() || Memory.Alignment != 0) return false; 1584 // Check for register offset. 1585 if (Memory.OffsetRegNum) return true; 1586 // Immediate offset in range [-4095, 4095]. 1587 if (!Memory.OffsetImm) return true; 1588 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1589 int64_t Val = CE->getValue(); 1590 return Val > -4096 && Val < 4096; 1591 } 1592 return false; 1593 } 1594 1595 bool isAM2OffsetImm() const { 1596 if (!isImm()) return false; 1597 // Immediate offset in range [-4095, 4095]. 1598 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1599 if (!CE) return false; 1600 int64_t Val = CE->getValue(); 1601 return (Val == std::numeric_limits<int32_t>::min()) || 1602 (Val > -4096 && Val < 4096); 1603 } 1604 1605 bool isAddrMode3() const { 1606 // If we have an immediate that's not a constant, treat it as a label 1607 // reference needing a fixup. If it is a constant, it's something else 1608 // and we reject it. 1609 if (isImm() && !isa<MCConstantExpr>(getImm())) 1610 return true; 1611 if (!isGPRMem() || Memory.Alignment != 0) return false; 1612 // No shifts are legal for AM3. 1613 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1614 // Check for register offset. 1615 if (Memory.OffsetRegNum) return true; 1616 // Immediate offset in range [-255, 255]. 1617 if (!Memory.OffsetImm) return true; 1618 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1619 int64_t Val = CE->getValue(); 1620 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and 1621 // we have to check for this too. 1622 return (Val > -256 && Val < 256) || 1623 Val == std::numeric_limits<int32_t>::min(); 1624 } 1625 return false; 1626 } 1627 1628 bool isAM3Offset() const { 1629 if (isPostIdxReg()) 1630 return true; 1631 if (!isImm()) 1632 return false; 1633 // Immediate offset in range [-255, 255]. 1634 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1635 if (!CE) return false; 1636 int64_t Val = CE->getValue(); 1637 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1638 return (Val > -256 && Val < 256) || 1639 Val == std::numeric_limits<int32_t>::min(); 1640 } 1641 1642 bool isAddrMode5() const { 1643 // If we have an immediate that's not a constant, treat it as a label 1644 // reference needing a fixup. If it is a constant, it's something else 1645 // and we reject it. 1646 if (isImm() && !isa<MCConstantExpr>(getImm())) 1647 return true; 1648 if (!isGPRMem() || Memory.Alignment != 0) return false; 1649 // Check for register offset. 1650 if (Memory.OffsetRegNum) return false; 1651 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1652 if (!Memory.OffsetImm) return true; 1653 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1654 int64_t Val = CE->getValue(); 1655 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1656 Val == std::numeric_limits<int32_t>::min(); 1657 } 1658 return false; 1659 } 1660 1661 bool isAddrMode5FP16() const { 1662 // If we have an immediate that's not a constant, treat it as a label 1663 // reference needing a fixup. If it is a constant, it's something else 1664 // and we reject it. 1665 if (isImm() && !isa<MCConstantExpr>(getImm())) 1666 return true; 1667 if (!isGPRMem() || Memory.Alignment != 0) return false; 1668 // Check for register offset. 1669 if (Memory.OffsetRegNum) return false; 1670 // Immediate offset in range [-510, 510] and a multiple of 2. 1671 if (!Memory.OffsetImm) return true; 1672 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1673 int64_t Val = CE->getValue(); 1674 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || 1675 Val == std::numeric_limits<int32_t>::min(); 1676 } 1677 return false; 1678 } 1679 1680 bool isMemTBB() const { 1681 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1682 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1683 return false; 1684 return true; 1685 } 1686 1687 bool isMemTBH() const { 1688 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1689 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1690 Memory.Alignment != 0 ) 1691 return false; 1692 return true; 1693 } 1694 1695 bool isMemRegOffset() const { 1696 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1697 return false; 1698 return true; 1699 } 1700 1701 bool isT2MemRegOffset() const { 1702 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1703 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1704 return false; 1705 // Only lsl #{0, 1, 2, 3} allowed. 1706 if (Memory.ShiftType == ARM_AM::no_shift) 1707 return true; 1708 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1709 return false; 1710 return true; 1711 } 1712 1713 bool isMemThumbRR() const { 1714 // Thumb reg+reg addressing is simple. Just two registers, a base and 1715 // an offset. No shifts, negations or any other complicating factors. 1716 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1717 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1718 return false; 1719 return isARMLowRegister(Memory.BaseRegNum) && 1720 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1721 } 1722 1723 bool isMemThumbRIs4() const { 1724 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1725 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1726 return false; 1727 // Immediate offset, multiple of 4 in range [0, 124]. 1728 if (!Memory.OffsetImm) return true; 1729 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1730 int64_t Val = CE->getValue(); 1731 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1732 } 1733 return false; 1734 } 1735 1736 bool isMemThumbRIs2() const { 1737 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1738 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1739 return false; 1740 // Immediate offset, multiple of 4 in range [0, 62]. 1741 if (!Memory.OffsetImm) return true; 1742 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1743 int64_t Val = CE->getValue(); 1744 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1745 } 1746 return false; 1747 } 1748 1749 bool isMemThumbRIs1() const { 1750 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1751 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1752 return false; 1753 // Immediate offset in range [0, 31]. 1754 if (!Memory.OffsetImm) return true; 1755 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1756 int64_t Val = CE->getValue(); 1757 return Val >= 0 && Val <= 31; 1758 } 1759 return false; 1760 } 1761 1762 bool isMemThumbSPI() const { 1763 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1764 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1765 return false; 1766 // Immediate offset, multiple of 4 in range [0, 1020]. 1767 if (!Memory.OffsetImm) return true; 1768 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1769 int64_t Val = CE->getValue(); 1770 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1771 } 1772 return false; 1773 } 1774 1775 bool isMemImm8s4Offset() const { 1776 // If we have an immediate that's not a constant, treat it as a label 1777 // reference needing a fixup. If it is a constant, it's something else 1778 // and we reject it. 1779 if (isImm() && !isa<MCConstantExpr>(getImm())) 1780 return true; 1781 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1782 return false; 1783 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1784 if (!Memory.OffsetImm) return true; 1785 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1786 int64_t Val = CE->getValue(); 1787 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1788 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || 1789 Val == std::numeric_limits<int32_t>::min(); 1790 } 1791 return false; 1792 } 1793 1794 bool isMemImm7s4Offset() const { 1795 // If we have an immediate that's not a constant, treat it as a label 1796 // reference needing a fixup. If it is a constant, it's something else 1797 // and we reject it. 1798 if (isImm() && !isa<MCConstantExpr>(getImm())) 1799 return true; 1800 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1801 !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1802 Memory.BaseRegNum)) 1803 return false; 1804 // Immediate offset a multiple of 4 in range [-508, 508]. 1805 if (!Memory.OffsetImm) return true; 1806 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1807 int64_t Val = CE->getValue(); 1808 // Special case, #-0 is INT32_MIN. 1809 return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN; 1810 } 1811 return false; 1812 } 1813 1814 bool isMemImm0_1020s4Offset() const { 1815 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1816 return false; 1817 // Immediate offset a multiple of 4 in range [0, 1020]. 1818 if (!Memory.OffsetImm) return true; 1819 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1820 int64_t Val = CE->getValue(); 1821 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1822 } 1823 return false; 1824 } 1825 1826 bool isMemImm8Offset() const { 1827 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1828 return false; 1829 // Base reg of PC isn't allowed for these encodings. 1830 if (Memory.BaseRegNum == ARM::PC) return false; 1831 // Immediate offset in range [-255, 255]. 1832 if (!Memory.OffsetImm) return true; 1833 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1834 int64_t Val = CE->getValue(); 1835 return (Val == std::numeric_limits<int32_t>::min()) || 1836 (Val > -256 && Val < 256); 1837 } 1838 return false; 1839 } 1840 1841 template<unsigned Bits, unsigned RegClassID> 1842 bool isMemImm7ShiftedOffset() const { 1843 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1844 !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum)) 1845 return false; 1846 1847 // Expect an immediate offset equal to an element of the range 1848 // [-127, 127], shifted left by Bits. 1849 1850 if (!Memory.OffsetImm) return true; 1851 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1852 int64_t Val = CE->getValue(); 1853 1854 // INT32_MIN is a special-case value (indicating the encoding with 1855 // zero offset and the subtract bit set) 1856 if (Val == INT32_MIN) 1857 return true; 1858 1859 unsigned Divisor = 1U << Bits; 1860 1861 // Check that the low bits are zero 1862 if (Val % Divisor != 0) 1863 return false; 1864 1865 // Check that the remaining offset is within range. 1866 Val /= Divisor; 1867 return (Val >= -127 && Val <= 127); 1868 } 1869 return false; 1870 } 1871 1872 template <int shift> bool isMemRegRQOffset() const { 1873 if (!isMVEMem() || Memory.OffsetImm != nullptr || Memory.Alignment != 0) 1874 return false; 1875 1876 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1877 Memory.BaseRegNum)) 1878 return false; 1879 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1880 Memory.OffsetRegNum)) 1881 return false; 1882 1883 if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift) 1884 return false; 1885 1886 if (shift > 0 && 1887 (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift)) 1888 return false; 1889 1890 return true; 1891 } 1892 1893 template <int shift> bool isMemRegQOffset() const { 1894 if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1895 return false; 1896 1897 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1898 Memory.BaseRegNum)) 1899 return false; 1900 1901 if (!Memory.OffsetImm) 1902 return true; 1903 static_assert(shift < 56, 1904 "Such that we dont shift by a value higher than 62"); 1905 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1906 int64_t Val = CE->getValue(); 1907 1908 // The value must be a multiple of (1 << shift) 1909 if ((Val & ((1U << shift) - 1)) != 0) 1910 return false; 1911 1912 // And be in the right range, depending on the amount that it is shifted 1913 // by. Shift 0, is equal to 7 unsigned bits, the sign bit is set 1914 // separately. 1915 int64_t Range = (1U << (7 + shift)) - 1; 1916 return (Val == INT32_MIN) || (Val > -Range && Val < Range); 1917 } 1918 return false; 1919 } 1920 1921 bool isMemPosImm8Offset() const { 1922 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1923 return false; 1924 // Immediate offset in range [0, 255]. 1925 if (!Memory.OffsetImm) return true; 1926 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1927 int64_t Val = CE->getValue(); 1928 return Val >= 0 && Val < 256; 1929 } 1930 return false; 1931 } 1932 1933 bool isMemNegImm8Offset() const { 1934 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1935 return false; 1936 // Base reg of PC isn't allowed for these encodings. 1937 if (Memory.BaseRegNum == ARM::PC) return false; 1938 // Immediate offset in range [-255, -1]. 1939 if (!Memory.OffsetImm) return false; 1940 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1941 int64_t Val = CE->getValue(); 1942 return (Val == std::numeric_limits<int32_t>::min()) || 1943 (Val > -256 && Val < 0); 1944 } 1945 return false; 1946 } 1947 1948 bool isMemUImm12Offset() const { 1949 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1950 return false; 1951 // Immediate offset in range [0, 4095]. 1952 if (!Memory.OffsetImm) return true; 1953 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1954 int64_t Val = CE->getValue(); 1955 return (Val >= 0 && Val < 4096); 1956 } 1957 return false; 1958 } 1959 1960 bool isMemImm12Offset() const { 1961 // If we have an immediate that's not a constant, treat it as a label 1962 // reference needing a fixup. If it is a constant, it's something else 1963 // and we reject it. 1964 1965 if (isImm() && !isa<MCConstantExpr>(getImm())) 1966 return true; 1967 1968 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1969 return false; 1970 // Immediate offset in range [-4095, 4095]. 1971 if (!Memory.OffsetImm) return true; 1972 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1973 int64_t Val = CE->getValue(); 1974 return (Val > -4096 && Val < 4096) || 1975 (Val == std::numeric_limits<int32_t>::min()); 1976 } 1977 // If we have an immediate that's not a constant, treat it as a 1978 // symbolic expression needing a fixup. 1979 return true; 1980 } 1981 1982 bool isConstPoolAsmImm() const { 1983 // Delay processing of Constant Pool Immediate, this will turn into 1984 // a constant. Match no other operand 1985 return (isConstantPoolImm()); 1986 } 1987 1988 bool isPostIdxImm8() const { 1989 if (!isImm()) return false; 1990 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1991 if (!CE) return false; 1992 int64_t Val = CE->getValue(); 1993 return (Val > -256 && Val < 256) || 1994 (Val == std::numeric_limits<int32_t>::min()); 1995 } 1996 1997 bool isPostIdxImm8s4() const { 1998 if (!isImm()) return false; 1999 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2000 if (!CE) return false; 2001 int64_t Val = CE->getValue(); 2002 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 2003 (Val == std::numeric_limits<int32_t>::min()); 2004 } 2005 2006 bool isMSRMask() const { return Kind == k_MSRMask; } 2007 bool isBankedReg() const { return Kind == k_BankedReg; } 2008 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 2009 2010 // NEON operands. 2011 bool isSingleSpacedVectorList() const { 2012 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 2013 } 2014 2015 bool isDoubleSpacedVectorList() const { 2016 return Kind == k_VectorList && VectorList.isDoubleSpaced; 2017 } 2018 2019 bool isVecListOneD() const { 2020 if (!isSingleSpacedVectorList()) return false; 2021 return VectorList.Count == 1; 2022 } 2023 2024 bool isVecListTwoMQ() const { 2025 return isSingleSpacedVectorList() && VectorList.Count == 2 && 2026 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 2027 VectorList.RegNum); 2028 } 2029 2030 bool isVecListDPair() const { 2031 if (!isSingleSpacedVectorList()) return false; 2032 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 2033 .contains(VectorList.RegNum)); 2034 } 2035 2036 bool isVecListThreeD() const { 2037 if (!isSingleSpacedVectorList()) return false; 2038 return VectorList.Count == 3; 2039 } 2040 2041 bool isVecListFourD() const { 2042 if (!isSingleSpacedVectorList()) return false; 2043 return VectorList.Count == 4; 2044 } 2045 2046 bool isVecListDPairSpaced() const { 2047 if (Kind != k_VectorList) return false; 2048 if (isSingleSpacedVectorList()) return false; 2049 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 2050 .contains(VectorList.RegNum)); 2051 } 2052 2053 bool isVecListThreeQ() const { 2054 if (!isDoubleSpacedVectorList()) return false; 2055 return VectorList.Count == 3; 2056 } 2057 2058 bool isVecListFourQ() const { 2059 if (!isDoubleSpacedVectorList()) return false; 2060 return VectorList.Count == 4; 2061 } 2062 2063 bool isVecListFourMQ() const { 2064 return isSingleSpacedVectorList() && VectorList.Count == 4 && 2065 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 2066 VectorList.RegNum); 2067 } 2068 2069 bool isSingleSpacedVectorAllLanes() const { 2070 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 2071 } 2072 2073 bool isDoubleSpacedVectorAllLanes() const { 2074 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 2075 } 2076 2077 bool isVecListOneDAllLanes() const { 2078 if (!isSingleSpacedVectorAllLanes()) return false; 2079 return VectorList.Count == 1; 2080 } 2081 2082 bool isVecListDPairAllLanes() const { 2083 if (!isSingleSpacedVectorAllLanes()) return false; 2084 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 2085 .contains(VectorList.RegNum)); 2086 } 2087 2088 bool isVecListDPairSpacedAllLanes() const { 2089 if (!isDoubleSpacedVectorAllLanes()) return false; 2090 return VectorList.Count == 2; 2091 } 2092 2093 bool isVecListThreeDAllLanes() const { 2094 if (!isSingleSpacedVectorAllLanes()) return false; 2095 return VectorList.Count == 3; 2096 } 2097 2098 bool isVecListThreeQAllLanes() const { 2099 if (!isDoubleSpacedVectorAllLanes()) return false; 2100 return VectorList.Count == 3; 2101 } 2102 2103 bool isVecListFourDAllLanes() const { 2104 if (!isSingleSpacedVectorAllLanes()) return false; 2105 return VectorList.Count == 4; 2106 } 2107 2108 bool isVecListFourQAllLanes() const { 2109 if (!isDoubleSpacedVectorAllLanes()) return false; 2110 return VectorList.Count == 4; 2111 } 2112 2113 bool isSingleSpacedVectorIndexed() const { 2114 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 2115 } 2116 2117 bool isDoubleSpacedVectorIndexed() const { 2118 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 2119 } 2120 2121 bool isVecListOneDByteIndexed() const { 2122 if (!isSingleSpacedVectorIndexed()) return false; 2123 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 2124 } 2125 2126 bool isVecListOneDHWordIndexed() const { 2127 if (!isSingleSpacedVectorIndexed()) return false; 2128 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 2129 } 2130 2131 bool isVecListOneDWordIndexed() const { 2132 if (!isSingleSpacedVectorIndexed()) return false; 2133 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 2134 } 2135 2136 bool isVecListTwoDByteIndexed() const { 2137 if (!isSingleSpacedVectorIndexed()) return false; 2138 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 2139 } 2140 2141 bool isVecListTwoDHWordIndexed() const { 2142 if (!isSingleSpacedVectorIndexed()) return false; 2143 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2144 } 2145 2146 bool isVecListTwoQWordIndexed() const { 2147 if (!isDoubleSpacedVectorIndexed()) return false; 2148 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2149 } 2150 2151 bool isVecListTwoQHWordIndexed() const { 2152 if (!isDoubleSpacedVectorIndexed()) return false; 2153 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2154 } 2155 2156 bool isVecListTwoDWordIndexed() const { 2157 if (!isSingleSpacedVectorIndexed()) return false; 2158 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2159 } 2160 2161 bool isVecListThreeDByteIndexed() const { 2162 if (!isSingleSpacedVectorIndexed()) return false; 2163 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 2164 } 2165 2166 bool isVecListThreeDHWordIndexed() const { 2167 if (!isSingleSpacedVectorIndexed()) return false; 2168 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2169 } 2170 2171 bool isVecListThreeQWordIndexed() const { 2172 if (!isDoubleSpacedVectorIndexed()) return false; 2173 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2174 } 2175 2176 bool isVecListThreeQHWordIndexed() const { 2177 if (!isDoubleSpacedVectorIndexed()) return false; 2178 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2179 } 2180 2181 bool isVecListThreeDWordIndexed() const { 2182 if (!isSingleSpacedVectorIndexed()) return false; 2183 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2184 } 2185 2186 bool isVecListFourDByteIndexed() const { 2187 if (!isSingleSpacedVectorIndexed()) return false; 2188 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 2189 } 2190 2191 bool isVecListFourDHWordIndexed() const { 2192 if (!isSingleSpacedVectorIndexed()) return false; 2193 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2194 } 2195 2196 bool isVecListFourQWordIndexed() const { 2197 if (!isDoubleSpacedVectorIndexed()) return false; 2198 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2199 } 2200 2201 bool isVecListFourQHWordIndexed() const { 2202 if (!isDoubleSpacedVectorIndexed()) return false; 2203 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2204 } 2205 2206 bool isVecListFourDWordIndexed() const { 2207 if (!isSingleSpacedVectorIndexed()) return false; 2208 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2209 } 2210 2211 bool isVectorIndex() const { return Kind == k_VectorIndex; } 2212 2213 template <unsigned NumLanes> 2214 bool isVectorIndexInRange() const { 2215 if (Kind != k_VectorIndex) return false; 2216 return VectorIndex.Val < NumLanes; 2217 } 2218 2219 bool isVectorIndex8() const { return isVectorIndexInRange<8>(); } 2220 bool isVectorIndex16() const { return isVectorIndexInRange<4>(); } 2221 bool isVectorIndex32() const { return isVectorIndexInRange<2>(); } 2222 bool isVectorIndex64() const { return isVectorIndexInRange<1>(); } 2223 2224 template<int PermittedValue, int OtherPermittedValue> 2225 bool isMVEPairVectorIndex() const { 2226 if (Kind != k_VectorIndex) return false; 2227 return VectorIndex.Val == PermittedValue || 2228 VectorIndex.Val == OtherPermittedValue; 2229 } 2230 2231 bool isNEONi8splat() const { 2232 if (!isImm()) return false; 2233 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2234 // Must be a constant. 2235 if (!CE) return false; 2236 int64_t Value = CE->getValue(); 2237 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 2238 // value. 2239 return Value >= 0 && Value < 256; 2240 } 2241 2242 bool isNEONi16splat() const { 2243 if (isNEONByteReplicate(2)) 2244 return false; // Leave that for bytes replication and forbid by default. 2245 if (!isImm()) 2246 return false; 2247 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2248 // Must be a constant. 2249 if (!CE) return false; 2250 unsigned Value = CE->getValue(); 2251 return ARM_AM::isNEONi16splat(Value); 2252 } 2253 2254 bool isNEONi16splatNot() const { 2255 if (!isImm()) 2256 return false; 2257 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2258 // Must be a constant. 2259 if (!CE) return false; 2260 unsigned Value = CE->getValue(); 2261 return ARM_AM::isNEONi16splat(~Value & 0xffff); 2262 } 2263 2264 bool isNEONi32splat() const { 2265 if (isNEONByteReplicate(4)) 2266 return false; // Leave that for bytes replication and forbid by default. 2267 if (!isImm()) 2268 return false; 2269 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2270 // Must be a constant. 2271 if (!CE) return false; 2272 unsigned Value = CE->getValue(); 2273 return ARM_AM::isNEONi32splat(Value); 2274 } 2275 2276 bool isNEONi32splatNot() const { 2277 if (!isImm()) 2278 return false; 2279 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2280 // Must be a constant. 2281 if (!CE) return false; 2282 unsigned Value = CE->getValue(); 2283 return ARM_AM::isNEONi32splat(~Value); 2284 } 2285 2286 static bool isValidNEONi32vmovImm(int64_t Value) { 2287 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 2288 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 2289 return ((Value & 0xffffffffffffff00) == 0) || 2290 ((Value & 0xffffffffffff00ff) == 0) || 2291 ((Value & 0xffffffffff00ffff) == 0) || 2292 ((Value & 0xffffffff00ffffff) == 0) || 2293 ((Value & 0xffffffffffff00ff) == 0xff) || 2294 ((Value & 0xffffffffff00ffff) == 0xffff); 2295 } 2296 2297 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { 2298 assert((Width == 8 || Width == 16 || Width == 32) && 2299 "Invalid element width"); 2300 assert(NumElems * Width <= 64 && "Invalid result width"); 2301 2302 if (!isImm()) 2303 return false; 2304 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2305 // Must be a constant. 2306 if (!CE) 2307 return false; 2308 int64_t Value = CE->getValue(); 2309 if (!Value) 2310 return false; // Don't bother with zero. 2311 if (Inv) 2312 Value = ~Value; 2313 2314 uint64_t Mask = (1ull << Width) - 1; 2315 uint64_t Elem = Value & Mask; 2316 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) 2317 return false; 2318 if (Width == 32 && !isValidNEONi32vmovImm(Elem)) 2319 return false; 2320 2321 for (unsigned i = 1; i < NumElems; ++i) { 2322 Value >>= Width; 2323 if ((Value & Mask) != Elem) 2324 return false; 2325 } 2326 return true; 2327 } 2328 2329 bool isNEONByteReplicate(unsigned NumBytes) const { 2330 return isNEONReplicate(8, NumBytes, false); 2331 } 2332 2333 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { 2334 assert((FromW == 8 || FromW == 16 || FromW == 32) && 2335 "Invalid source width"); 2336 assert((ToW == 16 || ToW == 32 || ToW == 64) && 2337 "Invalid destination width"); 2338 assert(FromW < ToW && "ToW is not less than FromW"); 2339 } 2340 2341 template<unsigned FromW, unsigned ToW> 2342 bool isNEONmovReplicate() const { 2343 checkNeonReplicateArgs(FromW, ToW); 2344 if (ToW == 64 && isNEONi64splat()) 2345 return false; 2346 return isNEONReplicate(FromW, ToW / FromW, false); 2347 } 2348 2349 template<unsigned FromW, unsigned ToW> 2350 bool isNEONinvReplicate() const { 2351 checkNeonReplicateArgs(FromW, ToW); 2352 return isNEONReplicate(FromW, ToW / FromW, true); 2353 } 2354 2355 bool isNEONi32vmov() const { 2356 if (isNEONByteReplicate(4)) 2357 return false; // Let it to be classified as byte-replicate case. 2358 if (!isImm()) 2359 return false; 2360 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2361 // Must be a constant. 2362 if (!CE) 2363 return false; 2364 return isValidNEONi32vmovImm(CE->getValue()); 2365 } 2366 2367 bool isNEONi32vmovNeg() const { 2368 if (!isImm()) return false; 2369 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2370 // Must be a constant. 2371 if (!CE) return false; 2372 return isValidNEONi32vmovImm(~CE->getValue()); 2373 } 2374 2375 bool isNEONi64splat() const { 2376 if (!isImm()) return false; 2377 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2378 // Must be a constant. 2379 if (!CE) return false; 2380 uint64_t Value = CE->getValue(); 2381 // i64 value with each byte being either 0 or 0xff. 2382 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 2383 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 2384 return true; 2385 } 2386 2387 template<int64_t Angle, int64_t Remainder> 2388 bool isComplexRotation() const { 2389 if (!isImm()) return false; 2390 2391 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2392 if (!CE) return false; 2393 uint64_t Value = CE->getValue(); 2394 2395 return (Value % Angle == Remainder && Value <= 270); 2396 } 2397 2398 bool isMVELongShift() const { 2399 if (!isImm()) return false; 2400 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2401 // Must be a constant. 2402 if (!CE) return false; 2403 uint64_t Value = CE->getValue(); 2404 return Value >= 1 && Value <= 32; 2405 } 2406 2407 bool isMveSaturateOp() const { 2408 if (!isImm()) return false; 2409 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2410 if (!CE) return false; 2411 uint64_t Value = CE->getValue(); 2412 return Value == 48 || Value == 64; 2413 } 2414 2415 bool isITCondCodeNoAL() const { 2416 if (!isITCondCode()) return false; 2417 ARMCC::CondCodes CC = getCondCode(); 2418 return CC != ARMCC::AL; 2419 } 2420 2421 bool isITCondCodeRestrictedI() const { 2422 if (!isITCondCode()) 2423 return false; 2424 ARMCC::CondCodes CC = getCondCode(); 2425 return CC == ARMCC::EQ || CC == ARMCC::NE; 2426 } 2427 2428 bool isITCondCodeRestrictedS() const { 2429 if (!isITCondCode()) 2430 return false; 2431 ARMCC::CondCodes CC = getCondCode(); 2432 return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE || 2433 CC == ARMCC::GE; 2434 } 2435 2436 bool isITCondCodeRestrictedU() const { 2437 if (!isITCondCode()) 2438 return false; 2439 ARMCC::CondCodes CC = getCondCode(); 2440 return CC == ARMCC::HS || CC == ARMCC::HI; 2441 } 2442 2443 bool isITCondCodeRestrictedFP() const { 2444 if (!isITCondCode()) 2445 return false; 2446 ARMCC::CondCodes CC = getCondCode(); 2447 return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT || 2448 CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE; 2449 } 2450 2451 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 2452 // Add as immediates when possible. Null MCExpr = 0. 2453 if (!Expr) 2454 Inst.addOperand(MCOperand::createImm(0)); 2455 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 2456 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2457 else 2458 Inst.addOperand(MCOperand::createExpr(Expr)); 2459 } 2460 2461 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 2462 assert(N == 1 && "Invalid number of operands!"); 2463 addExpr(Inst, getImm()); 2464 } 2465 2466 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 2467 assert(N == 1 && "Invalid number of operands!"); 2468 addExpr(Inst, getImm()); 2469 } 2470 2471 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 2472 assert(N == 2 && "Invalid number of operands!"); 2473 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2474 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 2475 Inst.addOperand(MCOperand::createReg(RegNum)); 2476 } 2477 2478 void addVPTPredNOperands(MCInst &Inst, unsigned N) const { 2479 assert(N == 3 && "Invalid number of operands!"); 2480 Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred()))); 2481 unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0; 2482 Inst.addOperand(MCOperand::createReg(RegNum)); 2483 Inst.addOperand(MCOperand::createReg(0)); 2484 } 2485 2486 void addVPTPredROperands(MCInst &Inst, unsigned N) const { 2487 assert(N == 4 && "Invalid number of operands!"); 2488 addVPTPredNOperands(Inst, N-1); 2489 unsigned RegNum; 2490 if (getVPTPred() == ARMVCC::None) { 2491 RegNum = 0; 2492 } else { 2493 unsigned NextOpIndex = Inst.getNumOperands(); 2494 const MCInstrDesc &MCID = ARMInsts[Inst.getOpcode()]; 2495 int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO); 2496 assert(TiedOp >= 0 && 2497 "Inactive register in vpred_r is not tied to an output!"); 2498 RegNum = Inst.getOperand(TiedOp).getReg(); 2499 } 2500 Inst.addOperand(MCOperand::createReg(RegNum)); 2501 } 2502 2503 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 2504 assert(N == 1 && "Invalid number of operands!"); 2505 Inst.addOperand(MCOperand::createImm(getCoproc())); 2506 } 2507 2508 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 2509 assert(N == 1 && "Invalid number of operands!"); 2510 Inst.addOperand(MCOperand::createImm(getCoproc())); 2511 } 2512 2513 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 2514 assert(N == 1 && "Invalid number of operands!"); 2515 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 2516 } 2517 2518 void addITMaskOperands(MCInst &Inst, unsigned N) const { 2519 assert(N == 1 && "Invalid number of operands!"); 2520 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 2521 } 2522 2523 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 2524 assert(N == 1 && "Invalid number of operands!"); 2525 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2526 } 2527 2528 void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const { 2529 assert(N == 1 && "Invalid number of operands!"); 2530 Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode())))); 2531 } 2532 2533 void addCCOutOperands(MCInst &Inst, unsigned N) const { 2534 assert(N == 1 && "Invalid number of operands!"); 2535 Inst.addOperand(MCOperand::createReg(getReg())); 2536 } 2537 2538 void addRegOperands(MCInst &Inst, unsigned N) const { 2539 assert(N == 1 && "Invalid number of operands!"); 2540 Inst.addOperand(MCOperand::createReg(getReg())); 2541 } 2542 2543 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 2544 assert(N == 3 && "Invalid number of operands!"); 2545 assert(isRegShiftedReg() && 2546 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 2547 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 2548 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 2549 Inst.addOperand(MCOperand::createImm( 2550 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 2551 } 2552 2553 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 2554 assert(N == 2 && "Invalid number of operands!"); 2555 assert(isRegShiftedImm() && 2556 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 2557 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 2558 // Shift of #32 is encoded as 0 where permitted 2559 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 2560 Inst.addOperand(MCOperand::createImm( 2561 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 2562 } 2563 2564 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 2565 assert(N == 1 && "Invalid number of operands!"); 2566 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 2567 ShifterImm.Imm)); 2568 } 2569 2570 void addRegListOperands(MCInst &Inst, unsigned N) const { 2571 assert(N == 1 && "Invalid number of operands!"); 2572 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2573 for (unsigned Reg : RegList) 2574 Inst.addOperand(MCOperand::createReg(Reg)); 2575 } 2576 2577 void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const { 2578 assert(N == 1 && "Invalid number of operands!"); 2579 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2580 for (unsigned Reg : RegList) 2581 Inst.addOperand(MCOperand::createReg(Reg)); 2582 } 2583 2584 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2585 addRegListOperands(Inst, N); 2586 } 2587 2588 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2589 addRegListOperands(Inst, N); 2590 } 2591 2592 void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2593 addRegListOperands(Inst, N); 2594 } 2595 2596 void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2597 addRegListOperands(Inst, N); 2598 } 2599 2600 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2601 assert(N == 1 && "Invalid number of operands!"); 2602 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2603 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2604 } 2605 2606 void addModImmOperands(MCInst &Inst, unsigned N) const { 2607 assert(N == 1 && "Invalid number of operands!"); 2608 2609 // Support for fixups (MCFixup) 2610 if (isImm()) 2611 return addImmOperands(Inst, N); 2612 2613 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2614 } 2615 2616 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2617 assert(N == 1 && "Invalid number of operands!"); 2618 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2619 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2620 Inst.addOperand(MCOperand::createImm(Enc)); 2621 } 2622 2623 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2624 assert(N == 1 && "Invalid number of operands!"); 2625 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2626 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2627 Inst.addOperand(MCOperand::createImm(Enc)); 2628 } 2629 2630 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 2631 assert(N == 1 && "Invalid number of operands!"); 2632 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2633 uint32_t Val = -CE->getValue(); 2634 Inst.addOperand(MCOperand::createImm(Val)); 2635 } 2636 2637 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 2638 assert(N == 1 && "Invalid number of operands!"); 2639 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2640 uint32_t Val = -CE->getValue(); 2641 Inst.addOperand(MCOperand::createImm(Val)); 2642 } 2643 2644 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2645 assert(N == 1 && "Invalid number of operands!"); 2646 // Munge the lsb/width into a bitfield mask. 2647 unsigned lsb = Bitfield.LSB; 2648 unsigned width = Bitfield.Width; 2649 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2650 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2651 (32 - (lsb + width))); 2652 Inst.addOperand(MCOperand::createImm(Mask)); 2653 } 2654 2655 void addImmOperands(MCInst &Inst, unsigned N) const { 2656 assert(N == 1 && "Invalid number of operands!"); 2657 addExpr(Inst, getImm()); 2658 } 2659 2660 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2661 assert(N == 1 && "Invalid number of operands!"); 2662 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2663 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2664 } 2665 2666 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2667 assert(N == 1 && "Invalid number of operands!"); 2668 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2669 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2670 } 2671 2672 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2673 assert(N == 1 && "Invalid number of operands!"); 2674 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2675 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2676 Inst.addOperand(MCOperand::createImm(Val)); 2677 } 2678 2679 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2680 assert(N == 1 && "Invalid number of operands!"); 2681 // FIXME: We really want to scale the value here, but the LDRD/STRD 2682 // instruction don't encode operands that way yet. 2683 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2684 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2685 } 2686 2687 void addImm7s4Operands(MCInst &Inst, unsigned N) const { 2688 assert(N == 1 && "Invalid number of operands!"); 2689 // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR 2690 // instruction don't encode operands that way yet. 2691 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2692 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2693 } 2694 2695 void addImm7Shift0Operands(MCInst &Inst, unsigned N) const { 2696 assert(N == 1 && "Invalid number of operands!"); 2697 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2698 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2699 } 2700 2701 void addImm7Shift1Operands(MCInst &Inst, unsigned N) const { 2702 assert(N == 1 && "Invalid number of operands!"); 2703 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2704 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2705 } 2706 2707 void addImm7Shift2Operands(MCInst &Inst, unsigned N) const { 2708 assert(N == 1 && "Invalid number of operands!"); 2709 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2710 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2711 } 2712 2713 void addImm7Operands(MCInst &Inst, unsigned N) const { 2714 assert(N == 1 && "Invalid number of operands!"); 2715 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2716 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2717 } 2718 2719 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2720 assert(N == 1 && "Invalid number of operands!"); 2721 // The immediate is scaled by four in the encoding and is stored 2722 // in the MCInst as such. Lop off the low two bits here. 2723 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2724 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2725 } 2726 2727 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2728 assert(N == 1 && "Invalid number of operands!"); 2729 // The immediate is scaled by four in the encoding and is stored 2730 // in the MCInst as such. Lop off the low two bits here. 2731 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2732 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2733 } 2734 2735 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2736 assert(N == 1 && "Invalid number of operands!"); 2737 // The immediate is scaled by four in the encoding and is stored 2738 // in the MCInst as such. Lop off the low two bits here. 2739 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2740 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2741 } 2742 2743 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2744 assert(N == 1 && "Invalid number of operands!"); 2745 // The constant encodes as the immediate-1, and we store in the instruction 2746 // the bits as encoded, so subtract off one here. 2747 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2748 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2749 } 2750 2751 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2752 assert(N == 1 && "Invalid number of operands!"); 2753 // The constant encodes as the immediate-1, and we store in the instruction 2754 // the bits as encoded, so subtract off one here. 2755 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2756 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2757 } 2758 2759 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2760 assert(N == 1 && "Invalid number of operands!"); 2761 // The constant encodes as the immediate, except for 32, which encodes as 2762 // zero. 2763 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2764 unsigned Imm = CE->getValue(); 2765 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2766 } 2767 2768 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2769 assert(N == 1 && "Invalid number of operands!"); 2770 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2771 // the instruction as well. 2772 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2773 int Val = CE->getValue(); 2774 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2775 } 2776 2777 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2778 assert(N == 1 && "Invalid number of operands!"); 2779 // The operand is actually a t2_so_imm, but we have its bitwise 2780 // negation in the assembly source, so twiddle it here. 2781 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2782 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2783 } 2784 2785 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2786 assert(N == 1 && "Invalid number of operands!"); 2787 // The operand is actually a t2_so_imm, but we have its 2788 // negation in the assembly source, so twiddle it here. 2789 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2790 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2791 } 2792 2793 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2794 assert(N == 1 && "Invalid number of operands!"); 2795 // The operand is actually an imm0_4095, but we have its 2796 // negation in the assembly source, so twiddle it here. 2797 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2798 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2799 } 2800 2801 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2802 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2803 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2804 return; 2805 } 2806 const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val); 2807 Inst.addOperand(MCOperand::createExpr(SR)); 2808 } 2809 2810 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2811 assert(N == 1 && "Invalid number of operands!"); 2812 if (isImm()) { 2813 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2814 if (CE) { 2815 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2816 return; 2817 } 2818 const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val); 2819 Inst.addOperand(MCOperand::createExpr(SR)); 2820 return; 2821 } 2822 2823 assert(isGPRMem() && "Unknown value type!"); 2824 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2825 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 2826 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2827 else 2828 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 2829 } 2830 2831 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2832 assert(N == 1 && "Invalid number of operands!"); 2833 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2834 } 2835 2836 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2837 assert(N == 1 && "Invalid number of operands!"); 2838 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2839 } 2840 2841 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2842 assert(N == 1 && "Invalid number of operands!"); 2843 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt()))); 2844 } 2845 2846 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2847 assert(N == 1 && "Invalid number of operands!"); 2848 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2849 } 2850 2851 void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const { 2852 assert(N == 1 && "Invalid number of operands!"); 2853 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2854 } 2855 2856 void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const { 2857 assert(N == 1 && "Invalid number of operands!"); 2858 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2859 } 2860 2861 void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const { 2862 assert(N == 1 && "Invalid number of operands!"); 2863 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2864 } 2865 2866 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2867 assert(N == 1 && "Invalid number of operands!"); 2868 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 2869 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2870 else 2871 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 2872 } 2873 2874 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2875 assert(N == 1 && "Invalid number of operands!"); 2876 assert(isImm() && "Not an immediate!"); 2877 2878 // If we have an immediate that's not a constant, treat it as a label 2879 // reference needing a fixup. 2880 if (!isa<MCConstantExpr>(getImm())) { 2881 Inst.addOperand(MCOperand::createExpr(getImm())); 2882 return; 2883 } 2884 2885 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2886 int Val = CE->getValue(); 2887 Inst.addOperand(MCOperand::createImm(Val)); 2888 } 2889 2890 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2891 assert(N == 2 && "Invalid number of operands!"); 2892 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2893 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2894 } 2895 2896 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2897 addAlignedMemoryOperands(Inst, N); 2898 } 2899 2900 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2901 addAlignedMemoryOperands(Inst, N); 2902 } 2903 2904 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2905 addAlignedMemoryOperands(Inst, N); 2906 } 2907 2908 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2909 addAlignedMemoryOperands(Inst, N); 2910 } 2911 2912 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2913 addAlignedMemoryOperands(Inst, N); 2914 } 2915 2916 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2917 addAlignedMemoryOperands(Inst, N); 2918 } 2919 2920 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2921 addAlignedMemoryOperands(Inst, N); 2922 } 2923 2924 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2925 addAlignedMemoryOperands(Inst, N); 2926 } 2927 2928 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2929 addAlignedMemoryOperands(Inst, N); 2930 } 2931 2932 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2933 addAlignedMemoryOperands(Inst, N); 2934 } 2935 2936 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2937 addAlignedMemoryOperands(Inst, N); 2938 } 2939 2940 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2941 assert(N == 3 && "Invalid number of operands!"); 2942 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2943 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2944 if (!Memory.OffsetRegNum) { 2945 if (!Memory.OffsetImm) 2946 Inst.addOperand(MCOperand::createImm(0)); 2947 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 2948 int32_t Val = CE->getValue(); 2949 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2950 // Special case for #-0 2951 if (Val == std::numeric_limits<int32_t>::min()) 2952 Val = 0; 2953 if (Val < 0) 2954 Val = -Val; 2955 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2956 Inst.addOperand(MCOperand::createImm(Val)); 2957 } else 2958 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 2959 } else { 2960 // For register offset, we encode the shift type and negation flag 2961 // here. 2962 int32_t Val = 2963 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2964 Memory.ShiftImm, Memory.ShiftType); 2965 Inst.addOperand(MCOperand::createImm(Val)); 2966 } 2967 } 2968 2969 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2970 assert(N == 2 && "Invalid number of operands!"); 2971 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2972 assert(CE && "non-constant AM2OffsetImm operand!"); 2973 int32_t Val = CE->getValue(); 2974 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2975 // Special case for #-0 2976 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2977 if (Val < 0) Val = -Val; 2978 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2979 Inst.addOperand(MCOperand::createReg(0)); 2980 Inst.addOperand(MCOperand::createImm(Val)); 2981 } 2982 2983 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2984 assert(N == 3 && "Invalid number of operands!"); 2985 // If we have an immediate that's not a constant, treat it as a label 2986 // reference needing a fixup. If it is a constant, it's something else 2987 // and we reject it. 2988 if (isImm()) { 2989 Inst.addOperand(MCOperand::createExpr(getImm())); 2990 Inst.addOperand(MCOperand::createReg(0)); 2991 Inst.addOperand(MCOperand::createImm(0)); 2992 return; 2993 } 2994 2995 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2996 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2997 if (!Memory.OffsetRegNum) { 2998 if (!Memory.OffsetImm) 2999 Inst.addOperand(MCOperand::createImm(0)); 3000 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 3001 int32_t Val = CE->getValue(); 3002 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 3003 // Special case for #-0 3004 if (Val == std::numeric_limits<int32_t>::min()) 3005 Val = 0; 3006 if (Val < 0) 3007 Val = -Val; 3008 Val = ARM_AM::getAM3Opc(AddSub, Val); 3009 Inst.addOperand(MCOperand::createImm(Val)); 3010 } else 3011 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3012 } else { 3013 // For register offset, we encode the shift type and negation flag 3014 // here. 3015 int32_t Val = 3016 ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 3017 Inst.addOperand(MCOperand::createImm(Val)); 3018 } 3019 } 3020 3021 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 3022 assert(N == 2 && "Invalid number of operands!"); 3023 if (Kind == k_PostIndexRegister) { 3024 int32_t Val = 3025 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 3026 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3027 Inst.addOperand(MCOperand::createImm(Val)); 3028 return; 3029 } 3030 3031 // Constant offset. 3032 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 3033 int32_t Val = CE->getValue(); 3034 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 3035 // Special case for #-0 3036 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 3037 if (Val < 0) Val = -Val; 3038 Val = ARM_AM::getAM3Opc(AddSub, Val); 3039 Inst.addOperand(MCOperand::createReg(0)); 3040 Inst.addOperand(MCOperand::createImm(Val)); 3041 } 3042 3043 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 3044 assert(N == 2 && "Invalid number of operands!"); 3045 // If we have an immediate that's not a constant, treat it as a label 3046 // reference needing a fixup. If it is a constant, it's something else 3047 // and we reject it. 3048 if (isImm()) { 3049 Inst.addOperand(MCOperand::createExpr(getImm())); 3050 Inst.addOperand(MCOperand::createImm(0)); 3051 return; 3052 } 3053 3054 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3055 if (!Memory.OffsetImm) 3056 Inst.addOperand(MCOperand::createImm(0)); 3057 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 3058 // The lower two bits are always zero and as such are not encoded. 3059 int32_t Val = CE->getValue() / 4; 3060 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 3061 // Special case for #-0 3062 if (Val == std::numeric_limits<int32_t>::min()) 3063 Val = 0; 3064 if (Val < 0) 3065 Val = -Val; 3066 Val = ARM_AM::getAM5Opc(AddSub, Val); 3067 Inst.addOperand(MCOperand::createImm(Val)); 3068 } else 3069 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3070 } 3071 3072 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 3073 assert(N == 2 && "Invalid number of operands!"); 3074 // If we have an immediate that's not a constant, treat it as a label 3075 // reference needing a fixup. If it is a constant, it's something else 3076 // and we reject it. 3077 if (isImm()) { 3078 Inst.addOperand(MCOperand::createExpr(getImm())); 3079 Inst.addOperand(MCOperand::createImm(0)); 3080 return; 3081 } 3082 3083 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3084 // The lower bit is always zero and as such is not encoded. 3085 if (!Memory.OffsetImm) 3086 Inst.addOperand(MCOperand::createImm(0)); 3087 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 3088 int32_t Val = CE->getValue() / 2; 3089 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 3090 // Special case for #-0 3091 if (Val == std::numeric_limits<int32_t>::min()) 3092 Val = 0; 3093 if (Val < 0) 3094 Val = -Val; 3095 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 3096 Inst.addOperand(MCOperand::createImm(Val)); 3097 } else 3098 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3099 } 3100 3101 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 3102 assert(N == 2 && "Invalid number of operands!"); 3103 // If we have an immediate that's not a constant, treat it as a label 3104 // reference needing a fixup. If it is a constant, it's something else 3105 // and we reject it. 3106 if (isImm()) { 3107 Inst.addOperand(MCOperand::createExpr(getImm())); 3108 Inst.addOperand(MCOperand::createImm(0)); 3109 return; 3110 } 3111 3112 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3113 addExpr(Inst, Memory.OffsetImm); 3114 } 3115 3116 void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const { 3117 assert(N == 2 && "Invalid number of operands!"); 3118 // If we have an immediate that's not a constant, treat it as a label 3119 // reference needing a fixup. If it is a constant, it's something else 3120 // and we reject it. 3121 if (isImm()) { 3122 Inst.addOperand(MCOperand::createExpr(getImm())); 3123 Inst.addOperand(MCOperand::createImm(0)); 3124 return; 3125 } 3126 3127 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3128 addExpr(Inst, Memory.OffsetImm); 3129 } 3130 3131 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 3132 assert(N == 2 && "Invalid number of operands!"); 3133 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3134 if (!Memory.OffsetImm) 3135 Inst.addOperand(MCOperand::createImm(0)); 3136 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 3137 // The lower two bits are always zero and as such are not encoded. 3138 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 3139 else 3140 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3141 } 3142 3143 void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const { 3144 assert(N == 2 && "Invalid number of operands!"); 3145 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3146 addExpr(Inst, Memory.OffsetImm); 3147 } 3148 3149 void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const { 3150 assert(N == 2 && "Invalid number of operands!"); 3151 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3152 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3153 } 3154 3155 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 3156 assert(N == 2 && "Invalid number of operands!"); 3157 // If this is an immediate, it's a label reference. 3158 if (isImm()) { 3159 addExpr(Inst, getImm()); 3160 Inst.addOperand(MCOperand::createImm(0)); 3161 return; 3162 } 3163 3164 // Otherwise, it's a normal memory reg+offset. 3165 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3166 addExpr(Inst, Memory.OffsetImm); 3167 } 3168 3169 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 3170 assert(N == 2 && "Invalid number of operands!"); 3171 // If this is an immediate, it's a label reference. 3172 if (isImm()) { 3173 addExpr(Inst, getImm()); 3174 Inst.addOperand(MCOperand::createImm(0)); 3175 return; 3176 } 3177 3178 // Otherwise, it's a normal memory reg+offset. 3179 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3180 addExpr(Inst, Memory.OffsetImm); 3181 } 3182 3183 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 3184 assert(N == 1 && "Invalid number of operands!"); 3185 // This is container for the immediate that we will create the constant 3186 // pool from 3187 addExpr(Inst, getConstantPoolImm()); 3188 } 3189 3190 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 3191 assert(N == 2 && "Invalid number of operands!"); 3192 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3193 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3194 } 3195 3196 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 3197 assert(N == 2 && "Invalid number of operands!"); 3198 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3199 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3200 } 3201 3202 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3203 assert(N == 3 && "Invalid number of operands!"); 3204 unsigned Val = 3205 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 3206 Memory.ShiftImm, Memory.ShiftType); 3207 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3208 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3209 Inst.addOperand(MCOperand::createImm(Val)); 3210 } 3211 3212 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3213 assert(N == 3 && "Invalid number of operands!"); 3214 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3215 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3216 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 3217 } 3218 3219 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 3220 assert(N == 2 && "Invalid number of operands!"); 3221 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3222 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3223 } 3224 3225 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 3226 assert(N == 2 && "Invalid number of operands!"); 3227 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3228 if (!Memory.OffsetImm) 3229 Inst.addOperand(MCOperand::createImm(0)); 3230 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 3231 // The lower two bits are always zero and as such are not encoded. 3232 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 3233 else 3234 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3235 } 3236 3237 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 3238 assert(N == 2 && "Invalid number of operands!"); 3239 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3240 if (!Memory.OffsetImm) 3241 Inst.addOperand(MCOperand::createImm(0)); 3242 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 3243 Inst.addOperand(MCOperand::createImm(CE->getValue() / 2)); 3244 else 3245 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3246 } 3247 3248 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 3249 assert(N == 2 && "Invalid number of operands!"); 3250 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3251 addExpr(Inst, Memory.OffsetImm); 3252 } 3253 3254 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 3255 assert(N == 2 && "Invalid number of operands!"); 3256 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3257 if (!Memory.OffsetImm) 3258 Inst.addOperand(MCOperand::createImm(0)); 3259 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 3260 // The lower two bits are always zero and as such are not encoded. 3261 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 3262 else 3263 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3264 } 3265 3266 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 3267 assert(N == 1 && "Invalid number of operands!"); 3268 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3269 assert(CE && "non-constant post-idx-imm8 operand!"); 3270 int Imm = CE->getValue(); 3271 bool isAdd = Imm >= 0; 3272 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3273 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 3274 Inst.addOperand(MCOperand::createImm(Imm)); 3275 } 3276 3277 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 3278 assert(N == 1 && "Invalid number of operands!"); 3279 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3280 assert(CE && "non-constant post-idx-imm8s4 operand!"); 3281 int Imm = CE->getValue(); 3282 bool isAdd = Imm >= 0; 3283 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3284 // Immediate is scaled by 4. 3285 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 3286 Inst.addOperand(MCOperand::createImm(Imm)); 3287 } 3288 3289 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 3290 assert(N == 2 && "Invalid number of operands!"); 3291 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3292 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 3293 } 3294 3295 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 3296 assert(N == 2 && "Invalid number of operands!"); 3297 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3298 // The sign, shift type, and shift amount are encoded in a single operand 3299 // using the AM2 encoding helpers. 3300 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 3301 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 3302 PostIdxReg.ShiftTy); 3303 Inst.addOperand(MCOperand::createImm(Imm)); 3304 } 3305 3306 void addPowerTwoOperands(MCInst &Inst, unsigned N) const { 3307 assert(N == 1 && "Invalid number of operands!"); 3308 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3309 Inst.addOperand(MCOperand::createImm(CE->getValue())); 3310 } 3311 3312 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 3313 assert(N == 1 && "Invalid number of operands!"); 3314 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 3315 } 3316 3317 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 3318 assert(N == 1 && "Invalid number of operands!"); 3319 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 3320 } 3321 3322 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 3323 assert(N == 1 && "Invalid number of operands!"); 3324 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 3325 } 3326 3327 void addVecListOperands(MCInst &Inst, unsigned N) const { 3328 assert(N == 1 && "Invalid number of operands!"); 3329 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3330 } 3331 3332 void addMVEVecListOperands(MCInst &Inst, unsigned N) const { 3333 assert(N == 1 && "Invalid number of operands!"); 3334 3335 // When we come here, the VectorList field will identify a range 3336 // of q-registers by its base register and length, and it will 3337 // have already been error-checked to be the expected length of 3338 // range and contain only q-regs in the range q0-q7. So we can 3339 // count on the base register being in the range q0-q6 (for 2 3340 // regs) or q0-q4 (for 4) 3341 // 3342 // The MVE instructions taking a register range of this kind will 3343 // need an operand in the MQQPR or MQQQQPR class, representing the 3344 // entire range as a unit. So we must translate into that class, 3345 // by finding the index of the base register in the MQPR reg 3346 // class, and returning the super-register at the corresponding 3347 // index in the target class. 3348 3349 const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID]; 3350 const MCRegisterClass *RC_out = 3351 (VectorList.Count == 2) ? &ARMMCRegisterClasses[ARM::MQQPRRegClassID] 3352 : &ARMMCRegisterClasses[ARM::MQQQQPRRegClassID]; 3353 3354 unsigned I, E = RC_out->getNumRegs(); 3355 for (I = 0; I < E; I++) 3356 if (RC_in->getRegister(I) == VectorList.RegNum) 3357 break; 3358 assert(I < E && "Invalid vector list start register!"); 3359 3360 Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I))); 3361 } 3362 3363 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 3364 assert(N == 2 && "Invalid number of operands!"); 3365 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3366 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 3367 } 3368 3369 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 3370 assert(N == 1 && "Invalid number of operands!"); 3371 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3372 } 3373 3374 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 3375 assert(N == 1 && "Invalid number of operands!"); 3376 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3377 } 3378 3379 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 3380 assert(N == 1 && "Invalid number of operands!"); 3381 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3382 } 3383 3384 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { 3385 assert(N == 1 && "Invalid number of operands!"); 3386 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3387 } 3388 3389 void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const { 3390 assert(N == 1 && "Invalid number of operands!"); 3391 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3392 } 3393 3394 void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const { 3395 assert(N == 1 && "Invalid number of operands!"); 3396 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3397 } 3398 3399 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 3400 assert(N == 1 && "Invalid number of operands!"); 3401 // The immediate encodes the type of constant as well as the value. 3402 // Mask in that this is an i8 splat. 3403 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3404 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 3405 } 3406 3407 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 3408 assert(N == 1 && "Invalid number of operands!"); 3409 // The immediate encodes the type of constant as well as the value. 3410 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3411 unsigned Value = CE->getValue(); 3412 Value = ARM_AM::encodeNEONi16splat(Value); 3413 Inst.addOperand(MCOperand::createImm(Value)); 3414 } 3415 3416 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 3417 assert(N == 1 && "Invalid number of operands!"); 3418 // The immediate encodes the type of constant as well as the value. 3419 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3420 unsigned Value = CE->getValue(); 3421 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 3422 Inst.addOperand(MCOperand::createImm(Value)); 3423 } 3424 3425 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 3426 assert(N == 1 && "Invalid number of operands!"); 3427 // The immediate encodes the type of constant as well as the value. 3428 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3429 unsigned Value = CE->getValue(); 3430 Value = ARM_AM::encodeNEONi32splat(Value); 3431 Inst.addOperand(MCOperand::createImm(Value)); 3432 } 3433 3434 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 3435 assert(N == 1 && "Invalid number of operands!"); 3436 // The immediate encodes the type of constant as well as the value. 3437 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3438 unsigned Value = CE->getValue(); 3439 Value = ARM_AM::encodeNEONi32splat(~Value); 3440 Inst.addOperand(MCOperand::createImm(Value)); 3441 } 3442 3443 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { 3444 // The immediate encodes the type of constant as well as the value. 3445 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3446 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 3447 Inst.getOpcode() == ARM::VMOVv16i8) && 3448 "All instructions that wants to replicate non-zero byte " 3449 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 3450 unsigned Value = CE->getValue(); 3451 if (Inv) 3452 Value = ~Value; 3453 unsigned B = Value & 0xff; 3454 B |= 0xe00; // cmode = 0b1110 3455 Inst.addOperand(MCOperand::createImm(B)); 3456 } 3457 3458 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3459 assert(N == 1 && "Invalid number of operands!"); 3460 addNEONi8ReplicateOperands(Inst, true); 3461 } 3462 3463 static unsigned encodeNeonVMOVImmediate(unsigned Value) { 3464 if (Value >= 256 && Value <= 0xffff) 3465 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 3466 else if (Value > 0xffff && Value <= 0xffffff) 3467 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 3468 else if (Value > 0xffffff) 3469 Value = (Value >> 24) | 0x600; 3470 return Value; 3471 } 3472 3473 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 3474 assert(N == 1 && "Invalid number of operands!"); 3475 // The immediate encodes the type of constant as well as the value. 3476 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3477 unsigned Value = encodeNeonVMOVImmediate(CE->getValue()); 3478 Inst.addOperand(MCOperand::createImm(Value)); 3479 } 3480 3481 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3482 assert(N == 1 && "Invalid number of operands!"); 3483 addNEONi8ReplicateOperands(Inst, false); 3484 } 3485 3486 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { 3487 assert(N == 1 && "Invalid number of operands!"); 3488 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3489 assert((Inst.getOpcode() == ARM::VMOVv4i16 || 3490 Inst.getOpcode() == ARM::VMOVv8i16 || 3491 Inst.getOpcode() == ARM::VMVNv4i16 || 3492 Inst.getOpcode() == ARM::VMVNv8i16) && 3493 "All instructions that want to replicate non-zero half-word " 3494 "always must be replaced with V{MOV,MVN}v{4,8}i16."); 3495 uint64_t Value = CE->getValue(); 3496 unsigned Elem = Value & 0xffff; 3497 if (Elem >= 256) 3498 Elem = (Elem >> 8) | 0x200; 3499 Inst.addOperand(MCOperand::createImm(Elem)); 3500 } 3501 3502 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 3503 assert(N == 1 && "Invalid number of operands!"); 3504 // The immediate encodes the type of constant as well as the value. 3505 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3506 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue()); 3507 Inst.addOperand(MCOperand::createImm(Value)); 3508 } 3509 3510 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { 3511 assert(N == 1 && "Invalid number of operands!"); 3512 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3513 assert((Inst.getOpcode() == ARM::VMOVv2i32 || 3514 Inst.getOpcode() == ARM::VMOVv4i32 || 3515 Inst.getOpcode() == ARM::VMVNv2i32 || 3516 Inst.getOpcode() == ARM::VMVNv4i32) && 3517 "All instructions that want to replicate non-zero word " 3518 "always must be replaced with V{MOV,MVN}v{2,4}i32."); 3519 uint64_t Value = CE->getValue(); 3520 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff); 3521 Inst.addOperand(MCOperand::createImm(Elem)); 3522 } 3523 3524 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 3525 assert(N == 1 && "Invalid number of operands!"); 3526 // The immediate encodes the type of constant as well as the value. 3527 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3528 uint64_t Value = CE->getValue(); 3529 unsigned Imm = 0; 3530 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 3531 Imm |= (Value & 1) << i; 3532 } 3533 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 3534 } 3535 3536 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { 3537 assert(N == 1 && "Invalid number of operands!"); 3538 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3539 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); 3540 } 3541 3542 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { 3543 assert(N == 1 && "Invalid number of operands!"); 3544 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3545 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); 3546 } 3547 3548 void addMveSaturateOperands(MCInst &Inst, unsigned N) const { 3549 assert(N == 1 && "Invalid number of operands!"); 3550 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3551 unsigned Imm = CE->getValue(); 3552 assert((Imm == 48 || Imm == 64) && "Invalid saturate operand"); 3553 Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0)); 3554 } 3555 3556 void print(raw_ostream &OS) const override; 3557 3558 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 3559 auto Op = std::make_unique<ARMOperand>(k_ITCondMask); 3560 Op->ITMask.Mask = Mask; 3561 Op->StartLoc = S; 3562 Op->EndLoc = S; 3563 return Op; 3564 } 3565 3566 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 3567 SMLoc S) { 3568 auto Op = std::make_unique<ARMOperand>(k_CondCode); 3569 Op->CC.Val = CC; 3570 Op->StartLoc = S; 3571 Op->EndLoc = S; 3572 return Op; 3573 } 3574 3575 static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC, 3576 SMLoc S) { 3577 auto Op = std::make_unique<ARMOperand>(k_VPTPred); 3578 Op->VCC.Val = CC; 3579 Op->StartLoc = S; 3580 Op->EndLoc = S; 3581 return Op; 3582 } 3583 3584 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 3585 auto Op = std::make_unique<ARMOperand>(k_CoprocNum); 3586 Op->Cop.Val = CopVal; 3587 Op->StartLoc = S; 3588 Op->EndLoc = S; 3589 return Op; 3590 } 3591 3592 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 3593 auto Op = std::make_unique<ARMOperand>(k_CoprocReg); 3594 Op->Cop.Val = CopVal; 3595 Op->StartLoc = S; 3596 Op->EndLoc = S; 3597 return Op; 3598 } 3599 3600 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 3601 SMLoc E) { 3602 auto Op = std::make_unique<ARMOperand>(k_CoprocOption); 3603 Op->Cop.Val = Val; 3604 Op->StartLoc = S; 3605 Op->EndLoc = E; 3606 return Op; 3607 } 3608 3609 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 3610 auto Op = std::make_unique<ARMOperand>(k_CCOut); 3611 Op->Reg.RegNum = RegNum; 3612 Op->StartLoc = S; 3613 Op->EndLoc = S; 3614 return Op; 3615 } 3616 3617 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 3618 auto Op = std::make_unique<ARMOperand>(k_Token); 3619 Op->Tok.Data = Str.data(); 3620 Op->Tok.Length = Str.size(); 3621 Op->StartLoc = S; 3622 Op->EndLoc = S; 3623 return Op; 3624 } 3625 3626 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 3627 SMLoc E) { 3628 auto Op = std::make_unique<ARMOperand>(k_Register); 3629 Op->Reg.RegNum = RegNum; 3630 Op->StartLoc = S; 3631 Op->EndLoc = E; 3632 return Op; 3633 } 3634 3635 static std::unique_ptr<ARMOperand> 3636 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3637 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 3638 SMLoc E) { 3639 auto Op = std::make_unique<ARMOperand>(k_ShiftedRegister); 3640 Op->RegShiftedReg.ShiftTy = ShTy; 3641 Op->RegShiftedReg.SrcReg = SrcReg; 3642 Op->RegShiftedReg.ShiftReg = ShiftReg; 3643 Op->RegShiftedReg.ShiftImm = ShiftImm; 3644 Op->StartLoc = S; 3645 Op->EndLoc = E; 3646 return Op; 3647 } 3648 3649 static std::unique_ptr<ARMOperand> 3650 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3651 unsigned ShiftImm, SMLoc S, SMLoc E) { 3652 auto Op = std::make_unique<ARMOperand>(k_ShiftedImmediate); 3653 Op->RegShiftedImm.ShiftTy = ShTy; 3654 Op->RegShiftedImm.SrcReg = SrcReg; 3655 Op->RegShiftedImm.ShiftImm = ShiftImm; 3656 Op->StartLoc = S; 3657 Op->EndLoc = E; 3658 return Op; 3659 } 3660 3661 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 3662 SMLoc S, SMLoc E) { 3663 auto Op = std::make_unique<ARMOperand>(k_ShifterImmediate); 3664 Op->ShifterImm.isASR = isASR; 3665 Op->ShifterImm.Imm = Imm; 3666 Op->StartLoc = S; 3667 Op->EndLoc = E; 3668 return Op; 3669 } 3670 3671 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 3672 SMLoc E) { 3673 auto Op = std::make_unique<ARMOperand>(k_RotateImmediate); 3674 Op->RotImm.Imm = Imm; 3675 Op->StartLoc = S; 3676 Op->EndLoc = E; 3677 return Op; 3678 } 3679 3680 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 3681 SMLoc S, SMLoc E) { 3682 auto Op = std::make_unique<ARMOperand>(k_ModifiedImmediate); 3683 Op->ModImm.Bits = Bits; 3684 Op->ModImm.Rot = Rot; 3685 Op->StartLoc = S; 3686 Op->EndLoc = E; 3687 return Op; 3688 } 3689 3690 static std::unique_ptr<ARMOperand> 3691 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 3692 auto Op = std::make_unique<ARMOperand>(k_ConstantPoolImmediate); 3693 Op->Imm.Val = Val; 3694 Op->StartLoc = S; 3695 Op->EndLoc = E; 3696 return Op; 3697 } 3698 3699 static std::unique_ptr<ARMOperand> 3700 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 3701 auto Op = std::make_unique<ARMOperand>(k_BitfieldDescriptor); 3702 Op->Bitfield.LSB = LSB; 3703 Op->Bitfield.Width = Width; 3704 Op->StartLoc = S; 3705 Op->EndLoc = E; 3706 return Op; 3707 } 3708 3709 static std::unique_ptr<ARMOperand> 3710 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 3711 SMLoc StartLoc, SMLoc EndLoc) { 3712 assert(Regs.size() > 0 && "RegList contains no registers?"); 3713 KindTy Kind = k_RegisterList; 3714 3715 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 3716 Regs.front().second)) { 3717 if (Regs.back().second == ARM::VPR) 3718 Kind = k_FPDRegisterListWithVPR; 3719 else 3720 Kind = k_DPRRegisterList; 3721 } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 3722 Regs.front().second)) { 3723 if (Regs.back().second == ARM::VPR) 3724 Kind = k_FPSRegisterListWithVPR; 3725 else 3726 Kind = k_SPRRegisterList; 3727 } 3728 3729 if (Kind == k_RegisterList && Regs.back().second == ARM::APSR) 3730 Kind = k_RegisterListWithAPSR; 3731 3732 assert(llvm::is_sorted(Regs) && "Register list must be sorted by encoding"); 3733 3734 auto Op = std::make_unique<ARMOperand>(Kind); 3735 for (const auto &P : Regs) 3736 Op->Registers.push_back(P.second); 3737 3738 Op->StartLoc = StartLoc; 3739 Op->EndLoc = EndLoc; 3740 return Op; 3741 } 3742 3743 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 3744 unsigned Count, 3745 bool isDoubleSpaced, 3746 SMLoc S, SMLoc E) { 3747 auto Op = std::make_unique<ARMOperand>(k_VectorList); 3748 Op->VectorList.RegNum = RegNum; 3749 Op->VectorList.Count = Count; 3750 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3751 Op->StartLoc = S; 3752 Op->EndLoc = E; 3753 return Op; 3754 } 3755 3756 static std::unique_ptr<ARMOperand> 3757 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 3758 SMLoc S, SMLoc E) { 3759 auto Op = std::make_unique<ARMOperand>(k_VectorListAllLanes); 3760 Op->VectorList.RegNum = RegNum; 3761 Op->VectorList.Count = Count; 3762 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3763 Op->StartLoc = S; 3764 Op->EndLoc = E; 3765 return Op; 3766 } 3767 3768 static std::unique_ptr<ARMOperand> 3769 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 3770 bool isDoubleSpaced, SMLoc S, SMLoc E) { 3771 auto Op = std::make_unique<ARMOperand>(k_VectorListIndexed); 3772 Op->VectorList.RegNum = RegNum; 3773 Op->VectorList.Count = Count; 3774 Op->VectorList.LaneIndex = Index; 3775 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3776 Op->StartLoc = S; 3777 Op->EndLoc = E; 3778 return Op; 3779 } 3780 3781 static std::unique_ptr<ARMOperand> 3782 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 3783 auto Op = std::make_unique<ARMOperand>(k_VectorIndex); 3784 Op->VectorIndex.Val = Idx; 3785 Op->StartLoc = S; 3786 Op->EndLoc = E; 3787 return Op; 3788 } 3789 3790 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 3791 SMLoc E) { 3792 auto Op = std::make_unique<ARMOperand>(k_Immediate); 3793 Op->Imm.Val = Val; 3794 Op->StartLoc = S; 3795 Op->EndLoc = E; 3796 return Op; 3797 } 3798 3799 static std::unique_ptr<ARMOperand> 3800 CreateMem(unsigned BaseRegNum, const MCExpr *OffsetImm, unsigned OffsetRegNum, 3801 ARM_AM::ShiftOpc ShiftType, unsigned ShiftImm, unsigned Alignment, 3802 bool isNegative, SMLoc S, SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 3803 auto Op = std::make_unique<ARMOperand>(k_Memory); 3804 Op->Memory.BaseRegNum = BaseRegNum; 3805 Op->Memory.OffsetImm = OffsetImm; 3806 Op->Memory.OffsetRegNum = OffsetRegNum; 3807 Op->Memory.ShiftType = ShiftType; 3808 Op->Memory.ShiftImm = ShiftImm; 3809 Op->Memory.Alignment = Alignment; 3810 Op->Memory.isNegative = isNegative; 3811 Op->StartLoc = S; 3812 Op->EndLoc = E; 3813 Op->AlignmentLoc = AlignmentLoc; 3814 return Op; 3815 } 3816 3817 static std::unique_ptr<ARMOperand> 3818 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 3819 unsigned ShiftImm, SMLoc S, SMLoc E) { 3820 auto Op = std::make_unique<ARMOperand>(k_PostIndexRegister); 3821 Op->PostIdxReg.RegNum = RegNum; 3822 Op->PostIdxReg.isAdd = isAdd; 3823 Op->PostIdxReg.ShiftTy = ShiftTy; 3824 Op->PostIdxReg.ShiftImm = ShiftImm; 3825 Op->StartLoc = S; 3826 Op->EndLoc = E; 3827 return Op; 3828 } 3829 3830 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3831 SMLoc S) { 3832 auto Op = std::make_unique<ARMOperand>(k_MemBarrierOpt); 3833 Op->MBOpt.Val = Opt; 3834 Op->StartLoc = S; 3835 Op->EndLoc = S; 3836 return Op; 3837 } 3838 3839 static std::unique_ptr<ARMOperand> 3840 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3841 auto Op = std::make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3842 Op->ISBOpt.Val = Opt; 3843 Op->StartLoc = S; 3844 Op->EndLoc = S; 3845 return Op; 3846 } 3847 3848 static std::unique_ptr<ARMOperand> 3849 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) { 3850 auto Op = std::make_unique<ARMOperand>(k_TraceSyncBarrierOpt); 3851 Op->TSBOpt.Val = Opt; 3852 Op->StartLoc = S; 3853 Op->EndLoc = S; 3854 return Op; 3855 } 3856 3857 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3858 SMLoc S) { 3859 auto Op = std::make_unique<ARMOperand>(k_ProcIFlags); 3860 Op->IFlags.Val = IFlags; 3861 Op->StartLoc = S; 3862 Op->EndLoc = S; 3863 return Op; 3864 } 3865 3866 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3867 auto Op = std::make_unique<ARMOperand>(k_MSRMask); 3868 Op->MMask.Val = MMask; 3869 Op->StartLoc = S; 3870 Op->EndLoc = S; 3871 return Op; 3872 } 3873 3874 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3875 auto Op = std::make_unique<ARMOperand>(k_BankedReg); 3876 Op->BankedReg.Val = Reg; 3877 Op->StartLoc = S; 3878 Op->EndLoc = S; 3879 return Op; 3880 } 3881 }; 3882 3883 } // end anonymous namespace. 3884 3885 void ARMOperand::print(raw_ostream &OS) const { 3886 auto RegName = [](unsigned Reg) { 3887 if (Reg) 3888 return ARMInstPrinter::getRegisterName(Reg); 3889 else 3890 return "noreg"; 3891 }; 3892 3893 switch (Kind) { 3894 case k_CondCode: 3895 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3896 break; 3897 case k_VPTPred: 3898 OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">"; 3899 break; 3900 case k_CCOut: 3901 OS << "<ccout " << RegName(getReg()) << ">"; 3902 break; 3903 case k_ITCondMask: { 3904 static const char *const MaskStr[] = { 3905 "(invalid)", "(tttt)", "(ttt)", "(ttte)", 3906 "(tt)", "(ttet)", "(tte)", "(ttee)", 3907 "(t)", "(tett)", "(tet)", "(tete)", 3908 "(te)", "(teet)", "(tee)", "(teee)", 3909 }; 3910 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3911 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3912 break; 3913 } 3914 case k_CoprocNum: 3915 OS << "<coprocessor number: " << getCoproc() << ">"; 3916 break; 3917 case k_CoprocReg: 3918 OS << "<coprocessor register: " << getCoproc() << ">"; 3919 break; 3920 case k_CoprocOption: 3921 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3922 break; 3923 case k_MSRMask: 3924 OS << "<mask: " << getMSRMask() << ">"; 3925 break; 3926 case k_BankedReg: 3927 OS << "<banked reg: " << getBankedReg() << ">"; 3928 break; 3929 case k_Immediate: 3930 OS << *getImm(); 3931 break; 3932 case k_MemBarrierOpt: 3933 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3934 break; 3935 case k_InstSyncBarrierOpt: 3936 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3937 break; 3938 case k_TraceSyncBarrierOpt: 3939 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">"; 3940 break; 3941 case k_Memory: 3942 OS << "<memory"; 3943 if (Memory.BaseRegNum) 3944 OS << " base:" << RegName(Memory.BaseRegNum); 3945 if (Memory.OffsetImm) 3946 OS << " offset-imm:" << *Memory.OffsetImm; 3947 if (Memory.OffsetRegNum) 3948 OS << " offset-reg:" << (Memory.isNegative ? "-" : "") 3949 << RegName(Memory.OffsetRegNum); 3950 if (Memory.ShiftType != ARM_AM::no_shift) { 3951 OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType); 3952 OS << " shift-imm:" << Memory.ShiftImm; 3953 } 3954 if (Memory.Alignment) 3955 OS << " alignment:" << Memory.Alignment; 3956 OS << ">"; 3957 break; 3958 case k_PostIndexRegister: 3959 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3960 << RegName(PostIdxReg.RegNum); 3961 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3962 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3963 << PostIdxReg.ShiftImm; 3964 OS << ">"; 3965 break; 3966 case k_ProcIFlags: { 3967 OS << "<ARM_PROC::"; 3968 unsigned IFlags = getProcIFlags(); 3969 for (int i=2; i >= 0; --i) 3970 if (IFlags & (1 << i)) 3971 OS << ARM_PROC::IFlagsToString(1 << i); 3972 OS << ">"; 3973 break; 3974 } 3975 case k_Register: 3976 OS << "<register " << RegName(getReg()) << ">"; 3977 break; 3978 case k_ShifterImmediate: 3979 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3980 << " #" << ShifterImm.Imm << ">"; 3981 break; 3982 case k_ShiftedRegister: 3983 OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " " 3984 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " " 3985 << RegName(RegShiftedReg.ShiftReg) << ">"; 3986 break; 3987 case k_ShiftedImmediate: 3988 OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " " 3989 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #" 3990 << RegShiftedImm.ShiftImm << ">"; 3991 break; 3992 case k_RotateImmediate: 3993 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3994 break; 3995 case k_ModifiedImmediate: 3996 OS << "<mod_imm #" << ModImm.Bits << ", #" 3997 << ModImm.Rot << ")>"; 3998 break; 3999 case k_ConstantPoolImmediate: 4000 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 4001 break; 4002 case k_BitfieldDescriptor: 4003 OS << "<bitfield " << "lsb: " << Bitfield.LSB 4004 << ", width: " << Bitfield.Width << ">"; 4005 break; 4006 case k_RegisterList: 4007 case k_RegisterListWithAPSR: 4008 case k_DPRRegisterList: 4009 case k_SPRRegisterList: 4010 case k_FPSRegisterListWithVPR: 4011 case k_FPDRegisterListWithVPR: { 4012 OS << "<register_list "; 4013 4014 const SmallVectorImpl<unsigned> &RegList = getRegList(); 4015 for (SmallVectorImpl<unsigned>::const_iterator 4016 I = RegList.begin(), E = RegList.end(); I != E; ) { 4017 OS << RegName(*I); 4018 if (++I < E) OS << ", "; 4019 } 4020 4021 OS << ">"; 4022 break; 4023 } 4024 case k_VectorList: 4025 OS << "<vector_list " << VectorList.Count << " * " 4026 << RegName(VectorList.RegNum) << ">"; 4027 break; 4028 case k_VectorListAllLanes: 4029 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 4030 << RegName(VectorList.RegNum) << ">"; 4031 break; 4032 case k_VectorListIndexed: 4033 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 4034 << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">"; 4035 break; 4036 case k_Token: 4037 OS << "'" << getToken() << "'"; 4038 break; 4039 case k_VectorIndex: 4040 OS << "<vectorindex " << getVectorIndex() << ">"; 4041 break; 4042 } 4043 } 4044 4045 /// @name Auto-generated Match Functions 4046 /// { 4047 4048 static unsigned MatchRegisterName(StringRef Name); 4049 4050 /// } 4051 4052 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 4053 SMLoc &StartLoc, SMLoc &EndLoc) { 4054 const AsmToken &Tok = getParser().getTok(); 4055 StartLoc = Tok.getLoc(); 4056 EndLoc = Tok.getEndLoc(); 4057 RegNo = tryParseRegister(); 4058 4059 return (RegNo == (unsigned)-1); 4060 } 4061 4062 OperandMatchResultTy ARMAsmParser::tryParseRegister(unsigned &RegNo, 4063 SMLoc &StartLoc, 4064 SMLoc &EndLoc) { 4065 if (ParseRegister(RegNo, StartLoc, EndLoc)) 4066 return MatchOperand_NoMatch; 4067 return MatchOperand_Success; 4068 } 4069 4070 /// Try to parse a register name. The token must be an Identifier when called, 4071 /// and if it is a register name the token is eaten and the register number is 4072 /// returned. Otherwise return -1. 4073 int ARMAsmParser::tryParseRegister() { 4074 MCAsmParser &Parser = getParser(); 4075 const AsmToken &Tok = Parser.getTok(); 4076 if (Tok.isNot(AsmToken::Identifier)) return -1; 4077 4078 std::string lowerCase = Tok.getString().lower(); 4079 unsigned RegNum = MatchRegisterName(lowerCase); 4080 if (!RegNum) { 4081 RegNum = StringSwitch<unsigned>(lowerCase) 4082 .Case("r13", ARM::SP) 4083 .Case("r14", ARM::LR) 4084 .Case("r15", ARM::PC) 4085 .Case("ip", ARM::R12) 4086 // Additional register name aliases for 'gas' compatibility. 4087 .Case("a1", ARM::R0) 4088 .Case("a2", ARM::R1) 4089 .Case("a3", ARM::R2) 4090 .Case("a4", ARM::R3) 4091 .Case("v1", ARM::R4) 4092 .Case("v2", ARM::R5) 4093 .Case("v3", ARM::R6) 4094 .Case("v4", ARM::R7) 4095 .Case("v5", ARM::R8) 4096 .Case("v6", ARM::R9) 4097 .Case("v7", ARM::R10) 4098 .Case("v8", ARM::R11) 4099 .Case("sb", ARM::R9) 4100 .Case("sl", ARM::R10) 4101 .Case("fp", ARM::R11) 4102 .Default(0); 4103 } 4104 if (!RegNum) { 4105 // Check for aliases registered via .req. Canonicalize to lower case. 4106 // That's more consistent since register names are case insensitive, and 4107 // it's how the original entry was passed in from MC/MCParser/AsmParser. 4108 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 4109 // If no match, return failure. 4110 if (Entry == RegisterReqs.end()) 4111 return -1; 4112 Parser.Lex(); // Eat identifier token. 4113 return Entry->getValue(); 4114 } 4115 4116 // Some FPUs only have 16 D registers, so D16-D31 are invalid 4117 if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 4118 return -1; 4119 4120 Parser.Lex(); // Eat identifier token. 4121 4122 return RegNum; 4123 } 4124 4125 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 4126 // If a recoverable error occurs, return 1. If an irrecoverable error 4127 // occurs, return -1. An irrecoverable error is one where tokens have been 4128 // consumed in the process of trying to parse the shifter (i.e., when it is 4129 // indeed a shifter operand, but malformed). 4130 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 4131 MCAsmParser &Parser = getParser(); 4132 SMLoc S = Parser.getTok().getLoc(); 4133 const AsmToken &Tok = Parser.getTok(); 4134 if (Tok.isNot(AsmToken::Identifier)) 4135 return -1; 4136 4137 std::string lowerCase = Tok.getString().lower(); 4138 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 4139 .Case("asl", ARM_AM::lsl) 4140 .Case("lsl", ARM_AM::lsl) 4141 .Case("lsr", ARM_AM::lsr) 4142 .Case("asr", ARM_AM::asr) 4143 .Case("ror", ARM_AM::ror) 4144 .Case("rrx", ARM_AM::rrx) 4145 .Default(ARM_AM::no_shift); 4146 4147 if (ShiftTy == ARM_AM::no_shift) 4148 return 1; 4149 4150 Parser.Lex(); // Eat the operator. 4151 4152 // The source register for the shift has already been added to the 4153 // operand list, so we need to pop it off and combine it into the shifted 4154 // register operand instead. 4155 std::unique_ptr<ARMOperand> PrevOp( 4156 (ARMOperand *)Operands.pop_back_val().release()); 4157 if (!PrevOp->isReg()) 4158 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 4159 int SrcReg = PrevOp->getReg(); 4160 4161 SMLoc EndLoc; 4162 int64_t Imm = 0; 4163 int ShiftReg = 0; 4164 if (ShiftTy == ARM_AM::rrx) { 4165 // RRX Doesn't have an explicit shift amount. The encoder expects 4166 // the shift register to be the same as the source register. Seems odd, 4167 // but OK. 4168 ShiftReg = SrcReg; 4169 } else { 4170 // Figure out if this is shifted by a constant or a register (for non-RRX). 4171 if (Parser.getTok().is(AsmToken::Hash) || 4172 Parser.getTok().is(AsmToken::Dollar)) { 4173 Parser.Lex(); // Eat hash. 4174 SMLoc ImmLoc = Parser.getTok().getLoc(); 4175 const MCExpr *ShiftExpr = nullptr; 4176 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 4177 Error(ImmLoc, "invalid immediate shift value"); 4178 return -1; 4179 } 4180 // The expression must be evaluatable as an immediate. 4181 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 4182 if (!CE) { 4183 Error(ImmLoc, "invalid immediate shift value"); 4184 return -1; 4185 } 4186 // Range check the immediate. 4187 // lsl, ror: 0 <= imm <= 31 4188 // lsr, asr: 0 <= imm <= 32 4189 Imm = CE->getValue(); 4190 if (Imm < 0 || 4191 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 4192 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 4193 Error(ImmLoc, "immediate shift value out of range"); 4194 return -1; 4195 } 4196 // shift by zero is a nop. Always send it through as lsl. 4197 // ('as' compatibility) 4198 if (Imm == 0) 4199 ShiftTy = ARM_AM::lsl; 4200 } else if (Parser.getTok().is(AsmToken::Identifier)) { 4201 SMLoc L = Parser.getTok().getLoc(); 4202 EndLoc = Parser.getTok().getEndLoc(); 4203 ShiftReg = tryParseRegister(); 4204 if (ShiftReg == -1) { 4205 Error(L, "expected immediate or register in shift operand"); 4206 return -1; 4207 } 4208 } else { 4209 Error(Parser.getTok().getLoc(), 4210 "expected immediate or register in shift operand"); 4211 return -1; 4212 } 4213 } 4214 4215 if (ShiftReg && ShiftTy != ARM_AM::rrx) 4216 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 4217 ShiftReg, Imm, 4218 S, EndLoc)); 4219 else 4220 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 4221 S, EndLoc)); 4222 4223 return 0; 4224 } 4225 4226 /// Try to parse a register name. The token must be an Identifier when called. 4227 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 4228 /// if there is a "writeback". 'true' if it's not a register. 4229 /// 4230 /// TODO this is likely to change to allow different register types and or to 4231 /// parse for a specific register type. 4232 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 4233 MCAsmParser &Parser = getParser(); 4234 SMLoc RegStartLoc = Parser.getTok().getLoc(); 4235 SMLoc RegEndLoc = Parser.getTok().getEndLoc(); 4236 int RegNo = tryParseRegister(); 4237 if (RegNo == -1) 4238 return true; 4239 4240 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); 4241 4242 const AsmToken &ExclaimTok = Parser.getTok(); 4243 if (ExclaimTok.is(AsmToken::Exclaim)) { 4244 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 4245 ExclaimTok.getLoc())); 4246 Parser.Lex(); // Eat exclaim token 4247 return false; 4248 } 4249 4250 // Also check for an index operand. This is only legal for vector registers, 4251 // but that'll get caught OK in operand matching, so we don't need to 4252 // explicitly filter everything else out here. 4253 if (Parser.getTok().is(AsmToken::LBrac)) { 4254 SMLoc SIdx = Parser.getTok().getLoc(); 4255 Parser.Lex(); // Eat left bracket token. 4256 4257 const MCExpr *ImmVal; 4258 if (getParser().parseExpression(ImmVal)) 4259 return true; 4260 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 4261 if (!MCE) 4262 return TokError("immediate value expected for vector index"); 4263 4264 if (Parser.getTok().isNot(AsmToken::RBrac)) 4265 return Error(Parser.getTok().getLoc(), "']' expected"); 4266 4267 SMLoc E = Parser.getTok().getEndLoc(); 4268 Parser.Lex(); // Eat right bracket token. 4269 4270 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 4271 SIdx, E, 4272 getContext())); 4273 } 4274 4275 return false; 4276 } 4277 4278 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 4279 /// instruction with a symbolic operand name. 4280 /// We accept "crN" syntax for GAS compatibility. 4281 /// <operand-name> ::= <prefix><number> 4282 /// If CoprocOp is 'c', then: 4283 /// <prefix> ::= c | cr 4284 /// If CoprocOp is 'p', then : 4285 /// <prefix> ::= p 4286 /// <number> ::= integer in range [0, 15] 4287 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 4288 // Use the same layout as the tablegen'erated register name matcher. Ugly, 4289 // but efficient. 4290 if (Name.size() < 2 || Name[0] != CoprocOp) 4291 return -1; 4292 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 4293 4294 switch (Name.size()) { 4295 default: return -1; 4296 case 1: 4297 switch (Name[0]) { 4298 default: return -1; 4299 case '0': return 0; 4300 case '1': return 1; 4301 case '2': return 2; 4302 case '3': return 3; 4303 case '4': return 4; 4304 case '5': return 5; 4305 case '6': return 6; 4306 case '7': return 7; 4307 case '8': return 8; 4308 case '9': return 9; 4309 } 4310 case 2: 4311 if (Name[0] != '1') 4312 return -1; 4313 switch (Name[1]) { 4314 default: return -1; 4315 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 4316 // However, old cores (v5/v6) did use them in that way. 4317 case '0': return 10; 4318 case '1': return 11; 4319 case '2': return 12; 4320 case '3': return 13; 4321 case '4': return 14; 4322 case '5': return 15; 4323 } 4324 } 4325 } 4326 4327 /// parseITCondCode - Try to parse a condition code for an IT instruction. 4328 OperandMatchResultTy 4329 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 4330 MCAsmParser &Parser = getParser(); 4331 SMLoc S = Parser.getTok().getLoc(); 4332 const AsmToken &Tok = Parser.getTok(); 4333 if (!Tok.is(AsmToken::Identifier)) 4334 return MatchOperand_NoMatch; 4335 unsigned CC = ARMCondCodeFromString(Tok.getString()); 4336 if (CC == ~0U) 4337 return MatchOperand_NoMatch; 4338 Parser.Lex(); // Eat the token. 4339 4340 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 4341 4342 return MatchOperand_Success; 4343 } 4344 4345 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 4346 /// token must be an Identifier when called, and if it is a coprocessor 4347 /// number, the token is eaten and the operand is added to the operand list. 4348 OperandMatchResultTy 4349 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 4350 MCAsmParser &Parser = getParser(); 4351 SMLoc S = Parser.getTok().getLoc(); 4352 const AsmToken &Tok = Parser.getTok(); 4353 if (Tok.isNot(AsmToken::Identifier)) 4354 return MatchOperand_NoMatch; 4355 4356 int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p'); 4357 if (Num == -1) 4358 return MatchOperand_NoMatch; 4359 if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits())) 4360 return MatchOperand_NoMatch; 4361 4362 Parser.Lex(); // Eat identifier token. 4363 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 4364 return MatchOperand_Success; 4365 } 4366 4367 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 4368 /// token must be an Identifier when called, and if it is a coprocessor 4369 /// number, the token is eaten and the operand is added to the operand list. 4370 OperandMatchResultTy 4371 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 4372 MCAsmParser &Parser = getParser(); 4373 SMLoc S = Parser.getTok().getLoc(); 4374 const AsmToken &Tok = Parser.getTok(); 4375 if (Tok.isNot(AsmToken::Identifier)) 4376 return MatchOperand_NoMatch; 4377 4378 int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c'); 4379 if (Reg == -1) 4380 return MatchOperand_NoMatch; 4381 4382 Parser.Lex(); // Eat identifier token. 4383 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 4384 return MatchOperand_Success; 4385 } 4386 4387 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 4388 /// coproc_option : '{' imm0_255 '}' 4389 OperandMatchResultTy 4390 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 4391 MCAsmParser &Parser = getParser(); 4392 SMLoc S = Parser.getTok().getLoc(); 4393 4394 // If this isn't a '{', this isn't a coprocessor immediate operand. 4395 if (Parser.getTok().isNot(AsmToken::LCurly)) 4396 return MatchOperand_NoMatch; 4397 Parser.Lex(); // Eat the '{' 4398 4399 const MCExpr *Expr; 4400 SMLoc Loc = Parser.getTok().getLoc(); 4401 if (getParser().parseExpression(Expr)) { 4402 Error(Loc, "illegal expression"); 4403 return MatchOperand_ParseFail; 4404 } 4405 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4406 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 4407 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 4408 return MatchOperand_ParseFail; 4409 } 4410 int Val = CE->getValue(); 4411 4412 // Check for and consume the closing '}' 4413 if (Parser.getTok().isNot(AsmToken::RCurly)) 4414 return MatchOperand_ParseFail; 4415 SMLoc E = Parser.getTok().getEndLoc(); 4416 Parser.Lex(); // Eat the '}' 4417 4418 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 4419 return MatchOperand_Success; 4420 } 4421 4422 // For register list parsing, we need to map from raw GPR register numbering 4423 // to the enumeration values. The enumeration values aren't sorted by 4424 // register number due to our using "sp", "lr" and "pc" as canonical names. 4425 static unsigned getNextRegister(unsigned Reg) { 4426 // If this is a GPR, we need to do it manually, otherwise we can rely 4427 // on the sort ordering of the enumeration since the other reg-classes 4428 // are sane. 4429 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4430 return Reg + 1; 4431 switch(Reg) { 4432 default: llvm_unreachable("Invalid GPR number!"); 4433 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 4434 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 4435 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 4436 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 4437 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 4438 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 4439 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 4440 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 4441 } 4442 } 4443 4444 // Insert an <Encoding, Register> pair in an ordered vector. Return true on 4445 // success, or false, if duplicate encoding found. 4446 static bool 4447 insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 4448 unsigned Enc, unsigned Reg) { 4449 Regs.emplace_back(Enc, Reg); 4450 for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) { 4451 if (J->first == Enc) { 4452 Regs.erase(J.base()); 4453 return false; 4454 } 4455 if (J->first < Enc) 4456 break; 4457 std::swap(*I, *J); 4458 } 4459 return true; 4460 } 4461 4462 /// Parse a register list. 4463 bool ARMAsmParser::parseRegisterList(OperandVector &Operands, bool EnforceOrder, 4464 bool AllowRAAC) { 4465 MCAsmParser &Parser = getParser(); 4466 if (Parser.getTok().isNot(AsmToken::LCurly)) 4467 return TokError("Token is not a Left Curly Brace"); 4468 SMLoc S = Parser.getTok().getLoc(); 4469 Parser.Lex(); // Eat '{' token. 4470 SMLoc RegLoc = Parser.getTok().getLoc(); 4471 4472 // Check the first register in the list to see what register class 4473 // this is a list of. 4474 int Reg = tryParseRegister(); 4475 if (Reg == -1) 4476 return Error(RegLoc, "register expected"); 4477 if (!AllowRAAC && Reg == ARM::RA_AUTH_CODE) 4478 return Error(RegLoc, "pseudo-register not allowed"); 4479 // The reglist instructions have at most 16 registers, so reserve 4480 // space for that many. 4481 int EReg = 0; 4482 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 4483 4484 // Allow Q regs and just interpret them as the two D sub-registers. 4485 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4486 Reg = getDRegFromQReg(Reg); 4487 EReg = MRI->getEncodingValue(Reg); 4488 Registers.emplace_back(EReg, Reg); 4489 ++Reg; 4490 } 4491 const MCRegisterClass *RC; 4492 if (Reg == ARM::RA_AUTH_CODE || 4493 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4494 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 4495 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 4496 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 4497 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 4498 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 4499 else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4500 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4501 else 4502 return Error(RegLoc, "invalid register in register list"); 4503 4504 // Store the register. 4505 EReg = MRI->getEncodingValue(Reg); 4506 Registers.emplace_back(EReg, Reg); 4507 4508 // This starts immediately after the first register token in the list, 4509 // so we can see either a comma or a minus (range separator) as a legal 4510 // next token. 4511 while (Parser.getTok().is(AsmToken::Comma) || 4512 Parser.getTok().is(AsmToken::Minus)) { 4513 if (Parser.getTok().is(AsmToken::Minus)) { 4514 if (Reg == ARM::RA_AUTH_CODE) 4515 return Error(RegLoc, "pseudo-register not allowed"); 4516 Parser.Lex(); // Eat the minus. 4517 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4518 int EndReg = tryParseRegister(); 4519 if (EndReg == -1) 4520 return Error(AfterMinusLoc, "register expected"); 4521 if (EndReg == ARM::RA_AUTH_CODE) 4522 return Error(AfterMinusLoc, "pseudo-register not allowed"); 4523 // Allow Q regs and just interpret them as the two D sub-registers. 4524 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4525 EndReg = getDRegFromQReg(EndReg) + 1; 4526 // If the register is the same as the start reg, there's nothing 4527 // more to do. 4528 if (Reg == EndReg) 4529 continue; 4530 // The register must be in the same register class as the first. 4531 if ((Reg == ARM::RA_AUTH_CODE && 4532 RC != &ARMMCRegisterClasses[ARM::GPRRegClassID]) || 4533 (Reg != ARM::RA_AUTH_CODE && !RC->contains(Reg))) 4534 return Error(AfterMinusLoc, "invalid register in register list"); 4535 // Ranges must go from low to high. 4536 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 4537 return Error(AfterMinusLoc, "bad range in register list"); 4538 4539 // Add all the registers in the range to the register list. 4540 while (Reg != EndReg) { 4541 Reg = getNextRegister(Reg); 4542 EReg = MRI->getEncodingValue(Reg); 4543 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4544 Warning(AfterMinusLoc, StringRef("duplicated register (") + 4545 ARMInstPrinter::getRegisterName(Reg) + 4546 ") in register list"); 4547 } 4548 } 4549 continue; 4550 } 4551 Parser.Lex(); // Eat the comma. 4552 RegLoc = Parser.getTok().getLoc(); 4553 int OldReg = Reg; 4554 const AsmToken RegTok = Parser.getTok(); 4555 Reg = tryParseRegister(); 4556 if (Reg == -1) 4557 return Error(RegLoc, "register expected"); 4558 if (!AllowRAAC && Reg == ARM::RA_AUTH_CODE) 4559 return Error(RegLoc, "pseudo-register not allowed"); 4560 // Allow Q regs and just interpret them as the two D sub-registers. 4561 bool isQReg = false; 4562 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4563 Reg = getDRegFromQReg(Reg); 4564 isQReg = true; 4565 } 4566 if (Reg != ARM::RA_AUTH_CODE && !RC->contains(Reg) && 4567 RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() && 4568 ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) { 4569 // switch the register classes, as GPRwithAPSRnospRegClassID is a partial 4570 // subset of GPRRegClassId except it contains APSR as well. 4571 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4572 } 4573 if (Reg == ARM::VPR && 4574 (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] || 4575 RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] || 4576 RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) { 4577 RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID]; 4578 EReg = MRI->getEncodingValue(Reg); 4579 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4580 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4581 ") in register list"); 4582 } 4583 continue; 4584 } 4585 // The register must be in the same register class as the first. 4586 if ((Reg == ARM::RA_AUTH_CODE && 4587 RC != &ARMMCRegisterClasses[ARM::GPRRegClassID]) || 4588 (Reg != ARM::RA_AUTH_CODE && !RC->contains(Reg))) 4589 return Error(RegLoc, "invalid register in register list"); 4590 // In most cases, the list must be monotonically increasing. An 4591 // exception is CLRM, which is order-independent anyway, so 4592 // there's no potential for confusion if you write clrm {r2,r1} 4593 // instead of clrm {r1,r2}. 4594 if (EnforceOrder && 4595 MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 4596 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4597 Warning(RegLoc, "register list not in ascending order"); 4598 else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4599 return Error(RegLoc, "register list not in ascending order"); 4600 } 4601 // VFP register lists must also be contiguous. 4602 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 4603 RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] && 4604 Reg != OldReg + 1) 4605 return Error(RegLoc, "non-contiguous register range"); 4606 EReg = MRI->getEncodingValue(Reg); 4607 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4608 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4609 ") in register list"); 4610 } 4611 if (isQReg) { 4612 EReg = MRI->getEncodingValue(++Reg); 4613 Registers.emplace_back(EReg, Reg); 4614 } 4615 } 4616 4617 if (Parser.getTok().isNot(AsmToken::RCurly)) 4618 return Error(Parser.getTok().getLoc(), "'}' expected"); 4619 SMLoc E = Parser.getTok().getEndLoc(); 4620 Parser.Lex(); // Eat '}' token. 4621 4622 // Push the register list operand. 4623 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 4624 4625 // The ARM system instruction variants for LDM/STM have a '^' token here. 4626 if (Parser.getTok().is(AsmToken::Caret)) { 4627 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 4628 Parser.Lex(); // Eat '^' token. 4629 } 4630 4631 return false; 4632 } 4633 4634 // Helper function to parse the lane index for vector lists. 4635 OperandMatchResultTy ARMAsmParser:: 4636 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 4637 MCAsmParser &Parser = getParser(); 4638 Index = 0; // Always return a defined index value. 4639 if (Parser.getTok().is(AsmToken::LBrac)) { 4640 Parser.Lex(); // Eat the '['. 4641 if (Parser.getTok().is(AsmToken::RBrac)) { 4642 // "Dn[]" is the 'all lanes' syntax. 4643 LaneKind = AllLanes; 4644 EndLoc = Parser.getTok().getEndLoc(); 4645 Parser.Lex(); // Eat the ']'. 4646 return MatchOperand_Success; 4647 } 4648 4649 // There's an optional '#' token here. Normally there wouldn't be, but 4650 // inline assemble puts one in, and it's friendly to accept that. 4651 if (Parser.getTok().is(AsmToken::Hash)) 4652 Parser.Lex(); // Eat '#' or '$'. 4653 4654 const MCExpr *LaneIndex; 4655 SMLoc Loc = Parser.getTok().getLoc(); 4656 if (getParser().parseExpression(LaneIndex)) { 4657 Error(Loc, "illegal expression"); 4658 return MatchOperand_ParseFail; 4659 } 4660 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 4661 if (!CE) { 4662 Error(Loc, "lane index must be empty or an integer"); 4663 return MatchOperand_ParseFail; 4664 } 4665 if (Parser.getTok().isNot(AsmToken::RBrac)) { 4666 Error(Parser.getTok().getLoc(), "']' expected"); 4667 return MatchOperand_ParseFail; 4668 } 4669 EndLoc = Parser.getTok().getEndLoc(); 4670 Parser.Lex(); // Eat the ']'. 4671 int64_t Val = CE->getValue(); 4672 4673 // FIXME: Make this range check context sensitive for .8, .16, .32. 4674 if (Val < 0 || Val > 7) { 4675 Error(Parser.getTok().getLoc(), "lane index out of range"); 4676 return MatchOperand_ParseFail; 4677 } 4678 Index = Val; 4679 LaneKind = IndexedLane; 4680 return MatchOperand_Success; 4681 } 4682 LaneKind = NoLanes; 4683 return MatchOperand_Success; 4684 } 4685 4686 // parse a vector register list 4687 OperandMatchResultTy 4688 ARMAsmParser::parseVectorList(OperandVector &Operands) { 4689 MCAsmParser &Parser = getParser(); 4690 VectorLaneTy LaneKind; 4691 unsigned LaneIndex; 4692 SMLoc S = Parser.getTok().getLoc(); 4693 // As an extension (to match gas), support a plain D register or Q register 4694 // (without encosing curly braces) as a single or double entry list, 4695 // respectively. 4696 if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) { 4697 SMLoc E = Parser.getTok().getEndLoc(); 4698 int Reg = tryParseRegister(); 4699 if (Reg == -1) 4700 return MatchOperand_NoMatch; 4701 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 4702 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4703 if (Res != MatchOperand_Success) 4704 return Res; 4705 switch (LaneKind) { 4706 case NoLanes: 4707 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 4708 break; 4709 case AllLanes: 4710 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 4711 S, E)); 4712 break; 4713 case IndexedLane: 4714 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 4715 LaneIndex, 4716 false, S, E)); 4717 break; 4718 } 4719 return MatchOperand_Success; 4720 } 4721 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4722 Reg = getDRegFromQReg(Reg); 4723 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4724 if (Res != MatchOperand_Success) 4725 return Res; 4726 switch (LaneKind) { 4727 case NoLanes: 4728 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4729 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4730 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 4731 break; 4732 case AllLanes: 4733 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4734 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4735 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 4736 S, E)); 4737 break; 4738 case IndexedLane: 4739 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 4740 LaneIndex, 4741 false, S, E)); 4742 break; 4743 } 4744 return MatchOperand_Success; 4745 } 4746 Error(S, "vector register expected"); 4747 return MatchOperand_ParseFail; 4748 } 4749 4750 if (Parser.getTok().isNot(AsmToken::LCurly)) 4751 return MatchOperand_NoMatch; 4752 4753 Parser.Lex(); // Eat '{' token. 4754 SMLoc RegLoc = Parser.getTok().getLoc(); 4755 4756 int Reg = tryParseRegister(); 4757 if (Reg == -1) { 4758 Error(RegLoc, "register expected"); 4759 return MatchOperand_ParseFail; 4760 } 4761 unsigned Count = 1; 4762 int Spacing = 0; 4763 unsigned FirstReg = Reg; 4764 4765 if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4766 Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected"); 4767 return MatchOperand_ParseFail; 4768 } 4769 // The list is of D registers, but we also allow Q regs and just interpret 4770 // them as the two D sub-registers. 4771 else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4772 FirstReg = Reg = getDRegFromQReg(Reg); 4773 Spacing = 1; // double-spacing requires explicit D registers, otherwise 4774 // it's ambiguous with four-register single spaced. 4775 ++Reg; 4776 ++Count; 4777 } 4778 4779 SMLoc E; 4780 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 4781 return MatchOperand_ParseFail; 4782 4783 while (Parser.getTok().is(AsmToken::Comma) || 4784 Parser.getTok().is(AsmToken::Minus)) { 4785 if (Parser.getTok().is(AsmToken::Minus)) { 4786 if (!Spacing) 4787 Spacing = 1; // Register range implies a single spaced list. 4788 else if (Spacing == 2) { 4789 Error(Parser.getTok().getLoc(), 4790 "sequential registers in double spaced list"); 4791 return MatchOperand_ParseFail; 4792 } 4793 Parser.Lex(); // Eat the minus. 4794 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4795 int EndReg = tryParseRegister(); 4796 if (EndReg == -1) { 4797 Error(AfterMinusLoc, "register expected"); 4798 return MatchOperand_ParseFail; 4799 } 4800 // Allow Q regs and just interpret them as the two D sub-registers. 4801 if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4802 EndReg = getDRegFromQReg(EndReg) + 1; 4803 // If the register is the same as the start reg, there's nothing 4804 // more to do. 4805 if (Reg == EndReg) 4806 continue; 4807 // The register must be in the same register class as the first. 4808 if ((hasMVE() && 4809 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) || 4810 (!hasMVE() && 4811 !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) { 4812 Error(AfterMinusLoc, "invalid register in register list"); 4813 return MatchOperand_ParseFail; 4814 } 4815 // Ranges must go from low to high. 4816 if (Reg > EndReg) { 4817 Error(AfterMinusLoc, "bad range in register list"); 4818 return MatchOperand_ParseFail; 4819 } 4820 // Parse the lane specifier if present. 4821 VectorLaneTy NextLaneKind; 4822 unsigned NextLaneIndex; 4823 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4824 MatchOperand_Success) 4825 return MatchOperand_ParseFail; 4826 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4827 Error(AfterMinusLoc, "mismatched lane index in register list"); 4828 return MatchOperand_ParseFail; 4829 } 4830 4831 // Add all the registers in the range to the register list. 4832 Count += EndReg - Reg; 4833 Reg = EndReg; 4834 continue; 4835 } 4836 Parser.Lex(); // Eat the comma. 4837 RegLoc = Parser.getTok().getLoc(); 4838 int OldReg = Reg; 4839 Reg = tryParseRegister(); 4840 if (Reg == -1) { 4841 Error(RegLoc, "register expected"); 4842 return MatchOperand_ParseFail; 4843 } 4844 4845 if (hasMVE()) { 4846 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4847 Error(RegLoc, "vector register in range Q0-Q7 expected"); 4848 return MatchOperand_ParseFail; 4849 } 4850 Spacing = 1; 4851 } 4852 // vector register lists must be contiguous. 4853 // It's OK to use the enumeration values directly here rather, as the 4854 // VFP register classes have the enum sorted properly. 4855 // 4856 // The list is of D registers, but we also allow Q regs and just interpret 4857 // them as the two D sub-registers. 4858 else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4859 if (!Spacing) 4860 Spacing = 1; // Register range implies a single spaced list. 4861 else if (Spacing == 2) { 4862 Error(RegLoc, 4863 "invalid register in double-spaced list (must be 'D' register')"); 4864 return MatchOperand_ParseFail; 4865 } 4866 Reg = getDRegFromQReg(Reg); 4867 if (Reg != OldReg + 1) { 4868 Error(RegLoc, "non-contiguous register range"); 4869 return MatchOperand_ParseFail; 4870 } 4871 ++Reg; 4872 Count += 2; 4873 // Parse the lane specifier if present. 4874 VectorLaneTy NextLaneKind; 4875 unsigned NextLaneIndex; 4876 SMLoc LaneLoc = Parser.getTok().getLoc(); 4877 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4878 MatchOperand_Success) 4879 return MatchOperand_ParseFail; 4880 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4881 Error(LaneLoc, "mismatched lane index in register list"); 4882 return MatchOperand_ParseFail; 4883 } 4884 continue; 4885 } 4886 // Normal D register. 4887 // Figure out the register spacing (single or double) of the list if 4888 // we don't know it already. 4889 if (!Spacing) 4890 Spacing = 1 + (Reg == OldReg + 2); 4891 4892 // Just check that it's contiguous and keep going. 4893 if (Reg != OldReg + Spacing) { 4894 Error(RegLoc, "non-contiguous register range"); 4895 return MatchOperand_ParseFail; 4896 } 4897 ++Count; 4898 // Parse the lane specifier if present. 4899 VectorLaneTy NextLaneKind; 4900 unsigned NextLaneIndex; 4901 SMLoc EndLoc = Parser.getTok().getLoc(); 4902 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 4903 return MatchOperand_ParseFail; 4904 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4905 Error(EndLoc, "mismatched lane index in register list"); 4906 return MatchOperand_ParseFail; 4907 } 4908 } 4909 4910 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4911 Error(Parser.getTok().getLoc(), "'}' expected"); 4912 return MatchOperand_ParseFail; 4913 } 4914 E = Parser.getTok().getEndLoc(); 4915 Parser.Lex(); // Eat '}' token. 4916 4917 switch (LaneKind) { 4918 case NoLanes: 4919 case AllLanes: { 4920 // Two-register operands have been converted to the 4921 // composite register classes. 4922 if (Count == 2 && !hasMVE()) { 4923 const MCRegisterClass *RC = (Spacing == 1) ? 4924 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4925 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4926 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4927 } 4928 auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList : 4929 ARMOperand::CreateVectorListAllLanes); 4930 Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E)); 4931 break; 4932 } 4933 case IndexedLane: 4934 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4935 LaneIndex, 4936 (Spacing == 2), 4937 S, E)); 4938 break; 4939 } 4940 return MatchOperand_Success; 4941 } 4942 4943 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4944 OperandMatchResultTy 4945 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4946 MCAsmParser &Parser = getParser(); 4947 SMLoc S = Parser.getTok().getLoc(); 4948 const AsmToken &Tok = Parser.getTok(); 4949 unsigned Opt; 4950 4951 if (Tok.is(AsmToken::Identifier)) { 4952 StringRef OptStr = Tok.getString(); 4953 4954 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4955 .Case("sy", ARM_MB::SY) 4956 .Case("st", ARM_MB::ST) 4957 .Case("ld", ARM_MB::LD) 4958 .Case("sh", ARM_MB::ISH) 4959 .Case("ish", ARM_MB::ISH) 4960 .Case("shst", ARM_MB::ISHST) 4961 .Case("ishst", ARM_MB::ISHST) 4962 .Case("ishld", ARM_MB::ISHLD) 4963 .Case("nsh", ARM_MB::NSH) 4964 .Case("un", ARM_MB::NSH) 4965 .Case("nshst", ARM_MB::NSHST) 4966 .Case("nshld", ARM_MB::NSHLD) 4967 .Case("unst", ARM_MB::NSHST) 4968 .Case("osh", ARM_MB::OSH) 4969 .Case("oshst", ARM_MB::OSHST) 4970 .Case("oshld", ARM_MB::OSHLD) 4971 .Default(~0U); 4972 4973 // ishld, oshld, nshld and ld are only available from ARMv8. 4974 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4975 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4976 Opt = ~0U; 4977 4978 if (Opt == ~0U) 4979 return MatchOperand_NoMatch; 4980 4981 Parser.Lex(); // Eat identifier token. 4982 } else if (Tok.is(AsmToken::Hash) || 4983 Tok.is(AsmToken::Dollar) || 4984 Tok.is(AsmToken::Integer)) { 4985 if (Parser.getTok().isNot(AsmToken::Integer)) 4986 Parser.Lex(); // Eat '#' or '$'. 4987 SMLoc Loc = Parser.getTok().getLoc(); 4988 4989 const MCExpr *MemBarrierID; 4990 if (getParser().parseExpression(MemBarrierID)) { 4991 Error(Loc, "illegal expression"); 4992 return MatchOperand_ParseFail; 4993 } 4994 4995 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4996 if (!CE) { 4997 Error(Loc, "constant expression expected"); 4998 return MatchOperand_ParseFail; 4999 } 5000 5001 int Val = CE->getValue(); 5002 if (Val & ~0xf) { 5003 Error(Loc, "immediate value out of range"); 5004 return MatchOperand_ParseFail; 5005 } 5006 5007 Opt = ARM_MB::RESERVED_0 + Val; 5008 } else 5009 return MatchOperand_ParseFail; 5010 5011 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 5012 return MatchOperand_Success; 5013 } 5014 5015 OperandMatchResultTy 5016 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) { 5017 MCAsmParser &Parser = getParser(); 5018 SMLoc S = Parser.getTok().getLoc(); 5019 const AsmToken &Tok = Parser.getTok(); 5020 5021 if (Tok.isNot(AsmToken::Identifier)) 5022 return MatchOperand_NoMatch; 5023 5024 if (!Tok.getString().equals_insensitive("csync")) 5025 return MatchOperand_NoMatch; 5026 5027 Parser.Lex(); // Eat identifier token. 5028 5029 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S)); 5030 return MatchOperand_Success; 5031 } 5032 5033 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 5034 OperandMatchResultTy 5035 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 5036 MCAsmParser &Parser = getParser(); 5037 SMLoc S = Parser.getTok().getLoc(); 5038 const AsmToken &Tok = Parser.getTok(); 5039 unsigned Opt; 5040 5041 if (Tok.is(AsmToken::Identifier)) { 5042 StringRef OptStr = Tok.getString(); 5043 5044 if (OptStr.equals_insensitive("sy")) 5045 Opt = ARM_ISB::SY; 5046 else 5047 return MatchOperand_NoMatch; 5048 5049 Parser.Lex(); // Eat identifier token. 5050 } else if (Tok.is(AsmToken::Hash) || 5051 Tok.is(AsmToken::Dollar) || 5052 Tok.is(AsmToken::Integer)) { 5053 if (Parser.getTok().isNot(AsmToken::Integer)) 5054 Parser.Lex(); // Eat '#' or '$'. 5055 SMLoc Loc = Parser.getTok().getLoc(); 5056 5057 const MCExpr *ISBarrierID; 5058 if (getParser().parseExpression(ISBarrierID)) { 5059 Error(Loc, "illegal expression"); 5060 return MatchOperand_ParseFail; 5061 } 5062 5063 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 5064 if (!CE) { 5065 Error(Loc, "constant expression expected"); 5066 return MatchOperand_ParseFail; 5067 } 5068 5069 int Val = CE->getValue(); 5070 if (Val & ~0xf) { 5071 Error(Loc, "immediate value out of range"); 5072 return MatchOperand_ParseFail; 5073 } 5074 5075 Opt = ARM_ISB::RESERVED_0 + Val; 5076 } else 5077 return MatchOperand_ParseFail; 5078 5079 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 5080 (ARM_ISB::InstSyncBOpt)Opt, S)); 5081 return MatchOperand_Success; 5082 } 5083 5084 5085 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 5086 OperandMatchResultTy 5087 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 5088 MCAsmParser &Parser = getParser(); 5089 SMLoc S = Parser.getTok().getLoc(); 5090 const AsmToken &Tok = Parser.getTok(); 5091 if (!Tok.is(AsmToken::Identifier)) 5092 return MatchOperand_NoMatch; 5093 StringRef IFlagsStr = Tok.getString(); 5094 5095 // An iflags string of "none" is interpreted to mean that none of the AIF 5096 // bits are set. Not a terribly useful instruction, but a valid encoding. 5097 unsigned IFlags = 0; 5098 if (IFlagsStr != "none") { 5099 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 5100 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) 5101 .Case("a", ARM_PROC::A) 5102 .Case("i", ARM_PROC::I) 5103 .Case("f", ARM_PROC::F) 5104 .Default(~0U); 5105 5106 // If some specific iflag is already set, it means that some letter is 5107 // present more than once, this is not acceptable. 5108 if (Flag == ~0U || (IFlags & Flag)) 5109 return MatchOperand_NoMatch; 5110 5111 IFlags |= Flag; 5112 } 5113 } 5114 5115 Parser.Lex(); // Eat identifier token. 5116 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 5117 return MatchOperand_Success; 5118 } 5119 5120 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 5121 OperandMatchResultTy 5122 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 5123 MCAsmParser &Parser = getParser(); 5124 SMLoc S = Parser.getTok().getLoc(); 5125 const AsmToken &Tok = Parser.getTok(); 5126 5127 if (Tok.is(AsmToken::Integer)) { 5128 int64_t Val = Tok.getIntVal(); 5129 if (Val > 255 || Val < 0) { 5130 return MatchOperand_NoMatch; 5131 } 5132 unsigned SYSmvalue = Val & 0xFF; 5133 Parser.Lex(); 5134 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 5135 return MatchOperand_Success; 5136 } 5137 5138 if (!Tok.is(AsmToken::Identifier)) 5139 return MatchOperand_NoMatch; 5140 StringRef Mask = Tok.getString(); 5141 5142 if (isMClass()) { 5143 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 5144 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 5145 return MatchOperand_NoMatch; 5146 5147 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 5148 5149 Parser.Lex(); // Eat identifier token. 5150 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 5151 return MatchOperand_Success; 5152 } 5153 5154 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 5155 size_t Start = 0, Next = Mask.find('_'); 5156 StringRef Flags = ""; 5157 std::string SpecReg = Mask.slice(Start, Next).lower(); 5158 if (Next != StringRef::npos) 5159 Flags = Mask.slice(Next+1, Mask.size()); 5160 5161 // FlagsVal contains the complete mask: 5162 // 3-0: Mask 5163 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 5164 unsigned FlagsVal = 0; 5165 5166 if (SpecReg == "apsr") { 5167 FlagsVal = StringSwitch<unsigned>(Flags) 5168 .Case("nzcvq", 0x8) // same as CPSR_f 5169 .Case("g", 0x4) // same as CPSR_s 5170 .Case("nzcvqg", 0xc) // same as CPSR_fs 5171 .Default(~0U); 5172 5173 if (FlagsVal == ~0U) { 5174 if (!Flags.empty()) 5175 return MatchOperand_NoMatch; 5176 else 5177 FlagsVal = 8; // No flag 5178 } 5179 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 5180 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 5181 if (Flags == "all" || Flags == "") 5182 Flags = "fc"; 5183 for (int i = 0, e = Flags.size(); i != e; ++i) { 5184 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 5185 .Case("c", 1) 5186 .Case("x", 2) 5187 .Case("s", 4) 5188 .Case("f", 8) 5189 .Default(~0U); 5190 5191 // If some specific flag is already set, it means that some letter is 5192 // present more than once, this is not acceptable. 5193 if (Flag == ~0U || (FlagsVal & Flag)) 5194 return MatchOperand_NoMatch; 5195 FlagsVal |= Flag; 5196 } 5197 } else // No match for special register. 5198 return MatchOperand_NoMatch; 5199 5200 // Special register without flags is NOT equivalent to "fc" flags. 5201 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 5202 // two lines would enable gas compatibility at the expense of breaking 5203 // round-tripping. 5204 // 5205 // if (!FlagsVal) 5206 // FlagsVal = 0x9; 5207 5208 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 5209 if (SpecReg == "spsr") 5210 FlagsVal |= 16; 5211 5212 Parser.Lex(); // Eat identifier token. 5213 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 5214 return MatchOperand_Success; 5215 } 5216 5217 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 5218 /// use in the MRS/MSR instructions added to support virtualization. 5219 OperandMatchResultTy 5220 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 5221 MCAsmParser &Parser = getParser(); 5222 SMLoc S = Parser.getTok().getLoc(); 5223 const AsmToken &Tok = Parser.getTok(); 5224 if (!Tok.is(AsmToken::Identifier)) 5225 return MatchOperand_NoMatch; 5226 StringRef RegName = Tok.getString(); 5227 5228 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); 5229 if (!TheReg) 5230 return MatchOperand_NoMatch; 5231 unsigned Encoding = TheReg->Encoding; 5232 5233 Parser.Lex(); // Eat identifier token. 5234 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 5235 return MatchOperand_Success; 5236 } 5237 5238 OperandMatchResultTy 5239 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 5240 int High) { 5241 MCAsmParser &Parser = getParser(); 5242 const AsmToken &Tok = Parser.getTok(); 5243 if (Tok.isNot(AsmToken::Identifier)) { 5244 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5245 return MatchOperand_ParseFail; 5246 } 5247 StringRef ShiftName = Tok.getString(); 5248 std::string LowerOp = Op.lower(); 5249 std::string UpperOp = Op.upper(); 5250 if (ShiftName != LowerOp && ShiftName != UpperOp) { 5251 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5252 return MatchOperand_ParseFail; 5253 } 5254 Parser.Lex(); // Eat shift type token. 5255 5256 // There must be a '#' and a shift amount. 5257 if (Parser.getTok().isNot(AsmToken::Hash) && 5258 Parser.getTok().isNot(AsmToken::Dollar)) { 5259 Error(Parser.getTok().getLoc(), "'#' expected"); 5260 return MatchOperand_ParseFail; 5261 } 5262 Parser.Lex(); // Eat hash token. 5263 5264 const MCExpr *ShiftAmount; 5265 SMLoc Loc = Parser.getTok().getLoc(); 5266 SMLoc EndLoc; 5267 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5268 Error(Loc, "illegal expression"); 5269 return MatchOperand_ParseFail; 5270 } 5271 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5272 if (!CE) { 5273 Error(Loc, "constant expression expected"); 5274 return MatchOperand_ParseFail; 5275 } 5276 int Val = CE->getValue(); 5277 if (Val < Low || Val > High) { 5278 Error(Loc, "immediate value out of range"); 5279 return MatchOperand_ParseFail; 5280 } 5281 5282 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 5283 5284 return MatchOperand_Success; 5285 } 5286 5287 OperandMatchResultTy 5288 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 5289 MCAsmParser &Parser = getParser(); 5290 const AsmToken &Tok = Parser.getTok(); 5291 SMLoc S = Tok.getLoc(); 5292 if (Tok.isNot(AsmToken::Identifier)) { 5293 Error(S, "'be' or 'le' operand expected"); 5294 return MatchOperand_ParseFail; 5295 } 5296 int Val = StringSwitch<int>(Tok.getString().lower()) 5297 .Case("be", 1) 5298 .Case("le", 0) 5299 .Default(-1); 5300 Parser.Lex(); // Eat the token. 5301 5302 if (Val == -1) { 5303 Error(S, "'be' or 'le' operand expected"); 5304 return MatchOperand_ParseFail; 5305 } 5306 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 5307 getContext()), 5308 S, Tok.getEndLoc())); 5309 return MatchOperand_Success; 5310 } 5311 5312 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 5313 /// instructions. Legal values are: 5314 /// lsl #n 'n' in [0,31] 5315 /// asr #n 'n' in [1,32] 5316 /// n == 32 encoded as n == 0. 5317 OperandMatchResultTy 5318 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 5319 MCAsmParser &Parser = getParser(); 5320 const AsmToken &Tok = Parser.getTok(); 5321 SMLoc S = Tok.getLoc(); 5322 if (Tok.isNot(AsmToken::Identifier)) { 5323 Error(S, "shift operator 'asr' or 'lsl' expected"); 5324 return MatchOperand_ParseFail; 5325 } 5326 StringRef ShiftName = Tok.getString(); 5327 bool isASR; 5328 if (ShiftName == "lsl" || ShiftName == "LSL") 5329 isASR = false; 5330 else if (ShiftName == "asr" || ShiftName == "ASR") 5331 isASR = true; 5332 else { 5333 Error(S, "shift operator 'asr' or 'lsl' expected"); 5334 return MatchOperand_ParseFail; 5335 } 5336 Parser.Lex(); // Eat the operator. 5337 5338 // A '#' and a shift amount. 5339 if (Parser.getTok().isNot(AsmToken::Hash) && 5340 Parser.getTok().isNot(AsmToken::Dollar)) { 5341 Error(Parser.getTok().getLoc(), "'#' expected"); 5342 return MatchOperand_ParseFail; 5343 } 5344 Parser.Lex(); // Eat hash token. 5345 SMLoc ExLoc = Parser.getTok().getLoc(); 5346 5347 const MCExpr *ShiftAmount; 5348 SMLoc EndLoc; 5349 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5350 Error(ExLoc, "malformed shift expression"); 5351 return MatchOperand_ParseFail; 5352 } 5353 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5354 if (!CE) { 5355 Error(ExLoc, "shift amount must be an immediate"); 5356 return MatchOperand_ParseFail; 5357 } 5358 5359 int64_t Val = CE->getValue(); 5360 if (isASR) { 5361 // Shift amount must be in [1,32] 5362 if (Val < 1 || Val > 32) { 5363 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 5364 return MatchOperand_ParseFail; 5365 } 5366 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 5367 if (isThumb() && Val == 32) { 5368 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 5369 return MatchOperand_ParseFail; 5370 } 5371 if (Val == 32) Val = 0; 5372 } else { 5373 // Shift amount must be in [1,32] 5374 if (Val < 0 || Val > 31) { 5375 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 5376 return MatchOperand_ParseFail; 5377 } 5378 } 5379 5380 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 5381 5382 return MatchOperand_Success; 5383 } 5384 5385 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 5386 /// of instructions. Legal values are: 5387 /// ror #n 'n' in {0, 8, 16, 24} 5388 OperandMatchResultTy 5389 ARMAsmParser::parseRotImm(OperandVector &Operands) { 5390 MCAsmParser &Parser = getParser(); 5391 const AsmToken &Tok = Parser.getTok(); 5392 SMLoc S = Tok.getLoc(); 5393 if (Tok.isNot(AsmToken::Identifier)) 5394 return MatchOperand_NoMatch; 5395 StringRef ShiftName = Tok.getString(); 5396 if (ShiftName != "ror" && ShiftName != "ROR") 5397 return MatchOperand_NoMatch; 5398 Parser.Lex(); // Eat the operator. 5399 5400 // A '#' and a rotate amount. 5401 if (Parser.getTok().isNot(AsmToken::Hash) && 5402 Parser.getTok().isNot(AsmToken::Dollar)) { 5403 Error(Parser.getTok().getLoc(), "'#' expected"); 5404 return MatchOperand_ParseFail; 5405 } 5406 Parser.Lex(); // Eat hash token. 5407 SMLoc ExLoc = Parser.getTok().getLoc(); 5408 5409 const MCExpr *ShiftAmount; 5410 SMLoc EndLoc; 5411 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5412 Error(ExLoc, "malformed rotate expression"); 5413 return MatchOperand_ParseFail; 5414 } 5415 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5416 if (!CE) { 5417 Error(ExLoc, "rotate amount must be an immediate"); 5418 return MatchOperand_ParseFail; 5419 } 5420 5421 int64_t Val = CE->getValue(); 5422 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 5423 // normally, zero is represented in asm by omitting the rotate operand 5424 // entirely. 5425 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 5426 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 5427 return MatchOperand_ParseFail; 5428 } 5429 5430 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 5431 5432 return MatchOperand_Success; 5433 } 5434 5435 OperandMatchResultTy 5436 ARMAsmParser::parseModImm(OperandVector &Operands) { 5437 MCAsmParser &Parser = getParser(); 5438 MCAsmLexer &Lexer = getLexer(); 5439 int64_t Imm1, Imm2; 5440 5441 SMLoc S = Parser.getTok().getLoc(); 5442 5443 // 1) A mod_imm operand can appear in the place of a register name: 5444 // add r0, #mod_imm 5445 // add r0, r0, #mod_imm 5446 // to correctly handle the latter, we bail out as soon as we see an 5447 // identifier. 5448 // 5449 // 2) Similarly, we do not want to parse into complex operands: 5450 // mov r0, #mod_imm 5451 // mov r0, :lower16:(_foo) 5452 if (Parser.getTok().is(AsmToken::Identifier) || 5453 Parser.getTok().is(AsmToken::Colon)) 5454 return MatchOperand_NoMatch; 5455 5456 // Hash (dollar) is optional as per the ARMARM 5457 if (Parser.getTok().is(AsmToken::Hash) || 5458 Parser.getTok().is(AsmToken::Dollar)) { 5459 // Avoid parsing into complex operands (#:) 5460 if (Lexer.peekTok().is(AsmToken::Colon)) 5461 return MatchOperand_NoMatch; 5462 5463 // Eat the hash (dollar) 5464 Parser.Lex(); 5465 } 5466 5467 SMLoc Sx1, Ex1; 5468 Sx1 = Parser.getTok().getLoc(); 5469 const MCExpr *Imm1Exp; 5470 if (getParser().parseExpression(Imm1Exp, Ex1)) { 5471 Error(Sx1, "malformed expression"); 5472 return MatchOperand_ParseFail; 5473 } 5474 5475 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 5476 5477 if (CE) { 5478 // Immediate must fit within 32-bits 5479 Imm1 = CE->getValue(); 5480 int Enc = ARM_AM::getSOImmVal(Imm1); 5481 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 5482 // We have a match! 5483 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 5484 (Enc & 0xF00) >> 7, 5485 Sx1, Ex1)); 5486 return MatchOperand_Success; 5487 } 5488 5489 // We have parsed an immediate which is not for us, fallback to a plain 5490 // immediate. This can happen for instruction aliases. For an example, 5491 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 5492 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 5493 // instruction with a mod_imm operand. The alias is defined such that the 5494 // parser method is shared, that's why we have to do this here. 5495 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 5496 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5497 return MatchOperand_Success; 5498 } 5499 } else { 5500 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 5501 // MCFixup). Fallback to a plain immediate. 5502 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5503 return MatchOperand_Success; 5504 } 5505 5506 // From this point onward, we expect the input to be a (#bits, #rot) pair 5507 if (Parser.getTok().isNot(AsmToken::Comma)) { 5508 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 5509 return MatchOperand_ParseFail; 5510 } 5511 5512 if (Imm1 & ~0xFF) { 5513 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 5514 return MatchOperand_ParseFail; 5515 } 5516 5517 // Eat the comma 5518 Parser.Lex(); 5519 5520 // Repeat for #rot 5521 SMLoc Sx2, Ex2; 5522 Sx2 = Parser.getTok().getLoc(); 5523 5524 // Eat the optional hash (dollar) 5525 if (Parser.getTok().is(AsmToken::Hash) || 5526 Parser.getTok().is(AsmToken::Dollar)) 5527 Parser.Lex(); 5528 5529 const MCExpr *Imm2Exp; 5530 if (getParser().parseExpression(Imm2Exp, Ex2)) { 5531 Error(Sx2, "malformed expression"); 5532 return MatchOperand_ParseFail; 5533 } 5534 5535 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 5536 5537 if (CE) { 5538 Imm2 = CE->getValue(); 5539 if (!(Imm2 & ~0x1E)) { 5540 // We have a match! 5541 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 5542 return MatchOperand_Success; 5543 } 5544 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 5545 return MatchOperand_ParseFail; 5546 } else { 5547 Error(Sx2, "constant expression expected"); 5548 return MatchOperand_ParseFail; 5549 } 5550 } 5551 5552 OperandMatchResultTy 5553 ARMAsmParser::parseBitfield(OperandVector &Operands) { 5554 MCAsmParser &Parser = getParser(); 5555 SMLoc S = Parser.getTok().getLoc(); 5556 // The bitfield descriptor is really two operands, the LSB and the width. 5557 if (Parser.getTok().isNot(AsmToken::Hash) && 5558 Parser.getTok().isNot(AsmToken::Dollar)) { 5559 Error(Parser.getTok().getLoc(), "'#' expected"); 5560 return MatchOperand_ParseFail; 5561 } 5562 Parser.Lex(); // Eat hash token. 5563 5564 const MCExpr *LSBExpr; 5565 SMLoc E = Parser.getTok().getLoc(); 5566 if (getParser().parseExpression(LSBExpr)) { 5567 Error(E, "malformed immediate expression"); 5568 return MatchOperand_ParseFail; 5569 } 5570 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 5571 if (!CE) { 5572 Error(E, "'lsb' operand must be an immediate"); 5573 return MatchOperand_ParseFail; 5574 } 5575 5576 int64_t LSB = CE->getValue(); 5577 // The LSB must be in the range [0,31] 5578 if (LSB < 0 || LSB > 31) { 5579 Error(E, "'lsb' operand must be in the range [0,31]"); 5580 return MatchOperand_ParseFail; 5581 } 5582 E = Parser.getTok().getLoc(); 5583 5584 // Expect another immediate operand. 5585 if (Parser.getTok().isNot(AsmToken::Comma)) { 5586 Error(Parser.getTok().getLoc(), "too few operands"); 5587 return MatchOperand_ParseFail; 5588 } 5589 Parser.Lex(); // Eat hash token. 5590 if (Parser.getTok().isNot(AsmToken::Hash) && 5591 Parser.getTok().isNot(AsmToken::Dollar)) { 5592 Error(Parser.getTok().getLoc(), "'#' expected"); 5593 return MatchOperand_ParseFail; 5594 } 5595 Parser.Lex(); // Eat hash token. 5596 5597 const MCExpr *WidthExpr; 5598 SMLoc EndLoc; 5599 if (getParser().parseExpression(WidthExpr, EndLoc)) { 5600 Error(E, "malformed immediate expression"); 5601 return MatchOperand_ParseFail; 5602 } 5603 CE = dyn_cast<MCConstantExpr>(WidthExpr); 5604 if (!CE) { 5605 Error(E, "'width' operand must be an immediate"); 5606 return MatchOperand_ParseFail; 5607 } 5608 5609 int64_t Width = CE->getValue(); 5610 // The LSB must be in the range [1,32-lsb] 5611 if (Width < 1 || Width > 32 - LSB) { 5612 Error(E, "'width' operand must be in the range [1,32-lsb]"); 5613 return MatchOperand_ParseFail; 5614 } 5615 5616 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 5617 5618 return MatchOperand_Success; 5619 } 5620 5621 OperandMatchResultTy 5622 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 5623 // Check for a post-index addressing register operand. Specifically: 5624 // postidx_reg := '+' register {, shift} 5625 // | '-' register {, shift} 5626 // | register {, shift} 5627 5628 // This method must return MatchOperand_NoMatch without consuming any tokens 5629 // in the case where there is no match, as other alternatives take other 5630 // parse methods. 5631 MCAsmParser &Parser = getParser(); 5632 AsmToken Tok = Parser.getTok(); 5633 SMLoc S = Tok.getLoc(); 5634 bool haveEaten = false; 5635 bool isAdd = true; 5636 if (Tok.is(AsmToken::Plus)) { 5637 Parser.Lex(); // Eat the '+' token. 5638 haveEaten = true; 5639 } else if (Tok.is(AsmToken::Minus)) { 5640 Parser.Lex(); // Eat the '-' token. 5641 isAdd = false; 5642 haveEaten = true; 5643 } 5644 5645 SMLoc E = Parser.getTok().getEndLoc(); 5646 int Reg = tryParseRegister(); 5647 if (Reg == -1) { 5648 if (!haveEaten) 5649 return MatchOperand_NoMatch; 5650 Error(Parser.getTok().getLoc(), "register expected"); 5651 return MatchOperand_ParseFail; 5652 } 5653 5654 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 5655 unsigned ShiftImm = 0; 5656 if (Parser.getTok().is(AsmToken::Comma)) { 5657 Parser.Lex(); // Eat the ','. 5658 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 5659 return MatchOperand_ParseFail; 5660 5661 // FIXME: Only approximates end...may include intervening whitespace. 5662 E = Parser.getTok().getLoc(); 5663 } 5664 5665 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 5666 ShiftImm, S, E)); 5667 5668 return MatchOperand_Success; 5669 } 5670 5671 OperandMatchResultTy 5672 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 5673 // Check for a post-index addressing register operand. Specifically: 5674 // am3offset := '+' register 5675 // | '-' register 5676 // | register 5677 // | # imm 5678 // | # + imm 5679 // | # - imm 5680 5681 // This method must return MatchOperand_NoMatch without consuming any tokens 5682 // in the case where there is no match, as other alternatives take other 5683 // parse methods. 5684 MCAsmParser &Parser = getParser(); 5685 AsmToken Tok = Parser.getTok(); 5686 SMLoc S = Tok.getLoc(); 5687 5688 // Do immediates first, as we always parse those if we have a '#'. 5689 if (Parser.getTok().is(AsmToken::Hash) || 5690 Parser.getTok().is(AsmToken::Dollar)) { 5691 Parser.Lex(); // Eat '#' or '$'. 5692 // Explicitly look for a '-', as we need to encode negative zero 5693 // differently. 5694 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5695 const MCExpr *Offset; 5696 SMLoc E; 5697 if (getParser().parseExpression(Offset, E)) 5698 return MatchOperand_ParseFail; 5699 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5700 if (!CE) { 5701 Error(S, "constant expression expected"); 5702 return MatchOperand_ParseFail; 5703 } 5704 // Negative zero is encoded as the flag value 5705 // std::numeric_limits<int32_t>::min(). 5706 int32_t Val = CE->getValue(); 5707 if (isNegative && Val == 0) 5708 Val = std::numeric_limits<int32_t>::min(); 5709 5710 Operands.push_back( 5711 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 5712 5713 return MatchOperand_Success; 5714 } 5715 5716 bool haveEaten = false; 5717 bool isAdd = true; 5718 if (Tok.is(AsmToken::Plus)) { 5719 Parser.Lex(); // Eat the '+' token. 5720 haveEaten = true; 5721 } else if (Tok.is(AsmToken::Minus)) { 5722 Parser.Lex(); // Eat the '-' token. 5723 isAdd = false; 5724 haveEaten = true; 5725 } 5726 5727 Tok = Parser.getTok(); 5728 int Reg = tryParseRegister(); 5729 if (Reg == -1) { 5730 if (!haveEaten) 5731 return MatchOperand_NoMatch; 5732 Error(Tok.getLoc(), "register expected"); 5733 return MatchOperand_ParseFail; 5734 } 5735 5736 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 5737 0, S, Tok.getEndLoc())); 5738 5739 return MatchOperand_Success; 5740 } 5741 5742 /// Convert parsed operands to MCInst. Needed here because this instruction 5743 /// only has two register operands, but multiplication is commutative so 5744 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 5745 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 5746 const OperandVector &Operands) { 5747 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 5748 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 5749 // If we have a three-operand form, make sure to set Rn to be the operand 5750 // that isn't the same as Rd. 5751 unsigned RegOp = 4; 5752 if (Operands.size() == 6 && 5753 ((ARMOperand &)*Operands[4]).getReg() == 5754 ((ARMOperand &)*Operands[3]).getReg()) 5755 RegOp = 5; 5756 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 5757 Inst.addOperand(Inst.getOperand(0)); 5758 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 5759 } 5760 5761 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 5762 const OperandVector &Operands) { 5763 int CondOp = -1, ImmOp = -1; 5764 switch(Inst.getOpcode()) { 5765 case ARM::tB: 5766 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 5767 5768 case ARM::t2B: 5769 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 5770 5771 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 5772 } 5773 // first decide whether or not the branch should be conditional 5774 // by looking at it's location relative to an IT block 5775 if(inITBlock()) { 5776 // inside an IT block we cannot have any conditional branches. any 5777 // such instructions needs to be converted to unconditional form 5778 switch(Inst.getOpcode()) { 5779 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 5780 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 5781 } 5782 } else { 5783 // outside IT blocks we can only have unconditional branches with AL 5784 // condition code or conditional branches with non-AL condition code 5785 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 5786 switch(Inst.getOpcode()) { 5787 case ARM::tB: 5788 case ARM::tBcc: 5789 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 5790 break; 5791 case ARM::t2B: 5792 case ARM::t2Bcc: 5793 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 5794 break; 5795 } 5796 } 5797 5798 // now decide on encoding size based on branch target range 5799 switch(Inst.getOpcode()) { 5800 // classify tB as either t2B or t1B based on range of immediate operand 5801 case ARM::tB: { 5802 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5803 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 5804 Inst.setOpcode(ARM::t2B); 5805 break; 5806 } 5807 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 5808 case ARM::tBcc: { 5809 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5810 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 5811 Inst.setOpcode(ARM::t2Bcc); 5812 break; 5813 } 5814 } 5815 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 5816 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 5817 } 5818 5819 void ARMAsmParser::cvtMVEVMOVQtoDReg( 5820 MCInst &Inst, const OperandVector &Operands) { 5821 5822 // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2 5823 assert(Operands.size() == 8); 5824 5825 ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt 5826 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2 5827 ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd 5828 ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx 5829 // skip second copy of Qd in Operands[6] 5830 ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2 5831 ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code 5832 } 5833 5834 /// Parse an ARM memory expression, return false if successful else return true 5835 /// or an error. The first token must be a '[' when called. 5836 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 5837 MCAsmParser &Parser = getParser(); 5838 SMLoc S, E; 5839 if (Parser.getTok().isNot(AsmToken::LBrac)) 5840 return TokError("Token is not a Left Bracket"); 5841 S = Parser.getTok().getLoc(); 5842 Parser.Lex(); // Eat left bracket token. 5843 5844 const AsmToken &BaseRegTok = Parser.getTok(); 5845 int BaseRegNum = tryParseRegister(); 5846 if (BaseRegNum == -1) 5847 return Error(BaseRegTok.getLoc(), "register expected"); 5848 5849 // The next token must either be a comma, a colon or a closing bracket. 5850 const AsmToken &Tok = Parser.getTok(); 5851 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5852 !Tok.is(AsmToken::RBrac)) 5853 return Error(Tok.getLoc(), "malformed memory operand"); 5854 5855 if (Tok.is(AsmToken::RBrac)) { 5856 E = Tok.getEndLoc(); 5857 Parser.Lex(); // Eat right bracket token. 5858 5859 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5860 ARM_AM::no_shift, 0, 0, false, 5861 S, E)); 5862 5863 // If there's a pre-indexing writeback marker, '!', just add it as a token 5864 // operand. It's rather odd, but syntactically valid. 5865 if (Parser.getTok().is(AsmToken::Exclaim)) { 5866 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5867 Parser.Lex(); // Eat the '!'. 5868 } 5869 5870 return false; 5871 } 5872 5873 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5874 "Lost colon or comma in memory operand?!"); 5875 if (Tok.is(AsmToken::Comma)) { 5876 Parser.Lex(); // Eat the comma. 5877 } 5878 5879 // If we have a ':', it's an alignment specifier. 5880 if (Parser.getTok().is(AsmToken::Colon)) { 5881 Parser.Lex(); // Eat the ':'. 5882 E = Parser.getTok().getLoc(); 5883 SMLoc AlignmentLoc = Tok.getLoc(); 5884 5885 const MCExpr *Expr; 5886 if (getParser().parseExpression(Expr)) 5887 return true; 5888 5889 // The expression has to be a constant. Memory references with relocations 5890 // don't come through here, as they use the <label> forms of the relevant 5891 // instructions. 5892 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5893 if (!CE) 5894 return Error (E, "constant expression expected"); 5895 5896 unsigned Align = 0; 5897 switch (CE->getValue()) { 5898 default: 5899 return Error(E, 5900 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5901 case 16: Align = 2; break; 5902 case 32: Align = 4; break; 5903 case 64: Align = 8; break; 5904 case 128: Align = 16; break; 5905 case 256: Align = 32; break; 5906 } 5907 5908 // Now we should have the closing ']' 5909 if (Parser.getTok().isNot(AsmToken::RBrac)) 5910 return Error(Parser.getTok().getLoc(), "']' expected"); 5911 E = Parser.getTok().getEndLoc(); 5912 Parser.Lex(); // Eat right bracket token. 5913 5914 // Don't worry about range checking the value here. That's handled by 5915 // the is*() predicates. 5916 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5917 ARM_AM::no_shift, 0, Align, 5918 false, S, E, AlignmentLoc)); 5919 5920 // If there's a pre-indexing writeback marker, '!', just add it as a token 5921 // operand. 5922 if (Parser.getTok().is(AsmToken::Exclaim)) { 5923 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5924 Parser.Lex(); // Eat the '!'. 5925 } 5926 5927 return false; 5928 } 5929 5930 // If we have a '#' or '$', it's an immediate offset, else assume it's a 5931 // register offset. Be friendly and also accept a plain integer or expression 5932 // (without a leading hash) for gas compatibility. 5933 if (Parser.getTok().is(AsmToken::Hash) || 5934 Parser.getTok().is(AsmToken::Dollar) || 5935 Parser.getTok().is(AsmToken::LParen) || 5936 Parser.getTok().is(AsmToken::Integer)) { 5937 if (Parser.getTok().is(AsmToken::Hash) || 5938 Parser.getTok().is(AsmToken::Dollar)) 5939 Parser.Lex(); // Eat '#' or '$' 5940 E = Parser.getTok().getLoc(); 5941 5942 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5943 const MCExpr *Offset, *AdjustedOffset; 5944 if (getParser().parseExpression(Offset)) 5945 return true; 5946 5947 if (const auto *CE = dyn_cast<MCConstantExpr>(Offset)) { 5948 // If the constant was #-0, represent it as 5949 // std::numeric_limits<int32_t>::min(). 5950 int32_t Val = CE->getValue(); 5951 if (isNegative && Val == 0) 5952 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5953 getContext()); 5954 // Don't worry about range checking the value here. That's handled by 5955 // the is*() predicates. 5956 AdjustedOffset = CE; 5957 } else 5958 AdjustedOffset = Offset; 5959 Operands.push_back(ARMOperand::CreateMem( 5960 BaseRegNum, AdjustedOffset, 0, ARM_AM::no_shift, 0, 0, false, S, E)); 5961 5962 // Now we should have the closing ']' 5963 if (Parser.getTok().isNot(AsmToken::RBrac)) 5964 return Error(Parser.getTok().getLoc(), "']' expected"); 5965 E = Parser.getTok().getEndLoc(); 5966 Parser.Lex(); // Eat right bracket token. 5967 5968 // If there's a pre-indexing writeback marker, '!', just add it as a token 5969 // operand. 5970 if (Parser.getTok().is(AsmToken::Exclaim)) { 5971 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5972 Parser.Lex(); // Eat the '!'. 5973 } 5974 5975 return false; 5976 } 5977 5978 // The register offset is optionally preceded by a '+' or '-' 5979 bool isNegative = false; 5980 if (Parser.getTok().is(AsmToken::Minus)) { 5981 isNegative = true; 5982 Parser.Lex(); // Eat the '-'. 5983 } else if (Parser.getTok().is(AsmToken::Plus)) { 5984 // Nothing to do. 5985 Parser.Lex(); // Eat the '+'. 5986 } 5987 5988 E = Parser.getTok().getLoc(); 5989 int OffsetRegNum = tryParseRegister(); 5990 if (OffsetRegNum == -1) 5991 return Error(E, "register expected"); 5992 5993 // If there's a shift operator, handle it. 5994 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5995 unsigned ShiftImm = 0; 5996 if (Parser.getTok().is(AsmToken::Comma)) { 5997 Parser.Lex(); // Eat the ','. 5998 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5999 return true; 6000 } 6001 6002 // Now we should have the closing ']' 6003 if (Parser.getTok().isNot(AsmToken::RBrac)) 6004 return Error(Parser.getTok().getLoc(), "']' expected"); 6005 E = Parser.getTok().getEndLoc(); 6006 Parser.Lex(); // Eat right bracket token. 6007 6008 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 6009 ShiftType, ShiftImm, 0, isNegative, 6010 S, E)); 6011 6012 // If there's a pre-indexing writeback marker, '!', just add it as a token 6013 // operand. 6014 if (Parser.getTok().is(AsmToken::Exclaim)) { 6015 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 6016 Parser.Lex(); // Eat the '!'. 6017 } 6018 6019 return false; 6020 } 6021 6022 /// parseMemRegOffsetShift - one of these two: 6023 /// ( lsl | lsr | asr | ror ) , # shift_amount 6024 /// rrx 6025 /// return true if it parses a shift otherwise it returns false. 6026 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 6027 unsigned &Amount) { 6028 MCAsmParser &Parser = getParser(); 6029 SMLoc Loc = Parser.getTok().getLoc(); 6030 const AsmToken &Tok = Parser.getTok(); 6031 if (Tok.isNot(AsmToken::Identifier)) 6032 return Error(Loc, "illegal shift operator"); 6033 StringRef ShiftName = Tok.getString(); 6034 if (ShiftName == "lsl" || ShiftName == "LSL" || 6035 ShiftName == "asl" || ShiftName == "ASL") 6036 St = ARM_AM::lsl; 6037 else if (ShiftName == "lsr" || ShiftName == "LSR") 6038 St = ARM_AM::lsr; 6039 else if (ShiftName == "asr" || ShiftName == "ASR") 6040 St = ARM_AM::asr; 6041 else if (ShiftName == "ror" || ShiftName == "ROR") 6042 St = ARM_AM::ror; 6043 else if (ShiftName == "rrx" || ShiftName == "RRX") 6044 St = ARM_AM::rrx; 6045 else if (ShiftName == "uxtw" || ShiftName == "UXTW") 6046 St = ARM_AM::uxtw; 6047 else 6048 return Error(Loc, "illegal shift operator"); 6049 Parser.Lex(); // Eat shift type token. 6050 6051 // rrx stands alone. 6052 Amount = 0; 6053 if (St != ARM_AM::rrx) { 6054 Loc = Parser.getTok().getLoc(); 6055 // A '#' and a shift amount. 6056 const AsmToken &HashTok = Parser.getTok(); 6057 if (HashTok.isNot(AsmToken::Hash) && 6058 HashTok.isNot(AsmToken::Dollar)) 6059 return Error(HashTok.getLoc(), "'#' expected"); 6060 Parser.Lex(); // Eat hash token. 6061 6062 const MCExpr *Expr; 6063 if (getParser().parseExpression(Expr)) 6064 return true; 6065 // Range check the immediate. 6066 // lsl, ror: 0 <= imm <= 31 6067 // lsr, asr: 0 <= imm <= 32 6068 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 6069 if (!CE) 6070 return Error(Loc, "shift amount must be an immediate"); 6071 int64_t Imm = CE->getValue(); 6072 if (Imm < 0 || 6073 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 6074 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 6075 return Error(Loc, "immediate shift value out of range"); 6076 // If <ShiftTy> #0, turn it into a no_shift. 6077 if (Imm == 0) 6078 St = ARM_AM::lsl; 6079 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 6080 if (Imm == 32) 6081 Imm = 0; 6082 Amount = Imm; 6083 } 6084 6085 return false; 6086 } 6087 6088 /// parseFPImm - A floating point immediate expression operand. 6089 OperandMatchResultTy 6090 ARMAsmParser::parseFPImm(OperandVector &Operands) { 6091 MCAsmParser &Parser = getParser(); 6092 // Anything that can accept a floating point constant as an operand 6093 // needs to go through here, as the regular parseExpression is 6094 // integer only. 6095 // 6096 // This routine still creates a generic Immediate operand, containing 6097 // a bitcast of the 64-bit floating point value. The various operands 6098 // that accept floats can check whether the value is valid for them 6099 // via the standard is*() predicates. 6100 6101 SMLoc S = Parser.getTok().getLoc(); 6102 6103 if (Parser.getTok().isNot(AsmToken::Hash) && 6104 Parser.getTok().isNot(AsmToken::Dollar)) 6105 return MatchOperand_NoMatch; 6106 6107 // Disambiguate the VMOV forms that can accept an FP immediate. 6108 // vmov.f32 <sreg>, #imm 6109 // vmov.f64 <dreg>, #imm 6110 // vmov.f32 <dreg>, #imm @ vector f32x2 6111 // vmov.f32 <qreg>, #imm @ vector f32x4 6112 // 6113 // There are also the NEON VMOV instructions which expect an 6114 // integer constant. Make sure we don't try to parse an FPImm 6115 // for these: 6116 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 6117 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 6118 bool isVmovf = TyOp.isToken() && 6119 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 6120 TyOp.getToken() == ".f16"); 6121 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 6122 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 6123 Mnemonic.getToken() == "fconsts"); 6124 if (!(isVmovf || isFconst)) 6125 return MatchOperand_NoMatch; 6126 6127 Parser.Lex(); // Eat '#' or '$'. 6128 6129 // Handle negation, as that still comes through as a separate token. 6130 bool isNegative = false; 6131 if (Parser.getTok().is(AsmToken::Minus)) { 6132 isNegative = true; 6133 Parser.Lex(); 6134 } 6135 const AsmToken &Tok = Parser.getTok(); 6136 SMLoc Loc = Tok.getLoc(); 6137 if (Tok.is(AsmToken::Real) && isVmovf) { 6138 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 6139 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 6140 // If we had a '-' in front, toggle the sign bit. 6141 IntVal ^= (uint64_t)isNegative << 31; 6142 Parser.Lex(); // Eat the token. 6143 Operands.push_back(ARMOperand::CreateImm( 6144 MCConstantExpr::create(IntVal, getContext()), 6145 S, Parser.getTok().getLoc())); 6146 return MatchOperand_Success; 6147 } 6148 // Also handle plain integers. Instructions which allow floating point 6149 // immediates also allow a raw encoded 8-bit value. 6150 if (Tok.is(AsmToken::Integer) && isFconst) { 6151 int64_t Val = Tok.getIntVal(); 6152 Parser.Lex(); // Eat the token. 6153 if (Val > 255 || Val < 0) { 6154 Error(Loc, "encoded floating point value out of range"); 6155 return MatchOperand_ParseFail; 6156 } 6157 float RealVal = ARM_AM::getFPImmFloat(Val); 6158 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 6159 6160 Operands.push_back(ARMOperand::CreateImm( 6161 MCConstantExpr::create(Val, getContext()), S, 6162 Parser.getTok().getLoc())); 6163 return MatchOperand_Success; 6164 } 6165 6166 Error(Loc, "invalid floating point immediate"); 6167 return MatchOperand_ParseFail; 6168 } 6169 6170 /// Parse a arm instruction operand. For now this parses the operand regardless 6171 /// of the mnemonic. 6172 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 6173 MCAsmParser &Parser = getParser(); 6174 SMLoc S, E; 6175 6176 // Check if the current operand has a custom associated parser, if so, try to 6177 // custom parse the operand, or fallback to the general approach. 6178 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 6179 if (ResTy == MatchOperand_Success) 6180 return false; 6181 // If there wasn't a custom match, try the generic matcher below. Otherwise, 6182 // there was a match, but an error occurred, in which case, just return that 6183 // the operand parsing failed. 6184 if (ResTy == MatchOperand_ParseFail) 6185 return true; 6186 6187 switch (getLexer().getKind()) { 6188 default: 6189 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 6190 return true; 6191 case AsmToken::Identifier: { 6192 // If we've seen a branch mnemonic, the next operand must be a label. This 6193 // is true even if the label is a register name. So "br r1" means branch to 6194 // label "r1". 6195 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 6196 if (!ExpectLabel) { 6197 if (!tryParseRegisterWithWriteBack(Operands)) 6198 return false; 6199 int Res = tryParseShiftRegister(Operands); 6200 if (Res == 0) // success 6201 return false; 6202 else if (Res == -1) // irrecoverable error 6203 return true; 6204 // If this is VMRS, check for the apsr_nzcv operand. 6205 if (Mnemonic == "vmrs" && 6206 Parser.getTok().getString().equals_insensitive("apsr_nzcv")) { 6207 S = Parser.getTok().getLoc(); 6208 Parser.Lex(); 6209 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 6210 return false; 6211 } 6212 } 6213 6214 // Fall though for the Identifier case that is not a register or a 6215 // special name. 6216 LLVM_FALLTHROUGH; 6217 } 6218 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 6219 case AsmToken::Integer: // things like 1f and 2b as a branch targets 6220 case AsmToken::String: // quoted label names. 6221 case AsmToken::Dot: { // . as a branch target 6222 // This was not a register so parse other operands that start with an 6223 // identifier (like labels) as expressions and create them as immediates. 6224 const MCExpr *IdVal; 6225 S = Parser.getTok().getLoc(); 6226 if (getParser().parseExpression(IdVal)) 6227 return true; 6228 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6229 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 6230 return false; 6231 } 6232 case AsmToken::LBrac: 6233 return parseMemory(Operands); 6234 case AsmToken::LCurly: 6235 return parseRegisterList(Operands, !Mnemonic.startswith("clr")); 6236 case AsmToken::Dollar: 6237 case AsmToken::Hash: { 6238 // #42 -> immediate 6239 // $ 42 -> immediate 6240 // $foo -> symbol name 6241 // $42 -> symbol name 6242 S = Parser.getTok().getLoc(); 6243 6244 // Favor the interpretation of $-prefixed operands as symbol names. 6245 // Cases where immediates are explicitly expected are handled by their 6246 // specific ParseMethod implementations. 6247 auto AdjacentToken = getLexer().peekTok(/*ShouldSkipSpace=*/false); 6248 bool ExpectIdentifier = Parser.getTok().is(AsmToken::Dollar) && 6249 (AdjacentToken.is(AsmToken::Identifier) || 6250 AdjacentToken.is(AsmToken::Integer)); 6251 if (!ExpectIdentifier) { 6252 // Token is not part of identifier. Drop leading $ or # before parsing 6253 // expression. 6254 Parser.Lex(); 6255 } 6256 6257 if (Parser.getTok().isNot(AsmToken::Colon)) { 6258 bool IsNegative = Parser.getTok().is(AsmToken::Minus); 6259 const MCExpr *ImmVal; 6260 if (getParser().parseExpression(ImmVal)) 6261 return true; 6262 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 6263 if (CE) { 6264 int32_t Val = CE->getValue(); 6265 if (IsNegative && Val == 0) 6266 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 6267 getContext()); 6268 } 6269 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6270 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 6271 6272 // There can be a trailing '!' on operands that we want as a separate 6273 // '!' Token operand. Handle that here. For example, the compatibility 6274 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 6275 if (Parser.getTok().is(AsmToken::Exclaim)) { 6276 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 6277 Parser.getTok().getLoc())); 6278 Parser.Lex(); // Eat exclaim token 6279 } 6280 return false; 6281 } 6282 // w/ a ':' after the '#', it's just like a plain ':'. 6283 LLVM_FALLTHROUGH; 6284 } 6285 case AsmToken::Colon: { 6286 S = Parser.getTok().getLoc(); 6287 // ":lower16:" and ":upper16:" expression prefixes 6288 // FIXME: Check it's an expression prefix, 6289 // e.g. (FOO - :lower16:BAR) isn't legal. 6290 ARMMCExpr::VariantKind RefKind; 6291 if (parsePrefix(RefKind)) 6292 return true; 6293 6294 const MCExpr *SubExprVal; 6295 if (getParser().parseExpression(SubExprVal)) 6296 return true; 6297 6298 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 6299 getContext()); 6300 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6301 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 6302 return false; 6303 } 6304 case AsmToken::Equal: { 6305 S = Parser.getTok().getLoc(); 6306 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 6307 return Error(S, "unexpected token in operand"); 6308 Parser.Lex(); // Eat '=' 6309 const MCExpr *SubExprVal; 6310 if (getParser().parseExpression(SubExprVal)) 6311 return true; 6312 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6313 6314 // execute-only: we assume that assembly programmers know what they are 6315 // doing and allow literal pool creation here 6316 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 6317 return false; 6318 } 6319 } 6320 } 6321 6322 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 6323 // :lower16: and :upper16:. 6324 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 6325 MCAsmParser &Parser = getParser(); 6326 RefKind = ARMMCExpr::VK_ARM_None; 6327 6328 // consume an optional '#' (GNU compatibility) 6329 if (getLexer().is(AsmToken::Hash)) 6330 Parser.Lex(); 6331 6332 // :lower16: and :upper16: modifiers 6333 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 6334 Parser.Lex(); // Eat ':' 6335 6336 if (getLexer().isNot(AsmToken::Identifier)) { 6337 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 6338 return true; 6339 } 6340 6341 enum { 6342 COFF = (1 << MCContext::IsCOFF), 6343 ELF = (1 << MCContext::IsELF), 6344 MACHO = (1 << MCContext::IsMachO), 6345 WASM = (1 << MCContext::IsWasm), 6346 }; 6347 static const struct PrefixEntry { 6348 const char *Spelling; 6349 ARMMCExpr::VariantKind VariantKind; 6350 uint8_t SupportedFormats; 6351 } PrefixEntries[] = { 6352 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 6353 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 6354 }; 6355 6356 StringRef IDVal = Parser.getTok().getIdentifier(); 6357 6358 const auto &Prefix = 6359 llvm::find_if(PrefixEntries, [&IDVal](const PrefixEntry &PE) { 6360 return PE.Spelling == IDVal; 6361 }); 6362 if (Prefix == std::end(PrefixEntries)) { 6363 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 6364 return true; 6365 } 6366 6367 uint8_t CurrentFormat; 6368 switch (getContext().getObjectFileType()) { 6369 case MCContext::IsMachO: 6370 CurrentFormat = MACHO; 6371 break; 6372 case MCContext::IsELF: 6373 CurrentFormat = ELF; 6374 break; 6375 case MCContext::IsCOFF: 6376 CurrentFormat = COFF; 6377 break; 6378 case MCContext::IsWasm: 6379 CurrentFormat = WASM; 6380 break; 6381 case MCContext::IsGOFF: 6382 case MCContext::IsXCOFF: 6383 llvm_unreachable("unexpected object format"); 6384 break; 6385 } 6386 6387 if (~Prefix->SupportedFormats & CurrentFormat) { 6388 Error(Parser.getTok().getLoc(), 6389 "cannot represent relocation in the current file format"); 6390 return true; 6391 } 6392 6393 RefKind = Prefix->VariantKind; 6394 Parser.Lex(); 6395 6396 if (getLexer().isNot(AsmToken::Colon)) { 6397 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 6398 return true; 6399 } 6400 Parser.Lex(); // Eat the last ':' 6401 6402 return false; 6403 } 6404 6405 /// Given a mnemonic, split out possible predication code and carry 6406 /// setting letters to form a canonical mnemonic and flags. 6407 // 6408 // FIXME: Would be nice to autogen this. 6409 // FIXME: This is a bit of a maze of special cases. 6410 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 6411 StringRef ExtraToken, 6412 unsigned &PredicationCode, 6413 unsigned &VPTPredicationCode, 6414 bool &CarrySetting, 6415 unsigned &ProcessorIMod, 6416 StringRef &ITMask) { 6417 PredicationCode = ARMCC::AL; 6418 VPTPredicationCode = ARMVCC::None; 6419 CarrySetting = false; 6420 ProcessorIMod = 0; 6421 6422 // Ignore some mnemonics we know aren't predicated forms. 6423 // 6424 // FIXME: Would be nice to autogen this. 6425 if ((Mnemonic == "movs" && isThumb()) || 6426 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 6427 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 6428 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 6429 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 6430 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 6431 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 6432 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 6433 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 6434 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 6435 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 6436 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 6437 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 6438 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 6439 Mnemonic == "bxns" || Mnemonic == "blxns" || 6440 Mnemonic == "vdot" || Mnemonic == "vmmla" || 6441 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6442 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6443 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6444 Mnemonic == "wls" || Mnemonic == "le" || Mnemonic == "dls" || 6445 Mnemonic == "csel" || Mnemonic == "csinc" || 6446 Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" || 6447 Mnemonic == "cinv" || Mnemonic == "cneg" || Mnemonic == "cset" || 6448 Mnemonic == "csetm" || 6449 Mnemonic == "aut" || Mnemonic == "pac" || Mnemonic == "pacbti" || 6450 Mnemonic == "bti") 6451 return Mnemonic; 6452 6453 // First, split out any predication code. Ignore mnemonics we know aren't 6454 // predicated but do have a carry-set and so weren't caught above. 6455 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 6456 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 6457 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 6458 Mnemonic != "sbcs" && Mnemonic != "rscs" && 6459 !(hasMVE() && 6460 (Mnemonic == "vmine" || 6461 Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" || 6462 Mnemonic == "vrshle" || Mnemonic == "vrshlt" || 6463 Mnemonic == "vmvne" || Mnemonic == "vorne" || 6464 Mnemonic == "vnege" || Mnemonic == "vnegt" || 6465 Mnemonic == "vmule" || Mnemonic == "vmult" || 6466 Mnemonic == "vrintne" || 6467 Mnemonic == "vcmult" || Mnemonic == "vcmule" || 6468 Mnemonic == "vpsele" || Mnemonic == "vpselt" || 6469 Mnemonic.startswith("vq")))) { 6470 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); 6471 if (CC != ~0U) { 6472 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 6473 PredicationCode = CC; 6474 } 6475 } 6476 6477 // Next, determine if we have a carry setting bit. We explicitly ignore all 6478 // the instructions we know end in 's'. 6479 if (Mnemonic.endswith("s") && 6480 !(Mnemonic == "cps" || Mnemonic == "mls" || 6481 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 6482 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 6483 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 6484 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 6485 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 6486 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 6487 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 6488 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 6489 Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" || 6490 Mnemonic == "vmlas" || 6491 (Mnemonic == "movs" && isThumb()))) { 6492 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 6493 CarrySetting = true; 6494 } 6495 6496 // The "cps" instruction can have a interrupt mode operand which is glued into 6497 // the mnemonic. Check if this is the case, split it and parse the imod op 6498 if (Mnemonic.startswith("cps")) { 6499 // Split out any imod code. 6500 unsigned IMod = 6501 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 6502 .Case("ie", ARM_PROC::IE) 6503 .Case("id", ARM_PROC::ID) 6504 .Default(~0U); 6505 if (IMod != ~0U) { 6506 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 6507 ProcessorIMod = IMod; 6508 } 6509 } 6510 6511 if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" && 6512 Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" && 6513 Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" && 6514 Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" && 6515 Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" && 6516 Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" && 6517 Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") { 6518 unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1)); 6519 if (CC != ~0U) { 6520 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1); 6521 VPTPredicationCode = CC; 6522 } 6523 return Mnemonic; 6524 } 6525 6526 // The "it" instruction has the condition mask on the end of the mnemonic. 6527 if (Mnemonic.startswith("it")) { 6528 ITMask = Mnemonic.slice(2, Mnemonic.size()); 6529 Mnemonic = Mnemonic.slice(0, 2); 6530 } 6531 6532 if (Mnemonic.startswith("vpst")) { 6533 ITMask = Mnemonic.slice(4, Mnemonic.size()); 6534 Mnemonic = Mnemonic.slice(0, 4); 6535 } 6536 else if (Mnemonic.startswith("vpt")) { 6537 ITMask = Mnemonic.slice(3, Mnemonic.size()); 6538 Mnemonic = Mnemonic.slice(0, 3); 6539 } 6540 6541 return Mnemonic; 6542 } 6543 6544 /// Given a canonical mnemonic, determine if the instruction ever allows 6545 /// inclusion of carry set or predication code operands. 6546 // 6547 // FIXME: It would be nice to autogen this. 6548 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, 6549 StringRef ExtraToken, 6550 StringRef FullInst, 6551 bool &CanAcceptCarrySet, 6552 bool &CanAcceptPredicationCode, 6553 bool &CanAcceptVPTPredicationCode) { 6554 CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken); 6555 6556 CanAcceptCarrySet = 6557 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6558 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 6559 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 6560 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 6561 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 6562 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 6563 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 6564 (!isThumb() && 6565 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 6566 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 6567 6568 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 6569 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 6570 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 6571 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 6572 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 6573 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 6574 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 6575 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 6576 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 6577 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 6578 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 6579 Mnemonic == "vmovx" || Mnemonic == "vins" || 6580 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6581 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6582 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6583 Mnemonic == "vfmat" || Mnemonic == "vfmab" || 6584 Mnemonic == "vdot" || Mnemonic == "vmmla" || 6585 Mnemonic == "sb" || Mnemonic == "ssbb" || 6586 Mnemonic == "pssbb" || Mnemonic == "vsmmla" || 6587 Mnemonic == "vummla" || Mnemonic == "vusmmla" || 6588 Mnemonic == "vusdot" || Mnemonic == "vsudot" || 6589 Mnemonic == "bfcsel" || Mnemonic == "wls" || 6590 Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" || 6591 Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" || 6592 Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" || 6593 Mnemonic == "cset" || Mnemonic == "csetm" || 6594 (hasCDE() && MS.isCDEInstr(Mnemonic) && 6595 !MS.isITPredicableCDEInstr(Mnemonic)) || 6596 Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") || 6597 Mnemonic == "pac" || Mnemonic == "pacbti" || Mnemonic == "aut" || 6598 Mnemonic == "bti" || 6599 (hasMVE() && 6600 (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") || 6601 Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") || 6602 Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") || 6603 Mnemonic.startswith("letp")))) { 6604 // These mnemonics are never predicable 6605 CanAcceptPredicationCode = false; 6606 } else if (!isThumb()) { 6607 // Some instructions are only predicable in Thumb mode 6608 CanAcceptPredicationCode = 6609 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 6610 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 6611 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && 6612 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && 6613 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && 6614 Mnemonic != "stc2" && Mnemonic != "stc2l" && 6615 Mnemonic != "tsb" && 6616 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); 6617 } else if (isThumbOne()) { 6618 if (hasV6MOps()) 6619 CanAcceptPredicationCode = Mnemonic != "movs"; 6620 else 6621 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 6622 } else 6623 CanAcceptPredicationCode = true; 6624 } 6625 6626 // Some Thumb instructions have two operand forms that are not 6627 // available as three operand, convert to two operand form if possible. 6628 // 6629 // FIXME: We would really like to be able to tablegen'erate this. 6630 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 6631 bool CarrySetting, 6632 OperandVector &Operands) { 6633 if (Operands.size() != 6) 6634 return; 6635 6636 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6637 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 6638 if (!Op3.isReg() || !Op4.isReg()) 6639 return; 6640 6641 auto Op3Reg = Op3.getReg(); 6642 auto Op4Reg = Op4.getReg(); 6643 6644 // For most Thumb2 cases we just generate the 3 operand form and reduce 6645 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 6646 // won't accept SP or PC so we do the transformation here taking care 6647 // with immediate range in the 'add sp, sp #imm' case. 6648 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 6649 if (isThumbTwo()) { 6650 if (Mnemonic != "add") 6651 return; 6652 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 6653 (Op5.isReg() && Op5.getReg() == ARM::PC); 6654 if (!TryTransform) { 6655 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 6656 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 6657 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 6658 Op5.isImm() && !Op5.isImm0_508s4()); 6659 } 6660 if (!TryTransform) 6661 return; 6662 } else if (!isThumbOne()) 6663 return; 6664 6665 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 6666 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6667 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 6668 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 6669 return; 6670 6671 // If first 2 operands of a 3 operand instruction are the same 6672 // then transform to 2 operand version of the same instruction 6673 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 6674 bool Transform = Op3Reg == Op4Reg; 6675 6676 // For communtative operations, we might be able to transform if we swap 6677 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 6678 // as tADDrsp. 6679 const ARMOperand *LastOp = &Op5; 6680 bool Swap = false; 6681 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 6682 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 6683 Mnemonic == "and" || Mnemonic == "eor" || 6684 Mnemonic == "adc" || Mnemonic == "orr")) { 6685 Swap = true; 6686 LastOp = &Op4; 6687 Transform = true; 6688 } 6689 6690 // If both registers are the same then remove one of them from 6691 // the operand list, with certain exceptions. 6692 if (Transform) { 6693 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 6694 // 2 operand forms don't exist. 6695 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 6696 LastOp->isReg()) 6697 Transform = false; 6698 6699 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 6700 // 3-bits because the ARMARM says not to. 6701 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 6702 Transform = false; 6703 } 6704 6705 if (Transform) { 6706 if (Swap) 6707 std::swap(Op4, Op5); 6708 Operands.erase(Operands.begin() + 3); 6709 } 6710 } 6711 6712 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 6713 OperandVector &Operands) { 6714 // FIXME: This is all horribly hacky. We really need a better way to deal 6715 // with optional operands like this in the matcher table. 6716 6717 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 6718 // another does not. Specifically, the MOVW instruction does not. So we 6719 // special case it here and remove the defaulted (non-setting) cc_out 6720 // operand if that's the instruction we're trying to match. 6721 // 6722 // We do this as post-processing of the explicit operands rather than just 6723 // conditionally adding the cc_out in the first place because we need 6724 // to check the type of the parsed immediate operand. 6725 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 6726 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 6727 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 6728 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6729 return true; 6730 6731 // Register-register 'add' for thumb does not have a cc_out operand 6732 // when there are only two register operands. 6733 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 6734 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6735 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6736 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6737 return true; 6738 // Register-register 'add' for thumb does not have a cc_out operand 6739 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 6740 // have to check the immediate range here since Thumb2 has a variant 6741 // that can handle a different range and has a cc_out operand. 6742 if (((isThumb() && Mnemonic == "add") || 6743 (isThumbTwo() && Mnemonic == "sub")) && 6744 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6745 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6746 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 6747 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6748 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 6749 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 6750 return true; 6751 // For Thumb2, add/sub immediate does not have a cc_out operand for the 6752 // imm0_4095 variant. That's the least-preferred variant when 6753 // selecting via the generic "add" mnemonic, so to know that we 6754 // should remove the cc_out operand, we have to explicitly check that 6755 // it's not one of the other variants. Ugh. 6756 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 6757 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6758 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6759 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6760 // Nest conditions rather than one big 'if' statement for readability. 6761 // 6762 // If both registers are low, we're in an IT block, and the immediate is 6763 // in range, we should use encoding T1 instead, which has a cc_out. 6764 if (inITBlock() && 6765 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 6766 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 6767 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 6768 return false; 6769 // Check against T3. If the second register is the PC, this is an 6770 // alternate form of ADR, which uses encoding T4, so check for that too. 6771 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 6772 (static_cast<ARMOperand &>(*Operands[5]).isT2SOImm() || 6773 static_cast<ARMOperand &>(*Operands[5]).isT2SOImmNeg())) 6774 return false; 6775 6776 // Otherwise, we use encoding T4, which does not have a cc_out 6777 // operand. 6778 return true; 6779 } 6780 6781 // The thumb2 multiply instruction doesn't have a CCOut register, so 6782 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 6783 // use the 16-bit encoding or not. 6784 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 6785 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6786 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6787 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6788 static_cast<ARMOperand &>(*Operands[5]).isReg() && 6789 // If the registers aren't low regs, the destination reg isn't the 6790 // same as one of the source regs, or the cc_out operand is zero 6791 // outside of an IT block, we have to use the 32-bit encoding, so 6792 // remove the cc_out operand. 6793 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6794 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6795 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 6796 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 6797 static_cast<ARMOperand &>(*Operands[5]).getReg() && 6798 static_cast<ARMOperand &>(*Operands[3]).getReg() != 6799 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 6800 return true; 6801 6802 // Also check the 'mul' syntax variant that doesn't specify an explicit 6803 // destination register. 6804 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 6805 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6806 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6807 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6808 // If the registers aren't low regs or the cc_out operand is zero 6809 // outside of an IT block, we have to use the 32-bit encoding, so 6810 // remove the cc_out operand. 6811 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6812 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6813 !inITBlock())) 6814 return true; 6815 6816 // Register-register 'add/sub' for thumb does not have a cc_out operand 6817 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 6818 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 6819 // right, this will result in better diagnostics (which operand is off) 6820 // anyway. 6821 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 6822 (Operands.size() == 5 || Operands.size() == 6) && 6823 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6824 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 6825 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6826 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 6827 (Operands.size() == 6 && 6828 static_cast<ARMOperand &>(*Operands[5]).isImm()))) { 6829 // Thumb2 (add|sub){s}{p}.w GPRnopc, sp, #{T2SOImm} has cc_out 6830 return (!(isThumbTwo() && 6831 (static_cast<ARMOperand &>(*Operands[4]).isT2SOImm() || 6832 static_cast<ARMOperand &>(*Operands[4]).isT2SOImmNeg()))); 6833 } 6834 // Fixme: Should join all the thumb+thumb2 (add|sub) in a single if case 6835 // Thumb2 ADD r0, #4095 -> ADDW r0, r0, #4095 (T4) 6836 // Thumb2 SUB r0, #4095 -> SUBW r0, r0, #4095 6837 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 6838 (Operands.size() == 5) && 6839 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6840 static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::SP && 6841 static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::PC && 6842 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6843 static_cast<ARMOperand &>(*Operands[4]).isImm()) { 6844 const ARMOperand &IMM = static_cast<ARMOperand &>(*Operands[4]); 6845 if (IMM.isT2SOImm() || IMM.isT2SOImmNeg()) 6846 return false; // add.w / sub.w 6847 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IMM.getImm())) { 6848 const int64_t Value = CE->getValue(); 6849 // Thumb1 imm8 sub / add 6850 if ((Value < ((1 << 7) - 1) << 2) && inITBlock() && (!(Value & 3)) && 6851 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg())) 6852 return false; 6853 return true; // Thumb2 T4 addw / subw 6854 } 6855 } 6856 return false; 6857 } 6858 6859 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 6860 OperandVector &Operands) { 6861 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON 6862 unsigned RegIdx = 3; 6863 if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) || 6864 Mnemonic == "vrintr") && 6865 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 6866 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 6867 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6868 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 6869 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 6870 RegIdx = 4; 6871 6872 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 6873 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6874 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 6875 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6876 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 6877 return true; 6878 } 6879 return false; 6880 } 6881 6882 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic, 6883 OperandVector &Operands) { 6884 if (!hasMVE() || Operands.size() < 3) 6885 return true; 6886 6887 if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") || 6888 Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4")) 6889 return true; 6890 6891 if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot")) 6892 return false; 6893 6894 if (Mnemonic.startswith("vmov") && 6895 !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") || 6896 Mnemonic.startswith("vmovx"))) { 6897 for (auto &Operand : Operands) { 6898 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6899 ((*Operand).isReg() && 6900 (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 6901 (*Operand).getReg()) || 6902 ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6903 (*Operand).getReg())))) { 6904 return true; 6905 } 6906 } 6907 return false; 6908 } else { 6909 for (auto &Operand : Operands) { 6910 // We check the larger class QPR instead of just the legal class 6911 // MQPR, to more accurately report errors when using Q registers 6912 // outside of the allowed range. 6913 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6914 (Operand->isReg() && 6915 (ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6916 Operand->getReg())))) 6917 return false; 6918 } 6919 return true; 6920 } 6921 } 6922 6923 static bool isDataTypeToken(StringRef Tok) { 6924 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 6925 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 6926 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 6927 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 6928 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 6929 Tok == ".f" || Tok == ".d"; 6930 } 6931 6932 // FIXME: This bit should probably be handled via an explicit match class 6933 // in the .td files that matches the suffix instead of having it be 6934 // a literal string token the way it is now. 6935 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 6936 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 6937 } 6938 6939 static void applyMnemonicAliases(StringRef &Mnemonic, 6940 const FeatureBitset &Features, 6941 unsigned VariantID); 6942 6943 // The GNU assembler has aliases of ldrd and strd with the second register 6944 // omitted. We don't have a way to do that in tablegen, so fix it up here. 6945 // 6946 // We have to be careful to not emit an invalid Rt2 here, because the rest of 6947 // the assembly parser could then generate confusing diagnostics refering to 6948 // it. If we do find anything that prevents us from doing the transformation we 6949 // bail out, and let the assembly parser report an error on the instruction as 6950 // it is written. 6951 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, 6952 OperandVector &Operands) { 6953 if (Mnemonic != "ldrd" && Mnemonic != "strd") 6954 return; 6955 if (Operands.size() < 4) 6956 return; 6957 6958 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6959 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6960 6961 if (!Op2.isReg()) 6962 return; 6963 if (!Op3.isGPRMem()) 6964 return; 6965 6966 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); 6967 if (!GPR.contains(Op2.getReg())) 6968 return; 6969 6970 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); 6971 if (!isThumb() && (RtEncoding & 1)) { 6972 // In ARM mode, the registers must be from an aligned pair, this 6973 // restriction does not apply in Thumb mode. 6974 return; 6975 } 6976 if (Op2.getReg() == ARM::PC) 6977 return; 6978 unsigned PairedReg = GPR.getRegister(RtEncoding + 1); 6979 if (!PairedReg || PairedReg == ARM::PC || 6980 (PairedReg == ARM::SP && !hasV8Ops())) 6981 return; 6982 6983 Operands.insert( 6984 Operands.begin() + 3, 6985 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6986 } 6987 6988 // Dual-register instruction have the following syntax: 6989 // <mnemonic> <predicate>? <coproc>, <Rdest>, <Rdest+1>, <Rsrc>, ..., #imm 6990 // This function tries to remove <Rdest+1> and replace <Rdest> with a pair 6991 // operand. If the conversion fails an error is diagnosed, and the function 6992 // returns true. 6993 bool ARMAsmParser::CDEConvertDualRegOperand(StringRef Mnemonic, 6994 OperandVector &Operands) { 6995 assert(MS.isCDEDualRegInstr(Mnemonic)); 6996 bool isPredicable = 6997 Mnemonic == "cx1da" || Mnemonic == "cx2da" || Mnemonic == "cx3da"; 6998 size_t NumPredOps = isPredicable ? 1 : 0; 6999 7000 if (Operands.size() <= 3 + NumPredOps) 7001 return false; 7002 7003 StringRef Op2Diag( 7004 "operand must be an even-numbered register in the range [r0, r10]"); 7005 7006 const MCParsedAsmOperand &Op2 = *Operands[2 + NumPredOps]; 7007 if (!Op2.isReg()) 7008 return Error(Op2.getStartLoc(), Op2Diag); 7009 7010 unsigned RNext; 7011 unsigned RPair; 7012 switch (Op2.getReg()) { 7013 default: 7014 return Error(Op2.getStartLoc(), Op2Diag); 7015 case ARM::R0: 7016 RNext = ARM::R1; 7017 RPair = ARM::R0_R1; 7018 break; 7019 case ARM::R2: 7020 RNext = ARM::R3; 7021 RPair = ARM::R2_R3; 7022 break; 7023 case ARM::R4: 7024 RNext = ARM::R5; 7025 RPair = ARM::R4_R5; 7026 break; 7027 case ARM::R6: 7028 RNext = ARM::R7; 7029 RPair = ARM::R6_R7; 7030 break; 7031 case ARM::R8: 7032 RNext = ARM::R9; 7033 RPair = ARM::R8_R9; 7034 break; 7035 case ARM::R10: 7036 RNext = ARM::R11; 7037 RPair = ARM::R10_R11; 7038 break; 7039 } 7040 7041 const MCParsedAsmOperand &Op3 = *Operands[3 + NumPredOps]; 7042 if (!Op3.isReg() || Op3.getReg() != RNext) 7043 return Error(Op3.getStartLoc(), "operand must be a consecutive register"); 7044 7045 Operands.erase(Operands.begin() + 3 + NumPredOps); 7046 Operands[2 + NumPredOps] = 7047 ARMOperand::CreateReg(RPair, Op2.getStartLoc(), Op2.getEndLoc()); 7048 return false; 7049 } 7050 7051 /// Parse an arm instruction mnemonic followed by its operands. 7052 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 7053 SMLoc NameLoc, OperandVector &Operands) { 7054 MCAsmParser &Parser = getParser(); 7055 7056 // Apply mnemonic aliases before doing anything else, as the destination 7057 // mnemonic may include suffices and we want to handle them normally. 7058 // The generic tblgen'erated code does this later, at the start of 7059 // MatchInstructionImpl(), but that's too late for aliases that include 7060 // any sort of suffix. 7061 const FeatureBitset &AvailableFeatures = getAvailableFeatures(); 7062 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 7063 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 7064 7065 // First check for the ARM-specific .req directive. 7066 if (Parser.getTok().is(AsmToken::Identifier) && 7067 Parser.getTok().getIdentifier().lower() == ".req") { 7068 parseDirectiveReq(Name, NameLoc); 7069 // We always return 'error' for this, as we're done with this 7070 // statement and don't need to match the 'instruction." 7071 return true; 7072 } 7073 7074 // Create the leading tokens for the mnemonic, split by '.' characters. 7075 size_t Start = 0, Next = Name.find('.'); 7076 StringRef Mnemonic = Name.slice(Start, Next); 7077 StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1)); 7078 7079 // Split out the predication code and carry setting flag from the mnemonic. 7080 unsigned PredicationCode; 7081 unsigned VPTPredicationCode; 7082 unsigned ProcessorIMod; 7083 bool CarrySetting; 7084 StringRef ITMask; 7085 Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode, 7086 CarrySetting, ProcessorIMod, ITMask); 7087 7088 // In Thumb1, only the branch (B) instruction can be predicated. 7089 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 7090 return Error(NameLoc, "conditional execution not supported in Thumb1"); 7091 } 7092 7093 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 7094 7095 // Handle the mask for IT and VPT instructions. In ARMOperand and 7096 // MCOperand, this is stored in a format independent of the 7097 // condition code: the lowest set bit indicates the end of the 7098 // encoding, and above that, a 1 bit indicates 'else', and an 0 7099 // indicates 'then'. E.g. 7100 // IT -> 1000 7101 // ITx -> x100 (ITT -> 0100, ITE -> 1100) 7102 // ITxy -> xy10 (e.g. ITET -> 1010) 7103 // ITxyz -> xyz1 (e.g. ITEET -> 1101) 7104 // Note: See the ARM::PredBlockMask enum in 7105 // /lib/Target/ARM/Utils/ARMBaseInfo.h 7106 if (Mnemonic == "it" || Mnemonic.startswith("vpt") || 7107 Mnemonic.startswith("vpst")) { 7108 SMLoc Loc = Mnemonic == "it" ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) : 7109 Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) : 7110 SMLoc::getFromPointer(NameLoc.getPointer() + 4); 7111 if (ITMask.size() > 3) { 7112 if (Mnemonic == "it") 7113 return Error(Loc, "too many conditions on IT instruction"); 7114 return Error(Loc, "too many conditions on VPT instruction"); 7115 } 7116 unsigned Mask = 8; 7117 for (char Pos : llvm::reverse(ITMask)) { 7118 if (Pos != 't' && Pos != 'e') { 7119 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 7120 } 7121 Mask >>= 1; 7122 if (Pos == 'e') 7123 Mask |= 8; 7124 } 7125 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 7126 } 7127 7128 // FIXME: This is all a pretty gross hack. We should automatically handle 7129 // optional operands like this via tblgen. 7130 7131 // Next, add the CCOut and ConditionCode operands, if needed. 7132 // 7133 // For mnemonics which can ever incorporate a carry setting bit or predication 7134 // code, our matching model involves us always generating CCOut and 7135 // ConditionCode operands to match the mnemonic "as written" and then we let 7136 // the matcher deal with finding the right instruction or generating an 7137 // appropriate error. 7138 bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode; 7139 getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet, 7140 CanAcceptPredicationCode, CanAcceptVPTPredicationCode); 7141 7142 // If we had a carry-set on an instruction that can't do that, issue an 7143 // error. 7144 if (!CanAcceptCarrySet && CarrySetting) { 7145 return Error(NameLoc, "instruction '" + Mnemonic + 7146 "' can not set flags, but 's' suffix specified"); 7147 } 7148 // If we had a predication code on an instruction that can't do that, issue an 7149 // error. 7150 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 7151 return Error(NameLoc, "instruction '" + Mnemonic + 7152 "' is not predicable, but condition code specified"); 7153 } 7154 7155 // If we had a VPT predication code on an instruction that can't do that, issue an 7156 // error. 7157 if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) { 7158 return Error(NameLoc, "instruction '" + Mnemonic + 7159 "' is not VPT predicable, but VPT code T/E is specified"); 7160 } 7161 7162 // Add the carry setting operand, if necessary. 7163 if (CanAcceptCarrySet) { 7164 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 7165 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 7166 Loc)); 7167 } 7168 7169 // Add the predication code operand, if necessary. 7170 if (CanAcceptPredicationCode) { 7171 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 7172 CarrySetting); 7173 Operands.push_back(ARMOperand::CreateCondCode( 7174 ARMCC::CondCodes(PredicationCode), Loc)); 7175 } 7176 7177 // Add the VPT predication code operand, if necessary. 7178 // FIXME: We don't add them for the instructions filtered below as these can 7179 // have custom operands which need special parsing. This parsing requires 7180 // the operand to be in the same place in the OperandVector as their 7181 // definition in tblgen. Since these instructions may also have the 7182 // scalar predication operand we do not add the vector one and leave until 7183 // now to fix it up. 7184 if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" && 7185 !Mnemonic.startswith("vcmp") && 7186 !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" && 7187 Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) { 7188 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 7189 CarrySetting); 7190 Operands.push_back(ARMOperand::CreateVPTPred( 7191 ARMVCC::VPTCodes(VPTPredicationCode), Loc)); 7192 } 7193 7194 // Add the processor imod operand, if necessary. 7195 if (ProcessorIMod) { 7196 Operands.push_back(ARMOperand::CreateImm( 7197 MCConstantExpr::create(ProcessorIMod, getContext()), 7198 NameLoc, NameLoc)); 7199 } else if (Mnemonic == "cps" && isMClass()) { 7200 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 7201 } 7202 7203 // Add the remaining tokens in the mnemonic. 7204 while (Next != StringRef::npos) { 7205 Start = Next; 7206 Next = Name.find('.', Start + 1); 7207 ExtraToken = Name.slice(Start, Next); 7208 7209 // Some NEON instructions have an optional datatype suffix that is 7210 // completely ignored. Check for that. 7211 if (isDataTypeToken(ExtraToken) && 7212 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 7213 continue; 7214 7215 // For for ARM mode generate an error if the .n qualifier is used. 7216 if (ExtraToken == ".n" && !isThumb()) { 7217 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 7218 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 7219 "arm mode"); 7220 } 7221 7222 // The .n qualifier is always discarded as that is what the tables 7223 // and matcher expect. In ARM mode the .w qualifier has no effect, 7224 // so discard it to avoid errors that can be caused by the matcher. 7225 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 7226 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 7227 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 7228 } 7229 } 7230 7231 // Read the remaining operands. 7232 if (getLexer().isNot(AsmToken::EndOfStatement)) { 7233 // Read the first operand. 7234 if (parseOperand(Operands, Mnemonic)) { 7235 return true; 7236 } 7237 7238 while (parseOptionalToken(AsmToken::Comma)) { 7239 // Parse and remember the operand. 7240 if (parseOperand(Operands, Mnemonic)) { 7241 return true; 7242 } 7243 } 7244 } 7245 7246 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 7247 return true; 7248 7249 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 7250 7251 if (hasCDE() && MS.isCDEInstr(Mnemonic)) { 7252 // Dual-register instructions use even-odd register pairs as their 7253 // destination operand, in assembly such pair is spelled as two 7254 // consecutive registers, without any special syntax. ConvertDualRegOperand 7255 // tries to convert such operand into register pair, e.g. r2, r3 -> r2_r3. 7256 // It returns true, if an error message has been emitted. If the function 7257 // returns false, the function either succeeded or an error (e.g. missing 7258 // operand) will be diagnosed elsewhere. 7259 if (MS.isCDEDualRegInstr(Mnemonic)) { 7260 bool GotError = CDEConvertDualRegOperand(Mnemonic, Operands); 7261 if (GotError) 7262 return GotError; 7263 } 7264 } 7265 7266 // Some instructions, mostly Thumb, have forms for the same mnemonic that 7267 // do and don't have a cc_out optional-def operand. With some spot-checks 7268 // of the operand list, we can figure out which variant we're trying to 7269 // parse and adjust accordingly before actually matching. We shouldn't ever 7270 // try to remove a cc_out operand that was explicitly set on the 7271 // mnemonic, of course (CarrySetting == true). Reason number #317 the 7272 // table driven matcher doesn't fit well with the ARM instruction set. 7273 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 7274 Operands.erase(Operands.begin() + 1); 7275 7276 // Some instructions have the same mnemonic, but don't always 7277 // have a predicate. Distinguish them here and delete the 7278 // appropriate predicate if needed. This could be either the scalar 7279 // predication code or the vector predication code. 7280 if (PredicationCode == ARMCC::AL && 7281 shouldOmitPredicateOperand(Mnemonic, Operands)) 7282 Operands.erase(Operands.begin() + 1); 7283 7284 7285 if (hasMVE()) { 7286 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) && 7287 Mnemonic == "vmov" && PredicationCode == ARMCC::LT) { 7288 // Very nasty hack to deal with the vector predicated variant of vmovlt 7289 // the scalar predicated vmov with condition 'lt'. We can not tell them 7290 // apart until we have parsed their operands. 7291 Operands.erase(Operands.begin() + 1); 7292 Operands.erase(Operands.begin()); 7293 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7294 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7295 Mnemonic.size() - 1 + CarrySetting); 7296 Operands.insert(Operands.begin(), 7297 ARMOperand::CreateVPTPred(ARMVCC::None, PLoc)); 7298 Operands.insert(Operands.begin(), 7299 ARMOperand::CreateToken(StringRef("vmovlt"), MLoc)); 7300 } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE && 7301 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7302 // Another nasty hack to deal with the ambiguity between vcvt with scalar 7303 // predication 'ne' and vcvtn with vector predication 'e'. As above we 7304 // can only distinguish between the two after we have parsed their 7305 // operands. 7306 Operands.erase(Operands.begin() + 1); 7307 Operands.erase(Operands.begin()); 7308 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7309 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7310 Mnemonic.size() - 1 + CarrySetting); 7311 Operands.insert(Operands.begin(), 7312 ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc)); 7313 Operands.insert(Operands.begin(), 7314 ARMOperand::CreateToken(StringRef("vcvtn"), MLoc)); 7315 } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT && 7316 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7317 // Another hack, this time to distinguish between scalar predicated vmul 7318 // with 'lt' predication code and the vector instruction vmullt with 7319 // vector predication code "none" 7320 Operands.erase(Operands.begin() + 1); 7321 Operands.erase(Operands.begin()); 7322 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7323 Operands.insert(Operands.begin(), 7324 ARMOperand::CreateToken(StringRef("vmullt"), MLoc)); 7325 } 7326 // For vmov and vcmp, as mentioned earlier, we did not add the vector 7327 // predication code, since these may contain operands that require 7328 // special parsing. So now we have to see if they require vector 7329 // predication and replace the scalar one with the vector predication 7330 // operand if that is the case. 7331 else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") || 7332 (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") && 7333 !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") && 7334 !Mnemonic.startswith("vcvtm"))) { 7335 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7336 // We could not split the vector predicate off vcvt because it might 7337 // have been the scalar vcvtt instruction. Now we know its a vector 7338 // instruction, we still need to check whether its the vector 7339 // predicated vcvt with 'Then' predication or the vector vcvtt. We can 7340 // distinguish the two based on the suffixes, if it is any of 7341 // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt. 7342 if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) { 7343 auto Sz1 = static_cast<ARMOperand &>(*Operands[2]); 7344 auto Sz2 = static_cast<ARMOperand &>(*Operands[3]); 7345 if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") && 7346 Sz2.isToken() && Sz2.getToken().startswith(".f"))) { 7347 Operands.erase(Operands.begin()); 7348 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7349 VPTPredicationCode = ARMVCC::Then; 7350 7351 Mnemonic = Mnemonic.substr(0, 4); 7352 Operands.insert(Operands.begin(), 7353 ARMOperand::CreateToken(Mnemonic, MLoc)); 7354 } 7355 } 7356 Operands.erase(Operands.begin() + 1); 7357 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7358 Mnemonic.size() + CarrySetting); 7359 Operands.insert(Operands.begin() + 1, 7360 ARMOperand::CreateVPTPred( 7361 ARMVCC::VPTCodes(VPTPredicationCode), PLoc)); 7362 } 7363 } else if (CanAcceptVPTPredicationCode) { 7364 // For all other instructions, make sure only one of the two 7365 // predication operands is left behind, depending on whether we should 7366 // use the vector predication. 7367 if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7368 if (CanAcceptPredicationCode) 7369 Operands.erase(Operands.begin() + 2); 7370 else 7371 Operands.erase(Operands.begin() + 1); 7372 } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) { 7373 Operands.erase(Operands.begin() + 1); 7374 } 7375 } 7376 } 7377 7378 if (VPTPredicationCode != ARMVCC::None) { 7379 bool usedVPTPredicationCode = false; 7380 for (unsigned I = 1; I < Operands.size(); ++I) 7381 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7382 usedVPTPredicationCode = true; 7383 if (!usedVPTPredicationCode) { 7384 // If we have a VPT predication code and we haven't just turned it 7385 // into an operand, then it was a mistake for splitMnemonic to 7386 // separate it from the rest of the mnemonic in the first place, 7387 // and this may lead to wrong disassembly (e.g. scalar floating 7388 // point VCMPE is actually a different instruction from VCMP, so 7389 // we mustn't treat them the same). In that situation, glue it 7390 // back on. 7391 Mnemonic = Name.slice(0, Mnemonic.size() + 1); 7392 Operands.erase(Operands.begin()); 7393 Operands.insert(Operands.begin(), 7394 ARMOperand::CreateToken(Mnemonic, NameLoc)); 7395 } 7396 } 7397 7398 // ARM mode 'blx' need special handling, as the register operand version 7399 // is predicable, but the label operand version is not. So, we can't rely 7400 // on the Mnemonic based checking to correctly figure out when to put 7401 // a k_CondCode operand in the list. If we're trying to match the label 7402 // version, remove the k_CondCode operand here. 7403 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 7404 static_cast<ARMOperand &>(*Operands[2]).isImm()) 7405 Operands.erase(Operands.begin() + 1); 7406 7407 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 7408 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 7409 // a single GPRPair reg operand is used in the .td file to replace the two 7410 // GPRs. However, when parsing from asm, the two GRPs cannot be 7411 // automatically 7412 // expressed as a GPRPair, so we have to manually merge them. 7413 // FIXME: We would really like to be able to tablegen'erate this. 7414 if (!isThumb() && Operands.size() > 4 && 7415 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 7416 Mnemonic == "stlexd")) { 7417 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 7418 unsigned Idx = isLoad ? 2 : 3; 7419 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 7420 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 7421 7422 const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID); 7423 // Adjust only if Op1 and Op2 are GPRs. 7424 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 7425 MRC.contains(Op2.getReg())) { 7426 unsigned Reg1 = Op1.getReg(); 7427 unsigned Reg2 = Op2.getReg(); 7428 unsigned Rt = MRI->getEncodingValue(Reg1); 7429 unsigned Rt2 = MRI->getEncodingValue(Reg2); 7430 7431 // Rt2 must be Rt + 1 and Rt must be even. 7432 if (Rt + 1 != Rt2 || (Rt & 1)) { 7433 return Error(Op2.getStartLoc(), 7434 isLoad ? "destination operands must be sequential" 7435 : "source operands must be sequential"); 7436 } 7437 unsigned NewReg = MRI->getMatchingSuperReg( 7438 Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID))); 7439 Operands[Idx] = 7440 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 7441 Operands.erase(Operands.begin() + Idx + 1); 7442 } 7443 } 7444 7445 // GNU Assembler extension (compatibility). 7446 fixupGNULDRDAlias(Mnemonic, Operands); 7447 7448 // FIXME: As said above, this is all a pretty gross hack. This instruction 7449 // does not fit with other "subs" and tblgen. 7450 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 7451 // so the Mnemonic is the original name "subs" and delete the predicate 7452 // operand so it will match the table entry. 7453 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 7454 static_cast<ARMOperand &>(*Operands[3]).isReg() && 7455 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 7456 static_cast<ARMOperand &>(*Operands[4]).isReg() && 7457 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 7458 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 7459 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 7460 Operands.erase(Operands.begin() + 1); 7461 } 7462 return false; 7463 } 7464 7465 // Validate context-sensitive operand constraints. 7466 7467 // return 'true' if register list contains non-low GPR registers, 7468 // 'false' otherwise. If Reg is in the register list or is HiReg, set 7469 // 'containsReg' to true. 7470 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 7471 unsigned Reg, unsigned HiReg, 7472 bool &containsReg) { 7473 containsReg = false; 7474 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 7475 unsigned OpReg = Inst.getOperand(i).getReg(); 7476 if (OpReg == Reg) 7477 containsReg = true; 7478 // Anything other than a low register isn't legal here. 7479 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 7480 return true; 7481 } 7482 return false; 7483 } 7484 7485 // Check if the specified regisgter is in the register list of the inst, 7486 // starting at the indicated operand number. 7487 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 7488 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 7489 unsigned OpReg = Inst.getOperand(i).getReg(); 7490 if (OpReg == Reg) 7491 return true; 7492 } 7493 return false; 7494 } 7495 7496 // Return true if instruction has the interesting property of being 7497 // allowed in IT blocks, but not being predicable. 7498 static bool instIsBreakpoint(const MCInst &Inst) { 7499 return Inst.getOpcode() == ARM::tBKPT || 7500 Inst.getOpcode() == ARM::BKPT || 7501 Inst.getOpcode() == ARM::tHLT || 7502 Inst.getOpcode() == ARM::HLT; 7503 } 7504 7505 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 7506 const OperandVector &Operands, 7507 unsigned ListNo, bool IsARPop) { 7508 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7509 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7510 7511 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7512 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 7513 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7514 7515 if (!IsARPop && ListContainsSP) 7516 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7517 "SP may not be in the register list"); 7518 else if (ListContainsPC && ListContainsLR) 7519 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7520 "PC and LR may not be in the register list simultaneously"); 7521 return false; 7522 } 7523 7524 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 7525 const OperandVector &Operands, 7526 unsigned ListNo) { 7527 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7528 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7529 7530 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7531 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7532 7533 if (ListContainsSP && ListContainsPC) 7534 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7535 "SP and PC may not be in the register list"); 7536 else if (ListContainsSP) 7537 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7538 "SP may not be in the register list"); 7539 else if (ListContainsPC) 7540 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7541 "PC may not be in the register list"); 7542 return false; 7543 } 7544 7545 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst, 7546 const OperandVector &Operands, 7547 bool Load, bool ARMMode, bool Writeback) { 7548 unsigned RtIndex = Load || !Writeback ? 0 : 1; 7549 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg()); 7550 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg()); 7551 7552 if (ARMMode) { 7553 // Rt can't be R14. 7554 if (Rt == 14) 7555 return Error(Operands[3]->getStartLoc(), 7556 "Rt can't be R14"); 7557 7558 // Rt must be even-numbered. 7559 if ((Rt & 1) == 1) 7560 return Error(Operands[3]->getStartLoc(), 7561 "Rt must be even-numbered"); 7562 7563 // Rt2 must be Rt + 1. 7564 if (Rt2 != Rt + 1) { 7565 if (Load) 7566 return Error(Operands[3]->getStartLoc(), 7567 "destination operands must be sequential"); 7568 else 7569 return Error(Operands[3]->getStartLoc(), 7570 "source operands must be sequential"); 7571 } 7572 7573 // FIXME: Diagnose m == 15 7574 // FIXME: Diagnose ldrd with m == t || m == t2. 7575 } 7576 7577 if (!ARMMode && Load) { 7578 if (Rt2 == Rt) 7579 return Error(Operands[3]->getStartLoc(), 7580 "destination operands can't be identical"); 7581 } 7582 7583 if (Writeback) { 7584 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 7585 7586 if (Rn == Rt || Rn == Rt2) { 7587 if (Load) 7588 return Error(Operands[3]->getStartLoc(), 7589 "base register needs to be different from destination " 7590 "registers"); 7591 else 7592 return Error(Operands[3]->getStartLoc(), 7593 "source register and base register can't be identical"); 7594 } 7595 7596 // FIXME: Diagnose ldrd/strd with writeback and n == 15. 7597 // (Except the immediate form of ldrd?) 7598 } 7599 7600 return false; 7601 } 7602 7603 static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) { 7604 for (unsigned i = 0; i < MCID.NumOperands; ++i) { 7605 if (ARM::isVpred(MCID.OpInfo[i].OperandType)) 7606 return i; 7607 } 7608 return -1; 7609 } 7610 7611 static bool isVectorPredicable(const MCInstrDesc &MCID) { 7612 return findFirstVectorPredOperandIdx(MCID) != -1; 7613 } 7614 7615 // FIXME: We would really like to be able to tablegen'erate this. 7616 bool ARMAsmParser::validateInstruction(MCInst &Inst, 7617 const OperandVector &Operands) { 7618 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 7619 SMLoc Loc = Operands[0]->getStartLoc(); 7620 7621 // Check the IT block state first. 7622 // NOTE: BKPT and HLT instructions have the interesting property of being 7623 // allowed in IT blocks, but not being predicable. They just always execute. 7624 if (inITBlock() && !instIsBreakpoint(Inst)) { 7625 // The instruction must be predicable. 7626 if (!MCID.isPredicable()) 7627 return Error(Loc, "instructions in IT block must be predicable"); 7628 ARMCC::CondCodes Cond = ARMCC::CondCodes( 7629 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm()); 7630 if (Cond != currentITCond()) { 7631 // Find the condition code Operand to get its SMLoc information. 7632 SMLoc CondLoc; 7633 for (unsigned I = 1; I < Operands.size(); ++I) 7634 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 7635 CondLoc = Operands[I]->getStartLoc(); 7636 return Error(CondLoc, "incorrect condition in IT block; got '" + 7637 StringRef(ARMCondCodeToString(Cond)) + 7638 "', but expected '" + 7639 ARMCondCodeToString(currentITCond()) + "'"); 7640 } 7641 // Check for non-'al' condition codes outside of the IT block. 7642 } else if (isThumbTwo() && MCID.isPredicable() && 7643 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7644 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 7645 Inst.getOpcode() != ARM::t2Bcc && 7646 Inst.getOpcode() != ARM::t2BFic) { 7647 return Error(Loc, "predicated instructions must be in IT block"); 7648 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 7649 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7650 ARMCC::AL) { 7651 return Warning(Loc, "predicated instructions should be in IT block"); 7652 } else if (!MCID.isPredicable()) { 7653 // Check the instruction doesn't have a predicate operand anyway 7654 // that it's not allowed to use. Sometimes this happens in order 7655 // to keep instructions the same shape even though one cannot 7656 // legally be predicated, e.g. vmul.f16 vs vmul.f32. 7657 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 7658 if (MCID.OpInfo[i].isPredicate()) { 7659 if (Inst.getOperand(i).getImm() != ARMCC::AL) 7660 return Error(Loc, "instruction is not predicable"); 7661 break; 7662 } 7663 } 7664 } 7665 7666 // PC-setting instructions in an IT block, but not the last instruction of 7667 // the block, are UNPREDICTABLE. 7668 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 7669 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 7670 } 7671 7672 if (inVPTBlock() && !instIsBreakpoint(Inst)) { 7673 unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition); 7674 if (!isVectorPredicable(MCID)) 7675 return Error(Loc, "instruction in VPT block must be predicable"); 7676 unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm(); 7677 unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then; 7678 if (Pred != VPTPred) { 7679 SMLoc PredLoc; 7680 for (unsigned I = 1; I < Operands.size(); ++I) 7681 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7682 PredLoc = Operands[I]->getStartLoc(); 7683 return Error(PredLoc, "incorrect predication in VPT block; got '" + 7684 StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) + 7685 "', but expected '" + 7686 ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'"); 7687 } 7688 } 7689 else if (isVectorPredicable(MCID) && 7690 Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() != 7691 ARMVCC::None) 7692 return Error(Loc, "VPT predicated instructions must be in VPT block"); 7693 7694 const unsigned Opcode = Inst.getOpcode(); 7695 switch (Opcode) { 7696 case ARM::t2IT: { 7697 // Encoding is unpredictable if it ever results in a notional 'NV' 7698 // predicate. Since we don't parse 'NV' directly this means an 'AL' 7699 // predicate with an "else" mask bit. 7700 unsigned Cond = Inst.getOperand(0).getImm(); 7701 unsigned Mask = Inst.getOperand(1).getImm(); 7702 7703 // Conditions only allowing a 't' are those with no set bit except 7704 // the lowest-order one that indicates the end of the sequence. In 7705 // other words, powers of 2. 7706 if (Cond == ARMCC::AL && countPopulation(Mask) != 1) 7707 return Error(Loc, "unpredictable IT predicate sequence"); 7708 break; 7709 } 7710 case ARM::LDRD: 7711 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7712 /*Writeback*/false)) 7713 return true; 7714 break; 7715 case ARM::LDRD_PRE: 7716 case ARM::LDRD_POST: 7717 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7718 /*Writeback*/true)) 7719 return true; 7720 break; 7721 case ARM::t2LDRDi8: 7722 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7723 /*Writeback*/false)) 7724 return true; 7725 break; 7726 case ARM::t2LDRD_PRE: 7727 case ARM::t2LDRD_POST: 7728 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7729 /*Writeback*/true)) 7730 return true; 7731 break; 7732 case ARM::t2BXJ: { 7733 const unsigned RmReg = Inst.getOperand(0).getReg(); 7734 // Rm = SP is no longer unpredictable in v8-A 7735 if (RmReg == ARM::SP && !hasV8Ops()) 7736 return Error(Operands[2]->getStartLoc(), 7737 "r13 (SP) is an unpredictable operand to BXJ"); 7738 return false; 7739 } 7740 case ARM::STRD: 7741 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7742 /*Writeback*/false)) 7743 return true; 7744 break; 7745 case ARM::STRD_PRE: 7746 case ARM::STRD_POST: 7747 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7748 /*Writeback*/true)) 7749 return true; 7750 break; 7751 case ARM::t2STRD_PRE: 7752 case ARM::t2STRD_POST: 7753 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false, 7754 /*Writeback*/true)) 7755 return true; 7756 break; 7757 case ARM::STR_PRE_IMM: 7758 case ARM::STR_PRE_REG: 7759 case ARM::t2STR_PRE: 7760 case ARM::STR_POST_IMM: 7761 case ARM::STR_POST_REG: 7762 case ARM::t2STR_POST: 7763 case ARM::STRH_PRE: 7764 case ARM::t2STRH_PRE: 7765 case ARM::STRH_POST: 7766 case ARM::t2STRH_POST: 7767 case ARM::STRB_PRE_IMM: 7768 case ARM::STRB_PRE_REG: 7769 case ARM::t2STRB_PRE: 7770 case ARM::STRB_POST_IMM: 7771 case ARM::STRB_POST_REG: 7772 case ARM::t2STRB_POST: { 7773 // Rt must be different from Rn. 7774 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 7775 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7776 7777 if (Rt == Rn) 7778 return Error(Operands[3]->getStartLoc(), 7779 "source register and base register can't be identical"); 7780 return false; 7781 } 7782 case ARM::t2LDR_PRE_imm: 7783 case ARM::t2LDR_POST_imm: 7784 case ARM::t2STR_PRE_imm: 7785 case ARM::t2STR_POST_imm: { 7786 // Rt must be different from Rn. 7787 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 7788 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 7789 7790 if (Rt == Rn) 7791 return Error(Operands[3]->getStartLoc(), 7792 "destination register and base register can't be identical"); 7793 if (Inst.getOpcode() == ARM::t2LDR_POST_imm || 7794 Inst.getOpcode() == ARM::t2STR_POST_imm) { 7795 int Imm = Inst.getOperand(2).getImm(); 7796 if (Imm > 255 || Imm < -255) 7797 return Error(Operands[5]->getStartLoc(), 7798 "operand must be in range [-255, 255]"); 7799 } 7800 if (Inst.getOpcode() == ARM::t2STR_PRE_imm || 7801 Inst.getOpcode() == ARM::t2STR_POST_imm) { 7802 if (Inst.getOperand(0).getReg() == ARM::PC) { 7803 return Error(Operands[3]->getStartLoc(), 7804 "operand must be a register in range [r0, r14]"); 7805 } 7806 } 7807 return false; 7808 } 7809 case ARM::LDR_PRE_IMM: 7810 case ARM::LDR_PRE_REG: 7811 case ARM::t2LDR_PRE: 7812 case ARM::LDR_POST_IMM: 7813 case ARM::LDR_POST_REG: 7814 case ARM::t2LDR_POST: 7815 case ARM::LDRH_PRE: 7816 case ARM::t2LDRH_PRE: 7817 case ARM::LDRH_POST: 7818 case ARM::t2LDRH_POST: 7819 case ARM::LDRSH_PRE: 7820 case ARM::t2LDRSH_PRE: 7821 case ARM::LDRSH_POST: 7822 case ARM::t2LDRSH_POST: 7823 case ARM::LDRB_PRE_IMM: 7824 case ARM::LDRB_PRE_REG: 7825 case ARM::t2LDRB_PRE: 7826 case ARM::LDRB_POST_IMM: 7827 case ARM::LDRB_POST_REG: 7828 case ARM::t2LDRB_POST: 7829 case ARM::LDRSB_PRE: 7830 case ARM::t2LDRSB_PRE: 7831 case ARM::LDRSB_POST: 7832 case ARM::t2LDRSB_POST: { 7833 // Rt must be different from Rn. 7834 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 7835 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7836 7837 if (Rt == Rn) 7838 return Error(Operands[3]->getStartLoc(), 7839 "destination register and base register can't be identical"); 7840 return false; 7841 } 7842 7843 case ARM::MVE_VLDRBU8_rq: 7844 case ARM::MVE_VLDRBU16_rq: 7845 case ARM::MVE_VLDRBS16_rq: 7846 case ARM::MVE_VLDRBU32_rq: 7847 case ARM::MVE_VLDRBS32_rq: 7848 case ARM::MVE_VLDRHU16_rq: 7849 case ARM::MVE_VLDRHU16_rq_u: 7850 case ARM::MVE_VLDRHU32_rq: 7851 case ARM::MVE_VLDRHU32_rq_u: 7852 case ARM::MVE_VLDRHS32_rq: 7853 case ARM::MVE_VLDRHS32_rq_u: 7854 case ARM::MVE_VLDRWU32_rq: 7855 case ARM::MVE_VLDRWU32_rq_u: 7856 case ARM::MVE_VLDRDU64_rq: 7857 case ARM::MVE_VLDRDU64_rq_u: 7858 case ARM::MVE_VLDRWU32_qi: 7859 case ARM::MVE_VLDRWU32_qi_pre: 7860 case ARM::MVE_VLDRDU64_qi: 7861 case ARM::MVE_VLDRDU64_qi_pre: { 7862 // Qd must be different from Qm. 7863 unsigned QdIdx = 0, QmIdx = 2; 7864 bool QmIsPointer = false; 7865 switch (Opcode) { 7866 case ARM::MVE_VLDRWU32_qi: 7867 case ARM::MVE_VLDRDU64_qi: 7868 QmIdx = 1; 7869 QmIsPointer = true; 7870 break; 7871 case ARM::MVE_VLDRWU32_qi_pre: 7872 case ARM::MVE_VLDRDU64_qi_pre: 7873 QdIdx = 1; 7874 QmIsPointer = true; 7875 break; 7876 } 7877 7878 const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg()); 7879 const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg()); 7880 7881 if (Qd == Qm) { 7882 return Error(Operands[3]->getStartLoc(), 7883 Twine("destination vector register and vector ") + 7884 (QmIsPointer ? "pointer" : "offset") + 7885 " register can't be identical"); 7886 } 7887 return false; 7888 } 7889 7890 case ARM::SBFX: 7891 case ARM::t2SBFX: 7892 case ARM::UBFX: 7893 case ARM::t2UBFX: { 7894 // Width must be in range [1, 32-lsb]. 7895 unsigned LSB = Inst.getOperand(2).getImm(); 7896 unsigned Widthm1 = Inst.getOperand(3).getImm(); 7897 if (Widthm1 >= 32 - LSB) 7898 return Error(Operands[5]->getStartLoc(), 7899 "bitfield width must be in range [1,32-lsb]"); 7900 return false; 7901 } 7902 // Notionally handles ARM::tLDMIA_UPD too. 7903 case ARM::tLDMIA: { 7904 // If we're parsing Thumb2, the .w variant is available and handles 7905 // most cases that are normally illegal for a Thumb1 LDM instruction. 7906 // We'll make the transformation in processInstruction() if necessary. 7907 // 7908 // Thumb LDM instructions are writeback iff the base register is not 7909 // in the register list. 7910 unsigned Rn = Inst.getOperand(0).getReg(); 7911 bool HasWritebackToken = 7912 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 7913 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 7914 bool ListContainsBase; 7915 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 7916 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 7917 "registers must be in range r0-r7"); 7918 // If we should have writeback, then there should be a '!' token. 7919 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 7920 return Error(Operands[2]->getStartLoc(), 7921 "writeback operator '!' expected"); 7922 // If we should not have writeback, there must not be a '!'. This is 7923 // true even for the 32-bit wide encodings. 7924 if (ListContainsBase && HasWritebackToken) 7925 return Error(Operands[3]->getStartLoc(), 7926 "writeback operator '!' not allowed when base register " 7927 "in register list"); 7928 7929 if (validatetLDMRegList(Inst, Operands, 3)) 7930 return true; 7931 break; 7932 } 7933 case ARM::LDMIA_UPD: 7934 case ARM::LDMDB_UPD: 7935 case ARM::LDMIB_UPD: 7936 case ARM::LDMDA_UPD: 7937 // ARM variants loading and updating the same register are only officially 7938 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 7939 if (!hasV7Ops()) 7940 break; 7941 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7942 return Error(Operands.back()->getStartLoc(), 7943 "writeback register not allowed in register list"); 7944 break; 7945 case ARM::t2LDMIA: 7946 case ARM::t2LDMDB: 7947 if (validatetLDMRegList(Inst, Operands, 3)) 7948 return true; 7949 break; 7950 case ARM::t2STMIA: 7951 case ARM::t2STMDB: 7952 if (validatetSTMRegList(Inst, Operands, 3)) 7953 return true; 7954 break; 7955 case ARM::t2LDMIA_UPD: 7956 case ARM::t2LDMDB_UPD: 7957 case ARM::t2STMIA_UPD: 7958 case ARM::t2STMDB_UPD: 7959 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7960 return Error(Operands.back()->getStartLoc(), 7961 "writeback register not allowed in register list"); 7962 7963 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 7964 if (validatetLDMRegList(Inst, Operands, 3)) 7965 return true; 7966 } else { 7967 if (validatetSTMRegList(Inst, Operands, 3)) 7968 return true; 7969 } 7970 break; 7971 7972 case ARM::sysLDMIA_UPD: 7973 case ARM::sysLDMDA_UPD: 7974 case ARM::sysLDMDB_UPD: 7975 case ARM::sysLDMIB_UPD: 7976 if (!listContainsReg(Inst, 3, ARM::PC)) 7977 return Error(Operands[4]->getStartLoc(), 7978 "writeback register only allowed on system LDM " 7979 "if PC in register-list"); 7980 break; 7981 case ARM::sysSTMIA_UPD: 7982 case ARM::sysSTMDA_UPD: 7983 case ARM::sysSTMDB_UPD: 7984 case ARM::sysSTMIB_UPD: 7985 return Error(Operands[2]->getStartLoc(), 7986 "system STM cannot have writeback register"); 7987 case ARM::tMUL: 7988 // The second source operand must be the same register as the destination 7989 // operand. 7990 // 7991 // In this case, we must directly check the parsed operands because the 7992 // cvtThumbMultiply() function is written in such a way that it guarantees 7993 // this first statement is always true for the new Inst. Essentially, the 7994 // destination is unconditionally copied into the second source operand 7995 // without checking to see if it matches what we actually parsed. 7996 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 7997 ((ARMOperand &)*Operands[5]).getReg()) && 7998 (((ARMOperand &)*Operands[3]).getReg() != 7999 ((ARMOperand &)*Operands[4]).getReg())) { 8000 return Error(Operands[3]->getStartLoc(), 8001 "destination register must match source register"); 8002 } 8003 break; 8004 8005 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 8006 // so only issue a diagnostic for thumb1. The instructions will be 8007 // switched to the t2 encodings in processInstruction() if necessary. 8008 case ARM::tPOP: { 8009 bool ListContainsBase; 8010 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 8011 !isThumbTwo()) 8012 return Error(Operands[2]->getStartLoc(), 8013 "registers must be in range r0-r7 or pc"); 8014 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 8015 return true; 8016 break; 8017 } 8018 case ARM::tPUSH: { 8019 bool ListContainsBase; 8020 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 8021 !isThumbTwo()) 8022 return Error(Operands[2]->getStartLoc(), 8023 "registers must be in range r0-r7 or lr"); 8024 if (validatetSTMRegList(Inst, Operands, 2)) 8025 return true; 8026 break; 8027 } 8028 case ARM::tSTMIA_UPD: { 8029 bool ListContainsBase, InvalidLowList; 8030 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 8031 0, ListContainsBase); 8032 if (InvalidLowList && !isThumbTwo()) 8033 return Error(Operands[4]->getStartLoc(), 8034 "registers must be in range r0-r7"); 8035 8036 // This would be converted to a 32-bit stm, but that's not valid if the 8037 // writeback register is in the list. 8038 if (InvalidLowList && ListContainsBase) 8039 return Error(Operands[4]->getStartLoc(), 8040 "writeback operator '!' not allowed when base register " 8041 "in register list"); 8042 8043 if (validatetSTMRegList(Inst, Operands, 4)) 8044 return true; 8045 break; 8046 } 8047 case ARM::tADDrSP: 8048 // If the non-SP source operand and the destination operand are not the 8049 // same, we need thumb2 (for the wide encoding), or we have an error. 8050 if (!isThumbTwo() && 8051 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8052 return Error(Operands[4]->getStartLoc(), 8053 "source register must be the same as destination"); 8054 } 8055 break; 8056 8057 case ARM::t2ADDrr: 8058 case ARM::t2ADDrs: 8059 case ARM::t2SUBrr: 8060 case ARM::t2SUBrs: 8061 if (Inst.getOperand(0).getReg() == ARM::SP && 8062 Inst.getOperand(1).getReg() != ARM::SP) 8063 return Error(Operands[4]->getStartLoc(), 8064 "source register must be sp if destination is sp"); 8065 break; 8066 8067 // Final range checking for Thumb unconditional branch instructions. 8068 case ARM::tB: 8069 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 8070 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 8071 break; 8072 case ARM::t2B: { 8073 int op = (Operands[2]->isImm()) ? 2 : 3; 8074 ARMOperand &Operand = static_cast<ARMOperand &>(*Operands[op]); 8075 // Delay the checks of symbolic expressions until they are resolved. 8076 if (!isa<MCBinaryExpr>(Operand.getImm()) && 8077 !Operand.isSignedOffset<24, 1>()) 8078 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 8079 break; 8080 } 8081 // Final range checking for Thumb conditional branch instructions. 8082 case ARM::tBcc: 8083 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 8084 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 8085 break; 8086 case ARM::t2Bcc: { 8087 int Op = (Operands[2]->isImm()) ? 2 : 3; 8088 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 8089 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 8090 break; 8091 } 8092 case ARM::tCBZ: 8093 case ARM::tCBNZ: { 8094 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 8095 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 8096 break; 8097 } 8098 case ARM::MOVi16: 8099 case ARM::MOVTi16: 8100 case ARM::t2MOVi16: 8101 case ARM::t2MOVTi16: 8102 { 8103 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 8104 // especially when we turn it into a movw and the expression <symbol> does 8105 // not have a :lower16: or :upper16 as part of the expression. We don't 8106 // want the behavior of silently truncating, which can be unexpected and 8107 // lead to bugs that are difficult to find since this is an easy mistake 8108 // to make. 8109 int i = (Operands[3]->isImm()) ? 3 : 4; 8110 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 8111 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 8112 if (CE) break; 8113 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 8114 if (!E) break; 8115 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 8116 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 8117 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 8118 return Error( 8119 Op.getStartLoc(), 8120 "immediate expression for mov requires :lower16: or :upper16"); 8121 break; 8122 } 8123 case ARM::HINT: 8124 case ARM::t2HINT: { 8125 unsigned Imm8 = Inst.getOperand(0).getImm(); 8126 unsigned Pred = Inst.getOperand(1).getImm(); 8127 // ESB is not predicable (pred must be AL). Without the RAS extension, this 8128 // behaves as any other unallocated hint. 8129 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) 8130 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 8131 "predicable, but condition " 8132 "code specified"); 8133 if (Imm8 == 0x14 && Pred != ARMCC::AL) 8134 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not " 8135 "predicable, but condition " 8136 "code specified"); 8137 break; 8138 } 8139 case ARM::t2BFi: 8140 case ARM::t2BFr: 8141 case ARM::t2BFLi: 8142 case ARM::t2BFLr: { 8143 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() || 8144 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 8145 return Error(Operands[2]->getStartLoc(), 8146 "branch location out of range or not a multiple of 2"); 8147 8148 if (Opcode == ARM::t2BFi) { 8149 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>()) 8150 return Error(Operands[3]->getStartLoc(), 8151 "branch target out of range or not a multiple of 2"); 8152 } else if (Opcode == ARM::t2BFLi) { 8153 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>()) 8154 return Error(Operands[3]->getStartLoc(), 8155 "branch target out of range or not a multiple of 2"); 8156 } 8157 break; 8158 } 8159 case ARM::t2BFic: { 8160 if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() || 8161 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 8162 return Error(Operands[1]->getStartLoc(), 8163 "branch location out of range or not a multiple of 2"); 8164 8165 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>()) 8166 return Error(Operands[2]->getStartLoc(), 8167 "branch target out of range or not a multiple of 2"); 8168 8169 assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() && 8170 "branch location and else branch target should either both be " 8171 "immediates or both labels"); 8172 8173 if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) { 8174 int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm(); 8175 if (Diff != 4 && Diff != 2) 8176 return Error( 8177 Operands[3]->getStartLoc(), 8178 "else branch target must be 2 or 4 greater than the branch location"); 8179 } 8180 break; 8181 } 8182 case ARM::t2CLRM: { 8183 for (unsigned i = 2; i < Inst.getNumOperands(); i++) { 8184 if (Inst.getOperand(i).isReg() && 8185 !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains( 8186 Inst.getOperand(i).getReg())) { 8187 return Error(Operands[2]->getStartLoc(), 8188 "invalid register in register list. Valid registers are " 8189 "r0-r12, lr/r14 and APSR."); 8190 } 8191 } 8192 break; 8193 } 8194 case ARM::DSB: 8195 case ARM::t2DSB: { 8196 8197 if (Inst.getNumOperands() < 2) 8198 break; 8199 8200 unsigned Option = Inst.getOperand(0).getImm(); 8201 unsigned Pred = Inst.getOperand(1).getImm(); 8202 8203 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL). 8204 if (Option == 0 && Pred != ARMCC::AL) 8205 return Error(Operands[1]->getStartLoc(), 8206 "instruction 'ssbb' is not predicable, but condition code " 8207 "specified"); 8208 if (Option == 4 && Pred != ARMCC::AL) 8209 return Error(Operands[1]->getStartLoc(), 8210 "instruction 'pssbb' is not predicable, but condition code " 8211 "specified"); 8212 break; 8213 } 8214 case ARM::VMOVRRS: { 8215 // Source registers must be sequential. 8216 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 8217 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 8218 if (Sm1 != Sm + 1) 8219 return Error(Operands[5]->getStartLoc(), 8220 "source operands must be sequential"); 8221 break; 8222 } 8223 case ARM::VMOVSRR: { 8224 // Destination registers must be sequential. 8225 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 8226 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 8227 if (Sm1 != Sm + 1) 8228 return Error(Operands[3]->getStartLoc(), 8229 "destination operands must be sequential"); 8230 break; 8231 } 8232 case ARM::VLDMDIA: 8233 case ARM::VSTMDIA: { 8234 ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]); 8235 auto &RegList = Op.getRegList(); 8236 if (RegList.size() < 1 || RegList.size() > 16) 8237 return Error(Operands[3]->getStartLoc(), 8238 "list of registers must be at least 1 and at most 16"); 8239 break; 8240 } 8241 case ARM::MVE_VQDMULLs32bh: 8242 case ARM::MVE_VQDMULLs32th: 8243 case ARM::MVE_VCMULf32: 8244 case ARM::MVE_VMULLBs32: 8245 case ARM::MVE_VMULLTs32: 8246 case ARM::MVE_VMULLBu32: 8247 case ARM::MVE_VMULLTu32: { 8248 if (Operands[3]->getReg() == Operands[4]->getReg()) { 8249 return Error (Operands[3]->getStartLoc(), 8250 "Qd register and Qn register can't be identical"); 8251 } 8252 if (Operands[3]->getReg() == Operands[5]->getReg()) { 8253 return Error (Operands[3]->getStartLoc(), 8254 "Qd register and Qm register can't be identical"); 8255 } 8256 break; 8257 } 8258 case ARM::MVE_VMOV_rr_q: { 8259 if (Operands[4]->getReg() != Operands[6]->getReg()) 8260 return Error (Operands[4]->getStartLoc(), "Q-registers must be the same"); 8261 if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() != 8262 static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2) 8263 return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 8264 break; 8265 } 8266 case ARM::MVE_VMOV_q_rr: { 8267 if (Operands[2]->getReg() != Operands[4]->getReg()) 8268 return Error (Operands[2]->getStartLoc(), "Q-registers must be the same"); 8269 if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() != 8270 static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2) 8271 return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 8272 break; 8273 } 8274 case ARM::UMAAL: 8275 case ARM::UMLAL: 8276 case ARM::UMULL: 8277 case ARM::t2UMAAL: 8278 case ARM::t2UMLAL: 8279 case ARM::t2UMULL: 8280 case ARM::SMLAL: 8281 case ARM::SMLALBB: 8282 case ARM::SMLALBT: 8283 case ARM::SMLALD: 8284 case ARM::SMLALDX: 8285 case ARM::SMLALTB: 8286 case ARM::SMLALTT: 8287 case ARM::SMLSLD: 8288 case ARM::SMLSLDX: 8289 case ARM::SMULL: 8290 case ARM::t2SMLAL: 8291 case ARM::t2SMLALBB: 8292 case ARM::t2SMLALBT: 8293 case ARM::t2SMLALD: 8294 case ARM::t2SMLALDX: 8295 case ARM::t2SMLALTB: 8296 case ARM::t2SMLALTT: 8297 case ARM::t2SMLSLD: 8298 case ARM::t2SMLSLDX: 8299 case ARM::t2SMULL: { 8300 unsigned RdHi = Inst.getOperand(0).getReg(); 8301 unsigned RdLo = Inst.getOperand(1).getReg(); 8302 if(RdHi == RdLo) { 8303 return Error(Loc, 8304 "unpredictable instruction, RdHi and RdLo must be different"); 8305 } 8306 break; 8307 } 8308 8309 case ARM::CDE_CX1: 8310 case ARM::CDE_CX1A: 8311 case ARM::CDE_CX1D: 8312 case ARM::CDE_CX1DA: 8313 case ARM::CDE_CX2: 8314 case ARM::CDE_CX2A: 8315 case ARM::CDE_CX2D: 8316 case ARM::CDE_CX2DA: 8317 case ARM::CDE_CX3: 8318 case ARM::CDE_CX3A: 8319 case ARM::CDE_CX3D: 8320 case ARM::CDE_CX3DA: 8321 case ARM::CDE_VCX1_vec: 8322 case ARM::CDE_VCX1_fpsp: 8323 case ARM::CDE_VCX1_fpdp: 8324 case ARM::CDE_VCX1A_vec: 8325 case ARM::CDE_VCX1A_fpsp: 8326 case ARM::CDE_VCX1A_fpdp: 8327 case ARM::CDE_VCX2_vec: 8328 case ARM::CDE_VCX2_fpsp: 8329 case ARM::CDE_VCX2_fpdp: 8330 case ARM::CDE_VCX2A_vec: 8331 case ARM::CDE_VCX2A_fpsp: 8332 case ARM::CDE_VCX2A_fpdp: 8333 case ARM::CDE_VCX3_vec: 8334 case ARM::CDE_VCX3_fpsp: 8335 case ARM::CDE_VCX3_fpdp: 8336 case ARM::CDE_VCX3A_vec: 8337 case ARM::CDE_VCX3A_fpsp: 8338 case ARM::CDE_VCX3A_fpdp: { 8339 assert(Inst.getOperand(1).isImm() && 8340 "CDE operand 1 must be a coprocessor ID"); 8341 int64_t Coproc = Inst.getOperand(1).getImm(); 8342 if (Coproc < 8 && !ARM::isCDECoproc(Coproc, *STI)) 8343 return Error(Operands[1]->getStartLoc(), 8344 "coprocessor must be configured as CDE"); 8345 else if (Coproc >= 8) 8346 return Error(Operands[1]->getStartLoc(), 8347 "coprocessor must be in the range [p0, p7]"); 8348 break; 8349 } 8350 8351 case ARM::t2CDP: 8352 case ARM::t2CDP2: 8353 case ARM::t2LDC2L_OFFSET: 8354 case ARM::t2LDC2L_OPTION: 8355 case ARM::t2LDC2L_POST: 8356 case ARM::t2LDC2L_PRE: 8357 case ARM::t2LDC2_OFFSET: 8358 case ARM::t2LDC2_OPTION: 8359 case ARM::t2LDC2_POST: 8360 case ARM::t2LDC2_PRE: 8361 case ARM::t2LDCL_OFFSET: 8362 case ARM::t2LDCL_OPTION: 8363 case ARM::t2LDCL_POST: 8364 case ARM::t2LDCL_PRE: 8365 case ARM::t2LDC_OFFSET: 8366 case ARM::t2LDC_OPTION: 8367 case ARM::t2LDC_POST: 8368 case ARM::t2LDC_PRE: 8369 case ARM::t2MCR: 8370 case ARM::t2MCR2: 8371 case ARM::t2MCRR: 8372 case ARM::t2MCRR2: 8373 case ARM::t2MRC: 8374 case ARM::t2MRC2: 8375 case ARM::t2MRRC: 8376 case ARM::t2MRRC2: 8377 case ARM::t2STC2L_OFFSET: 8378 case ARM::t2STC2L_OPTION: 8379 case ARM::t2STC2L_POST: 8380 case ARM::t2STC2L_PRE: 8381 case ARM::t2STC2_OFFSET: 8382 case ARM::t2STC2_OPTION: 8383 case ARM::t2STC2_POST: 8384 case ARM::t2STC2_PRE: 8385 case ARM::t2STCL_OFFSET: 8386 case ARM::t2STCL_OPTION: 8387 case ARM::t2STCL_POST: 8388 case ARM::t2STCL_PRE: 8389 case ARM::t2STC_OFFSET: 8390 case ARM::t2STC_OPTION: 8391 case ARM::t2STC_POST: 8392 case ARM::t2STC_PRE: { 8393 unsigned Opcode = Inst.getOpcode(); 8394 // Inst.getOperand indexes operands in the (oops ...) and (iops ...) dags, 8395 // CopInd is the index of the coprocessor operand. 8396 size_t CopInd = 0; 8397 if (Opcode == ARM::t2MRRC || Opcode == ARM::t2MRRC2) 8398 CopInd = 2; 8399 else if (Opcode == ARM::t2MRC || Opcode == ARM::t2MRC2) 8400 CopInd = 1; 8401 assert(Inst.getOperand(CopInd).isImm() && 8402 "Operand must be a coprocessor ID"); 8403 int64_t Coproc = Inst.getOperand(CopInd).getImm(); 8404 // Operands[2] is the coprocessor operand at syntactic level 8405 if (ARM::isCDECoproc(Coproc, *STI)) 8406 return Error(Operands[2]->getStartLoc(), 8407 "coprocessor must be configured as GCP"); 8408 break; 8409 } 8410 } 8411 8412 return false; 8413 } 8414 8415 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 8416 switch(Opc) { 8417 default: llvm_unreachable("unexpected opcode!"); 8418 // VST1LN 8419 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 8420 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 8421 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 8422 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 8423 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 8424 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 8425 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 8426 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 8427 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 8428 8429 // VST2LN 8430 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 8431 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 8432 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 8433 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 8434 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 8435 8436 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 8437 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 8438 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 8439 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 8440 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 8441 8442 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 8443 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 8444 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 8445 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 8446 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 8447 8448 // VST3LN 8449 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 8450 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 8451 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 8452 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 8453 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 8454 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 8455 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 8456 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 8457 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 8458 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 8459 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 8460 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 8461 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 8462 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 8463 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 8464 8465 // VST3 8466 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 8467 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 8468 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 8469 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 8470 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 8471 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 8472 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 8473 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 8474 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 8475 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 8476 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 8477 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 8478 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 8479 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 8480 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 8481 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 8482 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 8483 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 8484 8485 // VST4LN 8486 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 8487 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 8488 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 8489 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 8490 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 8491 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 8492 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 8493 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 8494 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 8495 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 8496 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 8497 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 8498 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 8499 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 8500 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 8501 8502 // VST4 8503 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8504 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8505 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8506 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8507 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8508 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8509 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8510 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8511 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8512 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8513 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8514 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8515 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 8516 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 8517 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 8518 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 8519 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 8520 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 8521 } 8522 } 8523 8524 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 8525 switch(Opc) { 8526 default: llvm_unreachable("unexpected opcode!"); 8527 // VLD1LN 8528 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8529 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8530 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8531 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8532 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8533 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8534 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 8535 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 8536 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 8537 8538 // VLD2LN 8539 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8540 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8541 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8542 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 8543 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8544 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8545 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8546 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8547 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 8548 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8549 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 8550 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 8551 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 8552 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 8553 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 8554 8555 // VLD3DUP 8556 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8557 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8558 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8559 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 8560 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8561 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8562 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8563 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8564 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8565 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 8566 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8567 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8568 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 8569 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 8570 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 8571 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 8572 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 8573 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 8574 8575 // VLD3LN 8576 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8577 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8578 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8579 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 8580 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8581 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8582 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8583 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8584 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 8585 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8586 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 8587 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 8588 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 8589 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 8590 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 8591 8592 // VLD3 8593 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8594 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8595 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8596 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8597 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8598 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8599 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8600 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8601 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8602 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8603 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8604 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8605 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 8606 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 8607 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 8608 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 8609 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 8610 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 8611 8612 // VLD4LN 8613 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8614 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8615 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8616 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8617 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8618 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8619 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8620 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8621 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8622 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8623 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 8624 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 8625 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 8626 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 8627 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 8628 8629 // VLD4DUP 8630 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8631 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8632 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8633 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 8634 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 8635 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8636 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8637 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8638 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8639 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 8640 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 8641 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8642 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 8643 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 8644 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 8645 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 8646 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 8647 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 8648 8649 // VLD4 8650 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8651 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8652 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8653 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8654 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8655 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8656 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8657 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8658 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8659 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8660 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8661 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8662 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 8663 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 8664 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 8665 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 8666 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 8667 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 8668 } 8669 } 8670 8671 bool ARMAsmParser::processInstruction(MCInst &Inst, 8672 const OperandVector &Operands, 8673 MCStreamer &Out) { 8674 // Check if we have the wide qualifier, because if it's present we 8675 // must avoid selecting a 16-bit thumb instruction. 8676 bool HasWideQualifier = false; 8677 for (auto &Op : Operands) { 8678 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 8679 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 8680 HasWideQualifier = true; 8681 break; 8682 } 8683 } 8684 8685 switch (Inst.getOpcode()) { 8686 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 8687 case ARM::LDRT_POST: 8688 case ARM::LDRBT_POST: { 8689 const unsigned Opcode = 8690 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 8691 : ARM::LDRBT_POST_IMM; 8692 MCInst TmpInst; 8693 TmpInst.setOpcode(Opcode); 8694 TmpInst.addOperand(Inst.getOperand(0)); 8695 TmpInst.addOperand(Inst.getOperand(1)); 8696 TmpInst.addOperand(Inst.getOperand(1)); 8697 TmpInst.addOperand(MCOperand::createReg(0)); 8698 TmpInst.addOperand(MCOperand::createImm(0)); 8699 TmpInst.addOperand(Inst.getOperand(2)); 8700 TmpInst.addOperand(Inst.getOperand(3)); 8701 Inst = TmpInst; 8702 return true; 8703 } 8704 // Alias for 'ldr{sb,h,sh}t Rt, [Rn] {, #imm}' for ommitted immediate. 8705 case ARM::LDRSBTii: 8706 case ARM::LDRHTii: 8707 case ARM::LDRSHTii: { 8708 MCInst TmpInst; 8709 8710 if (Inst.getOpcode() == ARM::LDRSBTii) 8711 TmpInst.setOpcode(ARM::LDRSBTi); 8712 else if (Inst.getOpcode() == ARM::LDRHTii) 8713 TmpInst.setOpcode(ARM::LDRHTi); 8714 else if (Inst.getOpcode() == ARM::LDRSHTii) 8715 TmpInst.setOpcode(ARM::LDRSHTi); 8716 TmpInst.addOperand(Inst.getOperand(0)); 8717 TmpInst.addOperand(Inst.getOperand(1)); 8718 TmpInst.addOperand(Inst.getOperand(1)); 8719 TmpInst.addOperand(MCOperand::createImm(256)); 8720 TmpInst.addOperand(Inst.getOperand(2)); 8721 Inst = TmpInst; 8722 return true; 8723 } 8724 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 8725 case ARM::STRT_POST: 8726 case ARM::STRBT_POST: { 8727 const unsigned Opcode = 8728 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 8729 : ARM::STRBT_POST_IMM; 8730 MCInst TmpInst; 8731 TmpInst.setOpcode(Opcode); 8732 TmpInst.addOperand(Inst.getOperand(1)); 8733 TmpInst.addOperand(Inst.getOperand(0)); 8734 TmpInst.addOperand(Inst.getOperand(1)); 8735 TmpInst.addOperand(MCOperand::createReg(0)); 8736 TmpInst.addOperand(MCOperand::createImm(0)); 8737 TmpInst.addOperand(Inst.getOperand(2)); 8738 TmpInst.addOperand(Inst.getOperand(3)); 8739 Inst = TmpInst; 8740 return true; 8741 } 8742 // Alias for alternate form of 'ADR Rd, #imm' instruction. 8743 case ARM::ADDri: { 8744 if (Inst.getOperand(1).getReg() != ARM::PC || 8745 Inst.getOperand(5).getReg() != 0 || 8746 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 8747 return false; 8748 MCInst TmpInst; 8749 TmpInst.setOpcode(ARM::ADR); 8750 TmpInst.addOperand(Inst.getOperand(0)); 8751 if (Inst.getOperand(2).isImm()) { 8752 // Immediate (mod_imm) will be in its encoded form, we must unencode it 8753 // before passing it to the ADR instruction. 8754 unsigned Enc = Inst.getOperand(2).getImm(); 8755 TmpInst.addOperand(MCOperand::createImm( 8756 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 8757 } else { 8758 // Turn PC-relative expression into absolute expression. 8759 // Reading PC provides the start of the current instruction + 8 and 8760 // the transform to adr is biased by that. 8761 MCSymbol *Dot = getContext().createTempSymbol(); 8762 Out.emitLabel(Dot); 8763 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 8764 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 8765 MCSymbolRefExpr::VK_None, 8766 getContext()); 8767 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 8768 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 8769 getContext()); 8770 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 8771 getContext()); 8772 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 8773 } 8774 TmpInst.addOperand(Inst.getOperand(3)); 8775 TmpInst.addOperand(Inst.getOperand(4)); 8776 Inst = TmpInst; 8777 return true; 8778 } 8779 // Aliases for imm syntax of LDR instructions. 8780 case ARM::t2LDR_PRE_imm: 8781 case ARM::t2LDR_POST_imm: { 8782 MCInst TmpInst; 8783 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2LDR_PRE_imm ? ARM::t2LDR_PRE 8784 : ARM::t2LDR_POST); 8785 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8786 TmpInst.addOperand(Inst.getOperand(4)); // Rt_wb 8787 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8788 TmpInst.addOperand(Inst.getOperand(2)); // imm 8789 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8790 Inst = TmpInst; 8791 return true; 8792 } 8793 // Aliases for imm syntax of STR instructions. 8794 case ARM::t2STR_PRE_imm: 8795 case ARM::t2STR_POST_imm: { 8796 MCInst TmpInst; 8797 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2STR_PRE_imm ? ARM::t2STR_PRE 8798 : ARM::t2STR_POST); 8799 TmpInst.addOperand(Inst.getOperand(4)); // Rt_wb 8800 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8801 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8802 TmpInst.addOperand(Inst.getOperand(2)); // imm 8803 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8804 Inst = TmpInst; 8805 return true; 8806 } 8807 // Aliases for alternate PC+imm syntax of LDR instructions. 8808 case ARM::t2LDRpcrel: 8809 // Select the narrow version if the immediate will fit. 8810 if (Inst.getOperand(1).getImm() > 0 && 8811 Inst.getOperand(1).getImm() <= 0xff && 8812 !HasWideQualifier) 8813 Inst.setOpcode(ARM::tLDRpci); 8814 else 8815 Inst.setOpcode(ARM::t2LDRpci); 8816 return true; 8817 case ARM::t2LDRBpcrel: 8818 Inst.setOpcode(ARM::t2LDRBpci); 8819 return true; 8820 case ARM::t2LDRHpcrel: 8821 Inst.setOpcode(ARM::t2LDRHpci); 8822 return true; 8823 case ARM::t2LDRSBpcrel: 8824 Inst.setOpcode(ARM::t2LDRSBpci); 8825 return true; 8826 case ARM::t2LDRSHpcrel: 8827 Inst.setOpcode(ARM::t2LDRSHpci); 8828 return true; 8829 case ARM::LDRConstPool: 8830 case ARM::tLDRConstPool: 8831 case ARM::t2LDRConstPool: { 8832 // Pseudo instruction ldr rt, =immediate is converted to a 8833 // MOV rt, immediate if immediate is known and representable 8834 // otherwise we create a constant pool entry that we load from. 8835 MCInst TmpInst; 8836 if (Inst.getOpcode() == ARM::LDRConstPool) 8837 TmpInst.setOpcode(ARM::LDRi12); 8838 else if (Inst.getOpcode() == ARM::tLDRConstPool) 8839 TmpInst.setOpcode(ARM::tLDRpci); 8840 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 8841 TmpInst.setOpcode(ARM::t2LDRpci); 8842 const ARMOperand &PoolOperand = 8843 (HasWideQualifier ? 8844 static_cast<ARMOperand &>(*Operands[4]) : 8845 static_cast<ARMOperand &>(*Operands[3])); 8846 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 8847 // If SubExprVal is a constant we may be able to use a MOV 8848 if (isa<MCConstantExpr>(SubExprVal) && 8849 Inst.getOperand(0).getReg() != ARM::PC && 8850 Inst.getOperand(0).getReg() != ARM::SP) { 8851 int64_t Value = 8852 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 8853 bool UseMov = true; 8854 bool MovHasS = true; 8855 if (Inst.getOpcode() == ARM::LDRConstPool) { 8856 // ARM Constant 8857 if (ARM_AM::getSOImmVal(Value) != -1) { 8858 Value = ARM_AM::getSOImmVal(Value); 8859 TmpInst.setOpcode(ARM::MOVi); 8860 } 8861 else if (ARM_AM::getSOImmVal(~Value) != -1) { 8862 Value = ARM_AM::getSOImmVal(~Value); 8863 TmpInst.setOpcode(ARM::MVNi); 8864 } 8865 else if (hasV6T2Ops() && 8866 Value >=0 && Value < 65536) { 8867 TmpInst.setOpcode(ARM::MOVi16); 8868 MovHasS = false; 8869 } 8870 else 8871 UseMov = false; 8872 } 8873 else { 8874 // Thumb/Thumb2 Constant 8875 if (hasThumb2() && 8876 ARM_AM::getT2SOImmVal(Value) != -1) 8877 TmpInst.setOpcode(ARM::t2MOVi); 8878 else if (hasThumb2() && 8879 ARM_AM::getT2SOImmVal(~Value) != -1) { 8880 TmpInst.setOpcode(ARM::t2MVNi); 8881 Value = ~Value; 8882 } 8883 else if (hasV8MBaseline() && 8884 Value >=0 && Value < 65536) { 8885 TmpInst.setOpcode(ARM::t2MOVi16); 8886 MovHasS = false; 8887 } 8888 else 8889 UseMov = false; 8890 } 8891 if (UseMov) { 8892 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8893 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 8894 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8895 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8896 if (MovHasS) 8897 TmpInst.addOperand(MCOperand::createReg(0)); // S 8898 Inst = TmpInst; 8899 return true; 8900 } 8901 } 8902 // No opportunity to use MOV/MVN create constant pool 8903 const MCExpr *CPLoc = 8904 getTargetStreamer().addConstantPoolEntry(SubExprVal, 8905 PoolOperand.getStartLoc()); 8906 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8907 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 8908 if (TmpInst.getOpcode() == ARM::LDRi12) 8909 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 8910 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8911 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8912 Inst = TmpInst; 8913 return true; 8914 } 8915 // Handle NEON VST complex aliases. 8916 case ARM::VST1LNdWB_register_Asm_8: 8917 case ARM::VST1LNdWB_register_Asm_16: 8918 case ARM::VST1LNdWB_register_Asm_32: { 8919 MCInst TmpInst; 8920 // Shuffle the operands around so the lane index operand is in the 8921 // right place. 8922 unsigned Spacing; 8923 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8924 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8925 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8926 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8927 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8928 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8929 TmpInst.addOperand(Inst.getOperand(1)); // lane 8930 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8931 TmpInst.addOperand(Inst.getOperand(6)); 8932 Inst = TmpInst; 8933 return true; 8934 } 8935 8936 case ARM::VST2LNdWB_register_Asm_8: 8937 case ARM::VST2LNdWB_register_Asm_16: 8938 case ARM::VST2LNdWB_register_Asm_32: 8939 case ARM::VST2LNqWB_register_Asm_16: 8940 case ARM::VST2LNqWB_register_Asm_32: { 8941 MCInst TmpInst; 8942 // Shuffle the operands around so the lane index operand is in the 8943 // right place. 8944 unsigned Spacing; 8945 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8946 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8947 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8948 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8949 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8950 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8951 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8952 Spacing)); 8953 TmpInst.addOperand(Inst.getOperand(1)); // lane 8954 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8955 TmpInst.addOperand(Inst.getOperand(6)); 8956 Inst = TmpInst; 8957 return true; 8958 } 8959 8960 case ARM::VST3LNdWB_register_Asm_8: 8961 case ARM::VST3LNdWB_register_Asm_16: 8962 case ARM::VST3LNdWB_register_Asm_32: 8963 case ARM::VST3LNqWB_register_Asm_16: 8964 case ARM::VST3LNqWB_register_Asm_32: { 8965 MCInst TmpInst; 8966 // Shuffle the operands around so the lane index operand is in the 8967 // right place. 8968 unsigned Spacing; 8969 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8970 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8971 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8972 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8973 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8974 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8975 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8976 Spacing)); 8977 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8978 Spacing * 2)); 8979 TmpInst.addOperand(Inst.getOperand(1)); // lane 8980 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8981 TmpInst.addOperand(Inst.getOperand(6)); 8982 Inst = TmpInst; 8983 return true; 8984 } 8985 8986 case ARM::VST4LNdWB_register_Asm_8: 8987 case ARM::VST4LNdWB_register_Asm_16: 8988 case ARM::VST4LNdWB_register_Asm_32: 8989 case ARM::VST4LNqWB_register_Asm_16: 8990 case ARM::VST4LNqWB_register_Asm_32: { 8991 MCInst TmpInst; 8992 // Shuffle the operands around so the lane index operand is in the 8993 // right place. 8994 unsigned Spacing; 8995 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8996 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8997 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8998 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8999 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9000 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9001 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9002 Spacing)); 9003 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9004 Spacing * 2)); 9005 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9006 Spacing * 3)); 9007 TmpInst.addOperand(Inst.getOperand(1)); // lane 9008 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9009 TmpInst.addOperand(Inst.getOperand(6)); 9010 Inst = TmpInst; 9011 return true; 9012 } 9013 9014 case ARM::VST1LNdWB_fixed_Asm_8: 9015 case ARM::VST1LNdWB_fixed_Asm_16: 9016 case ARM::VST1LNdWB_fixed_Asm_32: { 9017 MCInst TmpInst; 9018 // Shuffle the operands around so the lane index operand is in the 9019 // right place. 9020 unsigned Spacing; 9021 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9022 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9023 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9024 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9025 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9026 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9027 TmpInst.addOperand(Inst.getOperand(1)); // lane 9028 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9029 TmpInst.addOperand(Inst.getOperand(5)); 9030 Inst = TmpInst; 9031 return true; 9032 } 9033 9034 case ARM::VST2LNdWB_fixed_Asm_8: 9035 case ARM::VST2LNdWB_fixed_Asm_16: 9036 case ARM::VST2LNdWB_fixed_Asm_32: 9037 case ARM::VST2LNqWB_fixed_Asm_16: 9038 case ARM::VST2LNqWB_fixed_Asm_32: { 9039 MCInst TmpInst; 9040 // Shuffle the operands around so the lane index operand is in the 9041 // right place. 9042 unsigned Spacing; 9043 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9044 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9045 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9046 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9047 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9048 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9049 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9050 Spacing)); 9051 TmpInst.addOperand(Inst.getOperand(1)); // lane 9052 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9053 TmpInst.addOperand(Inst.getOperand(5)); 9054 Inst = TmpInst; 9055 return true; 9056 } 9057 9058 case ARM::VST3LNdWB_fixed_Asm_8: 9059 case ARM::VST3LNdWB_fixed_Asm_16: 9060 case ARM::VST3LNdWB_fixed_Asm_32: 9061 case ARM::VST3LNqWB_fixed_Asm_16: 9062 case ARM::VST3LNqWB_fixed_Asm_32: { 9063 MCInst TmpInst; 9064 // Shuffle the operands around so the lane index operand is in the 9065 // right place. 9066 unsigned Spacing; 9067 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9068 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9069 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9070 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9071 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9072 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9073 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9074 Spacing)); 9075 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9076 Spacing * 2)); 9077 TmpInst.addOperand(Inst.getOperand(1)); // lane 9078 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9079 TmpInst.addOperand(Inst.getOperand(5)); 9080 Inst = TmpInst; 9081 return true; 9082 } 9083 9084 case ARM::VST4LNdWB_fixed_Asm_8: 9085 case ARM::VST4LNdWB_fixed_Asm_16: 9086 case ARM::VST4LNdWB_fixed_Asm_32: 9087 case ARM::VST4LNqWB_fixed_Asm_16: 9088 case ARM::VST4LNqWB_fixed_Asm_32: { 9089 MCInst TmpInst; 9090 // Shuffle the operands around so the lane index operand is in the 9091 // right place. 9092 unsigned Spacing; 9093 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9094 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9095 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9096 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9097 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9098 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9099 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9100 Spacing)); 9101 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9102 Spacing * 2)); 9103 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9104 Spacing * 3)); 9105 TmpInst.addOperand(Inst.getOperand(1)); // lane 9106 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9107 TmpInst.addOperand(Inst.getOperand(5)); 9108 Inst = TmpInst; 9109 return true; 9110 } 9111 9112 case ARM::VST1LNdAsm_8: 9113 case ARM::VST1LNdAsm_16: 9114 case ARM::VST1LNdAsm_32: { 9115 MCInst TmpInst; 9116 // Shuffle the operands around so the lane index operand is in the 9117 // right place. 9118 unsigned Spacing; 9119 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9120 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9121 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9122 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9123 TmpInst.addOperand(Inst.getOperand(1)); // lane 9124 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9125 TmpInst.addOperand(Inst.getOperand(5)); 9126 Inst = TmpInst; 9127 return true; 9128 } 9129 9130 case ARM::VST2LNdAsm_8: 9131 case ARM::VST2LNdAsm_16: 9132 case ARM::VST2LNdAsm_32: 9133 case ARM::VST2LNqAsm_16: 9134 case ARM::VST2LNqAsm_32: { 9135 MCInst TmpInst; 9136 // Shuffle the operands around so the lane index operand is in the 9137 // right place. 9138 unsigned Spacing; 9139 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9140 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9141 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9142 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9143 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9144 Spacing)); 9145 TmpInst.addOperand(Inst.getOperand(1)); // lane 9146 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9147 TmpInst.addOperand(Inst.getOperand(5)); 9148 Inst = TmpInst; 9149 return true; 9150 } 9151 9152 case ARM::VST3LNdAsm_8: 9153 case ARM::VST3LNdAsm_16: 9154 case ARM::VST3LNdAsm_32: 9155 case ARM::VST3LNqAsm_16: 9156 case ARM::VST3LNqAsm_32: { 9157 MCInst TmpInst; 9158 // Shuffle the operands around so the lane index operand is in the 9159 // right place. 9160 unsigned Spacing; 9161 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9162 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9163 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9164 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9165 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9166 Spacing)); 9167 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9168 Spacing * 2)); 9169 TmpInst.addOperand(Inst.getOperand(1)); // lane 9170 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9171 TmpInst.addOperand(Inst.getOperand(5)); 9172 Inst = TmpInst; 9173 return true; 9174 } 9175 9176 case ARM::VST4LNdAsm_8: 9177 case ARM::VST4LNdAsm_16: 9178 case ARM::VST4LNdAsm_32: 9179 case ARM::VST4LNqAsm_16: 9180 case ARM::VST4LNqAsm_32: { 9181 MCInst TmpInst; 9182 // Shuffle the operands around so the lane index operand is in the 9183 // right place. 9184 unsigned Spacing; 9185 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9186 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9187 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9188 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9189 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9190 Spacing)); 9191 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9192 Spacing * 2)); 9193 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9194 Spacing * 3)); 9195 TmpInst.addOperand(Inst.getOperand(1)); // lane 9196 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9197 TmpInst.addOperand(Inst.getOperand(5)); 9198 Inst = TmpInst; 9199 return true; 9200 } 9201 9202 // Handle NEON VLD complex aliases. 9203 case ARM::VLD1LNdWB_register_Asm_8: 9204 case ARM::VLD1LNdWB_register_Asm_16: 9205 case ARM::VLD1LNdWB_register_Asm_32: { 9206 MCInst TmpInst; 9207 // Shuffle the operands around so the lane index operand is in the 9208 // right place. 9209 unsigned Spacing; 9210 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9211 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9212 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9213 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9214 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9215 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9216 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9217 TmpInst.addOperand(Inst.getOperand(1)); // lane 9218 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9219 TmpInst.addOperand(Inst.getOperand(6)); 9220 Inst = TmpInst; 9221 return true; 9222 } 9223 9224 case ARM::VLD2LNdWB_register_Asm_8: 9225 case ARM::VLD2LNdWB_register_Asm_16: 9226 case ARM::VLD2LNdWB_register_Asm_32: 9227 case ARM::VLD2LNqWB_register_Asm_16: 9228 case ARM::VLD2LNqWB_register_Asm_32: { 9229 MCInst TmpInst; 9230 // Shuffle the operands around so the lane index operand is in the 9231 // right place. 9232 unsigned Spacing; 9233 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9234 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9235 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9236 Spacing)); 9237 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9238 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9239 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9240 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9241 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9242 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9243 Spacing)); 9244 TmpInst.addOperand(Inst.getOperand(1)); // lane 9245 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9246 TmpInst.addOperand(Inst.getOperand(6)); 9247 Inst = TmpInst; 9248 return true; 9249 } 9250 9251 case ARM::VLD3LNdWB_register_Asm_8: 9252 case ARM::VLD3LNdWB_register_Asm_16: 9253 case ARM::VLD3LNdWB_register_Asm_32: 9254 case ARM::VLD3LNqWB_register_Asm_16: 9255 case ARM::VLD3LNqWB_register_Asm_32: { 9256 MCInst TmpInst; 9257 // Shuffle the operands around so the lane index operand is in the 9258 // right place. 9259 unsigned Spacing; 9260 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9261 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9262 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9263 Spacing)); 9264 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9265 Spacing * 2)); 9266 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9267 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9268 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9269 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9270 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9271 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9272 Spacing)); 9273 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9274 Spacing * 2)); 9275 TmpInst.addOperand(Inst.getOperand(1)); // lane 9276 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9277 TmpInst.addOperand(Inst.getOperand(6)); 9278 Inst = TmpInst; 9279 return true; 9280 } 9281 9282 case ARM::VLD4LNdWB_register_Asm_8: 9283 case ARM::VLD4LNdWB_register_Asm_16: 9284 case ARM::VLD4LNdWB_register_Asm_32: 9285 case ARM::VLD4LNqWB_register_Asm_16: 9286 case ARM::VLD4LNqWB_register_Asm_32: { 9287 MCInst TmpInst; 9288 // Shuffle the operands around so the lane index operand is in the 9289 // right place. 9290 unsigned Spacing; 9291 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9292 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9293 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9294 Spacing)); 9295 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9296 Spacing * 2)); 9297 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9298 Spacing * 3)); 9299 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9300 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9301 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9302 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9303 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9304 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9305 Spacing)); 9306 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9307 Spacing * 2)); 9308 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9309 Spacing * 3)); 9310 TmpInst.addOperand(Inst.getOperand(1)); // lane 9311 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9312 TmpInst.addOperand(Inst.getOperand(6)); 9313 Inst = TmpInst; 9314 return true; 9315 } 9316 9317 case ARM::VLD1LNdWB_fixed_Asm_8: 9318 case ARM::VLD1LNdWB_fixed_Asm_16: 9319 case ARM::VLD1LNdWB_fixed_Asm_32: { 9320 MCInst TmpInst; 9321 // Shuffle the operands around so the lane index operand is in the 9322 // right place. 9323 unsigned Spacing; 9324 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9325 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9326 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9327 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9328 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9329 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9330 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9331 TmpInst.addOperand(Inst.getOperand(1)); // lane 9332 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9333 TmpInst.addOperand(Inst.getOperand(5)); 9334 Inst = TmpInst; 9335 return true; 9336 } 9337 9338 case ARM::VLD2LNdWB_fixed_Asm_8: 9339 case ARM::VLD2LNdWB_fixed_Asm_16: 9340 case ARM::VLD2LNdWB_fixed_Asm_32: 9341 case ARM::VLD2LNqWB_fixed_Asm_16: 9342 case ARM::VLD2LNqWB_fixed_Asm_32: { 9343 MCInst TmpInst; 9344 // Shuffle the operands around so the lane index operand is in the 9345 // right place. 9346 unsigned Spacing; 9347 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9348 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9349 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9350 Spacing)); 9351 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9352 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9353 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9354 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9355 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9356 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9357 Spacing)); 9358 TmpInst.addOperand(Inst.getOperand(1)); // lane 9359 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9360 TmpInst.addOperand(Inst.getOperand(5)); 9361 Inst = TmpInst; 9362 return true; 9363 } 9364 9365 case ARM::VLD3LNdWB_fixed_Asm_8: 9366 case ARM::VLD3LNdWB_fixed_Asm_16: 9367 case ARM::VLD3LNdWB_fixed_Asm_32: 9368 case ARM::VLD3LNqWB_fixed_Asm_16: 9369 case ARM::VLD3LNqWB_fixed_Asm_32: { 9370 MCInst TmpInst; 9371 // Shuffle the operands around so the lane index operand is in the 9372 // right place. 9373 unsigned Spacing; 9374 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9375 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9376 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9377 Spacing)); 9378 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9379 Spacing * 2)); 9380 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9381 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9382 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9383 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9384 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9385 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9386 Spacing)); 9387 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9388 Spacing * 2)); 9389 TmpInst.addOperand(Inst.getOperand(1)); // lane 9390 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9391 TmpInst.addOperand(Inst.getOperand(5)); 9392 Inst = TmpInst; 9393 return true; 9394 } 9395 9396 case ARM::VLD4LNdWB_fixed_Asm_8: 9397 case ARM::VLD4LNdWB_fixed_Asm_16: 9398 case ARM::VLD4LNdWB_fixed_Asm_32: 9399 case ARM::VLD4LNqWB_fixed_Asm_16: 9400 case ARM::VLD4LNqWB_fixed_Asm_32: { 9401 MCInst TmpInst; 9402 // Shuffle the operands around so the lane index operand is in the 9403 // right place. 9404 unsigned Spacing; 9405 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9406 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9407 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9408 Spacing)); 9409 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9410 Spacing * 2)); 9411 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9412 Spacing * 3)); 9413 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9414 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9415 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9416 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9417 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9418 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9419 Spacing)); 9420 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9421 Spacing * 2)); 9422 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9423 Spacing * 3)); 9424 TmpInst.addOperand(Inst.getOperand(1)); // lane 9425 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9426 TmpInst.addOperand(Inst.getOperand(5)); 9427 Inst = TmpInst; 9428 return true; 9429 } 9430 9431 case ARM::VLD1LNdAsm_8: 9432 case ARM::VLD1LNdAsm_16: 9433 case ARM::VLD1LNdAsm_32: { 9434 MCInst TmpInst; 9435 // Shuffle the operands around so the lane index operand is in the 9436 // right place. 9437 unsigned Spacing; 9438 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9439 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9440 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9441 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9442 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9443 TmpInst.addOperand(Inst.getOperand(1)); // lane 9444 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9445 TmpInst.addOperand(Inst.getOperand(5)); 9446 Inst = TmpInst; 9447 return true; 9448 } 9449 9450 case ARM::VLD2LNdAsm_8: 9451 case ARM::VLD2LNdAsm_16: 9452 case ARM::VLD2LNdAsm_32: 9453 case ARM::VLD2LNqAsm_16: 9454 case ARM::VLD2LNqAsm_32: { 9455 MCInst TmpInst; 9456 // Shuffle the operands around so the lane index operand is in the 9457 // right place. 9458 unsigned Spacing; 9459 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9460 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9461 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9462 Spacing)); 9463 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9464 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9465 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9466 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9467 Spacing)); 9468 TmpInst.addOperand(Inst.getOperand(1)); // lane 9469 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9470 TmpInst.addOperand(Inst.getOperand(5)); 9471 Inst = TmpInst; 9472 return true; 9473 } 9474 9475 case ARM::VLD3LNdAsm_8: 9476 case ARM::VLD3LNdAsm_16: 9477 case ARM::VLD3LNdAsm_32: 9478 case ARM::VLD3LNqAsm_16: 9479 case ARM::VLD3LNqAsm_32: { 9480 MCInst TmpInst; 9481 // Shuffle the operands around so the lane index operand is in the 9482 // right place. 9483 unsigned Spacing; 9484 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9485 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9486 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9487 Spacing)); 9488 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9489 Spacing * 2)); 9490 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9491 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9492 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9493 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9494 Spacing)); 9495 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9496 Spacing * 2)); 9497 TmpInst.addOperand(Inst.getOperand(1)); // lane 9498 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9499 TmpInst.addOperand(Inst.getOperand(5)); 9500 Inst = TmpInst; 9501 return true; 9502 } 9503 9504 case ARM::VLD4LNdAsm_8: 9505 case ARM::VLD4LNdAsm_16: 9506 case ARM::VLD4LNdAsm_32: 9507 case ARM::VLD4LNqAsm_16: 9508 case ARM::VLD4LNqAsm_32: { 9509 MCInst TmpInst; 9510 // Shuffle the operands around so the lane index operand is in the 9511 // right place. 9512 unsigned Spacing; 9513 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9514 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9515 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9516 Spacing)); 9517 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9518 Spacing * 2)); 9519 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9520 Spacing * 3)); 9521 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9522 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9523 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9524 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9525 Spacing)); 9526 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9527 Spacing * 2)); 9528 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9529 Spacing * 3)); 9530 TmpInst.addOperand(Inst.getOperand(1)); // lane 9531 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9532 TmpInst.addOperand(Inst.getOperand(5)); 9533 Inst = TmpInst; 9534 return true; 9535 } 9536 9537 // VLD3DUP single 3-element structure to all lanes instructions. 9538 case ARM::VLD3DUPdAsm_8: 9539 case ARM::VLD3DUPdAsm_16: 9540 case ARM::VLD3DUPdAsm_32: 9541 case ARM::VLD3DUPqAsm_8: 9542 case ARM::VLD3DUPqAsm_16: 9543 case ARM::VLD3DUPqAsm_32: { 9544 MCInst TmpInst; 9545 unsigned Spacing; 9546 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9547 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9548 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9549 Spacing)); 9550 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9551 Spacing * 2)); 9552 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9553 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9554 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9555 TmpInst.addOperand(Inst.getOperand(4)); 9556 Inst = TmpInst; 9557 return true; 9558 } 9559 9560 case ARM::VLD3DUPdWB_fixed_Asm_8: 9561 case ARM::VLD3DUPdWB_fixed_Asm_16: 9562 case ARM::VLD3DUPdWB_fixed_Asm_32: 9563 case ARM::VLD3DUPqWB_fixed_Asm_8: 9564 case ARM::VLD3DUPqWB_fixed_Asm_16: 9565 case ARM::VLD3DUPqWB_fixed_Asm_32: { 9566 MCInst TmpInst; 9567 unsigned Spacing; 9568 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9569 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9570 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9571 Spacing)); 9572 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9573 Spacing * 2)); 9574 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9575 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9576 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9577 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9578 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9579 TmpInst.addOperand(Inst.getOperand(4)); 9580 Inst = TmpInst; 9581 return true; 9582 } 9583 9584 case ARM::VLD3DUPdWB_register_Asm_8: 9585 case ARM::VLD3DUPdWB_register_Asm_16: 9586 case ARM::VLD3DUPdWB_register_Asm_32: 9587 case ARM::VLD3DUPqWB_register_Asm_8: 9588 case ARM::VLD3DUPqWB_register_Asm_16: 9589 case ARM::VLD3DUPqWB_register_Asm_32: { 9590 MCInst TmpInst; 9591 unsigned Spacing; 9592 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9593 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9594 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9595 Spacing)); 9596 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9597 Spacing * 2)); 9598 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9599 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9600 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9601 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9602 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9603 TmpInst.addOperand(Inst.getOperand(5)); 9604 Inst = TmpInst; 9605 return true; 9606 } 9607 9608 // VLD3 multiple 3-element structure instructions. 9609 case ARM::VLD3dAsm_8: 9610 case ARM::VLD3dAsm_16: 9611 case ARM::VLD3dAsm_32: 9612 case ARM::VLD3qAsm_8: 9613 case ARM::VLD3qAsm_16: 9614 case ARM::VLD3qAsm_32: { 9615 MCInst TmpInst; 9616 unsigned Spacing; 9617 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9618 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9619 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9620 Spacing)); 9621 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9622 Spacing * 2)); 9623 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9624 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9625 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9626 TmpInst.addOperand(Inst.getOperand(4)); 9627 Inst = TmpInst; 9628 return true; 9629 } 9630 9631 case ARM::VLD3dWB_fixed_Asm_8: 9632 case ARM::VLD3dWB_fixed_Asm_16: 9633 case ARM::VLD3dWB_fixed_Asm_32: 9634 case ARM::VLD3qWB_fixed_Asm_8: 9635 case ARM::VLD3qWB_fixed_Asm_16: 9636 case ARM::VLD3qWB_fixed_Asm_32: { 9637 MCInst TmpInst; 9638 unsigned Spacing; 9639 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9640 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9641 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9642 Spacing)); 9643 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9644 Spacing * 2)); 9645 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9646 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9647 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9648 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9649 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9650 TmpInst.addOperand(Inst.getOperand(4)); 9651 Inst = TmpInst; 9652 return true; 9653 } 9654 9655 case ARM::VLD3dWB_register_Asm_8: 9656 case ARM::VLD3dWB_register_Asm_16: 9657 case ARM::VLD3dWB_register_Asm_32: 9658 case ARM::VLD3qWB_register_Asm_8: 9659 case ARM::VLD3qWB_register_Asm_16: 9660 case ARM::VLD3qWB_register_Asm_32: { 9661 MCInst TmpInst; 9662 unsigned Spacing; 9663 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9664 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9665 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9666 Spacing)); 9667 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9668 Spacing * 2)); 9669 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9670 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9671 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9672 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9673 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9674 TmpInst.addOperand(Inst.getOperand(5)); 9675 Inst = TmpInst; 9676 return true; 9677 } 9678 9679 // VLD4DUP single 3-element structure to all lanes instructions. 9680 case ARM::VLD4DUPdAsm_8: 9681 case ARM::VLD4DUPdAsm_16: 9682 case ARM::VLD4DUPdAsm_32: 9683 case ARM::VLD4DUPqAsm_8: 9684 case ARM::VLD4DUPqAsm_16: 9685 case ARM::VLD4DUPqAsm_32: { 9686 MCInst TmpInst; 9687 unsigned Spacing; 9688 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9689 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9690 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9691 Spacing)); 9692 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9693 Spacing * 2)); 9694 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9695 Spacing * 3)); 9696 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9697 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9698 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9699 TmpInst.addOperand(Inst.getOperand(4)); 9700 Inst = TmpInst; 9701 return true; 9702 } 9703 9704 case ARM::VLD4DUPdWB_fixed_Asm_8: 9705 case ARM::VLD4DUPdWB_fixed_Asm_16: 9706 case ARM::VLD4DUPdWB_fixed_Asm_32: 9707 case ARM::VLD4DUPqWB_fixed_Asm_8: 9708 case ARM::VLD4DUPqWB_fixed_Asm_16: 9709 case ARM::VLD4DUPqWB_fixed_Asm_32: { 9710 MCInst TmpInst; 9711 unsigned Spacing; 9712 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9713 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9714 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9715 Spacing)); 9716 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9717 Spacing * 2)); 9718 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9719 Spacing * 3)); 9720 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9721 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9722 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9723 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9724 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9725 TmpInst.addOperand(Inst.getOperand(4)); 9726 Inst = TmpInst; 9727 return true; 9728 } 9729 9730 case ARM::VLD4DUPdWB_register_Asm_8: 9731 case ARM::VLD4DUPdWB_register_Asm_16: 9732 case ARM::VLD4DUPdWB_register_Asm_32: 9733 case ARM::VLD4DUPqWB_register_Asm_8: 9734 case ARM::VLD4DUPqWB_register_Asm_16: 9735 case ARM::VLD4DUPqWB_register_Asm_32: { 9736 MCInst TmpInst; 9737 unsigned Spacing; 9738 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9739 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9740 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9741 Spacing)); 9742 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9743 Spacing * 2)); 9744 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9745 Spacing * 3)); 9746 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9747 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9748 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9749 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9750 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9751 TmpInst.addOperand(Inst.getOperand(5)); 9752 Inst = TmpInst; 9753 return true; 9754 } 9755 9756 // VLD4 multiple 4-element structure instructions. 9757 case ARM::VLD4dAsm_8: 9758 case ARM::VLD4dAsm_16: 9759 case ARM::VLD4dAsm_32: 9760 case ARM::VLD4qAsm_8: 9761 case ARM::VLD4qAsm_16: 9762 case ARM::VLD4qAsm_32: { 9763 MCInst TmpInst; 9764 unsigned Spacing; 9765 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9766 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9767 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9768 Spacing)); 9769 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9770 Spacing * 2)); 9771 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9772 Spacing * 3)); 9773 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9774 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9775 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9776 TmpInst.addOperand(Inst.getOperand(4)); 9777 Inst = TmpInst; 9778 return true; 9779 } 9780 9781 case ARM::VLD4dWB_fixed_Asm_8: 9782 case ARM::VLD4dWB_fixed_Asm_16: 9783 case ARM::VLD4dWB_fixed_Asm_32: 9784 case ARM::VLD4qWB_fixed_Asm_8: 9785 case ARM::VLD4qWB_fixed_Asm_16: 9786 case ARM::VLD4qWB_fixed_Asm_32: { 9787 MCInst TmpInst; 9788 unsigned Spacing; 9789 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9790 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9791 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9792 Spacing)); 9793 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9794 Spacing * 2)); 9795 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9796 Spacing * 3)); 9797 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9798 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9799 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9800 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9801 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9802 TmpInst.addOperand(Inst.getOperand(4)); 9803 Inst = TmpInst; 9804 return true; 9805 } 9806 9807 case ARM::VLD4dWB_register_Asm_8: 9808 case ARM::VLD4dWB_register_Asm_16: 9809 case ARM::VLD4dWB_register_Asm_32: 9810 case ARM::VLD4qWB_register_Asm_8: 9811 case ARM::VLD4qWB_register_Asm_16: 9812 case ARM::VLD4qWB_register_Asm_32: { 9813 MCInst TmpInst; 9814 unsigned Spacing; 9815 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9816 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9817 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9818 Spacing)); 9819 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9820 Spacing * 2)); 9821 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9822 Spacing * 3)); 9823 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9824 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9825 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9826 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9827 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9828 TmpInst.addOperand(Inst.getOperand(5)); 9829 Inst = TmpInst; 9830 return true; 9831 } 9832 9833 // VST3 multiple 3-element structure instructions. 9834 case ARM::VST3dAsm_8: 9835 case ARM::VST3dAsm_16: 9836 case ARM::VST3dAsm_32: 9837 case ARM::VST3qAsm_8: 9838 case ARM::VST3qAsm_16: 9839 case ARM::VST3qAsm_32: { 9840 MCInst TmpInst; 9841 unsigned Spacing; 9842 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9843 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9844 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9845 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9846 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9847 Spacing)); 9848 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9849 Spacing * 2)); 9850 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9851 TmpInst.addOperand(Inst.getOperand(4)); 9852 Inst = TmpInst; 9853 return true; 9854 } 9855 9856 case ARM::VST3dWB_fixed_Asm_8: 9857 case ARM::VST3dWB_fixed_Asm_16: 9858 case ARM::VST3dWB_fixed_Asm_32: 9859 case ARM::VST3qWB_fixed_Asm_8: 9860 case ARM::VST3qWB_fixed_Asm_16: 9861 case ARM::VST3qWB_fixed_Asm_32: { 9862 MCInst TmpInst; 9863 unsigned Spacing; 9864 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9865 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9866 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9867 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9868 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9869 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9870 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9871 Spacing)); 9872 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9873 Spacing * 2)); 9874 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9875 TmpInst.addOperand(Inst.getOperand(4)); 9876 Inst = TmpInst; 9877 return true; 9878 } 9879 9880 case ARM::VST3dWB_register_Asm_8: 9881 case ARM::VST3dWB_register_Asm_16: 9882 case ARM::VST3dWB_register_Asm_32: 9883 case ARM::VST3qWB_register_Asm_8: 9884 case ARM::VST3qWB_register_Asm_16: 9885 case ARM::VST3qWB_register_Asm_32: { 9886 MCInst TmpInst; 9887 unsigned Spacing; 9888 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9889 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9890 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9891 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9892 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9893 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9894 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9895 Spacing)); 9896 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9897 Spacing * 2)); 9898 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9899 TmpInst.addOperand(Inst.getOperand(5)); 9900 Inst = TmpInst; 9901 return true; 9902 } 9903 9904 // VST4 multiple 3-element structure instructions. 9905 case ARM::VST4dAsm_8: 9906 case ARM::VST4dAsm_16: 9907 case ARM::VST4dAsm_32: 9908 case ARM::VST4qAsm_8: 9909 case ARM::VST4qAsm_16: 9910 case ARM::VST4qAsm_32: { 9911 MCInst TmpInst; 9912 unsigned Spacing; 9913 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9914 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9915 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9916 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9917 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9918 Spacing)); 9919 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9920 Spacing * 2)); 9921 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9922 Spacing * 3)); 9923 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9924 TmpInst.addOperand(Inst.getOperand(4)); 9925 Inst = TmpInst; 9926 return true; 9927 } 9928 9929 case ARM::VST4dWB_fixed_Asm_8: 9930 case ARM::VST4dWB_fixed_Asm_16: 9931 case ARM::VST4dWB_fixed_Asm_32: 9932 case ARM::VST4qWB_fixed_Asm_8: 9933 case ARM::VST4qWB_fixed_Asm_16: 9934 case ARM::VST4qWB_fixed_Asm_32: { 9935 MCInst TmpInst; 9936 unsigned Spacing; 9937 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9938 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9939 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9940 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9941 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9942 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9943 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9944 Spacing)); 9945 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9946 Spacing * 2)); 9947 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9948 Spacing * 3)); 9949 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9950 TmpInst.addOperand(Inst.getOperand(4)); 9951 Inst = TmpInst; 9952 return true; 9953 } 9954 9955 case ARM::VST4dWB_register_Asm_8: 9956 case ARM::VST4dWB_register_Asm_16: 9957 case ARM::VST4dWB_register_Asm_32: 9958 case ARM::VST4qWB_register_Asm_8: 9959 case ARM::VST4qWB_register_Asm_16: 9960 case ARM::VST4qWB_register_Asm_32: { 9961 MCInst TmpInst; 9962 unsigned Spacing; 9963 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9964 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9965 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9966 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9967 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9968 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9969 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9970 Spacing)); 9971 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9972 Spacing * 2)); 9973 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9974 Spacing * 3)); 9975 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9976 TmpInst.addOperand(Inst.getOperand(5)); 9977 Inst = TmpInst; 9978 return true; 9979 } 9980 9981 // Handle encoding choice for the shift-immediate instructions. 9982 case ARM::t2LSLri: 9983 case ARM::t2LSRri: 9984 case ARM::t2ASRri: 9985 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9986 isARMLowRegister(Inst.getOperand(1).getReg()) && 9987 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9988 !HasWideQualifier) { 9989 unsigned NewOpc; 9990 switch (Inst.getOpcode()) { 9991 default: llvm_unreachable("unexpected opcode"); 9992 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 9993 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 9994 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 9995 } 9996 // The Thumb1 operands aren't in the same order. Awesome, eh? 9997 MCInst TmpInst; 9998 TmpInst.setOpcode(NewOpc); 9999 TmpInst.addOperand(Inst.getOperand(0)); 10000 TmpInst.addOperand(Inst.getOperand(5)); 10001 TmpInst.addOperand(Inst.getOperand(1)); 10002 TmpInst.addOperand(Inst.getOperand(2)); 10003 TmpInst.addOperand(Inst.getOperand(3)); 10004 TmpInst.addOperand(Inst.getOperand(4)); 10005 Inst = TmpInst; 10006 return true; 10007 } 10008 return false; 10009 10010 // Handle the Thumb2 mode MOV complex aliases. 10011 case ARM::t2MOVsr: 10012 case ARM::t2MOVSsr: { 10013 // Which instruction to expand to depends on the CCOut operand and 10014 // whether we're in an IT block if the register operands are low 10015 // registers. 10016 bool isNarrow = false; 10017 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10018 isARMLowRegister(Inst.getOperand(1).getReg()) && 10019 isARMLowRegister(Inst.getOperand(2).getReg()) && 10020 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 10021 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 10022 !HasWideQualifier) 10023 isNarrow = true; 10024 MCInst TmpInst; 10025 unsigned newOpc; 10026 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 10027 default: llvm_unreachable("unexpected opcode!"); 10028 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 10029 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 10030 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 10031 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 10032 } 10033 TmpInst.setOpcode(newOpc); 10034 TmpInst.addOperand(Inst.getOperand(0)); // Rd 10035 if (isNarrow) 10036 TmpInst.addOperand(MCOperand::createReg( 10037 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 10038 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10039 TmpInst.addOperand(Inst.getOperand(2)); // Rm 10040 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 10041 TmpInst.addOperand(Inst.getOperand(5)); 10042 if (!isNarrow) 10043 TmpInst.addOperand(MCOperand::createReg( 10044 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 10045 Inst = TmpInst; 10046 return true; 10047 } 10048 case ARM::t2MOVsi: 10049 case ARM::t2MOVSsi: { 10050 // Which instruction to expand to depends on the CCOut operand and 10051 // whether we're in an IT block if the register operands are low 10052 // registers. 10053 bool isNarrow = false; 10054 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10055 isARMLowRegister(Inst.getOperand(1).getReg()) && 10056 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 10057 !HasWideQualifier) 10058 isNarrow = true; 10059 MCInst TmpInst; 10060 unsigned newOpc; 10061 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 10062 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 10063 bool isMov = false; 10064 // MOV rd, rm, LSL #0 is actually a MOV instruction 10065 if (Shift == ARM_AM::lsl && Amount == 0) { 10066 isMov = true; 10067 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 10068 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 10069 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 10070 // instead. 10071 if (inITBlock()) { 10072 isNarrow = false; 10073 } 10074 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 10075 } else { 10076 switch(Shift) { 10077 default: llvm_unreachable("unexpected opcode!"); 10078 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 10079 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 10080 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 10081 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 10082 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 10083 } 10084 } 10085 if (Amount == 32) Amount = 0; 10086 TmpInst.setOpcode(newOpc); 10087 TmpInst.addOperand(Inst.getOperand(0)); // Rd 10088 if (isNarrow && !isMov) 10089 TmpInst.addOperand(MCOperand::createReg( 10090 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 10091 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10092 if (newOpc != ARM::t2RRX && !isMov) 10093 TmpInst.addOperand(MCOperand::createImm(Amount)); 10094 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 10095 TmpInst.addOperand(Inst.getOperand(4)); 10096 if (!isNarrow) 10097 TmpInst.addOperand(MCOperand::createReg( 10098 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 10099 Inst = TmpInst; 10100 return true; 10101 } 10102 // Handle the ARM mode MOV complex aliases. 10103 case ARM::ASRr: 10104 case ARM::LSRr: 10105 case ARM::LSLr: 10106 case ARM::RORr: { 10107 ARM_AM::ShiftOpc ShiftTy; 10108 switch(Inst.getOpcode()) { 10109 default: llvm_unreachable("unexpected opcode!"); 10110 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 10111 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 10112 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 10113 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 10114 } 10115 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 10116 MCInst TmpInst; 10117 TmpInst.setOpcode(ARM::MOVsr); 10118 TmpInst.addOperand(Inst.getOperand(0)); // Rd 10119 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10120 TmpInst.addOperand(Inst.getOperand(2)); // Rm 10121 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 10122 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 10123 TmpInst.addOperand(Inst.getOperand(4)); 10124 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 10125 Inst = TmpInst; 10126 return true; 10127 } 10128 case ARM::ASRi: 10129 case ARM::LSRi: 10130 case ARM::LSLi: 10131 case ARM::RORi: { 10132 ARM_AM::ShiftOpc ShiftTy; 10133 switch(Inst.getOpcode()) { 10134 default: llvm_unreachable("unexpected opcode!"); 10135 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 10136 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 10137 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 10138 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 10139 } 10140 // A shift by zero is a plain MOVr, not a MOVsi. 10141 unsigned Amt = Inst.getOperand(2).getImm(); 10142 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 10143 // A shift by 32 should be encoded as 0 when permitted 10144 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 10145 Amt = 0; 10146 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 10147 MCInst TmpInst; 10148 TmpInst.setOpcode(Opc); 10149 TmpInst.addOperand(Inst.getOperand(0)); // Rd 10150 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10151 if (Opc == ARM::MOVsi) 10152 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 10153 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 10154 TmpInst.addOperand(Inst.getOperand(4)); 10155 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 10156 Inst = TmpInst; 10157 return true; 10158 } 10159 case ARM::RRXi: { 10160 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 10161 MCInst TmpInst; 10162 TmpInst.setOpcode(ARM::MOVsi); 10163 TmpInst.addOperand(Inst.getOperand(0)); // Rd 10164 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10165 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 10166 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10167 TmpInst.addOperand(Inst.getOperand(3)); 10168 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 10169 Inst = TmpInst; 10170 return true; 10171 } 10172 case ARM::t2LDMIA_UPD: { 10173 // If this is a load of a single register, then we should use 10174 // a post-indexed LDR instruction instead, per the ARM ARM. 10175 if (Inst.getNumOperands() != 5) 10176 return false; 10177 MCInst TmpInst; 10178 TmpInst.setOpcode(ARM::t2LDR_POST); 10179 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10180 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10181 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10182 TmpInst.addOperand(MCOperand::createImm(4)); 10183 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10184 TmpInst.addOperand(Inst.getOperand(3)); 10185 Inst = TmpInst; 10186 return true; 10187 } 10188 case ARM::t2STMDB_UPD: { 10189 // If this is a store of a single register, then we should use 10190 // a pre-indexed STR instruction instead, per the ARM ARM. 10191 if (Inst.getNumOperands() != 5) 10192 return false; 10193 MCInst TmpInst; 10194 TmpInst.setOpcode(ARM::t2STR_PRE); 10195 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10196 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10197 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10198 TmpInst.addOperand(MCOperand::createImm(-4)); 10199 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10200 TmpInst.addOperand(Inst.getOperand(3)); 10201 Inst = TmpInst; 10202 return true; 10203 } 10204 case ARM::LDMIA_UPD: 10205 // If this is a load of a single register via a 'pop', then we should use 10206 // a post-indexed LDR instruction instead, per the ARM ARM. 10207 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 10208 Inst.getNumOperands() == 5) { 10209 MCInst TmpInst; 10210 TmpInst.setOpcode(ARM::LDR_POST_IMM); 10211 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10212 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10213 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10214 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 10215 TmpInst.addOperand(MCOperand::createImm(4)); 10216 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10217 TmpInst.addOperand(Inst.getOperand(3)); 10218 Inst = TmpInst; 10219 return true; 10220 } 10221 break; 10222 case ARM::STMDB_UPD: 10223 // If this is a store of a single register via a 'push', then we should use 10224 // a pre-indexed STR instruction instead, per the ARM ARM. 10225 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 10226 Inst.getNumOperands() == 5) { 10227 MCInst TmpInst; 10228 TmpInst.setOpcode(ARM::STR_PRE_IMM); 10229 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10230 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10231 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 10232 TmpInst.addOperand(MCOperand::createImm(-4)); 10233 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10234 TmpInst.addOperand(Inst.getOperand(3)); 10235 Inst = TmpInst; 10236 } 10237 break; 10238 case ARM::t2ADDri12: 10239 case ARM::t2SUBri12: 10240 case ARM::t2ADDspImm12: 10241 case ARM::t2SUBspImm12: { 10242 // If the immediate fits for encoding T3 and the generic 10243 // mnemonic was used, encoding T3 is preferred. 10244 const StringRef Token = static_cast<ARMOperand &>(*Operands[0]).getToken(); 10245 if ((Token != "add" && Token != "sub") || 10246 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 10247 break; 10248 switch (Inst.getOpcode()) { 10249 case ARM::t2ADDri12: 10250 Inst.setOpcode(ARM::t2ADDri); 10251 break; 10252 case ARM::t2SUBri12: 10253 Inst.setOpcode(ARM::t2SUBri); 10254 break; 10255 case ARM::t2ADDspImm12: 10256 Inst.setOpcode(ARM::t2ADDspImm); 10257 break; 10258 case ARM::t2SUBspImm12: 10259 Inst.setOpcode(ARM::t2SUBspImm); 10260 break; 10261 } 10262 10263 Inst.addOperand(MCOperand::createReg(0)); // cc_out 10264 return true; 10265 } 10266 case ARM::tADDi8: 10267 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 10268 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 10269 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 10270 // to encoding T1 if <Rd> is omitted." 10271 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 10272 Inst.setOpcode(ARM::tADDi3); 10273 return true; 10274 } 10275 break; 10276 case ARM::tSUBi8: 10277 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 10278 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 10279 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 10280 // to encoding T1 if <Rd> is omitted." 10281 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 10282 Inst.setOpcode(ARM::tSUBi3); 10283 return true; 10284 } 10285 break; 10286 case ARM::t2ADDri: 10287 case ARM::t2SUBri: { 10288 // If the destination and first source operand are the same, and 10289 // the flags are compatible with the current IT status, use encoding T2 10290 // instead of T3. For compatibility with the system 'as'. Make sure the 10291 // wide encoding wasn't explicit. 10292 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 10293 !isARMLowRegister(Inst.getOperand(0).getReg()) || 10294 (Inst.getOperand(2).isImm() && 10295 (unsigned)Inst.getOperand(2).getImm() > 255) || 10296 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 10297 HasWideQualifier) 10298 break; 10299 MCInst TmpInst; 10300 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 10301 ARM::tADDi8 : ARM::tSUBi8); 10302 TmpInst.addOperand(Inst.getOperand(0)); 10303 TmpInst.addOperand(Inst.getOperand(5)); 10304 TmpInst.addOperand(Inst.getOperand(0)); 10305 TmpInst.addOperand(Inst.getOperand(2)); 10306 TmpInst.addOperand(Inst.getOperand(3)); 10307 TmpInst.addOperand(Inst.getOperand(4)); 10308 Inst = TmpInst; 10309 return true; 10310 } 10311 case ARM::t2ADDspImm: 10312 case ARM::t2SUBspImm: { 10313 // Prefer T1 encoding if possible 10314 if (Inst.getOperand(5).getReg() != 0 || HasWideQualifier) 10315 break; 10316 unsigned V = Inst.getOperand(2).getImm(); 10317 if (V & 3 || V > ((1 << 7) - 1) << 2) 10318 break; 10319 MCInst TmpInst; 10320 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDspImm ? ARM::tADDspi 10321 : ARM::tSUBspi); 10322 TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // destination reg 10323 TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // source reg 10324 TmpInst.addOperand(MCOperand::createImm(V / 4)); // immediate 10325 TmpInst.addOperand(Inst.getOperand(3)); // pred 10326 TmpInst.addOperand(Inst.getOperand(4)); 10327 Inst = TmpInst; 10328 return true; 10329 } 10330 case ARM::t2ADDrr: { 10331 // If the destination and first source operand are the same, and 10332 // there's no setting of the flags, use encoding T2 instead of T3. 10333 // Note that this is only for ADD, not SUB. This mirrors the system 10334 // 'as' behaviour. Also take advantage of ADD being commutative. 10335 // Make sure the wide encoding wasn't explicit. 10336 bool Swap = false; 10337 auto DestReg = Inst.getOperand(0).getReg(); 10338 bool Transform = DestReg == Inst.getOperand(1).getReg(); 10339 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 10340 Transform = true; 10341 Swap = true; 10342 } 10343 if (!Transform || 10344 Inst.getOperand(5).getReg() != 0 || 10345 HasWideQualifier) 10346 break; 10347 MCInst TmpInst; 10348 TmpInst.setOpcode(ARM::tADDhirr); 10349 TmpInst.addOperand(Inst.getOperand(0)); 10350 TmpInst.addOperand(Inst.getOperand(0)); 10351 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 10352 TmpInst.addOperand(Inst.getOperand(3)); 10353 TmpInst.addOperand(Inst.getOperand(4)); 10354 Inst = TmpInst; 10355 return true; 10356 } 10357 case ARM::tADDrSP: 10358 // If the non-SP source operand and the destination operand are not the 10359 // same, we need to use the 32-bit encoding if it's available. 10360 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 10361 Inst.setOpcode(ARM::t2ADDrr); 10362 Inst.addOperand(MCOperand::createReg(0)); // cc_out 10363 return true; 10364 } 10365 break; 10366 case ARM::tB: 10367 // A Thumb conditional branch outside of an IT block is a tBcc. 10368 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 10369 Inst.setOpcode(ARM::tBcc); 10370 return true; 10371 } 10372 break; 10373 case ARM::t2B: 10374 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 10375 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 10376 Inst.setOpcode(ARM::t2Bcc); 10377 return true; 10378 } 10379 break; 10380 case ARM::t2Bcc: 10381 // If the conditional is AL or we're in an IT block, we really want t2B. 10382 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 10383 Inst.setOpcode(ARM::t2B); 10384 return true; 10385 } 10386 break; 10387 case ARM::tBcc: 10388 // If the conditional is AL, we really want tB. 10389 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 10390 Inst.setOpcode(ARM::tB); 10391 return true; 10392 } 10393 break; 10394 case ARM::tLDMIA: { 10395 // If the register list contains any high registers, or if the writeback 10396 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 10397 // instead if we're in Thumb2. Otherwise, this should have generated 10398 // an error in validateInstruction(). 10399 unsigned Rn = Inst.getOperand(0).getReg(); 10400 bool hasWritebackToken = 10401 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 10402 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 10403 bool listContainsBase; 10404 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 10405 (!listContainsBase && !hasWritebackToken) || 10406 (listContainsBase && hasWritebackToken)) { 10407 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 10408 assert(isThumbTwo()); 10409 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 10410 // If we're switching to the updating version, we need to insert 10411 // the writeback tied operand. 10412 if (hasWritebackToken) 10413 Inst.insert(Inst.begin(), 10414 MCOperand::createReg(Inst.getOperand(0).getReg())); 10415 return true; 10416 } 10417 break; 10418 } 10419 case ARM::tSTMIA_UPD: { 10420 // If the register list contains any high registers, we need to use 10421 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 10422 // should have generated an error in validateInstruction(). 10423 unsigned Rn = Inst.getOperand(0).getReg(); 10424 bool listContainsBase; 10425 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 10426 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 10427 assert(isThumbTwo()); 10428 Inst.setOpcode(ARM::t2STMIA_UPD); 10429 return true; 10430 } 10431 break; 10432 } 10433 case ARM::tPOP: { 10434 bool listContainsBase; 10435 // If the register list contains any high registers, we need to use 10436 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 10437 // should have generated an error in validateInstruction(). 10438 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 10439 return false; 10440 assert(isThumbTwo()); 10441 Inst.setOpcode(ARM::t2LDMIA_UPD); 10442 // Add the base register and writeback operands. 10443 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10444 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10445 return true; 10446 } 10447 case ARM::tPUSH: { 10448 bool listContainsBase; 10449 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 10450 return false; 10451 assert(isThumbTwo()); 10452 Inst.setOpcode(ARM::t2STMDB_UPD); 10453 // Add the base register and writeback operands. 10454 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10455 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10456 return true; 10457 } 10458 case ARM::t2MOVi: 10459 // If we can use the 16-bit encoding and the user didn't explicitly 10460 // request the 32-bit variant, transform it here. 10461 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10462 (Inst.getOperand(1).isImm() && 10463 (unsigned)Inst.getOperand(1).getImm() <= 255) && 10464 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10465 !HasWideQualifier) { 10466 // The operands aren't in the same order for tMOVi8... 10467 MCInst TmpInst; 10468 TmpInst.setOpcode(ARM::tMOVi8); 10469 TmpInst.addOperand(Inst.getOperand(0)); 10470 TmpInst.addOperand(Inst.getOperand(4)); 10471 TmpInst.addOperand(Inst.getOperand(1)); 10472 TmpInst.addOperand(Inst.getOperand(2)); 10473 TmpInst.addOperand(Inst.getOperand(3)); 10474 Inst = TmpInst; 10475 return true; 10476 } 10477 break; 10478 10479 case ARM::t2MOVr: 10480 // If we can use the 16-bit encoding and the user didn't explicitly 10481 // request the 32-bit variant, transform it here. 10482 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10483 isARMLowRegister(Inst.getOperand(1).getReg()) && 10484 Inst.getOperand(2).getImm() == ARMCC::AL && 10485 Inst.getOperand(4).getReg() == ARM::CPSR && 10486 !HasWideQualifier) { 10487 // The operands aren't the same for tMOV[S]r... (no cc_out) 10488 MCInst TmpInst; 10489 unsigned Op = Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr; 10490 TmpInst.setOpcode(Op); 10491 TmpInst.addOperand(Inst.getOperand(0)); 10492 TmpInst.addOperand(Inst.getOperand(1)); 10493 if (Op == ARM::tMOVr) { 10494 TmpInst.addOperand(Inst.getOperand(2)); 10495 TmpInst.addOperand(Inst.getOperand(3)); 10496 } 10497 Inst = TmpInst; 10498 return true; 10499 } 10500 break; 10501 10502 case ARM::t2SXTH: 10503 case ARM::t2SXTB: 10504 case ARM::t2UXTH: 10505 case ARM::t2UXTB: 10506 // If we can use the 16-bit encoding and the user didn't explicitly 10507 // request the 32-bit variant, transform it here. 10508 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10509 isARMLowRegister(Inst.getOperand(1).getReg()) && 10510 Inst.getOperand(2).getImm() == 0 && 10511 !HasWideQualifier) { 10512 unsigned NewOpc; 10513 switch (Inst.getOpcode()) { 10514 default: llvm_unreachable("Illegal opcode!"); 10515 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 10516 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 10517 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 10518 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 10519 } 10520 // The operands aren't the same for thumb1 (no rotate operand). 10521 MCInst TmpInst; 10522 TmpInst.setOpcode(NewOpc); 10523 TmpInst.addOperand(Inst.getOperand(0)); 10524 TmpInst.addOperand(Inst.getOperand(1)); 10525 TmpInst.addOperand(Inst.getOperand(3)); 10526 TmpInst.addOperand(Inst.getOperand(4)); 10527 Inst = TmpInst; 10528 return true; 10529 } 10530 break; 10531 10532 case ARM::MOVsi: { 10533 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 10534 // rrx shifts and asr/lsr of #32 is encoded as 0 10535 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 10536 return false; 10537 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 10538 // Shifting by zero is accepted as a vanilla 'MOVr' 10539 MCInst TmpInst; 10540 TmpInst.setOpcode(ARM::MOVr); 10541 TmpInst.addOperand(Inst.getOperand(0)); 10542 TmpInst.addOperand(Inst.getOperand(1)); 10543 TmpInst.addOperand(Inst.getOperand(3)); 10544 TmpInst.addOperand(Inst.getOperand(4)); 10545 TmpInst.addOperand(Inst.getOperand(5)); 10546 Inst = TmpInst; 10547 return true; 10548 } 10549 return false; 10550 } 10551 case ARM::ANDrsi: 10552 case ARM::ORRrsi: 10553 case ARM::EORrsi: 10554 case ARM::BICrsi: 10555 case ARM::SUBrsi: 10556 case ARM::ADDrsi: { 10557 unsigned newOpc; 10558 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 10559 if (SOpc == ARM_AM::rrx) return false; 10560 switch (Inst.getOpcode()) { 10561 default: llvm_unreachable("unexpected opcode!"); 10562 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 10563 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 10564 case ARM::EORrsi: newOpc = ARM::EORrr; break; 10565 case ARM::BICrsi: newOpc = ARM::BICrr; break; 10566 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 10567 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 10568 } 10569 // If the shift is by zero, use the non-shifted instruction definition. 10570 // The exception is for right shifts, where 0 == 32 10571 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 10572 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 10573 MCInst TmpInst; 10574 TmpInst.setOpcode(newOpc); 10575 TmpInst.addOperand(Inst.getOperand(0)); 10576 TmpInst.addOperand(Inst.getOperand(1)); 10577 TmpInst.addOperand(Inst.getOperand(2)); 10578 TmpInst.addOperand(Inst.getOperand(4)); 10579 TmpInst.addOperand(Inst.getOperand(5)); 10580 TmpInst.addOperand(Inst.getOperand(6)); 10581 Inst = TmpInst; 10582 return true; 10583 } 10584 return false; 10585 } 10586 case ARM::ITasm: 10587 case ARM::t2IT: { 10588 // Set up the IT block state according to the IT instruction we just 10589 // matched. 10590 assert(!inITBlock() && "nested IT blocks?!"); 10591 startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()), 10592 Inst.getOperand(1).getImm()); 10593 break; 10594 } 10595 case ARM::t2LSLrr: 10596 case ARM::t2LSRrr: 10597 case ARM::t2ASRrr: 10598 case ARM::t2SBCrr: 10599 case ARM::t2RORrr: 10600 case ARM::t2BICrr: 10601 // Assemblers should use the narrow encodings of these instructions when permissible. 10602 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10603 isARMLowRegister(Inst.getOperand(2).getReg())) && 10604 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 10605 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10606 !HasWideQualifier) { 10607 unsigned NewOpc; 10608 switch (Inst.getOpcode()) { 10609 default: llvm_unreachable("unexpected opcode"); 10610 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 10611 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 10612 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 10613 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 10614 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 10615 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 10616 } 10617 MCInst TmpInst; 10618 TmpInst.setOpcode(NewOpc); 10619 TmpInst.addOperand(Inst.getOperand(0)); 10620 TmpInst.addOperand(Inst.getOperand(5)); 10621 TmpInst.addOperand(Inst.getOperand(1)); 10622 TmpInst.addOperand(Inst.getOperand(2)); 10623 TmpInst.addOperand(Inst.getOperand(3)); 10624 TmpInst.addOperand(Inst.getOperand(4)); 10625 Inst = TmpInst; 10626 return true; 10627 } 10628 return false; 10629 10630 case ARM::t2ANDrr: 10631 case ARM::t2EORrr: 10632 case ARM::t2ADCrr: 10633 case ARM::t2ORRrr: 10634 // Assemblers should use the narrow encodings of these instructions when permissible. 10635 // These instructions are special in that they are commutable, so shorter encodings 10636 // are available more often. 10637 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10638 isARMLowRegister(Inst.getOperand(2).getReg())) && 10639 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 10640 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 10641 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10642 !HasWideQualifier) { 10643 unsigned NewOpc; 10644 switch (Inst.getOpcode()) { 10645 default: llvm_unreachable("unexpected opcode"); 10646 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 10647 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 10648 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 10649 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 10650 } 10651 MCInst TmpInst; 10652 TmpInst.setOpcode(NewOpc); 10653 TmpInst.addOperand(Inst.getOperand(0)); 10654 TmpInst.addOperand(Inst.getOperand(5)); 10655 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 10656 TmpInst.addOperand(Inst.getOperand(1)); 10657 TmpInst.addOperand(Inst.getOperand(2)); 10658 } else { 10659 TmpInst.addOperand(Inst.getOperand(2)); 10660 TmpInst.addOperand(Inst.getOperand(1)); 10661 } 10662 TmpInst.addOperand(Inst.getOperand(3)); 10663 TmpInst.addOperand(Inst.getOperand(4)); 10664 Inst = TmpInst; 10665 return true; 10666 } 10667 return false; 10668 case ARM::MVE_VPST: 10669 case ARM::MVE_VPTv16i8: 10670 case ARM::MVE_VPTv8i16: 10671 case ARM::MVE_VPTv4i32: 10672 case ARM::MVE_VPTv16u8: 10673 case ARM::MVE_VPTv8u16: 10674 case ARM::MVE_VPTv4u32: 10675 case ARM::MVE_VPTv16s8: 10676 case ARM::MVE_VPTv8s16: 10677 case ARM::MVE_VPTv4s32: 10678 case ARM::MVE_VPTv4f32: 10679 case ARM::MVE_VPTv8f16: 10680 case ARM::MVE_VPTv16i8r: 10681 case ARM::MVE_VPTv8i16r: 10682 case ARM::MVE_VPTv4i32r: 10683 case ARM::MVE_VPTv16u8r: 10684 case ARM::MVE_VPTv8u16r: 10685 case ARM::MVE_VPTv4u32r: 10686 case ARM::MVE_VPTv16s8r: 10687 case ARM::MVE_VPTv8s16r: 10688 case ARM::MVE_VPTv4s32r: 10689 case ARM::MVE_VPTv4f32r: 10690 case ARM::MVE_VPTv8f16r: { 10691 assert(!inVPTBlock() && "Nested VPT blocks are not allowed"); 10692 MCOperand &MO = Inst.getOperand(0); 10693 VPTState.Mask = MO.getImm(); 10694 VPTState.CurPosition = 0; 10695 break; 10696 } 10697 } 10698 return false; 10699 } 10700 10701 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 10702 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 10703 // suffix depending on whether they're in an IT block or not. 10704 unsigned Opc = Inst.getOpcode(); 10705 const MCInstrDesc &MCID = MII.get(Opc); 10706 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 10707 assert(MCID.hasOptionalDef() && 10708 "optionally flag setting instruction missing optional def operand"); 10709 assert(MCID.NumOperands == Inst.getNumOperands() && 10710 "operand count mismatch!"); 10711 // Find the optional-def operand (cc_out). 10712 unsigned OpNo; 10713 for (OpNo = 0; 10714 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 10715 ++OpNo) 10716 ; 10717 // If we're parsing Thumb1, reject it completely. 10718 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 10719 return Match_RequiresFlagSetting; 10720 // If we're parsing Thumb2, which form is legal depends on whether we're 10721 // in an IT block. 10722 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 10723 !inITBlock()) 10724 return Match_RequiresITBlock; 10725 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 10726 inITBlock()) 10727 return Match_RequiresNotITBlock; 10728 // LSL with zero immediate is not allowed in an IT block 10729 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 10730 return Match_RequiresNotITBlock; 10731 } else if (isThumbOne()) { 10732 // Some high-register supporting Thumb1 encodings only allow both registers 10733 // to be from r0-r7 when in Thumb2. 10734 if (Opc == ARM::tADDhirr && !hasV6MOps() && 10735 isARMLowRegister(Inst.getOperand(1).getReg()) && 10736 isARMLowRegister(Inst.getOperand(2).getReg())) 10737 return Match_RequiresThumb2; 10738 // Others only require ARMv6 or later. 10739 else if (Opc == ARM::tMOVr && !hasV6Ops() && 10740 isARMLowRegister(Inst.getOperand(0).getReg()) && 10741 isARMLowRegister(Inst.getOperand(1).getReg())) 10742 return Match_RequiresV6; 10743 } 10744 10745 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 10746 // than the loop below can handle, so it uses the GPRnopc register class and 10747 // we do SP handling here. 10748 if (Opc == ARM::t2MOVr && !hasV8Ops()) 10749 { 10750 // SP as both source and destination is not allowed 10751 if (Inst.getOperand(0).getReg() == ARM::SP && 10752 Inst.getOperand(1).getReg() == ARM::SP) 10753 return Match_RequiresV8; 10754 // When flags-setting SP as either source or destination is not allowed 10755 if (Inst.getOperand(4).getReg() == ARM::CPSR && 10756 (Inst.getOperand(0).getReg() == ARM::SP || 10757 Inst.getOperand(1).getReg() == ARM::SP)) 10758 return Match_RequiresV8; 10759 } 10760 10761 switch (Inst.getOpcode()) { 10762 case ARM::VMRS: 10763 case ARM::VMSR: 10764 case ARM::VMRS_FPCXTS: 10765 case ARM::VMRS_FPCXTNS: 10766 case ARM::VMSR_FPCXTS: 10767 case ARM::VMSR_FPCXTNS: 10768 case ARM::VMRS_FPSCR_NZCVQC: 10769 case ARM::VMSR_FPSCR_NZCVQC: 10770 case ARM::FMSTAT: 10771 case ARM::VMRS_VPR: 10772 case ARM::VMRS_P0: 10773 case ARM::VMSR_VPR: 10774 case ARM::VMSR_P0: 10775 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of 10776 // ARMv8-A. 10777 if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP && 10778 (isThumb() && !hasV8Ops())) 10779 return Match_InvalidOperand; 10780 break; 10781 case ARM::t2TBB: 10782 case ARM::t2TBH: 10783 // Rn = sp is only allowed with ARMv8-A 10784 if (!hasV8Ops() && (Inst.getOperand(0).getReg() == ARM::SP)) 10785 return Match_RequiresV8; 10786 break; 10787 default: 10788 break; 10789 } 10790 10791 for (unsigned I = 0; I < MCID.NumOperands; ++I) 10792 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 10793 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 10794 const auto &Op = Inst.getOperand(I); 10795 if (!Op.isReg()) { 10796 // This can happen in awkward cases with tied operands, e.g. a 10797 // writeback load/store with a complex addressing mode in 10798 // which there's an output operand corresponding to the 10799 // updated written-back base register: the Tablegen-generated 10800 // AsmMatcher will have written a placeholder operand to that 10801 // slot in the form of an immediate 0, because it can't 10802 // generate the register part of the complex addressing-mode 10803 // operand ahead of time. 10804 continue; 10805 } 10806 10807 unsigned Reg = Op.getReg(); 10808 if ((Reg == ARM::SP) && !hasV8Ops()) 10809 return Match_RequiresV8; 10810 else if (Reg == ARM::PC) 10811 return Match_InvalidOperand; 10812 } 10813 10814 return Match_Success; 10815 } 10816 10817 namespace llvm { 10818 10819 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 10820 return true; // In an assembly source, no need to second-guess 10821 } 10822 10823 } // end namespace llvm 10824 10825 // Returns true if Inst is unpredictable if it is in and IT block, but is not 10826 // the last instruction in the block. 10827 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 10828 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10829 10830 // All branch & call instructions terminate IT blocks with the exception of 10831 // SVC. 10832 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || 10833 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) 10834 return true; 10835 10836 // Any arithmetic instruction which writes to the PC also terminates the IT 10837 // block. 10838 if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI)) 10839 return true; 10840 10841 return false; 10842 } 10843 10844 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 10845 SmallVectorImpl<NearMissInfo> &NearMisses, 10846 bool MatchingInlineAsm, 10847 bool &EmitInITBlock, 10848 MCStreamer &Out) { 10849 // If we can't use an implicit IT block here, just match as normal. 10850 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 10851 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10852 10853 // Try to match the instruction in an extension of the current IT block (if 10854 // there is one). 10855 if (inImplicitITBlock()) { 10856 extendImplicitITBlock(ITState.Cond); 10857 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10858 Match_Success) { 10859 // The match succeded, but we still have to check that the instruction is 10860 // valid in this implicit IT block. 10861 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10862 if (MCID.isPredicable()) { 10863 ARMCC::CondCodes InstCond = 10864 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10865 .getImm(); 10866 ARMCC::CondCodes ITCond = currentITCond(); 10867 if (InstCond == ITCond) { 10868 EmitInITBlock = true; 10869 return Match_Success; 10870 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 10871 invertCurrentITCondition(); 10872 EmitInITBlock = true; 10873 return Match_Success; 10874 } 10875 } 10876 } 10877 rewindImplicitITPosition(); 10878 } 10879 10880 // Finish the current IT block, and try to match outside any IT block. 10881 flushPendingInstructions(Out); 10882 unsigned PlainMatchResult = 10883 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10884 if (PlainMatchResult == Match_Success) { 10885 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10886 if (MCID.isPredicable()) { 10887 ARMCC::CondCodes InstCond = 10888 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10889 .getImm(); 10890 // Some forms of the branch instruction have their own condition code 10891 // fields, so can be conditionally executed without an IT block. 10892 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 10893 EmitInITBlock = false; 10894 return Match_Success; 10895 } 10896 if (InstCond == ARMCC::AL) { 10897 EmitInITBlock = false; 10898 return Match_Success; 10899 } 10900 } else { 10901 EmitInITBlock = false; 10902 return Match_Success; 10903 } 10904 } 10905 10906 // Try to match in a new IT block. The matcher doesn't check the actual 10907 // condition, so we create an IT block with a dummy condition, and fix it up 10908 // once we know the actual condition. 10909 startImplicitITBlock(); 10910 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10911 Match_Success) { 10912 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10913 if (MCID.isPredicable()) { 10914 ITState.Cond = 10915 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10916 .getImm(); 10917 EmitInITBlock = true; 10918 return Match_Success; 10919 } 10920 } 10921 discardImplicitITBlock(); 10922 10923 // If none of these succeed, return the error we got when trying to match 10924 // outside any IT blocks. 10925 EmitInITBlock = false; 10926 return PlainMatchResult; 10927 } 10928 10929 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, 10930 unsigned VariantID = 0); 10931 10932 static const char *getSubtargetFeatureName(uint64_t Val); 10933 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 10934 OperandVector &Operands, 10935 MCStreamer &Out, uint64_t &ErrorInfo, 10936 bool MatchingInlineAsm) { 10937 MCInst Inst; 10938 unsigned MatchResult; 10939 bool PendConditionalInstruction = false; 10940 10941 SmallVector<NearMissInfo, 4> NearMisses; 10942 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, 10943 PendConditionalInstruction, Out); 10944 10945 switch (MatchResult) { 10946 case Match_Success: 10947 LLVM_DEBUG(dbgs() << "Parsed as: "; 10948 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10949 dbgs() << "\n"); 10950 10951 // Context sensitive operand constraints aren't handled by the matcher, 10952 // so check them here. 10953 if (validateInstruction(Inst, Operands)) { 10954 // Still progress the IT block, otherwise one wrong condition causes 10955 // nasty cascading errors. 10956 forwardITPosition(); 10957 forwardVPTPosition(); 10958 return true; 10959 } 10960 10961 { // processInstruction() updates inITBlock state, we need to save it away 10962 bool wasInITBlock = inITBlock(); 10963 10964 // Some instructions need post-processing to, for example, tweak which 10965 // encoding is selected. Loop on it while changes happen so the 10966 // individual transformations can chain off each other. E.g., 10967 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 10968 while (processInstruction(Inst, Operands, Out)) 10969 LLVM_DEBUG(dbgs() << "Changed to: "; 10970 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10971 dbgs() << "\n"); 10972 10973 // Only after the instruction is fully processed, we can validate it 10974 if (wasInITBlock && hasV8Ops() && isThumb() && 10975 !isV8EligibleForIT(&Inst) && !getTargetOptions().MCNoDeprecatedWarn) { 10976 Warning(IDLoc, "deprecated instruction in IT block"); 10977 } 10978 } 10979 10980 // Only move forward at the very end so that everything in validate 10981 // and process gets a consistent answer about whether we're in an IT 10982 // block. 10983 forwardITPosition(); 10984 forwardVPTPosition(); 10985 10986 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 10987 // doesn't actually encode. 10988 if (Inst.getOpcode() == ARM::ITasm) 10989 return false; 10990 10991 Inst.setLoc(IDLoc); 10992 if (PendConditionalInstruction) { 10993 PendingConditionalInsts.push_back(Inst); 10994 if (isITBlockFull() || isITBlockTerminator(Inst)) 10995 flushPendingInstructions(Out); 10996 } else { 10997 Out.emitInstruction(Inst, getSTI()); 10998 } 10999 return false; 11000 case Match_NearMisses: 11001 ReportNearMisses(NearMisses, IDLoc, Operands); 11002 return true; 11003 case Match_MnemonicFail: { 11004 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 11005 std::string Suggestion = ARMMnemonicSpellCheck( 11006 ((ARMOperand &)*Operands[0]).getToken(), FBS); 11007 return Error(IDLoc, "invalid instruction" + Suggestion, 11008 ((ARMOperand &)*Operands[0]).getLocRange()); 11009 } 11010 } 11011 11012 llvm_unreachable("Implement any new match types added!"); 11013 } 11014 11015 /// parseDirective parses the arm specific directives 11016 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 11017 const MCContext::Environment Format = getContext().getObjectFileType(); 11018 bool IsMachO = Format == MCContext::IsMachO; 11019 bool IsCOFF = Format == MCContext::IsCOFF; 11020 11021 std::string IDVal = DirectiveID.getIdentifier().lower(); 11022 if (IDVal == ".word") 11023 parseLiteralValues(4, DirectiveID.getLoc()); 11024 else if (IDVal == ".short" || IDVal == ".hword") 11025 parseLiteralValues(2, DirectiveID.getLoc()); 11026 else if (IDVal == ".thumb") 11027 parseDirectiveThumb(DirectiveID.getLoc()); 11028 else if (IDVal == ".arm") 11029 parseDirectiveARM(DirectiveID.getLoc()); 11030 else if (IDVal == ".thumb_func") 11031 parseDirectiveThumbFunc(DirectiveID.getLoc()); 11032 else if (IDVal == ".code") 11033 parseDirectiveCode(DirectiveID.getLoc()); 11034 else if (IDVal == ".syntax") 11035 parseDirectiveSyntax(DirectiveID.getLoc()); 11036 else if (IDVal == ".unreq") 11037 parseDirectiveUnreq(DirectiveID.getLoc()); 11038 else if (IDVal == ".fnend") 11039 parseDirectiveFnEnd(DirectiveID.getLoc()); 11040 else if (IDVal == ".cantunwind") 11041 parseDirectiveCantUnwind(DirectiveID.getLoc()); 11042 else if (IDVal == ".personality") 11043 parseDirectivePersonality(DirectiveID.getLoc()); 11044 else if (IDVal == ".handlerdata") 11045 parseDirectiveHandlerData(DirectiveID.getLoc()); 11046 else if (IDVal == ".setfp") 11047 parseDirectiveSetFP(DirectiveID.getLoc()); 11048 else if (IDVal == ".pad") 11049 parseDirectivePad(DirectiveID.getLoc()); 11050 else if (IDVal == ".save") 11051 parseDirectiveRegSave(DirectiveID.getLoc(), false); 11052 else if (IDVal == ".vsave") 11053 parseDirectiveRegSave(DirectiveID.getLoc(), true); 11054 else if (IDVal == ".ltorg" || IDVal == ".pool") 11055 parseDirectiveLtorg(DirectiveID.getLoc()); 11056 else if (IDVal == ".even") 11057 parseDirectiveEven(DirectiveID.getLoc()); 11058 else if (IDVal == ".personalityindex") 11059 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 11060 else if (IDVal == ".unwind_raw") 11061 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 11062 else if (IDVal == ".movsp") 11063 parseDirectiveMovSP(DirectiveID.getLoc()); 11064 else if (IDVal == ".arch_extension") 11065 parseDirectiveArchExtension(DirectiveID.getLoc()); 11066 else if (IDVal == ".align") 11067 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 11068 else if (IDVal == ".thumb_set") 11069 parseDirectiveThumbSet(DirectiveID.getLoc()); 11070 else if (IDVal == ".inst") 11071 parseDirectiveInst(DirectiveID.getLoc()); 11072 else if (IDVal == ".inst.n") 11073 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 11074 else if (IDVal == ".inst.w") 11075 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 11076 else if (!IsMachO && !IsCOFF) { 11077 if (IDVal == ".arch") 11078 parseDirectiveArch(DirectiveID.getLoc()); 11079 else if (IDVal == ".cpu") 11080 parseDirectiveCPU(DirectiveID.getLoc()); 11081 else if (IDVal == ".eabi_attribute") 11082 parseDirectiveEabiAttr(DirectiveID.getLoc()); 11083 else if (IDVal == ".fpu") 11084 parseDirectiveFPU(DirectiveID.getLoc()); 11085 else if (IDVal == ".fnstart") 11086 parseDirectiveFnStart(DirectiveID.getLoc()); 11087 else if (IDVal == ".object_arch") 11088 parseDirectiveObjectArch(DirectiveID.getLoc()); 11089 else if (IDVal == ".tlsdescseq") 11090 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 11091 else 11092 return true; 11093 } else 11094 return true; 11095 return false; 11096 } 11097 11098 /// parseLiteralValues 11099 /// ::= .hword expression [, expression]* 11100 /// ::= .short expression [, expression]* 11101 /// ::= .word expression [, expression]* 11102 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 11103 auto parseOne = [&]() -> bool { 11104 const MCExpr *Value; 11105 if (getParser().parseExpression(Value)) 11106 return true; 11107 getParser().getStreamer().emitValue(Value, Size, L); 11108 return false; 11109 }; 11110 return (parseMany(parseOne)); 11111 } 11112 11113 /// parseDirectiveThumb 11114 /// ::= .thumb 11115 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 11116 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 11117 check(!hasThumb(), L, "target does not support Thumb mode")) 11118 return true; 11119 11120 if (!isThumb()) 11121 SwitchMode(); 11122 11123 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16); 11124 return false; 11125 } 11126 11127 /// parseDirectiveARM 11128 /// ::= .arm 11129 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 11130 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 11131 check(!hasARM(), L, "target does not support ARM mode")) 11132 return true; 11133 11134 if (isThumb()) 11135 SwitchMode(); 11136 getParser().getStreamer().emitAssemblerFlag(MCAF_Code32); 11137 return false; 11138 } 11139 11140 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) { 11141 // We need to flush the current implicit IT block on a label, because it is 11142 // not legal to branch into an IT block. 11143 flushPendingInstructions(getStreamer()); 11144 } 11145 11146 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 11147 if (NextSymbolIsThumb) { 11148 getParser().getStreamer().emitThumbFunc(Symbol); 11149 NextSymbolIsThumb = false; 11150 } 11151 } 11152 11153 /// parseDirectiveThumbFunc 11154 /// ::= .thumbfunc symbol_name 11155 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 11156 MCAsmParser &Parser = getParser(); 11157 const auto Format = getContext().getObjectFileType(); 11158 bool IsMachO = Format == MCContext::IsMachO; 11159 11160 // Darwin asm has (optionally) function name after .thumb_func direction 11161 // ELF doesn't 11162 11163 if (IsMachO) { 11164 if (Parser.getTok().is(AsmToken::Identifier) || 11165 Parser.getTok().is(AsmToken::String)) { 11166 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 11167 Parser.getTok().getIdentifier()); 11168 getParser().getStreamer().emitThumbFunc(Func); 11169 Parser.Lex(); 11170 if (parseToken(AsmToken::EndOfStatement, 11171 "unexpected token in '.thumb_func' directive")) 11172 return true; 11173 return false; 11174 } 11175 } 11176 11177 if (parseToken(AsmToken::EndOfStatement, 11178 "unexpected token in '.thumb_func' directive")) 11179 return true; 11180 11181 // .thumb_func implies .thumb 11182 if (!isThumb()) 11183 SwitchMode(); 11184 11185 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16); 11186 11187 NextSymbolIsThumb = true; 11188 return false; 11189 } 11190 11191 /// parseDirectiveSyntax 11192 /// ::= .syntax unified | divided 11193 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 11194 MCAsmParser &Parser = getParser(); 11195 const AsmToken &Tok = Parser.getTok(); 11196 if (Tok.isNot(AsmToken::Identifier)) { 11197 Error(L, "unexpected token in .syntax directive"); 11198 return false; 11199 } 11200 11201 StringRef Mode = Tok.getString(); 11202 Parser.Lex(); 11203 if (check(Mode == "divided" || Mode == "DIVIDED", L, 11204 "'.syntax divided' arm assembly not supported") || 11205 check(Mode != "unified" && Mode != "UNIFIED", L, 11206 "unrecognized syntax mode in .syntax directive") || 11207 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11208 return true; 11209 11210 // TODO tell the MC streamer the mode 11211 // getParser().getStreamer().Emit???(); 11212 return false; 11213 } 11214 11215 /// parseDirectiveCode 11216 /// ::= .code 16 | 32 11217 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 11218 MCAsmParser &Parser = getParser(); 11219 const AsmToken &Tok = Parser.getTok(); 11220 if (Tok.isNot(AsmToken::Integer)) 11221 return Error(L, "unexpected token in .code directive"); 11222 int64_t Val = Parser.getTok().getIntVal(); 11223 if (Val != 16 && Val != 32) { 11224 Error(L, "invalid operand to .code directive"); 11225 return false; 11226 } 11227 Parser.Lex(); 11228 11229 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11230 return true; 11231 11232 if (Val == 16) { 11233 if (!hasThumb()) 11234 return Error(L, "target does not support Thumb mode"); 11235 11236 if (!isThumb()) 11237 SwitchMode(); 11238 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16); 11239 } else { 11240 if (!hasARM()) 11241 return Error(L, "target does not support ARM mode"); 11242 11243 if (isThumb()) 11244 SwitchMode(); 11245 getParser().getStreamer().emitAssemblerFlag(MCAF_Code32); 11246 } 11247 11248 return false; 11249 } 11250 11251 /// parseDirectiveReq 11252 /// ::= name .req registername 11253 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 11254 MCAsmParser &Parser = getParser(); 11255 Parser.Lex(); // Eat the '.req' token. 11256 unsigned Reg; 11257 SMLoc SRegLoc, ERegLoc; 11258 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 11259 "register name expected") || 11260 parseToken(AsmToken::EndOfStatement, 11261 "unexpected input in .req directive.")) 11262 return true; 11263 11264 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 11265 return Error(SRegLoc, 11266 "redefinition of '" + Name + "' does not match original."); 11267 11268 return false; 11269 } 11270 11271 /// parseDirectiveUneq 11272 /// ::= .unreq registername 11273 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 11274 MCAsmParser &Parser = getParser(); 11275 if (Parser.getTok().isNot(AsmToken::Identifier)) 11276 return Error(L, "unexpected input in .unreq directive."); 11277 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 11278 Parser.Lex(); // Eat the identifier. 11279 if (parseToken(AsmToken::EndOfStatement, 11280 "unexpected input in '.unreq' directive")) 11281 return true; 11282 return false; 11283 } 11284 11285 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 11286 // before, if supported by the new target, or emit mapping symbols for the mode 11287 // switch. 11288 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 11289 if (WasThumb != isThumb()) { 11290 if (WasThumb && hasThumb()) { 11291 // Stay in Thumb mode 11292 SwitchMode(); 11293 } else if (!WasThumb && hasARM()) { 11294 // Stay in ARM mode 11295 SwitchMode(); 11296 } else { 11297 // Mode switch forced, because the new arch doesn't support the old mode. 11298 getParser().getStreamer().emitAssemblerFlag(isThumb() ? MCAF_Code16 11299 : MCAF_Code32); 11300 // Warn about the implcit mode switch. GAS does not switch modes here, 11301 // but instead stays in the old mode, reporting an error on any following 11302 // instructions as the mode does not exist on the target. 11303 Warning(Loc, Twine("new target does not support ") + 11304 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 11305 (!WasThumb ? "thumb" : "arm") + " mode"); 11306 } 11307 } 11308 } 11309 11310 /// parseDirectiveArch 11311 /// ::= .arch token 11312 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 11313 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 11314 ARM::ArchKind ID = ARM::parseArch(Arch); 11315 11316 if (ID == ARM::ArchKind::INVALID) 11317 return Error(L, "Unknown arch name"); 11318 11319 bool WasThumb = isThumb(); 11320 Triple T; 11321 MCSubtargetInfo &STI = copySTI(); 11322 STI.setDefaultFeatures("", /*TuneCPU*/ "", 11323 ("+" + ARM::getArchName(ID)).str()); 11324 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 11325 FixModeAfterArchChange(WasThumb, L); 11326 11327 getTargetStreamer().emitArch(ID); 11328 return false; 11329 } 11330 11331 /// parseDirectiveEabiAttr 11332 /// ::= .eabi_attribute int, int [, "str"] 11333 /// ::= .eabi_attribute Tag_name, int [, "str"] 11334 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 11335 MCAsmParser &Parser = getParser(); 11336 int64_t Tag; 11337 SMLoc TagLoc; 11338 TagLoc = Parser.getTok().getLoc(); 11339 if (Parser.getTok().is(AsmToken::Identifier)) { 11340 StringRef Name = Parser.getTok().getIdentifier(); 11341 Optional<unsigned> Ret = ELFAttrs::attrTypeFromString( 11342 Name, ARMBuildAttrs::getARMAttributeTags()); 11343 if (!Ret.hasValue()) { 11344 Error(TagLoc, "attribute name not recognised: " + Name); 11345 return false; 11346 } 11347 Tag = Ret.getValue(); 11348 Parser.Lex(); 11349 } else { 11350 const MCExpr *AttrExpr; 11351 11352 TagLoc = Parser.getTok().getLoc(); 11353 if (Parser.parseExpression(AttrExpr)) 11354 return true; 11355 11356 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 11357 if (check(!CE, TagLoc, "expected numeric constant")) 11358 return true; 11359 11360 Tag = CE->getValue(); 11361 } 11362 11363 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 11364 return true; 11365 11366 StringRef StringValue = ""; 11367 bool IsStringValue = false; 11368 11369 int64_t IntegerValue = 0; 11370 bool IsIntegerValue = false; 11371 11372 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 11373 IsStringValue = true; 11374 else if (Tag == ARMBuildAttrs::compatibility) { 11375 IsStringValue = true; 11376 IsIntegerValue = true; 11377 } else if (Tag < 32 || Tag % 2 == 0) 11378 IsIntegerValue = true; 11379 else if (Tag % 2 == 1) 11380 IsStringValue = true; 11381 else 11382 llvm_unreachable("invalid tag type"); 11383 11384 if (IsIntegerValue) { 11385 const MCExpr *ValueExpr; 11386 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 11387 if (Parser.parseExpression(ValueExpr)) 11388 return true; 11389 11390 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 11391 if (!CE) 11392 return Error(ValueExprLoc, "expected numeric constant"); 11393 IntegerValue = CE->getValue(); 11394 } 11395 11396 if (Tag == ARMBuildAttrs::compatibility) { 11397 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 11398 return true; 11399 } 11400 11401 if (IsStringValue) { 11402 if (Parser.getTok().isNot(AsmToken::String)) 11403 return Error(Parser.getTok().getLoc(), "bad string constant"); 11404 11405 StringValue = Parser.getTok().getStringContents(); 11406 Parser.Lex(); 11407 } 11408 11409 if (Parser.parseToken(AsmToken::EndOfStatement, 11410 "unexpected token in '.eabi_attribute' directive")) 11411 return true; 11412 11413 if (IsIntegerValue && IsStringValue) { 11414 assert(Tag == ARMBuildAttrs::compatibility); 11415 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 11416 } else if (IsIntegerValue) 11417 getTargetStreamer().emitAttribute(Tag, IntegerValue); 11418 else if (IsStringValue) 11419 getTargetStreamer().emitTextAttribute(Tag, StringValue); 11420 return false; 11421 } 11422 11423 /// parseDirectiveCPU 11424 /// ::= .cpu str 11425 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 11426 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 11427 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 11428 11429 // FIXME: This is using table-gen data, but should be moved to 11430 // ARMTargetParser once that is table-gen'd. 11431 if (!getSTI().isCPUStringValid(CPU)) 11432 return Error(L, "Unknown CPU name"); 11433 11434 bool WasThumb = isThumb(); 11435 MCSubtargetInfo &STI = copySTI(); 11436 STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, ""); 11437 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 11438 FixModeAfterArchChange(WasThumb, L); 11439 11440 return false; 11441 } 11442 11443 /// parseDirectiveFPU 11444 /// ::= .fpu str 11445 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 11446 SMLoc FPUNameLoc = getTok().getLoc(); 11447 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 11448 11449 unsigned ID = ARM::parseFPU(FPU); 11450 std::vector<StringRef> Features; 11451 if (!ARM::getFPUFeatures(ID, Features)) 11452 return Error(FPUNameLoc, "Unknown FPU name"); 11453 11454 MCSubtargetInfo &STI = copySTI(); 11455 for (auto Feature : Features) 11456 STI.ApplyFeatureFlag(Feature); 11457 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 11458 11459 getTargetStreamer().emitFPU(ID); 11460 return false; 11461 } 11462 11463 /// parseDirectiveFnStart 11464 /// ::= .fnstart 11465 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 11466 if (parseToken(AsmToken::EndOfStatement, 11467 "unexpected token in '.fnstart' directive")) 11468 return true; 11469 11470 if (UC.hasFnStart()) { 11471 Error(L, ".fnstart starts before the end of previous one"); 11472 UC.emitFnStartLocNotes(); 11473 return true; 11474 } 11475 11476 // Reset the unwind directives parser state 11477 UC.reset(); 11478 11479 getTargetStreamer().emitFnStart(); 11480 11481 UC.recordFnStart(L); 11482 return false; 11483 } 11484 11485 /// parseDirectiveFnEnd 11486 /// ::= .fnend 11487 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 11488 if (parseToken(AsmToken::EndOfStatement, 11489 "unexpected token in '.fnend' directive")) 11490 return true; 11491 // Check the ordering of unwind directives 11492 if (!UC.hasFnStart()) 11493 return Error(L, ".fnstart must precede .fnend directive"); 11494 11495 // Reset the unwind directives parser state 11496 getTargetStreamer().emitFnEnd(); 11497 11498 UC.reset(); 11499 return false; 11500 } 11501 11502 /// parseDirectiveCantUnwind 11503 /// ::= .cantunwind 11504 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 11505 if (parseToken(AsmToken::EndOfStatement, 11506 "unexpected token in '.cantunwind' directive")) 11507 return true; 11508 11509 UC.recordCantUnwind(L); 11510 // Check the ordering of unwind directives 11511 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 11512 return true; 11513 11514 if (UC.hasHandlerData()) { 11515 Error(L, ".cantunwind can't be used with .handlerdata directive"); 11516 UC.emitHandlerDataLocNotes(); 11517 return true; 11518 } 11519 if (UC.hasPersonality()) { 11520 Error(L, ".cantunwind can't be used with .personality directive"); 11521 UC.emitPersonalityLocNotes(); 11522 return true; 11523 } 11524 11525 getTargetStreamer().emitCantUnwind(); 11526 return false; 11527 } 11528 11529 /// parseDirectivePersonality 11530 /// ::= .personality name 11531 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 11532 MCAsmParser &Parser = getParser(); 11533 bool HasExistingPersonality = UC.hasPersonality(); 11534 11535 // Parse the name of the personality routine 11536 if (Parser.getTok().isNot(AsmToken::Identifier)) 11537 return Error(L, "unexpected input in .personality directive."); 11538 StringRef Name(Parser.getTok().getIdentifier()); 11539 Parser.Lex(); 11540 11541 if (parseToken(AsmToken::EndOfStatement, 11542 "unexpected token in '.personality' directive")) 11543 return true; 11544 11545 UC.recordPersonality(L); 11546 11547 // Check the ordering of unwind directives 11548 if (!UC.hasFnStart()) 11549 return Error(L, ".fnstart must precede .personality directive"); 11550 if (UC.cantUnwind()) { 11551 Error(L, ".personality can't be used with .cantunwind directive"); 11552 UC.emitCantUnwindLocNotes(); 11553 return true; 11554 } 11555 if (UC.hasHandlerData()) { 11556 Error(L, ".personality must precede .handlerdata directive"); 11557 UC.emitHandlerDataLocNotes(); 11558 return true; 11559 } 11560 if (HasExistingPersonality) { 11561 Error(L, "multiple personality directives"); 11562 UC.emitPersonalityLocNotes(); 11563 return true; 11564 } 11565 11566 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 11567 getTargetStreamer().emitPersonality(PR); 11568 return false; 11569 } 11570 11571 /// parseDirectiveHandlerData 11572 /// ::= .handlerdata 11573 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 11574 if (parseToken(AsmToken::EndOfStatement, 11575 "unexpected token in '.handlerdata' directive")) 11576 return true; 11577 11578 UC.recordHandlerData(L); 11579 // Check the ordering of unwind directives 11580 if (!UC.hasFnStart()) 11581 return Error(L, ".fnstart must precede .personality directive"); 11582 if (UC.cantUnwind()) { 11583 Error(L, ".handlerdata can't be used with .cantunwind directive"); 11584 UC.emitCantUnwindLocNotes(); 11585 return true; 11586 } 11587 11588 getTargetStreamer().emitHandlerData(); 11589 return false; 11590 } 11591 11592 /// parseDirectiveSetFP 11593 /// ::= .setfp fpreg, spreg [, offset] 11594 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 11595 MCAsmParser &Parser = getParser(); 11596 // Check the ordering of unwind directives 11597 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 11598 check(UC.hasHandlerData(), L, 11599 ".setfp must precede .handlerdata directive")) 11600 return true; 11601 11602 // Parse fpreg 11603 SMLoc FPRegLoc = Parser.getTok().getLoc(); 11604 int FPReg = tryParseRegister(); 11605 11606 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 11607 Parser.parseToken(AsmToken::Comma, "comma expected")) 11608 return true; 11609 11610 // Parse spreg 11611 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11612 int SPReg = tryParseRegister(); 11613 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 11614 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 11615 "register should be either $sp or the latest fp register")) 11616 return true; 11617 11618 // Update the frame pointer register 11619 UC.saveFPReg(FPReg); 11620 11621 // Parse offset 11622 int64_t Offset = 0; 11623 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11624 if (Parser.getTok().isNot(AsmToken::Hash) && 11625 Parser.getTok().isNot(AsmToken::Dollar)) 11626 return Error(Parser.getTok().getLoc(), "'#' expected"); 11627 Parser.Lex(); // skip hash token. 11628 11629 const MCExpr *OffsetExpr; 11630 SMLoc ExLoc = Parser.getTok().getLoc(); 11631 SMLoc EndLoc; 11632 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11633 return Error(ExLoc, "malformed setfp offset"); 11634 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11635 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 11636 return true; 11637 Offset = CE->getValue(); 11638 } 11639 11640 if (Parser.parseToken(AsmToken::EndOfStatement)) 11641 return true; 11642 11643 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 11644 static_cast<unsigned>(SPReg), Offset); 11645 return false; 11646 } 11647 11648 /// parseDirective 11649 /// ::= .pad offset 11650 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 11651 MCAsmParser &Parser = getParser(); 11652 // Check the ordering of unwind directives 11653 if (!UC.hasFnStart()) 11654 return Error(L, ".fnstart must precede .pad directive"); 11655 if (UC.hasHandlerData()) 11656 return Error(L, ".pad must precede .handlerdata directive"); 11657 11658 // Parse the offset 11659 if (Parser.getTok().isNot(AsmToken::Hash) && 11660 Parser.getTok().isNot(AsmToken::Dollar)) 11661 return Error(Parser.getTok().getLoc(), "'#' expected"); 11662 Parser.Lex(); // skip hash token. 11663 11664 const MCExpr *OffsetExpr; 11665 SMLoc ExLoc = Parser.getTok().getLoc(); 11666 SMLoc EndLoc; 11667 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11668 return Error(ExLoc, "malformed pad offset"); 11669 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11670 if (!CE) 11671 return Error(ExLoc, "pad offset must be an immediate"); 11672 11673 if (parseToken(AsmToken::EndOfStatement, 11674 "unexpected token in '.pad' directive")) 11675 return true; 11676 11677 getTargetStreamer().emitPad(CE->getValue()); 11678 return false; 11679 } 11680 11681 /// parseDirectiveRegSave 11682 /// ::= .save { registers } 11683 /// ::= .vsave { registers } 11684 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 11685 // Check the ordering of unwind directives 11686 if (!UC.hasFnStart()) 11687 return Error(L, ".fnstart must precede .save or .vsave directives"); 11688 if (UC.hasHandlerData()) 11689 return Error(L, ".save or .vsave must precede .handlerdata directive"); 11690 11691 // RAII object to make sure parsed operands are deleted. 11692 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 11693 11694 // Parse the register list 11695 if (parseRegisterList(Operands, true, true) || 11696 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11697 return true; 11698 ARMOperand &Op = (ARMOperand &)*Operands[0]; 11699 if (!IsVector && !Op.isRegList()) 11700 return Error(L, ".save expects GPR registers"); 11701 if (IsVector && !Op.isDPRRegList()) 11702 return Error(L, ".vsave expects DPR registers"); 11703 11704 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 11705 return false; 11706 } 11707 11708 /// parseDirectiveInst 11709 /// ::= .inst opcode [, ...] 11710 /// ::= .inst.n opcode [, ...] 11711 /// ::= .inst.w opcode [, ...] 11712 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 11713 int Width = 4; 11714 11715 if (isThumb()) { 11716 switch (Suffix) { 11717 case 'n': 11718 Width = 2; 11719 break; 11720 case 'w': 11721 break; 11722 default: 11723 Width = 0; 11724 break; 11725 } 11726 } else { 11727 if (Suffix) 11728 return Error(Loc, "width suffixes are invalid in ARM mode"); 11729 } 11730 11731 auto parseOne = [&]() -> bool { 11732 const MCExpr *Expr; 11733 if (getParser().parseExpression(Expr)) 11734 return true; 11735 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 11736 if (!Value) { 11737 return Error(Loc, "expected constant expression"); 11738 } 11739 11740 char CurSuffix = Suffix; 11741 switch (Width) { 11742 case 2: 11743 if (Value->getValue() > 0xffff) 11744 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 11745 break; 11746 case 4: 11747 if (Value->getValue() > 0xffffffff) 11748 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 11749 " operand is too big"); 11750 break; 11751 case 0: 11752 // Thumb mode, no width indicated. Guess from the opcode, if possible. 11753 if (Value->getValue() < 0xe800) 11754 CurSuffix = 'n'; 11755 else if (Value->getValue() >= 0xe8000000) 11756 CurSuffix = 'w'; 11757 else 11758 return Error(Loc, "cannot determine Thumb instruction size, " 11759 "use inst.n/inst.w instead"); 11760 break; 11761 default: 11762 llvm_unreachable("only supported widths are 2 and 4"); 11763 } 11764 11765 getTargetStreamer().emitInst(Value->getValue(), CurSuffix); 11766 return false; 11767 }; 11768 11769 if (parseOptionalToken(AsmToken::EndOfStatement)) 11770 return Error(Loc, "expected expression following directive"); 11771 if (parseMany(parseOne)) 11772 return true; 11773 return false; 11774 } 11775 11776 /// parseDirectiveLtorg 11777 /// ::= .ltorg | .pool 11778 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 11779 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11780 return true; 11781 getTargetStreamer().emitCurrentConstantPool(); 11782 return false; 11783 } 11784 11785 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 11786 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11787 11788 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11789 return true; 11790 11791 if (!Section) { 11792 getStreamer().initSections(false, getSTI()); 11793 Section = getStreamer().getCurrentSectionOnly(); 11794 } 11795 11796 assert(Section && "must have section to emit alignment"); 11797 if (Section->UseCodeAlign()) 11798 getStreamer().emitCodeAlignment(2, &getSTI()); 11799 else 11800 getStreamer().emitValueToAlignment(2); 11801 11802 return false; 11803 } 11804 11805 /// parseDirectivePersonalityIndex 11806 /// ::= .personalityindex index 11807 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 11808 MCAsmParser &Parser = getParser(); 11809 bool HasExistingPersonality = UC.hasPersonality(); 11810 11811 const MCExpr *IndexExpression; 11812 SMLoc IndexLoc = Parser.getTok().getLoc(); 11813 if (Parser.parseExpression(IndexExpression) || 11814 parseToken(AsmToken::EndOfStatement, 11815 "unexpected token in '.personalityindex' directive")) { 11816 return true; 11817 } 11818 11819 UC.recordPersonalityIndex(L); 11820 11821 if (!UC.hasFnStart()) { 11822 return Error(L, ".fnstart must precede .personalityindex directive"); 11823 } 11824 if (UC.cantUnwind()) { 11825 Error(L, ".personalityindex cannot be used with .cantunwind"); 11826 UC.emitCantUnwindLocNotes(); 11827 return true; 11828 } 11829 if (UC.hasHandlerData()) { 11830 Error(L, ".personalityindex must precede .handlerdata directive"); 11831 UC.emitHandlerDataLocNotes(); 11832 return true; 11833 } 11834 if (HasExistingPersonality) { 11835 Error(L, "multiple personality directives"); 11836 UC.emitPersonalityLocNotes(); 11837 return true; 11838 } 11839 11840 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 11841 if (!CE) 11842 return Error(IndexLoc, "index must be a constant number"); 11843 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 11844 return Error(IndexLoc, 11845 "personality routine index should be in range [0-3]"); 11846 11847 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 11848 return false; 11849 } 11850 11851 /// parseDirectiveUnwindRaw 11852 /// ::= .unwind_raw offset, opcode [, opcode...] 11853 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 11854 MCAsmParser &Parser = getParser(); 11855 int64_t StackOffset; 11856 const MCExpr *OffsetExpr; 11857 SMLoc OffsetLoc = getLexer().getLoc(); 11858 11859 if (!UC.hasFnStart()) 11860 return Error(L, ".fnstart must precede .unwind_raw directives"); 11861 if (getParser().parseExpression(OffsetExpr)) 11862 return Error(OffsetLoc, "expected expression"); 11863 11864 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11865 if (!CE) 11866 return Error(OffsetLoc, "offset must be a constant"); 11867 11868 StackOffset = CE->getValue(); 11869 11870 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 11871 return true; 11872 11873 SmallVector<uint8_t, 16> Opcodes; 11874 11875 auto parseOne = [&]() -> bool { 11876 const MCExpr *OE = nullptr; 11877 SMLoc OpcodeLoc = getLexer().getLoc(); 11878 if (check(getLexer().is(AsmToken::EndOfStatement) || 11879 Parser.parseExpression(OE), 11880 OpcodeLoc, "expected opcode expression")) 11881 return true; 11882 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 11883 if (!OC) 11884 return Error(OpcodeLoc, "opcode value must be a constant"); 11885 const int64_t Opcode = OC->getValue(); 11886 if (Opcode & ~0xff) 11887 return Error(OpcodeLoc, "invalid opcode"); 11888 Opcodes.push_back(uint8_t(Opcode)); 11889 return false; 11890 }; 11891 11892 // Must have at least 1 element 11893 SMLoc OpcodeLoc = getLexer().getLoc(); 11894 if (parseOptionalToken(AsmToken::EndOfStatement)) 11895 return Error(OpcodeLoc, "expected opcode expression"); 11896 if (parseMany(parseOne)) 11897 return true; 11898 11899 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 11900 return false; 11901 } 11902 11903 /// parseDirectiveTLSDescSeq 11904 /// ::= .tlsdescseq tls-variable 11905 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 11906 MCAsmParser &Parser = getParser(); 11907 11908 if (getLexer().isNot(AsmToken::Identifier)) 11909 return TokError("expected variable after '.tlsdescseq' directive"); 11910 11911 const MCSymbolRefExpr *SRE = 11912 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 11913 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 11914 Lex(); 11915 11916 if (parseToken(AsmToken::EndOfStatement, 11917 "unexpected token in '.tlsdescseq' directive")) 11918 return true; 11919 11920 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 11921 return false; 11922 } 11923 11924 /// parseDirectiveMovSP 11925 /// ::= .movsp reg [, #offset] 11926 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 11927 MCAsmParser &Parser = getParser(); 11928 if (!UC.hasFnStart()) 11929 return Error(L, ".fnstart must precede .movsp directives"); 11930 if (UC.getFPReg() != ARM::SP) 11931 return Error(L, "unexpected .movsp directive"); 11932 11933 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11934 int SPReg = tryParseRegister(); 11935 if (SPReg == -1) 11936 return Error(SPRegLoc, "register expected"); 11937 if (SPReg == ARM::SP || SPReg == ARM::PC) 11938 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 11939 11940 int64_t Offset = 0; 11941 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11942 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 11943 return true; 11944 11945 const MCExpr *OffsetExpr; 11946 SMLoc OffsetLoc = Parser.getTok().getLoc(); 11947 11948 if (Parser.parseExpression(OffsetExpr)) 11949 return Error(OffsetLoc, "malformed offset expression"); 11950 11951 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11952 if (!CE) 11953 return Error(OffsetLoc, "offset must be an immediate constant"); 11954 11955 Offset = CE->getValue(); 11956 } 11957 11958 if (parseToken(AsmToken::EndOfStatement, 11959 "unexpected token in '.movsp' directive")) 11960 return true; 11961 11962 getTargetStreamer().emitMovSP(SPReg, Offset); 11963 UC.saveFPReg(SPReg); 11964 11965 return false; 11966 } 11967 11968 /// parseDirectiveObjectArch 11969 /// ::= .object_arch name 11970 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 11971 MCAsmParser &Parser = getParser(); 11972 if (getLexer().isNot(AsmToken::Identifier)) 11973 return Error(getLexer().getLoc(), "unexpected token"); 11974 11975 StringRef Arch = Parser.getTok().getString(); 11976 SMLoc ArchLoc = Parser.getTok().getLoc(); 11977 Lex(); 11978 11979 ARM::ArchKind ID = ARM::parseArch(Arch); 11980 11981 if (ID == ARM::ArchKind::INVALID) 11982 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 11983 if (parseToken(AsmToken::EndOfStatement)) 11984 return true; 11985 11986 getTargetStreamer().emitObjectArch(ID); 11987 return false; 11988 } 11989 11990 /// parseDirectiveAlign 11991 /// ::= .align 11992 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 11993 // NOTE: if this is not the end of the statement, fall back to the target 11994 // agnostic handling for this directive which will correctly handle this. 11995 if (parseOptionalToken(AsmToken::EndOfStatement)) { 11996 // '.align' is target specifically handled to mean 2**2 byte alignment. 11997 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11998 assert(Section && "must have section to emit alignment"); 11999 if (Section->UseCodeAlign()) 12000 getStreamer().emitCodeAlignment(4, &getSTI(), 0); 12001 else 12002 getStreamer().emitValueToAlignment(4, 0, 1, 0); 12003 return false; 12004 } 12005 return true; 12006 } 12007 12008 /// parseDirectiveThumbSet 12009 /// ::= .thumb_set name, value 12010 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 12011 MCAsmParser &Parser = getParser(); 12012 12013 StringRef Name; 12014 if (check(Parser.parseIdentifier(Name), 12015 "expected identifier after '.thumb_set'") || 12016 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 12017 return true; 12018 12019 MCSymbol *Sym; 12020 const MCExpr *Value; 12021 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 12022 Parser, Sym, Value)) 12023 return true; 12024 12025 getTargetStreamer().emitThumbSet(Sym, Value); 12026 return false; 12027 } 12028 12029 /// Force static initialization. 12030 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmParser() { 12031 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 12032 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 12033 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 12034 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 12035 } 12036 12037 #define GET_REGISTER_MATCHER 12038 #define GET_SUBTARGET_FEATURE_NAME 12039 #define GET_MATCHER_IMPLEMENTATION 12040 #define GET_MNEMONIC_SPELL_CHECKER 12041 #include "ARMGenAsmMatcher.inc" 12042 12043 // Some diagnostics need to vary with subtarget features, so they are handled 12044 // here. For example, the DPR class has either 16 or 32 registers, depending 12045 // on the FPU available. 12046 const char * 12047 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { 12048 switch (MatchError) { 12049 // rGPR contains sp starting with ARMv8. 12050 case Match_rGPR: 12051 return hasV8Ops() ? "operand must be a register in range [r0, r14]" 12052 : "operand must be a register in range [r0, r12] or r14"; 12053 // DPR contains 16 registers for some FPUs, and 32 for others. 12054 case Match_DPR: 12055 return hasD32() ? "operand must be a register in range [d0, d31]" 12056 : "operand must be a register in range [d0, d15]"; 12057 case Match_DPR_RegList: 12058 return hasD32() ? "operand must be a list of registers in range [d0, d31]" 12059 : "operand must be a list of registers in range [d0, d15]"; 12060 12061 // For all other diags, use the static string from tablegen. 12062 default: 12063 return getMatchKindDiag(MatchError); 12064 } 12065 } 12066 12067 // Process the list of near-misses, throwing away ones we don't want to report 12068 // to the user, and converting the rest to a source location and string that 12069 // should be reported. 12070 void 12071 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 12072 SmallVectorImpl<NearMissMessage> &NearMissesOut, 12073 SMLoc IDLoc, OperandVector &Operands) { 12074 // TODO: If operand didn't match, sub in a dummy one and run target 12075 // predicate, so that we can avoid reporting near-misses that are invalid? 12076 // TODO: Many operand types dont have SuperClasses set, so we report 12077 // redundant ones. 12078 // TODO: Some operands are superclasses of registers (e.g. 12079 // MCK_RegShiftedImm), we don't have any way to represent that currently. 12080 // TODO: This is not all ARM-specific, can some of it be factored out? 12081 12082 // Record some information about near-misses that we have already seen, so 12083 // that we can avoid reporting redundant ones. For example, if there are 12084 // variants of an instruction that take 8- and 16-bit immediates, we want 12085 // to only report the widest one. 12086 std::multimap<unsigned, unsigned> OperandMissesSeen; 12087 SmallSet<FeatureBitset, 4> FeatureMissesSeen; 12088 bool ReportedTooFewOperands = false; 12089 12090 // Process the near-misses in reverse order, so that we see more general ones 12091 // first, and so can avoid emitting more specific ones. 12092 for (NearMissInfo &I : reverse(NearMissesIn)) { 12093 switch (I.getKind()) { 12094 case NearMissInfo::NearMissOperand: { 12095 SMLoc OperandLoc = 12096 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); 12097 const char *OperandDiag = 12098 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); 12099 12100 // If we have already emitted a message for a superclass, don't also report 12101 // the sub-class. We consider all operand classes that we don't have a 12102 // specialised diagnostic for to be equal for the propose of this check, 12103 // so that we don't report the generic error multiple times on the same 12104 // operand. 12105 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; 12106 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); 12107 if (std::any_of(PrevReports.first, PrevReports.second, 12108 [DupCheckMatchClass]( 12109 const std::pair<unsigned, unsigned> Pair) { 12110 if (DupCheckMatchClass == ~0U || Pair.second == ~0U) 12111 return Pair.second == DupCheckMatchClass; 12112 else 12113 return isSubclass((MatchClassKind)DupCheckMatchClass, 12114 (MatchClassKind)Pair.second); 12115 })) 12116 break; 12117 OperandMissesSeen.insert( 12118 std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); 12119 12120 NearMissMessage Message; 12121 Message.Loc = OperandLoc; 12122 if (OperandDiag) { 12123 Message.Message = OperandDiag; 12124 } else if (I.getOperandClass() == InvalidMatchClass) { 12125 Message.Message = "too many operands for instruction"; 12126 } else { 12127 Message.Message = "invalid operand for instruction"; 12128 LLVM_DEBUG( 12129 dbgs() << "Missing diagnostic string for operand class " 12130 << getMatchClassName((MatchClassKind)I.getOperandClass()) 12131 << I.getOperandClass() << ", error " << I.getOperandError() 12132 << ", opcode " << MII.getName(I.getOpcode()) << "\n"); 12133 } 12134 NearMissesOut.emplace_back(Message); 12135 break; 12136 } 12137 case NearMissInfo::NearMissFeature: { 12138 const FeatureBitset &MissingFeatures = I.getFeatures(); 12139 // Don't report the same set of features twice. 12140 if (FeatureMissesSeen.count(MissingFeatures)) 12141 break; 12142 FeatureMissesSeen.insert(MissingFeatures); 12143 12144 // Special case: don't report a feature set which includes arm-mode for 12145 // targets that don't have ARM mode. 12146 if (MissingFeatures.test(Feature_IsARMBit) && !hasARM()) 12147 break; 12148 // Don't report any near-misses that both require switching instruction 12149 // set, and adding other subtarget features. 12150 if (isThumb() && MissingFeatures.test(Feature_IsARMBit) && 12151 MissingFeatures.count() > 1) 12152 break; 12153 if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) && 12154 MissingFeatures.count() > 1) 12155 break; 12156 if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) && 12157 (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit, 12158 Feature_IsThumbBit})).any()) 12159 break; 12160 if (isMClass() && MissingFeatures.test(Feature_HasNEONBit)) 12161 break; 12162 12163 NearMissMessage Message; 12164 Message.Loc = IDLoc; 12165 raw_svector_ostream OS(Message.Message); 12166 12167 OS << "instruction requires:"; 12168 for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) 12169 if (MissingFeatures.test(i)) 12170 OS << ' ' << getSubtargetFeatureName(i); 12171 12172 NearMissesOut.emplace_back(Message); 12173 12174 break; 12175 } 12176 case NearMissInfo::NearMissPredicate: { 12177 NearMissMessage Message; 12178 Message.Loc = IDLoc; 12179 switch (I.getPredicateError()) { 12180 case Match_RequiresNotITBlock: 12181 Message.Message = "flag setting instruction only valid outside IT block"; 12182 break; 12183 case Match_RequiresITBlock: 12184 Message.Message = "instruction only valid inside IT block"; 12185 break; 12186 case Match_RequiresV6: 12187 Message.Message = "instruction variant requires ARMv6 or later"; 12188 break; 12189 case Match_RequiresThumb2: 12190 Message.Message = "instruction variant requires Thumb2"; 12191 break; 12192 case Match_RequiresV8: 12193 Message.Message = "instruction variant requires ARMv8 or later"; 12194 break; 12195 case Match_RequiresFlagSetting: 12196 Message.Message = "no flag-preserving variant of this instruction available"; 12197 break; 12198 case Match_InvalidOperand: 12199 Message.Message = "invalid operand for instruction"; 12200 break; 12201 default: 12202 llvm_unreachable("Unhandled target predicate error"); 12203 break; 12204 } 12205 NearMissesOut.emplace_back(Message); 12206 break; 12207 } 12208 case NearMissInfo::NearMissTooFewOperands: { 12209 if (!ReportedTooFewOperands) { 12210 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); 12211 NearMissesOut.emplace_back(NearMissMessage{ 12212 EndLoc, StringRef("too few operands for instruction")}); 12213 ReportedTooFewOperands = true; 12214 } 12215 break; 12216 } 12217 case NearMissInfo::NoNearMiss: 12218 // This should never leave the matcher. 12219 llvm_unreachable("not a near-miss"); 12220 break; 12221 } 12222 } 12223 } 12224 12225 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, 12226 SMLoc IDLoc, OperandVector &Operands) { 12227 SmallVector<NearMissMessage, 4> Messages; 12228 FilterNearMisses(NearMisses, Messages, IDLoc, Operands); 12229 12230 if (Messages.size() == 0) { 12231 // No near-misses were found, so the best we can do is "invalid 12232 // instruction". 12233 Error(IDLoc, "invalid instruction"); 12234 } else if (Messages.size() == 1) { 12235 // One near miss was found, report it as the sole error. 12236 Error(Messages[0].Loc, Messages[0].Message); 12237 } else { 12238 // More than one near miss, so report a generic "invalid instruction" 12239 // error, followed by notes for each of the near-misses. 12240 Error(IDLoc, "invalid instruction, any one of the following would fix this:"); 12241 for (auto &M : Messages) { 12242 Note(M.Loc, M.Message); 12243 } 12244 } 12245 } 12246 12247 bool ARMAsmParser::enableArchExtFeature(StringRef Name, SMLoc &ExtLoc) { 12248 // FIXME: This structure should be moved inside ARMTargetParser 12249 // when we start to table-generate them, and we can use the ARM 12250 // flags below, that were generated by table-gen. 12251 static const struct { 12252 const uint64_t Kind; 12253 const FeatureBitset ArchCheck; 12254 const FeatureBitset Features; 12255 } Extensions[] = { 12256 {ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC}}, 12257 {ARM::AEK_AES, 12258 {Feature_HasV8Bit}, 12259 {ARM::FeatureAES, ARM::FeatureNEON, ARM::FeatureFPARMv8}}, 12260 {ARM::AEK_SHA2, 12261 {Feature_HasV8Bit}, 12262 {ARM::FeatureSHA2, ARM::FeatureNEON, ARM::FeatureFPARMv8}}, 12263 {ARM::AEK_CRYPTO, 12264 {Feature_HasV8Bit}, 12265 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8}}, 12266 {ARM::AEK_FP, 12267 {Feature_HasV8Bit}, 12268 {ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8}}, 12269 {(ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), 12270 {Feature_HasV7Bit, Feature_IsNotMClassBit}, 12271 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM}}, 12272 {ARM::AEK_MP, 12273 {Feature_HasV7Bit, Feature_IsNotMClassBit}, 12274 {ARM::FeatureMP}}, 12275 {ARM::AEK_SIMD, 12276 {Feature_HasV8Bit}, 12277 {ARM::FeatureNEON, ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8}}, 12278 {ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone}}, 12279 // FIXME: Only available in A-class, isel not predicated 12280 {ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization}}, 12281 {ARM::AEK_FP16, 12282 {Feature_HasV8_2aBit}, 12283 {ARM::FeatureFPARMv8, ARM::FeatureFullFP16}}, 12284 {ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS}}, 12285 {ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB}}, 12286 {ARM::AEK_PACBTI, {Feature_HasV8_1MMainlineBit}, {ARM::FeaturePACBTI}}, 12287 // FIXME: Unsupported extensions. 12288 {ARM::AEK_OS, {}, {}}, 12289 {ARM::AEK_IWMMXT, {}, {}}, 12290 {ARM::AEK_IWMMXT2, {}, {}}, 12291 {ARM::AEK_MAVERICK, {}, {}}, 12292 {ARM::AEK_XSCALE, {}, {}}, 12293 }; 12294 bool EnableFeature = true; 12295 if (Name.startswith_insensitive("no")) { 12296 EnableFeature = false; 12297 Name = Name.substr(2); 12298 } 12299 uint64_t FeatureKind = ARM::parseArchExt(Name); 12300 if (FeatureKind == ARM::AEK_INVALID) 12301 return Error(ExtLoc, "unknown architectural extension: " + Name); 12302 12303 for (const auto &Extension : Extensions) { 12304 if (Extension.Kind != FeatureKind) 12305 continue; 12306 12307 if (Extension.Features.none()) 12308 return Error(ExtLoc, "unsupported architectural extension: " + Name); 12309 12310 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 12311 return Error(ExtLoc, "architectural extension '" + Name + 12312 "' is not " 12313 "allowed for the current base architecture"); 12314 12315 MCSubtargetInfo &STI = copySTI(); 12316 if (EnableFeature) { 12317 STI.SetFeatureBitsTransitively(Extension.Features); 12318 } else { 12319 STI.ClearFeatureBitsTransitively(Extension.Features); 12320 } 12321 FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits()); 12322 setAvailableFeatures(Features); 12323 return true; 12324 } 12325 return false; 12326 } 12327 12328 /// parseDirectiveArchExtension 12329 /// ::= .arch_extension [no]feature 12330 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 12331 12332 MCAsmParser &Parser = getParser(); 12333 12334 if (getLexer().isNot(AsmToken::Identifier)) 12335 return Error(getLexer().getLoc(), "expected architecture extension name"); 12336 12337 StringRef Name = Parser.getTok().getString(); 12338 SMLoc ExtLoc = Parser.getTok().getLoc(); 12339 Lex(); 12340 12341 if (parseToken(AsmToken::EndOfStatement, 12342 "unexpected token in '.arch_extension' directive")) 12343 return true; 12344 12345 if (Name == "nocrypto") { 12346 enableArchExtFeature("nosha2", ExtLoc); 12347 enableArchExtFeature("noaes", ExtLoc); 12348 } 12349 12350 if (enableArchExtFeature(Name, ExtLoc)) 12351 return false; 12352 12353 return Error(ExtLoc, "unknown architectural extension: " + Name); 12354 } 12355 12356 // Define this matcher function after the auto-generated include so we 12357 // have the match class enum definitions. 12358 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 12359 unsigned Kind) { 12360 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 12361 // If the kind is a token for a literal immediate, check if our asm 12362 // operand matches. This is for InstAliases which have a fixed-value 12363 // immediate in the syntax. 12364 switch (Kind) { 12365 default: break; 12366 case MCK__HASH_0: 12367 if (Op.isImm()) 12368 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 12369 if (CE->getValue() == 0) 12370 return Match_Success; 12371 break; 12372 case MCK__HASH_8: 12373 if (Op.isImm()) 12374 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 12375 if (CE->getValue() == 8) 12376 return Match_Success; 12377 break; 12378 case MCK__HASH_16: 12379 if (Op.isImm()) 12380 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 12381 if (CE->getValue() == 16) 12382 return Match_Success; 12383 break; 12384 case MCK_ModImm: 12385 if (Op.isImm()) { 12386 const MCExpr *SOExpr = Op.getImm(); 12387 int64_t Value; 12388 if (!SOExpr->evaluateAsAbsolute(Value)) 12389 return Match_Success; 12390 assert((Value >= std::numeric_limits<int32_t>::min() && 12391 Value <= std::numeric_limits<uint32_t>::max()) && 12392 "expression value must be representable in 32 bits"); 12393 } 12394 break; 12395 case MCK_rGPR: 12396 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 12397 return Match_Success; 12398 return Match_rGPR; 12399 case MCK_GPRPair: 12400 if (Op.isReg() && 12401 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 12402 return Match_Success; 12403 break; 12404 } 12405 return Match_InvalidOperand; 12406 } 12407 12408 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic, 12409 StringRef ExtraToken) { 12410 if (!hasMVE()) 12411 return false; 12412 12413 return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") || 12414 Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") || 12415 Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") || 12416 Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") || 12417 Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") || 12418 Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") || 12419 Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") || 12420 Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") || 12421 Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") || 12422 Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") || 12423 Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") || 12424 Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") || 12425 Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") || 12426 Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") || 12427 Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") || 12428 Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") || 12429 Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") || 12430 Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") || 12431 Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") || 12432 Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") || 12433 Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") || 12434 Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") || 12435 Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") || 12436 Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") || 12437 Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") || 12438 Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") || 12439 Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") || 12440 Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") || 12441 Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") || 12442 Mnemonic.startswith("vqabs") || 12443 (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") || 12444 Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") || 12445 Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") || 12446 Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") || 12447 Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") || 12448 Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") || 12449 Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") || 12450 Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") || 12451 Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") || 12452 Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") || 12453 Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") || 12454 Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") || 12455 Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") || 12456 Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") || 12457 Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") || 12458 Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") || 12459 Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") || 12460 Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") || 12461 Mnemonic.startswith("vldrb") || 12462 (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") || 12463 (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") || 12464 Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") || 12465 Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") || 12466 Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") || 12467 Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") || 12468 Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") || 12469 Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") || 12470 Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") || 12471 Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") || 12472 Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") || 12473 Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") || 12474 Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") || 12475 Mnemonic.startswith("vcvt") || 12476 MS.isVPTPredicableCDEInstr(Mnemonic) || 12477 (Mnemonic.startswith("vmov") && 12478 !(ExtraToken == ".f16" || ExtraToken == ".32" || 12479 ExtraToken == ".16" || ExtraToken == ".8")); 12480 } 12481