xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp (revision 1165fc9a526630487a1feb63daef65c5aee1a583)
1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ARMBaseInstrInfo.h"
10 #include "ARMFeatures.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "MCTargetDesc/ARMBaseInfo.h"
13 #include "MCTargetDesc/ARMInstPrinter.h"
14 #include "MCTargetDesc/ARMMCExpr.h"
15 #include "MCTargetDesc/ARMMCTargetDesc.h"
16 #include "TargetInfo/ARMTargetInfo.h"
17 #include "Utils/ARMBaseInfo.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/StringSet.h"
27 #include "llvm/ADT/StringSwitch.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCExpr.h"
32 #include "llvm/MC/MCInst.h"
33 #include "llvm/MC/MCInstrDesc.h"
34 #include "llvm/MC/MCInstrInfo.h"
35 #include "llvm/MC/MCParser/MCAsmLexer.h"
36 #include "llvm/MC/MCParser/MCAsmParser.h"
37 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
38 #include "llvm/MC/MCParser/MCAsmParserUtils.h"
39 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
40 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSubtargetInfo.h"
45 #include "llvm/MC/MCSymbol.h"
46 #include "llvm/MC/SubtargetFeature.h"
47 #include "llvm/MC/TargetRegistry.h"
48 #include "llvm/Support/ARMBuildAttributes.h"
49 #include "llvm/Support/ARMEHABI.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/SMLoc.h"
56 #include "llvm/Support/TargetParser.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstddef>
61 #include <cstdint>
62 #include <iterator>
63 #include <limits>
64 #include <memory>
65 #include <string>
66 #include <utility>
67 #include <vector>
68 
69 #define DEBUG_TYPE "asm-parser"
70 
71 using namespace llvm;
72 
73 namespace llvm {
74 extern const MCInstrDesc ARMInsts[];
75 } // end namespace llvm
76 
77 namespace {
78 
79 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly };
80 
81 static cl::opt<ImplicitItModeTy> ImplicitItMode(
82     "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly),
83     cl::desc("Allow conditional instructions outdside of an IT block"),
84     cl::values(clEnumValN(ImplicitItModeTy::Always, "always",
85                           "Accept in both ISAs, emit implicit ITs in Thumb"),
86                clEnumValN(ImplicitItModeTy::Never, "never",
87                           "Warn in ARM, reject in Thumb"),
88                clEnumValN(ImplicitItModeTy::ARMOnly, "arm",
89                           "Accept in ARM, reject in Thumb"),
90                clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb",
91                           "Warn in ARM, emit implicit ITs in Thumb")));
92 
93 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes",
94                                         cl::init(false));
95 
96 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
97 
98 static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) {
99   // Position==0 means we're not in an IT block at all. Position==1
100   // means we want the first state bit, which is always 0 (Then).
101   // Position==2 means we want the second state bit, stored at bit 3
102   // of Mask, and so on downwards. So (5 - Position) will shift the
103   // right bit down to bit 0, including the always-0 bit at bit 4 for
104   // the mandatory initial Then.
105   return (Mask >> (5 - Position) & 1);
106 }
107 
108 class UnwindContext {
109   using Locs = SmallVector<SMLoc, 4>;
110 
111   MCAsmParser &Parser;
112   Locs FnStartLocs;
113   Locs CantUnwindLocs;
114   Locs PersonalityLocs;
115   Locs PersonalityIndexLocs;
116   Locs HandlerDataLocs;
117   int FPReg;
118 
119 public:
120   UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}
121 
122   bool hasFnStart() const { return !FnStartLocs.empty(); }
123   bool cantUnwind() const { return !CantUnwindLocs.empty(); }
124   bool hasHandlerData() const { return !HandlerDataLocs.empty(); }
125 
126   bool hasPersonality() const {
127     return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
128   }
129 
130   void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
131   void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
132   void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
133   void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
134   void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }
135 
136   void saveFPReg(int Reg) { FPReg = Reg; }
137   int getFPReg() const { return FPReg; }
138 
139   void emitFnStartLocNotes() const {
140     for (const SMLoc &Loc : FnStartLocs)
141       Parser.Note(Loc, ".fnstart was specified here");
142   }
143 
144   void emitCantUnwindLocNotes() const {
145     for (const SMLoc &Loc : CantUnwindLocs)
146       Parser.Note(Loc, ".cantunwind was specified here");
147   }
148 
149   void emitHandlerDataLocNotes() const {
150     for (const SMLoc &Loc : HandlerDataLocs)
151       Parser.Note(Loc, ".handlerdata was specified here");
152   }
153 
154   void emitPersonalityLocNotes() const {
155     for (Locs::const_iterator PI = PersonalityLocs.begin(),
156                               PE = PersonalityLocs.end(),
157                               PII = PersonalityIndexLocs.begin(),
158                               PIE = PersonalityIndexLocs.end();
159          PI != PE || PII != PIE;) {
160       if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
161         Parser.Note(*PI++, ".personality was specified here");
162       else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
163         Parser.Note(*PII++, ".personalityindex was specified here");
164       else
165         llvm_unreachable(".personality and .personalityindex cannot be "
166                          "at the same location");
167     }
168   }
169 
170   void reset() {
171     FnStartLocs = Locs();
172     CantUnwindLocs = Locs();
173     PersonalityLocs = Locs();
174     HandlerDataLocs = Locs();
175     PersonalityIndexLocs = Locs();
176     FPReg = ARM::SP;
177   }
178 };
179 
180 // Various sets of ARM instruction mnemonics which are used by the asm parser
181 class ARMMnemonicSets {
182   StringSet<> CDE;
183   StringSet<> CDEWithVPTSuffix;
184 public:
185   ARMMnemonicSets(const MCSubtargetInfo &STI);
186 
187   /// Returns true iff a given mnemonic is a CDE instruction
188   bool isCDEInstr(StringRef Mnemonic) {
189     // Quick check before searching the set
190     if (!Mnemonic.startswith("cx") && !Mnemonic.startswith("vcx"))
191       return false;
192     return CDE.count(Mnemonic);
193   }
194 
195   /// Returns true iff a given mnemonic is a VPT-predicable CDE instruction
196   /// (possibly with a predication suffix "e" or "t")
197   bool isVPTPredicableCDEInstr(StringRef Mnemonic) {
198     if (!Mnemonic.startswith("vcx"))
199       return false;
200     return CDEWithVPTSuffix.count(Mnemonic);
201   }
202 
203   /// Returns true iff a given mnemonic is an IT-predicable CDE instruction
204   /// (possibly with a condition suffix)
205   bool isITPredicableCDEInstr(StringRef Mnemonic) {
206     if (!Mnemonic.startswith("cx"))
207       return false;
208     return Mnemonic.startswith("cx1a") || Mnemonic.startswith("cx1da") ||
209            Mnemonic.startswith("cx2a") || Mnemonic.startswith("cx2da") ||
210            Mnemonic.startswith("cx3a") || Mnemonic.startswith("cx3da");
211   }
212 
213   /// Return true iff a given mnemonic is an integer CDE instruction with
214   /// dual-register destination
215   bool isCDEDualRegInstr(StringRef Mnemonic) {
216     if (!Mnemonic.startswith("cx"))
217       return false;
218     return Mnemonic == "cx1d" || Mnemonic == "cx1da" ||
219            Mnemonic == "cx2d" || Mnemonic == "cx2da" ||
220            Mnemonic == "cx3d" || Mnemonic == "cx3da";
221   }
222 };
223 
224 ARMMnemonicSets::ARMMnemonicSets(const MCSubtargetInfo &STI) {
225   for (StringRef Mnemonic: { "cx1", "cx1a", "cx1d", "cx1da",
226                              "cx2", "cx2a", "cx2d", "cx2da",
227                              "cx3", "cx3a", "cx3d", "cx3da", })
228     CDE.insert(Mnemonic);
229   for (StringRef Mnemonic :
230        {"vcx1", "vcx1a", "vcx2", "vcx2a", "vcx3", "vcx3a"}) {
231     CDE.insert(Mnemonic);
232     CDEWithVPTSuffix.insert(Mnemonic);
233     CDEWithVPTSuffix.insert(std::string(Mnemonic) + "t");
234     CDEWithVPTSuffix.insert(std::string(Mnemonic) + "e");
235   }
236 }
237 
238 class ARMAsmParser : public MCTargetAsmParser {
239   const MCRegisterInfo *MRI;
240   UnwindContext UC;
241   ARMMnemonicSets MS;
242 
243   ARMTargetStreamer &getTargetStreamer() {
244     assert(getParser().getStreamer().getTargetStreamer() &&
245            "do not have a target streamer");
246     MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
247     return static_cast<ARMTargetStreamer &>(TS);
248   }
249 
250   // Map of register aliases registers via the .req directive.
251   StringMap<unsigned> RegisterReqs;
252 
253   bool NextSymbolIsThumb;
254 
255   bool useImplicitITThumb() const {
256     return ImplicitItMode == ImplicitItModeTy::Always ||
257            ImplicitItMode == ImplicitItModeTy::ThumbOnly;
258   }
259 
260   bool useImplicitITARM() const {
261     return ImplicitItMode == ImplicitItModeTy::Always ||
262            ImplicitItMode == ImplicitItModeTy::ARMOnly;
263   }
264 
265   struct {
266     ARMCC::CondCodes Cond;    // Condition for IT block.
267     unsigned Mask:4;          // Condition mask for instructions.
268                               // Starting at first 1 (from lsb).
269                               //   '1'  condition as indicated in IT.
270                               //   '0'  inverse of condition (else).
271                               // Count of instructions in IT block is
272                               // 4 - trailingzeroes(mask)
273                               // Note that this does not have the same encoding
274                               // as in the IT instruction, which also depends
275                               // on the low bit of the condition code.
276 
277     unsigned CurPosition;     // Current position in parsing of IT
278                               // block. In range [0,4], with 0 being the IT
279                               // instruction itself. Initialized according to
280                               // count of instructions in block.  ~0U if no
281                               // active IT block.
282 
283     bool IsExplicit;          // true  - The IT instruction was present in the
284                               //         input, we should not modify it.
285                               // false - The IT instruction was added
286                               //         implicitly, we can extend it if that
287                               //         would be legal.
288   } ITState;
289 
290   SmallVector<MCInst, 4> PendingConditionalInsts;
291 
292   void flushPendingInstructions(MCStreamer &Out) override {
293     if (!inImplicitITBlock()) {
294       assert(PendingConditionalInsts.size() == 0);
295       return;
296     }
297 
298     // Emit the IT instruction
299     MCInst ITInst;
300     ITInst.setOpcode(ARM::t2IT);
301     ITInst.addOperand(MCOperand::createImm(ITState.Cond));
302     ITInst.addOperand(MCOperand::createImm(ITState.Mask));
303     Out.emitInstruction(ITInst, getSTI());
304 
305     // Emit the conditonal instructions
306     assert(PendingConditionalInsts.size() <= 4);
307     for (const MCInst &Inst : PendingConditionalInsts) {
308       Out.emitInstruction(Inst, getSTI());
309     }
310     PendingConditionalInsts.clear();
311 
312     // Clear the IT state
313     ITState.Mask = 0;
314     ITState.CurPosition = ~0U;
315   }
316 
317   bool inITBlock() { return ITState.CurPosition != ~0U; }
318   bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; }
319   bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; }
320 
321   bool lastInITBlock() {
322     return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask);
323   }
324 
325   void forwardITPosition() {
326     if (!inITBlock()) return;
327     // Move to the next instruction in the IT block, if there is one. If not,
328     // mark the block as done, except for implicit IT blocks, which we leave
329     // open until we find an instruction that can't be added to it.
330     unsigned TZ = countTrailingZeros(ITState.Mask);
331     if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit)
332       ITState.CurPosition = ~0U; // Done with the IT block after this.
333   }
334 
335   // Rewind the state of the current IT block, removing the last slot from it.
336   void rewindImplicitITPosition() {
337     assert(inImplicitITBlock());
338     assert(ITState.CurPosition > 1);
339     ITState.CurPosition--;
340     unsigned TZ = countTrailingZeros(ITState.Mask);
341     unsigned NewMask = 0;
342     NewMask |= ITState.Mask & (0xC << TZ);
343     NewMask |= 0x2 << TZ;
344     ITState.Mask = NewMask;
345   }
346 
347   // Rewind the state of the current IT block, removing the last slot from it.
348   // If we were at the first slot, this closes the IT block.
349   void discardImplicitITBlock() {
350     assert(inImplicitITBlock());
351     assert(ITState.CurPosition == 1);
352     ITState.CurPosition = ~0U;
353   }
354 
355   // Return the low-subreg of a given Q register.
356   unsigned getDRegFromQReg(unsigned QReg) const {
357     return MRI->getSubReg(QReg, ARM::dsub_0);
358   }
359 
360   // Get the condition code corresponding to the current IT block slot.
361   ARMCC::CondCodes currentITCond() {
362     unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition);
363     return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond;
364   }
365 
366   // Invert the condition of the current IT block slot without changing any
367   // other slots in the same block.
368   void invertCurrentITCondition() {
369     if (ITState.CurPosition == 1) {
370       ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond);
371     } else {
372       ITState.Mask ^= 1 << (5 - ITState.CurPosition);
373     }
374   }
375 
376   // Returns true if the current IT block is full (all 4 slots used).
377   bool isITBlockFull() {
378     return inITBlock() && (ITState.Mask & 1);
379   }
380 
381   // Extend the current implicit IT block to have one more slot with the given
382   // condition code.
383   void extendImplicitITBlock(ARMCC::CondCodes Cond) {
384     assert(inImplicitITBlock());
385     assert(!isITBlockFull());
386     assert(Cond == ITState.Cond ||
387            Cond == ARMCC::getOppositeCondition(ITState.Cond));
388     unsigned TZ = countTrailingZeros(ITState.Mask);
389     unsigned NewMask = 0;
390     // Keep any existing condition bits.
391     NewMask |= ITState.Mask & (0xE << TZ);
392     // Insert the new condition bit.
393     NewMask |= (Cond != ITState.Cond) << TZ;
394     // Move the trailing 1 down one bit.
395     NewMask |= 1 << (TZ - 1);
396     ITState.Mask = NewMask;
397   }
398 
399   // Create a new implicit IT block with a dummy condition code.
400   void startImplicitITBlock() {
401     assert(!inITBlock());
402     ITState.Cond = ARMCC::AL;
403     ITState.Mask = 8;
404     ITState.CurPosition = 1;
405     ITState.IsExplicit = false;
406   }
407 
408   // Create a new explicit IT block with the given condition and mask.
409   // The mask should be in the format used in ARMOperand and
410   // MCOperand, with a 1 implying 'e', regardless of the low bit of
411   // the condition.
412   void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) {
413     assert(!inITBlock());
414     ITState.Cond = Cond;
415     ITState.Mask = Mask;
416     ITState.CurPosition = 0;
417     ITState.IsExplicit = true;
418   }
419 
420   struct {
421     unsigned Mask : 4;
422     unsigned CurPosition;
423   } VPTState;
424   bool inVPTBlock() { return VPTState.CurPosition != ~0U; }
425   void forwardVPTPosition() {
426     if (!inVPTBlock()) return;
427     unsigned TZ = countTrailingZeros(VPTState.Mask);
428     if (++VPTState.CurPosition == 5 - TZ)
429       VPTState.CurPosition = ~0U;
430   }
431 
432   void Note(SMLoc L, const Twine &Msg, SMRange Range = None) {
433     return getParser().Note(L, Msg, Range);
434   }
435 
436   bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) {
437     return getParser().Warning(L, Msg, Range);
438   }
439 
440   bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) {
441     return getParser().Error(L, Msg, Range);
442   }
443 
444   bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands,
445                            unsigned ListNo, bool IsARPop = false);
446   bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands,
447                            unsigned ListNo);
448 
449   int tryParseRegister();
450   bool tryParseRegisterWithWriteBack(OperandVector &);
451   int tryParseShiftRegister(OperandVector &);
452   bool parseRegisterList(OperandVector &, bool EnforceOrder = true,
453                          bool AllowRAAC = false);
454   bool parseMemory(OperandVector &);
455   bool parseOperand(OperandVector &, StringRef Mnemonic);
456   bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
457   bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
458                               unsigned &ShiftAmount);
459   bool parseLiteralValues(unsigned Size, SMLoc L);
460   bool parseDirectiveThumb(SMLoc L);
461   bool parseDirectiveARM(SMLoc L);
462   bool parseDirectiveThumbFunc(SMLoc L);
463   bool parseDirectiveCode(SMLoc L);
464   bool parseDirectiveSyntax(SMLoc L);
465   bool parseDirectiveReq(StringRef Name, SMLoc L);
466   bool parseDirectiveUnreq(SMLoc L);
467   bool parseDirectiveArch(SMLoc L);
468   bool parseDirectiveEabiAttr(SMLoc L);
469   bool parseDirectiveCPU(SMLoc L);
470   bool parseDirectiveFPU(SMLoc L);
471   bool parseDirectiveFnStart(SMLoc L);
472   bool parseDirectiveFnEnd(SMLoc L);
473   bool parseDirectiveCantUnwind(SMLoc L);
474   bool parseDirectivePersonality(SMLoc L);
475   bool parseDirectiveHandlerData(SMLoc L);
476   bool parseDirectiveSetFP(SMLoc L);
477   bool parseDirectivePad(SMLoc L);
478   bool parseDirectiveRegSave(SMLoc L, bool IsVector);
479   bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
480   bool parseDirectiveLtorg(SMLoc L);
481   bool parseDirectiveEven(SMLoc L);
482   bool parseDirectivePersonalityIndex(SMLoc L);
483   bool parseDirectiveUnwindRaw(SMLoc L);
484   bool parseDirectiveTLSDescSeq(SMLoc L);
485   bool parseDirectiveMovSP(SMLoc L);
486   bool parseDirectiveObjectArch(SMLoc L);
487   bool parseDirectiveArchExtension(SMLoc L);
488   bool parseDirectiveAlign(SMLoc L);
489   bool parseDirectiveThumbSet(SMLoc L);
490 
491   bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken);
492   StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken,
493                           unsigned &PredicationCode,
494                           unsigned &VPTPredicationCode, bool &CarrySetting,
495                           unsigned &ProcessorIMod, StringRef &ITMask);
496   void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken,
497                              StringRef FullInst, bool &CanAcceptCarrySet,
498                              bool &CanAcceptPredicationCode,
499                              bool &CanAcceptVPTPredicationCode);
500   bool enableArchExtFeature(StringRef Name, SMLoc &ExtLoc);
501 
502   void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting,
503                                      OperandVector &Operands);
504   bool CDEConvertDualRegOperand(StringRef Mnemonic, OperandVector &Operands);
505 
506   bool isThumb() const {
507     // FIXME: Can tablegen auto-generate this?
508     return getSTI().getFeatureBits()[ARM::ModeThumb];
509   }
510 
511   bool isThumbOne() const {
512     return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2];
513   }
514 
515   bool isThumbTwo() const {
516     return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2];
517   }
518 
519   bool hasThumb() const {
520     return getSTI().getFeatureBits()[ARM::HasV4TOps];
521   }
522 
523   bool hasThumb2() const {
524     return getSTI().getFeatureBits()[ARM::FeatureThumb2];
525   }
526 
527   bool hasV6Ops() const {
528     return getSTI().getFeatureBits()[ARM::HasV6Ops];
529   }
530 
531   bool hasV6T2Ops() const {
532     return getSTI().getFeatureBits()[ARM::HasV6T2Ops];
533   }
534 
535   bool hasV6MOps() const {
536     return getSTI().getFeatureBits()[ARM::HasV6MOps];
537   }
538 
539   bool hasV7Ops() const {
540     return getSTI().getFeatureBits()[ARM::HasV7Ops];
541   }
542 
543   bool hasV8Ops() const {
544     return getSTI().getFeatureBits()[ARM::HasV8Ops];
545   }
546 
547   bool hasV8MBaseline() const {
548     return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps];
549   }
550 
551   bool hasV8MMainline() const {
552     return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps];
553   }
554   bool hasV8_1MMainline() const {
555     return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps];
556   }
557   bool hasMVE() const {
558     return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps];
559   }
560   bool hasMVEFloat() const {
561     return getSTI().getFeatureBits()[ARM::HasMVEFloatOps];
562   }
563   bool hasCDE() const {
564     return getSTI().getFeatureBits()[ARM::HasCDEOps];
565   }
566   bool has8MSecExt() const {
567     return getSTI().getFeatureBits()[ARM::Feature8MSecExt];
568   }
569 
570   bool hasARM() const {
571     return !getSTI().getFeatureBits()[ARM::FeatureNoARM];
572   }
573 
574   bool hasDSP() const {
575     return getSTI().getFeatureBits()[ARM::FeatureDSP];
576   }
577 
578   bool hasD32() const {
579     return getSTI().getFeatureBits()[ARM::FeatureD32];
580   }
581 
582   bool hasV8_1aOps() const {
583     return getSTI().getFeatureBits()[ARM::HasV8_1aOps];
584   }
585 
586   bool hasRAS() const {
587     return getSTI().getFeatureBits()[ARM::FeatureRAS];
588   }
589 
590   void SwitchMode() {
591     MCSubtargetInfo &STI = copySTI();
592     auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
593     setAvailableFeatures(FB);
594   }
595 
596   void FixModeAfterArchChange(bool WasThumb, SMLoc Loc);
597 
598   bool isMClass() const {
599     return getSTI().getFeatureBits()[ARM::FeatureMClass];
600   }
601 
602   /// @name Auto-generated Match Functions
603   /// {
604 
605 #define GET_ASSEMBLER_HEADER
606 #include "ARMGenAsmMatcher.inc"
607 
608   /// }
609 
610   OperandMatchResultTy parseITCondCode(OperandVector &);
611   OperandMatchResultTy parseCoprocNumOperand(OperandVector &);
612   OperandMatchResultTy parseCoprocRegOperand(OperandVector &);
613   OperandMatchResultTy parseCoprocOptionOperand(OperandVector &);
614   OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &);
615   OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &);
616   OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
617   OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
618   OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
619   OperandMatchResultTy parseBankedRegOperand(OperandVector &);
620   OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
621                                    int High);
622   OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
623     return parsePKHImm(O, "lsl", 0, 31);
624   }
625   OperandMatchResultTy parsePKHASRImm(OperandVector &O) {
626     return parsePKHImm(O, "asr", 1, 32);
627   }
628   OperandMatchResultTy parseSetEndImm(OperandVector &);
629   OperandMatchResultTy parseShifterImm(OperandVector &);
630   OperandMatchResultTy parseRotImm(OperandVector &);
631   OperandMatchResultTy parseModImm(OperandVector &);
632   OperandMatchResultTy parseBitfield(OperandVector &);
633   OperandMatchResultTy parsePostIdxReg(OperandVector &);
634   OperandMatchResultTy parseAM3Offset(OperandVector &);
635   OperandMatchResultTy parseFPImm(OperandVector &);
636   OperandMatchResultTy parseVectorList(OperandVector &);
637   OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
638                                        SMLoc &EndLoc);
639 
640   // Asm Match Converter Methods
641   void cvtThumbMultiply(MCInst &Inst, const OperandVector &);
642   void cvtThumbBranches(MCInst &Inst, const OperandVector &);
643   void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &);
644 
645   bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
646   bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out);
647   bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands);
648   bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
649   bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
650   bool isITBlockTerminator(MCInst &Inst) const;
651   void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands);
652   bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands,
653                         bool Load, bool ARMMode, bool Writeback);
654 
655 public:
656   enum ARMMatchResultTy {
657     Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
658     Match_RequiresNotITBlock,
659     Match_RequiresV6,
660     Match_RequiresThumb2,
661     Match_RequiresV8,
662     Match_RequiresFlagSetting,
663 #define GET_OPERAND_DIAGNOSTIC_TYPES
664 #include "ARMGenAsmMatcher.inc"
665 
666   };
667 
668   ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
669                const MCInstrInfo &MII, const MCTargetOptions &Options)
670     : MCTargetAsmParser(Options, STI, MII), UC(Parser), MS(STI) {
671     MCAsmParserExtension::Initialize(Parser);
672 
673     // Cache the MCRegisterInfo.
674     MRI = getContext().getRegisterInfo();
675 
676     // Initialize the set of available features.
677     setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
678 
679     // Add build attributes based on the selected target.
680     if (AddBuildAttributes)
681       getTargetStreamer().emitTargetAttributes(STI);
682 
683     // Not in an ITBlock to start with.
684     ITState.CurPosition = ~0U;
685 
686     VPTState.CurPosition = ~0U;
687 
688     NextSymbolIsThumb = false;
689   }
690 
691   // Implementation of the MCTargetAsmParser interface:
692   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
693   OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
694                                         SMLoc &EndLoc) override;
695   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
696                         SMLoc NameLoc, OperandVector &Operands) override;
697   bool ParseDirective(AsmToken DirectiveID) override;
698 
699   unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
700                                       unsigned Kind) override;
701   unsigned checkTargetMatchPredicate(MCInst &Inst) override;
702 
703   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
704                                OperandVector &Operands, MCStreamer &Out,
705                                uint64_t &ErrorInfo,
706                                bool MatchingInlineAsm) override;
707   unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst,
708                             SmallVectorImpl<NearMissInfo> &NearMisses,
709                             bool MatchingInlineAsm, bool &EmitInITBlock,
710                             MCStreamer &Out);
711 
712   struct NearMissMessage {
713     SMLoc Loc;
714     SmallString<128> Message;
715   };
716 
717   const char *getCustomOperandDiag(ARMMatchResultTy MatchError);
718 
719   void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
720                         SmallVectorImpl<NearMissMessage> &NearMissesOut,
721                         SMLoc IDLoc, OperandVector &Operands);
722   void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc,
723                         OperandVector &Operands);
724 
725   void doBeforeLabelEmit(MCSymbol *Symbol) override;
726 
727   void onLabelParsed(MCSymbol *Symbol) override;
728 };
729 
730 /// ARMOperand - Instances of this class represent a parsed ARM machine
731 /// operand.
732 class ARMOperand : public MCParsedAsmOperand {
733   enum KindTy {
734     k_CondCode,
735     k_VPTPred,
736     k_CCOut,
737     k_ITCondMask,
738     k_CoprocNum,
739     k_CoprocReg,
740     k_CoprocOption,
741     k_Immediate,
742     k_MemBarrierOpt,
743     k_InstSyncBarrierOpt,
744     k_TraceSyncBarrierOpt,
745     k_Memory,
746     k_PostIndexRegister,
747     k_MSRMask,
748     k_BankedReg,
749     k_ProcIFlags,
750     k_VectorIndex,
751     k_Register,
752     k_RegisterList,
753     k_RegisterListWithAPSR,
754     k_DPRRegisterList,
755     k_SPRRegisterList,
756     k_FPSRegisterListWithVPR,
757     k_FPDRegisterListWithVPR,
758     k_VectorList,
759     k_VectorListAllLanes,
760     k_VectorListIndexed,
761     k_ShiftedRegister,
762     k_ShiftedImmediate,
763     k_ShifterImmediate,
764     k_RotateImmediate,
765     k_ModifiedImmediate,
766     k_ConstantPoolImmediate,
767     k_BitfieldDescriptor,
768     k_Token,
769   } Kind;
770 
771   SMLoc StartLoc, EndLoc, AlignmentLoc;
772   SmallVector<unsigned, 8> Registers;
773 
774   struct CCOp {
775     ARMCC::CondCodes Val;
776   };
777 
778   struct VCCOp {
779     ARMVCC::VPTCodes Val;
780   };
781 
782   struct CopOp {
783     unsigned Val;
784   };
785 
786   struct CoprocOptionOp {
787     unsigned Val;
788   };
789 
790   struct ITMaskOp {
791     unsigned Mask:4;
792   };
793 
794   struct MBOptOp {
795     ARM_MB::MemBOpt Val;
796   };
797 
798   struct ISBOptOp {
799     ARM_ISB::InstSyncBOpt Val;
800   };
801 
802   struct TSBOptOp {
803     ARM_TSB::TraceSyncBOpt Val;
804   };
805 
806   struct IFlagsOp {
807     ARM_PROC::IFlags Val;
808   };
809 
810   struct MMaskOp {
811     unsigned Val;
812   };
813 
814   struct BankedRegOp {
815     unsigned Val;
816   };
817 
818   struct TokOp {
819     const char *Data;
820     unsigned Length;
821   };
822 
823   struct RegOp {
824     unsigned RegNum;
825   };
826 
827   // A vector register list is a sequential list of 1 to 4 registers.
828   struct VectorListOp {
829     unsigned RegNum;
830     unsigned Count;
831     unsigned LaneIndex;
832     bool isDoubleSpaced;
833   };
834 
835   struct VectorIndexOp {
836     unsigned Val;
837   };
838 
839   struct ImmOp {
840     const MCExpr *Val;
841   };
842 
843   /// Combined record for all forms of ARM address expressions.
844   struct MemoryOp {
845     unsigned BaseRegNum;
846     // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
847     // was specified.
848     const MCExpr *OffsetImm;  // Offset immediate value
849     unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
850     ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
851     unsigned ShiftImm;        // shift for OffsetReg.
852     unsigned Alignment;       // 0 = no alignment specified
853     // n = alignment in bytes (2, 4, 8, 16, or 32)
854     unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
855   };
856 
857   struct PostIdxRegOp {
858     unsigned RegNum;
859     bool isAdd;
860     ARM_AM::ShiftOpc ShiftTy;
861     unsigned ShiftImm;
862   };
863 
864   struct ShifterImmOp {
865     bool isASR;
866     unsigned Imm;
867   };
868 
869   struct RegShiftedRegOp {
870     ARM_AM::ShiftOpc ShiftTy;
871     unsigned SrcReg;
872     unsigned ShiftReg;
873     unsigned ShiftImm;
874   };
875 
876   struct RegShiftedImmOp {
877     ARM_AM::ShiftOpc ShiftTy;
878     unsigned SrcReg;
879     unsigned ShiftImm;
880   };
881 
882   struct RotImmOp {
883     unsigned Imm;
884   };
885 
886   struct ModImmOp {
887     unsigned Bits;
888     unsigned Rot;
889   };
890 
891   struct BitfieldOp {
892     unsigned LSB;
893     unsigned Width;
894   };
895 
896   union {
897     struct CCOp CC;
898     struct VCCOp VCC;
899     struct CopOp Cop;
900     struct CoprocOptionOp CoprocOption;
901     struct MBOptOp MBOpt;
902     struct ISBOptOp ISBOpt;
903     struct TSBOptOp TSBOpt;
904     struct ITMaskOp ITMask;
905     struct IFlagsOp IFlags;
906     struct MMaskOp MMask;
907     struct BankedRegOp BankedReg;
908     struct TokOp Tok;
909     struct RegOp Reg;
910     struct VectorListOp VectorList;
911     struct VectorIndexOp VectorIndex;
912     struct ImmOp Imm;
913     struct MemoryOp Memory;
914     struct PostIdxRegOp PostIdxReg;
915     struct ShifterImmOp ShifterImm;
916     struct RegShiftedRegOp RegShiftedReg;
917     struct RegShiftedImmOp RegShiftedImm;
918     struct RotImmOp RotImm;
919     struct ModImmOp ModImm;
920     struct BitfieldOp Bitfield;
921   };
922 
923 public:
924   ARMOperand(KindTy K) : Kind(K) {}
925 
926   /// getStartLoc - Get the location of the first token of this operand.
927   SMLoc getStartLoc() const override { return StartLoc; }
928 
929   /// getEndLoc - Get the location of the last token of this operand.
930   SMLoc getEndLoc() const override { return EndLoc; }
931 
932   /// getLocRange - Get the range between the first and last token of this
933   /// operand.
934   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
935 
936   /// getAlignmentLoc - Get the location of the Alignment token of this operand.
937   SMLoc getAlignmentLoc() const {
938     assert(Kind == k_Memory && "Invalid access!");
939     return AlignmentLoc;
940   }
941 
942   ARMCC::CondCodes getCondCode() const {
943     assert(Kind == k_CondCode && "Invalid access!");
944     return CC.Val;
945   }
946 
947   ARMVCC::VPTCodes getVPTPred() const {
948     assert(isVPTPred() && "Invalid access!");
949     return VCC.Val;
950   }
951 
952   unsigned getCoproc() const {
953     assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
954     return Cop.Val;
955   }
956 
957   StringRef getToken() const {
958     assert(Kind == k_Token && "Invalid access!");
959     return StringRef(Tok.Data, Tok.Length);
960   }
961 
962   unsigned getReg() const override {
963     assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
964     return Reg.RegNum;
965   }
966 
967   const SmallVectorImpl<unsigned> &getRegList() const {
968     assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR ||
969             Kind == k_DPRRegisterList || Kind == k_SPRRegisterList ||
970             Kind == k_FPSRegisterListWithVPR ||
971             Kind == k_FPDRegisterListWithVPR) &&
972            "Invalid access!");
973     return Registers;
974   }
975 
976   const MCExpr *getImm() const {
977     assert(isImm() && "Invalid access!");
978     return Imm.Val;
979   }
980 
981   const MCExpr *getConstantPoolImm() const {
982     assert(isConstantPoolImm() && "Invalid access!");
983     return Imm.Val;
984   }
985 
986   unsigned getVectorIndex() const {
987     assert(Kind == k_VectorIndex && "Invalid access!");
988     return VectorIndex.Val;
989   }
990 
991   ARM_MB::MemBOpt getMemBarrierOpt() const {
992     assert(Kind == k_MemBarrierOpt && "Invalid access!");
993     return MBOpt.Val;
994   }
995 
996   ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
997     assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
998     return ISBOpt.Val;
999   }
1000 
1001   ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const {
1002     assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!");
1003     return TSBOpt.Val;
1004   }
1005 
1006   ARM_PROC::IFlags getProcIFlags() const {
1007     assert(Kind == k_ProcIFlags && "Invalid access!");
1008     return IFlags.Val;
1009   }
1010 
1011   unsigned getMSRMask() const {
1012     assert(Kind == k_MSRMask && "Invalid access!");
1013     return MMask.Val;
1014   }
1015 
1016   unsigned getBankedReg() const {
1017     assert(Kind == k_BankedReg && "Invalid access!");
1018     return BankedReg.Val;
1019   }
1020 
1021   bool isCoprocNum() const { return Kind == k_CoprocNum; }
1022   bool isCoprocReg() const { return Kind == k_CoprocReg; }
1023   bool isCoprocOption() const { return Kind == k_CoprocOption; }
1024   bool isCondCode() const { return Kind == k_CondCode; }
1025   bool isVPTPred() const { return Kind == k_VPTPred; }
1026   bool isCCOut() const { return Kind == k_CCOut; }
1027   bool isITMask() const { return Kind == k_ITCondMask; }
1028   bool isITCondCode() const { return Kind == k_CondCode; }
1029   bool isImm() const override {
1030     return Kind == k_Immediate;
1031   }
1032 
1033   bool isARMBranchTarget() const {
1034     if (!isImm()) return false;
1035 
1036     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
1037       return CE->getValue() % 4 == 0;
1038     return true;
1039   }
1040 
1041 
1042   bool isThumbBranchTarget() const {
1043     if (!isImm()) return false;
1044 
1045     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
1046       return CE->getValue() % 2 == 0;
1047     return true;
1048   }
1049 
1050   // checks whether this operand is an unsigned offset which fits is a field
1051   // of specified width and scaled by a specific number of bits
1052   template<unsigned width, unsigned scale>
1053   bool isUnsignedOffset() const {
1054     if (!isImm()) return false;
1055     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1056     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1057       int64_t Val = CE->getValue();
1058       int64_t Align = 1LL << scale;
1059       int64_t Max = Align * ((1LL << width) - 1);
1060       return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
1061     }
1062     return false;
1063   }
1064 
1065   // checks whether this operand is an signed offset which fits is a field
1066   // of specified width and scaled by a specific number of bits
1067   template<unsigned width, unsigned scale>
1068   bool isSignedOffset() const {
1069     if (!isImm()) return false;
1070     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1071     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1072       int64_t Val = CE->getValue();
1073       int64_t Align = 1LL << scale;
1074       int64_t Max = Align * ((1LL << (width-1)) - 1);
1075       int64_t Min = -Align * (1LL << (width-1));
1076       return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
1077     }
1078     return false;
1079   }
1080 
1081   // checks whether this operand is an offset suitable for the LE /
1082   // LETP instructions in Arm v8.1M
1083   bool isLEOffset() const {
1084     if (!isImm()) return false;
1085     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1086     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1087       int64_t Val = CE->getValue();
1088       return Val < 0 && Val >= -4094 && (Val & 1) == 0;
1089     }
1090     return false;
1091   }
1092 
1093   // checks whether this operand is a memory operand computed as an offset
1094   // applied to PC. the offset may have 8 bits of magnitude and is represented
1095   // with two bits of shift. textually it may be either [pc, #imm], #imm or
1096   // relocable expression...
1097   bool isThumbMemPC() const {
1098     int64_t Val = 0;
1099     if (isImm()) {
1100       if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1101       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
1102       if (!CE) return false;
1103       Val = CE->getValue();
1104     }
1105     else if (isGPRMem()) {
1106       if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
1107       if(Memory.BaseRegNum != ARM::PC) return false;
1108       if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
1109         Val = CE->getValue();
1110       else
1111         return false;
1112     }
1113     else return false;
1114     return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
1115   }
1116 
1117   bool isFPImm() const {
1118     if (!isImm()) return false;
1119     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1120     if (!CE) return false;
1121     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
1122     return Val != -1;
1123   }
1124 
1125   template<int64_t N, int64_t M>
1126   bool isImmediate() const {
1127     if (!isImm()) return false;
1128     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1129     if (!CE) return false;
1130     int64_t Value = CE->getValue();
1131     return Value >= N && Value <= M;
1132   }
1133 
1134   template<int64_t N, int64_t M>
1135   bool isImmediateS4() const {
1136     if (!isImm()) return false;
1137     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1138     if (!CE) return false;
1139     int64_t Value = CE->getValue();
1140     return ((Value & 3) == 0) && Value >= N && Value <= M;
1141   }
1142   template<int64_t N, int64_t M>
1143   bool isImmediateS2() const {
1144     if (!isImm()) return false;
1145     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1146     if (!CE) return false;
1147     int64_t Value = CE->getValue();
1148     return ((Value & 1) == 0) && Value >= N && Value <= M;
1149   }
1150   bool isFBits16() const {
1151     return isImmediate<0, 17>();
1152   }
1153   bool isFBits32() const {
1154     return isImmediate<1, 33>();
1155   }
1156   bool isImm8s4() const {
1157     return isImmediateS4<-1020, 1020>();
1158   }
1159   bool isImm7s4() const {
1160     return isImmediateS4<-508, 508>();
1161   }
1162   bool isImm7Shift0() const {
1163     return isImmediate<-127, 127>();
1164   }
1165   bool isImm7Shift1() const {
1166     return isImmediateS2<-255, 255>();
1167   }
1168   bool isImm7Shift2() const {
1169     return isImmediateS4<-511, 511>();
1170   }
1171   bool isImm7() const {
1172     return isImmediate<-127, 127>();
1173   }
1174   bool isImm0_1020s4() const {
1175     return isImmediateS4<0, 1020>();
1176   }
1177   bool isImm0_508s4() const {
1178     return isImmediateS4<0, 508>();
1179   }
1180   bool isImm0_508s4Neg() const {
1181     if (!isImm()) return false;
1182     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1183     if (!CE) return false;
1184     int64_t Value = -CE->getValue();
1185     // explicitly exclude zero. we want that to use the normal 0_508 version.
1186     return ((Value & 3) == 0) && Value > 0 && Value <= 508;
1187   }
1188 
1189   bool isImm0_4095Neg() const {
1190     if (!isImm()) return false;
1191     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1192     if (!CE) return false;
1193     // isImm0_4095Neg is used with 32-bit immediates only.
1194     // 32-bit immediates are zero extended to 64-bit when parsed,
1195     // thus simple -CE->getValue() results in a big negative number,
1196     // not a small positive number as intended
1197     if ((CE->getValue() >> 32) > 0) return false;
1198     uint32_t Value = -static_cast<uint32_t>(CE->getValue());
1199     return Value > 0 && Value < 4096;
1200   }
1201 
1202   bool isImm0_7() const {
1203     return isImmediate<0, 7>();
1204   }
1205 
1206   bool isImm1_16() const {
1207     return isImmediate<1, 16>();
1208   }
1209 
1210   bool isImm1_32() const {
1211     return isImmediate<1, 32>();
1212   }
1213 
1214   bool isImm8_255() const {
1215     return isImmediate<8, 255>();
1216   }
1217 
1218   bool isImm256_65535Expr() const {
1219     if (!isImm()) return false;
1220     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1221     // If it's not a constant expression, it'll generate a fixup and be
1222     // handled later.
1223     if (!CE) return true;
1224     int64_t Value = CE->getValue();
1225     return Value >= 256 && Value < 65536;
1226   }
1227 
1228   bool isImm0_65535Expr() const {
1229     if (!isImm()) return false;
1230     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1231     // If it's not a constant expression, it'll generate a fixup and be
1232     // handled later.
1233     if (!CE) return true;
1234     int64_t Value = CE->getValue();
1235     return Value >= 0 && Value < 65536;
1236   }
1237 
1238   bool isImm24bit() const {
1239     return isImmediate<0, 0xffffff + 1>();
1240   }
1241 
1242   bool isImmThumbSR() const {
1243     return isImmediate<1, 33>();
1244   }
1245 
1246   template<int shift>
1247   bool isExpImmValue(uint64_t Value) const {
1248     uint64_t mask = (1 << shift) - 1;
1249     if ((Value & mask) != 0 || (Value >> shift) > 0xff)
1250       return false;
1251     return true;
1252   }
1253 
1254   template<int shift>
1255   bool isExpImm() const {
1256     if (!isImm()) return false;
1257     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1258     if (!CE) return false;
1259 
1260     return isExpImmValue<shift>(CE->getValue());
1261   }
1262 
1263   template<int shift, int size>
1264   bool isInvertedExpImm() const {
1265     if (!isImm()) return false;
1266     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1267     if (!CE) return false;
1268 
1269     uint64_t OriginalValue = CE->getValue();
1270     uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1);
1271     return isExpImmValue<shift>(InvertedValue);
1272   }
1273 
1274   bool isPKHLSLImm() const {
1275     return isImmediate<0, 32>();
1276   }
1277 
1278   bool isPKHASRImm() const {
1279     return isImmediate<0, 33>();
1280   }
1281 
1282   bool isAdrLabel() const {
1283     // If we have an immediate that's not a constant, treat it as a label
1284     // reference needing a fixup.
1285     if (isImm() && !isa<MCConstantExpr>(getImm()))
1286       return true;
1287 
1288     // If it is a constant, it must fit into a modified immediate encoding.
1289     if (!isImm()) return false;
1290     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1291     if (!CE) return false;
1292     int64_t Value = CE->getValue();
1293     return (ARM_AM::getSOImmVal(Value) != -1 ||
1294             ARM_AM::getSOImmVal(-Value) != -1);
1295   }
1296 
1297   bool isT2SOImm() const {
1298     // If we have an immediate that's not a constant, treat it as an expression
1299     // needing a fixup.
1300     if (isImm() && !isa<MCConstantExpr>(getImm())) {
1301       // We want to avoid matching :upper16: and :lower16: as we want these
1302       // expressions to match in isImm0_65535Expr()
1303       const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm());
1304       return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
1305                              ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16));
1306     }
1307     if (!isImm()) return false;
1308     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1309     if (!CE) return false;
1310     int64_t Value = CE->getValue();
1311     return ARM_AM::getT2SOImmVal(Value) != -1;
1312   }
1313 
1314   bool isT2SOImmNot() const {
1315     if (!isImm()) return false;
1316     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1317     if (!CE) return false;
1318     int64_t Value = CE->getValue();
1319     return ARM_AM::getT2SOImmVal(Value) == -1 &&
1320       ARM_AM::getT2SOImmVal(~Value) != -1;
1321   }
1322 
1323   bool isT2SOImmNeg() const {
1324     if (!isImm()) return false;
1325     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1326     if (!CE) return false;
1327     int64_t Value = CE->getValue();
1328     // Only use this when not representable as a plain so_imm.
1329     return ARM_AM::getT2SOImmVal(Value) == -1 &&
1330       ARM_AM::getT2SOImmVal(-Value) != -1;
1331   }
1332 
1333   bool isSetEndImm() const {
1334     if (!isImm()) return false;
1335     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1336     if (!CE) return false;
1337     int64_t Value = CE->getValue();
1338     return Value == 1 || Value == 0;
1339   }
1340 
1341   bool isReg() const override { return Kind == k_Register; }
1342   bool isRegList() const { return Kind == k_RegisterList; }
1343   bool isRegListWithAPSR() const {
1344     return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList;
1345   }
1346   bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
1347   bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
1348   bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; }
1349   bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; }
1350   bool isToken() const override { return Kind == k_Token; }
1351   bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
1352   bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
1353   bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; }
1354   bool isMem() const override {
1355       return isGPRMem() || isMVEMem();
1356   }
1357   bool isMVEMem() const {
1358     if (Kind != k_Memory)
1359       return false;
1360     if (Memory.BaseRegNum &&
1361         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) &&
1362         !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum))
1363       return false;
1364     if (Memory.OffsetRegNum &&
1365         !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1366             Memory.OffsetRegNum))
1367       return false;
1368     return true;
1369   }
1370   bool isGPRMem() const {
1371     if (Kind != k_Memory)
1372       return false;
1373     if (Memory.BaseRegNum &&
1374         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum))
1375       return false;
1376     if (Memory.OffsetRegNum &&
1377         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum))
1378       return false;
1379     return true;
1380   }
1381   bool isShifterImm() const { return Kind == k_ShifterImmediate; }
1382   bool isRegShiftedReg() const {
1383     return Kind == k_ShiftedRegister &&
1384            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1385                RegShiftedReg.SrcReg) &&
1386            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1387                RegShiftedReg.ShiftReg);
1388   }
1389   bool isRegShiftedImm() const {
1390     return Kind == k_ShiftedImmediate &&
1391            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1392                RegShiftedImm.SrcReg);
1393   }
1394   bool isRotImm() const { return Kind == k_RotateImmediate; }
1395 
1396   template<unsigned Min, unsigned Max>
1397   bool isPowerTwoInRange() const {
1398     if (!isImm()) return false;
1399     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1400     if (!CE) return false;
1401     int64_t Value = CE->getValue();
1402     return Value > 0 && countPopulation((uint64_t)Value) == 1 &&
1403            Value >= Min && Value <= Max;
1404   }
1405   bool isModImm() const { return Kind == k_ModifiedImmediate; }
1406 
1407   bool isModImmNot() const {
1408     if (!isImm()) return false;
1409     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1410     if (!CE) return false;
1411     int64_t Value = CE->getValue();
1412     return ARM_AM::getSOImmVal(~Value) != -1;
1413   }
1414 
1415   bool isModImmNeg() const {
1416     if (!isImm()) return false;
1417     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1418     if (!CE) return false;
1419     int64_t Value = CE->getValue();
1420     return ARM_AM::getSOImmVal(Value) == -1 &&
1421       ARM_AM::getSOImmVal(-Value) != -1;
1422   }
1423 
1424   bool isThumbModImmNeg1_7() const {
1425     if (!isImm()) return false;
1426     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1427     if (!CE) return false;
1428     int32_t Value = -(int32_t)CE->getValue();
1429     return 0 < Value && Value < 8;
1430   }
1431 
1432   bool isThumbModImmNeg8_255() const {
1433     if (!isImm()) return false;
1434     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1435     if (!CE) return false;
1436     int32_t Value = -(int32_t)CE->getValue();
1437     return 7 < Value && Value < 256;
1438   }
1439 
1440   bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; }
1441   bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
1442   bool isPostIdxRegShifted() const {
1443     return Kind == k_PostIndexRegister &&
1444            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum);
1445   }
1446   bool isPostIdxReg() const {
1447     return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift;
1448   }
1449   bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const {
1450     if (!isGPRMem())
1451       return false;
1452     // No offset of any kind.
1453     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1454      (alignOK || Memory.Alignment == Alignment);
1455   }
1456   bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const {
1457     if (!isGPRMem())
1458       return false;
1459 
1460     if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1461             Memory.BaseRegNum))
1462       return false;
1463 
1464     // No offset of any kind.
1465     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1466      (alignOK || Memory.Alignment == Alignment);
1467   }
1468   bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const {
1469     if (!isGPRMem())
1470       return false;
1471 
1472     if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains(
1473             Memory.BaseRegNum))
1474       return false;
1475 
1476     // No offset of any kind.
1477     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1478      (alignOK || Memory.Alignment == Alignment);
1479   }
1480   bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const {
1481     if (!isGPRMem())
1482       return false;
1483 
1484     if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains(
1485             Memory.BaseRegNum))
1486       return false;
1487 
1488     // No offset of any kind.
1489     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1490      (alignOK || Memory.Alignment == Alignment);
1491   }
1492   bool isMemPCRelImm12() const {
1493     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1494       return false;
1495     // Base register must be PC.
1496     if (Memory.BaseRegNum != ARM::PC)
1497       return false;
1498     // Immediate offset in range [-4095, 4095].
1499     if (!Memory.OffsetImm) return true;
1500     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1501       int64_t Val = CE->getValue();
1502       return (Val > -4096 && Val < 4096) ||
1503              (Val == std::numeric_limits<int32_t>::min());
1504     }
1505     return false;
1506   }
1507 
1508   bool isAlignedMemory() const {
1509     return isMemNoOffset(true);
1510   }
1511 
1512   bool isAlignedMemoryNone() const {
1513     return isMemNoOffset(false, 0);
1514   }
1515 
1516   bool isDupAlignedMemoryNone() const {
1517     return isMemNoOffset(false, 0);
1518   }
1519 
1520   bool isAlignedMemory16() const {
1521     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1522       return true;
1523     return isMemNoOffset(false, 0);
1524   }
1525 
1526   bool isDupAlignedMemory16() const {
1527     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1528       return true;
1529     return isMemNoOffset(false, 0);
1530   }
1531 
1532   bool isAlignedMemory32() const {
1533     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1534       return true;
1535     return isMemNoOffset(false, 0);
1536   }
1537 
1538   bool isDupAlignedMemory32() const {
1539     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1540       return true;
1541     return isMemNoOffset(false, 0);
1542   }
1543 
1544   bool isAlignedMemory64() const {
1545     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1546       return true;
1547     return isMemNoOffset(false, 0);
1548   }
1549 
1550   bool isDupAlignedMemory64() const {
1551     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1552       return true;
1553     return isMemNoOffset(false, 0);
1554   }
1555 
1556   bool isAlignedMemory64or128() const {
1557     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1558       return true;
1559     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1560       return true;
1561     return isMemNoOffset(false, 0);
1562   }
1563 
1564   bool isDupAlignedMemory64or128() const {
1565     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1566       return true;
1567     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1568       return true;
1569     return isMemNoOffset(false, 0);
1570   }
1571 
1572   bool isAlignedMemory64or128or256() const {
1573     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1574       return true;
1575     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1576       return true;
1577     if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
1578       return true;
1579     return isMemNoOffset(false, 0);
1580   }
1581 
1582   bool isAddrMode2() const {
1583     if (!isGPRMem() || Memory.Alignment != 0) return false;
1584     // Check for register offset.
1585     if (Memory.OffsetRegNum) return true;
1586     // Immediate offset in range [-4095, 4095].
1587     if (!Memory.OffsetImm) return true;
1588     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1589       int64_t Val = CE->getValue();
1590       return Val > -4096 && Val < 4096;
1591     }
1592     return false;
1593   }
1594 
1595   bool isAM2OffsetImm() const {
1596     if (!isImm()) return false;
1597     // Immediate offset in range [-4095, 4095].
1598     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1599     if (!CE) return false;
1600     int64_t Val = CE->getValue();
1601     return (Val == std::numeric_limits<int32_t>::min()) ||
1602            (Val > -4096 && Val < 4096);
1603   }
1604 
1605   bool isAddrMode3() const {
1606     // If we have an immediate that's not a constant, treat it as a label
1607     // reference needing a fixup. If it is a constant, it's something else
1608     // and we reject it.
1609     if (isImm() && !isa<MCConstantExpr>(getImm()))
1610       return true;
1611     if (!isGPRMem() || Memory.Alignment != 0) return false;
1612     // No shifts are legal for AM3.
1613     if (Memory.ShiftType != ARM_AM::no_shift) return false;
1614     // Check for register offset.
1615     if (Memory.OffsetRegNum) return true;
1616     // Immediate offset in range [-255, 255].
1617     if (!Memory.OffsetImm) return true;
1618     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1619       int64_t Val = CE->getValue();
1620       // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and
1621       // we have to check for this too.
1622       return (Val > -256 && Val < 256) ||
1623              Val == std::numeric_limits<int32_t>::min();
1624     }
1625     return false;
1626   }
1627 
1628   bool isAM3Offset() const {
1629     if (isPostIdxReg())
1630       return true;
1631     if (!isImm())
1632       return false;
1633     // Immediate offset in range [-255, 255].
1634     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1635     if (!CE) return false;
1636     int64_t Val = CE->getValue();
1637     // Special case, #-0 is std::numeric_limits<int32_t>::min().
1638     return (Val > -256 && Val < 256) ||
1639            Val == std::numeric_limits<int32_t>::min();
1640   }
1641 
1642   bool isAddrMode5() const {
1643     // If we have an immediate that's not a constant, treat it as a label
1644     // reference needing a fixup. If it is a constant, it's something else
1645     // and we reject it.
1646     if (isImm() && !isa<MCConstantExpr>(getImm()))
1647       return true;
1648     if (!isGPRMem() || Memory.Alignment != 0) return false;
1649     // Check for register offset.
1650     if (Memory.OffsetRegNum) return false;
1651     // Immediate offset in range [-1020, 1020] and a multiple of 4.
1652     if (!Memory.OffsetImm) return true;
1653     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1654       int64_t Val = CE->getValue();
1655       return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
1656              Val == std::numeric_limits<int32_t>::min();
1657     }
1658     return false;
1659   }
1660 
1661   bool isAddrMode5FP16() const {
1662     // If we have an immediate that's not a constant, treat it as a label
1663     // reference needing a fixup. If it is a constant, it's something else
1664     // and we reject it.
1665     if (isImm() && !isa<MCConstantExpr>(getImm()))
1666       return true;
1667     if (!isGPRMem() || Memory.Alignment != 0) return false;
1668     // Check for register offset.
1669     if (Memory.OffsetRegNum) return false;
1670     // Immediate offset in range [-510, 510] and a multiple of 2.
1671     if (!Memory.OffsetImm) return true;
1672     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1673       int64_t Val = CE->getValue();
1674       return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) ||
1675              Val == std::numeric_limits<int32_t>::min();
1676     }
1677     return false;
1678   }
1679 
1680   bool isMemTBB() const {
1681     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1682         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1683       return false;
1684     return true;
1685   }
1686 
1687   bool isMemTBH() const {
1688     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1689         Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
1690         Memory.Alignment != 0 )
1691       return false;
1692     return true;
1693   }
1694 
1695   bool isMemRegOffset() const {
1696     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
1697       return false;
1698     return true;
1699   }
1700 
1701   bool isT2MemRegOffset() const {
1702     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1703         Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC)
1704       return false;
1705     // Only lsl #{0, 1, 2, 3} allowed.
1706     if (Memory.ShiftType == ARM_AM::no_shift)
1707       return true;
1708     if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
1709       return false;
1710     return true;
1711   }
1712 
1713   bool isMemThumbRR() const {
1714     // Thumb reg+reg addressing is simple. Just two registers, a base and
1715     // an offset. No shifts, negations or any other complicating factors.
1716     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1717         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1718       return false;
1719     return isARMLowRegister(Memory.BaseRegNum) &&
1720       (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
1721   }
1722 
1723   bool isMemThumbRIs4() const {
1724     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1725         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1726       return false;
1727     // Immediate offset, multiple of 4 in range [0, 124].
1728     if (!Memory.OffsetImm) return true;
1729     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1730       int64_t Val = CE->getValue();
1731       return Val >= 0 && Val <= 124 && (Val % 4) == 0;
1732     }
1733     return false;
1734   }
1735 
1736   bool isMemThumbRIs2() const {
1737     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1738         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1739       return false;
1740     // Immediate offset, multiple of 4 in range [0, 62].
1741     if (!Memory.OffsetImm) return true;
1742     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1743       int64_t Val = CE->getValue();
1744       return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1745     }
1746     return false;
1747   }
1748 
1749   bool isMemThumbRIs1() const {
1750     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1751         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1752       return false;
1753     // Immediate offset in range [0, 31].
1754     if (!Memory.OffsetImm) return true;
1755     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1756       int64_t Val = CE->getValue();
1757       return Val >= 0 && Val <= 31;
1758     }
1759     return false;
1760   }
1761 
1762   bool isMemThumbSPI() const {
1763     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1764         Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1765       return false;
1766     // Immediate offset, multiple of 4 in range [0, 1020].
1767     if (!Memory.OffsetImm) return true;
1768     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1769       int64_t Val = CE->getValue();
1770       return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1771     }
1772     return false;
1773   }
1774 
1775   bool isMemImm8s4Offset() const {
1776     // If we have an immediate that's not a constant, treat it as a label
1777     // reference needing a fixup. If it is a constant, it's something else
1778     // and we reject it.
1779     if (isImm() && !isa<MCConstantExpr>(getImm()))
1780       return true;
1781     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1782       return false;
1783     // Immediate offset a multiple of 4 in range [-1020, 1020].
1784     if (!Memory.OffsetImm) return true;
1785     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1786       int64_t Val = CE->getValue();
1787       // Special case, #-0 is std::numeric_limits<int32_t>::min().
1788       return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) ||
1789              Val == std::numeric_limits<int32_t>::min();
1790     }
1791     return false;
1792   }
1793 
1794   bool isMemImm7s4Offset() const {
1795     // If we have an immediate that's not a constant, treat it as a label
1796     // reference needing a fixup. If it is a constant, it's something else
1797     // and we reject it.
1798     if (isImm() && !isa<MCConstantExpr>(getImm()))
1799       return true;
1800     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 ||
1801         !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1802             Memory.BaseRegNum))
1803       return false;
1804     // Immediate offset a multiple of 4 in range [-508, 508].
1805     if (!Memory.OffsetImm) return true;
1806     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1807       int64_t Val = CE->getValue();
1808       // Special case, #-0 is INT32_MIN.
1809       return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN;
1810     }
1811     return false;
1812   }
1813 
1814   bool isMemImm0_1020s4Offset() const {
1815     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1816       return false;
1817     // Immediate offset a multiple of 4 in range [0, 1020].
1818     if (!Memory.OffsetImm) return true;
1819     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1820       int64_t Val = CE->getValue();
1821       return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1822     }
1823     return false;
1824   }
1825 
1826   bool isMemImm8Offset() const {
1827     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1828       return false;
1829     // Base reg of PC isn't allowed for these encodings.
1830     if (Memory.BaseRegNum == ARM::PC) return false;
1831     // Immediate offset in range [-255, 255].
1832     if (!Memory.OffsetImm) return true;
1833     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1834       int64_t Val = CE->getValue();
1835       return (Val == std::numeric_limits<int32_t>::min()) ||
1836              (Val > -256 && Val < 256);
1837     }
1838     return false;
1839   }
1840 
1841   template<unsigned Bits, unsigned RegClassID>
1842   bool isMemImm7ShiftedOffset() const {
1843     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 ||
1844         !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum))
1845       return false;
1846 
1847     // Expect an immediate offset equal to an element of the range
1848     // [-127, 127], shifted left by Bits.
1849 
1850     if (!Memory.OffsetImm) return true;
1851     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1852       int64_t Val = CE->getValue();
1853 
1854       // INT32_MIN is a special-case value (indicating the encoding with
1855       // zero offset and the subtract bit set)
1856       if (Val == INT32_MIN)
1857         return true;
1858 
1859       unsigned Divisor = 1U << Bits;
1860 
1861       // Check that the low bits are zero
1862       if (Val % Divisor != 0)
1863         return false;
1864 
1865       // Check that the remaining offset is within range.
1866       Val /= Divisor;
1867       return (Val >= -127 && Val <= 127);
1868     }
1869     return false;
1870   }
1871 
1872   template <int shift> bool isMemRegRQOffset() const {
1873     if (!isMVEMem() || Memory.OffsetImm != nullptr || Memory.Alignment != 0)
1874       return false;
1875 
1876     if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1877             Memory.BaseRegNum))
1878       return false;
1879     if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1880             Memory.OffsetRegNum))
1881       return false;
1882 
1883     if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift)
1884       return false;
1885 
1886     if (shift > 0 &&
1887         (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift))
1888       return false;
1889 
1890     return true;
1891   }
1892 
1893   template <int shift> bool isMemRegQOffset() const {
1894     if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1895       return false;
1896 
1897     if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1898             Memory.BaseRegNum))
1899       return false;
1900 
1901     if (!Memory.OffsetImm)
1902       return true;
1903     static_assert(shift < 56,
1904                   "Such that we dont shift by a value higher than 62");
1905     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1906       int64_t Val = CE->getValue();
1907 
1908       // The value must be a multiple of (1 << shift)
1909       if ((Val & ((1U << shift) - 1)) != 0)
1910         return false;
1911 
1912       // And be in the right range, depending on the amount that it is shifted
1913       // by.  Shift 0, is equal to 7 unsigned bits, the sign bit is set
1914       // separately.
1915       int64_t Range = (1U << (7 + shift)) - 1;
1916       return (Val == INT32_MIN) || (Val > -Range && Val < Range);
1917     }
1918     return false;
1919   }
1920 
1921   bool isMemPosImm8Offset() const {
1922     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1923       return false;
1924     // Immediate offset in range [0, 255].
1925     if (!Memory.OffsetImm) return true;
1926     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1927       int64_t Val = CE->getValue();
1928       return Val >= 0 && Val < 256;
1929     }
1930     return false;
1931   }
1932 
1933   bool isMemNegImm8Offset() const {
1934     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1935       return false;
1936     // Base reg of PC isn't allowed for these encodings.
1937     if (Memory.BaseRegNum == ARM::PC) return false;
1938     // Immediate offset in range [-255, -1].
1939     if (!Memory.OffsetImm) return false;
1940     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1941       int64_t Val = CE->getValue();
1942       return (Val == std::numeric_limits<int32_t>::min()) ||
1943              (Val > -256 && Val < 0);
1944     }
1945     return false;
1946   }
1947 
1948   bool isMemUImm12Offset() const {
1949     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1950       return false;
1951     // Immediate offset in range [0, 4095].
1952     if (!Memory.OffsetImm) return true;
1953     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1954       int64_t Val = CE->getValue();
1955       return (Val >= 0 && Val < 4096);
1956     }
1957     return false;
1958   }
1959 
1960   bool isMemImm12Offset() const {
1961     // If we have an immediate that's not a constant, treat it as a label
1962     // reference needing a fixup. If it is a constant, it's something else
1963     // and we reject it.
1964 
1965     if (isImm() && !isa<MCConstantExpr>(getImm()))
1966       return true;
1967 
1968     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1969       return false;
1970     // Immediate offset in range [-4095, 4095].
1971     if (!Memory.OffsetImm) return true;
1972     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1973       int64_t Val = CE->getValue();
1974       return (Val > -4096 && Val < 4096) ||
1975              (Val == std::numeric_limits<int32_t>::min());
1976     }
1977     // If we have an immediate that's not a constant, treat it as a
1978     // symbolic expression needing a fixup.
1979     return true;
1980   }
1981 
1982   bool isConstPoolAsmImm() const {
1983     // Delay processing of Constant Pool Immediate, this will turn into
1984     // a constant. Match no other operand
1985     return (isConstantPoolImm());
1986   }
1987 
1988   bool isPostIdxImm8() const {
1989     if (!isImm()) return false;
1990     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1991     if (!CE) return false;
1992     int64_t Val = CE->getValue();
1993     return (Val > -256 && Val < 256) ||
1994            (Val == std::numeric_limits<int32_t>::min());
1995   }
1996 
1997   bool isPostIdxImm8s4() const {
1998     if (!isImm()) return false;
1999     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2000     if (!CE) return false;
2001     int64_t Val = CE->getValue();
2002     return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
2003            (Val == std::numeric_limits<int32_t>::min());
2004   }
2005 
2006   bool isMSRMask() const { return Kind == k_MSRMask; }
2007   bool isBankedReg() const { return Kind == k_BankedReg; }
2008   bool isProcIFlags() const { return Kind == k_ProcIFlags; }
2009 
2010   // NEON operands.
2011   bool isSingleSpacedVectorList() const {
2012     return Kind == k_VectorList && !VectorList.isDoubleSpaced;
2013   }
2014 
2015   bool isDoubleSpacedVectorList() const {
2016     return Kind == k_VectorList && VectorList.isDoubleSpaced;
2017   }
2018 
2019   bool isVecListOneD() const {
2020     if (!isSingleSpacedVectorList()) return false;
2021     return VectorList.Count == 1;
2022   }
2023 
2024   bool isVecListTwoMQ() const {
2025     return isSingleSpacedVectorList() && VectorList.Count == 2 &&
2026            ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
2027                VectorList.RegNum);
2028   }
2029 
2030   bool isVecListDPair() const {
2031     if (!isSingleSpacedVectorList()) return false;
2032     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
2033               .contains(VectorList.RegNum));
2034   }
2035 
2036   bool isVecListThreeD() const {
2037     if (!isSingleSpacedVectorList()) return false;
2038     return VectorList.Count == 3;
2039   }
2040 
2041   bool isVecListFourD() const {
2042     if (!isSingleSpacedVectorList()) return false;
2043     return VectorList.Count == 4;
2044   }
2045 
2046   bool isVecListDPairSpaced() const {
2047     if (Kind != k_VectorList) return false;
2048     if (isSingleSpacedVectorList()) return false;
2049     return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
2050               .contains(VectorList.RegNum));
2051   }
2052 
2053   bool isVecListThreeQ() const {
2054     if (!isDoubleSpacedVectorList()) return false;
2055     return VectorList.Count == 3;
2056   }
2057 
2058   bool isVecListFourQ() const {
2059     if (!isDoubleSpacedVectorList()) return false;
2060     return VectorList.Count == 4;
2061   }
2062 
2063   bool isVecListFourMQ() const {
2064     return isSingleSpacedVectorList() && VectorList.Count == 4 &&
2065            ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
2066                VectorList.RegNum);
2067   }
2068 
2069   bool isSingleSpacedVectorAllLanes() const {
2070     return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
2071   }
2072 
2073   bool isDoubleSpacedVectorAllLanes() const {
2074     return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
2075   }
2076 
2077   bool isVecListOneDAllLanes() const {
2078     if (!isSingleSpacedVectorAllLanes()) return false;
2079     return VectorList.Count == 1;
2080   }
2081 
2082   bool isVecListDPairAllLanes() const {
2083     if (!isSingleSpacedVectorAllLanes()) return false;
2084     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
2085               .contains(VectorList.RegNum));
2086   }
2087 
2088   bool isVecListDPairSpacedAllLanes() const {
2089     if (!isDoubleSpacedVectorAllLanes()) return false;
2090     return VectorList.Count == 2;
2091   }
2092 
2093   bool isVecListThreeDAllLanes() const {
2094     if (!isSingleSpacedVectorAllLanes()) return false;
2095     return VectorList.Count == 3;
2096   }
2097 
2098   bool isVecListThreeQAllLanes() const {
2099     if (!isDoubleSpacedVectorAllLanes()) return false;
2100     return VectorList.Count == 3;
2101   }
2102 
2103   bool isVecListFourDAllLanes() const {
2104     if (!isSingleSpacedVectorAllLanes()) return false;
2105     return VectorList.Count == 4;
2106   }
2107 
2108   bool isVecListFourQAllLanes() const {
2109     if (!isDoubleSpacedVectorAllLanes()) return false;
2110     return VectorList.Count == 4;
2111   }
2112 
2113   bool isSingleSpacedVectorIndexed() const {
2114     return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
2115   }
2116 
2117   bool isDoubleSpacedVectorIndexed() const {
2118     return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
2119   }
2120 
2121   bool isVecListOneDByteIndexed() const {
2122     if (!isSingleSpacedVectorIndexed()) return false;
2123     return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
2124   }
2125 
2126   bool isVecListOneDHWordIndexed() const {
2127     if (!isSingleSpacedVectorIndexed()) return false;
2128     return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
2129   }
2130 
2131   bool isVecListOneDWordIndexed() const {
2132     if (!isSingleSpacedVectorIndexed()) return false;
2133     return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
2134   }
2135 
2136   bool isVecListTwoDByteIndexed() const {
2137     if (!isSingleSpacedVectorIndexed()) return false;
2138     return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
2139   }
2140 
2141   bool isVecListTwoDHWordIndexed() const {
2142     if (!isSingleSpacedVectorIndexed()) return false;
2143     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
2144   }
2145 
2146   bool isVecListTwoQWordIndexed() const {
2147     if (!isDoubleSpacedVectorIndexed()) return false;
2148     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
2149   }
2150 
2151   bool isVecListTwoQHWordIndexed() const {
2152     if (!isDoubleSpacedVectorIndexed()) return false;
2153     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
2154   }
2155 
2156   bool isVecListTwoDWordIndexed() const {
2157     if (!isSingleSpacedVectorIndexed()) return false;
2158     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
2159   }
2160 
2161   bool isVecListThreeDByteIndexed() const {
2162     if (!isSingleSpacedVectorIndexed()) return false;
2163     return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
2164   }
2165 
2166   bool isVecListThreeDHWordIndexed() const {
2167     if (!isSingleSpacedVectorIndexed()) return false;
2168     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
2169   }
2170 
2171   bool isVecListThreeQWordIndexed() const {
2172     if (!isDoubleSpacedVectorIndexed()) return false;
2173     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
2174   }
2175 
2176   bool isVecListThreeQHWordIndexed() const {
2177     if (!isDoubleSpacedVectorIndexed()) return false;
2178     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
2179   }
2180 
2181   bool isVecListThreeDWordIndexed() const {
2182     if (!isSingleSpacedVectorIndexed()) return false;
2183     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
2184   }
2185 
2186   bool isVecListFourDByteIndexed() const {
2187     if (!isSingleSpacedVectorIndexed()) return false;
2188     return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
2189   }
2190 
2191   bool isVecListFourDHWordIndexed() const {
2192     if (!isSingleSpacedVectorIndexed()) return false;
2193     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
2194   }
2195 
2196   bool isVecListFourQWordIndexed() const {
2197     if (!isDoubleSpacedVectorIndexed()) return false;
2198     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
2199   }
2200 
2201   bool isVecListFourQHWordIndexed() const {
2202     if (!isDoubleSpacedVectorIndexed()) return false;
2203     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
2204   }
2205 
2206   bool isVecListFourDWordIndexed() const {
2207     if (!isSingleSpacedVectorIndexed()) return false;
2208     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
2209   }
2210 
2211   bool isVectorIndex() const { return Kind == k_VectorIndex; }
2212 
2213   template <unsigned NumLanes>
2214   bool isVectorIndexInRange() const {
2215     if (Kind != k_VectorIndex) return false;
2216     return VectorIndex.Val < NumLanes;
2217   }
2218 
2219   bool isVectorIndex8()  const { return isVectorIndexInRange<8>(); }
2220   bool isVectorIndex16() const { return isVectorIndexInRange<4>(); }
2221   bool isVectorIndex32() const { return isVectorIndexInRange<2>(); }
2222   bool isVectorIndex64() const { return isVectorIndexInRange<1>(); }
2223 
2224   template<int PermittedValue, int OtherPermittedValue>
2225   bool isMVEPairVectorIndex() const {
2226     if (Kind != k_VectorIndex) return false;
2227     return VectorIndex.Val == PermittedValue ||
2228            VectorIndex.Val == OtherPermittedValue;
2229   }
2230 
2231   bool isNEONi8splat() const {
2232     if (!isImm()) return false;
2233     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2234     // Must be a constant.
2235     if (!CE) return false;
2236     int64_t Value = CE->getValue();
2237     // i8 value splatted across 8 bytes. The immediate is just the 8 byte
2238     // value.
2239     return Value >= 0 && Value < 256;
2240   }
2241 
2242   bool isNEONi16splat() const {
2243     if (isNEONByteReplicate(2))
2244       return false; // Leave that for bytes replication and forbid by default.
2245     if (!isImm())
2246       return false;
2247     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2248     // Must be a constant.
2249     if (!CE) return false;
2250     unsigned Value = CE->getValue();
2251     return ARM_AM::isNEONi16splat(Value);
2252   }
2253 
2254   bool isNEONi16splatNot() const {
2255     if (!isImm())
2256       return false;
2257     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2258     // Must be a constant.
2259     if (!CE) return false;
2260     unsigned Value = CE->getValue();
2261     return ARM_AM::isNEONi16splat(~Value & 0xffff);
2262   }
2263 
2264   bool isNEONi32splat() const {
2265     if (isNEONByteReplicate(4))
2266       return false; // Leave that for bytes replication and forbid by default.
2267     if (!isImm())
2268       return false;
2269     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2270     // Must be a constant.
2271     if (!CE) return false;
2272     unsigned Value = CE->getValue();
2273     return ARM_AM::isNEONi32splat(Value);
2274   }
2275 
2276   bool isNEONi32splatNot() const {
2277     if (!isImm())
2278       return false;
2279     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2280     // Must be a constant.
2281     if (!CE) return false;
2282     unsigned Value = CE->getValue();
2283     return ARM_AM::isNEONi32splat(~Value);
2284   }
2285 
2286   static bool isValidNEONi32vmovImm(int64_t Value) {
2287     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
2288     // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
2289     return ((Value & 0xffffffffffffff00) == 0) ||
2290            ((Value & 0xffffffffffff00ff) == 0) ||
2291            ((Value & 0xffffffffff00ffff) == 0) ||
2292            ((Value & 0xffffffff00ffffff) == 0) ||
2293            ((Value & 0xffffffffffff00ff) == 0xff) ||
2294            ((Value & 0xffffffffff00ffff) == 0xffff);
2295   }
2296 
2297   bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const {
2298     assert((Width == 8 || Width == 16 || Width == 32) &&
2299            "Invalid element width");
2300     assert(NumElems * Width <= 64 && "Invalid result width");
2301 
2302     if (!isImm())
2303       return false;
2304     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2305     // Must be a constant.
2306     if (!CE)
2307       return false;
2308     int64_t Value = CE->getValue();
2309     if (!Value)
2310       return false; // Don't bother with zero.
2311     if (Inv)
2312       Value = ~Value;
2313 
2314     uint64_t Mask = (1ull << Width) - 1;
2315     uint64_t Elem = Value & Mask;
2316     if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0)
2317       return false;
2318     if (Width == 32 && !isValidNEONi32vmovImm(Elem))
2319       return false;
2320 
2321     for (unsigned i = 1; i < NumElems; ++i) {
2322       Value >>= Width;
2323       if ((Value & Mask) != Elem)
2324         return false;
2325     }
2326     return true;
2327   }
2328 
2329   bool isNEONByteReplicate(unsigned NumBytes) const {
2330     return isNEONReplicate(8, NumBytes, false);
2331   }
2332 
2333   static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) {
2334     assert((FromW == 8 || FromW == 16 || FromW == 32) &&
2335            "Invalid source width");
2336     assert((ToW == 16 || ToW == 32 || ToW == 64) &&
2337            "Invalid destination width");
2338     assert(FromW < ToW && "ToW is not less than FromW");
2339   }
2340 
2341   template<unsigned FromW, unsigned ToW>
2342   bool isNEONmovReplicate() const {
2343     checkNeonReplicateArgs(FromW, ToW);
2344     if (ToW == 64 && isNEONi64splat())
2345       return false;
2346     return isNEONReplicate(FromW, ToW / FromW, false);
2347   }
2348 
2349   template<unsigned FromW, unsigned ToW>
2350   bool isNEONinvReplicate() const {
2351     checkNeonReplicateArgs(FromW, ToW);
2352     return isNEONReplicate(FromW, ToW / FromW, true);
2353   }
2354 
2355   bool isNEONi32vmov() const {
2356     if (isNEONByteReplicate(4))
2357       return false; // Let it to be classified as byte-replicate case.
2358     if (!isImm())
2359       return false;
2360     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2361     // Must be a constant.
2362     if (!CE)
2363       return false;
2364     return isValidNEONi32vmovImm(CE->getValue());
2365   }
2366 
2367   bool isNEONi32vmovNeg() const {
2368     if (!isImm()) return false;
2369     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2370     // Must be a constant.
2371     if (!CE) return false;
2372     return isValidNEONi32vmovImm(~CE->getValue());
2373   }
2374 
2375   bool isNEONi64splat() const {
2376     if (!isImm()) return false;
2377     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2378     // Must be a constant.
2379     if (!CE) return false;
2380     uint64_t Value = CE->getValue();
2381     // i64 value with each byte being either 0 or 0xff.
2382     for (unsigned i = 0; i < 8; ++i, Value >>= 8)
2383       if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
2384     return true;
2385   }
2386 
2387   template<int64_t Angle, int64_t Remainder>
2388   bool isComplexRotation() const {
2389     if (!isImm()) return false;
2390 
2391     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2392     if (!CE) return false;
2393     uint64_t Value = CE->getValue();
2394 
2395     return (Value % Angle == Remainder && Value <= 270);
2396   }
2397 
2398   bool isMVELongShift() const {
2399     if (!isImm()) return false;
2400     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2401     // Must be a constant.
2402     if (!CE) return false;
2403     uint64_t Value = CE->getValue();
2404     return Value >= 1 && Value <= 32;
2405   }
2406 
2407   bool isMveSaturateOp() const {
2408     if (!isImm()) return false;
2409     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2410     if (!CE) return false;
2411     uint64_t Value = CE->getValue();
2412     return Value == 48 || Value == 64;
2413   }
2414 
2415   bool isITCondCodeNoAL() const {
2416     if (!isITCondCode()) return false;
2417     ARMCC::CondCodes CC = getCondCode();
2418     return CC != ARMCC::AL;
2419   }
2420 
2421   bool isITCondCodeRestrictedI() const {
2422     if (!isITCondCode())
2423       return false;
2424     ARMCC::CondCodes CC = getCondCode();
2425     return CC == ARMCC::EQ || CC == ARMCC::NE;
2426   }
2427 
2428   bool isITCondCodeRestrictedS() const {
2429     if (!isITCondCode())
2430       return false;
2431     ARMCC::CondCodes CC = getCondCode();
2432     return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE ||
2433            CC == ARMCC::GE;
2434   }
2435 
2436   bool isITCondCodeRestrictedU() const {
2437     if (!isITCondCode())
2438       return false;
2439     ARMCC::CondCodes CC = getCondCode();
2440     return CC == ARMCC::HS || CC == ARMCC::HI;
2441   }
2442 
2443   bool isITCondCodeRestrictedFP() const {
2444     if (!isITCondCode())
2445       return false;
2446     ARMCC::CondCodes CC = getCondCode();
2447     return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT ||
2448            CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE;
2449   }
2450 
2451   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
2452     // Add as immediates when possible.  Null MCExpr = 0.
2453     if (!Expr)
2454       Inst.addOperand(MCOperand::createImm(0));
2455     else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
2456       Inst.addOperand(MCOperand::createImm(CE->getValue()));
2457     else
2458       Inst.addOperand(MCOperand::createExpr(Expr));
2459   }
2460 
2461   void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const {
2462     assert(N == 1 && "Invalid number of operands!");
2463     addExpr(Inst, getImm());
2464   }
2465 
2466   void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const {
2467     assert(N == 1 && "Invalid number of operands!");
2468     addExpr(Inst, getImm());
2469   }
2470 
2471   void addCondCodeOperands(MCInst &Inst, unsigned N) const {
2472     assert(N == 2 && "Invalid number of operands!");
2473     Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2474     unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
2475     Inst.addOperand(MCOperand::createReg(RegNum));
2476   }
2477 
2478   void addVPTPredNOperands(MCInst &Inst, unsigned N) const {
2479     assert(N == 3 && "Invalid number of operands!");
2480     Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred())));
2481     unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0;
2482     Inst.addOperand(MCOperand::createReg(RegNum));
2483     Inst.addOperand(MCOperand::createReg(0));
2484   }
2485 
2486   void addVPTPredROperands(MCInst &Inst, unsigned N) const {
2487     assert(N == 4 && "Invalid number of operands!");
2488     addVPTPredNOperands(Inst, N-1);
2489     unsigned RegNum;
2490     if (getVPTPred() == ARMVCC::None) {
2491       RegNum = 0;
2492     } else {
2493       unsigned NextOpIndex = Inst.getNumOperands();
2494       const MCInstrDesc &MCID = ARMInsts[Inst.getOpcode()];
2495       int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO);
2496       assert(TiedOp >= 0 &&
2497              "Inactive register in vpred_r is not tied to an output!");
2498       RegNum = Inst.getOperand(TiedOp).getReg();
2499     }
2500     Inst.addOperand(MCOperand::createReg(RegNum));
2501   }
2502 
2503   void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
2504     assert(N == 1 && "Invalid number of operands!");
2505     Inst.addOperand(MCOperand::createImm(getCoproc()));
2506   }
2507 
2508   void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
2509     assert(N == 1 && "Invalid number of operands!");
2510     Inst.addOperand(MCOperand::createImm(getCoproc()));
2511   }
2512 
2513   void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
2514     assert(N == 1 && "Invalid number of operands!");
2515     Inst.addOperand(MCOperand::createImm(CoprocOption.Val));
2516   }
2517 
2518   void addITMaskOperands(MCInst &Inst, unsigned N) const {
2519     assert(N == 1 && "Invalid number of operands!");
2520     Inst.addOperand(MCOperand::createImm(ITMask.Mask));
2521   }
2522 
2523   void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
2524     assert(N == 1 && "Invalid number of operands!");
2525     Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2526   }
2527 
2528   void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const {
2529     assert(N == 1 && "Invalid number of operands!");
2530     Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode()))));
2531   }
2532 
2533   void addCCOutOperands(MCInst &Inst, unsigned N) const {
2534     assert(N == 1 && "Invalid number of operands!");
2535     Inst.addOperand(MCOperand::createReg(getReg()));
2536   }
2537 
2538   void addRegOperands(MCInst &Inst, unsigned N) const {
2539     assert(N == 1 && "Invalid number of operands!");
2540     Inst.addOperand(MCOperand::createReg(getReg()));
2541   }
2542 
2543   void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
2544     assert(N == 3 && "Invalid number of operands!");
2545     assert(isRegShiftedReg() &&
2546            "addRegShiftedRegOperands() on non-RegShiftedReg!");
2547     Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg));
2548     Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg));
2549     Inst.addOperand(MCOperand::createImm(
2550       ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
2551   }
2552 
2553   void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
2554     assert(N == 2 && "Invalid number of operands!");
2555     assert(isRegShiftedImm() &&
2556            "addRegShiftedImmOperands() on non-RegShiftedImm!");
2557     Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg));
2558     // Shift of #32 is encoded as 0 where permitted
2559     unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
2560     Inst.addOperand(MCOperand::createImm(
2561       ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
2562   }
2563 
2564   void addShifterImmOperands(MCInst &Inst, unsigned N) const {
2565     assert(N == 1 && "Invalid number of operands!");
2566     Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) |
2567                                          ShifterImm.Imm));
2568   }
2569 
2570   void addRegListOperands(MCInst &Inst, unsigned N) const {
2571     assert(N == 1 && "Invalid number of operands!");
2572     const SmallVectorImpl<unsigned> &RegList = getRegList();
2573     for (unsigned Reg : RegList)
2574       Inst.addOperand(MCOperand::createReg(Reg));
2575   }
2576 
2577   void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const {
2578     assert(N == 1 && "Invalid number of operands!");
2579     const SmallVectorImpl<unsigned> &RegList = getRegList();
2580     for (unsigned Reg : RegList)
2581       Inst.addOperand(MCOperand::createReg(Reg));
2582   }
2583 
2584   void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
2585     addRegListOperands(Inst, N);
2586   }
2587 
2588   void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
2589     addRegListOperands(Inst, N);
2590   }
2591 
2592   void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const {
2593     addRegListOperands(Inst, N);
2594   }
2595 
2596   void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const {
2597     addRegListOperands(Inst, N);
2598   }
2599 
2600   void addRotImmOperands(MCInst &Inst, unsigned N) const {
2601     assert(N == 1 && "Invalid number of operands!");
2602     // Encoded as val>>3. The printer handles display as 8, 16, 24.
2603     Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3));
2604   }
2605 
2606   void addModImmOperands(MCInst &Inst, unsigned N) const {
2607     assert(N == 1 && "Invalid number of operands!");
2608 
2609     // Support for fixups (MCFixup)
2610     if (isImm())
2611       return addImmOperands(Inst, N);
2612 
2613     Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7)));
2614   }
2615 
2616   void addModImmNotOperands(MCInst &Inst, unsigned N) const {
2617     assert(N == 1 && "Invalid number of operands!");
2618     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2619     uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue());
2620     Inst.addOperand(MCOperand::createImm(Enc));
2621   }
2622 
2623   void addModImmNegOperands(MCInst &Inst, unsigned N) const {
2624     assert(N == 1 && "Invalid number of operands!");
2625     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2626     uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue());
2627     Inst.addOperand(MCOperand::createImm(Enc));
2628   }
2629 
2630   void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const {
2631     assert(N == 1 && "Invalid number of operands!");
2632     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2633     uint32_t Val = -CE->getValue();
2634     Inst.addOperand(MCOperand::createImm(Val));
2635   }
2636 
2637   void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const {
2638     assert(N == 1 && "Invalid number of operands!");
2639     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2640     uint32_t Val = -CE->getValue();
2641     Inst.addOperand(MCOperand::createImm(Val));
2642   }
2643 
2644   void addBitfieldOperands(MCInst &Inst, unsigned N) const {
2645     assert(N == 1 && "Invalid number of operands!");
2646     // Munge the lsb/width into a bitfield mask.
2647     unsigned lsb = Bitfield.LSB;
2648     unsigned width = Bitfield.Width;
2649     // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
2650     uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
2651                       (32 - (lsb + width)));
2652     Inst.addOperand(MCOperand::createImm(Mask));
2653   }
2654 
2655   void addImmOperands(MCInst &Inst, unsigned N) const {
2656     assert(N == 1 && "Invalid number of operands!");
2657     addExpr(Inst, getImm());
2658   }
2659 
2660   void addFBits16Operands(MCInst &Inst, unsigned N) const {
2661     assert(N == 1 && "Invalid number of operands!");
2662     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2663     Inst.addOperand(MCOperand::createImm(16 - CE->getValue()));
2664   }
2665 
2666   void addFBits32Operands(MCInst &Inst, unsigned N) const {
2667     assert(N == 1 && "Invalid number of operands!");
2668     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2669     Inst.addOperand(MCOperand::createImm(32 - CE->getValue()));
2670   }
2671 
2672   void addFPImmOperands(MCInst &Inst, unsigned N) const {
2673     assert(N == 1 && "Invalid number of operands!");
2674     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2675     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
2676     Inst.addOperand(MCOperand::createImm(Val));
2677   }
2678 
2679   void addImm8s4Operands(MCInst &Inst, unsigned N) const {
2680     assert(N == 1 && "Invalid number of operands!");
2681     // FIXME: We really want to scale the value here, but the LDRD/STRD
2682     // instruction don't encode operands that way yet.
2683     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2684     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2685   }
2686 
2687   void addImm7s4Operands(MCInst &Inst, unsigned N) const {
2688     assert(N == 1 && "Invalid number of operands!");
2689     // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR
2690     // instruction don't encode operands that way yet.
2691     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2692     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2693   }
2694 
2695   void addImm7Shift0Operands(MCInst &Inst, unsigned N) const {
2696     assert(N == 1 && "Invalid number of operands!");
2697     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2698     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2699   }
2700 
2701   void addImm7Shift1Operands(MCInst &Inst, unsigned N) const {
2702     assert(N == 1 && "Invalid number of operands!");
2703     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2704     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2705   }
2706 
2707   void addImm7Shift2Operands(MCInst &Inst, unsigned N) const {
2708     assert(N == 1 && "Invalid number of operands!");
2709     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2710     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2711   }
2712 
2713   void addImm7Operands(MCInst &Inst, unsigned N) const {
2714     assert(N == 1 && "Invalid number of operands!");
2715     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2716     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2717   }
2718 
2719   void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
2720     assert(N == 1 && "Invalid number of operands!");
2721     // The immediate is scaled by four in the encoding and is stored
2722     // in the MCInst as such. Lop off the low two bits here.
2723     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2724     Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2725   }
2726 
2727   void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
2728     assert(N == 1 && "Invalid number of operands!");
2729     // The immediate is scaled by four in the encoding and is stored
2730     // in the MCInst as such. Lop off the low two bits here.
2731     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2732     Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4)));
2733   }
2734 
2735   void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
2736     assert(N == 1 && "Invalid number of operands!");
2737     // The immediate is scaled by four in the encoding and is stored
2738     // in the MCInst as such. Lop off the low two bits here.
2739     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2740     Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2741   }
2742 
2743   void addImm1_16Operands(MCInst &Inst, unsigned N) const {
2744     assert(N == 1 && "Invalid number of operands!");
2745     // The constant encodes as the immediate-1, and we store in the instruction
2746     // the bits as encoded, so subtract off one here.
2747     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2748     Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2749   }
2750 
2751   void addImm1_32Operands(MCInst &Inst, unsigned N) const {
2752     assert(N == 1 && "Invalid number of operands!");
2753     // The constant encodes as the immediate-1, and we store in the instruction
2754     // the bits as encoded, so subtract off one here.
2755     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2756     Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2757   }
2758 
2759   void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
2760     assert(N == 1 && "Invalid number of operands!");
2761     // The constant encodes as the immediate, except for 32, which encodes as
2762     // zero.
2763     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2764     unsigned Imm = CE->getValue();
2765     Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm)));
2766   }
2767 
2768   void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
2769     assert(N == 1 && "Invalid number of operands!");
2770     // An ASR value of 32 encodes as 0, so that's how we want to add it to
2771     // the instruction as well.
2772     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2773     int Val = CE->getValue();
2774     Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val));
2775   }
2776 
2777   void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
2778     assert(N == 1 && "Invalid number of operands!");
2779     // The operand is actually a t2_so_imm, but we have its bitwise
2780     // negation in the assembly source, so twiddle it here.
2781     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2782     Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue()));
2783   }
2784 
2785   void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
2786     assert(N == 1 && "Invalid number of operands!");
2787     // The operand is actually a t2_so_imm, but we have its
2788     // negation in the assembly source, so twiddle it here.
2789     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2790     Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2791   }
2792 
2793   void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
2794     assert(N == 1 && "Invalid number of operands!");
2795     // The operand is actually an imm0_4095, but we have its
2796     // negation in the assembly source, so twiddle it here.
2797     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2798     Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2799   }
2800 
2801   void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
2802     if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
2803       Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2));
2804       return;
2805     }
2806     const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val);
2807     Inst.addOperand(MCOperand::createExpr(SR));
2808   }
2809 
2810   void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
2811     assert(N == 1 && "Invalid number of operands!");
2812     if (isImm()) {
2813       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2814       if (CE) {
2815         Inst.addOperand(MCOperand::createImm(CE->getValue()));
2816         return;
2817       }
2818       const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val);
2819       Inst.addOperand(MCOperand::createExpr(SR));
2820       return;
2821     }
2822 
2823     assert(isGPRMem()  && "Unknown value type!");
2824     assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
2825     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
2826       Inst.addOperand(MCOperand::createImm(CE->getValue()));
2827     else
2828       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
2829   }
2830 
2831   void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
2832     assert(N == 1 && "Invalid number of operands!");
2833     Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt())));
2834   }
2835 
2836   void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2837     assert(N == 1 && "Invalid number of operands!");
2838     Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt())));
2839   }
2840 
2841   void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2842     assert(N == 1 && "Invalid number of operands!");
2843     Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt())));
2844   }
2845 
2846   void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
2847     assert(N == 1 && "Invalid number of operands!");
2848     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2849   }
2850 
2851   void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const {
2852     assert(N == 1 && "Invalid number of operands!");
2853     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2854   }
2855 
2856   void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const {
2857     assert(N == 1 && "Invalid number of operands!");
2858     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2859   }
2860 
2861   void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const {
2862     assert(N == 1 && "Invalid number of operands!");
2863     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2864   }
2865 
2866   void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
2867     assert(N == 1 && "Invalid number of operands!");
2868     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
2869       Inst.addOperand(MCOperand::createImm(CE->getValue()));
2870     else
2871       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
2872   }
2873 
2874   void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
2875     assert(N == 1 && "Invalid number of operands!");
2876     assert(isImm() && "Not an immediate!");
2877 
2878     // If we have an immediate that's not a constant, treat it as a label
2879     // reference needing a fixup.
2880     if (!isa<MCConstantExpr>(getImm())) {
2881       Inst.addOperand(MCOperand::createExpr(getImm()));
2882       return;
2883     }
2884 
2885     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2886     int Val = CE->getValue();
2887     Inst.addOperand(MCOperand::createImm(Val));
2888   }
2889 
2890   void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
2891     assert(N == 2 && "Invalid number of operands!");
2892     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2893     Inst.addOperand(MCOperand::createImm(Memory.Alignment));
2894   }
2895 
2896   void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2897     addAlignedMemoryOperands(Inst, N);
2898   }
2899 
2900   void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2901     addAlignedMemoryOperands(Inst, N);
2902   }
2903 
2904   void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2905     addAlignedMemoryOperands(Inst, N);
2906   }
2907 
2908   void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2909     addAlignedMemoryOperands(Inst, N);
2910   }
2911 
2912   void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2913     addAlignedMemoryOperands(Inst, N);
2914   }
2915 
2916   void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2917     addAlignedMemoryOperands(Inst, N);
2918   }
2919 
2920   void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2921     addAlignedMemoryOperands(Inst, N);
2922   }
2923 
2924   void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2925     addAlignedMemoryOperands(Inst, N);
2926   }
2927 
2928   void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2929     addAlignedMemoryOperands(Inst, N);
2930   }
2931 
2932   void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2933     addAlignedMemoryOperands(Inst, N);
2934   }
2935 
2936   void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const {
2937     addAlignedMemoryOperands(Inst, N);
2938   }
2939 
2940   void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
2941     assert(N == 3 && "Invalid number of operands!");
2942     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2943     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2944     if (!Memory.OffsetRegNum) {
2945       if (!Memory.OffsetImm)
2946         Inst.addOperand(MCOperand::createImm(0));
2947       else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
2948         int32_t Val = CE->getValue();
2949         ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2950         // Special case for #-0
2951         if (Val == std::numeric_limits<int32_t>::min())
2952           Val = 0;
2953         if (Val < 0)
2954           Val = -Val;
2955         Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2956         Inst.addOperand(MCOperand::createImm(Val));
2957       } else
2958         Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
2959     } else {
2960       // For register offset, we encode the shift type and negation flag
2961       // here.
2962       int32_t Val =
2963           ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2964                             Memory.ShiftImm, Memory.ShiftType);
2965       Inst.addOperand(MCOperand::createImm(Val));
2966     }
2967   }
2968 
2969   void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
2970     assert(N == 2 && "Invalid number of operands!");
2971     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2972     assert(CE && "non-constant AM2OffsetImm operand!");
2973     int32_t Val = CE->getValue();
2974     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2975     // Special case for #-0
2976     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2977     if (Val < 0) Val = -Val;
2978     Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2979     Inst.addOperand(MCOperand::createReg(0));
2980     Inst.addOperand(MCOperand::createImm(Val));
2981   }
2982 
2983   void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
2984     assert(N == 3 && "Invalid number of operands!");
2985     // If we have an immediate that's not a constant, treat it as a label
2986     // reference needing a fixup. If it is a constant, it's something else
2987     // and we reject it.
2988     if (isImm()) {
2989       Inst.addOperand(MCOperand::createExpr(getImm()));
2990       Inst.addOperand(MCOperand::createReg(0));
2991       Inst.addOperand(MCOperand::createImm(0));
2992       return;
2993     }
2994 
2995     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2996     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2997     if (!Memory.OffsetRegNum) {
2998       if (!Memory.OffsetImm)
2999         Inst.addOperand(MCOperand::createImm(0));
3000       else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
3001         int32_t Val = CE->getValue();
3002         ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
3003         // Special case for #-0
3004         if (Val == std::numeric_limits<int32_t>::min())
3005           Val = 0;
3006         if (Val < 0)
3007           Val = -Val;
3008         Val = ARM_AM::getAM3Opc(AddSub, Val);
3009         Inst.addOperand(MCOperand::createImm(Val));
3010       } else
3011         Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3012     } else {
3013       // For register offset, we encode the shift type and negation flag
3014       // here.
3015       int32_t Val =
3016           ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
3017       Inst.addOperand(MCOperand::createImm(Val));
3018     }
3019   }
3020 
3021   void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
3022     assert(N == 2 && "Invalid number of operands!");
3023     if (Kind == k_PostIndexRegister) {
3024       int32_t Val =
3025         ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
3026       Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3027       Inst.addOperand(MCOperand::createImm(Val));
3028       return;
3029     }
3030 
3031     // Constant offset.
3032     const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
3033     int32_t Val = CE->getValue();
3034     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
3035     // Special case for #-0
3036     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
3037     if (Val < 0) Val = -Val;
3038     Val = ARM_AM::getAM3Opc(AddSub, Val);
3039     Inst.addOperand(MCOperand::createReg(0));
3040     Inst.addOperand(MCOperand::createImm(Val));
3041   }
3042 
3043   void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
3044     assert(N == 2 && "Invalid number of operands!");
3045     // If we have an immediate that's not a constant, treat it as a label
3046     // reference needing a fixup. If it is a constant, it's something else
3047     // and we reject it.
3048     if (isImm()) {
3049       Inst.addOperand(MCOperand::createExpr(getImm()));
3050       Inst.addOperand(MCOperand::createImm(0));
3051       return;
3052     }
3053 
3054     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3055     if (!Memory.OffsetImm)
3056       Inst.addOperand(MCOperand::createImm(0));
3057     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
3058       // The lower two bits are always zero and as such are not encoded.
3059       int32_t Val = CE->getValue() / 4;
3060       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
3061       // Special case for #-0
3062       if (Val == std::numeric_limits<int32_t>::min())
3063         Val = 0;
3064       if (Val < 0)
3065         Val = -Val;
3066       Val = ARM_AM::getAM5Opc(AddSub, Val);
3067       Inst.addOperand(MCOperand::createImm(Val));
3068     } else
3069       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3070   }
3071 
3072   void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const {
3073     assert(N == 2 && "Invalid number of operands!");
3074     // If we have an immediate that's not a constant, treat it as a label
3075     // reference needing a fixup. If it is a constant, it's something else
3076     // and we reject it.
3077     if (isImm()) {
3078       Inst.addOperand(MCOperand::createExpr(getImm()));
3079       Inst.addOperand(MCOperand::createImm(0));
3080       return;
3081     }
3082 
3083     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3084     // The lower bit is always zero and as such is not encoded.
3085     if (!Memory.OffsetImm)
3086       Inst.addOperand(MCOperand::createImm(0));
3087     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
3088       int32_t Val = CE->getValue() / 2;
3089       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
3090       // Special case for #-0
3091       if (Val == std::numeric_limits<int32_t>::min())
3092         Val = 0;
3093       if (Val < 0)
3094         Val = -Val;
3095       Val = ARM_AM::getAM5FP16Opc(AddSub, Val);
3096       Inst.addOperand(MCOperand::createImm(Val));
3097     } else
3098       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3099   }
3100 
3101   void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
3102     assert(N == 2 && "Invalid number of operands!");
3103     // If we have an immediate that's not a constant, treat it as a label
3104     // reference needing a fixup. If it is a constant, it's something else
3105     // and we reject it.
3106     if (isImm()) {
3107       Inst.addOperand(MCOperand::createExpr(getImm()));
3108       Inst.addOperand(MCOperand::createImm(0));
3109       return;
3110     }
3111 
3112     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3113     addExpr(Inst, Memory.OffsetImm);
3114   }
3115 
3116   void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const {
3117     assert(N == 2 && "Invalid number of operands!");
3118     // If we have an immediate that's not a constant, treat it as a label
3119     // reference needing a fixup. If it is a constant, it's something else
3120     // and we reject it.
3121     if (isImm()) {
3122       Inst.addOperand(MCOperand::createExpr(getImm()));
3123       Inst.addOperand(MCOperand::createImm(0));
3124       return;
3125     }
3126 
3127     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3128     addExpr(Inst, Memory.OffsetImm);
3129   }
3130 
3131   void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
3132     assert(N == 2 && "Invalid number of operands!");
3133     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3134     if (!Memory.OffsetImm)
3135       Inst.addOperand(MCOperand::createImm(0));
3136     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
3137       // The lower two bits are always zero and as such are not encoded.
3138       Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
3139     else
3140       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3141   }
3142 
3143   void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const {
3144     assert(N == 2 && "Invalid number of operands!");
3145     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3146     addExpr(Inst, Memory.OffsetImm);
3147   }
3148 
3149   void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const {
3150     assert(N == 2 && "Invalid number of operands!");
3151     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3152     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3153   }
3154 
3155   void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
3156     assert(N == 2 && "Invalid number of operands!");
3157     // If this is an immediate, it's a label reference.
3158     if (isImm()) {
3159       addExpr(Inst, getImm());
3160       Inst.addOperand(MCOperand::createImm(0));
3161       return;
3162     }
3163 
3164     // Otherwise, it's a normal memory reg+offset.
3165     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3166     addExpr(Inst, Memory.OffsetImm);
3167   }
3168 
3169   void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
3170     assert(N == 2 && "Invalid number of operands!");
3171     // If this is an immediate, it's a label reference.
3172     if (isImm()) {
3173       addExpr(Inst, getImm());
3174       Inst.addOperand(MCOperand::createImm(0));
3175       return;
3176     }
3177 
3178     // Otherwise, it's a normal memory reg+offset.
3179     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3180     addExpr(Inst, Memory.OffsetImm);
3181   }
3182 
3183   void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const {
3184     assert(N == 1 && "Invalid number of operands!");
3185     // This is container for the immediate that we will create the constant
3186     // pool from
3187     addExpr(Inst, getConstantPoolImm());
3188   }
3189 
3190   void addMemTBBOperands(MCInst &Inst, unsigned N) const {
3191     assert(N == 2 && "Invalid number of operands!");
3192     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3193     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3194   }
3195 
3196   void addMemTBHOperands(MCInst &Inst, unsigned N) const {
3197     assert(N == 2 && "Invalid number of operands!");
3198     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3199     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3200   }
3201 
3202   void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
3203     assert(N == 3 && "Invalid number of operands!");
3204     unsigned Val =
3205       ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
3206                         Memory.ShiftImm, Memory.ShiftType);
3207     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3208     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3209     Inst.addOperand(MCOperand::createImm(Val));
3210   }
3211 
3212   void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
3213     assert(N == 3 && "Invalid number of operands!");
3214     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3215     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3216     Inst.addOperand(MCOperand::createImm(Memory.ShiftImm));
3217   }
3218 
3219   void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
3220     assert(N == 2 && "Invalid number of operands!");
3221     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3222     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3223   }
3224 
3225   void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
3226     assert(N == 2 && "Invalid number of operands!");
3227     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3228     if (!Memory.OffsetImm)
3229       Inst.addOperand(MCOperand::createImm(0));
3230     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
3231       // The lower two bits are always zero and as such are not encoded.
3232       Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
3233     else
3234       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3235   }
3236 
3237   void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
3238     assert(N == 2 && "Invalid number of operands!");
3239     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3240     if (!Memory.OffsetImm)
3241       Inst.addOperand(MCOperand::createImm(0));
3242     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
3243       Inst.addOperand(MCOperand::createImm(CE->getValue() / 2));
3244     else
3245       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3246   }
3247 
3248   void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
3249     assert(N == 2 && "Invalid number of operands!");
3250     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3251     addExpr(Inst, Memory.OffsetImm);
3252   }
3253 
3254   void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
3255     assert(N == 2 && "Invalid number of operands!");
3256     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3257     if (!Memory.OffsetImm)
3258       Inst.addOperand(MCOperand::createImm(0));
3259     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
3260       // The lower two bits are always zero and as such are not encoded.
3261       Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
3262     else
3263       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3264   }
3265 
3266   void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
3267     assert(N == 1 && "Invalid number of operands!");
3268     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3269     assert(CE && "non-constant post-idx-imm8 operand!");
3270     int Imm = CE->getValue();
3271     bool isAdd = Imm >= 0;
3272     if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
3273     Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
3274     Inst.addOperand(MCOperand::createImm(Imm));
3275   }
3276 
3277   void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
3278     assert(N == 1 && "Invalid number of operands!");
3279     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3280     assert(CE && "non-constant post-idx-imm8s4 operand!");
3281     int Imm = CE->getValue();
3282     bool isAdd = Imm >= 0;
3283     if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
3284     // Immediate is scaled by 4.
3285     Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
3286     Inst.addOperand(MCOperand::createImm(Imm));
3287   }
3288 
3289   void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
3290     assert(N == 2 && "Invalid number of operands!");
3291     Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3292     Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd));
3293   }
3294 
3295   void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
3296     assert(N == 2 && "Invalid number of operands!");
3297     Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3298     // The sign, shift type, and shift amount are encoded in a single operand
3299     // using the AM2 encoding helpers.
3300     ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
3301     unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
3302                                      PostIdxReg.ShiftTy);
3303     Inst.addOperand(MCOperand::createImm(Imm));
3304   }
3305 
3306   void addPowerTwoOperands(MCInst &Inst, unsigned N) const {
3307     assert(N == 1 && "Invalid number of operands!");
3308     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3309     Inst.addOperand(MCOperand::createImm(CE->getValue()));
3310   }
3311 
3312   void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
3313     assert(N == 1 && "Invalid number of operands!");
3314     Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask())));
3315   }
3316 
3317   void addBankedRegOperands(MCInst &Inst, unsigned N) const {
3318     assert(N == 1 && "Invalid number of operands!");
3319     Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg())));
3320   }
3321 
3322   void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
3323     assert(N == 1 && "Invalid number of operands!");
3324     Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags())));
3325   }
3326 
3327   void addVecListOperands(MCInst &Inst, unsigned N) const {
3328     assert(N == 1 && "Invalid number of operands!");
3329     Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
3330   }
3331 
3332   void addMVEVecListOperands(MCInst &Inst, unsigned N) const {
3333     assert(N == 1 && "Invalid number of operands!");
3334 
3335     // When we come here, the VectorList field will identify a range
3336     // of q-registers by its base register and length, and it will
3337     // have already been error-checked to be the expected length of
3338     // range and contain only q-regs in the range q0-q7. So we can
3339     // count on the base register being in the range q0-q6 (for 2
3340     // regs) or q0-q4 (for 4)
3341     //
3342     // The MVE instructions taking a register range of this kind will
3343     // need an operand in the MQQPR or MQQQQPR class, representing the
3344     // entire range as a unit. So we must translate into that class,
3345     // by finding the index of the base register in the MQPR reg
3346     // class, and returning the super-register at the corresponding
3347     // index in the target class.
3348 
3349     const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID];
3350     const MCRegisterClass *RC_out =
3351         (VectorList.Count == 2) ? &ARMMCRegisterClasses[ARM::MQQPRRegClassID]
3352                                 : &ARMMCRegisterClasses[ARM::MQQQQPRRegClassID];
3353 
3354     unsigned I, E = RC_out->getNumRegs();
3355     for (I = 0; I < E; I++)
3356       if (RC_in->getRegister(I) == VectorList.RegNum)
3357         break;
3358     assert(I < E && "Invalid vector list start register!");
3359 
3360     Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I)));
3361   }
3362 
3363   void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
3364     assert(N == 2 && "Invalid number of operands!");
3365     Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
3366     Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex));
3367   }
3368 
3369   void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
3370     assert(N == 1 && "Invalid number of operands!");
3371     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3372   }
3373 
3374   void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
3375     assert(N == 1 && "Invalid number of operands!");
3376     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3377   }
3378 
3379   void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
3380     assert(N == 1 && "Invalid number of operands!");
3381     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3382   }
3383 
3384   void addVectorIndex64Operands(MCInst &Inst, unsigned N) const {
3385     assert(N == 1 && "Invalid number of operands!");
3386     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3387   }
3388 
3389   void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const {
3390     assert(N == 1 && "Invalid number of operands!");
3391     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3392   }
3393 
3394   void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const {
3395     assert(N == 1 && "Invalid number of operands!");
3396     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3397   }
3398 
3399   void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
3400     assert(N == 1 && "Invalid number of operands!");
3401     // The immediate encodes the type of constant as well as the value.
3402     // Mask in that this is an i8 splat.
3403     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3404     Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00));
3405   }
3406 
3407   void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
3408     assert(N == 1 && "Invalid number of operands!");
3409     // The immediate encodes the type of constant as well as the value.
3410     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3411     unsigned Value = CE->getValue();
3412     Value = ARM_AM::encodeNEONi16splat(Value);
3413     Inst.addOperand(MCOperand::createImm(Value));
3414   }
3415 
3416   void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const {
3417     assert(N == 1 && "Invalid number of operands!");
3418     // The immediate encodes the type of constant as well as the value.
3419     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3420     unsigned Value = CE->getValue();
3421     Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff);
3422     Inst.addOperand(MCOperand::createImm(Value));
3423   }
3424 
3425   void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
3426     assert(N == 1 && "Invalid number of operands!");
3427     // The immediate encodes the type of constant as well as the value.
3428     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3429     unsigned Value = CE->getValue();
3430     Value = ARM_AM::encodeNEONi32splat(Value);
3431     Inst.addOperand(MCOperand::createImm(Value));
3432   }
3433 
3434   void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const {
3435     assert(N == 1 && "Invalid number of operands!");
3436     // The immediate encodes the type of constant as well as the value.
3437     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3438     unsigned Value = CE->getValue();
3439     Value = ARM_AM::encodeNEONi32splat(~Value);
3440     Inst.addOperand(MCOperand::createImm(Value));
3441   }
3442 
3443   void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const {
3444     // The immediate encodes the type of constant as well as the value.
3445     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3446     assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
3447             Inst.getOpcode() == ARM::VMOVv16i8) &&
3448           "All instructions that wants to replicate non-zero byte "
3449           "always must be replaced with VMOVv8i8 or VMOVv16i8.");
3450     unsigned Value = CE->getValue();
3451     if (Inv)
3452       Value = ~Value;
3453     unsigned B = Value & 0xff;
3454     B |= 0xe00; // cmode = 0b1110
3455     Inst.addOperand(MCOperand::createImm(B));
3456   }
3457 
3458   void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const {
3459     assert(N == 1 && "Invalid number of operands!");
3460     addNEONi8ReplicateOperands(Inst, true);
3461   }
3462 
3463   static unsigned encodeNeonVMOVImmediate(unsigned Value) {
3464     if (Value >= 256 && Value <= 0xffff)
3465       Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
3466     else if (Value > 0xffff && Value <= 0xffffff)
3467       Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
3468     else if (Value > 0xffffff)
3469       Value = (Value >> 24) | 0x600;
3470     return Value;
3471   }
3472 
3473   void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
3474     assert(N == 1 && "Invalid number of operands!");
3475     // The immediate encodes the type of constant as well as the value.
3476     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3477     unsigned Value = encodeNeonVMOVImmediate(CE->getValue());
3478     Inst.addOperand(MCOperand::createImm(Value));
3479   }
3480 
3481   void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const {
3482     assert(N == 1 && "Invalid number of operands!");
3483     addNEONi8ReplicateOperands(Inst, false);
3484   }
3485 
3486   void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const {
3487     assert(N == 1 && "Invalid number of operands!");
3488     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3489     assert((Inst.getOpcode() == ARM::VMOVv4i16 ||
3490             Inst.getOpcode() == ARM::VMOVv8i16 ||
3491             Inst.getOpcode() == ARM::VMVNv4i16 ||
3492             Inst.getOpcode() == ARM::VMVNv8i16) &&
3493           "All instructions that want to replicate non-zero half-word "
3494           "always must be replaced with V{MOV,MVN}v{4,8}i16.");
3495     uint64_t Value = CE->getValue();
3496     unsigned Elem = Value & 0xffff;
3497     if (Elem >= 256)
3498       Elem = (Elem >> 8) | 0x200;
3499     Inst.addOperand(MCOperand::createImm(Elem));
3500   }
3501 
3502   void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
3503     assert(N == 1 && "Invalid number of operands!");
3504     // The immediate encodes the type of constant as well as the value.
3505     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3506     unsigned Value = encodeNeonVMOVImmediate(~CE->getValue());
3507     Inst.addOperand(MCOperand::createImm(Value));
3508   }
3509 
3510   void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const {
3511     assert(N == 1 && "Invalid number of operands!");
3512     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3513     assert((Inst.getOpcode() == ARM::VMOVv2i32 ||
3514             Inst.getOpcode() == ARM::VMOVv4i32 ||
3515             Inst.getOpcode() == ARM::VMVNv2i32 ||
3516             Inst.getOpcode() == ARM::VMVNv4i32) &&
3517           "All instructions that want to replicate non-zero word "
3518           "always must be replaced with V{MOV,MVN}v{2,4}i32.");
3519     uint64_t Value = CE->getValue();
3520     unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff);
3521     Inst.addOperand(MCOperand::createImm(Elem));
3522   }
3523 
3524   void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
3525     assert(N == 1 && "Invalid number of operands!");
3526     // The immediate encodes the type of constant as well as the value.
3527     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3528     uint64_t Value = CE->getValue();
3529     unsigned Imm = 0;
3530     for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
3531       Imm |= (Value & 1) << i;
3532     }
3533     Inst.addOperand(MCOperand::createImm(Imm | 0x1e00));
3534   }
3535 
3536   void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const {
3537     assert(N == 1 && "Invalid number of operands!");
3538     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3539     Inst.addOperand(MCOperand::createImm(CE->getValue() / 90));
3540   }
3541 
3542   void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const {
3543     assert(N == 1 && "Invalid number of operands!");
3544     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3545     Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180));
3546   }
3547 
3548   void addMveSaturateOperands(MCInst &Inst, unsigned N) const {
3549     assert(N == 1 && "Invalid number of operands!");
3550     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3551     unsigned Imm = CE->getValue();
3552     assert((Imm == 48 || Imm == 64) && "Invalid saturate operand");
3553     Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0));
3554   }
3555 
3556   void print(raw_ostream &OS) const override;
3557 
3558   static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) {
3559     auto Op = std::make_unique<ARMOperand>(k_ITCondMask);
3560     Op->ITMask.Mask = Mask;
3561     Op->StartLoc = S;
3562     Op->EndLoc = S;
3563     return Op;
3564   }
3565 
3566   static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC,
3567                                                     SMLoc S) {
3568     auto Op = std::make_unique<ARMOperand>(k_CondCode);
3569     Op->CC.Val = CC;
3570     Op->StartLoc = S;
3571     Op->EndLoc = S;
3572     return Op;
3573   }
3574 
3575   static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC,
3576                                                    SMLoc S) {
3577     auto Op = std::make_unique<ARMOperand>(k_VPTPred);
3578     Op->VCC.Val = CC;
3579     Op->StartLoc = S;
3580     Op->EndLoc = S;
3581     return Op;
3582   }
3583 
3584   static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) {
3585     auto Op = std::make_unique<ARMOperand>(k_CoprocNum);
3586     Op->Cop.Val = CopVal;
3587     Op->StartLoc = S;
3588     Op->EndLoc = S;
3589     return Op;
3590   }
3591 
3592   static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) {
3593     auto Op = std::make_unique<ARMOperand>(k_CoprocReg);
3594     Op->Cop.Val = CopVal;
3595     Op->StartLoc = S;
3596     Op->EndLoc = S;
3597     return Op;
3598   }
3599 
3600   static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S,
3601                                                         SMLoc E) {
3602     auto Op = std::make_unique<ARMOperand>(k_CoprocOption);
3603     Op->Cop.Val = Val;
3604     Op->StartLoc = S;
3605     Op->EndLoc = E;
3606     return Op;
3607   }
3608 
3609   static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) {
3610     auto Op = std::make_unique<ARMOperand>(k_CCOut);
3611     Op->Reg.RegNum = RegNum;
3612     Op->StartLoc = S;
3613     Op->EndLoc = S;
3614     return Op;
3615   }
3616 
3617   static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) {
3618     auto Op = std::make_unique<ARMOperand>(k_Token);
3619     Op->Tok.Data = Str.data();
3620     Op->Tok.Length = Str.size();
3621     Op->StartLoc = S;
3622     Op->EndLoc = S;
3623     return Op;
3624   }
3625 
3626   static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S,
3627                                                SMLoc E) {
3628     auto Op = std::make_unique<ARMOperand>(k_Register);
3629     Op->Reg.RegNum = RegNum;
3630     Op->StartLoc = S;
3631     Op->EndLoc = E;
3632     return Op;
3633   }
3634 
3635   static std::unique_ptr<ARMOperand>
3636   CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
3637                         unsigned ShiftReg, unsigned ShiftImm, SMLoc S,
3638                         SMLoc E) {
3639     auto Op = std::make_unique<ARMOperand>(k_ShiftedRegister);
3640     Op->RegShiftedReg.ShiftTy = ShTy;
3641     Op->RegShiftedReg.SrcReg = SrcReg;
3642     Op->RegShiftedReg.ShiftReg = ShiftReg;
3643     Op->RegShiftedReg.ShiftImm = ShiftImm;
3644     Op->StartLoc = S;
3645     Op->EndLoc = E;
3646     return Op;
3647   }
3648 
3649   static std::unique_ptr<ARMOperand>
3650   CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
3651                          unsigned ShiftImm, SMLoc S, SMLoc E) {
3652     auto Op = std::make_unique<ARMOperand>(k_ShiftedImmediate);
3653     Op->RegShiftedImm.ShiftTy = ShTy;
3654     Op->RegShiftedImm.SrcReg = SrcReg;
3655     Op->RegShiftedImm.ShiftImm = ShiftImm;
3656     Op->StartLoc = S;
3657     Op->EndLoc = E;
3658     return Op;
3659   }
3660 
3661   static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm,
3662                                                       SMLoc S, SMLoc E) {
3663     auto Op = std::make_unique<ARMOperand>(k_ShifterImmediate);
3664     Op->ShifterImm.isASR = isASR;
3665     Op->ShifterImm.Imm = Imm;
3666     Op->StartLoc = S;
3667     Op->EndLoc = E;
3668     return Op;
3669   }
3670 
3671   static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S,
3672                                                   SMLoc E) {
3673     auto Op = std::make_unique<ARMOperand>(k_RotateImmediate);
3674     Op->RotImm.Imm = Imm;
3675     Op->StartLoc = S;
3676     Op->EndLoc = E;
3677     return Op;
3678   }
3679 
3680   static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot,
3681                                                   SMLoc S, SMLoc E) {
3682     auto Op = std::make_unique<ARMOperand>(k_ModifiedImmediate);
3683     Op->ModImm.Bits = Bits;
3684     Op->ModImm.Rot = Rot;
3685     Op->StartLoc = S;
3686     Op->EndLoc = E;
3687     return Op;
3688   }
3689 
3690   static std::unique_ptr<ARMOperand>
3691   CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) {
3692     auto Op = std::make_unique<ARMOperand>(k_ConstantPoolImmediate);
3693     Op->Imm.Val = Val;
3694     Op->StartLoc = S;
3695     Op->EndLoc = E;
3696     return Op;
3697   }
3698 
3699   static std::unique_ptr<ARMOperand>
3700   CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
3701     auto Op = std::make_unique<ARMOperand>(k_BitfieldDescriptor);
3702     Op->Bitfield.LSB = LSB;
3703     Op->Bitfield.Width = Width;
3704     Op->StartLoc = S;
3705     Op->EndLoc = E;
3706     return Op;
3707   }
3708 
3709   static std::unique_ptr<ARMOperand>
3710   CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
3711                 SMLoc StartLoc, SMLoc EndLoc) {
3712     assert(Regs.size() > 0 && "RegList contains no registers?");
3713     KindTy Kind = k_RegisterList;
3714 
3715     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
3716             Regs.front().second)) {
3717       if (Regs.back().second == ARM::VPR)
3718         Kind = k_FPDRegisterListWithVPR;
3719       else
3720         Kind = k_DPRRegisterList;
3721     } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(
3722                    Regs.front().second)) {
3723       if (Regs.back().second == ARM::VPR)
3724         Kind = k_FPSRegisterListWithVPR;
3725       else
3726         Kind = k_SPRRegisterList;
3727     }
3728 
3729     if (Kind == k_RegisterList && Regs.back().second == ARM::APSR)
3730       Kind = k_RegisterListWithAPSR;
3731 
3732     assert(llvm::is_sorted(Regs) && "Register list must be sorted by encoding");
3733 
3734     auto Op = std::make_unique<ARMOperand>(Kind);
3735     for (const auto &P : Regs)
3736       Op->Registers.push_back(P.second);
3737 
3738     Op->StartLoc = StartLoc;
3739     Op->EndLoc = EndLoc;
3740     return Op;
3741   }
3742 
3743   static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum,
3744                                                       unsigned Count,
3745                                                       bool isDoubleSpaced,
3746                                                       SMLoc S, SMLoc E) {
3747     auto Op = std::make_unique<ARMOperand>(k_VectorList);
3748     Op->VectorList.RegNum = RegNum;
3749     Op->VectorList.Count = Count;
3750     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3751     Op->StartLoc = S;
3752     Op->EndLoc = E;
3753     return Op;
3754   }
3755 
3756   static std::unique_ptr<ARMOperand>
3757   CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced,
3758                            SMLoc S, SMLoc E) {
3759     auto Op = std::make_unique<ARMOperand>(k_VectorListAllLanes);
3760     Op->VectorList.RegNum = RegNum;
3761     Op->VectorList.Count = Count;
3762     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3763     Op->StartLoc = S;
3764     Op->EndLoc = E;
3765     return Op;
3766   }
3767 
3768   static std::unique_ptr<ARMOperand>
3769   CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index,
3770                           bool isDoubleSpaced, SMLoc S, SMLoc E) {
3771     auto Op = std::make_unique<ARMOperand>(k_VectorListIndexed);
3772     Op->VectorList.RegNum = RegNum;
3773     Op->VectorList.Count = Count;
3774     Op->VectorList.LaneIndex = Index;
3775     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3776     Op->StartLoc = S;
3777     Op->EndLoc = E;
3778     return Op;
3779   }
3780 
3781   static std::unique_ptr<ARMOperand>
3782   CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
3783     auto Op = std::make_unique<ARMOperand>(k_VectorIndex);
3784     Op->VectorIndex.Val = Idx;
3785     Op->StartLoc = S;
3786     Op->EndLoc = E;
3787     return Op;
3788   }
3789 
3790   static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S,
3791                                                SMLoc E) {
3792     auto Op = std::make_unique<ARMOperand>(k_Immediate);
3793     Op->Imm.Val = Val;
3794     Op->StartLoc = S;
3795     Op->EndLoc = E;
3796     return Op;
3797   }
3798 
3799   static std::unique_ptr<ARMOperand>
3800   CreateMem(unsigned BaseRegNum, const MCExpr *OffsetImm, unsigned OffsetRegNum,
3801             ARM_AM::ShiftOpc ShiftType, unsigned ShiftImm, unsigned Alignment,
3802             bool isNegative, SMLoc S, SMLoc E, SMLoc AlignmentLoc = SMLoc()) {
3803     auto Op = std::make_unique<ARMOperand>(k_Memory);
3804     Op->Memory.BaseRegNum = BaseRegNum;
3805     Op->Memory.OffsetImm = OffsetImm;
3806     Op->Memory.OffsetRegNum = OffsetRegNum;
3807     Op->Memory.ShiftType = ShiftType;
3808     Op->Memory.ShiftImm = ShiftImm;
3809     Op->Memory.Alignment = Alignment;
3810     Op->Memory.isNegative = isNegative;
3811     Op->StartLoc = S;
3812     Op->EndLoc = E;
3813     Op->AlignmentLoc = AlignmentLoc;
3814     return Op;
3815   }
3816 
3817   static std::unique_ptr<ARMOperand>
3818   CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy,
3819                    unsigned ShiftImm, SMLoc S, SMLoc E) {
3820     auto Op = std::make_unique<ARMOperand>(k_PostIndexRegister);
3821     Op->PostIdxReg.RegNum = RegNum;
3822     Op->PostIdxReg.isAdd = isAdd;
3823     Op->PostIdxReg.ShiftTy = ShiftTy;
3824     Op->PostIdxReg.ShiftImm = ShiftImm;
3825     Op->StartLoc = S;
3826     Op->EndLoc = E;
3827     return Op;
3828   }
3829 
3830   static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,
3831                                                          SMLoc S) {
3832     auto Op = std::make_unique<ARMOperand>(k_MemBarrierOpt);
3833     Op->MBOpt.Val = Opt;
3834     Op->StartLoc = S;
3835     Op->EndLoc = S;
3836     return Op;
3837   }
3838 
3839   static std::unique_ptr<ARMOperand>
3840   CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) {
3841     auto Op = std::make_unique<ARMOperand>(k_InstSyncBarrierOpt);
3842     Op->ISBOpt.Val = Opt;
3843     Op->StartLoc = S;
3844     Op->EndLoc = S;
3845     return Op;
3846   }
3847 
3848   static std::unique_ptr<ARMOperand>
3849   CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) {
3850     auto Op = std::make_unique<ARMOperand>(k_TraceSyncBarrierOpt);
3851     Op->TSBOpt.Val = Opt;
3852     Op->StartLoc = S;
3853     Op->EndLoc = S;
3854     return Op;
3855   }
3856 
3857   static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags,
3858                                                       SMLoc S) {
3859     auto Op = std::make_unique<ARMOperand>(k_ProcIFlags);
3860     Op->IFlags.Val = IFlags;
3861     Op->StartLoc = S;
3862     Op->EndLoc = S;
3863     return Op;
3864   }
3865 
3866   static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) {
3867     auto Op = std::make_unique<ARMOperand>(k_MSRMask);
3868     Op->MMask.Val = MMask;
3869     Op->StartLoc = S;
3870     Op->EndLoc = S;
3871     return Op;
3872   }
3873 
3874   static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) {
3875     auto Op = std::make_unique<ARMOperand>(k_BankedReg);
3876     Op->BankedReg.Val = Reg;
3877     Op->StartLoc = S;
3878     Op->EndLoc = S;
3879     return Op;
3880   }
3881 };
3882 
3883 } // end anonymous namespace.
3884 
3885 void ARMOperand::print(raw_ostream &OS) const {
3886   auto RegName = [](unsigned Reg) {
3887     if (Reg)
3888       return ARMInstPrinter::getRegisterName(Reg);
3889     else
3890       return "noreg";
3891   };
3892 
3893   switch (Kind) {
3894   case k_CondCode:
3895     OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
3896     break;
3897   case k_VPTPred:
3898     OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">";
3899     break;
3900   case k_CCOut:
3901     OS << "<ccout " << RegName(getReg()) << ">";
3902     break;
3903   case k_ITCondMask: {
3904     static const char *const MaskStr[] = {
3905       "(invalid)", "(tttt)", "(ttt)", "(ttte)",
3906       "(tt)",      "(ttet)", "(tte)", "(ttee)",
3907       "(t)",       "(tett)", "(tet)", "(tete)",
3908       "(te)",      "(teet)", "(tee)", "(teee)",
3909     };
3910     assert((ITMask.Mask & 0xf) == ITMask.Mask);
3911     OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
3912     break;
3913   }
3914   case k_CoprocNum:
3915     OS << "<coprocessor number: " << getCoproc() << ">";
3916     break;
3917   case k_CoprocReg:
3918     OS << "<coprocessor register: " << getCoproc() << ">";
3919     break;
3920   case k_CoprocOption:
3921     OS << "<coprocessor option: " << CoprocOption.Val << ">";
3922     break;
3923   case k_MSRMask:
3924     OS << "<mask: " << getMSRMask() << ">";
3925     break;
3926   case k_BankedReg:
3927     OS << "<banked reg: " << getBankedReg() << ">";
3928     break;
3929   case k_Immediate:
3930     OS << *getImm();
3931     break;
3932   case k_MemBarrierOpt:
3933     OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
3934     break;
3935   case k_InstSyncBarrierOpt:
3936     OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
3937     break;
3938   case k_TraceSyncBarrierOpt:
3939     OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">";
3940     break;
3941   case k_Memory:
3942     OS << "<memory";
3943     if (Memory.BaseRegNum)
3944       OS << " base:" << RegName(Memory.BaseRegNum);
3945     if (Memory.OffsetImm)
3946       OS << " offset-imm:" << *Memory.OffsetImm;
3947     if (Memory.OffsetRegNum)
3948       OS << " offset-reg:" << (Memory.isNegative ? "-" : "")
3949          << RegName(Memory.OffsetRegNum);
3950     if (Memory.ShiftType != ARM_AM::no_shift) {
3951       OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType);
3952       OS << " shift-imm:" << Memory.ShiftImm;
3953     }
3954     if (Memory.Alignment)
3955       OS << " alignment:" << Memory.Alignment;
3956     OS << ">";
3957     break;
3958   case k_PostIndexRegister:
3959     OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
3960        << RegName(PostIdxReg.RegNum);
3961     if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
3962       OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
3963          << PostIdxReg.ShiftImm;
3964     OS << ">";
3965     break;
3966   case k_ProcIFlags: {
3967     OS << "<ARM_PROC::";
3968     unsigned IFlags = getProcIFlags();
3969     for (int i=2; i >= 0; --i)
3970       if (IFlags & (1 << i))
3971         OS << ARM_PROC::IFlagsToString(1 << i);
3972     OS << ">";
3973     break;
3974   }
3975   case k_Register:
3976     OS << "<register " << RegName(getReg()) << ">";
3977     break;
3978   case k_ShifterImmediate:
3979     OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
3980        << " #" << ShifterImm.Imm << ">";
3981     break;
3982   case k_ShiftedRegister:
3983     OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " "
3984        << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " "
3985        << RegName(RegShiftedReg.ShiftReg) << ">";
3986     break;
3987   case k_ShiftedImmediate:
3988     OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " "
3989        << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #"
3990        << RegShiftedImm.ShiftImm << ">";
3991     break;
3992   case k_RotateImmediate:
3993     OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
3994     break;
3995   case k_ModifiedImmediate:
3996     OS << "<mod_imm #" << ModImm.Bits << ", #"
3997        <<  ModImm.Rot << ")>";
3998     break;
3999   case k_ConstantPoolImmediate:
4000     OS << "<constant_pool_imm #" << *getConstantPoolImm();
4001     break;
4002   case k_BitfieldDescriptor:
4003     OS << "<bitfield " << "lsb: " << Bitfield.LSB
4004        << ", width: " << Bitfield.Width << ">";
4005     break;
4006   case k_RegisterList:
4007   case k_RegisterListWithAPSR:
4008   case k_DPRRegisterList:
4009   case k_SPRRegisterList:
4010   case k_FPSRegisterListWithVPR:
4011   case k_FPDRegisterListWithVPR: {
4012     OS << "<register_list ";
4013 
4014     const SmallVectorImpl<unsigned> &RegList = getRegList();
4015     for (SmallVectorImpl<unsigned>::const_iterator
4016            I = RegList.begin(), E = RegList.end(); I != E; ) {
4017       OS << RegName(*I);
4018       if (++I < E) OS << ", ";
4019     }
4020 
4021     OS << ">";
4022     break;
4023   }
4024   case k_VectorList:
4025     OS << "<vector_list " << VectorList.Count << " * "
4026        << RegName(VectorList.RegNum) << ">";
4027     break;
4028   case k_VectorListAllLanes:
4029     OS << "<vector_list(all lanes) " << VectorList.Count << " * "
4030        << RegName(VectorList.RegNum) << ">";
4031     break;
4032   case k_VectorListIndexed:
4033     OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
4034        << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">";
4035     break;
4036   case k_Token:
4037     OS << "'" << getToken() << "'";
4038     break;
4039   case k_VectorIndex:
4040     OS << "<vectorindex " << getVectorIndex() << ">";
4041     break;
4042   }
4043 }
4044 
4045 /// @name Auto-generated Match Functions
4046 /// {
4047 
4048 static unsigned MatchRegisterName(StringRef Name);
4049 
4050 /// }
4051 
4052 bool ARMAsmParser::ParseRegister(unsigned &RegNo,
4053                                  SMLoc &StartLoc, SMLoc &EndLoc) {
4054   const AsmToken &Tok = getParser().getTok();
4055   StartLoc = Tok.getLoc();
4056   EndLoc = Tok.getEndLoc();
4057   RegNo = tryParseRegister();
4058 
4059   return (RegNo == (unsigned)-1);
4060 }
4061 
4062 OperandMatchResultTy ARMAsmParser::tryParseRegister(unsigned &RegNo,
4063                                                     SMLoc &StartLoc,
4064                                                     SMLoc &EndLoc) {
4065   if (ParseRegister(RegNo, StartLoc, EndLoc))
4066     return MatchOperand_NoMatch;
4067   return MatchOperand_Success;
4068 }
4069 
4070 /// Try to parse a register name.  The token must be an Identifier when called,
4071 /// and if it is a register name the token is eaten and the register number is
4072 /// returned.  Otherwise return -1.
4073 int ARMAsmParser::tryParseRegister() {
4074   MCAsmParser &Parser = getParser();
4075   const AsmToken &Tok = Parser.getTok();
4076   if (Tok.isNot(AsmToken::Identifier)) return -1;
4077 
4078   std::string lowerCase = Tok.getString().lower();
4079   unsigned RegNum = MatchRegisterName(lowerCase);
4080   if (!RegNum) {
4081     RegNum = StringSwitch<unsigned>(lowerCase)
4082       .Case("r13", ARM::SP)
4083       .Case("r14", ARM::LR)
4084       .Case("r15", ARM::PC)
4085       .Case("ip", ARM::R12)
4086       // Additional register name aliases for 'gas' compatibility.
4087       .Case("a1", ARM::R0)
4088       .Case("a2", ARM::R1)
4089       .Case("a3", ARM::R2)
4090       .Case("a4", ARM::R3)
4091       .Case("v1", ARM::R4)
4092       .Case("v2", ARM::R5)
4093       .Case("v3", ARM::R6)
4094       .Case("v4", ARM::R7)
4095       .Case("v5", ARM::R8)
4096       .Case("v6", ARM::R9)
4097       .Case("v7", ARM::R10)
4098       .Case("v8", ARM::R11)
4099       .Case("sb", ARM::R9)
4100       .Case("sl", ARM::R10)
4101       .Case("fp", ARM::R11)
4102       .Default(0);
4103   }
4104   if (!RegNum) {
4105     // Check for aliases registered via .req. Canonicalize to lower case.
4106     // That's more consistent since register names are case insensitive, and
4107     // it's how the original entry was passed in from MC/MCParser/AsmParser.
4108     StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
4109     // If no match, return failure.
4110     if (Entry == RegisterReqs.end())
4111       return -1;
4112     Parser.Lex(); // Eat identifier token.
4113     return Entry->getValue();
4114   }
4115 
4116   // Some FPUs only have 16 D registers, so D16-D31 are invalid
4117   if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31)
4118     return -1;
4119 
4120   Parser.Lex(); // Eat identifier token.
4121 
4122   return RegNum;
4123 }
4124 
4125 // Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
4126 // If a recoverable error occurs, return 1. If an irrecoverable error
4127 // occurs, return -1. An irrecoverable error is one where tokens have been
4128 // consumed in the process of trying to parse the shifter (i.e., when it is
4129 // indeed a shifter operand, but malformed).
4130 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
4131   MCAsmParser &Parser = getParser();
4132   SMLoc S = Parser.getTok().getLoc();
4133   const AsmToken &Tok = Parser.getTok();
4134   if (Tok.isNot(AsmToken::Identifier))
4135     return -1;
4136 
4137   std::string lowerCase = Tok.getString().lower();
4138   ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
4139       .Case("asl", ARM_AM::lsl)
4140       .Case("lsl", ARM_AM::lsl)
4141       .Case("lsr", ARM_AM::lsr)
4142       .Case("asr", ARM_AM::asr)
4143       .Case("ror", ARM_AM::ror)
4144       .Case("rrx", ARM_AM::rrx)
4145       .Default(ARM_AM::no_shift);
4146 
4147   if (ShiftTy == ARM_AM::no_shift)
4148     return 1;
4149 
4150   Parser.Lex(); // Eat the operator.
4151 
4152   // The source register for the shift has already been added to the
4153   // operand list, so we need to pop it off and combine it into the shifted
4154   // register operand instead.
4155   std::unique_ptr<ARMOperand> PrevOp(
4156       (ARMOperand *)Operands.pop_back_val().release());
4157   if (!PrevOp->isReg())
4158     return Error(PrevOp->getStartLoc(), "shift must be of a register");
4159   int SrcReg = PrevOp->getReg();
4160 
4161   SMLoc EndLoc;
4162   int64_t Imm = 0;
4163   int ShiftReg = 0;
4164   if (ShiftTy == ARM_AM::rrx) {
4165     // RRX Doesn't have an explicit shift amount. The encoder expects
4166     // the shift register to be the same as the source register. Seems odd,
4167     // but OK.
4168     ShiftReg = SrcReg;
4169   } else {
4170     // Figure out if this is shifted by a constant or a register (for non-RRX).
4171     if (Parser.getTok().is(AsmToken::Hash) ||
4172         Parser.getTok().is(AsmToken::Dollar)) {
4173       Parser.Lex(); // Eat hash.
4174       SMLoc ImmLoc = Parser.getTok().getLoc();
4175       const MCExpr *ShiftExpr = nullptr;
4176       if (getParser().parseExpression(ShiftExpr, EndLoc)) {
4177         Error(ImmLoc, "invalid immediate shift value");
4178         return -1;
4179       }
4180       // The expression must be evaluatable as an immediate.
4181       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
4182       if (!CE) {
4183         Error(ImmLoc, "invalid immediate shift value");
4184         return -1;
4185       }
4186       // Range check the immediate.
4187       // lsl, ror: 0 <= imm <= 31
4188       // lsr, asr: 0 <= imm <= 32
4189       Imm = CE->getValue();
4190       if (Imm < 0 ||
4191           ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
4192           ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
4193         Error(ImmLoc, "immediate shift value out of range");
4194         return -1;
4195       }
4196       // shift by zero is a nop. Always send it through as lsl.
4197       // ('as' compatibility)
4198       if (Imm == 0)
4199         ShiftTy = ARM_AM::lsl;
4200     } else if (Parser.getTok().is(AsmToken::Identifier)) {
4201       SMLoc L = Parser.getTok().getLoc();
4202       EndLoc = Parser.getTok().getEndLoc();
4203       ShiftReg = tryParseRegister();
4204       if (ShiftReg == -1) {
4205         Error(L, "expected immediate or register in shift operand");
4206         return -1;
4207       }
4208     } else {
4209       Error(Parser.getTok().getLoc(),
4210             "expected immediate or register in shift operand");
4211       return -1;
4212     }
4213   }
4214 
4215   if (ShiftReg && ShiftTy != ARM_AM::rrx)
4216     Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
4217                                                          ShiftReg, Imm,
4218                                                          S, EndLoc));
4219   else
4220     Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
4221                                                           S, EndLoc));
4222 
4223   return 0;
4224 }
4225 
4226 /// Try to parse a register name.  The token must be an Identifier when called.
4227 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
4228 /// if there is a "writeback". 'true' if it's not a register.
4229 ///
4230 /// TODO this is likely to change to allow different register types and or to
4231 /// parse for a specific register type.
4232 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
4233   MCAsmParser &Parser = getParser();
4234   SMLoc RegStartLoc = Parser.getTok().getLoc();
4235   SMLoc RegEndLoc = Parser.getTok().getEndLoc();
4236   int RegNo = tryParseRegister();
4237   if (RegNo == -1)
4238     return true;
4239 
4240   Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc));
4241 
4242   const AsmToken &ExclaimTok = Parser.getTok();
4243   if (ExclaimTok.is(AsmToken::Exclaim)) {
4244     Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
4245                                                ExclaimTok.getLoc()));
4246     Parser.Lex(); // Eat exclaim token
4247     return false;
4248   }
4249 
4250   // Also check for an index operand. This is only legal for vector registers,
4251   // but that'll get caught OK in operand matching, so we don't need to
4252   // explicitly filter everything else out here.
4253   if (Parser.getTok().is(AsmToken::LBrac)) {
4254     SMLoc SIdx = Parser.getTok().getLoc();
4255     Parser.Lex(); // Eat left bracket token.
4256 
4257     const MCExpr *ImmVal;
4258     if (getParser().parseExpression(ImmVal))
4259       return true;
4260     const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
4261     if (!MCE)
4262       return TokError("immediate value expected for vector index");
4263 
4264     if (Parser.getTok().isNot(AsmToken::RBrac))
4265       return Error(Parser.getTok().getLoc(), "']' expected");
4266 
4267     SMLoc E = Parser.getTok().getEndLoc();
4268     Parser.Lex(); // Eat right bracket token.
4269 
4270     Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
4271                                                      SIdx, E,
4272                                                      getContext()));
4273   }
4274 
4275   return false;
4276 }
4277 
4278 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
4279 /// instruction with a symbolic operand name.
4280 /// We accept "crN" syntax for GAS compatibility.
4281 /// <operand-name> ::= <prefix><number>
4282 /// If CoprocOp is 'c', then:
4283 ///   <prefix> ::= c | cr
4284 /// If CoprocOp is 'p', then :
4285 ///   <prefix> ::= p
4286 /// <number> ::= integer in range [0, 15]
4287 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
4288   // Use the same layout as the tablegen'erated register name matcher. Ugly,
4289   // but efficient.
4290   if (Name.size() < 2 || Name[0] != CoprocOp)
4291     return -1;
4292   Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front();
4293 
4294   switch (Name.size()) {
4295   default: return -1;
4296   case 1:
4297     switch (Name[0]) {
4298     default:  return -1;
4299     case '0': return 0;
4300     case '1': return 1;
4301     case '2': return 2;
4302     case '3': return 3;
4303     case '4': return 4;
4304     case '5': return 5;
4305     case '6': return 6;
4306     case '7': return 7;
4307     case '8': return 8;
4308     case '9': return 9;
4309     }
4310   case 2:
4311     if (Name[0] != '1')
4312       return -1;
4313     switch (Name[1]) {
4314     default:  return -1;
4315     // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
4316     // However, old cores (v5/v6) did use them in that way.
4317     case '0': return 10;
4318     case '1': return 11;
4319     case '2': return 12;
4320     case '3': return 13;
4321     case '4': return 14;
4322     case '5': return 15;
4323     }
4324   }
4325 }
4326 
4327 /// parseITCondCode - Try to parse a condition code for an IT instruction.
4328 OperandMatchResultTy
4329 ARMAsmParser::parseITCondCode(OperandVector &Operands) {
4330   MCAsmParser &Parser = getParser();
4331   SMLoc S = Parser.getTok().getLoc();
4332   const AsmToken &Tok = Parser.getTok();
4333   if (!Tok.is(AsmToken::Identifier))
4334     return MatchOperand_NoMatch;
4335   unsigned CC = ARMCondCodeFromString(Tok.getString());
4336   if (CC == ~0U)
4337     return MatchOperand_NoMatch;
4338   Parser.Lex(); // Eat the token.
4339 
4340   Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
4341 
4342   return MatchOperand_Success;
4343 }
4344 
4345 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
4346 /// token must be an Identifier when called, and if it is a coprocessor
4347 /// number, the token is eaten and the operand is added to the operand list.
4348 OperandMatchResultTy
4349 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
4350   MCAsmParser &Parser = getParser();
4351   SMLoc S = Parser.getTok().getLoc();
4352   const AsmToken &Tok = Parser.getTok();
4353   if (Tok.isNot(AsmToken::Identifier))
4354     return MatchOperand_NoMatch;
4355 
4356   int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p');
4357   if (Num == -1)
4358     return MatchOperand_NoMatch;
4359   if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits()))
4360     return MatchOperand_NoMatch;
4361 
4362   Parser.Lex(); // Eat identifier token.
4363   Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
4364   return MatchOperand_Success;
4365 }
4366 
4367 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
4368 /// token must be an Identifier when called, and if it is a coprocessor
4369 /// number, the token is eaten and the operand is added to the operand list.
4370 OperandMatchResultTy
4371 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
4372   MCAsmParser &Parser = getParser();
4373   SMLoc S = Parser.getTok().getLoc();
4374   const AsmToken &Tok = Parser.getTok();
4375   if (Tok.isNot(AsmToken::Identifier))
4376     return MatchOperand_NoMatch;
4377 
4378   int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c');
4379   if (Reg == -1)
4380     return MatchOperand_NoMatch;
4381 
4382   Parser.Lex(); // Eat identifier token.
4383   Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
4384   return MatchOperand_Success;
4385 }
4386 
4387 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
4388 /// coproc_option : '{' imm0_255 '}'
4389 OperandMatchResultTy
4390 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
4391   MCAsmParser &Parser = getParser();
4392   SMLoc S = Parser.getTok().getLoc();
4393 
4394   // If this isn't a '{', this isn't a coprocessor immediate operand.
4395   if (Parser.getTok().isNot(AsmToken::LCurly))
4396     return MatchOperand_NoMatch;
4397   Parser.Lex(); // Eat the '{'
4398 
4399   const MCExpr *Expr;
4400   SMLoc Loc = Parser.getTok().getLoc();
4401   if (getParser().parseExpression(Expr)) {
4402     Error(Loc, "illegal expression");
4403     return MatchOperand_ParseFail;
4404   }
4405   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4406   if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
4407     Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
4408     return MatchOperand_ParseFail;
4409   }
4410   int Val = CE->getValue();
4411 
4412   // Check for and consume the closing '}'
4413   if (Parser.getTok().isNot(AsmToken::RCurly))
4414     return MatchOperand_ParseFail;
4415   SMLoc E = Parser.getTok().getEndLoc();
4416   Parser.Lex(); // Eat the '}'
4417 
4418   Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
4419   return MatchOperand_Success;
4420 }
4421 
4422 // For register list parsing, we need to map from raw GPR register numbering
4423 // to the enumeration values. The enumeration values aren't sorted by
4424 // register number due to our using "sp", "lr" and "pc" as canonical names.
4425 static unsigned getNextRegister(unsigned Reg) {
4426   // If this is a GPR, we need to do it manually, otherwise we can rely
4427   // on the sort ordering of the enumeration since the other reg-classes
4428   // are sane.
4429   if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4430     return Reg + 1;
4431   switch(Reg) {
4432   default: llvm_unreachable("Invalid GPR number!");
4433   case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
4434   case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
4435   case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
4436   case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
4437   case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
4438   case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
4439   case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
4440   case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
4441   }
4442 }
4443 
4444 // Insert an <Encoding, Register> pair in an ordered vector. Return true on
4445 // success, or false, if duplicate encoding found.
4446 static bool
4447 insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
4448                    unsigned Enc, unsigned Reg) {
4449   Regs.emplace_back(Enc, Reg);
4450   for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) {
4451     if (J->first == Enc) {
4452       Regs.erase(J.base());
4453       return false;
4454     }
4455     if (J->first < Enc)
4456       break;
4457     std::swap(*I, *J);
4458   }
4459   return true;
4460 }
4461 
4462 /// Parse a register list.
4463 bool ARMAsmParser::parseRegisterList(OperandVector &Operands, bool EnforceOrder,
4464                                      bool AllowRAAC) {
4465   MCAsmParser &Parser = getParser();
4466   if (Parser.getTok().isNot(AsmToken::LCurly))
4467     return TokError("Token is not a Left Curly Brace");
4468   SMLoc S = Parser.getTok().getLoc();
4469   Parser.Lex(); // Eat '{' token.
4470   SMLoc RegLoc = Parser.getTok().getLoc();
4471 
4472   // Check the first register in the list to see what register class
4473   // this is a list of.
4474   int Reg = tryParseRegister();
4475   if (Reg == -1)
4476     return Error(RegLoc, "register expected");
4477   if (!AllowRAAC && Reg == ARM::RA_AUTH_CODE)
4478     return Error(RegLoc, "pseudo-register not allowed");
4479   // The reglist instructions have at most 16 registers, so reserve
4480   // space for that many.
4481   int EReg = 0;
4482   SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
4483 
4484   // Allow Q regs and just interpret them as the two D sub-registers.
4485   if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4486     Reg = getDRegFromQReg(Reg);
4487     EReg = MRI->getEncodingValue(Reg);
4488     Registers.emplace_back(EReg, Reg);
4489     ++Reg;
4490   }
4491   const MCRegisterClass *RC;
4492   if (Reg == ARM::RA_AUTH_CODE ||
4493       ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4494     RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
4495   else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
4496     RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
4497   else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
4498     RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
4499   else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg))
4500     RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID];
4501   else
4502     return Error(RegLoc, "invalid register in register list");
4503 
4504   // Store the register.
4505   EReg = MRI->getEncodingValue(Reg);
4506   Registers.emplace_back(EReg, Reg);
4507 
4508   // This starts immediately after the first register token in the list,
4509   // so we can see either a comma or a minus (range separator) as a legal
4510   // next token.
4511   while (Parser.getTok().is(AsmToken::Comma) ||
4512          Parser.getTok().is(AsmToken::Minus)) {
4513     if (Parser.getTok().is(AsmToken::Minus)) {
4514       if (Reg == ARM::RA_AUTH_CODE)
4515         return Error(RegLoc, "pseudo-register not allowed");
4516       Parser.Lex(); // Eat the minus.
4517       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4518       int EndReg = tryParseRegister();
4519       if (EndReg == -1)
4520         return Error(AfterMinusLoc, "register expected");
4521       if (EndReg == ARM::RA_AUTH_CODE)
4522         return Error(AfterMinusLoc, "pseudo-register not allowed");
4523       // Allow Q regs and just interpret them as the two D sub-registers.
4524       if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4525         EndReg = getDRegFromQReg(EndReg) + 1;
4526       // If the register is the same as the start reg, there's nothing
4527       // more to do.
4528       if (Reg == EndReg)
4529         continue;
4530       // The register must be in the same register class as the first.
4531       if ((Reg == ARM::RA_AUTH_CODE &&
4532            RC != &ARMMCRegisterClasses[ARM::GPRRegClassID]) ||
4533           (Reg != ARM::RA_AUTH_CODE && !RC->contains(Reg)))
4534         return Error(AfterMinusLoc, "invalid register in register list");
4535       // Ranges must go from low to high.
4536       if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
4537         return Error(AfterMinusLoc, "bad range in register list");
4538 
4539       // Add all the registers in the range to the register list.
4540       while (Reg != EndReg) {
4541         Reg = getNextRegister(Reg);
4542         EReg = MRI->getEncodingValue(Reg);
4543         if (!insertNoDuplicates(Registers, EReg, Reg)) {
4544           Warning(AfterMinusLoc, StringRef("duplicated register (") +
4545                                      ARMInstPrinter::getRegisterName(Reg) +
4546                                      ") in register list");
4547         }
4548       }
4549       continue;
4550     }
4551     Parser.Lex(); // Eat the comma.
4552     RegLoc = Parser.getTok().getLoc();
4553     int OldReg = Reg;
4554     const AsmToken RegTok = Parser.getTok();
4555     Reg = tryParseRegister();
4556     if (Reg == -1)
4557       return Error(RegLoc, "register expected");
4558     if (!AllowRAAC && Reg == ARM::RA_AUTH_CODE)
4559       return Error(RegLoc, "pseudo-register not allowed");
4560     // Allow Q regs and just interpret them as the two D sub-registers.
4561     bool isQReg = false;
4562     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4563       Reg = getDRegFromQReg(Reg);
4564       isQReg = true;
4565     }
4566     if (Reg != ARM::RA_AUTH_CODE && !RC->contains(Reg) &&
4567         RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() &&
4568         ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) {
4569       // switch the register classes, as GPRwithAPSRnospRegClassID is a partial
4570       // subset of GPRRegClassId except it contains APSR as well.
4571       RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID];
4572     }
4573     if (Reg == ARM::VPR &&
4574         (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] ||
4575          RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] ||
4576          RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) {
4577       RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID];
4578       EReg = MRI->getEncodingValue(Reg);
4579       if (!insertNoDuplicates(Registers, EReg, Reg)) {
4580         Warning(RegLoc, "duplicated register (" + RegTok.getString() +
4581                             ") in register list");
4582       }
4583       continue;
4584     }
4585     // The register must be in the same register class as the first.
4586     if ((Reg == ARM::RA_AUTH_CODE &&
4587          RC != &ARMMCRegisterClasses[ARM::GPRRegClassID]) ||
4588         (Reg != ARM::RA_AUTH_CODE && !RC->contains(Reg)))
4589       return Error(RegLoc, "invalid register in register list");
4590     // In most cases, the list must be monotonically increasing. An
4591     // exception is CLRM, which is order-independent anyway, so
4592     // there's no potential for confusion if you write clrm {r2,r1}
4593     // instead of clrm {r1,r2}.
4594     if (EnforceOrder &&
4595         MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
4596       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4597         Warning(RegLoc, "register list not in ascending order");
4598       else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg))
4599         return Error(RegLoc, "register list not in ascending order");
4600     }
4601     // VFP register lists must also be contiguous.
4602     if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
4603         RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] &&
4604         Reg != OldReg + 1)
4605       return Error(RegLoc, "non-contiguous register range");
4606     EReg = MRI->getEncodingValue(Reg);
4607     if (!insertNoDuplicates(Registers, EReg, Reg)) {
4608       Warning(RegLoc, "duplicated register (" + RegTok.getString() +
4609                           ") in register list");
4610     }
4611     if (isQReg) {
4612       EReg = MRI->getEncodingValue(++Reg);
4613       Registers.emplace_back(EReg, Reg);
4614     }
4615   }
4616 
4617   if (Parser.getTok().isNot(AsmToken::RCurly))
4618     return Error(Parser.getTok().getLoc(), "'}' expected");
4619   SMLoc E = Parser.getTok().getEndLoc();
4620   Parser.Lex(); // Eat '}' token.
4621 
4622   // Push the register list operand.
4623   Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
4624 
4625   // The ARM system instruction variants for LDM/STM have a '^' token here.
4626   if (Parser.getTok().is(AsmToken::Caret)) {
4627     Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
4628     Parser.Lex(); // Eat '^' token.
4629   }
4630 
4631   return false;
4632 }
4633 
4634 // Helper function to parse the lane index for vector lists.
4635 OperandMatchResultTy ARMAsmParser::
4636 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
4637   MCAsmParser &Parser = getParser();
4638   Index = 0; // Always return a defined index value.
4639   if (Parser.getTok().is(AsmToken::LBrac)) {
4640     Parser.Lex(); // Eat the '['.
4641     if (Parser.getTok().is(AsmToken::RBrac)) {
4642       // "Dn[]" is the 'all lanes' syntax.
4643       LaneKind = AllLanes;
4644       EndLoc = Parser.getTok().getEndLoc();
4645       Parser.Lex(); // Eat the ']'.
4646       return MatchOperand_Success;
4647     }
4648 
4649     // There's an optional '#' token here. Normally there wouldn't be, but
4650     // inline assemble puts one in, and it's friendly to accept that.
4651     if (Parser.getTok().is(AsmToken::Hash))
4652       Parser.Lex(); // Eat '#' or '$'.
4653 
4654     const MCExpr *LaneIndex;
4655     SMLoc Loc = Parser.getTok().getLoc();
4656     if (getParser().parseExpression(LaneIndex)) {
4657       Error(Loc, "illegal expression");
4658       return MatchOperand_ParseFail;
4659     }
4660     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
4661     if (!CE) {
4662       Error(Loc, "lane index must be empty or an integer");
4663       return MatchOperand_ParseFail;
4664     }
4665     if (Parser.getTok().isNot(AsmToken::RBrac)) {
4666       Error(Parser.getTok().getLoc(), "']' expected");
4667       return MatchOperand_ParseFail;
4668     }
4669     EndLoc = Parser.getTok().getEndLoc();
4670     Parser.Lex(); // Eat the ']'.
4671     int64_t Val = CE->getValue();
4672 
4673     // FIXME: Make this range check context sensitive for .8, .16, .32.
4674     if (Val < 0 || Val > 7) {
4675       Error(Parser.getTok().getLoc(), "lane index out of range");
4676       return MatchOperand_ParseFail;
4677     }
4678     Index = Val;
4679     LaneKind = IndexedLane;
4680     return MatchOperand_Success;
4681   }
4682   LaneKind = NoLanes;
4683   return MatchOperand_Success;
4684 }
4685 
4686 // parse a vector register list
4687 OperandMatchResultTy
4688 ARMAsmParser::parseVectorList(OperandVector &Operands) {
4689   MCAsmParser &Parser = getParser();
4690   VectorLaneTy LaneKind;
4691   unsigned LaneIndex;
4692   SMLoc S = Parser.getTok().getLoc();
4693   // As an extension (to match gas), support a plain D register or Q register
4694   // (without encosing curly braces) as a single or double entry list,
4695   // respectively.
4696   if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) {
4697     SMLoc E = Parser.getTok().getEndLoc();
4698     int Reg = tryParseRegister();
4699     if (Reg == -1)
4700       return MatchOperand_NoMatch;
4701     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
4702       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
4703       if (Res != MatchOperand_Success)
4704         return Res;
4705       switch (LaneKind) {
4706       case NoLanes:
4707         Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
4708         break;
4709       case AllLanes:
4710         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
4711                                                                 S, E));
4712         break;
4713       case IndexedLane:
4714         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
4715                                                                LaneIndex,
4716                                                                false, S, E));
4717         break;
4718       }
4719       return MatchOperand_Success;
4720     }
4721     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4722       Reg = getDRegFromQReg(Reg);
4723       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
4724       if (Res != MatchOperand_Success)
4725         return Res;
4726       switch (LaneKind) {
4727       case NoLanes:
4728         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
4729                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
4730         Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
4731         break;
4732       case AllLanes:
4733         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
4734                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
4735         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
4736                                                                 S, E));
4737         break;
4738       case IndexedLane:
4739         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
4740                                                                LaneIndex,
4741                                                                false, S, E));
4742         break;
4743       }
4744       return MatchOperand_Success;
4745     }
4746     Error(S, "vector register expected");
4747     return MatchOperand_ParseFail;
4748   }
4749 
4750   if (Parser.getTok().isNot(AsmToken::LCurly))
4751     return MatchOperand_NoMatch;
4752 
4753   Parser.Lex(); // Eat '{' token.
4754   SMLoc RegLoc = Parser.getTok().getLoc();
4755 
4756   int Reg = tryParseRegister();
4757   if (Reg == -1) {
4758     Error(RegLoc, "register expected");
4759     return MatchOperand_ParseFail;
4760   }
4761   unsigned Count = 1;
4762   int Spacing = 0;
4763   unsigned FirstReg = Reg;
4764 
4765   if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) {
4766       Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected");
4767       return MatchOperand_ParseFail;
4768   }
4769   // The list is of D registers, but we also allow Q regs and just interpret
4770   // them as the two D sub-registers.
4771   else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4772     FirstReg = Reg = getDRegFromQReg(Reg);
4773     Spacing = 1; // double-spacing requires explicit D registers, otherwise
4774                  // it's ambiguous with four-register single spaced.
4775     ++Reg;
4776     ++Count;
4777   }
4778 
4779   SMLoc E;
4780   if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
4781     return MatchOperand_ParseFail;
4782 
4783   while (Parser.getTok().is(AsmToken::Comma) ||
4784          Parser.getTok().is(AsmToken::Minus)) {
4785     if (Parser.getTok().is(AsmToken::Minus)) {
4786       if (!Spacing)
4787         Spacing = 1; // Register range implies a single spaced list.
4788       else if (Spacing == 2) {
4789         Error(Parser.getTok().getLoc(),
4790               "sequential registers in double spaced list");
4791         return MatchOperand_ParseFail;
4792       }
4793       Parser.Lex(); // Eat the minus.
4794       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4795       int EndReg = tryParseRegister();
4796       if (EndReg == -1) {
4797         Error(AfterMinusLoc, "register expected");
4798         return MatchOperand_ParseFail;
4799       }
4800       // Allow Q regs and just interpret them as the two D sub-registers.
4801       if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4802         EndReg = getDRegFromQReg(EndReg) + 1;
4803       // If the register is the same as the start reg, there's nothing
4804       // more to do.
4805       if (Reg == EndReg)
4806         continue;
4807       // The register must be in the same register class as the first.
4808       if ((hasMVE() &&
4809            !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) ||
4810           (!hasMVE() &&
4811            !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) {
4812         Error(AfterMinusLoc, "invalid register in register list");
4813         return MatchOperand_ParseFail;
4814       }
4815       // Ranges must go from low to high.
4816       if (Reg > EndReg) {
4817         Error(AfterMinusLoc, "bad range in register list");
4818         return MatchOperand_ParseFail;
4819       }
4820       // Parse the lane specifier if present.
4821       VectorLaneTy NextLaneKind;
4822       unsigned NextLaneIndex;
4823       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4824           MatchOperand_Success)
4825         return MatchOperand_ParseFail;
4826       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4827         Error(AfterMinusLoc, "mismatched lane index in register list");
4828         return MatchOperand_ParseFail;
4829       }
4830 
4831       // Add all the registers in the range to the register list.
4832       Count += EndReg - Reg;
4833       Reg = EndReg;
4834       continue;
4835     }
4836     Parser.Lex(); // Eat the comma.
4837     RegLoc = Parser.getTok().getLoc();
4838     int OldReg = Reg;
4839     Reg = tryParseRegister();
4840     if (Reg == -1) {
4841       Error(RegLoc, "register expected");
4842       return MatchOperand_ParseFail;
4843     }
4844 
4845     if (hasMVE()) {
4846       if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) {
4847         Error(RegLoc, "vector register in range Q0-Q7 expected");
4848         return MatchOperand_ParseFail;
4849       }
4850       Spacing = 1;
4851     }
4852     // vector register lists must be contiguous.
4853     // It's OK to use the enumeration values directly here rather, as the
4854     // VFP register classes have the enum sorted properly.
4855     //
4856     // The list is of D registers, but we also allow Q regs and just interpret
4857     // them as the two D sub-registers.
4858     else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4859       if (!Spacing)
4860         Spacing = 1; // Register range implies a single spaced list.
4861       else if (Spacing == 2) {
4862         Error(RegLoc,
4863               "invalid register in double-spaced list (must be 'D' register')");
4864         return MatchOperand_ParseFail;
4865       }
4866       Reg = getDRegFromQReg(Reg);
4867       if (Reg != OldReg + 1) {
4868         Error(RegLoc, "non-contiguous register range");
4869         return MatchOperand_ParseFail;
4870       }
4871       ++Reg;
4872       Count += 2;
4873       // Parse the lane specifier if present.
4874       VectorLaneTy NextLaneKind;
4875       unsigned NextLaneIndex;
4876       SMLoc LaneLoc = Parser.getTok().getLoc();
4877       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4878           MatchOperand_Success)
4879         return MatchOperand_ParseFail;
4880       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4881         Error(LaneLoc, "mismatched lane index in register list");
4882         return MatchOperand_ParseFail;
4883       }
4884       continue;
4885     }
4886     // Normal D register.
4887     // Figure out the register spacing (single or double) of the list if
4888     // we don't know it already.
4889     if (!Spacing)
4890       Spacing = 1 + (Reg == OldReg + 2);
4891 
4892     // Just check that it's contiguous and keep going.
4893     if (Reg != OldReg + Spacing) {
4894       Error(RegLoc, "non-contiguous register range");
4895       return MatchOperand_ParseFail;
4896     }
4897     ++Count;
4898     // Parse the lane specifier if present.
4899     VectorLaneTy NextLaneKind;
4900     unsigned NextLaneIndex;
4901     SMLoc EndLoc = Parser.getTok().getLoc();
4902     if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
4903       return MatchOperand_ParseFail;
4904     if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4905       Error(EndLoc, "mismatched lane index in register list");
4906       return MatchOperand_ParseFail;
4907     }
4908   }
4909 
4910   if (Parser.getTok().isNot(AsmToken::RCurly)) {
4911     Error(Parser.getTok().getLoc(), "'}' expected");
4912     return MatchOperand_ParseFail;
4913   }
4914   E = Parser.getTok().getEndLoc();
4915   Parser.Lex(); // Eat '}' token.
4916 
4917   switch (LaneKind) {
4918   case NoLanes:
4919   case AllLanes: {
4920     // Two-register operands have been converted to the
4921     // composite register classes.
4922     if (Count == 2 && !hasMVE()) {
4923       const MCRegisterClass *RC = (Spacing == 1) ?
4924         &ARMMCRegisterClasses[ARM::DPairRegClassID] :
4925         &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
4926       FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
4927     }
4928     auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList :
4929                    ARMOperand::CreateVectorListAllLanes);
4930     Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E));
4931     break;
4932   }
4933   case IndexedLane:
4934     Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
4935                                                            LaneIndex,
4936                                                            (Spacing == 2),
4937                                                            S, E));
4938     break;
4939   }
4940   return MatchOperand_Success;
4941 }
4942 
4943 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
4944 OperandMatchResultTy
4945 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
4946   MCAsmParser &Parser = getParser();
4947   SMLoc S = Parser.getTok().getLoc();
4948   const AsmToken &Tok = Parser.getTok();
4949   unsigned Opt;
4950 
4951   if (Tok.is(AsmToken::Identifier)) {
4952     StringRef OptStr = Tok.getString();
4953 
4954     Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
4955       .Case("sy",    ARM_MB::SY)
4956       .Case("st",    ARM_MB::ST)
4957       .Case("ld",    ARM_MB::LD)
4958       .Case("sh",    ARM_MB::ISH)
4959       .Case("ish",   ARM_MB::ISH)
4960       .Case("shst",  ARM_MB::ISHST)
4961       .Case("ishst", ARM_MB::ISHST)
4962       .Case("ishld", ARM_MB::ISHLD)
4963       .Case("nsh",   ARM_MB::NSH)
4964       .Case("un",    ARM_MB::NSH)
4965       .Case("nshst", ARM_MB::NSHST)
4966       .Case("nshld", ARM_MB::NSHLD)
4967       .Case("unst",  ARM_MB::NSHST)
4968       .Case("osh",   ARM_MB::OSH)
4969       .Case("oshst", ARM_MB::OSHST)
4970       .Case("oshld", ARM_MB::OSHLD)
4971       .Default(~0U);
4972 
4973     // ishld, oshld, nshld and ld are only available from ARMv8.
4974     if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
4975                         Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
4976       Opt = ~0U;
4977 
4978     if (Opt == ~0U)
4979       return MatchOperand_NoMatch;
4980 
4981     Parser.Lex(); // Eat identifier token.
4982   } else if (Tok.is(AsmToken::Hash) ||
4983              Tok.is(AsmToken::Dollar) ||
4984              Tok.is(AsmToken::Integer)) {
4985     if (Parser.getTok().isNot(AsmToken::Integer))
4986       Parser.Lex(); // Eat '#' or '$'.
4987     SMLoc Loc = Parser.getTok().getLoc();
4988 
4989     const MCExpr *MemBarrierID;
4990     if (getParser().parseExpression(MemBarrierID)) {
4991       Error(Loc, "illegal expression");
4992       return MatchOperand_ParseFail;
4993     }
4994 
4995     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
4996     if (!CE) {
4997       Error(Loc, "constant expression expected");
4998       return MatchOperand_ParseFail;
4999     }
5000 
5001     int Val = CE->getValue();
5002     if (Val & ~0xf) {
5003       Error(Loc, "immediate value out of range");
5004       return MatchOperand_ParseFail;
5005     }
5006 
5007     Opt = ARM_MB::RESERVED_0 + Val;
5008   } else
5009     return MatchOperand_ParseFail;
5010 
5011   Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
5012   return MatchOperand_Success;
5013 }
5014 
5015 OperandMatchResultTy
5016 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) {
5017   MCAsmParser &Parser = getParser();
5018   SMLoc S = Parser.getTok().getLoc();
5019   const AsmToken &Tok = Parser.getTok();
5020 
5021   if (Tok.isNot(AsmToken::Identifier))
5022      return MatchOperand_NoMatch;
5023 
5024   if (!Tok.getString().equals_insensitive("csync"))
5025     return MatchOperand_NoMatch;
5026 
5027   Parser.Lex(); // Eat identifier token.
5028 
5029   Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S));
5030   return MatchOperand_Success;
5031 }
5032 
5033 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
5034 OperandMatchResultTy
5035 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
5036   MCAsmParser &Parser = getParser();
5037   SMLoc S = Parser.getTok().getLoc();
5038   const AsmToken &Tok = Parser.getTok();
5039   unsigned Opt;
5040 
5041   if (Tok.is(AsmToken::Identifier)) {
5042     StringRef OptStr = Tok.getString();
5043 
5044     if (OptStr.equals_insensitive("sy"))
5045       Opt = ARM_ISB::SY;
5046     else
5047       return MatchOperand_NoMatch;
5048 
5049     Parser.Lex(); // Eat identifier token.
5050   } else if (Tok.is(AsmToken::Hash) ||
5051              Tok.is(AsmToken::Dollar) ||
5052              Tok.is(AsmToken::Integer)) {
5053     if (Parser.getTok().isNot(AsmToken::Integer))
5054       Parser.Lex(); // Eat '#' or '$'.
5055     SMLoc Loc = Parser.getTok().getLoc();
5056 
5057     const MCExpr *ISBarrierID;
5058     if (getParser().parseExpression(ISBarrierID)) {
5059       Error(Loc, "illegal expression");
5060       return MatchOperand_ParseFail;
5061     }
5062 
5063     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
5064     if (!CE) {
5065       Error(Loc, "constant expression expected");
5066       return MatchOperand_ParseFail;
5067     }
5068 
5069     int Val = CE->getValue();
5070     if (Val & ~0xf) {
5071       Error(Loc, "immediate value out of range");
5072       return MatchOperand_ParseFail;
5073     }
5074 
5075     Opt = ARM_ISB::RESERVED_0 + Val;
5076   } else
5077     return MatchOperand_ParseFail;
5078 
5079   Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
5080           (ARM_ISB::InstSyncBOpt)Opt, S));
5081   return MatchOperand_Success;
5082 }
5083 
5084 
5085 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
5086 OperandMatchResultTy
5087 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
5088   MCAsmParser &Parser = getParser();
5089   SMLoc S = Parser.getTok().getLoc();
5090   const AsmToken &Tok = Parser.getTok();
5091   if (!Tok.is(AsmToken::Identifier))
5092     return MatchOperand_NoMatch;
5093   StringRef IFlagsStr = Tok.getString();
5094 
5095   // An iflags string of "none" is interpreted to mean that none of the AIF
5096   // bits are set.  Not a terribly useful instruction, but a valid encoding.
5097   unsigned IFlags = 0;
5098   if (IFlagsStr != "none") {
5099         for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
5100       unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower())
5101         .Case("a", ARM_PROC::A)
5102         .Case("i", ARM_PROC::I)
5103         .Case("f", ARM_PROC::F)
5104         .Default(~0U);
5105 
5106       // If some specific iflag is already set, it means that some letter is
5107       // present more than once, this is not acceptable.
5108       if (Flag == ~0U || (IFlags & Flag))
5109         return MatchOperand_NoMatch;
5110 
5111       IFlags |= Flag;
5112     }
5113   }
5114 
5115   Parser.Lex(); // Eat identifier token.
5116   Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
5117   return MatchOperand_Success;
5118 }
5119 
5120 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
5121 OperandMatchResultTy
5122 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
5123   MCAsmParser &Parser = getParser();
5124   SMLoc S = Parser.getTok().getLoc();
5125   const AsmToken &Tok = Parser.getTok();
5126 
5127   if (Tok.is(AsmToken::Integer)) {
5128     int64_t Val = Tok.getIntVal();
5129     if (Val > 255 || Val < 0) {
5130       return MatchOperand_NoMatch;
5131     }
5132     unsigned SYSmvalue = Val & 0xFF;
5133     Parser.Lex();
5134     Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
5135     return MatchOperand_Success;
5136   }
5137 
5138   if (!Tok.is(AsmToken::Identifier))
5139     return MatchOperand_NoMatch;
5140   StringRef Mask = Tok.getString();
5141 
5142   if (isMClass()) {
5143     auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower());
5144     if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits()))
5145       return MatchOperand_NoMatch;
5146 
5147     unsigned SYSmvalue = TheReg->Encoding & 0xFFF;
5148 
5149     Parser.Lex(); // Eat identifier token.
5150     Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
5151     return MatchOperand_Success;
5152   }
5153 
5154   // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
5155   size_t Start = 0, Next = Mask.find('_');
5156   StringRef Flags = "";
5157   std::string SpecReg = Mask.slice(Start, Next).lower();
5158   if (Next != StringRef::npos)
5159     Flags = Mask.slice(Next+1, Mask.size());
5160 
5161   // FlagsVal contains the complete mask:
5162   // 3-0: Mask
5163   // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
5164   unsigned FlagsVal = 0;
5165 
5166   if (SpecReg == "apsr") {
5167     FlagsVal = StringSwitch<unsigned>(Flags)
5168     .Case("nzcvq",  0x8) // same as CPSR_f
5169     .Case("g",      0x4) // same as CPSR_s
5170     .Case("nzcvqg", 0xc) // same as CPSR_fs
5171     .Default(~0U);
5172 
5173     if (FlagsVal == ~0U) {
5174       if (!Flags.empty())
5175         return MatchOperand_NoMatch;
5176       else
5177         FlagsVal = 8; // No flag
5178     }
5179   } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
5180     // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
5181     if (Flags == "all" || Flags == "")
5182       Flags = "fc";
5183     for (int i = 0, e = Flags.size(); i != e; ++i) {
5184       unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
5185       .Case("c", 1)
5186       .Case("x", 2)
5187       .Case("s", 4)
5188       .Case("f", 8)
5189       .Default(~0U);
5190 
5191       // If some specific flag is already set, it means that some letter is
5192       // present more than once, this is not acceptable.
5193       if (Flag == ~0U || (FlagsVal & Flag))
5194         return MatchOperand_NoMatch;
5195       FlagsVal |= Flag;
5196     }
5197   } else // No match for special register.
5198     return MatchOperand_NoMatch;
5199 
5200   // Special register without flags is NOT equivalent to "fc" flags.
5201   // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
5202   // two lines would enable gas compatibility at the expense of breaking
5203   // round-tripping.
5204   //
5205   // if (!FlagsVal)
5206   //  FlagsVal = 0x9;
5207 
5208   // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
5209   if (SpecReg == "spsr")
5210     FlagsVal |= 16;
5211 
5212   Parser.Lex(); // Eat identifier token.
5213   Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
5214   return MatchOperand_Success;
5215 }
5216 
5217 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
5218 /// use in the MRS/MSR instructions added to support virtualization.
5219 OperandMatchResultTy
5220 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) {
5221   MCAsmParser &Parser = getParser();
5222   SMLoc S = Parser.getTok().getLoc();
5223   const AsmToken &Tok = Parser.getTok();
5224   if (!Tok.is(AsmToken::Identifier))
5225     return MatchOperand_NoMatch;
5226   StringRef RegName = Tok.getString();
5227 
5228   auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower());
5229   if (!TheReg)
5230     return MatchOperand_NoMatch;
5231   unsigned Encoding = TheReg->Encoding;
5232 
5233   Parser.Lex(); // Eat identifier token.
5234   Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S));
5235   return MatchOperand_Success;
5236 }
5237 
5238 OperandMatchResultTy
5239 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
5240                           int High) {
5241   MCAsmParser &Parser = getParser();
5242   const AsmToken &Tok = Parser.getTok();
5243   if (Tok.isNot(AsmToken::Identifier)) {
5244     Error(Parser.getTok().getLoc(), Op + " operand expected.");
5245     return MatchOperand_ParseFail;
5246   }
5247   StringRef ShiftName = Tok.getString();
5248   std::string LowerOp = Op.lower();
5249   std::string UpperOp = Op.upper();
5250   if (ShiftName != LowerOp && ShiftName != UpperOp) {
5251     Error(Parser.getTok().getLoc(), Op + " operand expected.");
5252     return MatchOperand_ParseFail;
5253   }
5254   Parser.Lex(); // Eat shift type token.
5255 
5256   // There must be a '#' and a shift amount.
5257   if (Parser.getTok().isNot(AsmToken::Hash) &&
5258       Parser.getTok().isNot(AsmToken::Dollar)) {
5259     Error(Parser.getTok().getLoc(), "'#' expected");
5260     return MatchOperand_ParseFail;
5261   }
5262   Parser.Lex(); // Eat hash token.
5263 
5264   const MCExpr *ShiftAmount;
5265   SMLoc Loc = Parser.getTok().getLoc();
5266   SMLoc EndLoc;
5267   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5268     Error(Loc, "illegal expression");
5269     return MatchOperand_ParseFail;
5270   }
5271   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5272   if (!CE) {
5273     Error(Loc, "constant expression expected");
5274     return MatchOperand_ParseFail;
5275   }
5276   int Val = CE->getValue();
5277   if (Val < Low || Val > High) {
5278     Error(Loc, "immediate value out of range");
5279     return MatchOperand_ParseFail;
5280   }
5281 
5282   Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
5283 
5284   return MatchOperand_Success;
5285 }
5286 
5287 OperandMatchResultTy
5288 ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
5289   MCAsmParser &Parser = getParser();
5290   const AsmToken &Tok = Parser.getTok();
5291   SMLoc S = Tok.getLoc();
5292   if (Tok.isNot(AsmToken::Identifier)) {
5293     Error(S, "'be' or 'le' operand expected");
5294     return MatchOperand_ParseFail;
5295   }
5296   int Val = StringSwitch<int>(Tok.getString().lower())
5297     .Case("be", 1)
5298     .Case("le", 0)
5299     .Default(-1);
5300   Parser.Lex(); // Eat the token.
5301 
5302   if (Val == -1) {
5303     Error(S, "'be' or 'le' operand expected");
5304     return MatchOperand_ParseFail;
5305   }
5306   Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val,
5307                                                                   getContext()),
5308                                            S, Tok.getEndLoc()));
5309   return MatchOperand_Success;
5310 }
5311 
5312 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
5313 /// instructions. Legal values are:
5314 ///     lsl #n  'n' in [0,31]
5315 ///     asr #n  'n' in [1,32]
5316 ///             n == 32 encoded as n == 0.
5317 OperandMatchResultTy
5318 ARMAsmParser::parseShifterImm(OperandVector &Operands) {
5319   MCAsmParser &Parser = getParser();
5320   const AsmToken &Tok = Parser.getTok();
5321   SMLoc S = Tok.getLoc();
5322   if (Tok.isNot(AsmToken::Identifier)) {
5323     Error(S, "shift operator 'asr' or 'lsl' expected");
5324     return MatchOperand_ParseFail;
5325   }
5326   StringRef ShiftName = Tok.getString();
5327   bool isASR;
5328   if (ShiftName == "lsl" || ShiftName == "LSL")
5329     isASR = false;
5330   else if (ShiftName == "asr" || ShiftName == "ASR")
5331     isASR = true;
5332   else {
5333     Error(S, "shift operator 'asr' or 'lsl' expected");
5334     return MatchOperand_ParseFail;
5335   }
5336   Parser.Lex(); // Eat the operator.
5337 
5338   // A '#' and a shift amount.
5339   if (Parser.getTok().isNot(AsmToken::Hash) &&
5340       Parser.getTok().isNot(AsmToken::Dollar)) {
5341     Error(Parser.getTok().getLoc(), "'#' expected");
5342     return MatchOperand_ParseFail;
5343   }
5344   Parser.Lex(); // Eat hash token.
5345   SMLoc ExLoc = Parser.getTok().getLoc();
5346 
5347   const MCExpr *ShiftAmount;
5348   SMLoc EndLoc;
5349   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5350     Error(ExLoc, "malformed shift expression");
5351     return MatchOperand_ParseFail;
5352   }
5353   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5354   if (!CE) {
5355     Error(ExLoc, "shift amount must be an immediate");
5356     return MatchOperand_ParseFail;
5357   }
5358 
5359   int64_t Val = CE->getValue();
5360   if (isASR) {
5361     // Shift amount must be in [1,32]
5362     if (Val < 1 || Val > 32) {
5363       Error(ExLoc, "'asr' shift amount must be in range [1,32]");
5364       return MatchOperand_ParseFail;
5365     }
5366     // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
5367     if (isThumb() && Val == 32) {
5368       Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
5369       return MatchOperand_ParseFail;
5370     }
5371     if (Val == 32) Val = 0;
5372   } else {
5373     // Shift amount must be in [1,32]
5374     if (Val < 0 || Val > 31) {
5375       Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
5376       return MatchOperand_ParseFail;
5377     }
5378   }
5379 
5380   Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
5381 
5382   return MatchOperand_Success;
5383 }
5384 
5385 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
5386 /// of instructions. Legal values are:
5387 ///     ror #n  'n' in {0, 8, 16, 24}
5388 OperandMatchResultTy
5389 ARMAsmParser::parseRotImm(OperandVector &Operands) {
5390   MCAsmParser &Parser = getParser();
5391   const AsmToken &Tok = Parser.getTok();
5392   SMLoc S = Tok.getLoc();
5393   if (Tok.isNot(AsmToken::Identifier))
5394     return MatchOperand_NoMatch;
5395   StringRef ShiftName = Tok.getString();
5396   if (ShiftName != "ror" && ShiftName != "ROR")
5397     return MatchOperand_NoMatch;
5398   Parser.Lex(); // Eat the operator.
5399 
5400   // A '#' and a rotate amount.
5401   if (Parser.getTok().isNot(AsmToken::Hash) &&
5402       Parser.getTok().isNot(AsmToken::Dollar)) {
5403     Error(Parser.getTok().getLoc(), "'#' expected");
5404     return MatchOperand_ParseFail;
5405   }
5406   Parser.Lex(); // Eat hash token.
5407   SMLoc ExLoc = Parser.getTok().getLoc();
5408 
5409   const MCExpr *ShiftAmount;
5410   SMLoc EndLoc;
5411   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5412     Error(ExLoc, "malformed rotate expression");
5413     return MatchOperand_ParseFail;
5414   }
5415   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5416   if (!CE) {
5417     Error(ExLoc, "rotate amount must be an immediate");
5418     return MatchOperand_ParseFail;
5419   }
5420 
5421   int64_t Val = CE->getValue();
5422   // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
5423   // normally, zero is represented in asm by omitting the rotate operand
5424   // entirely.
5425   if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
5426     Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
5427     return MatchOperand_ParseFail;
5428   }
5429 
5430   Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
5431 
5432   return MatchOperand_Success;
5433 }
5434 
5435 OperandMatchResultTy
5436 ARMAsmParser::parseModImm(OperandVector &Operands) {
5437   MCAsmParser &Parser = getParser();
5438   MCAsmLexer &Lexer = getLexer();
5439   int64_t Imm1, Imm2;
5440 
5441   SMLoc S = Parser.getTok().getLoc();
5442 
5443   // 1) A mod_imm operand can appear in the place of a register name:
5444   //   add r0, #mod_imm
5445   //   add r0, r0, #mod_imm
5446   // to correctly handle the latter, we bail out as soon as we see an
5447   // identifier.
5448   //
5449   // 2) Similarly, we do not want to parse into complex operands:
5450   //   mov r0, #mod_imm
5451   //   mov r0, :lower16:(_foo)
5452   if (Parser.getTok().is(AsmToken::Identifier) ||
5453       Parser.getTok().is(AsmToken::Colon))
5454     return MatchOperand_NoMatch;
5455 
5456   // Hash (dollar) is optional as per the ARMARM
5457   if (Parser.getTok().is(AsmToken::Hash) ||
5458       Parser.getTok().is(AsmToken::Dollar)) {
5459     // Avoid parsing into complex operands (#:)
5460     if (Lexer.peekTok().is(AsmToken::Colon))
5461       return MatchOperand_NoMatch;
5462 
5463     // Eat the hash (dollar)
5464     Parser.Lex();
5465   }
5466 
5467   SMLoc Sx1, Ex1;
5468   Sx1 = Parser.getTok().getLoc();
5469   const MCExpr *Imm1Exp;
5470   if (getParser().parseExpression(Imm1Exp, Ex1)) {
5471     Error(Sx1, "malformed expression");
5472     return MatchOperand_ParseFail;
5473   }
5474 
5475   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp);
5476 
5477   if (CE) {
5478     // Immediate must fit within 32-bits
5479     Imm1 = CE->getValue();
5480     int Enc = ARM_AM::getSOImmVal(Imm1);
5481     if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) {
5482       // We have a match!
5483       Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF),
5484                                                   (Enc & 0xF00) >> 7,
5485                                                   Sx1, Ex1));
5486       return MatchOperand_Success;
5487     }
5488 
5489     // We have parsed an immediate which is not for us, fallback to a plain
5490     // immediate. This can happen for instruction aliases. For an example,
5491     // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
5492     // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
5493     // instruction with a mod_imm operand. The alias is defined such that the
5494     // parser method is shared, that's why we have to do this here.
5495     if (Parser.getTok().is(AsmToken::EndOfStatement)) {
5496       Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
5497       return MatchOperand_Success;
5498     }
5499   } else {
5500     // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
5501     // MCFixup). Fallback to a plain immediate.
5502     Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
5503     return MatchOperand_Success;
5504   }
5505 
5506   // From this point onward, we expect the input to be a (#bits, #rot) pair
5507   if (Parser.getTok().isNot(AsmToken::Comma)) {
5508     Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]");
5509     return MatchOperand_ParseFail;
5510   }
5511 
5512   if (Imm1 & ~0xFF) {
5513     Error(Sx1, "immediate operand must a number in the range [0, 255]");
5514     return MatchOperand_ParseFail;
5515   }
5516 
5517   // Eat the comma
5518   Parser.Lex();
5519 
5520   // Repeat for #rot
5521   SMLoc Sx2, Ex2;
5522   Sx2 = Parser.getTok().getLoc();
5523 
5524   // Eat the optional hash (dollar)
5525   if (Parser.getTok().is(AsmToken::Hash) ||
5526       Parser.getTok().is(AsmToken::Dollar))
5527     Parser.Lex();
5528 
5529   const MCExpr *Imm2Exp;
5530   if (getParser().parseExpression(Imm2Exp, Ex2)) {
5531     Error(Sx2, "malformed expression");
5532     return MatchOperand_ParseFail;
5533   }
5534 
5535   CE = dyn_cast<MCConstantExpr>(Imm2Exp);
5536 
5537   if (CE) {
5538     Imm2 = CE->getValue();
5539     if (!(Imm2 & ~0x1E)) {
5540       // We have a match!
5541       Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2));
5542       return MatchOperand_Success;
5543     }
5544     Error(Sx2, "immediate operand must an even number in the range [0, 30]");
5545     return MatchOperand_ParseFail;
5546   } else {
5547     Error(Sx2, "constant expression expected");
5548     return MatchOperand_ParseFail;
5549   }
5550 }
5551 
5552 OperandMatchResultTy
5553 ARMAsmParser::parseBitfield(OperandVector &Operands) {
5554   MCAsmParser &Parser = getParser();
5555   SMLoc S = Parser.getTok().getLoc();
5556   // The bitfield descriptor is really two operands, the LSB and the width.
5557   if (Parser.getTok().isNot(AsmToken::Hash) &&
5558       Parser.getTok().isNot(AsmToken::Dollar)) {
5559     Error(Parser.getTok().getLoc(), "'#' expected");
5560     return MatchOperand_ParseFail;
5561   }
5562   Parser.Lex(); // Eat hash token.
5563 
5564   const MCExpr *LSBExpr;
5565   SMLoc E = Parser.getTok().getLoc();
5566   if (getParser().parseExpression(LSBExpr)) {
5567     Error(E, "malformed immediate expression");
5568     return MatchOperand_ParseFail;
5569   }
5570   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
5571   if (!CE) {
5572     Error(E, "'lsb' operand must be an immediate");
5573     return MatchOperand_ParseFail;
5574   }
5575 
5576   int64_t LSB = CE->getValue();
5577   // The LSB must be in the range [0,31]
5578   if (LSB < 0 || LSB > 31) {
5579     Error(E, "'lsb' operand must be in the range [0,31]");
5580     return MatchOperand_ParseFail;
5581   }
5582   E = Parser.getTok().getLoc();
5583 
5584   // Expect another immediate operand.
5585   if (Parser.getTok().isNot(AsmToken::Comma)) {
5586     Error(Parser.getTok().getLoc(), "too few operands");
5587     return MatchOperand_ParseFail;
5588   }
5589   Parser.Lex(); // Eat hash token.
5590   if (Parser.getTok().isNot(AsmToken::Hash) &&
5591       Parser.getTok().isNot(AsmToken::Dollar)) {
5592     Error(Parser.getTok().getLoc(), "'#' expected");
5593     return MatchOperand_ParseFail;
5594   }
5595   Parser.Lex(); // Eat hash token.
5596 
5597   const MCExpr *WidthExpr;
5598   SMLoc EndLoc;
5599   if (getParser().parseExpression(WidthExpr, EndLoc)) {
5600     Error(E, "malformed immediate expression");
5601     return MatchOperand_ParseFail;
5602   }
5603   CE = dyn_cast<MCConstantExpr>(WidthExpr);
5604   if (!CE) {
5605     Error(E, "'width' operand must be an immediate");
5606     return MatchOperand_ParseFail;
5607   }
5608 
5609   int64_t Width = CE->getValue();
5610   // The LSB must be in the range [1,32-lsb]
5611   if (Width < 1 || Width > 32 - LSB) {
5612     Error(E, "'width' operand must be in the range [1,32-lsb]");
5613     return MatchOperand_ParseFail;
5614   }
5615 
5616   Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
5617 
5618   return MatchOperand_Success;
5619 }
5620 
5621 OperandMatchResultTy
5622 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
5623   // Check for a post-index addressing register operand. Specifically:
5624   // postidx_reg := '+' register {, shift}
5625   //              | '-' register {, shift}
5626   //              | register {, shift}
5627 
5628   // This method must return MatchOperand_NoMatch without consuming any tokens
5629   // in the case where there is no match, as other alternatives take other
5630   // parse methods.
5631   MCAsmParser &Parser = getParser();
5632   AsmToken Tok = Parser.getTok();
5633   SMLoc S = Tok.getLoc();
5634   bool haveEaten = false;
5635   bool isAdd = true;
5636   if (Tok.is(AsmToken::Plus)) {
5637     Parser.Lex(); // Eat the '+' token.
5638     haveEaten = true;
5639   } else if (Tok.is(AsmToken::Minus)) {
5640     Parser.Lex(); // Eat the '-' token.
5641     isAdd = false;
5642     haveEaten = true;
5643   }
5644 
5645   SMLoc E = Parser.getTok().getEndLoc();
5646   int Reg = tryParseRegister();
5647   if (Reg == -1) {
5648     if (!haveEaten)
5649       return MatchOperand_NoMatch;
5650     Error(Parser.getTok().getLoc(), "register expected");
5651     return MatchOperand_ParseFail;
5652   }
5653 
5654   ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
5655   unsigned ShiftImm = 0;
5656   if (Parser.getTok().is(AsmToken::Comma)) {
5657     Parser.Lex(); // Eat the ','.
5658     if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
5659       return MatchOperand_ParseFail;
5660 
5661     // FIXME: Only approximates end...may include intervening whitespace.
5662     E = Parser.getTok().getLoc();
5663   }
5664 
5665   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
5666                                                   ShiftImm, S, E));
5667 
5668   return MatchOperand_Success;
5669 }
5670 
5671 OperandMatchResultTy
5672 ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
5673   // Check for a post-index addressing register operand. Specifically:
5674   // am3offset := '+' register
5675   //              | '-' register
5676   //              | register
5677   //              | # imm
5678   //              | # + imm
5679   //              | # - imm
5680 
5681   // This method must return MatchOperand_NoMatch without consuming any tokens
5682   // in the case where there is no match, as other alternatives take other
5683   // parse methods.
5684   MCAsmParser &Parser = getParser();
5685   AsmToken Tok = Parser.getTok();
5686   SMLoc S = Tok.getLoc();
5687 
5688   // Do immediates first, as we always parse those if we have a '#'.
5689   if (Parser.getTok().is(AsmToken::Hash) ||
5690       Parser.getTok().is(AsmToken::Dollar)) {
5691     Parser.Lex(); // Eat '#' or '$'.
5692     // Explicitly look for a '-', as we need to encode negative zero
5693     // differently.
5694     bool isNegative = Parser.getTok().is(AsmToken::Minus);
5695     const MCExpr *Offset;
5696     SMLoc E;
5697     if (getParser().parseExpression(Offset, E))
5698       return MatchOperand_ParseFail;
5699     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
5700     if (!CE) {
5701       Error(S, "constant expression expected");
5702       return MatchOperand_ParseFail;
5703     }
5704     // Negative zero is encoded as the flag value
5705     // std::numeric_limits<int32_t>::min().
5706     int32_t Val = CE->getValue();
5707     if (isNegative && Val == 0)
5708       Val = std::numeric_limits<int32_t>::min();
5709 
5710     Operands.push_back(
5711       ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E));
5712 
5713     return MatchOperand_Success;
5714   }
5715 
5716   bool haveEaten = false;
5717   bool isAdd = true;
5718   if (Tok.is(AsmToken::Plus)) {
5719     Parser.Lex(); // Eat the '+' token.
5720     haveEaten = true;
5721   } else if (Tok.is(AsmToken::Minus)) {
5722     Parser.Lex(); // Eat the '-' token.
5723     isAdd = false;
5724     haveEaten = true;
5725   }
5726 
5727   Tok = Parser.getTok();
5728   int Reg = tryParseRegister();
5729   if (Reg == -1) {
5730     if (!haveEaten)
5731       return MatchOperand_NoMatch;
5732     Error(Tok.getLoc(), "register expected");
5733     return MatchOperand_ParseFail;
5734   }
5735 
5736   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
5737                                                   0, S, Tok.getEndLoc()));
5738 
5739   return MatchOperand_Success;
5740 }
5741 
5742 /// Convert parsed operands to MCInst.  Needed here because this instruction
5743 /// only has two register operands, but multiplication is commutative so
5744 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
5745 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst,
5746                                     const OperandVector &Operands) {
5747   ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1);
5748   ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1);
5749   // If we have a three-operand form, make sure to set Rn to be the operand
5750   // that isn't the same as Rd.
5751   unsigned RegOp = 4;
5752   if (Operands.size() == 6 &&
5753       ((ARMOperand &)*Operands[4]).getReg() ==
5754           ((ARMOperand &)*Operands[3]).getReg())
5755     RegOp = 5;
5756   ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1);
5757   Inst.addOperand(Inst.getOperand(0));
5758   ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2);
5759 }
5760 
5761 void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
5762                                     const OperandVector &Operands) {
5763   int CondOp = -1, ImmOp = -1;
5764   switch(Inst.getOpcode()) {
5765     case ARM::tB:
5766     case ARM::tBcc:  CondOp = 1; ImmOp = 2; break;
5767 
5768     case ARM::t2B:
5769     case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
5770 
5771     default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
5772   }
5773   // first decide whether or not the branch should be conditional
5774   // by looking at it's location relative to an IT block
5775   if(inITBlock()) {
5776     // inside an IT block we cannot have any conditional branches. any
5777     // such instructions needs to be converted to unconditional form
5778     switch(Inst.getOpcode()) {
5779       case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
5780       case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
5781     }
5782   } else {
5783     // outside IT blocks we can only have unconditional branches with AL
5784     // condition code or conditional branches with non-AL condition code
5785     unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode();
5786     switch(Inst.getOpcode()) {
5787       case ARM::tB:
5788       case ARM::tBcc:
5789         Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
5790         break;
5791       case ARM::t2B:
5792       case ARM::t2Bcc:
5793         Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
5794         break;
5795     }
5796   }
5797 
5798   // now decide on encoding size based on branch target range
5799   switch(Inst.getOpcode()) {
5800     // classify tB as either t2B or t1B based on range of immediate operand
5801     case ARM::tB: {
5802       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5803       if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline())
5804         Inst.setOpcode(ARM::t2B);
5805       break;
5806     }
5807     // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
5808     case ARM::tBcc: {
5809       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5810       if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline())
5811         Inst.setOpcode(ARM::t2Bcc);
5812       break;
5813     }
5814   }
5815   ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1);
5816   ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2);
5817 }
5818 
5819 void ARMAsmParser::cvtMVEVMOVQtoDReg(
5820   MCInst &Inst, const OperandVector &Operands) {
5821 
5822   // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2
5823   assert(Operands.size() == 8);
5824 
5825   ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt
5826   ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2
5827   ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd
5828   ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx
5829   // skip second copy of Qd in Operands[6]
5830   ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2
5831   ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code
5832 }
5833 
5834 /// Parse an ARM memory expression, return false if successful else return true
5835 /// or an error.  The first token must be a '[' when called.
5836 bool ARMAsmParser::parseMemory(OperandVector &Operands) {
5837   MCAsmParser &Parser = getParser();
5838   SMLoc S, E;
5839   if (Parser.getTok().isNot(AsmToken::LBrac))
5840     return TokError("Token is not a Left Bracket");
5841   S = Parser.getTok().getLoc();
5842   Parser.Lex(); // Eat left bracket token.
5843 
5844   const AsmToken &BaseRegTok = Parser.getTok();
5845   int BaseRegNum = tryParseRegister();
5846   if (BaseRegNum == -1)
5847     return Error(BaseRegTok.getLoc(), "register expected");
5848 
5849   // The next token must either be a comma, a colon or a closing bracket.
5850   const AsmToken &Tok = Parser.getTok();
5851   if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
5852       !Tok.is(AsmToken::RBrac))
5853     return Error(Tok.getLoc(), "malformed memory operand");
5854 
5855   if (Tok.is(AsmToken::RBrac)) {
5856     E = Tok.getEndLoc();
5857     Parser.Lex(); // Eat right bracket token.
5858 
5859     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5860                                              ARM_AM::no_shift, 0, 0, false,
5861                                              S, E));
5862 
5863     // If there's a pre-indexing writeback marker, '!', just add it as a token
5864     // operand. It's rather odd, but syntactically valid.
5865     if (Parser.getTok().is(AsmToken::Exclaim)) {
5866       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5867       Parser.Lex(); // Eat the '!'.
5868     }
5869 
5870     return false;
5871   }
5872 
5873   assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
5874          "Lost colon or comma in memory operand?!");
5875   if (Tok.is(AsmToken::Comma)) {
5876     Parser.Lex(); // Eat the comma.
5877   }
5878 
5879   // If we have a ':', it's an alignment specifier.
5880   if (Parser.getTok().is(AsmToken::Colon)) {
5881     Parser.Lex(); // Eat the ':'.
5882     E = Parser.getTok().getLoc();
5883     SMLoc AlignmentLoc = Tok.getLoc();
5884 
5885     const MCExpr *Expr;
5886     if (getParser().parseExpression(Expr))
5887      return true;
5888 
5889     // The expression has to be a constant. Memory references with relocations
5890     // don't come through here, as they use the <label> forms of the relevant
5891     // instructions.
5892     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5893     if (!CE)
5894       return Error (E, "constant expression expected");
5895 
5896     unsigned Align = 0;
5897     switch (CE->getValue()) {
5898     default:
5899       return Error(E,
5900                    "alignment specifier must be 16, 32, 64, 128, or 256 bits");
5901     case 16:  Align = 2; break;
5902     case 32:  Align = 4; break;
5903     case 64:  Align = 8; break;
5904     case 128: Align = 16; break;
5905     case 256: Align = 32; break;
5906     }
5907 
5908     // Now we should have the closing ']'
5909     if (Parser.getTok().isNot(AsmToken::RBrac))
5910       return Error(Parser.getTok().getLoc(), "']' expected");
5911     E = Parser.getTok().getEndLoc();
5912     Parser.Lex(); // Eat right bracket token.
5913 
5914     // Don't worry about range checking the value here. That's handled by
5915     // the is*() predicates.
5916     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5917                                              ARM_AM::no_shift, 0, Align,
5918                                              false, S, E, AlignmentLoc));
5919 
5920     // If there's a pre-indexing writeback marker, '!', just add it as a token
5921     // operand.
5922     if (Parser.getTok().is(AsmToken::Exclaim)) {
5923       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5924       Parser.Lex(); // Eat the '!'.
5925     }
5926 
5927     return false;
5928   }
5929 
5930   // If we have a '#' or '$', it's an immediate offset, else assume it's a
5931   // register offset. Be friendly and also accept a plain integer or expression
5932   // (without a leading hash) for gas compatibility.
5933   if (Parser.getTok().is(AsmToken::Hash) ||
5934       Parser.getTok().is(AsmToken::Dollar) ||
5935       Parser.getTok().is(AsmToken::LParen) ||
5936       Parser.getTok().is(AsmToken::Integer)) {
5937     if (Parser.getTok().is(AsmToken::Hash) ||
5938         Parser.getTok().is(AsmToken::Dollar))
5939       Parser.Lex(); // Eat '#' or '$'
5940     E = Parser.getTok().getLoc();
5941 
5942     bool isNegative = getParser().getTok().is(AsmToken::Minus);
5943     const MCExpr *Offset, *AdjustedOffset;
5944     if (getParser().parseExpression(Offset))
5945      return true;
5946 
5947     if (const auto *CE = dyn_cast<MCConstantExpr>(Offset)) {
5948       // If the constant was #-0, represent it as
5949       // std::numeric_limits<int32_t>::min().
5950       int32_t Val = CE->getValue();
5951       if (isNegative && Val == 0)
5952         CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
5953                                     getContext());
5954       // Don't worry about range checking the value here. That's handled by
5955       // the is*() predicates.
5956       AdjustedOffset = CE;
5957     } else
5958       AdjustedOffset = Offset;
5959     Operands.push_back(ARMOperand::CreateMem(
5960         BaseRegNum, AdjustedOffset, 0, ARM_AM::no_shift, 0, 0, false, S, E));
5961 
5962     // Now we should have the closing ']'
5963     if (Parser.getTok().isNot(AsmToken::RBrac))
5964       return Error(Parser.getTok().getLoc(), "']' expected");
5965     E = Parser.getTok().getEndLoc();
5966     Parser.Lex(); // Eat right bracket token.
5967 
5968     // If there's a pre-indexing writeback marker, '!', just add it as a token
5969     // operand.
5970     if (Parser.getTok().is(AsmToken::Exclaim)) {
5971       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5972       Parser.Lex(); // Eat the '!'.
5973     }
5974 
5975     return false;
5976   }
5977 
5978   // The register offset is optionally preceded by a '+' or '-'
5979   bool isNegative = false;
5980   if (Parser.getTok().is(AsmToken::Minus)) {
5981     isNegative = true;
5982     Parser.Lex(); // Eat the '-'.
5983   } else if (Parser.getTok().is(AsmToken::Plus)) {
5984     // Nothing to do.
5985     Parser.Lex(); // Eat the '+'.
5986   }
5987 
5988   E = Parser.getTok().getLoc();
5989   int OffsetRegNum = tryParseRegister();
5990   if (OffsetRegNum == -1)
5991     return Error(E, "register expected");
5992 
5993   // If there's a shift operator, handle it.
5994   ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
5995   unsigned ShiftImm = 0;
5996   if (Parser.getTok().is(AsmToken::Comma)) {
5997     Parser.Lex(); // Eat the ','.
5998     if (parseMemRegOffsetShift(ShiftType, ShiftImm))
5999       return true;
6000   }
6001 
6002   // Now we should have the closing ']'
6003   if (Parser.getTok().isNot(AsmToken::RBrac))
6004     return Error(Parser.getTok().getLoc(), "']' expected");
6005   E = Parser.getTok().getEndLoc();
6006   Parser.Lex(); // Eat right bracket token.
6007 
6008   Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum,
6009                                            ShiftType, ShiftImm, 0, isNegative,
6010                                            S, E));
6011 
6012   // If there's a pre-indexing writeback marker, '!', just add it as a token
6013   // operand.
6014   if (Parser.getTok().is(AsmToken::Exclaim)) {
6015     Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
6016     Parser.Lex(); // Eat the '!'.
6017   }
6018 
6019   return false;
6020 }
6021 
6022 /// parseMemRegOffsetShift - one of these two:
6023 ///   ( lsl | lsr | asr | ror ) , # shift_amount
6024 ///   rrx
6025 /// return true if it parses a shift otherwise it returns false.
6026 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
6027                                           unsigned &Amount) {
6028   MCAsmParser &Parser = getParser();
6029   SMLoc Loc = Parser.getTok().getLoc();
6030   const AsmToken &Tok = Parser.getTok();
6031   if (Tok.isNot(AsmToken::Identifier))
6032     return Error(Loc, "illegal shift operator");
6033   StringRef ShiftName = Tok.getString();
6034   if (ShiftName == "lsl" || ShiftName == "LSL" ||
6035       ShiftName == "asl" || ShiftName == "ASL")
6036     St = ARM_AM::lsl;
6037   else if (ShiftName == "lsr" || ShiftName == "LSR")
6038     St = ARM_AM::lsr;
6039   else if (ShiftName == "asr" || ShiftName == "ASR")
6040     St = ARM_AM::asr;
6041   else if (ShiftName == "ror" || ShiftName == "ROR")
6042     St = ARM_AM::ror;
6043   else if (ShiftName == "rrx" || ShiftName == "RRX")
6044     St = ARM_AM::rrx;
6045   else if (ShiftName == "uxtw" || ShiftName == "UXTW")
6046     St = ARM_AM::uxtw;
6047   else
6048     return Error(Loc, "illegal shift operator");
6049   Parser.Lex(); // Eat shift type token.
6050 
6051   // rrx stands alone.
6052   Amount = 0;
6053   if (St != ARM_AM::rrx) {
6054     Loc = Parser.getTok().getLoc();
6055     // A '#' and a shift amount.
6056     const AsmToken &HashTok = Parser.getTok();
6057     if (HashTok.isNot(AsmToken::Hash) &&
6058         HashTok.isNot(AsmToken::Dollar))
6059       return Error(HashTok.getLoc(), "'#' expected");
6060     Parser.Lex(); // Eat hash token.
6061 
6062     const MCExpr *Expr;
6063     if (getParser().parseExpression(Expr))
6064       return true;
6065     // Range check the immediate.
6066     // lsl, ror: 0 <= imm <= 31
6067     // lsr, asr: 0 <= imm <= 32
6068     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
6069     if (!CE)
6070       return Error(Loc, "shift amount must be an immediate");
6071     int64_t Imm = CE->getValue();
6072     if (Imm < 0 ||
6073         ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
6074         ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
6075       return Error(Loc, "immediate shift value out of range");
6076     // If <ShiftTy> #0, turn it into a no_shift.
6077     if (Imm == 0)
6078       St = ARM_AM::lsl;
6079     // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
6080     if (Imm == 32)
6081       Imm = 0;
6082     Amount = Imm;
6083   }
6084 
6085   return false;
6086 }
6087 
6088 /// parseFPImm - A floating point immediate expression operand.
6089 OperandMatchResultTy
6090 ARMAsmParser::parseFPImm(OperandVector &Operands) {
6091   MCAsmParser &Parser = getParser();
6092   // Anything that can accept a floating point constant as an operand
6093   // needs to go through here, as the regular parseExpression is
6094   // integer only.
6095   //
6096   // This routine still creates a generic Immediate operand, containing
6097   // a bitcast of the 64-bit floating point value. The various operands
6098   // that accept floats can check whether the value is valid for them
6099   // via the standard is*() predicates.
6100 
6101   SMLoc S = Parser.getTok().getLoc();
6102 
6103   if (Parser.getTok().isNot(AsmToken::Hash) &&
6104       Parser.getTok().isNot(AsmToken::Dollar))
6105     return MatchOperand_NoMatch;
6106 
6107   // Disambiguate the VMOV forms that can accept an FP immediate.
6108   // vmov.f32 <sreg>, #imm
6109   // vmov.f64 <dreg>, #imm
6110   // vmov.f32 <dreg>, #imm  @ vector f32x2
6111   // vmov.f32 <qreg>, #imm  @ vector f32x4
6112   //
6113   // There are also the NEON VMOV instructions which expect an
6114   // integer constant. Make sure we don't try to parse an FPImm
6115   // for these:
6116   // vmov.i{8|16|32|64} <dreg|qreg>, #imm
6117   ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]);
6118   bool isVmovf = TyOp.isToken() &&
6119                  (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" ||
6120                   TyOp.getToken() == ".f16");
6121   ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]);
6122   bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" ||
6123                                          Mnemonic.getToken() == "fconsts");
6124   if (!(isVmovf || isFconst))
6125     return MatchOperand_NoMatch;
6126 
6127   Parser.Lex(); // Eat '#' or '$'.
6128 
6129   // Handle negation, as that still comes through as a separate token.
6130   bool isNegative = false;
6131   if (Parser.getTok().is(AsmToken::Minus)) {
6132     isNegative = true;
6133     Parser.Lex();
6134   }
6135   const AsmToken &Tok = Parser.getTok();
6136   SMLoc Loc = Tok.getLoc();
6137   if (Tok.is(AsmToken::Real) && isVmovf) {
6138     APFloat RealVal(APFloat::IEEEsingle(), Tok.getString());
6139     uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
6140     // If we had a '-' in front, toggle the sign bit.
6141     IntVal ^= (uint64_t)isNegative << 31;
6142     Parser.Lex(); // Eat the token.
6143     Operands.push_back(ARMOperand::CreateImm(
6144           MCConstantExpr::create(IntVal, getContext()),
6145           S, Parser.getTok().getLoc()));
6146     return MatchOperand_Success;
6147   }
6148   // Also handle plain integers. Instructions which allow floating point
6149   // immediates also allow a raw encoded 8-bit value.
6150   if (Tok.is(AsmToken::Integer) && isFconst) {
6151     int64_t Val = Tok.getIntVal();
6152     Parser.Lex(); // Eat the token.
6153     if (Val > 255 || Val < 0) {
6154       Error(Loc, "encoded floating point value out of range");
6155       return MatchOperand_ParseFail;
6156     }
6157     float RealVal = ARM_AM::getFPImmFloat(Val);
6158     Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();
6159 
6160     Operands.push_back(ARMOperand::CreateImm(
6161         MCConstantExpr::create(Val, getContext()), S,
6162         Parser.getTok().getLoc()));
6163     return MatchOperand_Success;
6164   }
6165 
6166   Error(Loc, "invalid floating point immediate");
6167   return MatchOperand_ParseFail;
6168 }
6169 
6170 /// Parse a arm instruction operand.  For now this parses the operand regardless
6171 /// of the mnemonic.
6172 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
6173   MCAsmParser &Parser = getParser();
6174   SMLoc S, E;
6175 
6176   // Check if the current operand has a custom associated parser, if so, try to
6177   // custom parse the operand, or fallback to the general approach.
6178   OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
6179   if (ResTy == MatchOperand_Success)
6180     return false;
6181   // If there wasn't a custom match, try the generic matcher below. Otherwise,
6182   // there was a match, but an error occurred, in which case, just return that
6183   // the operand parsing failed.
6184   if (ResTy == MatchOperand_ParseFail)
6185     return true;
6186 
6187   switch (getLexer().getKind()) {
6188   default:
6189     Error(Parser.getTok().getLoc(), "unexpected token in operand");
6190     return true;
6191   case AsmToken::Identifier: {
6192     // If we've seen a branch mnemonic, the next operand must be a label.  This
6193     // is true even if the label is a register name.  So "br r1" means branch to
6194     // label "r1".
6195     bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
6196     if (!ExpectLabel) {
6197       if (!tryParseRegisterWithWriteBack(Operands))
6198         return false;
6199       int Res = tryParseShiftRegister(Operands);
6200       if (Res == 0) // success
6201         return false;
6202       else if (Res == -1) // irrecoverable error
6203         return true;
6204       // If this is VMRS, check for the apsr_nzcv operand.
6205       if (Mnemonic == "vmrs" &&
6206           Parser.getTok().getString().equals_insensitive("apsr_nzcv")) {
6207         S = Parser.getTok().getLoc();
6208         Parser.Lex();
6209         Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
6210         return false;
6211       }
6212     }
6213 
6214     // Fall though for the Identifier case that is not a register or a
6215     // special name.
6216     LLVM_FALLTHROUGH;
6217   }
6218   case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
6219   case AsmToken::Integer: // things like 1f and 2b as a branch targets
6220   case AsmToken::String:  // quoted label names.
6221   case AsmToken::Dot: {   // . as a branch target
6222     // This was not a register so parse other operands that start with an
6223     // identifier (like labels) as expressions and create them as immediates.
6224     const MCExpr *IdVal;
6225     S = Parser.getTok().getLoc();
6226     if (getParser().parseExpression(IdVal))
6227       return true;
6228     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6229     Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
6230     return false;
6231   }
6232   case AsmToken::LBrac:
6233     return parseMemory(Operands);
6234   case AsmToken::LCurly:
6235     return parseRegisterList(Operands, !Mnemonic.startswith("clr"));
6236   case AsmToken::Dollar:
6237   case AsmToken::Hash: {
6238     // #42 -> immediate
6239     // $ 42 -> immediate
6240     // $foo -> symbol name
6241     // $42 -> symbol name
6242     S = Parser.getTok().getLoc();
6243 
6244     // Favor the interpretation of $-prefixed operands as symbol names.
6245     // Cases where immediates are explicitly expected are handled by their
6246     // specific ParseMethod implementations.
6247     auto AdjacentToken = getLexer().peekTok(/*ShouldSkipSpace=*/false);
6248     bool ExpectIdentifier = Parser.getTok().is(AsmToken::Dollar) &&
6249                             (AdjacentToken.is(AsmToken::Identifier) ||
6250                              AdjacentToken.is(AsmToken::Integer));
6251     if (!ExpectIdentifier) {
6252       // Token is not part of identifier. Drop leading $ or # before parsing
6253       // expression.
6254       Parser.Lex();
6255     }
6256 
6257     if (Parser.getTok().isNot(AsmToken::Colon)) {
6258       bool IsNegative = Parser.getTok().is(AsmToken::Minus);
6259       const MCExpr *ImmVal;
6260       if (getParser().parseExpression(ImmVal))
6261         return true;
6262       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
6263       if (CE) {
6264         int32_t Val = CE->getValue();
6265         if (IsNegative && Val == 0)
6266           ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
6267                                           getContext());
6268       }
6269       E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6270       Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
6271 
6272       // There can be a trailing '!' on operands that we want as a separate
6273       // '!' Token operand. Handle that here. For example, the compatibility
6274       // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
6275       if (Parser.getTok().is(AsmToken::Exclaim)) {
6276         Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
6277                                                    Parser.getTok().getLoc()));
6278         Parser.Lex(); // Eat exclaim token
6279       }
6280       return false;
6281     }
6282     // w/ a ':' after the '#', it's just like a plain ':'.
6283     LLVM_FALLTHROUGH;
6284   }
6285   case AsmToken::Colon: {
6286     S = Parser.getTok().getLoc();
6287     // ":lower16:" and ":upper16:" expression prefixes
6288     // FIXME: Check it's an expression prefix,
6289     // e.g. (FOO - :lower16:BAR) isn't legal.
6290     ARMMCExpr::VariantKind RefKind;
6291     if (parsePrefix(RefKind))
6292       return true;
6293 
6294     const MCExpr *SubExprVal;
6295     if (getParser().parseExpression(SubExprVal))
6296       return true;
6297 
6298     const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal,
6299                                               getContext());
6300     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6301     Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
6302     return false;
6303   }
6304   case AsmToken::Equal: {
6305     S = Parser.getTok().getLoc();
6306     if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
6307       return Error(S, "unexpected token in operand");
6308     Parser.Lex(); // Eat '='
6309     const MCExpr *SubExprVal;
6310     if (getParser().parseExpression(SubExprVal))
6311       return true;
6312     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6313 
6314     // execute-only: we assume that assembly programmers know what they are
6315     // doing and allow literal pool creation here
6316     Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E));
6317     return false;
6318   }
6319   }
6320 }
6321 
6322 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
6323 //  :lower16: and :upper16:.
6324 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
6325   MCAsmParser &Parser = getParser();
6326   RefKind = ARMMCExpr::VK_ARM_None;
6327 
6328   // consume an optional '#' (GNU compatibility)
6329   if (getLexer().is(AsmToken::Hash))
6330     Parser.Lex();
6331 
6332   // :lower16: and :upper16: modifiers
6333   assert(getLexer().is(AsmToken::Colon) && "expected a :");
6334   Parser.Lex(); // Eat ':'
6335 
6336   if (getLexer().isNot(AsmToken::Identifier)) {
6337     Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
6338     return true;
6339   }
6340 
6341   enum {
6342     COFF = (1 << MCContext::IsCOFF),
6343     ELF = (1 << MCContext::IsELF),
6344     MACHO = (1 << MCContext::IsMachO),
6345     WASM = (1 << MCContext::IsWasm),
6346   };
6347   static const struct PrefixEntry {
6348     const char *Spelling;
6349     ARMMCExpr::VariantKind VariantKind;
6350     uint8_t SupportedFormats;
6351   } PrefixEntries[] = {
6352     { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO },
6353     { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO },
6354   };
6355 
6356   StringRef IDVal = Parser.getTok().getIdentifier();
6357 
6358   const auto &Prefix =
6359       llvm::find_if(PrefixEntries, [&IDVal](const PrefixEntry &PE) {
6360         return PE.Spelling == IDVal;
6361       });
6362   if (Prefix == std::end(PrefixEntries)) {
6363     Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
6364     return true;
6365   }
6366 
6367   uint8_t CurrentFormat;
6368   switch (getContext().getObjectFileType()) {
6369   case MCContext::IsMachO:
6370     CurrentFormat = MACHO;
6371     break;
6372   case MCContext::IsELF:
6373     CurrentFormat = ELF;
6374     break;
6375   case MCContext::IsCOFF:
6376     CurrentFormat = COFF;
6377     break;
6378   case MCContext::IsWasm:
6379     CurrentFormat = WASM;
6380     break;
6381   case MCContext::IsGOFF:
6382   case MCContext::IsXCOFF:
6383     llvm_unreachable("unexpected object format");
6384     break;
6385   }
6386 
6387   if (~Prefix->SupportedFormats & CurrentFormat) {
6388     Error(Parser.getTok().getLoc(),
6389           "cannot represent relocation in the current file format");
6390     return true;
6391   }
6392 
6393   RefKind = Prefix->VariantKind;
6394   Parser.Lex();
6395 
6396   if (getLexer().isNot(AsmToken::Colon)) {
6397     Error(Parser.getTok().getLoc(), "unexpected token after prefix");
6398     return true;
6399   }
6400   Parser.Lex(); // Eat the last ':'
6401 
6402   return false;
6403 }
6404 
6405 /// Given a mnemonic, split out possible predication code and carry
6406 /// setting letters to form a canonical mnemonic and flags.
6407 //
6408 // FIXME: Would be nice to autogen this.
6409 // FIXME: This is a bit of a maze of special cases.
6410 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
6411                                       StringRef ExtraToken,
6412                                       unsigned &PredicationCode,
6413                                       unsigned &VPTPredicationCode,
6414                                       bool &CarrySetting,
6415                                       unsigned &ProcessorIMod,
6416                                       StringRef &ITMask) {
6417   PredicationCode = ARMCC::AL;
6418   VPTPredicationCode = ARMVCC::None;
6419   CarrySetting = false;
6420   ProcessorIMod = 0;
6421 
6422   // Ignore some mnemonics we know aren't predicated forms.
6423   //
6424   // FIXME: Would be nice to autogen this.
6425   if ((Mnemonic == "movs" && isThumb()) ||
6426       Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
6427       Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
6428       Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
6429       Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
6430       Mnemonic == "vaclt" || Mnemonic == "vacle"  || Mnemonic == "hlt" ||
6431       Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
6432       Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
6433       Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
6434       Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
6435       Mnemonic == "vcvta" || Mnemonic == "vcvtn"  || Mnemonic == "vcvtp" ||
6436       Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
6437       Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" ||
6438       Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" ||
6439       Mnemonic == "bxns"  || Mnemonic == "blxns" ||
6440       Mnemonic == "vdot"  || Mnemonic == "vmmla" ||
6441       Mnemonic == "vudot" || Mnemonic == "vsdot" ||
6442       Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
6443       Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
6444       Mnemonic == "wls"   || Mnemonic == "le"    || Mnemonic == "dls" ||
6445       Mnemonic == "csel"  || Mnemonic == "csinc" ||
6446       Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" ||
6447       Mnemonic == "cinv"  || Mnemonic == "cneg"  || Mnemonic == "cset" ||
6448       Mnemonic == "csetm" ||
6449       Mnemonic == "aut"   || Mnemonic == "pac" || Mnemonic == "pacbti" ||
6450       Mnemonic == "bti")
6451     return Mnemonic;
6452 
6453   // First, split out any predication code. Ignore mnemonics we know aren't
6454   // predicated but do have a carry-set and so weren't caught above.
6455   if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
6456       Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
6457       Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
6458       Mnemonic != "sbcs" && Mnemonic != "rscs" &&
6459       !(hasMVE() &&
6460         (Mnemonic == "vmine" ||
6461          Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" ||
6462          Mnemonic == "vrshle" || Mnemonic == "vrshlt" ||
6463          Mnemonic == "vmvne" || Mnemonic == "vorne" ||
6464          Mnemonic == "vnege" || Mnemonic == "vnegt" ||
6465          Mnemonic == "vmule" || Mnemonic == "vmult" ||
6466          Mnemonic == "vrintne" ||
6467          Mnemonic == "vcmult" || Mnemonic == "vcmule" ||
6468          Mnemonic == "vpsele" || Mnemonic == "vpselt" ||
6469          Mnemonic.startswith("vq")))) {
6470     unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2));
6471     if (CC != ~0U) {
6472       Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
6473       PredicationCode = CC;
6474     }
6475   }
6476 
6477   // Next, determine if we have a carry setting bit. We explicitly ignore all
6478   // the instructions we know end in 's'.
6479   if (Mnemonic.endswith("s") &&
6480       !(Mnemonic == "cps" || Mnemonic == "mls" ||
6481         Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
6482         Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
6483         Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
6484         Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
6485         Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
6486         Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
6487         Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
6488         Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
6489         Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" ||
6490         Mnemonic == "vmlas" ||
6491         (Mnemonic == "movs" && isThumb()))) {
6492     Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
6493     CarrySetting = true;
6494   }
6495 
6496   // The "cps" instruction can have a interrupt mode operand which is glued into
6497   // the mnemonic. Check if this is the case, split it and parse the imod op
6498   if (Mnemonic.startswith("cps")) {
6499     // Split out any imod code.
6500     unsigned IMod =
6501       StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
6502       .Case("ie", ARM_PROC::IE)
6503       .Case("id", ARM_PROC::ID)
6504       .Default(~0U);
6505     if (IMod != ~0U) {
6506       Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
6507       ProcessorIMod = IMod;
6508     }
6509   }
6510 
6511   if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" &&
6512       Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" &&
6513       Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" &&
6514       Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" &&
6515       Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" &&
6516       Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" &&
6517       Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") {
6518     unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1));
6519     if (CC != ~0U) {
6520       Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1);
6521       VPTPredicationCode = CC;
6522     }
6523     return Mnemonic;
6524   }
6525 
6526   // The "it" instruction has the condition mask on the end of the mnemonic.
6527   if (Mnemonic.startswith("it")) {
6528     ITMask = Mnemonic.slice(2, Mnemonic.size());
6529     Mnemonic = Mnemonic.slice(0, 2);
6530   }
6531 
6532   if (Mnemonic.startswith("vpst")) {
6533     ITMask = Mnemonic.slice(4, Mnemonic.size());
6534     Mnemonic = Mnemonic.slice(0, 4);
6535   }
6536   else if (Mnemonic.startswith("vpt")) {
6537     ITMask = Mnemonic.slice(3, Mnemonic.size());
6538     Mnemonic = Mnemonic.slice(0, 3);
6539   }
6540 
6541   return Mnemonic;
6542 }
6543 
6544 /// Given a canonical mnemonic, determine if the instruction ever allows
6545 /// inclusion of carry set or predication code operands.
6546 //
6547 // FIXME: It would be nice to autogen this.
6548 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic,
6549                                          StringRef ExtraToken,
6550                                          StringRef FullInst,
6551                                          bool &CanAcceptCarrySet,
6552                                          bool &CanAcceptPredicationCode,
6553                                          bool &CanAcceptVPTPredicationCode) {
6554   CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken);
6555 
6556   CanAcceptCarrySet =
6557       Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
6558       Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
6559       Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" ||
6560       Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" ||
6561       Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" ||
6562       Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" ||
6563       Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" ||
6564       (!isThumb() &&
6565        (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" ||
6566         Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull"));
6567 
6568   if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
6569       Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" ||
6570       Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" ||
6571       Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") ||
6572       Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" ||
6573       Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" ||
6574       Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" ||
6575       Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" ||
6576       Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" ||
6577       Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
6578       (FullInst.startswith("vmull") && FullInst.endswith(".p64")) ||
6579       Mnemonic == "vmovx" || Mnemonic == "vins" ||
6580       Mnemonic == "vudot" || Mnemonic == "vsdot" ||
6581       Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
6582       Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
6583       Mnemonic == "vfmat" || Mnemonic == "vfmab" ||
6584       Mnemonic == "vdot"  || Mnemonic == "vmmla" ||
6585       Mnemonic == "sb"    || Mnemonic == "ssbb"  ||
6586       Mnemonic == "pssbb" || Mnemonic == "vsmmla" ||
6587       Mnemonic == "vummla" || Mnemonic == "vusmmla" ||
6588       Mnemonic == "vusdot" || Mnemonic == "vsudot" ||
6589       Mnemonic == "bfcsel" || Mnemonic == "wls" ||
6590       Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" ||
6591       Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" ||
6592       Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" ||
6593       Mnemonic == "cset" || Mnemonic == "csetm" ||
6594       (hasCDE() && MS.isCDEInstr(Mnemonic) &&
6595        !MS.isITPredicableCDEInstr(Mnemonic)) ||
6596       Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") ||
6597       Mnemonic == "pac" || Mnemonic == "pacbti" || Mnemonic == "aut" ||
6598       Mnemonic == "bti" ||
6599       (hasMVE() &&
6600        (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") ||
6601         Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") ||
6602         Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") ||
6603         Mnemonic.startswith("letp")))) {
6604     // These mnemonics are never predicable
6605     CanAcceptPredicationCode = false;
6606   } else if (!isThumb()) {
6607     // Some instructions are only predicable in Thumb mode
6608     CanAcceptPredicationCode =
6609         Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
6610         Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
6611         Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" &&
6612         Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" &&
6613         Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
6614         Mnemonic != "stc2" && Mnemonic != "stc2l" &&
6615         Mnemonic != "tsb" &&
6616         !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
6617   } else if (isThumbOne()) {
6618     if (hasV6MOps())
6619       CanAcceptPredicationCode = Mnemonic != "movs";
6620     else
6621       CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
6622   } else
6623     CanAcceptPredicationCode = true;
6624 }
6625 
6626 // Some Thumb instructions have two operand forms that are not
6627 // available as three operand, convert to two operand form if possible.
6628 //
6629 // FIXME: We would really like to be able to tablegen'erate this.
6630 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic,
6631                                                  bool CarrySetting,
6632                                                  OperandVector &Operands) {
6633   if (Operands.size() != 6)
6634     return;
6635 
6636   const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6637         auto &Op4 = static_cast<ARMOperand &>(*Operands[4]);
6638   if (!Op3.isReg() || !Op4.isReg())
6639     return;
6640 
6641   auto Op3Reg = Op3.getReg();
6642   auto Op4Reg = Op4.getReg();
6643 
6644   // For most Thumb2 cases we just generate the 3 operand form and reduce
6645   // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr)
6646   // won't accept SP or PC so we do the transformation here taking care
6647   // with immediate range in the 'add sp, sp #imm' case.
6648   auto &Op5 = static_cast<ARMOperand &>(*Operands[5]);
6649   if (isThumbTwo()) {
6650     if (Mnemonic != "add")
6651       return;
6652     bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC ||
6653                         (Op5.isReg() && Op5.getReg() == ARM::PC);
6654     if (!TryTransform) {
6655       TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP ||
6656                       (Op5.isReg() && Op5.getReg() == ARM::SP)) &&
6657                      !(Op3Reg == ARM::SP && Op4Reg == ARM::SP &&
6658                        Op5.isImm() && !Op5.isImm0_508s4());
6659     }
6660     if (!TryTransform)
6661       return;
6662   } else if (!isThumbOne())
6663     return;
6664 
6665   if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" ||
6666         Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
6667         Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" ||
6668         Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic"))
6669     return;
6670 
6671   // If first 2 operands of a 3 operand instruction are the same
6672   // then transform to 2 operand version of the same instruction
6673   // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
6674   bool Transform = Op3Reg == Op4Reg;
6675 
6676   // For communtative operations, we might be able to transform if we swap
6677   // Op4 and Op5.  The 'ADD Rdm, SP, Rdm' form is already handled specially
6678   // as tADDrsp.
6679   const ARMOperand *LastOp = &Op5;
6680   bool Swap = false;
6681   if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() &&
6682       ((Mnemonic == "add" && Op4Reg != ARM::SP) ||
6683        Mnemonic == "and" || Mnemonic == "eor" ||
6684        Mnemonic == "adc" || Mnemonic == "orr")) {
6685     Swap = true;
6686     LastOp = &Op4;
6687     Transform = true;
6688   }
6689 
6690   // If both registers are the same then remove one of them from
6691   // the operand list, with certain exceptions.
6692   if (Transform) {
6693     // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the
6694     // 2 operand forms don't exist.
6695     if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") &&
6696         LastOp->isReg())
6697       Transform = false;
6698 
6699     // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into
6700     // 3-bits because the ARMARM says not to.
6701     if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7())
6702       Transform = false;
6703   }
6704 
6705   if (Transform) {
6706     if (Swap)
6707       std::swap(Op4, Op5);
6708     Operands.erase(Operands.begin() + 3);
6709   }
6710 }
6711 
6712 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
6713                                           OperandVector &Operands) {
6714   // FIXME: This is all horribly hacky. We really need a better way to deal
6715   // with optional operands like this in the matcher table.
6716 
6717   // The 'mov' mnemonic is special. One variant has a cc_out operand, while
6718   // another does not. Specifically, the MOVW instruction does not. So we
6719   // special case it here and remove the defaulted (non-setting) cc_out
6720   // operand if that's the instruction we're trying to match.
6721   //
6722   // We do this as post-processing of the explicit operands rather than just
6723   // conditionally adding the cc_out in the first place because we need
6724   // to check the type of the parsed immediate operand.
6725   if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
6726       !static_cast<ARMOperand &>(*Operands[4]).isModImm() &&
6727       static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
6728       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
6729     return true;
6730 
6731   // Register-register 'add' for thumb does not have a cc_out operand
6732   // when there are only two register operands.
6733   if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
6734       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6735       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6736       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
6737     return true;
6738   // Register-register 'add' for thumb does not have a cc_out operand
6739   // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
6740   // have to check the immediate range here since Thumb2 has a variant
6741   // that can handle a different range and has a cc_out operand.
6742   if (((isThumb() && Mnemonic == "add") ||
6743        (isThumbTwo() && Mnemonic == "sub")) &&
6744       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6745       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6746       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP &&
6747       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6748       ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) ||
6749        static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4()))
6750     return true;
6751   // For Thumb2, add/sub immediate does not have a cc_out operand for the
6752   // imm0_4095 variant. That's the least-preferred variant when
6753   // selecting via the generic "add" mnemonic, so to know that we
6754   // should remove the cc_out operand, we have to explicitly check that
6755   // it's not one of the other variants. Ugh.
6756   if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
6757       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6758       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6759       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
6760     // Nest conditions rather than one big 'if' statement for readability.
6761     //
6762     // If both registers are low, we're in an IT block, and the immediate is
6763     // in range, we should use encoding T1 instead, which has a cc_out.
6764     if (inITBlock() &&
6765         isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) &&
6766         isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) &&
6767         static_cast<ARMOperand &>(*Operands[5]).isImm0_7())
6768       return false;
6769     // Check against T3. If the second register is the PC, this is an
6770     // alternate form of ADR, which uses encoding T4, so check for that too.
6771     if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC &&
6772         (static_cast<ARMOperand &>(*Operands[5]).isT2SOImm() ||
6773          static_cast<ARMOperand &>(*Operands[5]).isT2SOImmNeg()))
6774       return false;
6775 
6776     // Otherwise, we use encoding T4, which does not have a cc_out
6777     // operand.
6778     return true;
6779   }
6780 
6781   // The thumb2 multiply instruction doesn't have a CCOut register, so
6782   // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
6783   // use the 16-bit encoding or not.
6784   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
6785       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6786       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6787       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6788       static_cast<ARMOperand &>(*Operands[5]).isReg() &&
6789       // If the registers aren't low regs, the destination reg isn't the
6790       // same as one of the source regs, or the cc_out operand is zero
6791       // outside of an IT block, we have to use the 32-bit encoding, so
6792       // remove the cc_out operand.
6793       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
6794        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
6795        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) ||
6796        !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() !=
6797                             static_cast<ARMOperand &>(*Operands[5]).getReg() &&
6798                         static_cast<ARMOperand &>(*Operands[3]).getReg() !=
6799                             static_cast<ARMOperand &>(*Operands[4]).getReg())))
6800     return true;
6801 
6802   // Also check the 'mul' syntax variant that doesn't specify an explicit
6803   // destination register.
6804   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
6805       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6806       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6807       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6808       // If the registers aren't low regs  or the cc_out operand is zero
6809       // outside of an IT block, we have to use the 32-bit encoding, so
6810       // remove the cc_out operand.
6811       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
6812        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
6813        !inITBlock()))
6814     return true;
6815 
6816   // Register-register 'add/sub' for thumb does not have a cc_out operand
6817   // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
6818   // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
6819   // right, this will result in better diagnostics (which operand is off)
6820   // anyway.
6821   if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
6822       (Operands.size() == 5 || Operands.size() == 6) &&
6823       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6824       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP &&
6825       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6826       (static_cast<ARMOperand &>(*Operands[4]).isImm() ||
6827        (Operands.size() == 6 &&
6828         static_cast<ARMOperand &>(*Operands[5]).isImm()))) {
6829     // Thumb2 (add|sub){s}{p}.w GPRnopc, sp, #{T2SOImm} has cc_out
6830     return (!(isThumbTwo() &&
6831               (static_cast<ARMOperand &>(*Operands[4]).isT2SOImm() ||
6832                static_cast<ARMOperand &>(*Operands[4]).isT2SOImmNeg())));
6833   }
6834   // Fixme: Should join all the thumb+thumb2 (add|sub) in a single if case
6835   // Thumb2 ADD r0, #4095 -> ADDW r0, r0, #4095 (T4)
6836   // Thumb2 SUB r0, #4095 -> SUBW r0, r0, #4095
6837   if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
6838       (Operands.size() == 5) &&
6839       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6840       static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::SP &&
6841       static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::PC &&
6842       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6843       static_cast<ARMOperand &>(*Operands[4]).isImm()) {
6844     const ARMOperand &IMM = static_cast<ARMOperand &>(*Operands[4]);
6845     if (IMM.isT2SOImm() || IMM.isT2SOImmNeg())
6846       return false; // add.w / sub.w
6847     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IMM.getImm())) {
6848       const int64_t Value = CE->getValue();
6849       // Thumb1 imm8 sub / add
6850       if ((Value < ((1 << 7) - 1) << 2) && inITBlock() && (!(Value & 3)) &&
6851           isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()))
6852         return false;
6853       return true; // Thumb2 T4 addw / subw
6854     }
6855   }
6856   return false;
6857 }
6858 
6859 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic,
6860                                               OperandVector &Operands) {
6861   // VRINT{Z, X} have a predicate operand in VFP, but not in NEON
6862   unsigned RegIdx = 3;
6863   if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) ||
6864       Mnemonic == "vrintr") &&
6865       (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" ||
6866        static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) {
6867     if (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
6868         (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" ||
6869          static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16"))
6870       RegIdx = 4;
6871 
6872     if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() &&
6873         (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
6874              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) ||
6875          ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
6876              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg())))
6877       return true;
6878   }
6879   return false;
6880 }
6881 
6882 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic,
6883                                                     OperandVector &Operands) {
6884   if (!hasMVE() || Operands.size() < 3)
6885     return true;
6886 
6887   if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") ||
6888       Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4"))
6889     return true;
6890 
6891   if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot"))
6892     return false;
6893 
6894   if (Mnemonic.startswith("vmov") &&
6895       !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") ||
6896         Mnemonic.startswith("vmovx"))) {
6897     for (auto &Operand : Operands) {
6898       if (static_cast<ARMOperand &>(*Operand).isVectorIndex() ||
6899           ((*Operand).isReg() &&
6900            (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(
6901              (*Operand).getReg()) ||
6902             ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
6903               (*Operand).getReg())))) {
6904         return true;
6905       }
6906     }
6907     return false;
6908   } else {
6909     for (auto &Operand : Operands) {
6910       // We check the larger class QPR instead of just the legal class
6911       // MQPR, to more accurately report errors when using Q registers
6912       // outside of the allowed range.
6913       if (static_cast<ARMOperand &>(*Operand).isVectorIndex() ||
6914           (Operand->isReg() &&
6915            (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
6916              Operand->getReg()))))
6917         return false;
6918     }
6919     return true;
6920   }
6921 }
6922 
6923 static bool isDataTypeToken(StringRef Tok) {
6924   return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
6925     Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
6926     Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
6927     Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
6928     Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
6929     Tok == ".f" || Tok == ".d";
6930 }
6931 
6932 // FIXME: This bit should probably be handled via an explicit match class
6933 // in the .td files that matches the suffix instead of having it be
6934 // a literal string token the way it is now.
6935 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
6936   return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
6937 }
6938 
6939 static void applyMnemonicAliases(StringRef &Mnemonic,
6940                                  const FeatureBitset &Features,
6941                                  unsigned VariantID);
6942 
6943 // The GNU assembler has aliases of ldrd and strd with the second register
6944 // omitted. We don't have a way to do that in tablegen, so fix it up here.
6945 //
6946 // We have to be careful to not emit an invalid Rt2 here, because the rest of
6947 // the assembly parser could then generate confusing diagnostics refering to
6948 // it. If we do find anything that prevents us from doing the transformation we
6949 // bail out, and let the assembly parser report an error on the instruction as
6950 // it is written.
6951 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic,
6952                                      OperandVector &Operands) {
6953   if (Mnemonic != "ldrd" && Mnemonic != "strd")
6954     return;
6955   if (Operands.size() < 4)
6956     return;
6957 
6958   ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
6959   ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6960 
6961   if (!Op2.isReg())
6962     return;
6963   if (!Op3.isGPRMem())
6964     return;
6965 
6966   const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID);
6967   if (!GPR.contains(Op2.getReg()))
6968     return;
6969 
6970   unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg());
6971   if (!isThumb() && (RtEncoding & 1)) {
6972     // In ARM mode, the registers must be from an aligned pair, this
6973     // restriction does not apply in Thumb mode.
6974     return;
6975   }
6976   if (Op2.getReg() == ARM::PC)
6977     return;
6978   unsigned PairedReg = GPR.getRegister(RtEncoding + 1);
6979   if (!PairedReg || PairedReg == ARM::PC ||
6980       (PairedReg == ARM::SP && !hasV8Ops()))
6981     return;
6982 
6983   Operands.insert(
6984       Operands.begin() + 3,
6985       ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc()));
6986 }
6987 
6988 // Dual-register instruction have the following syntax:
6989 // <mnemonic> <predicate>? <coproc>, <Rdest>, <Rdest+1>, <Rsrc>, ..., #imm
6990 // This function tries to remove <Rdest+1> and replace <Rdest> with a pair
6991 // operand. If the conversion fails an error is diagnosed, and the function
6992 // returns true.
6993 bool ARMAsmParser::CDEConvertDualRegOperand(StringRef Mnemonic,
6994                                             OperandVector &Operands) {
6995   assert(MS.isCDEDualRegInstr(Mnemonic));
6996   bool isPredicable =
6997       Mnemonic == "cx1da" || Mnemonic == "cx2da" || Mnemonic == "cx3da";
6998   size_t NumPredOps = isPredicable ? 1 : 0;
6999 
7000   if (Operands.size() <= 3 + NumPredOps)
7001     return false;
7002 
7003   StringRef Op2Diag(
7004       "operand must be an even-numbered register in the range [r0, r10]");
7005 
7006   const MCParsedAsmOperand &Op2 = *Operands[2 + NumPredOps];
7007   if (!Op2.isReg())
7008     return Error(Op2.getStartLoc(), Op2Diag);
7009 
7010   unsigned RNext;
7011   unsigned RPair;
7012   switch (Op2.getReg()) {
7013   default:
7014     return Error(Op2.getStartLoc(), Op2Diag);
7015   case ARM::R0:
7016     RNext = ARM::R1;
7017     RPair = ARM::R0_R1;
7018     break;
7019   case ARM::R2:
7020     RNext = ARM::R3;
7021     RPair = ARM::R2_R3;
7022     break;
7023   case ARM::R4:
7024     RNext = ARM::R5;
7025     RPair = ARM::R4_R5;
7026     break;
7027   case ARM::R6:
7028     RNext = ARM::R7;
7029     RPair = ARM::R6_R7;
7030     break;
7031   case ARM::R8:
7032     RNext = ARM::R9;
7033     RPair = ARM::R8_R9;
7034     break;
7035   case ARM::R10:
7036     RNext = ARM::R11;
7037     RPair = ARM::R10_R11;
7038     break;
7039   }
7040 
7041   const MCParsedAsmOperand &Op3 = *Operands[3 + NumPredOps];
7042   if (!Op3.isReg() || Op3.getReg() != RNext)
7043     return Error(Op3.getStartLoc(), "operand must be a consecutive register");
7044 
7045   Operands.erase(Operands.begin() + 3 + NumPredOps);
7046   Operands[2 + NumPredOps] =
7047       ARMOperand::CreateReg(RPair, Op2.getStartLoc(), Op2.getEndLoc());
7048   return false;
7049 }
7050 
7051 /// Parse an arm instruction mnemonic followed by its operands.
7052 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
7053                                     SMLoc NameLoc, OperandVector &Operands) {
7054   MCAsmParser &Parser = getParser();
7055 
7056   // Apply mnemonic aliases before doing anything else, as the destination
7057   // mnemonic may include suffices and we want to handle them normally.
7058   // The generic tblgen'erated code does this later, at the start of
7059   // MatchInstructionImpl(), but that's too late for aliases that include
7060   // any sort of suffix.
7061   const FeatureBitset &AvailableFeatures = getAvailableFeatures();
7062   unsigned AssemblerDialect = getParser().getAssemblerDialect();
7063   applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
7064 
7065   // First check for the ARM-specific .req directive.
7066   if (Parser.getTok().is(AsmToken::Identifier) &&
7067       Parser.getTok().getIdentifier().lower() == ".req") {
7068     parseDirectiveReq(Name, NameLoc);
7069     // We always return 'error' for this, as we're done with this
7070     // statement and don't need to match the 'instruction."
7071     return true;
7072   }
7073 
7074   // Create the leading tokens for the mnemonic, split by '.' characters.
7075   size_t Start = 0, Next = Name.find('.');
7076   StringRef Mnemonic = Name.slice(Start, Next);
7077   StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1));
7078 
7079   // Split out the predication code and carry setting flag from the mnemonic.
7080   unsigned PredicationCode;
7081   unsigned VPTPredicationCode;
7082   unsigned ProcessorIMod;
7083   bool CarrySetting;
7084   StringRef ITMask;
7085   Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode,
7086                            CarrySetting, ProcessorIMod, ITMask);
7087 
7088   // In Thumb1, only the branch (B) instruction can be predicated.
7089   if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
7090     return Error(NameLoc, "conditional execution not supported in Thumb1");
7091   }
7092 
7093   Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
7094 
7095   // Handle the mask for IT and VPT instructions. In ARMOperand and
7096   // MCOperand, this is stored in a format independent of the
7097   // condition code: the lowest set bit indicates the end of the
7098   // encoding, and above that, a 1 bit indicates 'else', and an 0
7099   // indicates 'then'. E.g.
7100   //    IT    -> 1000
7101   //    ITx   -> x100    (ITT -> 0100, ITE -> 1100)
7102   //    ITxy  -> xy10    (e.g. ITET -> 1010)
7103   //    ITxyz -> xyz1    (e.g. ITEET -> 1101)
7104   // Note: See the ARM::PredBlockMask enum in
7105   //   /lib/Target/ARM/Utils/ARMBaseInfo.h
7106   if (Mnemonic == "it" || Mnemonic.startswith("vpt") ||
7107       Mnemonic.startswith("vpst")) {
7108     SMLoc Loc = Mnemonic == "it"  ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) :
7109                 Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) :
7110                                     SMLoc::getFromPointer(NameLoc.getPointer() + 4);
7111     if (ITMask.size() > 3) {
7112       if (Mnemonic == "it")
7113         return Error(Loc, "too many conditions on IT instruction");
7114       return Error(Loc, "too many conditions on VPT instruction");
7115     }
7116     unsigned Mask = 8;
7117     for (char Pos : llvm::reverse(ITMask)) {
7118       if (Pos != 't' && Pos != 'e') {
7119         return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
7120       }
7121       Mask >>= 1;
7122       if (Pos == 'e')
7123         Mask |= 8;
7124     }
7125     Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
7126   }
7127 
7128   // FIXME: This is all a pretty gross hack. We should automatically handle
7129   // optional operands like this via tblgen.
7130 
7131   // Next, add the CCOut and ConditionCode operands, if needed.
7132   //
7133   // For mnemonics which can ever incorporate a carry setting bit or predication
7134   // code, our matching model involves us always generating CCOut and
7135   // ConditionCode operands to match the mnemonic "as written" and then we let
7136   // the matcher deal with finding the right instruction or generating an
7137   // appropriate error.
7138   bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode;
7139   getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet,
7140                         CanAcceptPredicationCode, CanAcceptVPTPredicationCode);
7141 
7142   // If we had a carry-set on an instruction that can't do that, issue an
7143   // error.
7144   if (!CanAcceptCarrySet && CarrySetting) {
7145     return Error(NameLoc, "instruction '" + Mnemonic +
7146                  "' can not set flags, but 's' suffix specified");
7147   }
7148   // If we had a predication code on an instruction that can't do that, issue an
7149   // error.
7150   if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
7151     return Error(NameLoc, "instruction '" + Mnemonic +
7152                  "' is not predicable, but condition code specified");
7153   }
7154 
7155   // If we had a VPT predication code on an instruction that can't do that, issue an
7156   // error.
7157   if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) {
7158     return Error(NameLoc, "instruction '" + Mnemonic +
7159                  "' is not VPT predicable, but VPT code T/E is specified");
7160   }
7161 
7162   // Add the carry setting operand, if necessary.
7163   if (CanAcceptCarrySet) {
7164     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
7165     Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
7166                                                Loc));
7167   }
7168 
7169   // Add the predication code operand, if necessary.
7170   if (CanAcceptPredicationCode) {
7171     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
7172                                       CarrySetting);
7173     Operands.push_back(ARMOperand::CreateCondCode(
7174                        ARMCC::CondCodes(PredicationCode), Loc));
7175   }
7176 
7177   // Add the VPT predication code operand, if necessary.
7178   // FIXME: We don't add them for the instructions filtered below as these can
7179   // have custom operands which need special parsing.  This parsing requires
7180   // the operand to be in the same place in the OperandVector as their
7181   // definition in tblgen.  Since these instructions may also have the
7182   // scalar predication operand we do not add the vector one and leave until
7183   // now to fix it up.
7184   if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" &&
7185       !Mnemonic.startswith("vcmp") &&
7186       !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" &&
7187         Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) {
7188     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
7189                                       CarrySetting);
7190     Operands.push_back(ARMOperand::CreateVPTPred(
7191                          ARMVCC::VPTCodes(VPTPredicationCode), Loc));
7192   }
7193 
7194   // Add the processor imod operand, if necessary.
7195   if (ProcessorIMod) {
7196     Operands.push_back(ARMOperand::CreateImm(
7197           MCConstantExpr::create(ProcessorIMod, getContext()),
7198                                  NameLoc, NameLoc));
7199   } else if (Mnemonic == "cps" && isMClass()) {
7200     return Error(NameLoc, "instruction 'cps' requires effect for M-class");
7201   }
7202 
7203   // Add the remaining tokens in the mnemonic.
7204   while (Next != StringRef::npos) {
7205     Start = Next;
7206     Next = Name.find('.', Start + 1);
7207     ExtraToken = Name.slice(Start, Next);
7208 
7209     // Some NEON instructions have an optional datatype suffix that is
7210     // completely ignored. Check for that.
7211     if (isDataTypeToken(ExtraToken) &&
7212         doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
7213       continue;
7214 
7215     // For for ARM mode generate an error if the .n qualifier is used.
7216     if (ExtraToken == ".n" && !isThumb()) {
7217       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
7218       return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
7219                    "arm mode");
7220     }
7221 
7222     // The .n qualifier is always discarded as that is what the tables
7223     // and matcher expect.  In ARM mode the .w qualifier has no effect,
7224     // so discard it to avoid errors that can be caused by the matcher.
7225     if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
7226       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
7227       Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
7228     }
7229   }
7230 
7231   // Read the remaining operands.
7232   if (getLexer().isNot(AsmToken::EndOfStatement)) {
7233     // Read the first operand.
7234     if (parseOperand(Operands, Mnemonic)) {
7235       return true;
7236     }
7237 
7238     while (parseOptionalToken(AsmToken::Comma)) {
7239       // Parse and remember the operand.
7240       if (parseOperand(Operands, Mnemonic)) {
7241         return true;
7242       }
7243     }
7244   }
7245 
7246   if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
7247     return true;
7248 
7249   tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands);
7250 
7251   if (hasCDE() && MS.isCDEInstr(Mnemonic)) {
7252     // Dual-register instructions use even-odd register pairs as their
7253     // destination operand, in assembly such pair is spelled as two
7254     // consecutive registers, without any special syntax. ConvertDualRegOperand
7255     // tries to convert such operand into register pair, e.g. r2, r3 -> r2_r3.
7256     // It returns true, if an error message has been emitted. If the function
7257     // returns false, the function either succeeded or an error (e.g. missing
7258     // operand) will be diagnosed elsewhere.
7259     if (MS.isCDEDualRegInstr(Mnemonic)) {
7260       bool GotError = CDEConvertDualRegOperand(Mnemonic, Operands);
7261       if (GotError)
7262         return GotError;
7263     }
7264   }
7265 
7266   // Some instructions, mostly Thumb, have forms for the same mnemonic that
7267   // do and don't have a cc_out optional-def operand. With some spot-checks
7268   // of the operand list, we can figure out which variant we're trying to
7269   // parse and adjust accordingly before actually matching. We shouldn't ever
7270   // try to remove a cc_out operand that was explicitly set on the
7271   // mnemonic, of course (CarrySetting == true). Reason number #317 the
7272   // table driven matcher doesn't fit well with the ARM instruction set.
7273   if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands))
7274     Operands.erase(Operands.begin() + 1);
7275 
7276   // Some instructions have the same mnemonic, but don't always
7277   // have a predicate. Distinguish them here and delete the
7278   // appropriate predicate if needed.  This could be either the scalar
7279   // predication code or the vector predication code.
7280   if (PredicationCode == ARMCC::AL &&
7281       shouldOmitPredicateOperand(Mnemonic, Operands))
7282     Operands.erase(Operands.begin() + 1);
7283 
7284 
7285   if (hasMVE()) {
7286     if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) &&
7287         Mnemonic == "vmov" && PredicationCode == ARMCC::LT) {
7288       // Very nasty hack to deal with the vector predicated variant of vmovlt
7289       // the scalar predicated vmov with condition 'lt'.  We can not tell them
7290       // apart until we have parsed their operands.
7291       Operands.erase(Operands.begin() + 1);
7292       Operands.erase(Operands.begin());
7293       SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7294       SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
7295                                          Mnemonic.size() - 1 + CarrySetting);
7296       Operands.insert(Operands.begin(),
7297                       ARMOperand::CreateVPTPred(ARMVCC::None, PLoc));
7298       Operands.insert(Operands.begin(),
7299                       ARMOperand::CreateToken(StringRef("vmovlt"), MLoc));
7300     } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE &&
7301                !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7302       // Another nasty hack to deal with the ambiguity between vcvt with scalar
7303       // predication 'ne' and vcvtn with vector predication 'e'.  As above we
7304       // can only distinguish between the two after we have parsed their
7305       // operands.
7306       Operands.erase(Operands.begin() + 1);
7307       Operands.erase(Operands.begin());
7308       SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7309       SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
7310                                          Mnemonic.size() - 1 + CarrySetting);
7311       Operands.insert(Operands.begin(),
7312                       ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc));
7313       Operands.insert(Operands.begin(),
7314                       ARMOperand::CreateToken(StringRef("vcvtn"), MLoc));
7315     } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT &&
7316                !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7317       // Another hack, this time to distinguish between scalar predicated vmul
7318       // with 'lt' predication code and the vector instruction vmullt with
7319       // vector predication code "none"
7320       Operands.erase(Operands.begin() + 1);
7321       Operands.erase(Operands.begin());
7322       SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7323       Operands.insert(Operands.begin(),
7324                       ARMOperand::CreateToken(StringRef("vmullt"), MLoc));
7325     }
7326     // For vmov and vcmp, as mentioned earlier, we did not add the vector
7327     // predication code, since these may contain operands that require
7328     // special parsing.  So now we have to see if they require vector
7329     // predication and replace the scalar one with the vector predication
7330     // operand if that is the case.
7331     else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") ||
7332              (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") &&
7333               !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") &&
7334               !Mnemonic.startswith("vcvtm"))) {
7335       if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7336         // We could not split the vector predicate off vcvt because it might
7337         // have been the scalar vcvtt instruction.  Now we know its a vector
7338         // instruction, we still need to check whether its the vector
7339         // predicated vcvt with 'Then' predication or the vector vcvtt.  We can
7340         // distinguish the two based on the suffixes, if it is any of
7341         // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt.
7342         if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) {
7343           auto Sz1 = static_cast<ARMOperand &>(*Operands[2]);
7344           auto Sz2 = static_cast<ARMOperand &>(*Operands[3]);
7345           if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") &&
7346               Sz2.isToken() && Sz2.getToken().startswith(".f"))) {
7347             Operands.erase(Operands.begin());
7348             SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7349             VPTPredicationCode = ARMVCC::Then;
7350 
7351             Mnemonic = Mnemonic.substr(0, 4);
7352             Operands.insert(Operands.begin(),
7353                             ARMOperand::CreateToken(Mnemonic, MLoc));
7354           }
7355         }
7356         Operands.erase(Operands.begin() + 1);
7357         SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
7358                                           Mnemonic.size() + CarrySetting);
7359         Operands.insert(Operands.begin() + 1,
7360                         ARMOperand::CreateVPTPred(
7361                             ARMVCC::VPTCodes(VPTPredicationCode), PLoc));
7362       }
7363     } else if (CanAcceptVPTPredicationCode) {
7364       // For all other instructions, make sure only one of the two
7365       // predication operands is left behind, depending on whether we should
7366       // use the vector predication.
7367       if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7368         if (CanAcceptPredicationCode)
7369           Operands.erase(Operands.begin() + 2);
7370         else
7371           Operands.erase(Operands.begin() + 1);
7372       } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) {
7373         Operands.erase(Operands.begin() + 1);
7374       }
7375     }
7376   }
7377 
7378   if (VPTPredicationCode != ARMVCC::None) {
7379     bool usedVPTPredicationCode = false;
7380     for (unsigned I = 1; I < Operands.size(); ++I)
7381       if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred())
7382         usedVPTPredicationCode = true;
7383     if (!usedVPTPredicationCode) {
7384       // If we have a VPT predication code and we haven't just turned it
7385       // into an operand, then it was a mistake for splitMnemonic to
7386       // separate it from the rest of the mnemonic in the first place,
7387       // and this may lead to wrong disassembly (e.g. scalar floating
7388       // point VCMPE is actually a different instruction from VCMP, so
7389       // we mustn't treat them the same). In that situation, glue it
7390       // back on.
7391       Mnemonic = Name.slice(0, Mnemonic.size() + 1);
7392       Operands.erase(Operands.begin());
7393       Operands.insert(Operands.begin(),
7394                       ARMOperand::CreateToken(Mnemonic, NameLoc));
7395     }
7396   }
7397 
7398     // ARM mode 'blx' need special handling, as the register operand version
7399     // is predicable, but the label operand version is not. So, we can't rely
7400     // on the Mnemonic based checking to correctly figure out when to put
7401     // a k_CondCode operand in the list. If we're trying to match the label
7402     // version, remove the k_CondCode operand here.
7403     if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
7404         static_cast<ARMOperand &>(*Operands[2]).isImm())
7405       Operands.erase(Operands.begin() + 1);
7406 
7407     // Adjust operands of ldrexd/strexd to MCK_GPRPair.
7408     // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
7409     // a single GPRPair reg operand is used in the .td file to replace the two
7410     // GPRs. However, when parsing from asm, the two GRPs cannot be
7411     // automatically
7412     // expressed as a GPRPair, so we have to manually merge them.
7413     // FIXME: We would really like to be able to tablegen'erate this.
7414     if (!isThumb() && Operands.size() > 4 &&
7415         (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
7416          Mnemonic == "stlexd")) {
7417       bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
7418       unsigned Idx = isLoad ? 2 : 3;
7419       ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]);
7420       ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]);
7421 
7422       const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID);
7423       // Adjust only if Op1 and Op2 are GPRs.
7424       if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) &&
7425           MRC.contains(Op2.getReg())) {
7426         unsigned Reg1 = Op1.getReg();
7427         unsigned Reg2 = Op2.getReg();
7428         unsigned Rt = MRI->getEncodingValue(Reg1);
7429         unsigned Rt2 = MRI->getEncodingValue(Reg2);
7430 
7431         // Rt2 must be Rt + 1 and Rt must be even.
7432         if (Rt + 1 != Rt2 || (Rt & 1)) {
7433           return Error(Op2.getStartLoc(),
7434                        isLoad ? "destination operands must be sequential"
7435                               : "source operands must be sequential");
7436         }
7437         unsigned NewReg = MRI->getMatchingSuperReg(
7438             Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID)));
7439         Operands[Idx] =
7440             ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc());
7441         Operands.erase(Operands.begin() + Idx + 1);
7442       }
7443   }
7444 
7445   // GNU Assembler extension (compatibility).
7446   fixupGNULDRDAlias(Mnemonic, Operands);
7447 
7448   // FIXME: As said above, this is all a pretty gross hack.  This instruction
7449   // does not fit with other "subs" and tblgen.
7450   // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
7451   // so the Mnemonic is the original name "subs" and delete the predicate
7452   // operand so it will match the table entry.
7453   if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
7454       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
7455       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC &&
7456       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
7457       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR &&
7458       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
7459     Operands.front() = ARMOperand::CreateToken(Name, NameLoc);
7460     Operands.erase(Operands.begin() + 1);
7461   }
7462   return false;
7463 }
7464 
7465 // Validate context-sensitive operand constraints.
7466 
7467 // return 'true' if register list contains non-low GPR registers,
7468 // 'false' otherwise. If Reg is in the register list or is HiReg, set
7469 // 'containsReg' to true.
7470 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo,
7471                                  unsigned Reg, unsigned HiReg,
7472                                  bool &containsReg) {
7473   containsReg = false;
7474   for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
7475     unsigned OpReg = Inst.getOperand(i).getReg();
7476     if (OpReg == Reg)
7477       containsReg = true;
7478     // Anything other than a low register isn't legal here.
7479     if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
7480       return true;
7481   }
7482   return false;
7483 }
7484 
7485 // Check if the specified regisgter is in the register list of the inst,
7486 // starting at the indicated operand number.
7487 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) {
7488   for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) {
7489     unsigned OpReg = Inst.getOperand(i).getReg();
7490     if (OpReg == Reg)
7491       return true;
7492   }
7493   return false;
7494 }
7495 
7496 // Return true if instruction has the interesting property of being
7497 // allowed in IT blocks, but not being predicable.
7498 static bool instIsBreakpoint(const MCInst &Inst) {
7499     return Inst.getOpcode() == ARM::tBKPT ||
7500            Inst.getOpcode() == ARM::BKPT ||
7501            Inst.getOpcode() == ARM::tHLT ||
7502            Inst.getOpcode() == ARM::HLT;
7503 }
7504 
7505 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst,
7506                                        const OperandVector &Operands,
7507                                        unsigned ListNo, bool IsARPop) {
7508   const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
7509   bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
7510 
7511   bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
7512   bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR);
7513   bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
7514 
7515   if (!IsARPop && ListContainsSP)
7516     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7517                  "SP may not be in the register list");
7518   else if (ListContainsPC && ListContainsLR)
7519     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7520                  "PC and LR may not be in the register list simultaneously");
7521   return false;
7522 }
7523 
7524 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst,
7525                                        const OperandVector &Operands,
7526                                        unsigned ListNo) {
7527   const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
7528   bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
7529 
7530   bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
7531   bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
7532 
7533   if (ListContainsSP && ListContainsPC)
7534     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7535                  "SP and PC may not be in the register list");
7536   else if (ListContainsSP)
7537     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7538                  "SP may not be in the register list");
7539   else if (ListContainsPC)
7540     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7541                  "PC may not be in the register list");
7542   return false;
7543 }
7544 
7545 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst,
7546                                     const OperandVector &Operands,
7547                                     bool Load, bool ARMMode, bool Writeback) {
7548   unsigned RtIndex = Load || !Writeback ? 0 : 1;
7549   unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg());
7550   unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg());
7551 
7552   if (ARMMode) {
7553     // Rt can't be R14.
7554     if (Rt == 14)
7555       return Error(Operands[3]->getStartLoc(),
7556                   "Rt can't be R14");
7557 
7558     // Rt must be even-numbered.
7559     if ((Rt & 1) == 1)
7560       return Error(Operands[3]->getStartLoc(),
7561                    "Rt must be even-numbered");
7562 
7563     // Rt2 must be Rt + 1.
7564     if (Rt2 != Rt + 1) {
7565       if (Load)
7566         return Error(Operands[3]->getStartLoc(),
7567                      "destination operands must be sequential");
7568       else
7569         return Error(Operands[3]->getStartLoc(),
7570                      "source operands must be sequential");
7571     }
7572 
7573     // FIXME: Diagnose m == 15
7574     // FIXME: Diagnose ldrd with m == t || m == t2.
7575   }
7576 
7577   if (!ARMMode && Load) {
7578     if (Rt2 == Rt)
7579       return Error(Operands[3]->getStartLoc(),
7580                    "destination operands can't be identical");
7581   }
7582 
7583   if (Writeback) {
7584     unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
7585 
7586     if (Rn == Rt || Rn == Rt2) {
7587       if (Load)
7588         return Error(Operands[3]->getStartLoc(),
7589                      "base register needs to be different from destination "
7590                      "registers");
7591       else
7592         return Error(Operands[3]->getStartLoc(),
7593                      "source register and base register can't be identical");
7594     }
7595 
7596     // FIXME: Diagnose ldrd/strd with writeback and n == 15.
7597     // (Except the immediate form of ldrd?)
7598   }
7599 
7600   return false;
7601 }
7602 
7603 static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) {
7604   for (unsigned i = 0; i < MCID.NumOperands; ++i) {
7605     if (ARM::isVpred(MCID.OpInfo[i].OperandType))
7606       return i;
7607   }
7608   return -1;
7609 }
7610 
7611 static bool isVectorPredicable(const MCInstrDesc &MCID) {
7612   return findFirstVectorPredOperandIdx(MCID) != -1;
7613 }
7614 
7615 // FIXME: We would really like to be able to tablegen'erate this.
7616 bool ARMAsmParser::validateInstruction(MCInst &Inst,
7617                                        const OperandVector &Operands) {
7618   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
7619   SMLoc Loc = Operands[0]->getStartLoc();
7620 
7621   // Check the IT block state first.
7622   // NOTE: BKPT and HLT instructions have the interesting property of being
7623   // allowed in IT blocks, but not being predicable. They just always execute.
7624   if (inITBlock() && !instIsBreakpoint(Inst)) {
7625     // The instruction must be predicable.
7626     if (!MCID.isPredicable())
7627       return Error(Loc, "instructions in IT block must be predicable");
7628     ARMCC::CondCodes Cond = ARMCC::CondCodes(
7629         Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm());
7630     if (Cond != currentITCond()) {
7631       // Find the condition code Operand to get its SMLoc information.
7632       SMLoc CondLoc;
7633       for (unsigned I = 1; I < Operands.size(); ++I)
7634         if (static_cast<ARMOperand &>(*Operands[I]).isCondCode())
7635           CondLoc = Operands[I]->getStartLoc();
7636       return Error(CondLoc, "incorrect condition in IT block; got '" +
7637                                 StringRef(ARMCondCodeToString(Cond)) +
7638                                 "', but expected '" +
7639                                 ARMCondCodeToString(currentITCond()) + "'");
7640     }
7641   // Check for non-'al' condition codes outside of the IT block.
7642   } else if (isThumbTwo() && MCID.isPredicable() &&
7643              Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
7644              ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
7645              Inst.getOpcode() != ARM::t2Bcc &&
7646              Inst.getOpcode() != ARM::t2BFic) {
7647     return Error(Loc, "predicated instructions must be in IT block");
7648   } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() &&
7649              Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
7650                  ARMCC::AL) {
7651     return Warning(Loc, "predicated instructions should be in IT block");
7652   } else if (!MCID.isPredicable()) {
7653     // Check the instruction doesn't have a predicate operand anyway
7654     // that it's not allowed to use. Sometimes this happens in order
7655     // to keep instructions the same shape even though one cannot
7656     // legally be predicated, e.g. vmul.f16 vs vmul.f32.
7657     for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
7658       if (MCID.OpInfo[i].isPredicate()) {
7659         if (Inst.getOperand(i).getImm() != ARMCC::AL)
7660           return Error(Loc, "instruction is not predicable");
7661         break;
7662       }
7663     }
7664   }
7665 
7666   // PC-setting instructions in an IT block, but not the last instruction of
7667   // the block, are UNPREDICTABLE.
7668   if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) {
7669     return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block");
7670   }
7671 
7672   if (inVPTBlock() && !instIsBreakpoint(Inst)) {
7673     unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition);
7674     if (!isVectorPredicable(MCID))
7675       return Error(Loc, "instruction in VPT block must be predicable");
7676     unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm();
7677     unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then;
7678     if (Pred != VPTPred) {
7679       SMLoc PredLoc;
7680       for (unsigned I = 1; I < Operands.size(); ++I)
7681         if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred())
7682           PredLoc = Operands[I]->getStartLoc();
7683       return Error(PredLoc, "incorrect predication in VPT block; got '" +
7684                    StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) +
7685                    "', but expected '" +
7686                    ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'");
7687     }
7688   }
7689   else if (isVectorPredicable(MCID) &&
7690            Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() !=
7691            ARMVCC::None)
7692     return Error(Loc, "VPT predicated instructions must be in VPT block");
7693 
7694   const unsigned Opcode = Inst.getOpcode();
7695   switch (Opcode) {
7696   case ARM::t2IT: {
7697     // Encoding is unpredictable if it ever results in a notional 'NV'
7698     // predicate. Since we don't parse 'NV' directly this means an 'AL'
7699     // predicate with an "else" mask bit.
7700     unsigned Cond = Inst.getOperand(0).getImm();
7701     unsigned Mask = Inst.getOperand(1).getImm();
7702 
7703     // Conditions only allowing a 't' are those with no set bit except
7704     // the lowest-order one that indicates the end of the sequence. In
7705     // other words, powers of 2.
7706     if (Cond == ARMCC::AL && countPopulation(Mask) != 1)
7707       return Error(Loc, "unpredictable IT predicate sequence");
7708     break;
7709   }
7710   case ARM::LDRD:
7711     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
7712                          /*Writeback*/false))
7713       return true;
7714     break;
7715   case ARM::LDRD_PRE:
7716   case ARM::LDRD_POST:
7717     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
7718                          /*Writeback*/true))
7719       return true;
7720     break;
7721   case ARM::t2LDRDi8:
7722     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
7723                          /*Writeback*/false))
7724       return true;
7725     break;
7726   case ARM::t2LDRD_PRE:
7727   case ARM::t2LDRD_POST:
7728     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
7729                          /*Writeback*/true))
7730       return true;
7731     break;
7732   case ARM::t2BXJ: {
7733     const unsigned RmReg = Inst.getOperand(0).getReg();
7734     // Rm = SP is no longer unpredictable in v8-A
7735     if (RmReg == ARM::SP && !hasV8Ops())
7736       return Error(Operands[2]->getStartLoc(),
7737                    "r13 (SP) is an unpredictable operand to BXJ");
7738     return false;
7739   }
7740   case ARM::STRD:
7741     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
7742                          /*Writeback*/false))
7743       return true;
7744     break;
7745   case ARM::STRD_PRE:
7746   case ARM::STRD_POST:
7747     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
7748                          /*Writeback*/true))
7749       return true;
7750     break;
7751   case ARM::t2STRD_PRE:
7752   case ARM::t2STRD_POST:
7753     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false,
7754                          /*Writeback*/true))
7755       return true;
7756     break;
7757   case ARM::STR_PRE_IMM:
7758   case ARM::STR_PRE_REG:
7759   case ARM::t2STR_PRE:
7760   case ARM::STR_POST_IMM:
7761   case ARM::STR_POST_REG:
7762   case ARM::t2STR_POST:
7763   case ARM::STRH_PRE:
7764   case ARM::t2STRH_PRE:
7765   case ARM::STRH_POST:
7766   case ARM::t2STRH_POST:
7767   case ARM::STRB_PRE_IMM:
7768   case ARM::STRB_PRE_REG:
7769   case ARM::t2STRB_PRE:
7770   case ARM::STRB_POST_IMM:
7771   case ARM::STRB_POST_REG:
7772   case ARM::t2STRB_POST: {
7773     // Rt must be different from Rn.
7774     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
7775     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
7776 
7777     if (Rt == Rn)
7778       return Error(Operands[3]->getStartLoc(),
7779                    "source register and base register can't be identical");
7780     return false;
7781   }
7782   case ARM::t2LDR_PRE_imm:
7783   case ARM::t2LDR_POST_imm:
7784   case ARM::t2STR_PRE_imm:
7785   case ARM::t2STR_POST_imm: {
7786     // Rt must be different from Rn.
7787     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
7788     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(1).getReg());
7789 
7790     if (Rt == Rn)
7791       return Error(Operands[3]->getStartLoc(),
7792                    "destination register and base register can't be identical");
7793     if (Inst.getOpcode() == ARM::t2LDR_POST_imm ||
7794         Inst.getOpcode() == ARM::t2STR_POST_imm) {
7795       int Imm = Inst.getOperand(2).getImm();
7796       if (Imm > 255 || Imm < -255)
7797         return Error(Operands[5]->getStartLoc(),
7798                      "operand must be in range [-255, 255]");
7799     }
7800     if (Inst.getOpcode() == ARM::t2STR_PRE_imm ||
7801         Inst.getOpcode() == ARM::t2STR_POST_imm) {
7802       if (Inst.getOperand(0).getReg() == ARM::PC) {
7803         return Error(Operands[3]->getStartLoc(),
7804                      "operand must be a register in range [r0, r14]");
7805       }
7806     }
7807     return false;
7808   }
7809   case ARM::LDR_PRE_IMM:
7810   case ARM::LDR_PRE_REG:
7811   case ARM::t2LDR_PRE:
7812   case ARM::LDR_POST_IMM:
7813   case ARM::LDR_POST_REG:
7814   case ARM::t2LDR_POST:
7815   case ARM::LDRH_PRE:
7816   case ARM::t2LDRH_PRE:
7817   case ARM::LDRH_POST:
7818   case ARM::t2LDRH_POST:
7819   case ARM::LDRSH_PRE:
7820   case ARM::t2LDRSH_PRE:
7821   case ARM::LDRSH_POST:
7822   case ARM::t2LDRSH_POST:
7823   case ARM::LDRB_PRE_IMM:
7824   case ARM::LDRB_PRE_REG:
7825   case ARM::t2LDRB_PRE:
7826   case ARM::LDRB_POST_IMM:
7827   case ARM::LDRB_POST_REG:
7828   case ARM::t2LDRB_POST:
7829   case ARM::LDRSB_PRE:
7830   case ARM::t2LDRSB_PRE:
7831   case ARM::LDRSB_POST:
7832   case ARM::t2LDRSB_POST: {
7833     // Rt must be different from Rn.
7834     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
7835     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
7836 
7837     if (Rt == Rn)
7838       return Error(Operands[3]->getStartLoc(),
7839                    "destination register and base register can't be identical");
7840     return false;
7841   }
7842 
7843   case ARM::MVE_VLDRBU8_rq:
7844   case ARM::MVE_VLDRBU16_rq:
7845   case ARM::MVE_VLDRBS16_rq:
7846   case ARM::MVE_VLDRBU32_rq:
7847   case ARM::MVE_VLDRBS32_rq:
7848   case ARM::MVE_VLDRHU16_rq:
7849   case ARM::MVE_VLDRHU16_rq_u:
7850   case ARM::MVE_VLDRHU32_rq:
7851   case ARM::MVE_VLDRHU32_rq_u:
7852   case ARM::MVE_VLDRHS32_rq:
7853   case ARM::MVE_VLDRHS32_rq_u:
7854   case ARM::MVE_VLDRWU32_rq:
7855   case ARM::MVE_VLDRWU32_rq_u:
7856   case ARM::MVE_VLDRDU64_rq:
7857   case ARM::MVE_VLDRDU64_rq_u:
7858   case ARM::MVE_VLDRWU32_qi:
7859   case ARM::MVE_VLDRWU32_qi_pre:
7860   case ARM::MVE_VLDRDU64_qi:
7861   case ARM::MVE_VLDRDU64_qi_pre: {
7862     // Qd must be different from Qm.
7863     unsigned QdIdx = 0, QmIdx = 2;
7864     bool QmIsPointer = false;
7865     switch (Opcode) {
7866     case ARM::MVE_VLDRWU32_qi:
7867     case ARM::MVE_VLDRDU64_qi:
7868       QmIdx = 1;
7869       QmIsPointer = true;
7870       break;
7871     case ARM::MVE_VLDRWU32_qi_pre:
7872     case ARM::MVE_VLDRDU64_qi_pre:
7873       QdIdx = 1;
7874       QmIsPointer = true;
7875       break;
7876     }
7877 
7878     const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg());
7879     const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg());
7880 
7881     if (Qd == Qm) {
7882       return Error(Operands[3]->getStartLoc(),
7883                    Twine("destination vector register and vector ") +
7884                    (QmIsPointer ? "pointer" : "offset") +
7885                    " register can't be identical");
7886     }
7887     return false;
7888   }
7889 
7890   case ARM::SBFX:
7891   case ARM::t2SBFX:
7892   case ARM::UBFX:
7893   case ARM::t2UBFX: {
7894     // Width must be in range [1, 32-lsb].
7895     unsigned LSB = Inst.getOperand(2).getImm();
7896     unsigned Widthm1 = Inst.getOperand(3).getImm();
7897     if (Widthm1 >= 32 - LSB)
7898       return Error(Operands[5]->getStartLoc(),
7899                    "bitfield width must be in range [1,32-lsb]");
7900     return false;
7901   }
7902   // Notionally handles ARM::tLDMIA_UPD too.
7903   case ARM::tLDMIA: {
7904     // If we're parsing Thumb2, the .w variant is available and handles
7905     // most cases that are normally illegal for a Thumb1 LDM instruction.
7906     // We'll make the transformation in processInstruction() if necessary.
7907     //
7908     // Thumb LDM instructions are writeback iff the base register is not
7909     // in the register list.
7910     unsigned Rn = Inst.getOperand(0).getReg();
7911     bool HasWritebackToken =
7912         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
7913          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
7914     bool ListContainsBase;
7915     if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
7916       return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
7917                    "registers must be in range r0-r7");
7918     // If we should have writeback, then there should be a '!' token.
7919     if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
7920       return Error(Operands[2]->getStartLoc(),
7921                    "writeback operator '!' expected");
7922     // If we should not have writeback, there must not be a '!'. This is
7923     // true even for the 32-bit wide encodings.
7924     if (ListContainsBase && HasWritebackToken)
7925       return Error(Operands[3]->getStartLoc(),
7926                    "writeback operator '!' not allowed when base register "
7927                    "in register list");
7928 
7929     if (validatetLDMRegList(Inst, Operands, 3))
7930       return true;
7931     break;
7932   }
7933   case ARM::LDMIA_UPD:
7934   case ARM::LDMDB_UPD:
7935   case ARM::LDMIB_UPD:
7936   case ARM::LDMDA_UPD:
7937     // ARM variants loading and updating the same register are only officially
7938     // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
7939     if (!hasV7Ops())
7940       break;
7941     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
7942       return Error(Operands.back()->getStartLoc(),
7943                    "writeback register not allowed in register list");
7944     break;
7945   case ARM::t2LDMIA:
7946   case ARM::t2LDMDB:
7947     if (validatetLDMRegList(Inst, Operands, 3))
7948       return true;
7949     break;
7950   case ARM::t2STMIA:
7951   case ARM::t2STMDB:
7952     if (validatetSTMRegList(Inst, Operands, 3))
7953       return true;
7954     break;
7955   case ARM::t2LDMIA_UPD:
7956   case ARM::t2LDMDB_UPD:
7957   case ARM::t2STMIA_UPD:
7958   case ARM::t2STMDB_UPD:
7959     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
7960       return Error(Operands.back()->getStartLoc(),
7961                    "writeback register not allowed in register list");
7962 
7963     if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
7964       if (validatetLDMRegList(Inst, Operands, 3))
7965         return true;
7966     } else {
7967       if (validatetSTMRegList(Inst, Operands, 3))
7968         return true;
7969     }
7970     break;
7971 
7972   case ARM::sysLDMIA_UPD:
7973   case ARM::sysLDMDA_UPD:
7974   case ARM::sysLDMDB_UPD:
7975   case ARM::sysLDMIB_UPD:
7976     if (!listContainsReg(Inst, 3, ARM::PC))
7977       return Error(Operands[4]->getStartLoc(),
7978                    "writeback register only allowed on system LDM "
7979                    "if PC in register-list");
7980     break;
7981   case ARM::sysSTMIA_UPD:
7982   case ARM::sysSTMDA_UPD:
7983   case ARM::sysSTMDB_UPD:
7984   case ARM::sysSTMIB_UPD:
7985     return Error(Operands[2]->getStartLoc(),
7986                  "system STM cannot have writeback register");
7987   case ARM::tMUL:
7988     // The second source operand must be the same register as the destination
7989     // operand.
7990     //
7991     // In this case, we must directly check the parsed operands because the
7992     // cvtThumbMultiply() function is written in such a way that it guarantees
7993     // this first statement is always true for the new Inst.  Essentially, the
7994     // destination is unconditionally copied into the second source operand
7995     // without checking to see if it matches what we actually parsed.
7996     if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() !=
7997                                  ((ARMOperand &)*Operands[5]).getReg()) &&
7998         (((ARMOperand &)*Operands[3]).getReg() !=
7999          ((ARMOperand &)*Operands[4]).getReg())) {
8000       return Error(Operands[3]->getStartLoc(),
8001                    "destination register must match source register");
8002     }
8003     break;
8004 
8005   // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
8006   // so only issue a diagnostic for thumb1. The instructions will be
8007   // switched to the t2 encodings in processInstruction() if necessary.
8008   case ARM::tPOP: {
8009     bool ListContainsBase;
8010     if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
8011         !isThumbTwo())
8012       return Error(Operands[2]->getStartLoc(),
8013                    "registers must be in range r0-r7 or pc");
8014     if (validatetLDMRegList(Inst, Operands, 2, !isMClass()))
8015       return true;
8016     break;
8017   }
8018   case ARM::tPUSH: {
8019     bool ListContainsBase;
8020     if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
8021         !isThumbTwo())
8022       return Error(Operands[2]->getStartLoc(),
8023                    "registers must be in range r0-r7 or lr");
8024     if (validatetSTMRegList(Inst, Operands, 2))
8025       return true;
8026     break;
8027   }
8028   case ARM::tSTMIA_UPD: {
8029     bool ListContainsBase, InvalidLowList;
8030     InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
8031                                           0, ListContainsBase);
8032     if (InvalidLowList && !isThumbTwo())
8033       return Error(Operands[4]->getStartLoc(),
8034                    "registers must be in range r0-r7");
8035 
8036     // This would be converted to a 32-bit stm, but that's not valid if the
8037     // writeback register is in the list.
8038     if (InvalidLowList && ListContainsBase)
8039       return Error(Operands[4]->getStartLoc(),
8040                    "writeback operator '!' not allowed when base register "
8041                    "in register list");
8042 
8043     if (validatetSTMRegList(Inst, Operands, 4))
8044       return true;
8045     break;
8046   }
8047   case ARM::tADDrSP:
8048     // If the non-SP source operand and the destination operand are not the
8049     // same, we need thumb2 (for the wide encoding), or we have an error.
8050     if (!isThumbTwo() &&
8051         Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
8052       return Error(Operands[4]->getStartLoc(),
8053                    "source register must be the same as destination");
8054     }
8055     break;
8056 
8057   case ARM::t2ADDrr:
8058   case ARM::t2ADDrs:
8059   case ARM::t2SUBrr:
8060   case ARM::t2SUBrs:
8061     if (Inst.getOperand(0).getReg() == ARM::SP &&
8062         Inst.getOperand(1).getReg() != ARM::SP)
8063       return Error(Operands[4]->getStartLoc(),
8064                    "source register must be sp if destination is sp");
8065     break;
8066 
8067   // Final range checking for Thumb unconditional branch instructions.
8068   case ARM::tB:
8069     if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>())
8070       return Error(Operands[2]->getStartLoc(), "branch target out of range");
8071     break;
8072   case ARM::t2B: {
8073     int op = (Operands[2]->isImm()) ? 2 : 3;
8074     ARMOperand &Operand = static_cast<ARMOperand &>(*Operands[op]);
8075     // Delay the checks of symbolic expressions until they are resolved.
8076     if (!isa<MCBinaryExpr>(Operand.getImm()) &&
8077         !Operand.isSignedOffset<24, 1>())
8078       return Error(Operands[op]->getStartLoc(), "branch target out of range");
8079     break;
8080   }
8081   // Final range checking for Thumb conditional branch instructions.
8082   case ARM::tBcc:
8083     if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>())
8084       return Error(Operands[2]->getStartLoc(), "branch target out of range");
8085     break;
8086   case ARM::t2Bcc: {
8087     int Op = (Operands[2]->isImm()) ? 2 : 3;
8088     if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>())
8089       return Error(Operands[Op]->getStartLoc(), "branch target out of range");
8090     break;
8091   }
8092   case ARM::tCBZ:
8093   case ARM::tCBNZ: {
8094     if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>())
8095       return Error(Operands[2]->getStartLoc(), "branch target out of range");
8096     break;
8097   }
8098   case ARM::MOVi16:
8099   case ARM::MOVTi16:
8100   case ARM::t2MOVi16:
8101   case ARM::t2MOVTi16:
8102     {
8103     // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
8104     // especially when we turn it into a movw and the expression <symbol> does
8105     // not have a :lower16: or :upper16 as part of the expression.  We don't
8106     // want the behavior of silently truncating, which can be unexpected and
8107     // lead to bugs that are difficult to find since this is an easy mistake
8108     // to make.
8109     int i = (Operands[3]->isImm()) ? 3 : 4;
8110     ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]);
8111     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
8112     if (CE) break;
8113     const MCExpr *E = dyn_cast<MCExpr>(Op.getImm());
8114     if (!E) break;
8115     const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E);
8116     if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
8117                        ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16))
8118       return Error(
8119           Op.getStartLoc(),
8120           "immediate expression for mov requires :lower16: or :upper16");
8121     break;
8122   }
8123   case ARM::HINT:
8124   case ARM::t2HINT: {
8125     unsigned Imm8 = Inst.getOperand(0).getImm();
8126     unsigned Pred = Inst.getOperand(1).getImm();
8127     // ESB is not predicable (pred must be AL). Without the RAS extension, this
8128     // behaves as any other unallocated hint.
8129     if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS())
8130       return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not "
8131                                                "predicable, but condition "
8132                                                "code specified");
8133     if (Imm8 == 0x14 && Pred != ARMCC::AL)
8134       return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not "
8135                                                "predicable, but condition "
8136                                                "code specified");
8137     break;
8138   }
8139   case ARM::t2BFi:
8140   case ARM::t2BFr:
8141   case ARM::t2BFLi:
8142   case ARM::t2BFLr: {
8143     if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() ||
8144         (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0))
8145       return Error(Operands[2]->getStartLoc(),
8146                    "branch location out of range or not a multiple of 2");
8147 
8148     if (Opcode == ARM::t2BFi) {
8149       if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>())
8150         return Error(Operands[3]->getStartLoc(),
8151                      "branch target out of range or not a multiple of 2");
8152     } else if (Opcode == ARM::t2BFLi) {
8153       if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>())
8154         return Error(Operands[3]->getStartLoc(),
8155                      "branch target out of range or not a multiple of 2");
8156     }
8157     break;
8158   }
8159   case ARM::t2BFic: {
8160     if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() ||
8161         (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0))
8162       return Error(Operands[1]->getStartLoc(),
8163                    "branch location out of range or not a multiple of 2");
8164 
8165     if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>())
8166       return Error(Operands[2]->getStartLoc(),
8167                    "branch target out of range or not a multiple of 2");
8168 
8169     assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() &&
8170            "branch location and else branch target should either both be "
8171            "immediates or both labels");
8172 
8173     if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) {
8174       int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm();
8175       if (Diff != 4 && Diff != 2)
8176         return Error(
8177             Operands[3]->getStartLoc(),
8178             "else branch target must be 2 or 4 greater than the branch location");
8179     }
8180     break;
8181   }
8182   case ARM::t2CLRM: {
8183     for (unsigned i = 2; i < Inst.getNumOperands(); i++) {
8184       if (Inst.getOperand(i).isReg() &&
8185           !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(
8186               Inst.getOperand(i).getReg())) {
8187         return Error(Operands[2]->getStartLoc(),
8188                      "invalid register in register list. Valid registers are "
8189                      "r0-r12, lr/r14 and APSR.");
8190       }
8191     }
8192     break;
8193   }
8194   case ARM::DSB:
8195   case ARM::t2DSB: {
8196 
8197     if (Inst.getNumOperands() < 2)
8198       break;
8199 
8200     unsigned Option = Inst.getOperand(0).getImm();
8201     unsigned Pred = Inst.getOperand(1).getImm();
8202 
8203     // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL).
8204     if (Option == 0 && Pred != ARMCC::AL)
8205       return Error(Operands[1]->getStartLoc(),
8206                    "instruction 'ssbb' is not predicable, but condition code "
8207                    "specified");
8208     if (Option == 4 && Pred != ARMCC::AL)
8209       return Error(Operands[1]->getStartLoc(),
8210                    "instruction 'pssbb' is not predicable, but condition code "
8211                    "specified");
8212     break;
8213   }
8214   case ARM::VMOVRRS: {
8215     // Source registers must be sequential.
8216     const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg());
8217     const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg());
8218     if (Sm1 != Sm + 1)
8219       return Error(Operands[5]->getStartLoc(),
8220                    "source operands must be sequential");
8221     break;
8222   }
8223   case ARM::VMOVSRR: {
8224     // Destination registers must be sequential.
8225     const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg());
8226     const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
8227     if (Sm1 != Sm + 1)
8228       return Error(Operands[3]->getStartLoc(),
8229                    "destination operands must be sequential");
8230     break;
8231   }
8232   case ARM::VLDMDIA:
8233   case ARM::VSTMDIA: {
8234     ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]);
8235     auto &RegList = Op.getRegList();
8236     if (RegList.size() < 1 || RegList.size() > 16)
8237       return Error(Operands[3]->getStartLoc(),
8238                    "list of registers must be at least 1 and at most 16");
8239     break;
8240   }
8241   case ARM::MVE_VQDMULLs32bh:
8242   case ARM::MVE_VQDMULLs32th:
8243   case ARM::MVE_VCMULf32:
8244   case ARM::MVE_VMULLBs32:
8245   case ARM::MVE_VMULLTs32:
8246   case ARM::MVE_VMULLBu32:
8247   case ARM::MVE_VMULLTu32: {
8248     if (Operands[3]->getReg() == Operands[4]->getReg()) {
8249       return Error (Operands[3]->getStartLoc(),
8250                     "Qd register and Qn register can't be identical");
8251     }
8252     if (Operands[3]->getReg() == Operands[5]->getReg()) {
8253       return Error (Operands[3]->getStartLoc(),
8254                     "Qd register and Qm register can't be identical");
8255     }
8256     break;
8257   }
8258   case ARM::MVE_VMOV_rr_q: {
8259     if (Operands[4]->getReg() != Operands[6]->getReg())
8260       return Error (Operands[4]->getStartLoc(), "Q-registers must be the same");
8261     if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() !=
8262         static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2)
8263       return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
8264     break;
8265   }
8266   case ARM::MVE_VMOV_q_rr: {
8267     if (Operands[2]->getReg() != Operands[4]->getReg())
8268       return Error (Operands[2]->getStartLoc(), "Q-registers must be the same");
8269     if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() !=
8270         static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2)
8271       return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
8272     break;
8273   }
8274   case ARM::UMAAL:
8275   case ARM::UMLAL:
8276   case ARM::UMULL:
8277   case ARM::t2UMAAL:
8278   case ARM::t2UMLAL:
8279   case ARM::t2UMULL:
8280   case ARM::SMLAL:
8281   case ARM::SMLALBB:
8282   case ARM::SMLALBT:
8283   case ARM::SMLALD:
8284   case ARM::SMLALDX:
8285   case ARM::SMLALTB:
8286   case ARM::SMLALTT:
8287   case ARM::SMLSLD:
8288   case ARM::SMLSLDX:
8289   case ARM::SMULL:
8290   case ARM::t2SMLAL:
8291   case ARM::t2SMLALBB:
8292   case ARM::t2SMLALBT:
8293   case ARM::t2SMLALD:
8294   case ARM::t2SMLALDX:
8295   case ARM::t2SMLALTB:
8296   case ARM::t2SMLALTT:
8297   case ARM::t2SMLSLD:
8298   case ARM::t2SMLSLDX:
8299   case ARM::t2SMULL: {
8300     unsigned RdHi = Inst.getOperand(0).getReg();
8301     unsigned RdLo = Inst.getOperand(1).getReg();
8302     if(RdHi == RdLo) {
8303       return Error(Loc,
8304                    "unpredictable instruction, RdHi and RdLo must be different");
8305     }
8306     break;
8307   }
8308 
8309   case ARM::CDE_CX1:
8310   case ARM::CDE_CX1A:
8311   case ARM::CDE_CX1D:
8312   case ARM::CDE_CX1DA:
8313   case ARM::CDE_CX2:
8314   case ARM::CDE_CX2A:
8315   case ARM::CDE_CX2D:
8316   case ARM::CDE_CX2DA:
8317   case ARM::CDE_CX3:
8318   case ARM::CDE_CX3A:
8319   case ARM::CDE_CX3D:
8320   case ARM::CDE_CX3DA:
8321   case ARM::CDE_VCX1_vec:
8322   case ARM::CDE_VCX1_fpsp:
8323   case ARM::CDE_VCX1_fpdp:
8324   case ARM::CDE_VCX1A_vec:
8325   case ARM::CDE_VCX1A_fpsp:
8326   case ARM::CDE_VCX1A_fpdp:
8327   case ARM::CDE_VCX2_vec:
8328   case ARM::CDE_VCX2_fpsp:
8329   case ARM::CDE_VCX2_fpdp:
8330   case ARM::CDE_VCX2A_vec:
8331   case ARM::CDE_VCX2A_fpsp:
8332   case ARM::CDE_VCX2A_fpdp:
8333   case ARM::CDE_VCX3_vec:
8334   case ARM::CDE_VCX3_fpsp:
8335   case ARM::CDE_VCX3_fpdp:
8336   case ARM::CDE_VCX3A_vec:
8337   case ARM::CDE_VCX3A_fpsp:
8338   case ARM::CDE_VCX3A_fpdp: {
8339     assert(Inst.getOperand(1).isImm() &&
8340            "CDE operand 1 must be a coprocessor ID");
8341     int64_t Coproc = Inst.getOperand(1).getImm();
8342     if (Coproc < 8 && !ARM::isCDECoproc(Coproc, *STI))
8343       return Error(Operands[1]->getStartLoc(),
8344                    "coprocessor must be configured as CDE");
8345     else if (Coproc >= 8)
8346       return Error(Operands[1]->getStartLoc(),
8347                    "coprocessor must be in the range [p0, p7]");
8348     break;
8349   }
8350 
8351   case ARM::t2CDP:
8352   case ARM::t2CDP2:
8353   case ARM::t2LDC2L_OFFSET:
8354   case ARM::t2LDC2L_OPTION:
8355   case ARM::t2LDC2L_POST:
8356   case ARM::t2LDC2L_PRE:
8357   case ARM::t2LDC2_OFFSET:
8358   case ARM::t2LDC2_OPTION:
8359   case ARM::t2LDC2_POST:
8360   case ARM::t2LDC2_PRE:
8361   case ARM::t2LDCL_OFFSET:
8362   case ARM::t2LDCL_OPTION:
8363   case ARM::t2LDCL_POST:
8364   case ARM::t2LDCL_PRE:
8365   case ARM::t2LDC_OFFSET:
8366   case ARM::t2LDC_OPTION:
8367   case ARM::t2LDC_POST:
8368   case ARM::t2LDC_PRE:
8369   case ARM::t2MCR:
8370   case ARM::t2MCR2:
8371   case ARM::t2MCRR:
8372   case ARM::t2MCRR2:
8373   case ARM::t2MRC:
8374   case ARM::t2MRC2:
8375   case ARM::t2MRRC:
8376   case ARM::t2MRRC2:
8377   case ARM::t2STC2L_OFFSET:
8378   case ARM::t2STC2L_OPTION:
8379   case ARM::t2STC2L_POST:
8380   case ARM::t2STC2L_PRE:
8381   case ARM::t2STC2_OFFSET:
8382   case ARM::t2STC2_OPTION:
8383   case ARM::t2STC2_POST:
8384   case ARM::t2STC2_PRE:
8385   case ARM::t2STCL_OFFSET:
8386   case ARM::t2STCL_OPTION:
8387   case ARM::t2STCL_POST:
8388   case ARM::t2STCL_PRE:
8389   case ARM::t2STC_OFFSET:
8390   case ARM::t2STC_OPTION:
8391   case ARM::t2STC_POST:
8392   case ARM::t2STC_PRE: {
8393     unsigned Opcode = Inst.getOpcode();
8394     // Inst.getOperand indexes operands in the (oops ...) and (iops ...) dags,
8395     // CopInd is the index of the coprocessor operand.
8396     size_t CopInd = 0;
8397     if (Opcode == ARM::t2MRRC || Opcode == ARM::t2MRRC2)
8398       CopInd = 2;
8399     else if (Opcode == ARM::t2MRC || Opcode == ARM::t2MRC2)
8400       CopInd = 1;
8401     assert(Inst.getOperand(CopInd).isImm() &&
8402            "Operand must be a coprocessor ID");
8403     int64_t Coproc = Inst.getOperand(CopInd).getImm();
8404     // Operands[2] is the coprocessor operand at syntactic level
8405     if (ARM::isCDECoproc(Coproc, *STI))
8406       return Error(Operands[2]->getStartLoc(),
8407                    "coprocessor must be configured as GCP");
8408     break;
8409   }
8410   }
8411 
8412   return false;
8413 }
8414 
8415 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
8416   switch(Opc) {
8417   default: llvm_unreachable("unexpected opcode!");
8418   // VST1LN
8419   case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
8420   case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
8421   case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
8422   case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
8423   case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
8424   case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
8425   case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
8426   case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
8427   case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
8428 
8429   // VST2LN
8430   case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
8431   case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
8432   case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
8433   case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
8434   case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
8435 
8436   case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
8437   case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
8438   case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
8439   case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
8440   case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
8441 
8442   case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
8443   case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
8444   case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
8445   case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
8446   case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
8447 
8448   // VST3LN
8449   case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
8450   case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
8451   case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
8452   case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
8453   case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
8454   case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
8455   case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
8456   case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
8457   case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
8458   case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
8459   case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
8460   case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
8461   case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
8462   case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
8463   case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
8464 
8465   // VST3
8466   case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
8467   case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
8468   case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
8469   case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
8470   case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
8471   case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
8472   case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
8473   case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
8474   case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
8475   case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
8476   case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
8477   case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
8478   case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
8479   case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
8480   case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
8481   case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
8482   case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
8483   case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
8484 
8485   // VST4LN
8486   case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
8487   case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
8488   case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
8489   case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
8490   case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
8491   case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
8492   case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
8493   case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
8494   case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
8495   case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
8496   case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
8497   case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
8498   case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
8499   case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
8500   case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
8501 
8502   // VST4
8503   case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
8504   case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
8505   case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
8506   case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
8507   case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
8508   case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
8509   case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
8510   case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
8511   case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
8512   case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
8513   case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
8514   case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
8515   case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
8516   case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
8517   case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
8518   case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
8519   case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
8520   case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
8521   }
8522 }
8523 
8524 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
8525   switch(Opc) {
8526   default: llvm_unreachable("unexpected opcode!");
8527   // VLD1LN
8528   case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
8529   case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
8530   case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
8531   case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
8532   case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
8533   case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
8534   case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
8535   case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
8536   case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
8537 
8538   // VLD2LN
8539   case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
8540   case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
8541   case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
8542   case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
8543   case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
8544   case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
8545   case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
8546   case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
8547   case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
8548   case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
8549   case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
8550   case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
8551   case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
8552   case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
8553   case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
8554 
8555   // VLD3DUP
8556   case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
8557   case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
8558   case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
8559   case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
8560   case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
8561   case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
8562   case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
8563   case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
8564   case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
8565   case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
8566   case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
8567   case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
8568   case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
8569   case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
8570   case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
8571   case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
8572   case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
8573   case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
8574 
8575   // VLD3LN
8576   case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
8577   case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
8578   case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
8579   case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
8580   case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
8581   case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
8582   case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
8583   case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
8584   case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
8585   case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
8586   case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
8587   case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
8588   case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
8589   case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
8590   case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
8591 
8592   // VLD3
8593   case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
8594   case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
8595   case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
8596   case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
8597   case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
8598   case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
8599   case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
8600   case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
8601   case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
8602   case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
8603   case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
8604   case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
8605   case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
8606   case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
8607   case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
8608   case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
8609   case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
8610   case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
8611 
8612   // VLD4LN
8613   case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
8614   case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
8615   case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
8616   case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
8617   case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
8618   case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
8619   case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
8620   case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
8621   case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
8622   case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
8623   case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
8624   case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
8625   case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
8626   case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
8627   case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
8628 
8629   // VLD4DUP
8630   case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
8631   case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
8632   case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
8633   case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
8634   case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
8635   case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
8636   case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
8637   case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
8638   case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
8639   case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
8640   case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
8641   case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
8642   case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
8643   case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
8644   case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
8645   case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
8646   case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
8647   case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
8648 
8649   // VLD4
8650   case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
8651   case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
8652   case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
8653   case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
8654   case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
8655   case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
8656   case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
8657   case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
8658   case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
8659   case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
8660   case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
8661   case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
8662   case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
8663   case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
8664   case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
8665   case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
8666   case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
8667   case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
8668   }
8669 }
8670 
8671 bool ARMAsmParser::processInstruction(MCInst &Inst,
8672                                       const OperandVector &Operands,
8673                                       MCStreamer &Out) {
8674   // Check if we have the wide qualifier, because if it's present we
8675   // must avoid selecting a 16-bit thumb instruction.
8676   bool HasWideQualifier = false;
8677   for (auto &Op : Operands) {
8678     ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op);
8679     if (ARMOp.isToken() && ARMOp.getToken() == ".w") {
8680       HasWideQualifier = true;
8681       break;
8682     }
8683   }
8684 
8685   switch (Inst.getOpcode()) {
8686   // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
8687   case ARM::LDRT_POST:
8688   case ARM::LDRBT_POST: {
8689     const unsigned Opcode =
8690       (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
8691                                            : ARM::LDRBT_POST_IMM;
8692     MCInst TmpInst;
8693     TmpInst.setOpcode(Opcode);
8694     TmpInst.addOperand(Inst.getOperand(0));
8695     TmpInst.addOperand(Inst.getOperand(1));
8696     TmpInst.addOperand(Inst.getOperand(1));
8697     TmpInst.addOperand(MCOperand::createReg(0));
8698     TmpInst.addOperand(MCOperand::createImm(0));
8699     TmpInst.addOperand(Inst.getOperand(2));
8700     TmpInst.addOperand(Inst.getOperand(3));
8701     Inst = TmpInst;
8702     return true;
8703   }
8704   // Alias for 'ldr{sb,h,sh}t Rt, [Rn] {, #imm}' for ommitted immediate.
8705   case ARM::LDRSBTii:
8706   case ARM::LDRHTii:
8707   case ARM::LDRSHTii: {
8708     MCInst TmpInst;
8709 
8710     if (Inst.getOpcode() == ARM::LDRSBTii)
8711       TmpInst.setOpcode(ARM::LDRSBTi);
8712     else if (Inst.getOpcode() == ARM::LDRHTii)
8713       TmpInst.setOpcode(ARM::LDRHTi);
8714     else if (Inst.getOpcode() == ARM::LDRSHTii)
8715       TmpInst.setOpcode(ARM::LDRSHTi);
8716     TmpInst.addOperand(Inst.getOperand(0));
8717     TmpInst.addOperand(Inst.getOperand(1));
8718     TmpInst.addOperand(Inst.getOperand(1));
8719     TmpInst.addOperand(MCOperand::createImm(256));
8720     TmpInst.addOperand(Inst.getOperand(2));
8721     Inst = TmpInst;
8722     return true;
8723   }
8724   // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
8725   case ARM::STRT_POST:
8726   case ARM::STRBT_POST: {
8727     const unsigned Opcode =
8728       (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
8729                                            : ARM::STRBT_POST_IMM;
8730     MCInst TmpInst;
8731     TmpInst.setOpcode(Opcode);
8732     TmpInst.addOperand(Inst.getOperand(1));
8733     TmpInst.addOperand(Inst.getOperand(0));
8734     TmpInst.addOperand(Inst.getOperand(1));
8735     TmpInst.addOperand(MCOperand::createReg(0));
8736     TmpInst.addOperand(MCOperand::createImm(0));
8737     TmpInst.addOperand(Inst.getOperand(2));
8738     TmpInst.addOperand(Inst.getOperand(3));
8739     Inst = TmpInst;
8740     return true;
8741   }
8742   // Alias for alternate form of 'ADR Rd, #imm' instruction.
8743   case ARM::ADDri: {
8744     if (Inst.getOperand(1).getReg() != ARM::PC ||
8745         Inst.getOperand(5).getReg() != 0 ||
8746         !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm()))
8747       return false;
8748     MCInst TmpInst;
8749     TmpInst.setOpcode(ARM::ADR);
8750     TmpInst.addOperand(Inst.getOperand(0));
8751     if (Inst.getOperand(2).isImm()) {
8752       // Immediate (mod_imm) will be in its encoded form, we must unencode it
8753       // before passing it to the ADR instruction.
8754       unsigned Enc = Inst.getOperand(2).getImm();
8755       TmpInst.addOperand(MCOperand::createImm(
8756         ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7)));
8757     } else {
8758       // Turn PC-relative expression into absolute expression.
8759       // Reading PC provides the start of the current instruction + 8 and
8760       // the transform to adr is biased by that.
8761       MCSymbol *Dot = getContext().createTempSymbol();
8762       Out.emitLabel(Dot);
8763       const MCExpr *OpExpr = Inst.getOperand(2).getExpr();
8764       const MCExpr *InstPC = MCSymbolRefExpr::create(Dot,
8765                                                      MCSymbolRefExpr::VK_None,
8766                                                      getContext());
8767       const MCExpr *Const8 = MCConstantExpr::create(8, getContext());
8768       const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8,
8769                                                      getContext());
8770       const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr,
8771                                                         getContext());
8772       TmpInst.addOperand(MCOperand::createExpr(FixupAddr));
8773     }
8774     TmpInst.addOperand(Inst.getOperand(3));
8775     TmpInst.addOperand(Inst.getOperand(4));
8776     Inst = TmpInst;
8777     return true;
8778   }
8779   // Aliases for imm syntax of LDR instructions.
8780   case ARM::t2LDR_PRE_imm:
8781   case ARM::t2LDR_POST_imm: {
8782     MCInst TmpInst;
8783     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2LDR_PRE_imm ? ARM::t2LDR_PRE
8784                                                              : ARM::t2LDR_POST);
8785     TmpInst.addOperand(Inst.getOperand(0)); // Rt
8786     TmpInst.addOperand(Inst.getOperand(4)); // Rt_wb
8787     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8788     TmpInst.addOperand(Inst.getOperand(2)); // imm
8789     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8790     Inst = TmpInst;
8791     return true;
8792   }
8793   // Aliases for imm syntax of STR instructions.
8794   case ARM::t2STR_PRE_imm:
8795   case ARM::t2STR_POST_imm: {
8796     MCInst TmpInst;
8797     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2STR_PRE_imm ? ARM::t2STR_PRE
8798                                                              : ARM::t2STR_POST);
8799     TmpInst.addOperand(Inst.getOperand(4)); // Rt_wb
8800     TmpInst.addOperand(Inst.getOperand(0)); // Rt
8801     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8802     TmpInst.addOperand(Inst.getOperand(2)); // imm
8803     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8804     Inst = TmpInst;
8805     return true;
8806   }
8807   // Aliases for alternate PC+imm syntax of LDR instructions.
8808   case ARM::t2LDRpcrel:
8809     // Select the narrow version if the immediate will fit.
8810     if (Inst.getOperand(1).getImm() > 0 &&
8811         Inst.getOperand(1).getImm() <= 0xff &&
8812         !HasWideQualifier)
8813       Inst.setOpcode(ARM::tLDRpci);
8814     else
8815       Inst.setOpcode(ARM::t2LDRpci);
8816     return true;
8817   case ARM::t2LDRBpcrel:
8818     Inst.setOpcode(ARM::t2LDRBpci);
8819     return true;
8820   case ARM::t2LDRHpcrel:
8821     Inst.setOpcode(ARM::t2LDRHpci);
8822     return true;
8823   case ARM::t2LDRSBpcrel:
8824     Inst.setOpcode(ARM::t2LDRSBpci);
8825     return true;
8826   case ARM::t2LDRSHpcrel:
8827     Inst.setOpcode(ARM::t2LDRSHpci);
8828     return true;
8829   case ARM::LDRConstPool:
8830   case ARM::tLDRConstPool:
8831   case ARM::t2LDRConstPool: {
8832     // Pseudo instruction ldr rt, =immediate is converted to a
8833     // MOV rt, immediate if immediate is known and representable
8834     // otherwise we create a constant pool entry that we load from.
8835     MCInst TmpInst;
8836     if (Inst.getOpcode() == ARM::LDRConstPool)
8837       TmpInst.setOpcode(ARM::LDRi12);
8838     else if (Inst.getOpcode() == ARM::tLDRConstPool)
8839       TmpInst.setOpcode(ARM::tLDRpci);
8840     else if (Inst.getOpcode() == ARM::t2LDRConstPool)
8841       TmpInst.setOpcode(ARM::t2LDRpci);
8842     const ARMOperand &PoolOperand =
8843       (HasWideQualifier ?
8844        static_cast<ARMOperand &>(*Operands[4]) :
8845        static_cast<ARMOperand &>(*Operands[3]));
8846     const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm();
8847     // If SubExprVal is a constant we may be able to use a MOV
8848     if (isa<MCConstantExpr>(SubExprVal) &&
8849         Inst.getOperand(0).getReg() != ARM::PC &&
8850         Inst.getOperand(0).getReg() != ARM::SP) {
8851       int64_t Value =
8852         (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue();
8853       bool UseMov  = true;
8854       bool MovHasS = true;
8855       if (Inst.getOpcode() == ARM::LDRConstPool) {
8856         // ARM Constant
8857         if (ARM_AM::getSOImmVal(Value) != -1) {
8858           Value = ARM_AM::getSOImmVal(Value);
8859           TmpInst.setOpcode(ARM::MOVi);
8860         }
8861         else if (ARM_AM::getSOImmVal(~Value) != -1) {
8862           Value = ARM_AM::getSOImmVal(~Value);
8863           TmpInst.setOpcode(ARM::MVNi);
8864         }
8865         else if (hasV6T2Ops() &&
8866                  Value >=0 && Value < 65536) {
8867           TmpInst.setOpcode(ARM::MOVi16);
8868           MovHasS = false;
8869         }
8870         else
8871           UseMov = false;
8872       }
8873       else {
8874         // Thumb/Thumb2 Constant
8875         if (hasThumb2() &&
8876             ARM_AM::getT2SOImmVal(Value) != -1)
8877           TmpInst.setOpcode(ARM::t2MOVi);
8878         else if (hasThumb2() &&
8879                  ARM_AM::getT2SOImmVal(~Value) != -1) {
8880           TmpInst.setOpcode(ARM::t2MVNi);
8881           Value = ~Value;
8882         }
8883         else if (hasV8MBaseline() &&
8884                  Value >=0 && Value < 65536) {
8885           TmpInst.setOpcode(ARM::t2MOVi16);
8886           MovHasS = false;
8887         }
8888         else
8889           UseMov = false;
8890       }
8891       if (UseMov) {
8892         TmpInst.addOperand(Inst.getOperand(0));           // Rt
8893         TmpInst.addOperand(MCOperand::createImm(Value));  // Immediate
8894         TmpInst.addOperand(Inst.getOperand(2));           // CondCode
8895         TmpInst.addOperand(Inst.getOperand(3));           // CondCode
8896         if (MovHasS)
8897           TmpInst.addOperand(MCOperand::createReg(0));    // S
8898         Inst = TmpInst;
8899         return true;
8900       }
8901     }
8902     // No opportunity to use MOV/MVN create constant pool
8903     const MCExpr *CPLoc =
8904       getTargetStreamer().addConstantPoolEntry(SubExprVal,
8905                                                PoolOperand.getStartLoc());
8906     TmpInst.addOperand(Inst.getOperand(0));           // Rt
8907     TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool
8908     if (TmpInst.getOpcode() == ARM::LDRi12)
8909       TmpInst.addOperand(MCOperand::createImm(0));    // unused offset
8910     TmpInst.addOperand(Inst.getOperand(2));           // CondCode
8911     TmpInst.addOperand(Inst.getOperand(3));           // CondCode
8912     Inst = TmpInst;
8913     return true;
8914   }
8915   // Handle NEON VST complex aliases.
8916   case ARM::VST1LNdWB_register_Asm_8:
8917   case ARM::VST1LNdWB_register_Asm_16:
8918   case ARM::VST1LNdWB_register_Asm_32: {
8919     MCInst TmpInst;
8920     // Shuffle the operands around so the lane index operand is in the
8921     // right place.
8922     unsigned Spacing;
8923     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8924     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8925     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8926     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8927     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8928     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8929     TmpInst.addOperand(Inst.getOperand(1)); // lane
8930     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8931     TmpInst.addOperand(Inst.getOperand(6));
8932     Inst = TmpInst;
8933     return true;
8934   }
8935 
8936   case ARM::VST2LNdWB_register_Asm_8:
8937   case ARM::VST2LNdWB_register_Asm_16:
8938   case ARM::VST2LNdWB_register_Asm_32:
8939   case ARM::VST2LNqWB_register_Asm_16:
8940   case ARM::VST2LNqWB_register_Asm_32: {
8941     MCInst TmpInst;
8942     // Shuffle the operands around so the lane index operand is in the
8943     // right place.
8944     unsigned Spacing;
8945     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8946     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8947     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8948     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8949     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8950     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8951     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8952                                             Spacing));
8953     TmpInst.addOperand(Inst.getOperand(1)); // lane
8954     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8955     TmpInst.addOperand(Inst.getOperand(6));
8956     Inst = TmpInst;
8957     return true;
8958   }
8959 
8960   case ARM::VST3LNdWB_register_Asm_8:
8961   case ARM::VST3LNdWB_register_Asm_16:
8962   case ARM::VST3LNdWB_register_Asm_32:
8963   case ARM::VST3LNqWB_register_Asm_16:
8964   case ARM::VST3LNqWB_register_Asm_32: {
8965     MCInst TmpInst;
8966     // Shuffle the operands around so the lane index operand is in the
8967     // right place.
8968     unsigned Spacing;
8969     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8970     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8971     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8972     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8973     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8974     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8975     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8976                                             Spacing));
8977     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8978                                             Spacing * 2));
8979     TmpInst.addOperand(Inst.getOperand(1)); // lane
8980     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8981     TmpInst.addOperand(Inst.getOperand(6));
8982     Inst = TmpInst;
8983     return true;
8984   }
8985 
8986   case ARM::VST4LNdWB_register_Asm_8:
8987   case ARM::VST4LNdWB_register_Asm_16:
8988   case ARM::VST4LNdWB_register_Asm_32:
8989   case ARM::VST4LNqWB_register_Asm_16:
8990   case ARM::VST4LNqWB_register_Asm_32: {
8991     MCInst TmpInst;
8992     // Shuffle the operands around so the lane index operand is in the
8993     // right place.
8994     unsigned Spacing;
8995     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8996     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8997     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8998     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8999     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9000     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9001     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9002                                             Spacing));
9003     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9004                                             Spacing * 2));
9005     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9006                                             Spacing * 3));
9007     TmpInst.addOperand(Inst.getOperand(1)); // lane
9008     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9009     TmpInst.addOperand(Inst.getOperand(6));
9010     Inst = TmpInst;
9011     return true;
9012   }
9013 
9014   case ARM::VST1LNdWB_fixed_Asm_8:
9015   case ARM::VST1LNdWB_fixed_Asm_16:
9016   case ARM::VST1LNdWB_fixed_Asm_32: {
9017     MCInst TmpInst;
9018     // Shuffle the operands around so the lane index operand is in the
9019     // right place.
9020     unsigned Spacing;
9021     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9022     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9023     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9024     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9025     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9026     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9027     TmpInst.addOperand(Inst.getOperand(1)); // lane
9028     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9029     TmpInst.addOperand(Inst.getOperand(5));
9030     Inst = TmpInst;
9031     return true;
9032   }
9033 
9034   case ARM::VST2LNdWB_fixed_Asm_8:
9035   case ARM::VST2LNdWB_fixed_Asm_16:
9036   case ARM::VST2LNdWB_fixed_Asm_32:
9037   case ARM::VST2LNqWB_fixed_Asm_16:
9038   case ARM::VST2LNqWB_fixed_Asm_32: {
9039     MCInst TmpInst;
9040     // Shuffle the operands around so the lane index operand is in the
9041     // right place.
9042     unsigned Spacing;
9043     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9044     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9045     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9046     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9047     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9048     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9049     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9050                                             Spacing));
9051     TmpInst.addOperand(Inst.getOperand(1)); // lane
9052     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9053     TmpInst.addOperand(Inst.getOperand(5));
9054     Inst = TmpInst;
9055     return true;
9056   }
9057 
9058   case ARM::VST3LNdWB_fixed_Asm_8:
9059   case ARM::VST3LNdWB_fixed_Asm_16:
9060   case ARM::VST3LNdWB_fixed_Asm_32:
9061   case ARM::VST3LNqWB_fixed_Asm_16:
9062   case ARM::VST3LNqWB_fixed_Asm_32: {
9063     MCInst TmpInst;
9064     // Shuffle the operands around so the lane index operand is in the
9065     // right place.
9066     unsigned Spacing;
9067     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9068     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9069     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9070     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9071     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9072     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9073     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9074                                             Spacing));
9075     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9076                                             Spacing * 2));
9077     TmpInst.addOperand(Inst.getOperand(1)); // lane
9078     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9079     TmpInst.addOperand(Inst.getOperand(5));
9080     Inst = TmpInst;
9081     return true;
9082   }
9083 
9084   case ARM::VST4LNdWB_fixed_Asm_8:
9085   case ARM::VST4LNdWB_fixed_Asm_16:
9086   case ARM::VST4LNdWB_fixed_Asm_32:
9087   case ARM::VST4LNqWB_fixed_Asm_16:
9088   case ARM::VST4LNqWB_fixed_Asm_32: {
9089     MCInst TmpInst;
9090     // Shuffle the operands around so the lane index operand is in the
9091     // right place.
9092     unsigned Spacing;
9093     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9094     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9095     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9096     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9097     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9098     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9099     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9100                                             Spacing));
9101     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9102                                             Spacing * 2));
9103     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9104                                             Spacing * 3));
9105     TmpInst.addOperand(Inst.getOperand(1)); // lane
9106     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9107     TmpInst.addOperand(Inst.getOperand(5));
9108     Inst = TmpInst;
9109     return true;
9110   }
9111 
9112   case ARM::VST1LNdAsm_8:
9113   case ARM::VST1LNdAsm_16:
9114   case ARM::VST1LNdAsm_32: {
9115     MCInst TmpInst;
9116     // Shuffle the operands around so the lane index operand is in the
9117     // right place.
9118     unsigned Spacing;
9119     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9120     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9121     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9122     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9123     TmpInst.addOperand(Inst.getOperand(1)); // lane
9124     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9125     TmpInst.addOperand(Inst.getOperand(5));
9126     Inst = TmpInst;
9127     return true;
9128   }
9129 
9130   case ARM::VST2LNdAsm_8:
9131   case ARM::VST2LNdAsm_16:
9132   case ARM::VST2LNdAsm_32:
9133   case ARM::VST2LNqAsm_16:
9134   case ARM::VST2LNqAsm_32: {
9135     MCInst TmpInst;
9136     // Shuffle the operands around so the lane index operand is in the
9137     // right place.
9138     unsigned Spacing;
9139     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9140     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9141     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9142     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9143     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9144                                             Spacing));
9145     TmpInst.addOperand(Inst.getOperand(1)); // lane
9146     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9147     TmpInst.addOperand(Inst.getOperand(5));
9148     Inst = TmpInst;
9149     return true;
9150   }
9151 
9152   case ARM::VST3LNdAsm_8:
9153   case ARM::VST3LNdAsm_16:
9154   case ARM::VST3LNdAsm_32:
9155   case ARM::VST3LNqAsm_16:
9156   case ARM::VST3LNqAsm_32: {
9157     MCInst TmpInst;
9158     // Shuffle the operands around so the lane index operand is in the
9159     // right place.
9160     unsigned Spacing;
9161     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9162     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9163     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9164     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9165     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9166                                             Spacing));
9167     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9168                                             Spacing * 2));
9169     TmpInst.addOperand(Inst.getOperand(1)); // lane
9170     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9171     TmpInst.addOperand(Inst.getOperand(5));
9172     Inst = TmpInst;
9173     return true;
9174   }
9175 
9176   case ARM::VST4LNdAsm_8:
9177   case ARM::VST4LNdAsm_16:
9178   case ARM::VST4LNdAsm_32:
9179   case ARM::VST4LNqAsm_16:
9180   case ARM::VST4LNqAsm_32: {
9181     MCInst TmpInst;
9182     // Shuffle the operands around so the lane index operand is in the
9183     // right place.
9184     unsigned Spacing;
9185     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9186     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9187     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9188     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9189     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9190                                             Spacing));
9191     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9192                                             Spacing * 2));
9193     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9194                                             Spacing * 3));
9195     TmpInst.addOperand(Inst.getOperand(1)); // lane
9196     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9197     TmpInst.addOperand(Inst.getOperand(5));
9198     Inst = TmpInst;
9199     return true;
9200   }
9201 
9202   // Handle NEON VLD complex aliases.
9203   case ARM::VLD1LNdWB_register_Asm_8:
9204   case ARM::VLD1LNdWB_register_Asm_16:
9205   case ARM::VLD1LNdWB_register_Asm_32: {
9206     MCInst TmpInst;
9207     // Shuffle the operands around so the lane index operand is in the
9208     // right place.
9209     unsigned Spacing;
9210     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9211     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9212     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9213     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9214     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9215     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9216     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9217     TmpInst.addOperand(Inst.getOperand(1)); // lane
9218     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9219     TmpInst.addOperand(Inst.getOperand(6));
9220     Inst = TmpInst;
9221     return true;
9222   }
9223 
9224   case ARM::VLD2LNdWB_register_Asm_8:
9225   case ARM::VLD2LNdWB_register_Asm_16:
9226   case ARM::VLD2LNdWB_register_Asm_32:
9227   case ARM::VLD2LNqWB_register_Asm_16:
9228   case ARM::VLD2LNqWB_register_Asm_32: {
9229     MCInst TmpInst;
9230     // Shuffle the operands around so the lane index operand is in the
9231     // right place.
9232     unsigned Spacing;
9233     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9234     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9235     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9236                                             Spacing));
9237     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9238     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9239     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9240     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9241     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9242     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9243                                             Spacing));
9244     TmpInst.addOperand(Inst.getOperand(1)); // lane
9245     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9246     TmpInst.addOperand(Inst.getOperand(6));
9247     Inst = TmpInst;
9248     return true;
9249   }
9250 
9251   case ARM::VLD3LNdWB_register_Asm_8:
9252   case ARM::VLD3LNdWB_register_Asm_16:
9253   case ARM::VLD3LNdWB_register_Asm_32:
9254   case ARM::VLD3LNqWB_register_Asm_16:
9255   case ARM::VLD3LNqWB_register_Asm_32: {
9256     MCInst TmpInst;
9257     // Shuffle the operands around so the lane index operand is in the
9258     // right place.
9259     unsigned Spacing;
9260     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9261     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9262     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9263                                             Spacing));
9264     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9265                                             Spacing * 2));
9266     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9267     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9268     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9269     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9270     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9271     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9272                                             Spacing));
9273     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9274                                             Spacing * 2));
9275     TmpInst.addOperand(Inst.getOperand(1)); // lane
9276     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9277     TmpInst.addOperand(Inst.getOperand(6));
9278     Inst = TmpInst;
9279     return true;
9280   }
9281 
9282   case ARM::VLD4LNdWB_register_Asm_8:
9283   case ARM::VLD4LNdWB_register_Asm_16:
9284   case ARM::VLD4LNdWB_register_Asm_32:
9285   case ARM::VLD4LNqWB_register_Asm_16:
9286   case ARM::VLD4LNqWB_register_Asm_32: {
9287     MCInst TmpInst;
9288     // Shuffle the operands around so the lane index operand is in the
9289     // right place.
9290     unsigned Spacing;
9291     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9292     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9293     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9294                                             Spacing));
9295     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9296                                             Spacing * 2));
9297     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9298                                             Spacing * 3));
9299     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9300     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9301     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9302     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9303     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9304     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9305                                             Spacing));
9306     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9307                                             Spacing * 2));
9308     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9309                                             Spacing * 3));
9310     TmpInst.addOperand(Inst.getOperand(1)); // lane
9311     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9312     TmpInst.addOperand(Inst.getOperand(6));
9313     Inst = TmpInst;
9314     return true;
9315   }
9316 
9317   case ARM::VLD1LNdWB_fixed_Asm_8:
9318   case ARM::VLD1LNdWB_fixed_Asm_16:
9319   case ARM::VLD1LNdWB_fixed_Asm_32: {
9320     MCInst TmpInst;
9321     // Shuffle the operands around so the lane index operand is in the
9322     // right place.
9323     unsigned Spacing;
9324     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9325     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9326     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9327     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9328     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9329     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9330     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9331     TmpInst.addOperand(Inst.getOperand(1)); // lane
9332     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9333     TmpInst.addOperand(Inst.getOperand(5));
9334     Inst = TmpInst;
9335     return true;
9336   }
9337 
9338   case ARM::VLD2LNdWB_fixed_Asm_8:
9339   case ARM::VLD2LNdWB_fixed_Asm_16:
9340   case ARM::VLD2LNdWB_fixed_Asm_32:
9341   case ARM::VLD2LNqWB_fixed_Asm_16:
9342   case ARM::VLD2LNqWB_fixed_Asm_32: {
9343     MCInst TmpInst;
9344     // Shuffle the operands around so the lane index operand is in the
9345     // right place.
9346     unsigned Spacing;
9347     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9348     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9349     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9350                                             Spacing));
9351     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9352     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9353     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9354     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9355     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9356     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9357                                             Spacing));
9358     TmpInst.addOperand(Inst.getOperand(1)); // lane
9359     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9360     TmpInst.addOperand(Inst.getOperand(5));
9361     Inst = TmpInst;
9362     return true;
9363   }
9364 
9365   case ARM::VLD3LNdWB_fixed_Asm_8:
9366   case ARM::VLD3LNdWB_fixed_Asm_16:
9367   case ARM::VLD3LNdWB_fixed_Asm_32:
9368   case ARM::VLD3LNqWB_fixed_Asm_16:
9369   case ARM::VLD3LNqWB_fixed_Asm_32: {
9370     MCInst TmpInst;
9371     // Shuffle the operands around so the lane index operand is in the
9372     // right place.
9373     unsigned Spacing;
9374     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9375     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9376     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9377                                             Spacing));
9378     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9379                                             Spacing * 2));
9380     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9381     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9382     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9383     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9384     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9385     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9386                                             Spacing));
9387     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9388                                             Spacing * 2));
9389     TmpInst.addOperand(Inst.getOperand(1)); // lane
9390     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9391     TmpInst.addOperand(Inst.getOperand(5));
9392     Inst = TmpInst;
9393     return true;
9394   }
9395 
9396   case ARM::VLD4LNdWB_fixed_Asm_8:
9397   case ARM::VLD4LNdWB_fixed_Asm_16:
9398   case ARM::VLD4LNdWB_fixed_Asm_32:
9399   case ARM::VLD4LNqWB_fixed_Asm_16:
9400   case ARM::VLD4LNqWB_fixed_Asm_32: {
9401     MCInst TmpInst;
9402     // Shuffle the operands around so the lane index operand is in the
9403     // right place.
9404     unsigned Spacing;
9405     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9406     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9407     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9408                                             Spacing));
9409     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9410                                             Spacing * 2));
9411     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9412                                             Spacing * 3));
9413     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9414     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9415     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9416     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9417     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9418     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9419                                             Spacing));
9420     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9421                                             Spacing * 2));
9422     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9423                                             Spacing * 3));
9424     TmpInst.addOperand(Inst.getOperand(1)); // lane
9425     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9426     TmpInst.addOperand(Inst.getOperand(5));
9427     Inst = TmpInst;
9428     return true;
9429   }
9430 
9431   case ARM::VLD1LNdAsm_8:
9432   case ARM::VLD1LNdAsm_16:
9433   case ARM::VLD1LNdAsm_32: {
9434     MCInst TmpInst;
9435     // Shuffle the operands around so the lane index operand is in the
9436     // right place.
9437     unsigned Spacing;
9438     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9439     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9440     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9441     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9442     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9443     TmpInst.addOperand(Inst.getOperand(1)); // lane
9444     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9445     TmpInst.addOperand(Inst.getOperand(5));
9446     Inst = TmpInst;
9447     return true;
9448   }
9449 
9450   case ARM::VLD2LNdAsm_8:
9451   case ARM::VLD2LNdAsm_16:
9452   case ARM::VLD2LNdAsm_32:
9453   case ARM::VLD2LNqAsm_16:
9454   case ARM::VLD2LNqAsm_32: {
9455     MCInst TmpInst;
9456     // Shuffle the operands around so the lane index operand is in the
9457     // right place.
9458     unsigned Spacing;
9459     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9460     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9461     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9462                                             Spacing));
9463     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9464     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9465     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9466     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9467                                             Spacing));
9468     TmpInst.addOperand(Inst.getOperand(1)); // lane
9469     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9470     TmpInst.addOperand(Inst.getOperand(5));
9471     Inst = TmpInst;
9472     return true;
9473   }
9474 
9475   case ARM::VLD3LNdAsm_8:
9476   case ARM::VLD3LNdAsm_16:
9477   case ARM::VLD3LNdAsm_32:
9478   case ARM::VLD3LNqAsm_16:
9479   case ARM::VLD3LNqAsm_32: {
9480     MCInst TmpInst;
9481     // Shuffle the operands around so the lane index operand is in the
9482     // right place.
9483     unsigned Spacing;
9484     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9485     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9486     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9487                                             Spacing));
9488     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9489                                             Spacing * 2));
9490     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9491     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9492     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9493     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9494                                             Spacing));
9495     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9496                                             Spacing * 2));
9497     TmpInst.addOperand(Inst.getOperand(1)); // lane
9498     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9499     TmpInst.addOperand(Inst.getOperand(5));
9500     Inst = TmpInst;
9501     return true;
9502   }
9503 
9504   case ARM::VLD4LNdAsm_8:
9505   case ARM::VLD4LNdAsm_16:
9506   case ARM::VLD4LNdAsm_32:
9507   case ARM::VLD4LNqAsm_16:
9508   case ARM::VLD4LNqAsm_32: {
9509     MCInst TmpInst;
9510     // Shuffle the operands around so the lane index operand is in the
9511     // right place.
9512     unsigned Spacing;
9513     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9514     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9515     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9516                                             Spacing));
9517     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9518                                             Spacing * 2));
9519     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9520                                             Spacing * 3));
9521     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9522     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9523     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9524     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9525                                             Spacing));
9526     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9527                                             Spacing * 2));
9528     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9529                                             Spacing * 3));
9530     TmpInst.addOperand(Inst.getOperand(1)); // lane
9531     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9532     TmpInst.addOperand(Inst.getOperand(5));
9533     Inst = TmpInst;
9534     return true;
9535   }
9536 
9537   // VLD3DUP single 3-element structure to all lanes instructions.
9538   case ARM::VLD3DUPdAsm_8:
9539   case ARM::VLD3DUPdAsm_16:
9540   case ARM::VLD3DUPdAsm_32:
9541   case ARM::VLD3DUPqAsm_8:
9542   case ARM::VLD3DUPqAsm_16:
9543   case ARM::VLD3DUPqAsm_32: {
9544     MCInst TmpInst;
9545     unsigned Spacing;
9546     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9547     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9548     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9549                                             Spacing));
9550     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9551                                             Spacing * 2));
9552     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9553     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9554     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9555     TmpInst.addOperand(Inst.getOperand(4));
9556     Inst = TmpInst;
9557     return true;
9558   }
9559 
9560   case ARM::VLD3DUPdWB_fixed_Asm_8:
9561   case ARM::VLD3DUPdWB_fixed_Asm_16:
9562   case ARM::VLD3DUPdWB_fixed_Asm_32:
9563   case ARM::VLD3DUPqWB_fixed_Asm_8:
9564   case ARM::VLD3DUPqWB_fixed_Asm_16:
9565   case ARM::VLD3DUPqWB_fixed_Asm_32: {
9566     MCInst TmpInst;
9567     unsigned Spacing;
9568     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9569     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9570     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9571                                             Spacing));
9572     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9573                                             Spacing * 2));
9574     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9575     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9576     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9577     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9578     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9579     TmpInst.addOperand(Inst.getOperand(4));
9580     Inst = TmpInst;
9581     return true;
9582   }
9583 
9584   case ARM::VLD3DUPdWB_register_Asm_8:
9585   case ARM::VLD3DUPdWB_register_Asm_16:
9586   case ARM::VLD3DUPdWB_register_Asm_32:
9587   case ARM::VLD3DUPqWB_register_Asm_8:
9588   case ARM::VLD3DUPqWB_register_Asm_16:
9589   case ARM::VLD3DUPqWB_register_Asm_32: {
9590     MCInst TmpInst;
9591     unsigned Spacing;
9592     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9593     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9594     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9595                                             Spacing));
9596     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9597                                             Spacing * 2));
9598     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9599     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9600     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9601     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9602     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9603     TmpInst.addOperand(Inst.getOperand(5));
9604     Inst = TmpInst;
9605     return true;
9606   }
9607 
9608   // VLD3 multiple 3-element structure instructions.
9609   case ARM::VLD3dAsm_8:
9610   case ARM::VLD3dAsm_16:
9611   case ARM::VLD3dAsm_32:
9612   case ARM::VLD3qAsm_8:
9613   case ARM::VLD3qAsm_16:
9614   case ARM::VLD3qAsm_32: {
9615     MCInst TmpInst;
9616     unsigned Spacing;
9617     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9618     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9619     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9620                                             Spacing));
9621     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9622                                             Spacing * 2));
9623     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9624     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9625     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9626     TmpInst.addOperand(Inst.getOperand(4));
9627     Inst = TmpInst;
9628     return true;
9629   }
9630 
9631   case ARM::VLD3dWB_fixed_Asm_8:
9632   case ARM::VLD3dWB_fixed_Asm_16:
9633   case ARM::VLD3dWB_fixed_Asm_32:
9634   case ARM::VLD3qWB_fixed_Asm_8:
9635   case ARM::VLD3qWB_fixed_Asm_16:
9636   case ARM::VLD3qWB_fixed_Asm_32: {
9637     MCInst TmpInst;
9638     unsigned Spacing;
9639     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9640     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9641     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9642                                             Spacing));
9643     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9644                                             Spacing * 2));
9645     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9646     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9647     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9648     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9649     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9650     TmpInst.addOperand(Inst.getOperand(4));
9651     Inst = TmpInst;
9652     return true;
9653   }
9654 
9655   case ARM::VLD3dWB_register_Asm_8:
9656   case ARM::VLD3dWB_register_Asm_16:
9657   case ARM::VLD3dWB_register_Asm_32:
9658   case ARM::VLD3qWB_register_Asm_8:
9659   case ARM::VLD3qWB_register_Asm_16:
9660   case ARM::VLD3qWB_register_Asm_32: {
9661     MCInst TmpInst;
9662     unsigned Spacing;
9663     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9664     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9665     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9666                                             Spacing));
9667     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9668                                             Spacing * 2));
9669     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9670     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9671     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9672     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9673     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9674     TmpInst.addOperand(Inst.getOperand(5));
9675     Inst = TmpInst;
9676     return true;
9677   }
9678 
9679   // VLD4DUP single 3-element structure to all lanes instructions.
9680   case ARM::VLD4DUPdAsm_8:
9681   case ARM::VLD4DUPdAsm_16:
9682   case ARM::VLD4DUPdAsm_32:
9683   case ARM::VLD4DUPqAsm_8:
9684   case ARM::VLD4DUPqAsm_16:
9685   case ARM::VLD4DUPqAsm_32: {
9686     MCInst TmpInst;
9687     unsigned Spacing;
9688     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9689     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9690     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9691                                             Spacing));
9692     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9693                                             Spacing * 2));
9694     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9695                                             Spacing * 3));
9696     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9697     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9698     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9699     TmpInst.addOperand(Inst.getOperand(4));
9700     Inst = TmpInst;
9701     return true;
9702   }
9703 
9704   case ARM::VLD4DUPdWB_fixed_Asm_8:
9705   case ARM::VLD4DUPdWB_fixed_Asm_16:
9706   case ARM::VLD4DUPdWB_fixed_Asm_32:
9707   case ARM::VLD4DUPqWB_fixed_Asm_8:
9708   case ARM::VLD4DUPqWB_fixed_Asm_16:
9709   case ARM::VLD4DUPqWB_fixed_Asm_32: {
9710     MCInst TmpInst;
9711     unsigned Spacing;
9712     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9713     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9714     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9715                                             Spacing));
9716     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9717                                             Spacing * 2));
9718     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9719                                             Spacing * 3));
9720     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9721     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9722     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9723     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9724     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9725     TmpInst.addOperand(Inst.getOperand(4));
9726     Inst = TmpInst;
9727     return true;
9728   }
9729 
9730   case ARM::VLD4DUPdWB_register_Asm_8:
9731   case ARM::VLD4DUPdWB_register_Asm_16:
9732   case ARM::VLD4DUPdWB_register_Asm_32:
9733   case ARM::VLD4DUPqWB_register_Asm_8:
9734   case ARM::VLD4DUPqWB_register_Asm_16:
9735   case ARM::VLD4DUPqWB_register_Asm_32: {
9736     MCInst TmpInst;
9737     unsigned Spacing;
9738     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9739     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9740     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9741                                             Spacing));
9742     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9743                                             Spacing * 2));
9744     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9745                                             Spacing * 3));
9746     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9747     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9748     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9749     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9750     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9751     TmpInst.addOperand(Inst.getOperand(5));
9752     Inst = TmpInst;
9753     return true;
9754   }
9755 
9756   // VLD4 multiple 4-element structure instructions.
9757   case ARM::VLD4dAsm_8:
9758   case ARM::VLD4dAsm_16:
9759   case ARM::VLD4dAsm_32:
9760   case ARM::VLD4qAsm_8:
9761   case ARM::VLD4qAsm_16:
9762   case ARM::VLD4qAsm_32: {
9763     MCInst TmpInst;
9764     unsigned Spacing;
9765     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9766     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9767     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9768                                             Spacing));
9769     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9770                                             Spacing * 2));
9771     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9772                                             Spacing * 3));
9773     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9774     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9775     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9776     TmpInst.addOperand(Inst.getOperand(4));
9777     Inst = TmpInst;
9778     return true;
9779   }
9780 
9781   case ARM::VLD4dWB_fixed_Asm_8:
9782   case ARM::VLD4dWB_fixed_Asm_16:
9783   case ARM::VLD4dWB_fixed_Asm_32:
9784   case ARM::VLD4qWB_fixed_Asm_8:
9785   case ARM::VLD4qWB_fixed_Asm_16:
9786   case ARM::VLD4qWB_fixed_Asm_32: {
9787     MCInst TmpInst;
9788     unsigned Spacing;
9789     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9790     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9791     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9792                                             Spacing));
9793     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9794                                             Spacing * 2));
9795     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9796                                             Spacing * 3));
9797     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9798     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9799     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9800     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9801     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9802     TmpInst.addOperand(Inst.getOperand(4));
9803     Inst = TmpInst;
9804     return true;
9805   }
9806 
9807   case ARM::VLD4dWB_register_Asm_8:
9808   case ARM::VLD4dWB_register_Asm_16:
9809   case ARM::VLD4dWB_register_Asm_32:
9810   case ARM::VLD4qWB_register_Asm_8:
9811   case ARM::VLD4qWB_register_Asm_16:
9812   case ARM::VLD4qWB_register_Asm_32: {
9813     MCInst TmpInst;
9814     unsigned Spacing;
9815     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9816     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9817     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9818                                             Spacing));
9819     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9820                                             Spacing * 2));
9821     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9822                                             Spacing * 3));
9823     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9824     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9825     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9826     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9827     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9828     TmpInst.addOperand(Inst.getOperand(5));
9829     Inst = TmpInst;
9830     return true;
9831   }
9832 
9833   // VST3 multiple 3-element structure instructions.
9834   case ARM::VST3dAsm_8:
9835   case ARM::VST3dAsm_16:
9836   case ARM::VST3dAsm_32:
9837   case ARM::VST3qAsm_8:
9838   case ARM::VST3qAsm_16:
9839   case ARM::VST3qAsm_32: {
9840     MCInst TmpInst;
9841     unsigned Spacing;
9842     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9843     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9844     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9845     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9846     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9847                                             Spacing));
9848     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9849                                             Spacing * 2));
9850     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9851     TmpInst.addOperand(Inst.getOperand(4));
9852     Inst = TmpInst;
9853     return true;
9854   }
9855 
9856   case ARM::VST3dWB_fixed_Asm_8:
9857   case ARM::VST3dWB_fixed_Asm_16:
9858   case ARM::VST3dWB_fixed_Asm_32:
9859   case ARM::VST3qWB_fixed_Asm_8:
9860   case ARM::VST3qWB_fixed_Asm_16:
9861   case ARM::VST3qWB_fixed_Asm_32: {
9862     MCInst TmpInst;
9863     unsigned Spacing;
9864     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9865     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9866     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9867     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9868     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9869     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9870     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9871                                             Spacing));
9872     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9873                                             Spacing * 2));
9874     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9875     TmpInst.addOperand(Inst.getOperand(4));
9876     Inst = TmpInst;
9877     return true;
9878   }
9879 
9880   case ARM::VST3dWB_register_Asm_8:
9881   case ARM::VST3dWB_register_Asm_16:
9882   case ARM::VST3dWB_register_Asm_32:
9883   case ARM::VST3qWB_register_Asm_8:
9884   case ARM::VST3qWB_register_Asm_16:
9885   case ARM::VST3qWB_register_Asm_32: {
9886     MCInst TmpInst;
9887     unsigned Spacing;
9888     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9889     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9890     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9891     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9892     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9893     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9894     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9895                                             Spacing));
9896     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9897                                             Spacing * 2));
9898     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9899     TmpInst.addOperand(Inst.getOperand(5));
9900     Inst = TmpInst;
9901     return true;
9902   }
9903 
9904   // VST4 multiple 3-element structure instructions.
9905   case ARM::VST4dAsm_8:
9906   case ARM::VST4dAsm_16:
9907   case ARM::VST4dAsm_32:
9908   case ARM::VST4qAsm_8:
9909   case ARM::VST4qAsm_16:
9910   case ARM::VST4qAsm_32: {
9911     MCInst TmpInst;
9912     unsigned Spacing;
9913     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9914     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9915     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9916     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9917     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9918                                             Spacing));
9919     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9920                                             Spacing * 2));
9921     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9922                                             Spacing * 3));
9923     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9924     TmpInst.addOperand(Inst.getOperand(4));
9925     Inst = TmpInst;
9926     return true;
9927   }
9928 
9929   case ARM::VST4dWB_fixed_Asm_8:
9930   case ARM::VST4dWB_fixed_Asm_16:
9931   case ARM::VST4dWB_fixed_Asm_32:
9932   case ARM::VST4qWB_fixed_Asm_8:
9933   case ARM::VST4qWB_fixed_Asm_16:
9934   case ARM::VST4qWB_fixed_Asm_32: {
9935     MCInst TmpInst;
9936     unsigned Spacing;
9937     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9938     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9939     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9940     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9941     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9942     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9943     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9944                                             Spacing));
9945     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9946                                             Spacing * 2));
9947     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9948                                             Spacing * 3));
9949     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9950     TmpInst.addOperand(Inst.getOperand(4));
9951     Inst = TmpInst;
9952     return true;
9953   }
9954 
9955   case ARM::VST4dWB_register_Asm_8:
9956   case ARM::VST4dWB_register_Asm_16:
9957   case ARM::VST4dWB_register_Asm_32:
9958   case ARM::VST4qWB_register_Asm_8:
9959   case ARM::VST4qWB_register_Asm_16:
9960   case ARM::VST4qWB_register_Asm_32: {
9961     MCInst TmpInst;
9962     unsigned Spacing;
9963     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9964     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9965     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9966     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9967     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9968     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9969     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9970                                             Spacing));
9971     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9972                                             Spacing * 2));
9973     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9974                                             Spacing * 3));
9975     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9976     TmpInst.addOperand(Inst.getOperand(5));
9977     Inst = TmpInst;
9978     return true;
9979   }
9980 
9981   // Handle encoding choice for the shift-immediate instructions.
9982   case ARM::t2LSLri:
9983   case ARM::t2LSRri:
9984   case ARM::t2ASRri:
9985     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9986         isARMLowRegister(Inst.getOperand(1).getReg()) &&
9987         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
9988         !HasWideQualifier) {
9989       unsigned NewOpc;
9990       switch (Inst.getOpcode()) {
9991       default: llvm_unreachable("unexpected opcode");
9992       case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
9993       case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
9994       case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
9995       }
9996       // The Thumb1 operands aren't in the same order. Awesome, eh?
9997       MCInst TmpInst;
9998       TmpInst.setOpcode(NewOpc);
9999       TmpInst.addOperand(Inst.getOperand(0));
10000       TmpInst.addOperand(Inst.getOperand(5));
10001       TmpInst.addOperand(Inst.getOperand(1));
10002       TmpInst.addOperand(Inst.getOperand(2));
10003       TmpInst.addOperand(Inst.getOperand(3));
10004       TmpInst.addOperand(Inst.getOperand(4));
10005       Inst = TmpInst;
10006       return true;
10007     }
10008     return false;
10009 
10010   // Handle the Thumb2 mode MOV complex aliases.
10011   case ARM::t2MOVsr:
10012   case ARM::t2MOVSsr: {
10013     // Which instruction to expand to depends on the CCOut operand and
10014     // whether we're in an IT block if the register operands are low
10015     // registers.
10016     bool isNarrow = false;
10017     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10018         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10019         isARMLowRegister(Inst.getOperand(2).getReg()) &&
10020         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
10021         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) &&
10022         !HasWideQualifier)
10023       isNarrow = true;
10024     MCInst TmpInst;
10025     unsigned newOpc;
10026     switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
10027     default: llvm_unreachable("unexpected opcode!");
10028     case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
10029     case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
10030     case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
10031     case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
10032     }
10033     TmpInst.setOpcode(newOpc);
10034     TmpInst.addOperand(Inst.getOperand(0)); // Rd
10035     if (isNarrow)
10036       TmpInst.addOperand(MCOperand::createReg(
10037           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
10038     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10039     TmpInst.addOperand(Inst.getOperand(2)); // Rm
10040     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
10041     TmpInst.addOperand(Inst.getOperand(5));
10042     if (!isNarrow)
10043       TmpInst.addOperand(MCOperand::createReg(
10044           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
10045     Inst = TmpInst;
10046     return true;
10047   }
10048   case ARM::t2MOVsi:
10049   case ARM::t2MOVSsi: {
10050     // Which instruction to expand to depends on the CCOut operand and
10051     // whether we're in an IT block if the register operands are low
10052     // registers.
10053     bool isNarrow = false;
10054     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10055         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10056         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) &&
10057         !HasWideQualifier)
10058       isNarrow = true;
10059     MCInst TmpInst;
10060     unsigned newOpc;
10061     unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
10062     unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
10063     bool isMov = false;
10064     // MOV rd, rm, LSL #0 is actually a MOV instruction
10065     if (Shift == ARM_AM::lsl && Amount == 0) {
10066       isMov = true;
10067       // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of
10068       // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is
10069       // unpredictable in an IT block so the 32-bit encoding T3 has to be used
10070       // instead.
10071       if (inITBlock()) {
10072         isNarrow = false;
10073       }
10074       newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr;
10075     } else {
10076       switch(Shift) {
10077       default: llvm_unreachable("unexpected opcode!");
10078       case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
10079       case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
10080       case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
10081       case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
10082       case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
10083       }
10084     }
10085     if (Amount == 32) Amount = 0;
10086     TmpInst.setOpcode(newOpc);
10087     TmpInst.addOperand(Inst.getOperand(0)); // Rd
10088     if (isNarrow && !isMov)
10089       TmpInst.addOperand(MCOperand::createReg(
10090           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
10091     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10092     if (newOpc != ARM::t2RRX && !isMov)
10093       TmpInst.addOperand(MCOperand::createImm(Amount));
10094     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
10095     TmpInst.addOperand(Inst.getOperand(4));
10096     if (!isNarrow)
10097       TmpInst.addOperand(MCOperand::createReg(
10098           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
10099     Inst = TmpInst;
10100     return true;
10101   }
10102   // Handle the ARM mode MOV complex aliases.
10103   case ARM::ASRr:
10104   case ARM::LSRr:
10105   case ARM::LSLr:
10106   case ARM::RORr: {
10107     ARM_AM::ShiftOpc ShiftTy;
10108     switch(Inst.getOpcode()) {
10109     default: llvm_unreachable("unexpected opcode!");
10110     case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
10111     case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
10112     case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
10113     case ARM::RORr: ShiftTy = ARM_AM::ror; break;
10114     }
10115     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
10116     MCInst TmpInst;
10117     TmpInst.setOpcode(ARM::MOVsr);
10118     TmpInst.addOperand(Inst.getOperand(0)); // Rd
10119     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10120     TmpInst.addOperand(Inst.getOperand(2)); // Rm
10121     TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
10122     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
10123     TmpInst.addOperand(Inst.getOperand(4));
10124     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
10125     Inst = TmpInst;
10126     return true;
10127   }
10128   case ARM::ASRi:
10129   case ARM::LSRi:
10130   case ARM::LSLi:
10131   case ARM::RORi: {
10132     ARM_AM::ShiftOpc ShiftTy;
10133     switch(Inst.getOpcode()) {
10134     default: llvm_unreachable("unexpected opcode!");
10135     case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
10136     case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
10137     case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
10138     case ARM::RORi: ShiftTy = ARM_AM::ror; break;
10139     }
10140     // A shift by zero is a plain MOVr, not a MOVsi.
10141     unsigned Amt = Inst.getOperand(2).getImm();
10142     unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
10143     // A shift by 32 should be encoded as 0 when permitted
10144     if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
10145       Amt = 0;
10146     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
10147     MCInst TmpInst;
10148     TmpInst.setOpcode(Opc);
10149     TmpInst.addOperand(Inst.getOperand(0)); // Rd
10150     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10151     if (Opc == ARM::MOVsi)
10152       TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
10153     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
10154     TmpInst.addOperand(Inst.getOperand(4));
10155     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
10156     Inst = TmpInst;
10157     return true;
10158   }
10159   case ARM::RRXi: {
10160     unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
10161     MCInst TmpInst;
10162     TmpInst.setOpcode(ARM::MOVsi);
10163     TmpInst.addOperand(Inst.getOperand(0)); // Rd
10164     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10165     TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
10166     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10167     TmpInst.addOperand(Inst.getOperand(3));
10168     TmpInst.addOperand(Inst.getOperand(4)); // cc_out
10169     Inst = TmpInst;
10170     return true;
10171   }
10172   case ARM::t2LDMIA_UPD: {
10173     // If this is a load of a single register, then we should use
10174     // a post-indexed LDR instruction instead, per the ARM ARM.
10175     if (Inst.getNumOperands() != 5)
10176       return false;
10177     MCInst TmpInst;
10178     TmpInst.setOpcode(ARM::t2LDR_POST);
10179     TmpInst.addOperand(Inst.getOperand(4)); // Rt
10180     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10181     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10182     TmpInst.addOperand(MCOperand::createImm(4));
10183     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10184     TmpInst.addOperand(Inst.getOperand(3));
10185     Inst = TmpInst;
10186     return true;
10187   }
10188   case ARM::t2STMDB_UPD: {
10189     // If this is a store of a single register, then we should use
10190     // a pre-indexed STR instruction instead, per the ARM ARM.
10191     if (Inst.getNumOperands() != 5)
10192       return false;
10193     MCInst TmpInst;
10194     TmpInst.setOpcode(ARM::t2STR_PRE);
10195     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10196     TmpInst.addOperand(Inst.getOperand(4)); // Rt
10197     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10198     TmpInst.addOperand(MCOperand::createImm(-4));
10199     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10200     TmpInst.addOperand(Inst.getOperand(3));
10201     Inst = TmpInst;
10202     return true;
10203   }
10204   case ARM::LDMIA_UPD:
10205     // If this is a load of a single register via a 'pop', then we should use
10206     // a post-indexed LDR instruction instead, per the ARM ARM.
10207     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" &&
10208         Inst.getNumOperands() == 5) {
10209       MCInst TmpInst;
10210       TmpInst.setOpcode(ARM::LDR_POST_IMM);
10211       TmpInst.addOperand(Inst.getOperand(4)); // Rt
10212       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10213       TmpInst.addOperand(Inst.getOperand(1)); // Rn
10214       TmpInst.addOperand(MCOperand::createReg(0));  // am2offset
10215       TmpInst.addOperand(MCOperand::createImm(4));
10216       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10217       TmpInst.addOperand(Inst.getOperand(3));
10218       Inst = TmpInst;
10219       return true;
10220     }
10221     break;
10222   case ARM::STMDB_UPD:
10223     // If this is a store of a single register via a 'push', then we should use
10224     // a pre-indexed STR instruction instead, per the ARM ARM.
10225     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" &&
10226         Inst.getNumOperands() == 5) {
10227       MCInst TmpInst;
10228       TmpInst.setOpcode(ARM::STR_PRE_IMM);
10229       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10230       TmpInst.addOperand(Inst.getOperand(4)); // Rt
10231       TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
10232       TmpInst.addOperand(MCOperand::createImm(-4));
10233       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10234       TmpInst.addOperand(Inst.getOperand(3));
10235       Inst = TmpInst;
10236     }
10237     break;
10238   case ARM::t2ADDri12:
10239   case ARM::t2SUBri12:
10240   case ARM::t2ADDspImm12:
10241   case ARM::t2SUBspImm12: {
10242     // If the immediate fits for encoding T3 and the generic
10243     // mnemonic was used, encoding T3 is preferred.
10244     const StringRef Token = static_cast<ARMOperand &>(*Operands[0]).getToken();
10245     if ((Token != "add" && Token != "sub") ||
10246         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
10247       break;
10248     switch (Inst.getOpcode()) {
10249     case ARM::t2ADDri12:
10250       Inst.setOpcode(ARM::t2ADDri);
10251       break;
10252     case ARM::t2SUBri12:
10253       Inst.setOpcode(ARM::t2SUBri);
10254       break;
10255     case ARM::t2ADDspImm12:
10256       Inst.setOpcode(ARM::t2ADDspImm);
10257       break;
10258     case ARM::t2SUBspImm12:
10259       Inst.setOpcode(ARM::t2SUBspImm);
10260       break;
10261     }
10262 
10263     Inst.addOperand(MCOperand::createReg(0)); // cc_out
10264     return true;
10265   }
10266   case ARM::tADDi8:
10267     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
10268     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
10269     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
10270     // to encoding T1 if <Rd> is omitted."
10271     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
10272       Inst.setOpcode(ARM::tADDi3);
10273       return true;
10274     }
10275     break;
10276   case ARM::tSUBi8:
10277     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
10278     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
10279     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
10280     // to encoding T1 if <Rd> is omitted."
10281     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
10282       Inst.setOpcode(ARM::tSUBi3);
10283       return true;
10284     }
10285     break;
10286   case ARM::t2ADDri:
10287   case ARM::t2SUBri: {
10288     // If the destination and first source operand are the same, and
10289     // the flags are compatible with the current IT status, use encoding T2
10290     // instead of T3. For compatibility with the system 'as'. Make sure the
10291     // wide encoding wasn't explicit.
10292     if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
10293         !isARMLowRegister(Inst.getOperand(0).getReg()) ||
10294         (Inst.getOperand(2).isImm() &&
10295          (unsigned)Inst.getOperand(2).getImm() > 255) ||
10296         Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) ||
10297         HasWideQualifier)
10298       break;
10299     MCInst TmpInst;
10300     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
10301                       ARM::tADDi8 : ARM::tSUBi8);
10302     TmpInst.addOperand(Inst.getOperand(0));
10303     TmpInst.addOperand(Inst.getOperand(5));
10304     TmpInst.addOperand(Inst.getOperand(0));
10305     TmpInst.addOperand(Inst.getOperand(2));
10306     TmpInst.addOperand(Inst.getOperand(3));
10307     TmpInst.addOperand(Inst.getOperand(4));
10308     Inst = TmpInst;
10309     return true;
10310   }
10311   case ARM::t2ADDspImm:
10312   case ARM::t2SUBspImm: {
10313     // Prefer T1 encoding if possible
10314     if (Inst.getOperand(5).getReg() != 0 || HasWideQualifier)
10315       break;
10316     unsigned V = Inst.getOperand(2).getImm();
10317     if (V & 3 || V > ((1 << 7) - 1) << 2)
10318       break;
10319     MCInst TmpInst;
10320     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDspImm ? ARM::tADDspi
10321                                                           : ARM::tSUBspi);
10322     TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // destination reg
10323     TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // source reg
10324     TmpInst.addOperand(MCOperand::createImm(V / 4));   // immediate
10325     TmpInst.addOperand(Inst.getOperand(3));            // pred
10326     TmpInst.addOperand(Inst.getOperand(4));
10327     Inst = TmpInst;
10328     return true;
10329   }
10330   case ARM::t2ADDrr: {
10331     // If the destination and first source operand are the same, and
10332     // there's no setting of the flags, use encoding T2 instead of T3.
10333     // Note that this is only for ADD, not SUB. This mirrors the system
10334     // 'as' behaviour.  Also take advantage of ADD being commutative.
10335     // Make sure the wide encoding wasn't explicit.
10336     bool Swap = false;
10337     auto DestReg = Inst.getOperand(0).getReg();
10338     bool Transform = DestReg == Inst.getOperand(1).getReg();
10339     if (!Transform && DestReg == Inst.getOperand(2).getReg()) {
10340       Transform = true;
10341       Swap = true;
10342     }
10343     if (!Transform ||
10344         Inst.getOperand(5).getReg() != 0 ||
10345         HasWideQualifier)
10346       break;
10347     MCInst TmpInst;
10348     TmpInst.setOpcode(ARM::tADDhirr);
10349     TmpInst.addOperand(Inst.getOperand(0));
10350     TmpInst.addOperand(Inst.getOperand(0));
10351     TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2));
10352     TmpInst.addOperand(Inst.getOperand(3));
10353     TmpInst.addOperand(Inst.getOperand(4));
10354     Inst = TmpInst;
10355     return true;
10356   }
10357   case ARM::tADDrSP:
10358     // If the non-SP source operand and the destination operand are not the
10359     // same, we need to use the 32-bit encoding if it's available.
10360     if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
10361       Inst.setOpcode(ARM::t2ADDrr);
10362       Inst.addOperand(MCOperand::createReg(0)); // cc_out
10363       return true;
10364     }
10365     break;
10366   case ARM::tB:
10367     // A Thumb conditional branch outside of an IT block is a tBcc.
10368     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
10369       Inst.setOpcode(ARM::tBcc);
10370       return true;
10371     }
10372     break;
10373   case ARM::t2B:
10374     // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
10375     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
10376       Inst.setOpcode(ARM::t2Bcc);
10377       return true;
10378     }
10379     break;
10380   case ARM::t2Bcc:
10381     // If the conditional is AL or we're in an IT block, we really want t2B.
10382     if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
10383       Inst.setOpcode(ARM::t2B);
10384       return true;
10385     }
10386     break;
10387   case ARM::tBcc:
10388     // If the conditional is AL, we really want tB.
10389     if (Inst.getOperand(1).getImm() == ARMCC::AL) {
10390       Inst.setOpcode(ARM::tB);
10391       return true;
10392     }
10393     break;
10394   case ARM::tLDMIA: {
10395     // If the register list contains any high registers, or if the writeback
10396     // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
10397     // instead if we're in Thumb2. Otherwise, this should have generated
10398     // an error in validateInstruction().
10399     unsigned Rn = Inst.getOperand(0).getReg();
10400     bool hasWritebackToken =
10401         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
10402          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
10403     bool listContainsBase;
10404     if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
10405         (!listContainsBase && !hasWritebackToken) ||
10406         (listContainsBase && hasWritebackToken)) {
10407       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
10408       assert(isThumbTwo());
10409       Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
10410       // If we're switching to the updating version, we need to insert
10411       // the writeback tied operand.
10412       if (hasWritebackToken)
10413         Inst.insert(Inst.begin(),
10414                     MCOperand::createReg(Inst.getOperand(0).getReg()));
10415       return true;
10416     }
10417     break;
10418   }
10419   case ARM::tSTMIA_UPD: {
10420     // If the register list contains any high registers, we need to use
10421     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
10422     // should have generated an error in validateInstruction().
10423     unsigned Rn = Inst.getOperand(0).getReg();
10424     bool listContainsBase;
10425     if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
10426       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
10427       assert(isThumbTwo());
10428       Inst.setOpcode(ARM::t2STMIA_UPD);
10429       return true;
10430     }
10431     break;
10432   }
10433   case ARM::tPOP: {
10434     bool listContainsBase;
10435     // If the register list contains any high registers, we need to use
10436     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
10437     // should have generated an error in validateInstruction().
10438     if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
10439       return false;
10440     assert(isThumbTwo());
10441     Inst.setOpcode(ARM::t2LDMIA_UPD);
10442     // Add the base register and writeback operands.
10443     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10444     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10445     return true;
10446   }
10447   case ARM::tPUSH: {
10448     bool listContainsBase;
10449     if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
10450       return false;
10451     assert(isThumbTwo());
10452     Inst.setOpcode(ARM::t2STMDB_UPD);
10453     // Add the base register and writeback operands.
10454     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10455     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10456     return true;
10457   }
10458   case ARM::t2MOVi:
10459     // If we can use the 16-bit encoding and the user didn't explicitly
10460     // request the 32-bit variant, transform it here.
10461     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10462         (Inst.getOperand(1).isImm() &&
10463          (unsigned)Inst.getOperand(1).getImm() <= 255) &&
10464         Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10465         !HasWideQualifier) {
10466       // The operands aren't in the same order for tMOVi8...
10467       MCInst TmpInst;
10468       TmpInst.setOpcode(ARM::tMOVi8);
10469       TmpInst.addOperand(Inst.getOperand(0));
10470       TmpInst.addOperand(Inst.getOperand(4));
10471       TmpInst.addOperand(Inst.getOperand(1));
10472       TmpInst.addOperand(Inst.getOperand(2));
10473       TmpInst.addOperand(Inst.getOperand(3));
10474       Inst = TmpInst;
10475       return true;
10476     }
10477     break;
10478 
10479   case ARM::t2MOVr:
10480     // If we can use the 16-bit encoding and the user didn't explicitly
10481     // request the 32-bit variant, transform it here.
10482     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10483         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10484         Inst.getOperand(2).getImm() == ARMCC::AL &&
10485         Inst.getOperand(4).getReg() == ARM::CPSR &&
10486         !HasWideQualifier) {
10487       // The operands aren't the same for tMOV[S]r... (no cc_out)
10488       MCInst TmpInst;
10489       unsigned Op = Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr;
10490       TmpInst.setOpcode(Op);
10491       TmpInst.addOperand(Inst.getOperand(0));
10492       TmpInst.addOperand(Inst.getOperand(1));
10493       if (Op == ARM::tMOVr) {
10494         TmpInst.addOperand(Inst.getOperand(2));
10495         TmpInst.addOperand(Inst.getOperand(3));
10496       }
10497       Inst = TmpInst;
10498       return true;
10499     }
10500     break;
10501 
10502   case ARM::t2SXTH:
10503   case ARM::t2SXTB:
10504   case ARM::t2UXTH:
10505   case ARM::t2UXTB:
10506     // If we can use the 16-bit encoding and the user didn't explicitly
10507     // request the 32-bit variant, transform it here.
10508     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10509         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10510         Inst.getOperand(2).getImm() == 0 &&
10511         !HasWideQualifier) {
10512       unsigned NewOpc;
10513       switch (Inst.getOpcode()) {
10514       default: llvm_unreachable("Illegal opcode!");
10515       case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
10516       case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
10517       case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
10518       case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
10519       }
10520       // The operands aren't the same for thumb1 (no rotate operand).
10521       MCInst TmpInst;
10522       TmpInst.setOpcode(NewOpc);
10523       TmpInst.addOperand(Inst.getOperand(0));
10524       TmpInst.addOperand(Inst.getOperand(1));
10525       TmpInst.addOperand(Inst.getOperand(3));
10526       TmpInst.addOperand(Inst.getOperand(4));
10527       Inst = TmpInst;
10528       return true;
10529     }
10530     break;
10531 
10532   case ARM::MOVsi: {
10533     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
10534     // rrx shifts and asr/lsr of #32 is encoded as 0
10535     if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
10536       return false;
10537     if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
10538       // Shifting by zero is accepted as a vanilla 'MOVr'
10539       MCInst TmpInst;
10540       TmpInst.setOpcode(ARM::MOVr);
10541       TmpInst.addOperand(Inst.getOperand(0));
10542       TmpInst.addOperand(Inst.getOperand(1));
10543       TmpInst.addOperand(Inst.getOperand(3));
10544       TmpInst.addOperand(Inst.getOperand(4));
10545       TmpInst.addOperand(Inst.getOperand(5));
10546       Inst = TmpInst;
10547       return true;
10548     }
10549     return false;
10550   }
10551   case ARM::ANDrsi:
10552   case ARM::ORRrsi:
10553   case ARM::EORrsi:
10554   case ARM::BICrsi:
10555   case ARM::SUBrsi:
10556   case ARM::ADDrsi: {
10557     unsigned newOpc;
10558     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
10559     if (SOpc == ARM_AM::rrx) return false;
10560     switch (Inst.getOpcode()) {
10561     default: llvm_unreachable("unexpected opcode!");
10562     case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
10563     case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
10564     case ARM::EORrsi: newOpc = ARM::EORrr; break;
10565     case ARM::BICrsi: newOpc = ARM::BICrr; break;
10566     case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
10567     case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
10568     }
10569     // If the shift is by zero, use the non-shifted instruction definition.
10570     // The exception is for right shifts, where 0 == 32
10571     if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
10572         !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
10573       MCInst TmpInst;
10574       TmpInst.setOpcode(newOpc);
10575       TmpInst.addOperand(Inst.getOperand(0));
10576       TmpInst.addOperand(Inst.getOperand(1));
10577       TmpInst.addOperand(Inst.getOperand(2));
10578       TmpInst.addOperand(Inst.getOperand(4));
10579       TmpInst.addOperand(Inst.getOperand(5));
10580       TmpInst.addOperand(Inst.getOperand(6));
10581       Inst = TmpInst;
10582       return true;
10583     }
10584     return false;
10585   }
10586   case ARM::ITasm:
10587   case ARM::t2IT: {
10588     // Set up the IT block state according to the IT instruction we just
10589     // matched.
10590     assert(!inITBlock() && "nested IT blocks?!");
10591     startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()),
10592                          Inst.getOperand(1).getImm());
10593     break;
10594   }
10595   case ARM::t2LSLrr:
10596   case ARM::t2LSRrr:
10597   case ARM::t2ASRrr:
10598   case ARM::t2SBCrr:
10599   case ARM::t2RORrr:
10600   case ARM::t2BICrr:
10601     // Assemblers should use the narrow encodings of these instructions when permissible.
10602     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
10603          isARMLowRegister(Inst.getOperand(2).getReg())) &&
10604         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
10605         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10606         !HasWideQualifier) {
10607       unsigned NewOpc;
10608       switch (Inst.getOpcode()) {
10609         default: llvm_unreachable("unexpected opcode");
10610         case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
10611         case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
10612         case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
10613         case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
10614         case ARM::t2RORrr: NewOpc = ARM::tROR; break;
10615         case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
10616       }
10617       MCInst TmpInst;
10618       TmpInst.setOpcode(NewOpc);
10619       TmpInst.addOperand(Inst.getOperand(0));
10620       TmpInst.addOperand(Inst.getOperand(5));
10621       TmpInst.addOperand(Inst.getOperand(1));
10622       TmpInst.addOperand(Inst.getOperand(2));
10623       TmpInst.addOperand(Inst.getOperand(3));
10624       TmpInst.addOperand(Inst.getOperand(4));
10625       Inst = TmpInst;
10626       return true;
10627     }
10628     return false;
10629 
10630   case ARM::t2ANDrr:
10631   case ARM::t2EORrr:
10632   case ARM::t2ADCrr:
10633   case ARM::t2ORRrr:
10634     // Assemblers should use the narrow encodings of these instructions when permissible.
10635     // These instructions are special in that they are commutable, so shorter encodings
10636     // are available more often.
10637     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
10638          isARMLowRegister(Inst.getOperand(2).getReg())) &&
10639         (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
10640          Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
10641         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10642         !HasWideQualifier) {
10643       unsigned NewOpc;
10644       switch (Inst.getOpcode()) {
10645         default: llvm_unreachable("unexpected opcode");
10646         case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
10647         case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
10648         case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
10649         case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
10650       }
10651       MCInst TmpInst;
10652       TmpInst.setOpcode(NewOpc);
10653       TmpInst.addOperand(Inst.getOperand(0));
10654       TmpInst.addOperand(Inst.getOperand(5));
10655       if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
10656         TmpInst.addOperand(Inst.getOperand(1));
10657         TmpInst.addOperand(Inst.getOperand(2));
10658       } else {
10659         TmpInst.addOperand(Inst.getOperand(2));
10660         TmpInst.addOperand(Inst.getOperand(1));
10661       }
10662       TmpInst.addOperand(Inst.getOperand(3));
10663       TmpInst.addOperand(Inst.getOperand(4));
10664       Inst = TmpInst;
10665       return true;
10666     }
10667     return false;
10668   case ARM::MVE_VPST:
10669   case ARM::MVE_VPTv16i8:
10670   case ARM::MVE_VPTv8i16:
10671   case ARM::MVE_VPTv4i32:
10672   case ARM::MVE_VPTv16u8:
10673   case ARM::MVE_VPTv8u16:
10674   case ARM::MVE_VPTv4u32:
10675   case ARM::MVE_VPTv16s8:
10676   case ARM::MVE_VPTv8s16:
10677   case ARM::MVE_VPTv4s32:
10678   case ARM::MVE_VPTv4f32:
10679   case ARM::MVE_VPTv8f16:
10680   case ARM::MVE_VPTv16i8r:
10681   case ARM::MVE_VPTv8i16r:
10682   case ARM::MVE_VPTv4i32r:
10683   case ARM::MVE_VPTv16u8r:
10684   case ARM::MVE_VPTv8u16r:
10685   case ARM::MVE_VPTv4u32r:
10686   case ARM::MVE_VPTv16s8r:
10687   case ARM::MVE_VPTv8s16r:
10688   case ARM::MVE_VPTv4s32r:
10689   case ARM::MVE_VPTv4f32r:
10690   case ARM::MVE_VPTv8f16r: {
10691     assert(!inVPTBlock() && "Nested VPT blocks are not allowed");
10692     MCOperand &MO = Inst.getOperand(0);
10693     VPTState.Mask = MO.getImm();
10694     VPTState.CurPosition = 0;
10695     break;
10696   }
10697   }
10698   return false;
10699 }
10700 
10701 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
10702   // 16-bit thumb arithmetic instructions either require or preclude the 'S'
10703   // suffix depending on whether they're in an IT block or not.
10704   unsigned Opc = Inst.getOpcode();
10705   const MCInstrDesc &MCID = MII.get(Opc);
10706   if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
10707     assert(MCID.hasOptionalDef() &&
10708            "optionally flag setting instruction missing optional def operand");
10709     assert(MCID.NumOperands == Inst.getNumOperands() &&
10710            "operand count mismatch!");
10711     // Find the optional-def operand (cc_out).
10712     unsigned OpNo;
10713     for (OpNo = 0;
10714          !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
10715          ++OpNo)
10716       ;
10717     // If we're parsing Thumb1, reject it completely.
10718     if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
10719       return Match_RequiresFlagSetting;
10720     // If we're parsing Thumb2, which form is legal depends on whether we're
10721     // in an IT block.
10722     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
10723         !inITBlock())
10724       return Match_RequiresITBlock;
10725     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
10726         inITBlock())
10727       return Match_RequiresNotITBlock;
10728     // LSL with zero immediate is not allowed in an IT block
10729     if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock())
10730       return Match_RequiresNotITBlock;
10731   } else if (isThumbOne()) {
10732     // Some high-register supporting Thumb1 encodings only allow both registers
10733     // to be from r0-r7 when in Thumb2.
10734     if (Opc == ARM::tADDhirr && !hasV6MOps() &&
10735         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10736         isARMLowRegister(Inst.getOperand(2).getReg()))
10737       return Match_RequiresThumb2;
10738     // Others only require ARMv6 or later.
10739     else if (Opc == ARM::tMOVr && !hasV6Ops() &&
10740              isARMLowRegister(Inst.getOperand(0).getReg()) &&
10741              isARMLowRegister(Inst.getOperand(1).getReg()))
10742       return Match_RequiresV6;
10743   }
10744 
10745   // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex
10746   // than the loop below can handle, so it uses the GPRnopc register class and
10747   // we do SP handling here.
10748   if (Opc == ARM::t2MOVr && !hasV8Ops())
10749   {
10750     // SP as both source and destination is not allowed
10751     if (Inst.getOperand(0).getReg() == ARM::SP &&
10752         Inst.getOperand(1).getReg() == ARM::SP)
10753       return Match_RequiresV8;
10754     // When flags-setting SP as either source or destination is not allowed
10755     if (Inst.getOperand(4).getReg() == ARM::CPSR &&
10756         (Inst.getOperand(0).getReg() == ARM::SP ||
10757          Inst.getOperand(1).getReg() == ARM::SP))
10758       return Match_RequiresV8;
10759   }
10760 
10761   switch (Inst.getOpcode()) {
10762   case ARM::VMRS:
10763   case ARM::VMSR:
10764   case ARM::VMRS_FPCXTS:
10765   case ARM::VMRS_FPCXTNS:
10766   case ARM::VMSR_FPCXTS:
10767   case ARM::VMSR_FPCXTNS:
10768   case ARM::VMRS_FPSCR_NZCVQC:
10769   case ARM::VMSR_FPSCR_NZCVQC:
10770   case ARM::FMSTAT:
10771   case ARM::VMRS_VPR:
10772   case ARM::VMRS_P0:
10773   case ARM::VMSR_VPR:
10774   case ARM::VMSR_P0:
10775     // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of
10776     // ARMv8-A.
10777     if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP &&
10778         (isThumb() && !hasV8Ops()))
10779       return Match_InvalidOperand;
10780     break;
10781   case ARM::t2TBB:
10782   case ARM::t2TBH:
10783     // Rn = sp is only allowed with ARMv8-A
10784     if (!hasV8Ops() && (Inst.getOperand(0).getReg() == ARM::SP))
10785       return Match_RequiresV8;
10786     break;
10787   default:
10788     break;
10789   }
10790 
10791   for (unsigned I = 0; I < MCID.NumOperands; ++I)
10792     if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) {
10793       // rGPRRegClass excludes PC, and also excluded SP before ARMv8
10794       const auto &Op = Inst.getOperand(I);
10795       if (!Op.isReg()) {
10796         // This can happen in awkward cases with tied operands, e.g. a
10797         // writeback load/store with a complex addressing mode in
10798         // which there's an output operand corresponding to the
10799         // updated written-back base register: the Tablegen-generated
10800         // AsmMatcher will have written a placeholder operand to that
10801         // slot in the form of an immediate 0, because it can't
10802         // generate the register part of the complex addressing-mode
10803         // operand ahead of time.
10804         continue;
10805       }
10806 
10807       unsigned Reg = Op.getReg();
10808       if ((Reg == ARM::SP) && !hasV8Ops())
10809         return Match_RequiresV8;
10810       else if (Reg == ARM::PC)
10811         return Match_InvalidOperand;
10812     }
10813 
10814   return Match_Success;
10815 }
10816 
10817 namespace llvm {
10818 
10819 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) {
10820   return true; // In an assembly source, no need to second-guess
10821 }
10822 
10823 } // end namespace llvm
10824 
10825 // Returns true if Inst is unpredictable if it is in and IT block, but is not
10826 // the last instruction in the block.
10827 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const {
10828   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10829 
10830   // All branch & call instructions terminate IT blocks with the exception of
10831   // SVC.
10832   if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) ||
10833       MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch())
10834     return true;
10835 
10836   // Any arithmetic instruction which writes to the PC also terminates the IT
10837   // block.
10838   if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI))
10839     return true;
10840 
10841   return false;
10842 }
10843 
10844 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst,
10845                                           SmallVectorImpl<NearMissInfo> &NearMisses,
10846                                           bool MatchingInlineAsm,
10847                                           bool &EmitInITBlock,
10848                                           MCStreamer &Out) {
10849   // If we can't use an implicit IT block here, just match as normal.
10850   if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb())
10851     return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
10852 
10853   // Try to match the instruction in an extension of the current IT block (if
10854   // there is one).
10855   if (inImplicitITBlock()) {
10856     extendImplicitITBlock(ITState.Cond);
10857     if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
10858             Match_Success) {
10859       // The match succeded, but we still have to check that the instruction is
10860       // valid in this implicit IT block.
10861       const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10862       if (MCID.isPredicable()) {
10863         ARMCC::CondCodes InstCond =
10864             (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10865                 .getImm();
10866         ARMCC::CondCodes ITCond = currentITCond();
10867         if (InstCond == ITCond) {
10868           EmitInITBlock = true;
10869           return Match_Success;
10870         } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) {
10871           invertCurrentITCondition();
10872           EmitInITBlock = true;
10873           return Match_Success;
10874         }
10875       }
10876     }
10877     rewindImplicitITPosition();
10878   }
10879 
10880   // Finish the current IT block, and try to match outside any IT block.
10881   flushPendingInstructions(Out);
10882   unsigned PlainMatchResult =
10883       MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
10884   if (PlainMatchResult == Match_Success) {
10885     const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10886     if (MCID.isPredicable()) {
10887       ARMCC::CondCodes InstCond =
10888           (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10889               .getImm();
10890       // Some forms of the branch instruction have their own condition code
10891       // fields, so can be conditionally executed without an IT block.
10892       if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) {
10893         EmitInITBlock = false;
10894         return Match_Success;
10895       }
10896       if (InstCond == ARMCC::AL) {
10897         EmitInITBlock = false;
10898         return Match_Success;
10899       }
10900     } else {
10901       EmitInITBlock = false;
10902       return Match_Success;
10903     }
10904   }
10905 
10906   // Try to match in a new IT block. The matcher doesn't check the actual
10907   // condition, so we create an IT block with a dummy condition, and fix it up
10908   // once we know the actual condition.
10909   startImplicitITBlock();
10910   if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
10911       Match_Success) {
10912     const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10913     if (MCID.isPredicable()) {
10914       ITState.Cond =
10915           (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10916               .getImm();
10917       EmitInITBlock = true;
10918       return Match_Success;
10919     }
10920   }
10921   discardImplicitITBlock();
10922 
10923   // If none of these succeed, return the error we got when trying to match
10924   // outside any IT blocks.
10925   EmitInITBlock = false;
10926   return PlainMatchResult;
10927 }
10928 
10929 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,
10930                                          unsigned VariantID = 0);
10931 
10932 static const char *getSubtargetFeatureName(uint64_t Val);
10933 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
10934                                            OperandVector &Operands,
10935                                            MCStreamer &Out, uint64_t &ErrorInfo,
10936                                            bool MatchingInlineAsm) {
10937   MCInst Inst;
10938   unsigned MatchResult;
10939   bool PendConditionalInstruction = false;
10940 
10941   SmallVector<NearMissInfo, 4> NearMisses;
10942   MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm,
10943                                  PendConditionalInstruction, Out);
10944 
10945   switch (MatchResult) {
10946   case Match_Success:
10947     LLVM_DEBUG(dbgs() << "Parsed as: ";
10948                Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
10949                dbgs() << "\n");
10950 
10951     // Context sensitive operand constraints aren't handled by the matcher,
10952     // so check them here.
10953     if (validateInstruction(Inst, Operands)) {
10954       // Still progress the IT block, otherwise one wrong condition causes
10955       // nasty cascading errors.
10956       forwardITPosition();
10957       forwardVPTPosition();
10958       return true;
10959     }
10960 
10961     { // processInstruction() updates inITBlock state, we need to save it away
10962       bool wasInITBlock = inITBlock();
10963 
10964       // Some instructions need post-processing to, for example, tweak which
10965       // encoding is selected. Loop on it while changes happen so the
10966       // individual transformations can chain off each other. E.g.,
10967       // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
10968       while (processInstruction(Inst, Operands, Out))
10969         LLVM_DEBUG(dbgs() << "Changed to: ";
10970                    Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
10971                    dbgs() << "\n");
10972 
10973       // Only after the instruction is fully processed, we can validate it
10974       if (wasInITBlock && hasV8Ops() && isThumb() &&
10975           !isV8EligibleForIT(&Inst) && !getTargetOptions().MCNoDeprecatedWarn) {
10976         Warning(IDLoc, "deprecated instruction in IT block");
10977       }
10978     }
10979 
10980     // Only move forward at the very end so that everything in validate
10981     // and process gets a consistent answer about whether we're in an IT
10982     // block.
10983     forwardITPosition();
10984     forwardVPTPosition();
10985 
10986     // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
10987     // doesn't actually encode.
10988     if (Inst.getOpcode() == ARM::ITasm)
10989       return false;
10990 
10991     Inst.setLoc(IDLoc);
10992     if (PendConditionalInstruction) {
10993       PendingConditionalInsts.push_back(Inst);
10994       if (isITBlockFull() || isITBlockTerminator(Inst))
10995         flushPendingInstructions(Out);
10996     } else {
10997       Out.emitInstruction(Inst, getSTI());
10998     }
10999     return false;
11000   case Match_NearMisses:
11001     ReportNearMisses(NearMisses, IDLoc, Operands);
11002     return true;
11003   case Match_MnemonicFail: {
11004     FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
11005     std::string Suggestion = ARMMnemonicSpellCheck(
11006       ((ARMOperand &)*Operands[0]).getToken(), FBS);
11007     return Error(IDLoc, "invalid instruction" + Suggestion,
11008                  ((ARMOperand &)*Operands[0]).getLocRange());
11009   }
11010   }
11011 
11012   llvm_unreachable("Implement any new match types added!");
11013 }
11014 
11015 /// parseDirective parses the arm specific directives
11016 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
11017   const MCContext::Environment Format = getContext().getObjectFileType();
11018   bool IsMachO = Format == MCContext::IsMachO;
11019   bool IsCOFF = Format == MCContext::IsCOFF;
11020 
11021   std::string IDVal = DirectiveID.getIdentifier().lower();
11022   if (IDVal == ".word")
11023     parseLiteralValues(4, DirectiveID.getLoc());
11024   else if (IDVal == ".short" || IDVal == ".hword")
11025     parseLiteralValues(2, DirectiveID.getLoc());
11026   else if (IDVal == ".thumb")
11027     parseDirectiveThumb(DirectiveID.getLoc());
11028   else if (IDVal == ".arm")
11029     parseDirectiveARM(DirectiveID.getLoc());
11030   else if (IDVal == ".thumb_func")
11031     parseDirectiveThumbFunc(DirectiveID.getLoc());
11032   else if (IDVal == ".code")
11033     parseDirectiveCode(DirectiveID.getLoc());
11034   else if (IDVal == ".syntax")
11035     parseDirectiveSyntax(DirectiveID.getLoc());
11036   else if (IDVal == ".unreq")
11037     parseDirectiveUnreq(DirectiveID.getLoc());
11038   else if (IDVal == ".fnend")
11039     parseDirectiveFnEnd(DirectiveID.getLoc());
11040   else if (IDVal == ".cantunwind")
11041     parseDirectiveCantUnwind(DirectiveID.getLoc());
11042   else if (IDVal == ".personality")
11043     parseDirectivePersonality(DirectiveID.getLoc());
11044   else if (IDVal == ".handlerdata")
11045     parseDirectiveHandlerData(DirectiveID.getLoc());
11046   else if (IDVal == ".setfp")
11047     parseDirectiveSetFP(DirectiveID.getLoc());
11048   else if (IDVal == ".pad")
11049     parseDirectivePad(DirectiveID.getLoc());
11050   else if (IDVal == ".save")
11051     parseDirectiveRegSave(DirectiveID.getLoc(), false);
11052   else if (IDVal == ".vsave")
11053     parseDirectiveRegSave(DirectiveID.getLoc(), true);
11054   else if (IDVal == ".ltorg" || IDVal == ".pool")
11055     parseDirectiveLtorg(DirectiveID.getLoc());
11056   else if (IDVal == ".even")
11057     parseDirectiveEven(DirectiveID.getLoc());
11058   else if (IDVal == ".personalityindex")
11059     parseDirectivePersonalityIndex(DirectiveID.getLoc());
11060   else if (IDVal == ".unwind_raw")
11061     parseDirectiveUnwindRaw(DirectiveID.getLoc());
11062   else if (IDVal == ".movsp")
11063     parseDirectiveMovSP(DirectiveID.getLoc());
11064   else if (IDVal == ".arch_extension")
11065     parseDirectiveArchExtension(DirectiveID.getLoc());
11066   else if (IDVal == ".align")
11067     return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure.
11068   else if (IDVal == ".thumb_set")
11069     parseDirectiveThumbSet(DirectiveID.getLoc());
11070   else if (IDVal == ".inst")
11071     parseDirectiveInst(DirectiveID.getLoc());
11072   else if (IDVal == ".inst.n")
11073     parseDirectiveInst(DirectiveID.getLoc(), 'n');
11074   else if (IDVal == ".inst.w")
11075     parseDirectiveInst(DirectiveID.getLoc(), 'w');
11076   else if (!IsMachO && !IsCOFF) {
11077     if (IDVal == ".arch")
11078       parseDirectiveArch(DirectiveID.getLoc());
11079     else if (IDVal == ".cpu")
11080       parseDirectiveCPU(DirectiveID.getLoc());
11081     else if (IDVal == ".eabi_attribute")
11082       parseDirectiveEabiAttr(DirectiveID.getLoc());
11083     else if (IDVal == ".fpu")
11084       parseDirectiveFPU(DirectiveID.getLoc());
11085     else if (IDVal == ".fnstart")
11086       parseDirectiveFnStart(DirectiveID.getLoc());
11087     else if (IDVal == ".object_arch")
11088       parseDirectiveObjectArch(DirectiveID.getLoc());
11089     else if (IDVal == ".tlsdescseq")
11090       parseDirectiveTLSDescSeq(DirectiveID.getLoc());
11091     else
11092       return true;
11093   } else
11094     return true;
11095   return false;
11096 }
11097 
11098 /// parseLiteralValues
11099 ///  ::= .hword expression [, expression]*
11100 ///  ::= .short expression [, expression]*
11101 ///  ::= .word expression [, expression]*
11102 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
11103   auto parseOne = [&]() -> bool {
11104     const MCExpr *Value;
11105     if (getParser().parseExpression(Value))
11106       return true;
11107     getParser().getStreamer().emitValue(Value, Size, L);
11108     return false;
11109   };
11110   return (parseMany(parseOne));
11111 }
11112 
11113 /// parseDirectiveThumb
11114 ///  ::= .thumb
11115 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
11116   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
11117       check(!hasThumb(), L, "target does not support Thumb mode"))
11118     return true;
11119 
11120   if (!isThumb())
11121     SwitchMode();
11122 
11123   getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
11124   return false;
11125 }
11126 
11127 /// parseDirectiveARM
11128 ///  ::= .arm
11129 bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
11130   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
11131       check(!hasARM(), L, "target does not support ARM mode"))
11132     return true;
11133 
11134   if (isThumb())
11135     SwitchMode();
11136   getParser().getStreamer().emitAssemblerFlag(MCAF_Code32);
11137   return false;
11138 }
11139 
11140 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) {
11141   // We need to flush the current implicit IT block on a label, because it is
11142   // not legal to branch into an IT block.
11143   flushPendingInstructions(getStreamer());
11144 }
11145 
11146 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
11147   if (NextSymbolIsThumb) {
11148     getParser().getStreamer().emitThumbFunc(Symbol);
11149     NextSymbolIsThumb = false;
11150   }
11151 }
11152 
11153 /// parseDirectiveThumbFunc
11154 ///  ::= .thumbfunc symbol_name
11155 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
11156   MCAsmParser &Parser = getParser();
11157   const auto Format = getContext().getObjectFileType();
11158   bool IsMachO = Format == MCContext::IsMachO;
11159 
11160   // Darwin asm has (optionally) function name after .thumb_func direction
11161   // ELF doesn't
11162 
11163   if (IsMachO) {
11164     if (Parser.getTok().is(AsmToken::Identifier) ||
11165         Parser.getTok().is(AsmToken::String)) {
11166       MCSymbol *Func = getParser().getContext().getOrCreateSymbol(
11167           Parser.getTok().getIdentifier());
11168       getParser().getStreamer().emitThumbFunc(Func);
11169       Parser.Lex();
11170       if (parseToken(AsmToken::EndOfStatement,
11171                      "unexpected token in '.thumb_func' directive"))
11172         return true;
11173       return false;
11174     }
11175   }
11176 
11177   if (parseToken(AsmToken::EndOfStatement,
11178                  "unexpected token in '.thumb_func' directive"))
11179     return true;
11180 
11181   // .thumb_func implies .thumb
11182   if (!isThumb())
11183     SwitchMode();
11184 
11185   getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
11186 
11187   NextSymbolIsThumb = true;
11188   return false;
11189 }
11190 
11191 /// parseDirectiveSyntax
11192 ///  ::= .syntax unified | divided
11193 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
11194   MCAsmParser &Parser = getParser();
11195   const AsmToken &Tok = Parser.getTok();
11196   if (Tok.isNot(AsmToken::Identifier)) {
11197     Error(L, "unexpected token in .syntax directive");
11198     return false;
11199   }
11200 
11201   StringRef Mode = Tok.getString();
11202   Parser.Lex();
11203   if (check(Mode == "divided" || Mode == "DIVIDED", L,
11204             "'.syntax divided' arm assembly not supported") ||
11205       check(Mode != "unified" && Mode != "UNIFIED", L,
11206             "unrecognized syntax mode in .syntax directive") ||
11207       parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11208     return true;
11209 
11210   // TODO tell the MC streamer the mode
11211   // getParser().getStreamer().Emit???();
11212   return false;
11213 }
11214 
11215 /// parseDirectiveCode
11216 ///  ::= .code 16 | 32
11217 bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
11218   MCAsmParser &Parser = getParser();
11219   const AsmToken &Tok = Parser.getTok();
11220   if (Tok.isNot(AsmToken::Integer))
11221     return Error(L, "unexpected token in .code directive");
11222   int64_t Val = Parser.getTok().getIntVal();
11223   if (Val != 16 && Val != 32) {
11224     Error(L, "invalid operand to .code directive");
11225     return false;
11226   }
11227   Parser.Lex();
11228 
11229   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11230     return true;
11231 
11232   if (Val == 16) {
11233     if (!hasThumb())
11234       return Error(L, "target does not support Thumb mode");
11235 
11236     if (!isThumb())
11237       SwitchMode();
11238     getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
11239   } else {
11240     if (!hasARM())
11241       return Error(L, "target does not support ARM mode");
11242 
11243     if (isThumb())
11244       SwitchMode();
11245     getParser().getStreamer().emitAssemblerFlag(MCAF_Code32);
11246   }
11247 
11248   return false;
11249 }
11250 
11251 /// parseDirectiveReq
11252 ///  ::= name .req registername
11253 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
11254   MCAsmParser &Parser = getParser();
11255   Parser.Lex(); // Eat the '.req' token.
11256   unsigned Reg;
11257   SMLoc SRegLoc, ERegLoc;
11258   if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc,
11259             "register name expected") ||
11260       parseToken(AsmToken::EndOfStatement,
11261                  "unexpected input in .req directive."))
11262     return true;
11263 
11264   if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg)
11265     return Error(SRegLoc,
11266                  "redefinition of '" + Name + "' does not match original.");
11267 
11268   return false;
11269 }
11270 
11271 /// parseDirectiveUneq
11272 ///  ::= .unreq registername
11273 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
11274   MCAsmParser &Parser = getParser();
11275   if (Parser.getTok().isNot(AsmToken::Identifier))
11276     return Error(L, "unexpected input in .unreq directive.");
11277   RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
11278   Parser.Lex(); // Eat the identifier.
11279   if (parseToken(AsmToken::EndOfStatement,
11280                  "unexpected input in '.unreq' directive"))
11281     return true;
11282   return false;
11283 }
11284 
11285 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was
11286 // before, if supported by the new target, or emit mapping symbols for the mode
11287 // switch.
11288 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) {
11289   if (WasThumb != isThumb()) {
11290     if (WasThumb && hasThumb()) {
11291       // Stay in Thumb mode
11292       SwitchMode();
11293     } else if (!WasThumb && hasARM()) {
11294       // Stay in ARM mode
11295       SwitchMode();
11296     } else {
11297       // Mode switch forced, because the new arch doesn't support the old mode.
11298       getParser().getStreamer().emitAssemblerFlag(isThumb() ? MCAF_Code16
11299                                                             : MCAF_Code32);
11300       // Warn about the implcit mode switch. GAS does not switch modes here,
11301       // but instead stays in the old mode, reporting an error on any following
11302       // instructions as the mode does not exist on the target.
11303       Warning(Loc, Twine("new target does not support ") +
11304                        (WasThumb ? "thumb" : "arm") + " mode, switching to " +
11305                        (!WasThumb ? "thumb" : "arm") + " mode");
11306     }
11307   }
11308 }
11309 
11310 /// parseDirectiveArch
11311 ///  ::= .arch token
11312 bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
11313   StringRef Arch = getParser().parseStringToEndOfStatement().trim();
11314   ARM::ArchKind ID = ARM::parseArch(Arch);
11315 
11316   if (ID == ARM::ArchKind::INVALID)
11317     return Error(L, "Unknown arch name");
11318 
11319   bool WasThumb = isThumb();
11320   Triple T;
11321   MCSubtargetInfo &STI = copySTI();
11322   STI.setDefaultFeatures("", /*TuneCPU*/ "",
11323                          ("+" + ARM::getArchName(ID)).str());
11324   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
11325   FixModeAfterArchChange(WasThumb, L);
11326 
11327   getTargetStreamer().emitArch(ID);
11328   return false;
11329 }
11330 
11331 /// parseDirectiveEabiAttr
11332 ///  ::= .eabi_attribute int, int [, "str"]
11333 ///  ::= .eabi_attribute Tag_name, int [, "str"]
11334 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
11335   MCAsmParser &Parser = getParser();
11336   int64_t Tag;
11337   SMLoc TagLoc;
11338   TagLoc = Parser.getTok().getLoc();
11339   if (Parser.getTok().is(AsmToken::Identifier)) {
11340     StringRef Name = Parser.getTok().getIdentifier();
11341     Optional<unsigned> Ret = ELFAttrs::attrTypeFromString(
11342         Name, ARMBuildAttrs::getARMAttributeTags());
11343     if (!Ret.hasValue()) {
11344       Error(TagLoc, "attribute name not recognised: " + Name);
11345       return false;
11346     }
11347     Tag = Ret.getValue();
11348     Parser.Lex();
11349   } else {
11350     const MCExpr *AttrExpr;
11351 
11352     TagLoc = Parser.getTok().getLoc();
11353     if (Parser.parseExpression(AttrExpr))
11354       return true;
11355 
11356     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
11357     if (check(!CE, TagLoc, "expected numeric constant"))
11358       return true;
11359 
11360     Tag = CE->getValue();
11361   }
11362 
11363   if (Parser.parseToken(AsmToken::Comma, "comma expected"))
11364     return true;
11365 
11366   StringRef StringValue = "";
11367   bool IsStringValue = false;
11368 
11369   int64_t IntegerValue = 0;
11370   bool IsIntegerValue = false;
11371 
11372   if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name)
11373     IsStringValue = true;
11374   else if (Tag == ARMBuildAttrs::compatibility) {
11375     IsStringValue = true;
11376     IsIntegerValue = true;
11377   } else if (Tag < 32 || Tag % 2 == 0)
11378     IsIntegerValue = true;
11379   else if (Tag % 2 == 1)
11380     IsStringValue = true;
11381   else
11382     llvm_unreachable("invalid tag type");
11383 
11384   if (IsIntegerValue) {
11385     const MCExpr *ValueExpr;
11386     SMLoc ValueExprLoc = Parser.getTok().getLoc();
11387     if (Parser.parseExpression(ValueExpr))
11388       return true;
11389 
11390     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
11391     if (!CE)
11392       return Error(ValueExprLoc, "expected numeric constant");
11393     IntegerValue = CE->getValue();
11394   }
11395 
11396   if (Tag == ARMBuildAttrs::compatibility) {
11397     if (Parser.parseToken(AsmToken::Comma, "comma expected"))
11398       return true;
11399   }
11400 
11401   if (IsStringValue) {
11402     if (Parser.getTok().isNot(AsmToken::String))
11403       return Error(Parser.getTok().getLoc(), "bad string constant");
11404 
11405     StringValue = Parser.getTok().getStringContents();
11406     Parser.Lex();
11407   }
11408 
11409   if (Parser.parseToken(AsmToken::EndOfStatement,
11410                         "unexpected token in '.eabi_attribute' directive"))
11411     return true;
11412 
11413   if (IsIntegerValue && IsStringValue) {
11414     assert(Tag == ARMBuildAttrs::compatibility);
11415     getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
11416   } else if (IsIntegerValue)
11417     getTargetStreamer().emitAttribute(Tag, IntegerValue);
11418   else if (IsStringValue)
11419     getTargetStreamer().emitTextAttribute(Tag, StringValue);
11420   return false;
11421 }
11422 
11423 /// parseDirectiveCPU
11424 ///  ::= .cpu str
11425 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
11426   StringRef CPU = getParser().parseStringToEndOfStatement().trim();
11427   getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
11428 
11429   // FIXME: This is using table-gen data, but should be moved to
11430   // ARMTargetParser once that is table-gen'd.
11431   if (!getSTI().isCPUStringValid(CPU))
11432     return Error(L, "Unknown CPU name");
11433 
11434   bool WasThumb = isThumb();
11435   MCSubtargetInfo &STI = copySTI();
11436   STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, "");
11437   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
11438   FixModeAfterArchChange(WasThumb, L);
11439 
11440   return false;
11441 }
11442 
11443 /// parseDirectiveFPU
11444 ///  ::= .fpu str
11445 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
11446   SMLoc FPUNameLoc = getTok().getLoc();
11447   StringRef FPU = getParser().parseStringToEndOfStatement().trim();
11448 
11449   unsigned ID = ARM::parseFPU(FPU);
11450   std::vector<StringRef> Features;
11451   if (!ARM::getFPUFeatures(ID, Features))
11452     return Error(FPUNameLoc, "Unknown FPU name");
11453 
11454   MCSubtargetInfo &STI = copySTI();
11455   for (auto Feature : Features)
11456     STI.ApplyFeatureFlag(Feature);
11457   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
11458 
11459   getTargetStreamer().emitFPU(ID);
11460   return false;
11461 }
11462 
11463 /// parseDirectiveFnStart
11464 ///  ::= .fnstart
11465 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
11466   if (parseToken(AsmToken::EndOfStatement,
11467                  "unexpected token in '.fnstart' directive"))
11468     return true;
11469 
11470   if (UC.hasFnStart()) {
11471     Error(L, ".fnstart starts before the end of previous one");
11472     UC.emitFnStartLocNotes();
11473     return true;
11474   }
11475 
11476   // Reset the unwind directives parser state
11477   UC.reset();
11478 
11479   getTargetStreamer().emitFnStart();
11480 
11481   UC.recordFnStart(L);
11482   return false;
11483 }
11484 
11485 /// parseDirectiveFnEnd
11486 ///  ::= .fnend
11487 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
11488   if (parseToken(AsmToken::EndOfStatement,
11489                  "unexpected token in '.fnend' directive"))
11490     return true;
11491   // Check the ordering of unwind directives
11492   if (!UC.hasFnStart())
11493     return Error(L, ".fnstart must precede .fnend directive");
11494 
11495   // Reset the unwind directives parser state
11496   getTargetStreamer().emitFnEnd();
11497 
11498   UC.reset();
11499   return false;
11500 }
11501 
11502 /// parseDirectiveCantUnwind
11503 ///  ::= .cantunwind
11504 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
11505   if (parseToken(AsmToken::EndOfStatement,
11506                  "unexpected token in '.cantunwind' directive"))
11507     return true;
11508 
11509   UC.recordCantUnwind(L);
11510   // Check the ordering of unwind directives
11511   if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive"))
11512     return true;
11513 
11514   if (UC.hasHandlerData()) {
11515     Error(L, ".cantunwind can't be used with .handlerdata directive");
11516     UC.emitHandlerDataLocNotes();
11517     return true;
11518   }
11519   if (UC.hasPersonality()) {
11520     Error(L, ".cantunwind can't be used with .personality directive");
11521     UC.emitPersonalityLocNotes();
11522     return true;
11523   }
11524 
11525   getTargetStreamer().emitCantUnwind();
11526   return false;
11527 }
11528 
11529 /// parseDirectivePersonality
11530 ///  ::= .personality name
11531 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
11532   MCAsmParser &Parser = getParser();
11533   bool HasExistingPersonality = UC.hasPersonality();
11534 
11535   // Parse the name of the personality routine
11536   if (Parser.getTok().isNot(AsmToken::Identifier))
11537     return Error(L, "unexpected input in .personality directive.");
11538   StringRef Name(Parser.getTok().getIdentifier());
11539   Parser.Lex();
11540 
11541   if (parseToken(AsmToken::EndOfStatement,
11542                  "unexpected token in '.personality' directive"))
11543     return true;
11544 
11545   UC.recordPersonality(L);
11546 
11547   // Check the ordering of unwind directives
11548   if (!UC.hasFnStart())
11549     return Error(L, ".fnstart must precede .personality directive");
11550   if (UC.cantUnwind()) {
11551     Error(L, ".personality can't be used with .cantunwind directive");
11552     UC.emitCantUnwindLocNotes();
11553     return true;
11554   }
11555   if (UC.hasHandlerData()) {
11556     Error(L, ".personality must precede .handlerdata directive");
11557     UC.emitHandlerDataLocNotes();
11558     return true;
11559   }
11560   if (HasExistingPersonality) {
11561     Error(L, "multiple personality directives");
11562     UC.emitPersonalityLocNotes();
11563     return true;
11564   }
11565 
11566   MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name);
11567   getTargetStreamer().emitPersonality(PR);
11568   return false;
11569 }
11570 
11571 /// parseDirectiveHandlerData
11572 ///  ::= .handlerdata
11573 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
11574   if (parseToken(AsmToken::EndOfStatement,
11575                  "unexpected token in '.handlerdata' directive"))
11576     return true;
11577 
11578   UC.recordHandlerData(L);
11579   // Check the ordering of unwind directives
11580   if (!UC.hasFnStart())
11581     return Error(L, ".fnstart must precede .personality directive");
11582   if (UC.cantUnwind()) {
11583     Error(L, ".handlerdata can't be used with .cantunwind directive");
11584     UC.emitCantUnwindLocNotes();
11585     return true;
11586   }
11587 
11588   getTargetStreamer().emitHandlerData();
11589   return false;
11590 }
11591 
11592 /// parseDirectiveSetFP
11593 ///  ::= .setfp fpreg, spreg [, offset]
11594 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
11595   MCAsmParser &Parser = getParser();
11596   // Check the ordering of unwind directives
11597   if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") ||
11598       check(UC.hasHandlerData(), L,
11599             ".setfp must precede .handlerdata directive"))
11600     return true;
11601 
11602   // Parse fpreg
11603   SMLoc FPRegLoc = Parser.getTok().getLoc();
11604   int FPReg = tryParseRegister();
11605 
11606   if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") ||
11607       Parser.parseToken(AsmToken::Comma, "comma expected"))
11608     return true;
11609 
11610   // Parse spreg
11611   SMLoc SPRegLoc = Parser.getTok().getLoc();
11612   int SPReg = tryParseRegister();
11613   if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") ||
11614       check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc,
11615             "register should be either $sp or the latest fp register"))
11616     return true;
11617 
11618   // Update the frame pointer register
11619   UC.saveFPReg(FPReg);
11620 
11621   // Parse offset
11622   int64_t Offset = 0;
11623   if (Parser.parseOptionalToken(AsmToken::Comma)) {
11624     if (Parser.getTok().isNot(AsmToken::Hash) &&
11625         Parser.getTok().isNot(AsmToken::Dollar))
11626       return Error(Parser.getTok().getLoc(), "'#' expected");
11627     Parser.Lex(); // skip hash token.
11628 
11629     const MCExpr *OffsetExpr;
11630     SMLoc ExLoc = Parser.getTok().getLoc();
11631     SMLoc EndLoc;
11632     if (getParser().parseExpression(OffsetExpr, EndLoc))
11633       return Error(ExLoc, "malformed setfp offset");
11634     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11635     if (check(!CE, ExLoc, "setfp offset must be an immediate"))
11636       return true;
11637     Offset = CE->getValue();
11638   }
11639 
11640   if (Parser.parseToken(AsmToken::EndOfStatement))
11641     return true;
11642 
11643   getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
11644                                 static_cast<unsigned>(SPReg), Offset);
11645   return false;
11646 }
11647 
11648 /// parseDirective
11649 ///  ::= .pad offset
11650 bool ARMAsmParser::parseDirectivePad(SMLoc L) {
11651   MCAsmParser &Parser = getParser();
11652   // Check the ordering of unwind directives
11653   if (!UC.hasFnStart())
11654     return Error(L, ".fnstart must precede .pad directive");
11655   if (UC.hasHandlerData())
11656     return Error(L, ".pad must precede .handlerdata directive");
11657 
11658   // Parse the offset
11659   if (Parser.getTok().isNot(AsmToken::Hash) &&
11660       Parser.getTok().isNot(AsmToken::Dollar))
11661     return Error(Parser.getTok().getLoc(), "'#' expected");
11662   Parser.Lex(); // skip hash token.
11663 
11664   const MCExpr *OffsetExpr;
11665   SMLoc ExLoc = Parser.getTok().getLoc();
11666   SMLoc EndLoc;
11667   if (getParser().parseExpression(OffsetExpr, EndLoc))
11668     return Error(ExLoc, "malformed pad offset");
11669   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11670   if (!CE)
11671     return Error(ExLoc, "pad offset must be an immediate");
11672 
11673   if (parseToken(AsmToken::EndOfStatement,
11674                  "unexpected token in '.pad' directive"))
11675     return true;
11676 
11677   getTargetStreamer().emitPad(CE->getValue());
11678   return false;
11679 }
11680 
11681 /// parseDirectiveRegSave
11682 ///  ::= .save  { registers }
11683 ///  ::= .vsave { registers }
11684 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
11685   // Check the ordering of unwind directives
11686   if (!UC.hasFnStart())
11687     return Error(L, ".fnstart must precede .save or .vsave directives");
11688   if (UC.hasHandlerData())
11689     return Error(L, ".save or .vsave must precede .handlerdata directive");
11690 
11691   // RAII object to make sure parsed operands are deleted.
11692   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
11693 
11694   // Parse the register list
11695   if (parseRegisterList(Operands, true, true) ||
11696       parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11697     return true;
11698   ARMOperand &Op = (ARMOperand &)*Operands[0];
11699   if (!IsVector && !Op.isRegList())
11700     return Error(L, ".save expects GPR registers");
11701   if (IsVector && !Op.isDPRRegList())
11702     return Error(L, ".vsave expects DPR registers");
11703 
11704   getTargetStreamer().emitRegSave(Op.getRegList(), IsVector);
11705   return false;
11706 }
11707 
11708 /// parseDirectiveInst
11709 ///  ::= .inst opcode [, ...]
11710 ///  ::= .inst.n opcode [, ...]
11711 ///  ::= .inst.w opcode [, ...]
11712 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
11713   int Width = 4;
11714 
11715   if (isThumb()) {
11716     switch (Suffix) {
11717     case 'n':
11718       Width = 2;
11719       break;
11720     case 'w':
11721       break;
11722     default:
11723       Width = 0;
11724       break;
11725     }
11726   } else {
11727     if (Suffix)
11728       return Error(Loc, "width suffixes are invalid in ARM mode");
11729   }
11730 
11731   auto parseOne = [&]() -> bool {
11732     const MCExpr *Expr;
11733     if (getParser().parseExpression(Expr))
11734       return true;
11735     const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
11736     if (!Value) {
11737       return Error(Loc, "expected constant expression");
11738     }
11739 
11740     char CurSuffix = Suffix;
11741     switch (Width) {
11742     case 2:
11743       if (Value->getValue() > 0xffff)
11744         return Error(Loc, "inst.n operand is too big, use inst.w instead");
11745       break;
11746     case 4:
11747       if (Value->getValue() > 0xffffffff)
11748         return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") +
11749                               " operand is too big");
11750       break;
11751     case 0:
11752       // Thumb mode, no width indicated. Guess from the opcode, if possible.
11753       if (Value->getValue() < 0xe800)
11754         CurSuffix = 'n';
11755       else if (Value->getValue() >= 0xe8000000)
11756         CurSuffix = 'w';
11757       else
11758         return Error(Loc, "cannot determine Thumb instruction size, "
11759                           "use inst.n/inst.w instead");
11760       break;
11761     default:
11762       llvm_unreachable("only supported widths are 2 and 4");
11763     }
11764 
11765     getTargetStreamer().emitInst(Value->getValue(), CurSuffix);
11766     return false;
11767   };
11768 
11769   if (parseOptionalToken(AsmToken::EndOfStatement))
11770     return Error(Loc, "expected expression following directive");
11771   if (parseMany(parseOne))
11772     return true;
11773   return false;
11774 }
11775 
11776 /// parseDirectiveLtorg
11777 ///  ::= .ltorg | .pool
11778 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
11779   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11780     return true;
11781   getTargetStreamer().emitCurrentConstantPool();
11782   return false;
11783 }
11784 
11785 bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
11786   const MCSection *Section = getStreamer().getCurrentSectionOnly();
11787 
11788   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11789     return true;
11790 
11791   if (!Section) {
11792     getStreamer().initSections(false, getSTI());
11793     Section = getStreamer().getCurrentSectionOnly();
11794   }
11795 
11796   assert(Section && "must have section to emit alignment");
11797   if (Section->UseCodeAlign())
11798     getStreamer().emitCodeAlignment(2, &getSTI());
11799   else
11800     getStreamer().emitValueToAlignment(2);
11801 
11802   return false;
11803 }
11804 
11805 /// parseDirectivePersonalityIndex
11806 ///   ::= .personalityindex index
11807 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
11808   MCAsmParser &Parser = getParser();
11809   bool HasExistingPersonality = UC.hasPersonality();
11810 
11811   const MCExpr *IndexExpression;
11812   SMLoc IndexLoc = Parser.getTok().getLoc();
11813   if (Parser.parseExpression(IndexExpression) ||
11814       parseToken(AsmToken::EndOfStatement,
11815                  "unexpected token in '.personalityindex' directive")) {
11816     return true;
11817   }
11818 
11819   UC.recordPersonalityIndex(L);
11820 
11821   if (!UC.hasFnStart()) {
11822     return Error(L, ".fnstart must precede .personalityindex directive");
11823   }
11824   if (UC.cantUnwind()) {
11825     Error(L, ".personalityindex cannot be used with .cantunwind");
11826     UC.emitCantUnwindLocNotes();
11827     return true;
11828   }
11829   if (UC.hasHandlerData()) {
11830     Error(L, ".personalityindex must precede .handlerdata directive");
11831     UC.emitHandlerDataLocNotes();
11832     return true;
11833   }
11834   if (HasExistingPersonality) {
11835     Error(L, "multiple personality directives");
11836     UC.emitPersonalityLocNotes();
11837     return true;
11838   }
11839 
11840   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
11841   if (!CE)
11842     return Error(IndexLoc, "index must be a constant number");
11843   if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX)
11844     return Error(IndexLoc,
11845                  "personality routine index should be in range [0-3]");
11846 
11847   getTargetStreamer().emitPersonalityIndex(CE->getValue());
11848   return false;
11849 }
11850 
11851 /// parseDirectiveUnwindRaw
11852 ///   ::= .unwind_raw offset, opcode [, opcode...]
11853 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
11854   MCAsmParser &Parser = getParser();
11855   int64_t StackOffset;
11856   const MCExpr *OffsetExpr;
11857   SMLoc OffsetLoc = getLexer().getLoc();
11858 
11859   if (!UC.hasFnStart())
11860     return Error(L, ".fnstart must precede .unwind_raw directives");
11861   if (getParser().parseExpression(OffsetExpr))
11862     return Error(OffsetLoc, "expected expression");
11863 
11864   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11865   if (!CE)
11866     return Error(OffsetLoc, "offset must be a constant");
11867 
11868   StackOffset = CE->getValue();
11869 
11870   if (Parser.parseToken(AsmToken::Comma, "expected comma"))
11871     return true;
11872 
11873   SmallVector<uint8_t, 16> Opcodes;
11874 
11875   auto parseOne = [&]() -> bool {
11876     const MCExpr *OE = nullptr;
11877     SMLoc OpcodeLoc = getLexer().getLoc();
11878     if (check(getLexer().is(AsmToken::EndOfStatement) ||
11879                   Parser.parseExpression(OE),
11880               OpcodeLoc, "expected opcode expression"))
11881       return true;
11882     const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
11883     if (!OC)
11884       return Error(OpcodeLoc, "opcode value must be a constant");
11885     const int64_t Opcode = OC->getValue();
11886     if (Opcode & ~0xff)
11887       return Error(OpcodeLoc, "invalid opcode");
11888     Opcodes.push_back(uint8_t(Opcode));
11889     return false;
11890   };
11891 
11892   // Must have at least 1 element
11893   SMLoc OpcodeLoc = getLexer().getLoc();
11894   if (parseOptionalToken(AsmToken::EndOfStatement))
11895     return Error(OpcodeLoc, "expected opcode expression");
11896   if (parseMany(parseOne))
11897     return true;
11898 
11899   getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
11900   return false;
11901 }
11902 
11903 /// parseDirectiveTLSDescSeq
11904 ///   ::= .tlsdescseq tls-variable
11905 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
11906   MCAsmParser &Parser = getParser();
11907 
11908   if (getLexer().isNot(AsmToken::Identifier))
11909     return TokError("expected variable after '.tlsdescseq' directive");
11910 
11911   const MCSymbolRefExpr *SRE =
11912     MCSymbolRefExpr::create(Parser.getTok().getIdentifier(),
11913                             MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
11914   Lex();
11915 
11916   if (parseToken(AsmToken::EndOfStatement,
11917                  "unexpected token in '.tlsdescseq' directive"))
11918     return true;
11919 
11920   getTargetStreamer().AnnotateTLSDescriptorSequence(SRE);
11921   return false;
11922 }
11923 
11924 /// parseDirectiveMovSP
11925 ///  ::= .movsp reg [, #offset]
11926 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
11927   MCAsmParser &Parser = getParser();
11928   if (!UC.hasFnStart())
11929     return Error(L, ".fnstart must precede .movsp directives");
11930   if (UC.getFPReg() != ARM::SP)
11931     return Error(L, "unexpected .movsp directive");
11932 
11933   SMLoc SPRegLoc = Parser.getTok().getLoc();
11934   int SPReg = tryParseRegister();
11935   if (SPReg == -1)
11936     return Error(SPRegLoc, "register expected");
11937   if (SPReg == ARM::SP || SPReg == ARM::PC)
11938     return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");
11939 
11940   int64_t Offset = 0;
11941   if (Parser.parseOptionalToken(AsmToken::Comma)) {
11942     if (Parser.parseToken(AsmToken::Hash, "expected #constant"))
11943       return true;
11944 
11945     const MCExpr *OffsetExpr;
11946     SMLoc OffsetLoc = Parser.getTok().getLoc();
11947 
11948     if (Parser.parseExpression(OffsetExpr))
11949       return Error(OffsetLoc, "malformed offset expression");
11950 
11951     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11952     if (!CE)
11953       return Error(OffsetLoc, "offset must be an immediate constant");
11954 
11955     Offset = CE->getValue();
11956   }
11957 
11958   if (parseToken(AsmToken::EndOfStatement,
11959                  "unexpected token in '.movsp' directive"))
11960     return true;
11961 
11962   getTargetStreamer().emitMovSP(SPReg, Offset);
11963   UC.saveFPReg(SPReg);
11964 
11965   return false;
11966 }
11967 
11968 /// parseDirectiveObjectArch
11969 ///   ::= .object_arch name
11970 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
11971   MCAsmParser &Parser = getParser();
11972   if (getLexer().isNot(AsmToken::Identifier))
11973     return Error(getLexer().getLoc(), "unexpected token");
11974 
11975   StringRef Arch = Parser.getTok().getString();
11976   SMLoc ArchLoc = Parser.getTok().getLoc();
11977   Lex();
11978 
11979   ARM::ArchKind ID = ARM::parseArch(Arch);
11980 
11981   if (ID == ARM::ArchKind::INVALID)
11982     return Error(ArchLoc, "unknown architecture '" + Arch + "'");
11983   if (parseToken(AsmToken::EndOfStatement))
11984     return true;
11985 
11986   getTargetStreamer().emitObjectArch(ID);
11987   return false;
11988 }
11989 
11990 /// parseDirectiveAlign
11991 ///   ::= .align
11992 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
11993   // NOTE: if this is not the end of the statement, fall back to the target
11994   // agnostic handling for this directive which will correctly handle this.
11995   if (parseOptionalToken(AsmToken::EndOfStatement)) {
11996     // '.align' is target specifically handled to mean 2**2 byte alignment.
11997     const MCSection *Section = getStreamer().getCurrentSectionOnly();
11998     assert(Section && "must have section to emit alignment");
11999     if (Section->UseCodeAlign())
12000       getStreamer().emitCodeAlignment(4, &getSTI(), 0);
12001     else
12002       getStreamer().emitValueToAlignment(4, 0, 1, 0);
12003     return false;
12004   }
12005   return true;
12006 }
12007 
12008 /// parseDirectiveThumbSet
12009 ///  ::= .thumb_set name, value
12010 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
12011   MCAsmParser &Parser = getParser();
12012 
12013   StringRef Name;
12014   if (check(Parser.parseIdentifier(Name),
12015             "expected identifier after '.thumb_set'") ||
12016       parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'"))
12017     return true;
12018 
12019   MCSymbol *Sym;
12020   const MCExpr *Value;
12021   if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true,
12022                                                Parser, Sym, Value))
12023     return true;
12024 
12025   getTargetStreamer().emitThumbSet(Sym, Value);
12026   return false;
12027 }
12028 
12029 /// Force static initialization.
12030 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmParser() {
12031   RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget());
12032   RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget());
12033   RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget());
12034   RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget());
12035 }
12036 
12037 #define GET_REGISTER_MATCHER
12038 #define GET_SUBTARGET_FEATURE_NAME
12039 #define GET_MATCHER_IMPLEMENTATION
12040 #define GET_MNEMONIC_SPELL_CHECKER
12041 #include "ARMGenAsmMatcher.inc"
12042 
12043 // Some diagnostics need to vary with subtarget features, so they are handled
12044 // here. For example, the DPR class has either 16 or 32 registers, depending
12045 // on the FPU available.
12046 const char *
12047 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) {
12048   switch (MatchError) {
12049   // rGPR contains sp starting with ARMv8.
12050   case Match_rGPR:
12051     return hasV8Ops() ? "operand must be a register in range [r0, r14]"
12052                       : "operand must be a register in range [r0, r12] or r14";
12053   // DPR contains 16 registers for some FPUs, and 32 for others.
12054   case Match_DPR:
12055     return hasD32() ? "operand must be a register in range [d0, d31]"
12056                     : "operand must be a register in range [d0, d15]";
12057   case Match_DPR_RegList:
12058     return hasD32() ? "operand must be a list of registers in range [d0, d31]"
12059                     : "operand must be a list of registers in range [d0, d15]";
12060 
12061   // For all other diags, use the static string from tablegen.
12062   default:
12063     return getMatchKindDiag(MatchError);
12064   }
12065 }
12066 
12067 // Process the list of near-misses, throwing away ones we don't want to report
12068 // to the user, and converting the rest to a source location and string that
12069 // should be reported.
12070 void
12071 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
12072                                SmallVectorImpl<NearMissMessage> &NearMissesOut,
12073                                SMLoc IDLoc, OperandVector &Operands) {
12074   // TODO: If operand didn't match, sub in a dummy one and run target
12075   // predicate, so that we can avoid reporting near-misses that are invalid?
12076   // TODO: Many operand types dont have SuperClasses set, so we report
12077   // redundant ones.
12078   // TODO: Some operands are superclasses of registers (e.g.
12079   // MCK_RegShiftedImm), we don't have any way to represent that currently.
12080   // TODO: This is not all ARM-specific, can some of it be factored out?
12081 
12082   // Record some information about near-misses that we have already seen, so
12083   // that we can avoid reporting redundant ones. For example, if there are
12084   // variants of an instruction that take 8- and 16-bit immediates, we want
12085   // to only report the widest one.
12086   std::multimap<unsigned, unsigned> OperandMissesSeen;
12087   SmallSet<FeatureBitset, 4> FeatureMissesSeen;
12088   bool ReportedTooFewOperands = false;
12089 
12090   // Process the near-misses in reverse order, so that we see more general ones
12091   // first, and so can avoid emitting more specific ones.
12092   for (NearMissInfo &I : reverse(NearMissesIn)) {
12093     switch (I.getKind()) {
12094     case NearMissInfo::NearMissOperand: {
12095       SMLoc OperandLoc =
12096           ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc();
12097       const char *OperandDiag =
12098           getCustomOperandDiag((ARMMatchResultTy)I.getOperandError());
12099 
12100       // If we have already emitted a message for a superclass, don't also report
12101       // the sub-class. We consider all operand classes that we don't have a
12102       // specialised diagnostic for to be equal for the propose of this check,
12103       // so that we don't report the generic error multiple times on the same
12104       // operand.
12105       unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U;
12106       auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex());
12107       if (std::any_of(PrevReports.first, PrevReports.second,
12108                       [DupCheckMatchClass](
12109                           const std::pair<unsigned, unsigned> Pair) {
12110             if (DupCheckMatchClass == ~0U || Pair.second == ~0U)
12111               return Pair.second == DupCheckMatchClass;
12112             else
12113               return isSubclass((MatchClassKind)DupCheckMatchClass,
12114                                 (MatchClassKind)Pair.second);
12115           }))
12116         break;
12117       OperandMissesSeen.insert(
12118           std::make_pair(I.getOperandIndex(), DupCheckMatchClass));
12119 
12120       NearMissMessage Message;
12121       Message.Loc = OperandLoc;
12122       if (OperandDiag) {
12123         Message.Message = OperandDiag;
12124       } else if (I.getOperandClass() == InvalidMatchClass) {
12125         Message.Message = "too many operands for instruction";
12126       } else {
12127         Message.Message = "invalid operand for instruction";
12128         LLVM_DEBUG(
12129             dbgs() << "Missing diagnostic string for operand class "
12130                    << getMatchClassName((MatchClassKind)I.getOperandClass())
12131                    << I.getOperandClass() << ", error " << I.getOperandError()
12132                    << ", opcode " << MII.getName(I.getOpcode()) << "\n");
12133       }
12134       NearMissesOut.emplace_back(Message);
12135       break;
12136     }
12137     case NearMissInfo::NearMissFeature: {
12138       const FeatureBitset &MissingFeatures = I.getFeatures();
12139       // Don't report the same set of features twice.
12140       if (FeatureMissesSeen.count(MissingFeatures))
12141         break;
12142       FeatureMissesSeen.insert(MissingFeatures);
12143 
12144       // Special case: don't report a feature set which includes arm-mode for
12145       // targets that don't have ARM mode.
12146       if (MissingFeatures.test(Feature_IsARMBit) && !hasARM())
12147         break;
12148       // Don't report any near-misses that both require switching instruction
12149       // set, and adding other subtarget features.
12150       if (isThumb() && MissingFeatures.test(Feature_IsARMBit) &&
12151           MissingFeatures.count() > 1)
12152         break;
12153       if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) &&
12154           MissingFeatures.count() > 1)
12155         break;
12156       if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) &&
12157           (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit,
12158                                              Feature_IsThumbBit})).any())
12159         break;
12160       if (isMClass() && MissingFeatures.test(Feature_HasNEONBit))
12161         break;
12162 
12163       NearMissMessage Message;
12164       Message.Loc = IDLoc;
12165       raw_svector_ostream OS(Message.Message);
12166 
12167       OS << "instruction requires:";
12168       for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i)
12169         if (MissingFeatures.test(i))
12170           OS << ' ' << getSubtargetFeatureName(i);
12171 
12172       NearMissesOut.emplace_back(Message);
12173 
12174       break;
12175     }
12176     case NearMissInfo::NearMissPredicate: {
12177       NearMissMessage Message;
12178       Message.Loc = IDLoc;
12179       switch (I.getPredicateError()) {
12180       case Match_RequiresNotITBlock:
12181         Message.Message = "flag setting instruction only valid outside IT block";
12182         break;
12183       case Match_RequiresITBlock:
12184         Message.Message = "instruction only valid inside IT block";
12185         break;
12186       case Match_RequiresV6:
12187         Message.Message = "instruction variant requires ARMv6 or later";
12188         break;
12189       case Match_RequiresThumb2:
12190         Message.Message = "instruction variant requires Thumb2";
12191         break;
12192       case Match_RequiresV8:
12193         Message.Message = "instruction variant requires ARMv8 or later";
12194         break;
12195       case Match_RequiresFlagSetting:
12196         Message.Message = "no flag-preserving variant of this instruction available";
12197         break;
12198       case Match_InvalidOperand:
12199         Message.Message = "invalid operand for instruction";
12200         break;
12201       default:
12202         llvm_unreachable("Unhandled target predicate error");
12203         break;
12204       }
12205       NearMissesOut.emplace_back(Message);
12206       break;
12207     }
12208     case NearMissInfo::NearMissTooFewOperands: {
12209       if (!ReportedTooFewOperands) {
12210         SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc();
12211         NearMissesOut.emplace_back(NearMissMessage{
12212             EndLoc, StringRef("too few operands for instruction")});
12213         ReportedTooFewOperands = true;
12214       }
12215       break;
12216     }
12217     case NearMissInfo::NoNearMiss:
12218       // This should never leave the matcher.
12219       llvm_unreachable("not a near-miss");
12220       break;
12221     }
12222   }
12223 }
12224 
12225 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses,
12226                                     SMLoc IDLoc, OperandVector &Operands) {
12227   SmallVector<NearMissMessage, 4> Messages;
12228   FilterNearMisses(NearMisses, Messages, IDLoc, Operands);
12229 
12230   if (Messages.size() == 0) {
12231     // No near-misses were found, so the best we can do is "invalid
12232     // instruction".
12233     Error(IDLoc, "invalid instruction");
12234   } else if (Messages.size() == 1) {
12235     // One near miss was found, report it as the sole error.
12236     Error(Messages[0].Loc, Messages[0].Message);
12237   } else {
12238     // More than one near miss, so report a generic "invalid instruction"
12239     // error, followed by notes for each of the near-misses.
12240     Error(IDLoc, "invalid instruction, any one of the following would fix this:");
12241     for (auto &M : Messages) {
12242       Note(M.Loc, M.Message);
12243     }
12244   }
12245 }
12246 
12247 bool ARMAsmParser::enableArchExtFeature(StringRef Name, SMLoc &ExtLoc) {
12248   // FIXME: This structure should be moved inside ARMTargetParser
12249   // when we start to table-generate them, and we can use the ARM
12250   // flags below, that were generated by table-gen.
12251   static const struct {
12252     const uint64_t Kind;
12253     const FeatureBitset ArchCheck;
12254     const FeatureBitset Features;
12255   } Extensions[] = {
12256       {ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC}},
12257       {ARM::AEK_AES,
12258        {Feature_HasV8Bit},
12259        {ARM::FeatureAES, ARM::FeatureNEON, ARM::FeatureFPARMv8}},
12260       {ARM::AEK_SHA2,
12261        {Feature_HasV8Bit},
12262        {ARM::FeatureSHA2, ARM::FeatureNEON, ARM::FeatureFPARMv8}},
12263       {ARM::AEK_CRYPTO,
12264        {Feature_HasV8Bit},
12265        {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8}},
12266       {ARM::AEK_FP,
12267        {Feature_HasV8Bit},
12268        {ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8}},
12269       {(ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM),
12270        {Feature_HasV7Bit, Feature_IsNotMClassBit},
12271        {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM}},
12272       {ARM::AEK_MP,
12273        {Feature_HasV7Bit, Feature_IsNotMClassBit},
12274        {ARM::FeatureMP}},
12275       {ARM::AEK_SIMD,
12276        {Feature_HasV8Bit},
12277        {ARM::FeatureNEON, ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8}},
12278       {ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone}},
12279       // FIXME: Only available in A-class, isel not predicated
12280       {ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization}},
12281       {ARM::AEK_FP16,
12282        {Feature_HasV8_2aBit},
12283        {ARM::FeatureFPARMv8, ARM::FeatureFullFP16}},
12284       {ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS}},
12285       {ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB}},
12286       {ARM::AEK_PACBTI, {Feature_HasV8_1MMainlineBit}, {ARM::FeaturePACBTI}},
12287       // FIXME: Unsupported extensions.
12288       {ARM::AEK_OS, {}, {}},
12289       {ARM::AEK_IWMMXT, {}, {}},
12290       {ARM::AEK_IWMMXT2, {}, {}},
12291       {ARM::AEK_MAVERICK, {}, {}},
12292       {ARM::AEK_XSCALE, {}, {}},
12293   };
12294   bool EnableFeature = true;
12295   if (Name.startswith_insensitive("no")) {
12296     EnableFeature = false;
12297     Name = Name.substr(2);
12298   }
12299   uint64_t FeatureKind = ARM::parseArchExt(Name);
12300   if (FeatureKind == ARM::AEK_INVALID)
12301     return Error(ExtLoc, "unknown architectural extension: " + Name);
12302 
12303   for (const auto &Extension : Extensions) {
12304     if (Extension.Kind != FeatureKind)
12305       continue;
12306 
12307     if (Extension.Features.none())
12308       return Error(ExtLoc, "unsupported architectural extension: " + Name);
12309 
12310     if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck)
12311       return Error(ExtLoc, "architectural extension '" + Name +
12312                                "' is not "
12313                                "allowed for the current base architecture");
12314 
12315     MCSubtargetInfo &STI = copySTI();
12316     if (EnableFeature) {
12317       STI.SetFeatureBitsTransitively(Extension.Features);
12318     } else {
12319       STI.ClearFeatureBitsTransitively(Extension.Features);
12320     }
12321     FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits());
12322     setAvailableFeatures(Features);
12323     return true;
12324   }
12325   return false;
12326 }
12327 
12328 /// parseDirectiveArchExtension
12329 ///   ::= .arch_extension [no]feature
12330 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
12331 
12332   MCAsmParser &Parser = getParser();
12333 
12334   if (getLexer().isNot(AsmToken::Identifier))
12335     return Error(getLexer().getLoc(), "expected architecture extension name");
12336 
12337   StringRef Name = Parser.getTok().getString();
12338   SMLoc ExtLoc = Parser.getTok().getLoc();
12339   Lex();
12340 
12341   if (parseToken(AsmToken::EndOfStatement,
12342                  "unexpected token in '.arch_extension' directive"))
12343     return true;
12344 
12345   if (Name == "nocrypto") {
12346     enableArchExtFeature("nosha2", ExtLoc);
12347     enableArchExtFeature("noaes", ExtLoc);
12348   }
12349 
12350   if (enableArchExtFeature(Name, ExtLoc))
12351     return false;
12352 
12353   return Error(ExtLoc, "unknown architectural extension: " + Name);
12354 }
12355 
12356 // Define this matcher function after the auto-generated include so we
12357 // have the match class enum definitions.
12358 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
12359                                                   unsigned Kind) {
12360   ARMOperand &Op = static_cast<ARMOperand &>(AsmOp);
12361   // If the kind is a token for a literal immediate, check if our asm
12362   // operand matches. This is for InstAliases which have a fixed-value
12363   // immediate in the syntax.
12364   switch (Kind) {
12365   default: break;
12366   case MCK__HASH_0:
12367     if (Op.isImm())
12368       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
12369         if (CE->getValue() == 0)
12370           return Match_Success;
12371     break;
12372   case MCK__HASH_8:
12373     if (Op.isImm())
12374       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
12375         if (CE->getValue() == 8)
12376           return Match_Success;
12377     break;
12378   case MCK__HASH_16:
12379     if (Op.isImm())
12380       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
12381         if (CE->getValue() == 16)
12382           return Match_Success;
12383     break;
12384   case MCK_ModImm:
12385     if (Op.isImm()) {
12386       const MCExpr *SOExpr = Op.getImm();
12387       int64_t Value;
12388       if (!SOExpr->evaluateAsAbsolute(Value))
12389         return Match_Success;
12390       assert((Value >= std::numeric_limits<int32_t>::min() &&
12391               Value <= std::numeric_limits<uint32_t>::max()) &&
12392              "expression value must be representable in 32 bits");
12393     }
12394     break;
12395   case MCK_rGPR:
12396     if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP)
12397       return Match_Success;
12398     return Match_rGPR;
12399   case MCK_GPRPair:
12400     if (Op.isReg() &&
12401         MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg()))
12402       return Match_Success;
12403     break;
12404   }
12405   return Match_InvalidOperand;
12406 }
12407 
12408 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic,
12409                                            StringRef ExtraToken) {
12410   if (!hasMVE())
12411     return false;
12412 
12413   return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") ||
12414          Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") ||
12415          Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") ||
12416          Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") ||
12417          Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") ||
12418          Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") ||
12419          Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") ||
12420          Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") ||
12421          Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") ||
12422          Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") ||
12423          Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") ||
12424          Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") ||
12425          Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") ||
12426          Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") ||
12427          Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") ||
12428          Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") ||
12429          Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") ||
12430          Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") ||
12431          Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") ||
12432          Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") ||
12433          Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") ||
12434          Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") ||
12435          Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") ||
12436          Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") ||
12437          Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") ||
12438          Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") ||
12439          Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") ||
12440          Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") ||
12441          Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") ||
12442          Mnemonic.startswith("vqabs") ||
12443          (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") ||
12444          Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") ||
12445          Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") ||
12446          Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") ||
12447          Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") ||
12448          Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") ||
12449          Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") ||
12450          Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") ||
12451          Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") ||
12452          Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") ||
12453          Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") ||
12454          Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") ||
12455          Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") ||
12456          Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") ||
12457          Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") ||
12458          Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") ||
12459          Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") ||
12460          Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") ||
12461          Mnemonic.startswith("vldrb") ||
12462          (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") ||
12463          (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") ||
12464          Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") ||
12465          Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") ||
12466          Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") ||
12467          Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") ||
12468          Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") ||
12469          Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") ||
12470          Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") ||
12471          Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") ||
12472          Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") ||
12473          Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") ||
12474          Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") ||
12475          Mnemonic.startswith("vcvt") ||
12476          MS.isVPTPredicableCDEInstr(Mnemonic) ||
12477          (Mnemonic.startswith("vmov") &&
12478           !(ExtraToken == ".f16" || ExtraToken == ".32" ||
12479             ExtraToken == ".16" || ExtraToken == ".8"));
12480 }
12481