1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMTargetTransformInfo.h" 10 #include "ARMSubtarget.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "llvm/ADT/APInt.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Analysis/LoopInfo.h" 15 #include "llvm/CodeGen/CostTable.h" 16 #include "llvm/CodeGen/ISDOpcodes.h" 17 #include "llvm/CodeGen/ValueTypes.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Instruction.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/IntrinsicsARM.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/MC/SubtargetFeature.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MachineValueType.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Transforms/InstCombine/InstCombiner.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/Transforms/Utils/LoopUtils.h" 36 #include <algorithm> 37 #include <cassert> 38 #include <cstdint> 39 #include <utility> 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "armtti" 44 45 static cl::opt<bool> EnableMaskedLoadStores( 46 "enable-arm-maskedldst", cl::Hidden, cl::init(true), 47 cl::desc("Enable the generation of masked loads and stores")); 48 49 static cl::opt<bool> DisableLowOverheadLoops( 50 "disable-arm-loloops", cl::Hidden, cl::init(false), 51 cl::desc("Disable the generation of low-overhead loops")); 52 53 static cl::opt<bool> 54 AllowWLSLoops("allow-arm-wlsloops", cl::Hidden, cl::init(true), 55 cl::desc("Enable the generation of WLS loops")); 56 57 extern cl::opt<TailPredication::Mode> EnableTailPredication; 58 59 extern cl::opt<bool> EnableMaskedGatherScatters; 60 61 extern cl::opt<unsigned> MVEMaxSupportedInterleaveFactor; 62 63 /// Convert a vector load intrinsic into a simple llvm load instruction. 64 /// This is beneficial when the underlying object being addressed comes 65 /// from a constant, since we get constant-folding for free. 66 static Value *simplifyNeonVld1(const IntrinsicInst &II, unsigned MemAlign, 67 InstCombiner::BuilderTy &Builder) { 68 auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1)); 69 70 if (!IntrAlign) 71 return nullptr; 72 73 unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign 74 ? MemAlign 75 : IntrAlign->getLimitedValue(); 76 77 if (!isPowerOf2_32(Alignment)) 78 return nullptr; 79 80 auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0), 81 PointerType::get(II.getType(), 0)); 82 return Builder.CreateAlignedLoad(II.getType(), BCastInst, Align(Alignment)); 83 } 84 85 bool ARMTTIImpl::areInlineCompatible(const Function *Caller, 86 const Function *Callee) const { 87 const TargetMachine &TM = getTLI()->getTargetMachine(); 88 const FeatureBitset &CallerBits = 89 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 90 const FeatureBitset &CalleeBits = 91 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 92 93 // To inline a callee, all features not in the allowed list must match exactly. 94 bool MatchExact = (CallerBits & ~InlineFeaturesAllowed) == 95 (CalleeBits & ~InlineFeaturesAllowed); 96 // For features in the allowed list, the callee's features must be a subset of 97 // the callers'. 98 bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeaturesAllowed) == 99 (CalleeBits & InlineFeaturesAllowed); 100 return MatchExact && MatchSubset; 101 } 102 103 TTI::AddressingModeKind 104 ARMTTIImpl::getPreferredAddressingMode(const Loop *L, 105 ScalarEvolution *SE) const { 106 if (ST->hasMVEIntegerOps()) 107 return TTI::AMK_PostIndexed; 108 109 if (L->getHeader()->getParent()->hasOptSize()) 110 return TTI::AMK_None; 111 112 if (ST->isMClass() && ST->isThumb2() && 113 L->getNumBlocks() == 1) 114 return TTI::AMK_PreIndexed; 115 116 return TTI::AMK_None; 117 } 118 119 Optional<Instruction *> 120 ARMTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { 121 using namespace PatternMatch; 122 Intrinsic::ID IID = II.getIntrinsicID(); 123 switch (IID) { 124 default: 125 break; 126 case Intrinsic::arm_neon_vld1: { 127 Align MemAlign = 128 getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II, 129 &IC.getAssumptionCache(), &IC.getDominatorTree()); 130 if (Value *V = simplifyNeonVld1(II, MemAlign.value(), IC.Builder)) { 131 return IC.replaceInstUsesWith(II, V); 132 } 133 break; 134 } 135 136 case Intrinsic::arm_neon_vld2: 137 case Intrinsic::arm_neon_vld3: 138 case Intrinsic::arm_neon_vld4: 139 case Intrinsic::arm_neon_vld2lane: 140 case Intrinsic::arm_neon_vld3lane: 141 case Intrinsic::arm_neon_vld4lane: 142 case Intrinsic::arm_neon_vst1: 143 case Intrinsic::arm_neon_vst2: 144 case Intrinsic::arm_neon_vst3: 145 case Intrinsic::arm_neon_vst4: 146 case Intrinsic::arm_neon_vst2lane: 147 case Intrinsic::arm_neon_vst3lane: 148 case Intrinsic::arm_neon_vst4lane: { 149 Align MemAlign = 150 getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II, 151 &IC.getAssumptionCache(), &IC.getDominatorTree()); 152 unsigned AlignArg = II.getNumArgOperands() - 1; 153 Value *AlignArgOp = II.getArgOperand(AlignArg); 154 MaybeAlign Align = cast<ConstantInt>(AlignArgOp)->getMaybeAlignValue(); 155 if (Align && *Align < MemAlign) { 156 return IC.replaceOperand( 157 II, AlignArg, 158 ConstantInt::get(Type::getInt32Ty(II.getContext()), MemAlign.value(), 159 false)); 160 } 161 break; 162 } 163 164 case Intrinsic::arm_mve_pred_i2v: { 165 Value *Arg = II.getArgOperand(0); 166 Value *ArgArg; 167 if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>( 168 PatternMatch::m_Value(ArgArg))) && 169 II.getType() == ArgArg->getType()) { 170 return IC.replaceInstUsesWith(II, ArgArg); 171 } 172 Constant *XorMask; 173 if (match(Arg, m_Xor(PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>( 174 PatternMatch::m_Value(ArgArg)), 175 PatternMatch::m_Constant(XorMask))) && 176 II.getType() == ArgArg->getType()) { 177 if (auto *CI = dyn_cast<ConstantInt>(XorMask)) { 178 if (CI->getValue().trunc(16).isAllOnesValue()) { 179 auto TrueVector = IC.Builder.CreateVectorSplat( 180 cast<FixedVectorType>(II.getType())->getNumElements(), 181 IC.Builder.getTrue()); 182 return BinaryOperator::Create(Instruction::Xor, ArgArg, TrueVector); 183 } 184 } 185 } 186 KnownBits ScalarKnown(32); 187 if (IC.SimplifyDemandedBits(&II, 0, APInt::getLowBitsSet(32, 16), 188 ScalarKnown, 0)) { 189 return &II; 190 } 191 break; 192 } 193 case Intrinsic::arm_mve_pred_v2i: { 194 Value *Arg = II.getArgOperand(0); 195 Value *ArgArg; 196 if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_i2v>( 197 PatternMatch::m_Value(ArgArg)))) { 198 return IC.replaceInstUsesWith(II, ArgArg); 199 } 200 if (!II.getMetadata(LLVMContext::MD_range)) { 201 Type *IntTy32 = Type::getInt32Ty(II.getContext()); 202 Metadata *M[] = { 203 ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0)), 204 ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0x10000))}; 205 II.setMetadata(LLVMContext::MD_range, MDNode::get(II.getContext(), M)); 206 return &II; 207 } 208 break; 209 } 210 case Intrinsic::arm_mve_vadc: 211 case Intrinsic::arm_mve_vadc_predicated: { 212 unsigned CarryOp = 213 (II.getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated) ? 3 : 2; 214 assert(II.getArgOperand(CarryOp)->getType()->getScalarSizeInBits() == 32 && 215 "Bad type for intrinsic!"); 216 217 KnownBits CarryKnown(32); 218 if (IC.SimplifyDemandedBits(&II, CarryOp, APInt::getOneBitSet(32, 29), 219 CarryKnown)) { 220 return &II; 221 } 222 break; 223 } 224 case Intrinsic::arm_mve_vmldava: { 225 Instruction *I = cast<Instruction>(&II); 226 if (I->hasOneUse()) { 227 auto *User = cast<Instruction>(*I->user_begin()); 228 Value *OpZ; 229 if (match(User, m_c_Add(m_Specific(I), m_Value(OpZ))) && 230 match(I->getOperand(3), m_Zero())) { 231 Value *OpX = I->getOperand(4); 232 Value *OpY = I->getOperand(5); 233 Type *OpTy = OpX->getType(); 234 235 IC.Builder.SetInsertPoint(User); 236 Value *V = 237 IC.Builder.CreateIntrinsic(Intrinsic::arm_mve_vmldava, {OpTy}, 238 {I->getOperand(0), I->getOperand(1), 239 I->getOperand(2), OpZ, OpX, OpY}); 240 241 IC.replaceInstUsesWith(*User, V); 242 return IC.eraseInstFromFunction(*User); 243 } 244 } 245 return None; 246 } 247 } 248 return None; 249 } 250 251 InstructionCost ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 252 TTI::TargetCostKind CostKind) { 253 assert(Ty->isIntegerTy()); 254 255 unsigned Bits = Ty->getPrimitiveSizeInBits(); 256 if (Bits == 0 || Imm.getActiveBits() >= 64) 257 return 4; 258 259 int64_t SImmVal = Imm.getSExtValue(); 260 uint64_t ZImmVal = Imm.getZExtValue(); 261 if (!ST->isThumb()) { 262 if ((SImmVal >= 0 && SImmVal < 65536) || 263 (ARM_AM::getSOImmVal(ZImmVal) != -1) || 264 (ARM_AM::getSOImmVal(~ZImmVal) != -1)) 265 return 1; 266 return ST->hasV6T2Ops() ? 2 : 3; 267 } 268 if (ST->isThumb2()) { 269 if ((SImmVal >= 0 && SImmVal < 65536) || 270 (ARM_AM::getT2SOImmVal(ZImmVal) != -1) || 271 (ARM_AM::getT2SOImmVal(~ZImmVal) != -1)) 272 return 1; 273 return ST->hasV6T2Ops() ? 2 : 3; 274 } 275 // Thumb1, any i8 imm cost 1. 276 if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256)) 277 return 1; 278 if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal)) 279 return 2; 280 // Load from constantpool. 281 return 3; 282 } 283 284 // Constants smaller than 256 fit in the immediate field of 285 // Thumb1 instructions so we return a zero cost and 1 otherwise. 286 InstructionCost ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 287 const APInt &Imm, Type *Ty) { 288 if (Imm.isNonNegative() && Imm.getLimitedValue() < 256) 289 return 0; 290 291 return 1; 292 } 293 294 // Checks whether Inst is part of a min(max()) or max(min()) pattern 295 // that will match to an SSAT instruction 296 static bool isSSATMinMaxPattern(Instruction *Inst, const APInt &Imm) { 297 Value *LHS, *RHS; 298 ConstantInt *C; 299 SelectPatternFlavor InstSPF = matchSelectPattern(Inst, LHS, RHS).Flavor; 300 301 if (InstSPF == SPF_SMAX && 302 PatternMatch::match(RHS, PatternMatch::m_ConstantInt(C)) && 303 C->getValue() == Imm && Imm.isNegative() && (-Imm).isPowerOf2()) { 304 305 auto isSSatMin = [&](Value *MinInst) { 306 if (isa<SelectInst>(MinInst)) { 307 Value *MinLHS, *MinRHS; 308 ConstantInt *MinC; 309 SelectPatternFlavor MinSPF = 310 matchSelectPattern(MinInst, MinLHS, MinRHS).Flavor; 311 if (MinSPF == SPF_SMIN && 312 PatternMatch::match(MinRHS, PatternMatch::m_ConstantInt(MinC)) && 313 MinC->getValue() == ((-Imm) - 1)) 314 return true; 315 } 316 return false; 317 }; 318 319 if (isSSatMin(Inst->getOperand(1)) || 320 (Inst->hasNUses(2) && (isSSatMin(*Inst->user_begin()) || 321 isSSatMin(*(++Inst->user_begin()))))) 322 return true; 323 } 324 return false; 325 } 326 327 InstructionCost ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 328 const APInt &Imm, Type *Ty, 329 TTI::TargetCostKind CostKind, 330 Instruction *Inst) { 331 // Division by a constant can be turned into multiplication, but only if we 332 // know it's constant. So it's not so much that the immediate is cheap (it's 333 // not), but that the alternative is worse. 334 // FIXME: this is probably unneeded with GlobalISel. 335 if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv || 336 Opcode == Instruction::SRem || Opcode == Instruction::URem) && 337 Idx == 1) 338 return 0; 339 340 // Leave any gep offsets for the CodeGenPrepare, which will do a better job at 341 // splitting any large offsets. 342 if (Opcode == Instruction::GetElementPtr && Idx != 0) 343 return 0; 344 345 if (Opcode == Instruction::And) { 346 // UXTB/UXTH 347 if (Imm == 255 || Imm == 65535) 348 return 0; 349 // Conversion to BIC is free, and means we can use ~Imm instead. 350 return std::min(getIntImmCost(Imm, Ty, CostKind), 351 getIntImmCost(~Imm, Ty, CostKind)); 352 } 353 354 if (Opcode == Instruction::Add) 355 // Conversion to SUB is free, and means we can use -Imm instead. 356 return std::min(getIntImmCost(Imm, Ty, CostKind), 357 getIntImmCost(-Imm, Ty, CostKind)); 358 359 if (Opcode == Instruction::ICmp && Imm.isNegative() && 360 Ty->getIntegerBitWidth() == 32) { 361 int64_t NegImm = -Imm.getSExtValue(); 362 if (ST->isThumb2() && NegImm < 1<<12) 363 // icmp X, #-C -> cmn X, #C 364 return 0; 365 if (ST->isThumb() && NegImm < 1<<8) 366 // icmp X, #-C -> adds X, #C 367 return 0; 368 } 369 370 // xor a, -1 can always be folded to MVN 371 if (Opcode == Instruction::Xor && Imm.isAllOnesValue()) 372 return 0; 373 374 // Ensures negative constant of min(max()) or max(min()) patterns that 375 // match to SSAT instructions don't get hoisted 376 if (Inst && ((ST->hasV6Ops() && !ST->isThumb()) || ST->isThumb2()) && 377 Ty->getIntegerBitWidth() <= 32) { 378 if (isSSATMinMaxPattern(Inst, Imm) || 379 (isa<ICmpInst>(Inst) && Inst->hasOneUse() && 380 isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm))) 381 return 0; 382 } 383 384 return getIntImmCost(Imm, Ty, CostKind); 385 } 386 387 InstructionCost ARMTTIImpl::getCFInstrCost(unsigned Opcode, 388 TTI::TargetCostKind CostKind, 389 const Instruction *I) { 390 if (CostKind == TTI::TCK_RecipThroughput && 391 (ST->hasNEON() || ST->hasMVEIntegerOps())) { 392 // FIXME: The vectorizer is highly sensistive to the cost of these 393 // instructions, which suggests that it may be using the costs incorrectly. 394 // But, for now, just make them free to avoid performance regressions for 395 // vector targets. 396 return 0; 397 } 398 return BaseT::getCFInstrCost(Opcode, CostKind, I); 399 } 400 401 InstructionCost ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 402 Type *Src, 403 TTI::CastContextHint CCH, 404 TTI::TargetCostKind CostKind, 405 const Instruction *I) { 406 int ISD = TLI->InstructionOpcodeToISD(Opcode); 407 assert(ISD && "Invalid opcode"); 408 409 // TODO: Allow non-throughput costs that aren't binary. 410 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost { 411 if (CostKind != TTI::TCK_RecipThroughput) 412 return Cost == 0 ? 0 : 1; 413 return Cost; 414 }; 415 auto IsLegalFPType = [this](EVT VT) { 416 EVT EltVT = VT.getScalarType(); 417 return (EltVT == MVT::f32 && ST->hasVFP2Base()) || 418 (EltVT == MVT::f64 && ST->hasFP64()) || 419 (EltVT == MVT::f16 && ST->hasFullFP16()); 420 }; 421 422 EVT SrcTy = TLI->getValueType(DL, Src); 423 EVT DstTy = TLI->getValueType(DL, Dst); 424 425 if (!SrcTy.isSimple() || !DstTy.isSimple()) 426 return AdjustCost( 427 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 428 429 // Extending masked load/Truncating masked stores is expensive because we 430 // currently don't split them. This means that we'll likely end up 431 // loading/storing each element individually (hence the high cost). 432 if ((ST->hasMVEIntegerOps() && 433 (Opcode == Instruction::Trunc || Opcode == Instruction::ZExt || 434 Opcode == Instruction::SExt)) || 435 (ST->hasMVEFloatOps() && 436 (Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc) && 437 IsLegalFPType(SrcTy) && IsLegalFPType(DstTy))) 438 if (CCH == TTI::CastContextHint::Masked && DstTy.getSizeInBits() > 128) 439 return 2 * DstTy.getVectorNumElements() * 440 ST->getMVEVectorCostFactor(CostKind); 441 442 // The extend of other kinds of load is free 443 if (CCH == TTI::CastContextHint::Normal || 444 CCH == TTI::CastContextHint::Masked) { 445 static const TypeConversionCostTblEntry LoadConversionTbl[] = { 446 {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0}, 447 {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0}, 448 {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0}, 449 {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0}, 450 {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0}, 451 {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0}, 452 {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1}, 453 {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1}, 454 {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1}, 455 {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1}, 456 {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1}, 457 {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1}, 458 }; 459 if (const auto *Entry = ConvertCostTableLookup( 460 LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 461 return AdjustCost(Entry->Cost); 462 463 static const TypeConversionCostTblEntry MVELoadConversionTbl[] = { 464 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0}, 465 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0}, 466 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0}, 467 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0}, 468 {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0}, 469 {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0}, 470 // The following extend from a legal type to an illegal type, so need to 471 // split the load. This introduced an extra load operation, but the 472 // extend is still "free". 473 {ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1}, 474 {ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1}, 475 {ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 3}, 476 {ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 3}, 477 {ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1}, 478 {ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1}, 479 }; 480 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 481 if (const auto *Entry = 482 ConvertCostTableLookup(MVELoadConversionTbl, ISD, 483 DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 484 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 485 } 486 487 static const TypeConversionCostTblEntry MVEFLoadConversionTbl[] = { 488 // FPExtends are similar but also require the VCVT instructions. 489 {ISD::FP_EXTEND, MVT::v4f32, MVT::v4f16, 1}, 490 {ISD::FP_EXTEND, MVT::v8f32, MVT::v8f16, 3}, 491 }; 492 if (SrcTy.isVector() && ST->hasMVEFloatOps()) { 493 if (const auto *Entry = 494 ConvertCostTableLookup(MVEFLoadConversionTbl, ISD, 495 DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 496 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 497 } 498 499 // The truncate of a store is free. This is the mirror of extends above. 500 static const TypeConversionCostTblEntry MVEStoreConversionTbl[] = { 501 {ISD::TRUNCATE, MVT::v4i32, MVT::v4i16, 0}, 502 {ISD::TRUNCATE, MVT::v4i32, MVT::v4i8, 0}, 503 {ISD::TRUNCATE, MVT::v8i16, MVT::v8i8, 0}, 504 {ISD::TRUNCATE, MVT::v8i32, MVT::v8i16, 1}, 505 {ISD::TRUNCATE, MVT::v8i32, MVT::v8i8, 1}, 506 {ISD::TRUNCATE, MVT::v16i32, MVT::v16i8, 3}, 507 {ISD::TRUNCATE, MVT::v16i16, MVT::v16i8, 1}, 508 }; 509 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 510 if (const auto *Entry = 511 ConvertCostTableLookup(MVEStoreConversionTbl, ISD, 512 SrcTy.getSimpleVT(), DstTy.getSimpleVT())) 513 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 514 } 515 516 static const TypeConversionCostTblEntry MVEFStoreConversionTbl[] = { 517 {ISD::FP_ROUND, MVT::v4f32, MVT::v4f16, 1}, 518 {ISD::FP_ROUND, MVT::v8f32, MVT::v8f16, 3}, 519 }; 520 if (SrcTy.isVector() && ST->hasMVEFloatOps()) { 521 if (const auto *Entry = 522 ConvertCostTableLookup(MVEFStoreConversionTbl, ISD, 523 SrcTy.getSimpleVT(), DstTy.getSimpleVT())) 524 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 525 } 526 } 527 528 // NEON vector operations that can extend their inputs. 529 if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) && 530 I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) { 531 static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = { 532 // vaddl 533 { ISD::ADD, MVT::v4i32, MVT::v4i16, 0 }, 534 { ISD::ADD, MVT::v8i16, MVT::v8i8, 0 }, 535 // vsubl 536 { ISD::SUB, MVT::v4i32, MVT::v4i16, 0 }, 537 { ISD::SUB, MVT::v8i16, MVT::v8i8, 0 }, 538 // vmull 539 { ISD::MUL, MVT::v4i32, MVT::v4i16, 0 }, 540 { ISD::MUL, MVT::v8i16, MVT::v8i8, 0 }, 541 // vshll 542 { ISD::SHL, MVT::v4i32, MVT::v4i16, 0 }, 543 { ISD::SHL, MVT::v8i16, MVT::v8i8, 0 }, 544 }; 545 546 auto *User = cast<Instruction>(*I->user_begin()); 547 int UserISD = TLI->InstructionOpcodeToISD(User->getOpcode()); 548 if (auto *Entry = ConvertCostTableLookup(NEONDoubleWidthTbl, UserISD, 549 DstTy.getSimpleVT(), 550 SrcTy.getSimpleVT())) { 551 return AdjustCost(Entry->Cost); 552 } 553 } 554 555 // Single to/from double precision conversions. 556 if (Src->isVectorTy() && ST->hasNEON() && 557 ((ISD == ISD::FP_ROUND && SrcTy.getScalarType() == MVT::f64 && 558 DstTy.getScalarType() == MVT::f32) || 559 (ISD == ISD::FP_EXTEND && SrcTy.getScalarType() == MVT::f32 && 560 DstTy.getScalarType() == MVT::f64))) { 561 static const CostTblEntry NEONFltDblTbl[] = { 562 // Vector fptrunc/fpext conversions. 563 {ISD::FP_ROUND, MVT::v2f64, 2}, 564 {ISD::FP_EXTEND, MVT::v2f32, 2}, 565 {ISD::FP_EXTEND, MVT::v4f32, 4}}; 566 567 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 568 if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second)) 569 return AdjustCost(LT.first * Entry->Cost); 570 } 571 572 // Some arithmetic, load and store operations have specific instructions 573 // to cast up/down their types automatically at no extra cost. 574 // TODO: Get these tables to know at least what the related operations are. 575 static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = { 576 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 577 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 578 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 579 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 580 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 581 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 582 583 // The number of vmovl instructions for the extension. 584 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 585 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 586 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 587 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 588 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 3 }, 589 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 3 }, 590 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 591 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 592 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 593 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 594 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 595 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 596 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 597 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 598 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 599 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 600 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 601 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 602 603 // Operations that we legalize using splitting. 604 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 605 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 606 607 // Vector float <-> i32 conversions. 608 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 609 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 610 611 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 612 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 613 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, 614 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, 615 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 616 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 617 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 618 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 619 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 620 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 621 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 622 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 623 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 624 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 625 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 626 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 627 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, 628 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, 629 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, 630 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, 631 632 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 633 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 634 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 }, 635 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 }, 636 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 637 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 638 639 // Vector double <-> i32 conversions. 640 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 641 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 642 643 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 644 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 645 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, 646 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, 647 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 648 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 649 650 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 651 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 652 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 }, 653 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 }, 654 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 }, 655 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 } 656 }; 657 658 if (SrcTy.isVector() && ST->hasNEON()) { 659 if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD, 660 DstTy.getSimpleVT(), 661 SrcTy.getSimpleVT())) 662 return AdjustCost(Entry->Cost); 663 } 664 665 // Scalar float to integer conversions. 666 static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = { 667 { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 }, 668 { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 }, 669 { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 }, 670 { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 }, 671 { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 }, 672 { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 }, 673 { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 }, 674 { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 }, 675 { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 }, 676 { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 }, 677 { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 }, 678 { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 }, 679 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 }, 680 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 }, 681 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 }, 682 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 }, 683 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 }, 684 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 }, 685 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 }, 686 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 } 687 }; 688 if (SrcTy.isFloatingPoint() && ST->hasNEON()) { 689 if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD, 690 DstTy.getSimpleVT(), 691 SrcTy.getSimpleVT())) 692 return AdjustCost(Entry->Cost); 693 } 694 695 // Scalar integer to float conversions. 696 static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = { 697 { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 }, 698 { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 }, 699 { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 }, 700 { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 }, 701 { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 }, 702 { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 }, 703 { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 }, 704 { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 }, 705 { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 }, 706 { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 }, 707 { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 }, 708 { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 }, 709 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 }, 710 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 }, 711 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 }, 712 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 }, 713 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 }, 714 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 }, 715 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 }, 716 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 } 717 }; 718 719 if (SrcTy.isInteger() && ST->hasNEON()) { 720 if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl, 721 ISD, DstTy.getSimpleVT(), 722 SrcTy.getSimpleVT())) 723 return AdjustCost(Entry->Cost); 724 } 725 726 // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one 727 // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext 728 // are linearised so take more. 729 static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = { 730 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 731 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 732 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 733 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 734 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 }, 735 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 }, 736 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 737 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 738 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 }, 739 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 740 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 }, 741 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 }, 742 }; 743 744 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 745 if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl, 746 ISD, DstTy.getSimpleVT(), 747 SrcTy.getSimpleVT())) 748 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 749 } 750 751 if (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND) { 752 // As general rule, fp converts that were not matched above are scalarized 753 // and cost 1 vcvt for each lane, so long as the instruction is available. 754 // If not it will become a series of function calls. 755 const InstructionCost CallCost = 756 getCallInstrCost(nullptr, Dst, {Src}, CostKind); 757 int Lanes = 1; 758 if (SrcTy.isFixedLengthVector()) 759 Lanes = SrcTy.getVectorNumElements(); 760 761 if (IsLegalFPType(SrcTy) && IsLegalFPType(DstTy)) 762 return Lanes; 763 else 764 return Lanes * CallCost; 765 } 766 767 if (ISD == ISD::TRUNCATE && ST->hasMVEIntegerOps() && 768 SrcTy.isFixedLengthVector()) { 769 // Treat a truncate with larger than legal source (128bits for MVE) as 770 // expensive, 2 instructions per lane. 771 if ((SrcTy.getScalarType() == MVT::i8 || 772 SrcTy.getScalarType() == MVT::i16 || 773 SrcTy.getScalarType() == MVT::i32) && 774 SrcTy.getSizeInBits() > 128 && 775 SrcTy.getSizeInBits() > DstTy.getSizeInBits()) 776 return SrcTy.getVectorNumElements() * 2; 777 } 778 779 // Scalar integer conversion costs. 780 static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = { 781 // i16 -> i64 requires two dependent operations. 782 { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 }, 783 784 // Truncates on i64 are assumed to be free. 785 { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 }, 786 { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 }, 787 { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 }, 788 { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 } 789 }; 790 791 if (SrcTy.isInteger()) { 792 if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD, 793 DstTy.getSimpleVT(), 794 SrcTy.getSimpleVT())) 795 return AdjustCost(Entry->Cost); 796 } 797 798 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() 799 ? ST->getMVEVectorCostFactor(CostKind) 800 : 1; 801 return AdjustCost( 802 BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 803 } 804 805 InstructionCost ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 806 unsigned Index) { 807 // Penalize inserting into an D-subregister. We end up with a three times 808 // lower estimated throughput on swift. 809 if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement && 810 ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32) 811 return 3; 812 813 if (ST->hasNEON() && (Opcode == Instruction::InsertElement || 814 Opcode == Instruction::ExtractElement)) { 815 // Cross-class copies are expensive on many microarchitectures, 816 // so assume they are expensive by default. 817 if (cast<VectorType>(ValTy)->getElementType()->isIntegerTy()) 818 return 3; 819 820 // Even if it's not a cross class copy, this likely leads to mixing 821 // of NEON and VFP code and should be therefore penalized. 822 if (ValTy->isVectorTy() && 823 ValTy->getScalarSizeInBits() <= 32) 824 return std::max<InstructionCost>( 825 BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U); 826 } 827 828 if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement || 829 Opcode == Instruction::ExtractElement)) { 830 // Integer cross-lane moves are more expensive than float, which can 831 // sometimes just be vmovs. Integer involve being passes to GPR registers, 832 // causing more of a delay. 833 std::pair<InstructionCost, MVT> LT = 834 getTLI()->getTypeLegalizationCost(DL, ValTy->getScalarType()); 835 return LT.first * (ValTy->getScalarType()->isIntegerTy() ? 4 : 1); 836 } 837 838 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 839 } 840 841 InstructionCost ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 842 Type *CondTy, 843 CmpInst::Predicate VecPred, 844 TTI::TargetCostKind CostKind, 845 const Instruction *I) { 846 int ISD = TLI->InstructionOpcodeToISD(Opcode); 847 848 // Thumb scalar code size cost for select. 849 if (CostKind == TTI::TCK_CodeSize && ISD == ISD::SELECT && 850 ST->isThumb() && !ValTy->isVectorTy()) { 851 // Assume expensive structs. 852 if (TLI->getValueType(DL, ValTy, true) == MVT::Other) 853 return TTI::TCC_Expensive; 854 855 // Select costs can vary because they: 856 // - may require one or more conditional mov (including an IT), 857 // - can't operate directly on immediates, 858 // - require live flags, which we can't copy around easily. 859 InstructionCost Cost = TLI->getTypeLegalizationCost(DL, ValTy).first; 860 861 // Possible IT instruction for Thumb2, or more for Thumb1. 862 ++Cost; 863 864 // i1 values may need rematerialising by using mov immediates and/or 865 // flag setting instructions. 866 if (ValTy->isIntegerTy(1)) 867 ++Cost; 868 869 return Cost; 870 } 871 872 // If this is a vector min/max/abs, use the cost of that intrinsic directly 873 // instead. Hopefully when min/max intrinsics are more prevalent this code 874 // will not be needed. 875 const Instruction *Sel = I; 876 if ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && Sel && 877 Sel->hasOneUse()) 878 Sel = cast<Instruction>(Sel->user_back()); 879 if (Sel && ValTy->isVectorTy() && 880 (ValTy->isIntOrIntVectorTy() || ValTy->isFPOrFPVectorTy())) { 881 const Value *LHS, *RHS; 882 SelectPatternFlavor SPF = matchSelectPattern(Sel, LHS, RHS).Flavor; 883 unsigned IID = 0; 884 switch (SPF) { 885 case SPF_ABS: 886 IID = Intrinsic::abs; 887 break; 888 case SPF_SMIN: 889 IID = Intrinsic::smin; 890 break; 891 case SPF_SMAX: 892 IID = Intrinsic::smax; 893 break; 894 case SPF_UMIN: 895 IID = Intrinsic::umin; 896 break; 897 case SPF_UMAX: 898 IID = Intrinsic::umax; 899 break; 900 case SPF_FMINNUM: 901 IID = Intrinsic::minnum; 902 break; 903 case SPF_FMAXNUM: 904 IID = Intrinsic::maxnum; 905 break; 906 default: 907 break; 908 } 909 if (IID) { 910 // The ICmp is free, the select gets the cost of the min/max/etc 911 if (Sel != I) 912 return 0; 913 IntrinsicCostAttributes CostAttrs(IID, ValTy, {ValTy, ValTy}); 914 return getIntrinsicInstrCost(CostAttrs, CostKind); 915 } 916 } 917 918 // On NEON a vector select gets lowered to vbsl. 919 if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT && CondTy) { 920 // Lowering of some vector selects is currently far from perfect. 921 static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = { 922 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 }, 923 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 }, 924 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 } 925 }; 926 927 EVT SelCondTy = TLI->getValueType(DL, CondTy); 928 EVT SelValTy = TLI->getValueType(DL, ValTy); 929 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 930 if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD, 931 SelCondTy.getSimpleVT(), 932 SelValTy.getSimpleVT())) 933 return Entry->Cost; 934 } 935 936 std::pair<InstructionCost, MVT> LT = 937 TLI->getTypeLegalizationCost(DL, ValTy); 938 return LT.first; 939 } 940 941 if (ST->hasMVEIntegerOps() && ValTy->isVectorTy() && 942 (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 943 cast<FixedVectorType>(ValTy)->getNumElements() > 1) { 944 FixedVectorType *VecValTy = cast<FixedVectorType>(ValTy); 945 FixedVectorType *VecCondTy = dyn_cast_or_null<FixedVectorType>(CondTy); 946 if (!VecCondTy) 947 VecCondTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(VecValTy)); 948 949 // If we don't have mve.fp any fp operations will need to be scalarized. 950 if (Opcode == Instruction::FCmp && !ST->hasMVEFloatOps()) { 951 // One scalaization insert, one scalarization extract and the cost of the 952 // fcmps. 953 return BaseT::getScalarizationOverhead(VecValTy, false, true) + 954 BaseT::getScalarizationOverhead(VecCondTy, true, false) + 955 VecValTy->getNumElements() * 956 getCmpSelInstrCost(Opcode, ValTy->getScalarType(), 957 VecCondTy->getScalarType(), VecPred, CostKind, 958 I); 959 } 960 961 std::pair<InstructionCost, MVT> LT = 962 TLI->getTypeLegalizationCost(DL, ValTy); 963 int BaseCost = ST->getMVEVectorCostFactor(CostKind); 964 // There are two types - the input that specifies the type of the compare 965 // and the output vXi1 type. Because we don't know how the output will be 966 // split, we may need an expensive shuffle to get two in sync. This has the 967 // effect of making larger than legal compares (v8i32 for example) 968 // expensive. 969 if (LT.second.getVectorNumElements() > 2) { 970 if (LT.first > 1) 971 return LT.first * BaseCost + 972 BaseT::getScalarizationOverhead(VecCondTy, true, false); 973 return BaseCost; 974 } 975 } 976 977 // Default to cheap (throughput/size of 1 instruction) but adjust throughput 978 // for "multiple beats" potentially needed by MVE instructions. 979 int BaseCost = 1; 980 if (ST->hasMVEIntegerOps() && ValTy->isVectorTy()) 981 BaseCost = ST->getMVEVectorCostFactor(CostKind); 982 983 return BaseCost * 984 BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 985 } 986 987 InstructionCost ARMTTIImpl::getAddressComputationCost(Type *Ty, 988 ScalarEvolution *SE, 989 const SCEV *Ptr) { 990 // Address computations in vectorized code with non-consecutive addresses will 991 // likely result in more instructions compared to scalar code where the 992 // computation can more often be merged into the index mode. The resulting 993 // extra micro-ops can significantly decrease throughput. 994 unsigned NumVectorInstToHideOverhead = 10; 995 int MaxMergeDistance = 64; 996 997 if (ST->hasNEON()) { 998 if (Ty->isVectorTy() && SE && 999 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 1000 return NumVectorInstToHideOverhead; 1001 1002 // In many cases the address computation is not merged into the instruction 1003 // addressing mode. 1004 return 1; 1005 } 1006 return BaseT::getAddressComputationCost(Ty, SE, Ptr); 1007 } 1008 1009 bool ARMTTIImpl::isProfitableLSRChainElement(Instruction *I) { 1010 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1011 // If a VCTP is part of a chain, it's already profitable and shouldn't be 1012 // optimized, else LSR may block tail-predication. 1013 switch (II->getIntrinsicID()) { 1014 case Intrinsic::arm_mve_vctp8: 1015 case Intrinsic::arm_mve_vctp16: 1016 case Intrinsic::arm_mve_vctp32: 1017 case Intrinsic::arm_mve_vctp64: 1018 return true; 1019 default: 1020 break; 1021 } 1022 } 1023 return false; 1024 } 1025 1026 bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) { 1027 if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps()) 1028 return false; 1029 1030 if (auto *VecTy = dyn_cast<FixedVectorType>(DataTy)) { 1031 // Don't support v2i1 yet. 1032 if (VecTy->getNumElements() == 2) 1033 return false; 1034 1035 // We don't support extending fp types. 1036 unsigned VecWidth = DataTy->getPrimitiveSizeInBits(); 1037 if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy()) 1038 return false; 1039 } 1040 1041 unsigned EltWidth = DataTy->getScalarSizeInBits(); 1042 return (EltWidth == 32 && Alignment >= 4) || 1043 (EltWidth == 16 && Alignment >= 2) || (EltWidth == 8); 1044 } 1045 1046 bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, Align Alignment) { 1047 if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps()) 1048 return false; 1049 1050 // This method is called in 2 places: 1051 // - from the vectorizer with a scalar type, in which case we need to get 1052 // this as good as we can with the limited info we have (and rely on the cost 1053 // model for the rest). 1054 // - from the masked intrinsic lowering pass with the actual vector type. 1055 // For MVE, we have a custom lowering pass that will already have custom 1056 // legalised any gathers that we can to MVE intrinsics, and want to expand all 1057 // the rest. The pass runs before the masked intrinsic lowering pass, so if we 1058 // are here, we know we want to expand. 1059 if (isa<VectorType>(Ty)) 1060 return false; 1061 1062 unsigned EltWidth = Ty->getScalarSizeInBits(); 1063 return ((EltWidth == 32 && Alignment >= 4) || 1064 (EltWidth == 16 && Alignment >= 2) || EltWidth == 8); 1065 } 1066 1067 /// Given a memcpy/memset/memmove instruction, return the number of memory 1068 /// operations performed, via querying findOptimalMemOpLowering. Returns -1 if a 1069 /// call is used. 1070 int ARMTTIImpl::getNumMemOps(const IntrinsicInst *I) const { 1071 MemOp MOp; 1072 unsigned DstAddrSpace = ~0u; 1073 unsigned SrcAddrSpace = ~0u; 1074 const Function *F = I->getParent()->getParent(); 1075 1076 if (const auto *MC = dyn_cast<MemTransferInst>(I)) { 1077 ConstantInt *C = dyn_cast<ConstantInt>(MC->getLength()); 1078 // If 'size' is not a constant, a library call will be generated. 1079 if (!C) 1080 return -1; 1081 1082 const unsigned Size = C->getValue().getZExtValue(); 1083 const Align DstAlign = *MC->getDestAlign(); 1084 const Align SrcAlign = *MC->getSourceAlign(); 1085 1086 MOp = MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign, 1087 /*IsVolatile*/ false); 1088 DstAddrSpace = MC->getDestAddressSpace(); 1089 SrcAddrSpace = MC->getSourceAddressSpace(); 1090 } 1091 else if (const auto *MS = dyn_cast<MemSetInst>(I)) { 1092 ConstantInt *C = dyn_cast<ConstantInt>(MS->getLength()); 1093 // If 'size' is not a constant, a library call will be generated. 1094 if (!C) 1095 return -1; 1096 1097 const unsigned Size = C->getValue().getZExtValue(); 1098 const Align DstAlign = *MS->getDestAlign(); 1099 1100 MOp = MemOp::Set(Size, /*DstAlignCanChange*/ false, DstAlign, 1101 /*IsZeroMemset*/ false, /*IsVolatile*/ false); 1102 DstAddrSpace = MS->getDestAddressSpace(); 1103 } 1104 else 1105 llvm_unreachable("Expected a memcpy/move or memset!"); 1106 1107 unsigned Limit, Factor = 2; 1108 switch(I->getIntrinsicID()) { 1109 case Intrinsic::memcpy: 1110 Limit = TLI->getMaxStoresPerMemcpy(F->hasMinSize()); 1111 break; 1112 case Intrinsic::memmove: 1113 Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize()); 1114 break; 1115 case Intrinsic::memset: 1116 Limit = TLI->getMaxStoresPerMemset(F->hasMinSize()); 1117 Factor = 1; 1118 break; 1119 default: 1120 llvm_unreachable("Expected a memcpy/move or memset!"); 1121 } 1122 1123 // MemOps will be poplulated with a list of data types that needs to be 1124 // loaded and stored. That's why we multiply the number of elements by 2 to 1125 // get the cost for this memcpy. 1126 std::vector<EVT> MemOps; 1127 if (getTLI()->findOptimalMemOpLowering( 1128 MemOps, Limit, MOp, DstAddrSpace, 1129 SrcAddrSpace, F->getAttributes())) 1130 return MemOps.size() * Factor; 1131 1132 // If we can't find an optimal memop lowering, return the default cost 1133 return -1; 1134 } 1135 1136 InstructionCost ARMTTIImpl::getMemcpyCost(const Instruction *I) { 1137 int NumOps = getNumMemOps(cast<IntrinsicInst>(I)); 1138 1139 // To model the cost of a library call, we assume 1 for the call, and 1140 // 3 for the argument setup. 1141 if (NumOps == -1) 1142 return 4; 1143 return NumOps; 1144 } 1145 1146 InstructionCost ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 1147 VectorType *Tp, ArrayRef<int> Mask, 1148 int Index, VectorType *SubTp) { 1149 Kind = improveShuffleKindFromMask(Kind, Mask); 1150 if (ST->hasNEON()) { 1151 if (Kind == TTI::SK_Broadcast) { 1152 static const CostTblEntry NEONDupTbl[] = { 1153 // VDUP handles these cases. 1154 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 1155 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 1156 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 1157 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 1158 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, 1159 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, 1160 1161 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, 1162 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, 1163 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, 1164 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}}; 1165 1166 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1167 if (const auto *Entry = 1168 CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second)) 1169 return LT.first * Entry->Cost; 1170 } 1171 if (Kind == TTI::SK_Reverse) { 1172 static const CostTblEntry NEONShuffleTbl[] = { 1173 // Reverse shuffle cost one instruction if we are shuffling within a 1174 // double word (vrev) or two if we shuffle a quad word (vrev, vext). 1175 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 1176 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 1177 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 1178 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 1179 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, 1180 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, 1181 1182 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 1183 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 1184 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2}, 1185 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}}; 1186 1187 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1188 if (const auto *Entry = 1189 CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second)) 1190 return LT.first * Entry->Cost; 1191 } 1192 if (Kind == TTI::SK_Select) { 1193 static const CostTblEntry NEONSelShuffleTbl[] = { 1194 // Select shuffle cost table for ARM. Cost is the number of 1195 // instructions 1196 // required to create the shuffled vector. 1197 1198 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 1199 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 1200 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 1201 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 1202 1203 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 1204 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 1205 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2}, 1206 1207 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16}, 1208 1209 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}}; 1210 1211 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1212 if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl, 1213 ISD::VECTOR_SHUFFLE, LT.second)) 1214 return LT.first * Entry->Cost; 1215 } 1216 } 1217 if (ST->hasMVEIntegerOps()) { 1218 if (Kind == TTI::SK_Broadcast) { 1219 static const CostTblEntry MVEDupTbl[] = { 1220 // VDUP handles these cases. 1221 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, 1222 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, 1223 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}, 1224 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, 1225 {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}}; 1226 1227 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1228 if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE, 1229 LT.second)) 1230 return LT.first * Entry->Cost * 1231 ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput); 1232 } 1233 1234 if (!Mask.empty()) { 1235 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1236 if (Mask.size() <= LT.second.getVectorNumElements() && 1237 (isVREVMask(Mask, LT.second, 16) || isVREVMask(Mask, LT.second, 32) || 1238 isVREVMask(Mask, LT.second, 64))) 1239 return ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) * LT.first; 1240 } 1241 } 1242 1243 int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy() 1244 ? ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) 1245 : 1; 1246 return BaseCost * BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp); 1247 } 1248 1249 InstructionCost ARMTTIImpl::getArithmeticInstrCost( 1250 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 1251 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, 1252 TTI::OperandValueProperties Opd1PropInfo, 1253 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 1254 const Instruction *CxtI) { 1255 int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); 1256 if (ST->isThumb() && CostKind == TTI::TCK_CodeSize && Ty->isIntegerTy(1)) { 1257 // Make operations on i1 relatively expensive as this often involves 1258 // combining predicates. AND and XOR should be easier to handle with IT 1259 // blocks. 1260 switch (ISDOpcode) { 1261 default: 1262 break; 1263 case ISD::AND: 1264 case ISD::XOR: 1265 return 2; 1266 case ISD::OR: 1267 return 3; 1268 } 1269 } 1270 1271 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 1272 1273 if (ST->hasNEON()) { 1274 const unsigned FunctionCallDivCost = 20; 1275 const unsigned ReciprocalDivCost = 10; 1276 static const CostTblEntry CostTbl[] = { 1277 // Division. 1278 // These costs are somewhat random. Choose a cost of 20 to indicate that 1279 // vectorizing devision (added function call) is going to be very expensive. 1280 // Double registers types. 1281 { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost}, 1282 { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost}, 1283 { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost}, 1284 { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost}, 1285 { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost}, 1286 { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost}, 1287 { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost}, 1288 { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost}, 1289 { ISD::SDIV, MVT::v4i16, ReciprocalDivCost}, 1290 { ISD::UDIV, MVT::v4i16, ReciprocalDivCost}, 1291 { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost}, 1292 { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost}, 1293 { ISD::SDIV, MVT::v8i8, ReciprocalDivCost}, 1294 { ISD::UDIV, MVT::v8i8, ReciprocalDivCost}, 1295 { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost}, 1296 { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost}, 1297 // Quad register types. 1298 { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost}, 1299 { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost}, 1300 { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost}, 1301 { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost}, 1302 { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost}, 1303 { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost}, 1304 { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost}, 1305 { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost}, 1306 { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost}, 1307 { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost}, 1308 { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost}, 1309 { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost}, 1310 { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost}, 1311 { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost}, 1312 { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost}, 1313 { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost}, 1314 // Multiplication. 1315 }; 1316 1317 if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second)) 1318 return LT.first * Entry->Cost; 1319 1320 InstructionCost Cost = BaseT::getArithmeticInstrCost( 1321 Opcode, Ty, CostKind, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo); 1322 1323 // This is somewhat of a hack. The problem that we are facing is that SROA 1324 // creates a sequence of shift, and, or instructions to construct values. 1325 // These sequences are recognized by the ISel and have zero-cost. Not so for 1326 // the vectorized code. Because we have support for v2i64 but not i64 those 1327 // sequences look particularly beneficial to vectorize. 1328 // To work around this we increase the cost of v2i64 operations to make them 1329 // seem less beneficial. 1330 if (LT.second == MVT::v2i64 && 1331 Op2Info == TargetTransformInfo::OK_UniformConstantValue) 1332 Cost += 4; 1333 1334 return Cost; 1335 } 1336 1337 // If this operation is a shift on arm/thumb2, it might well be folded into 1338 // the following instruction, hence having a cost of 0. 1339 auto LooksLikeAFreeShift = [&]() { 1340 if (ST->isThumb1Only() || Ty->isVectorTy()) 1341 return false; 1342 1343 if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift()) 1344 return false; 1345 if (Op2Info != TargetTransformInfo::OK_UniformConstantValue) 1346 return false; 1347 1348 // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB 1349 switch (cast<Instruction>(CxtI->user_back())->getOpcode()) { 1350 case Instruction::Add: 1351 case Instruction::Sub: 1352 case Instruction::And: 1353 case Instruction::Xor: 1354 case Instruction::Or: 1355 case Instruction::ICmp: 1356 return true; 1357 default: 1358 return false; 1359 } 1360 }; 1361 if (LooksLikeAFreeShift()) 1362 return 0; 1363 1364 // Default to cheap (throughput/size of 1 instruction) but adjust throughput 1365 // for "multiple beats" potentially needed by MVE instructions. 1366 int BaseCost = 1; 1367 if (ST->hasMVEIntegerOps() && Ty->isVectorTy()) 1368 BaseCost = ST->getMVEVectorCostFactor(CostKind); 1369 1370 // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost, 1371 // without treating floats as more expensive that scalars or increasing the 1372 // costs for custom operations. The results is also multiplied by the 1373 // MVEVectorCostFactor where appropriate. 1374 if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second)) 1375 return LT.first * BaseCost; 1376 1377 // Else this is expand, assume that we need to scalarize this op. 1378 if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) { 1379 unsigned Num = VTy->getNumElements(); 1380 InstructionCost Cost = 1381 getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind); 1382 // Return the cost of multiple scalar invocation plus the cost of 1383 // inserting and extracting the values. 1384 SmallVector<Type *> Tys(Args.size(), Ty); 1385 return BaseT::getScalarizationOverhead(VTy, Args, Tys) + Num * Cost; 1386 } 1387 1388 return BaseCost; 1389 } 1390 1391 InstructionCost ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 1392 MaybeAlign Alignment, 1393 unsigned AddressSpace, 1394 TTI::TargetCostKind CostKind, 1395 const Instruction *I) { 1396 // TODO: Handle other cost kinds. 1397 if (CostKind != TTI::TCK_RecipThroughput) 1398 return 1; 1399 1400 // Type legalization can't handle structs 1401 if (TLI->getValueType(DL, Src, true) == MVT::Other) 1402 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1403 CostKind); 1404 1405 if (ST->hasNEON() && Src->isVectorTy() && 1406 (Alignment && *Alignment != Align(16)) && 1407 cast<VectorType>(Src)->getElementType()->isDoubleTy()) { 1408 // Unaligned loads/stores are extremely inefficient. 1409 // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr. 1410 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 1411 return LT.first * 4; 1412 } 1413 1414 // MVE can optimize a fpext(load(4xhalf)) using an extending integer load. 1415 // Same for stores. 1416 if (ST->hasMVEFloatOps() && isa<FixedVectorType>(Src) && I && 1417 ((Opcode == Instruction::Load && I->hasOneUse() && 1418 isa<FPExtInst>(*I->user_begin())) || 1419 (Opcode == Instruction::Store && isa<FPTruncInst>(I->getOperand(0))))) { 1420 FixedVectorType *SrcVTy = cast<FixedVectorType>(Src); 1421 Type *DstTy = 1422 Opcode == Instruction::Load 1423 ? (*I->user_begin())->getType() 1424 : cast<Instruction>(I->getOperand(0))->getOperand(0)->getType(); 1425 if (SrcVTy->getNumElements() == 4 && SrcVTy->getScalarType()->isHalfTy() && 1426 DstTy->getScalarType()->isFloatTy()) 1427 return ST->getMVEVectorCostFactor(CostKind); 1428 } 1429 1430 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() 1431 ? ST->getMVEVectorCostFactor(CostKind) 1432 : 1; 1433 return BaseCost * BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1434 CostKind, I); 1435 } 1436 1437 InstructionCost 1438 ARMTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, 1439 unsigned AddressSpace, 1440 TTI::TargetCostKind CostKind) { 1441 if (ST->hasMVEIntegerOps()) { 1442 if (Opcode == Instruction::Load && isLegalMaskedLoad(Src, Alignment)) 1443 return ST->getMVEVectorCostFactor(CostKind); 1444 if (Opcode == Instruction::Store && isLegalMaskedStore(Src, Alignment)) 1445 return ST->getMVEVectorCostFactor(CostKind); 1446 } 1447 if (!isa<FixedVectorType>(Src)) 1448 return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1449 CostKind); 1450 // Scalar cost, which is currently very high due to the efficiency of the 1451 // generated code. 1452 return cast<FixedVectorType>(Src)->getNumElements() * 8; 1453 } 1454 1455 InstructionCost ARMTTIImpl::getInterleavedMemoryOpCost( 1456 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 1457 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 1458 bool UseMaskForCond, bool UseMaskForGaps) { 1459 assert(Factor >= 2 && "Invalid interleave factor"); 1460 assert(isa<VectorType>(VecTy) && "Expect a vector type"); 1461 1462 // vldN/vstN doesn't support vector types of i64/f64 element. 1463 bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64; 1464 1465 if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits && 1466 !UseMaskForCond && !UseMaskForGaps) { 1467 unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements(); 1468 auto *SubVecTy = 1469 FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor); 1470 1471 // vldN/vstN only support legal vector types of size 64 or 128 in bits. 1472 // Accesses having vector types that are a multiple of 128 bits can be 1473 // matched to more than one vldN/vstN instruction. 1474 int BaseCost = 1475 ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor(CostKind) : 1; 1476 if (NumElts % Factor == 0 && 1477 TLI->isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL)) 1478 return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL); 1479 1480 // Some smaller than legal interleaved patterns are cheap as we can make 1481 // use of the vmovn or vrev patterns to interleave a standard load. This is 1482 // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is 1483 // promoted differently). The cost of 2 here is then a load and vrev or 1484 // vmovn. 1485 if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 && 1486 VecTy->isIntOrIntVectorTy() && 1487 DL.getTypeSizeInBits(SubVecTy).getFixedSize() <= 64) 1488 return 2 * BaseCost; 1489 } 1490 1491 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1492 Alignment, AddressSpace, CostKind, 1493 UseMaskForCond, UseMaskForGaps); 1494 } 1495 1496 InstructionCost ARMTTIImpl::getGatherScatterOpCost( 1497 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 1498 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) { 1499 using namespace PatternMatch; 1500 if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters) 1501 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 1502 Alignment, CostKind, I); 1503 1504 assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!"); 1505 auto *VTy = cast<FixedVectorType>(DataTy); 1506 1507 // TODO: Splitting, once we do that. 1508 1509 unsigned NumElems = VTy->getNumElements(); 1510 unsigned EltSize = VTy->getScalarSizeInBits(); 1511 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, DataTy); 1512 1513 // For now, it is assumed that for the MVE gather instructions the loads are 1514 // all effectively serialised. This means the cost is the scalar cost 1515 // multiplied by the number of elements being loaded. This is possibly very 1516 // conservative, but even so we still end up vectorising loops because the 1517 // cost per iteration for many loops is lower than for scalar loops. 1518 InstructionCost VectorCost = 1519 NumElems * LT.first * ST->getMVEVectorCostFactor(CostKind); 1520 // The scalarization cost should be a lot higher. We use the number of vector 1521 // elements plus the scalarization overhead. 1522 InstructionCost ScalarCost = 1523 NumElems * LT.first + BaseT::getScalarizationOverhead(VTy, true, false) + 1524 BaseT::getScalarizationOverhead(VTy, false, true); 1525 1526 if (EltSize < 8 || Alignment < EltSize / 8) 1527 return ScalarCost; 1528 1529 unsigned ExtSize = EltSize; 1530 // Check whether there's a single user that asks for an extended type 1531 if (I != nullptr) { 1532 // Dependent of the caller of this function, a gather instruction will 1533 // either have opcode Instruction::Load or be a call to the masked_gather 1534 // intrinsic 1535 if ((I->getOpcode() == Instruction::Load || 1536 match(I, m_Intrinsic<Intrinsic::masked_gather>())) && 1537 I->hasOneUse()) { 1538 const User *Us = *I->users().begin(); 1539 if (isa<ZExtInst>(Us) || isa<SExtInst>(Us)) { 1540 // only allow valid type combinations 1541 unsigned TypeSize = 1542 cast<Instruction>(Us)->getType()->getScalarSizeInBits(); 1543 if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) || 1544 (TypeSize == 16 && EltSize == 8)) && 1545 TypeSize * NumElems == 128) { 1546 ExtSize = TypeSize; 1547 } 1548 } 1549 } 1550 // Check whether the input data needs to be truncated 1551 TruncInst *T; 1552 if ((I->getOpcode() == Instruction::Store || 1553 match(I, m_Intrinsic<Intrinsic::masked_scatter>())) && 1554 (T = dyn_cast<TruncInst>(I->getOperand(0)))) { 1555 // Only allow valid type combinations 1556 unsigned TypeSize = T->getOperand(0)->getType()->getScalarSizeInBits(); 1557 if (((EltSize == 16 && TypeSize == 32) || 1558 (EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) && 1559 TypeSize * NumElems == 128) 1560 ExtSize = TypeSize; 1561 } 1562 } 1563 1564 if (ExtSize * NumElems != 128 || NumElems < 4) 1565 return ScalarCost; 1566 1567 // Any (aligned) i32 gather will not need to be scalarised. 1568 if (ExtSize == 32) 1569 return VectorCost; 1570 // For smaller types, we need to ensure that the gep's inputs are correctly 1571 // extended from a small enough value. Other sizes (including i64) are 1572 // scalarized for now. 1573 if (ExtSize != 8 && ExtSize != 16) 1574 return ScalarCost; 1575 1576 if (const auto *BC = dyn_cast<BitCastInst>(Ptr)) 1577 Ptr = BC->getOperand(0); 1578 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1579 if (GEP->getNumOperands() != 2) 1580 return ScalarCost; 1581 unsigned Scale = DL.getTypeAllocSize(GEP->getResultElementType()); 1582 // Scale needs to be correct (which is only relevant for i16s). 1583 if (Scale != 1 && Scale * 8 != ExtSize) 1584 return ScalarCost; 1585 // And we need to zext (not sext) the indexes from a small enough type. 1586 if (const auto *ZExt = dyn_cast<ZExtInst>(GEP->getOperand(1))) { 1587 if (ZExt->getOperand(0)->getType()->getScalarSizeInBits() <= ExtSize) 1588 return VectorCost; 1589 } 1590 return ScalarCost; 1591 } 1592 return ScalarCost; 1593 } 1594 1595 InstructionCost 1596 ARMTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy, 1597 Optional<FastMathFlags> FMF, 1598 TTI::TargetCostKind CostKind) { 1599 if (TTI::requiresOrderedReduction(FMF)) 1600 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 1601 1602 EVT ValVT = TLI->getValueType(DL, ValTy); 1603 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1604 if (!ST->hasMVEIntegerOps() || !ValVT.isSimple() || ISD != ISD::ADD) 1605 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 1606 1607 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 1608 1609 static const CostTblEntry CostTblAdd[]{ 1610 {ISD::ADD, MVT::v16i8, 1}, 1611 {ISD::ADD, MVT::v8i16, 1}, 1612 {ISD::ADD, MVT::v4i32, 1}, 1613 }; 1614 if (const auto *Entry = CostTableLookup(CostTblAdd, ISD, LT.second)) 1615 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first; 1616 1617 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 1618 } 1619 1620 InstructionCost 1621 ARMTTIImpl::getExtendedAddReductionCost(bool IsMLA, bool IsUnsigned, 1622 Type *ResTy, VectorType *ValTy, 1623 TTI::TargetCostKind CostKind) { 1624 EVT ValVT = TLI->getValueType(DL, ValTy); 1625 EVT ResVT = TLI->getValueType(DL, ResTy); 1626 if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) { 1627 std::pair<InstructionCost, MVT> LT = 1628 TLI->getTypeLegalizationCost(DL, ValTy); 1629 if ((LT.second == MVT::v16i8 && ResVT.getSizeInBits() <= 32) || 1630 (LT.second == MVT::v8i16 && 1631 ResVT.getSizeInBits() <= (IsMLA ? 64 : 32)) || 1632 (LT.second == MVT::v4i32 && ResVT.getSizeInBits() <= 64)) 1633 return ST->getMVEVectorCostFactor(CostKind) * LT.first; 1634 } 1635 1636 return BaseT::getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, ValTy, 1637 CostKind); 1638 } 1639 1640 InstructionCost 1641 ARMTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 1642 TTI::TargetCostKind CostKind) { 1643 switch (ICA.getID()) { 1644 case Intrinsic::get_active_lane_mask: 1645 // Currently we make a somewhat optimistic assumption that 1646 // active_lane_mask's are always free. In reality it may be freely folded 1647 // into a tail predicated loop, expanded into a VCPT or expanded into a lot 1648 // of add/icmp code. We may need to improve this in the future, but being 1649 // able to detect if it is free or not involves looking at a lot of other 1650 // code. We currently assume that the vectorizer inserted these, and knew 1651 // what it was doing in adding one. 1652 if (ST->hasMVEIntegerOps()) 1653 return 0; 1654 break; 1655 case Intrinsic::sadd_sat: 1656 case Intrinsic::ssub_sat: 1657 case Intrinsic::uadd_sat: 1658 case Intrinsic::usub_sat: { 1659 if (!ST->hasMVEIntegerOps()) 1660 break; 1661 Type *VT = ICA.getReturnType(); 1662 1663 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT); 1664 if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 || 1665 LT.second == MVT::v16i8) { 1666 // This is a base cost of 1 for the vqadd, plus 3 extract shifts if we 1667 // need to extend the type, as it uses shr(qadd(shl, shl)). 1668 unsigned Instrs = 1669 LT.second.getScalarSizeInBits() == VT->getScalarSizeInBits() ? 1 : 4; 1670 return LT.first * ST->getMVEVectorCostFactor(CostKind) * Instrs; 1671 } 1672 break; 1673 } 1674 case Intrinsic::abs: 1675 case Intrinsic::smin: 1676 case Intrinsic::smax: 1677 case Intrinsic::umin: 1678 case Intrinsic::umax: { 1679 if (!ST->hasMVEIntegerOps()) 1680 break; 1681 Type *VT = ICA.getReturnType(); 1682 1683 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT); 1684 if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 || 1685 LT.second == MVT::v16i8) 1686 return LT.first * ST->getMVEVectorCostFactor(CostKind); 1687 break; 1688 } 1689 case Intrinsic::minnum: 1690 case Intrinsic::maxnum: { 1691 if (!ST->hasMVEFloatOps()) 1692 break; 1693 Type *VT = ICA.getReturnType(); 1694 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT); 1695 if (LT.second == MVT::v4f32 || LT.second == MVT::v8f16) 1696 return LT.first * ST->getMVEVectorCostFactor(CostKind); 1697 break; 1698 } 1699 } 1700 1701 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 1702 } 1703 1704 bool ARMTTIImpl::isLoweredToCall(const Function *F) { 1705 if (!F->isIntrinsic()) 1706 BaseT::isLoweredToCall(F); 1707 1708 // Assume all Arm-specific intrinsics map to an instruction. 1709 if (F->getName().startswith("llvm.arm")) 1710 return false; 1711 1712 switch (F->getIntrinsicID()) { 1713 default: break; 1714 case Intrinsic::powi: 1715 case Intrinsic::sin: 1716 case Intrinsic::cos: 1717 case Intrinsic::pow: 1718 case Intrinsic::log: 1719 case Intrinsic::log10: 1720 case Intrinsic::log2: 1721 case Intrinsic::exp: 1722 case Intrinsic::exp2: 1723 return true; 1724 case Intrinsic::sqrt: 1725 case Intrinsic::fabs: 1726 case Intrinsic::copysign: 1727 case Intrinsic::floor: 1728 case Intrinsic::ceil: 1729 case Intrinsic::trunc: 1730 case Intrinsic::rint: 1731 case Intrinsic::nearbyint: 1732 case Intrinsic::round: 1733 case Intrinsic::canonicalize: 1734 case Intrinsic::lround: 1735 case Intrinsic::llround: 1736 case Intrinsic::lrint: 1737 case Intrinsic::llrint: 1738 if (F->getReturnType()->isDoubleTy() && !ST->hasFP64()) 1739 return true; 1740 if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16()) 1741 return true; 1742 // Some operations can be handled by vector instructions and assume 1743 // unsupported vectors will be expanded into supported scalar ones. 1744 // TODO Handle scalar operations properly. 1745 return !ST->hasFPARMv8Base() && !ST->hasVFP2Base(); 1746 case Intrinsic::masked_store: 1747 case Intrinsic::masked_load: 1748 case Intrinsic::masked_gather: 1749 case Intrinsic::masked_scatter: 1750 return !ST->hasMVEIntegerOps(); 1751 case Intrinsic::sadd_with_overflow: 1752 case Intrinsic::uadd_with_overflow: 1753 case Intrinsic::ssub_with_overflow: 1754 case Intrinsic::usub_with_overflow: 1755 case Intrinsic::sadd_sat: 1756 case Intrinsic::uadd_sat: 1757 case Intrinsic::ssub_sat: 1758 case Intrinsic::usub_sat: 1759 return false; 1760 } 1761 1762 return BaseT::isLoweredToCall(F); 1763 } 1764 1765 bool ARMTTIImpl::maybeLoweredToCall(Instruction &I) { 1766 unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode()); 1767 EVT VT = TLI->getValueType(DL, I.getType(), true); 1768 if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall) 1769 return true; 1770 1771 // Check if an intrinsic will be lowered to a call and assume that any 1772 // other CallInst will generate a bl. 1773 if (auto *Call = dyn_cast<CallInst>(&I)) { 1774 if (auto *II = dyn_cast<IntrinsicInst>(Call)) { 1775 switch(II->getIntrinsicID()) { 1776 case Intrinsic::memcpy: 1777 case Intrinsic::memset: 1778 case Intrinsic::memmove: 1779 return getNumMemOps(II) == -1; 1780 default: 1781 if (const Function *F = Call->getCalledFunction()) 1782 return isLoweredToCall(F); 1783 } 1784 } 1785 return true; 1786 } 1787 1788 // FPv5 provides conversions between integer, double-precision, 1789 // single-precision, and half-precision formats. 1790 switch (I.getOpcode()) { 1791 default: 1792 break; 1793 case Instruction::FPToSI: 1794 case Instruction::FPToUI: 1795 case Instruction::SIToFP: 1796 case Instruction::UIToFP: 1797 case Instruction::FPTrunc: 1798 case Instruction::FPExt: 1799 return !ST->hasFPARMv8Base(); 1800 } 1801 1802 // FIXME: Unfortunately the approach of checking the Operation Action does 1803 // not catch all cases of Legalization that use library calls. Our 1804 // Legalization step categorizes some transformations into library calls as 1805 // Custom, Expand or even Legal when doing type legalization. So for now 1806 // we have to special case for instance the SDIV of 64bit integers and the 1807 // use of floating point emulation. 1808 if (VT.isInteger() && VT.getSizeInBits() >= 64) { 1809 switch (ISD) { 1810 default: 1811 break; 1812 case ISD::SDIV: 1813 case ISD::UDIV: 1814 case ISD::SREM: 1815 case ISD::UREM: 1816 case ISD::SDIVREM: 1817 case ISD::UDIVREM: 1818 return true; 1819 } 1820 } 1821 1822 // Assume all other non-float operations are supported. 1823 if (!VT.isFloatingPoint()) 1824 return false; 1825 1826 // We'll need a library call to handle most floats when using soft. 1827 if (TLI->useSoftFloat()) { 1828 switch (I.getOpcode()) { 1829 default: 1830 return true; 1831 case Instruction::Alloca: 1832 case Instruction::Load: 1833 case Instruction::Store: 1834 case Instruction::Select: 1835 case Instruction::PHI: 1836 return false; 1837 } 1838 } 1839 1840 // We'll need a libcall to perform double precision operations on a single 1841 // precision only FPU. 1842 if (I.getType()->isDoubleTy() && !ST->hasFP64()) 1843 return true; 1844 1845 // Likewise for half precision arithmetic. 1846 if (I.getType()->isHalfTy() && !ST->hasFullFP16()) 1847 return true; 1848 1849 return false; 1850 } 1851 1852 bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, 1853 AssumptionCache &AC, 1854 TargetLibraryInfo *LibInfo, 1855 HardwareLoopInfo &HWLoopInfo) { 1856 // Low-overhead branches are only supported in the 'low-overhead branch' 1857 // extension of v8.1-m. 1858 if (!ST->hasLOB() || DisableLowOverheadLoops) { 1859 LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n"); 1860 return false; 1861 } 1862 1863 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { 1864 LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n"); 1865 return false; 1866 } 1867 1868 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1869 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 1870 LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n"); 1871 return false; 1872 } 1873 1874 const SCEV *TripCountSCEV = 1875 SE.getAddExpr(BackedgeTakenCount, 1876 SE.getOne(BackedgeTakenCount->getType())); 1877 1878 // We need to store the trip count in LR, a 32-bit register. 1879 if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) { 1880 LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n"); 1881 return false; 1882 } 1883 1884 // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little 1885 // point in generating a hardware loop if that's going to happen. 1886 1887 auto IsHardwareLoopIntrinsic = [](Instruction &I) { 1888 if (auto *Call = dyn_cast<IntrinsicInst>(&I)) { 1889 switch (Call->getIntrinsicID()) { 1890 default: 1891 break; 1892 case Intrinsic::start_loop_iterations: 1893 case Intrinsic::test_start_loop_iterations: 1894 case Intrinsic::loop_decrement: 1895 case Intrinsic::loop_decrement_reg: 1896 return true; 1897 } 1898 } 1899 return false; 1900 }; 1901 1902 // Scan the instructions to see if there's any that we know will turn into a 1903 // call or if this loop is already a low-overhead loop or will become a tail 1904 // predicated loop. 1905 bool IsTailPredLoop = false; 1906 auto ScanLoop = [&](Loop *L) { 1907 for (auto *BB : L->getBlocks()) { 1908 for (auto &I : *BB) { 1909 if (maybeLoweredToCall(I) || IsHardwareLoopIntrinsic(I) || 1910 isa<InlineAsm>(I)) { 1911 LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n"); 1912 return false; 1913 } 1914 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1915 IsTailPredLoop |= 1916 II->getIntrinsicID() == Intrinsic::get_active_lane_mask || 1917 II->getIntrinsicID() == Intrinsic::arm_mve_vctp8 || 1918 II->getIntrinsicID() == Intrinsic::arm_mve_vctp16 || 1919 II->getIntrinsicID() == Intrinsic::arm_mve_vctp32 || 1920 II->getIntrinsicID() == Intrinsic::arm_mve_vctp64; 1921 } 1922 } 1923 return true; 1924 }; 1925 1926 // Visit inner loops. 1927 for (auto Inner : *L) 1928 if (!ScanLoop(Inner)) 1929 return false; 1930 1931 if (!ScanLoop(L)) 1932 return false; 1933 1934 // TODO: Check whether the trip count calculation is expensive. If L is the 1935 // inner loop but we know it has a low trip count, calculating that trip 1936 // count (in the parent loop) may be detrimental. 1937 1938 LLVMContext &C = L->getHeader()->getContext(); 1939 HWLoopInfo.CounterInReg = true; 1940 HWLoopInfo.IsNestingLegal = false; 1941 HWLoopInfo.PerformEntryTest = AllowWLSLoops && !IsTailPredLoop; 1942 HWLoopInfo.CountType = Type::getInt32Ty(C); 1943 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1); 1944 return true; 1945 } 1946 1947 static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) { 1948 // We don't allow icmp's, and because we only look at single block loops, 1949 // we simply count the icmps, i.e. there should only be 1 for the backedge. 1950 if (isa<ICmpInst>(&I) && ++ICmpCount > 1) 1951 return false; 1952 1953 if (isa<FCmpInst>(&I)) 1954 return false; 1955 1956 // We could allow extending/narrowing FP loads/stores, but codegen is 1957 // too inefficient so reject this for now. 1958 if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I)) 1959 return false; 1960 1961 // Extends have to be extending-loads 1962 if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) ) 1963 if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0))) 1964 return false; 1965 1966 // Truncs have to be narrowing-stores 1967 if (isa<TruncInst>(&I) ) 1968 if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin())) 1969 return false; 1970 1971 return true; 1972 } 1973 1974 // To set up a tail-predicated loop, we need to know the total number of 1975 // elements processed by that loop. Thus, we need to determine the element 1976 // size and: 1977 // 1) it should be uniform for all operations in the vector loop, so we 1978 // e.g. don't want any widening/narrowing operations. 1979 // 2) it should be smaller than i64s because we don't have vector operations 1980 // that work on i64s. 1981 // 3) we don't want elements to be reversed or shuffled, to make sure the 1982 // tail-predication masks/predicates the right lanes. 1983 // 1984 static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE, 1985 const DataLayout &DL, 1986 const LoopAccessInfo *LAI) { 1987 LLVM_DEBUG(dbgs() << "Tail-predication: checking allowed instructions\n"); 1988 1989 // If there are live-out values, it is probably a reduction. We can predicate 1990 // most reduction operations freely under MVE using a combination of 1991 // prefer-predicated-reduction-select and inloop reductions. We limit this to 1992 // floating point and integer reductions, but don't check for operators 1993 // specifically here. If the value ends up not being a reduction (and so the 1994 // vectorizer cannot tailfold the loop), we should fall back to standard 1995 // vectorization automatically. 1996 SmallVector< Instruction *, 8 > LiveOuts; 1997 LiveOuts = llvm::findDefsUsedOutsideOfLoop(L); 1998 bool ReductionsDisabled = 1999 EnableTailPredication == TailPredication::EnabledNoReductions || 2000 EnableTailPredication == TailPredication::ForceEnabledNoReductions; 2001 2002 for (auto *I : LiveOuts) { 2003 if (!I->getType()->isIntegerTy() && !I->getType()->isFloatTy() && 2004 !I->getType()->isHalfTy()) { 2005 LLVM_DEBUG(dbgs() << "Don't tail-predicate loop with non-integer/float " 2006 "live-out value\n"); 2007 return false; 2008 } 2009 if (ReductionsDisabled) { 2010 LLVM_DEBUG(dbgs() << "Reductions not enabled\n"); 2011 return false; 2012 } 2013 } 2014 2015 // Next, check that all instructions can be tail-predicated. 2016 PredicatedScalarEvolution PSE = LAI->getPSE(); 2017 SmallVector<Instruction *, 16> LoadStores; 2018 int ICmpCount = 0; 2019 2020 for (BasicBlock *BB : L->blocks()) { 2021 for (Instruction &I : BB->instructionsWithoutDebug()) { 2022 if (isa<PHINode>(&I)) 2023 continue; 2024 if (!canTailPredicateInstruction(I, ICmpCount)) { 2025 LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump()); 2026 return false; 2027 } 2028 2029 Type *T = I.getType(); 2030 if (T->isPointerTy()) 2031 T = T->getPointerElementType(); 2032 2033 if (T->getScalarSizeInBits() > 32) { 2034 LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump()); 2035 return false; 2036 } 2037 if (isa<StoreInst>(I) || isa<LoadInst>(I)) { 2038 Value *Ptr = isa<LoadInst>(I) ? I.getOperand(0) : I.getOperand(1); 2039 int64_t NextStride = getPtrStride(PSE, Ptr, L); 2040 if (NextStride == 1) { 2041 // TODO: for now only allow consecutive strides of 1. We could support 2042 // other strides as long as it is uniform, but let's keep it simple 2043 // for now. 2044 continue; 2045 } else if (NextStride == -1 || 2046 (NextStride == 2 && MVEMaxSupportedInterleaveFactor >= 2) || 2047 (NextStride == 4 && MVEMaxSupportedInterleaveFactor >= 4)) { 2048 LLVM_DEBUG(dbgs() 2049 << "Consecutive strides of 2 found, vld2/vstr2 can't " 2050 "be tail-predicated\n."); 2051 return false; 2052 // TODO: don't tail predicate if there is a reversed load? 2053 } else if (EnableMaskedGatherScatters) { 2054 // Gather/scatters do allow loading from arbitrary strides, at 2055 // least if they are loop invariant. 2056 // TODO: Loop variant strides should in theory work, too, but 2057 // this requires further testing. 2058 const SCEV *PtrScev = 2059 replaceSymbolicStrideSCEV(PSE, llvm::ValueToValueMap(), Ptr); 2060 if (auto AR = dyn_cast<SCEVAddRecExpr>(PtrScev)) { 2061 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 2062 if (PSE.getSE()->isLoopInvariant(Step, L)) 2063 continue; 2064 } 2065 } 2066 LLVM_DEBUG(dbgs() << "Bad stride found, can't " 2067 "tail-predicate\n."); 2068 return false; 2069 } 2070 } 2071 } 2072 2073 LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n"); 2074 return true; 2075 } 2076 2077 bool ARMTTIImpl::preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, 2078 ScalarEvolution &SE, 2079 AssumptionCache &AC, 2080 TargetLibraryInfo *TLI, 2081 DominatorTree *DT, 2082 const LoopAccessInfo *LAI) { 2083 if (!EnableTailPredication) { 2084 LLVM_DEBUG(dbgs() << "Tail-predication not enabled.\n"); 2085 return false; 2086 } 2087 2088 // Creating a predicated vector loop is the first step for generating a 2089 // tail-predicated hardware loop, for which we need the MVE masked 2090 // load/stores instructions: 2091 if (!ST->hasMVEIntegerOps()) 2092 return false; 2093 2094 // For now, restrict this to single block loops. 2095 if (L->getNumBlocks() > 1) { 2096 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block " 2097 "loop.\n"); 2098 return false; 2099 } 2100 2101 assert(L->isInnermost() && "preferPredicateOverEpilogue: inner-loop expected"); 2102 2103 HardwareLoopInfo HWLoopInfo(L); 2104 if (!HWLoopInfo.canAnalyze(*LI)) { 2105 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 2106 "analyzable.\n"); 2107 return false; 2108 } 2109 2110 // This checks if we have the low-overhead branch architecture 2111 // extension, and if we will create a hardware-loop: 2112 if (!isHardwareLoopProfitable(L, SE, AC, TLI, HWLoopInfo)) { 2113 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 2114 "profitable.\n"); 2115 return false; 2116 } 2117 2118 if (!HWLoopInfo.isHardwareLoopCandidate(SE, *LI, *DT)) { 2119 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 2120 "a candidate.\n"); 2121 return false; 2122 } 2123 2124 return canTailPredicateLoop(L, LI, SE, DL, LAI); 2125 } 2126 2127 bool ARMTTIImpl::emitGetActiveLaneMask() const { 2128 if (!ST->hasMVEIntegerOps() || !EnableTailPredication) 2129 return false; 2130 2131 // Intrinsic @llvm.get.active.lane.mask is supported. 2132 // It is used in the MVETailPredication pass, which requires the number of 2133 // elements processed by this vector loop to setup the tail-predicated 2134 // loop. 2135 return true; 2136 } 2137 void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 2138 TTI::UnrollingPreferences &UP) { 2139 // Enable Upper bound unrolling universally, not dependant upon the conditions 2140 // below. 2141 UP.UpperBound = true; 2142 2143 // Only currently enable these preferences for M-Class cores. 2144 if (!ST->isMClass()) 2145 return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP); 2146 2147 // Disable loop unrolling for Oz and Os. 2148 UP.OptSizeThreshold = 0; 2149 UP.PartialOptSizeThreshold = 0; 2150 if (L->getHeader()->getParent()->hasOptSize()) 2151 return; 2152 2153 SmallVector<BasicBlock*, 4> ExitingBlocks; 2154 L->getExitingBlocks(ExitingBlocks); 2155 LLVM_DEBUG(dbgs() << "Loop has:\n" 2156 << "Blocks: " << L->getNumBlocks() << "\n" 2157 << "Exit blocks: " << ExitingBlocks.size() << "\n"); 2158 2159 // Only allow another exit other than the latch. This acts as an early exit 2160 // as it mirrors the profitability calculation of the runtime unroller. 2161 if (ExitingBlocks.size() > 2) 2162 return; 2163 2164 // Limit the CFG of the loop body for targets with a branch predictor. 2165 // Allowing 4 blocks permits if-then-else diamonds in the body. 2166 if (ST->hasBranchPredictor() && L->getNumBlocks() > 4) 2167 return; 2168 2169 // Don't unroll vectorized loops, including the remainder loop 2170 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 2171 return; 2172 2173 // Scan the loop: don't unroll loops with calls as this could prevent 2174 // inlining. 2175 InstructionCost Cost = 0; 2176 for (auto *BB : L->getBlocks()) { 2177 for (auto &I : *BB) { 2178 // Don't unroll vectorised loop. MVE does not benefit from it as much as 2179 // scalar code. 2180 if (I.getType()->isVectorTy()) 2181 return; 2182 2183 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 2184 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 2185 if (!isLoweredToCall(F)) 2186 continue; 2187 } 2188 return; 2189 } 2190 2191 SmallVector<const Value*, 4> Operands(I.operand_values()); 2192 Cost += 2193 getUserCost(&I, Operands, TargetTransformInfo::TCK_SizeAndLatency); 2194 } 2195 } 2196 2197 // On v6m cores, there are very few registers available. We can easily end up 2198 // spilling and reloading more registers in an unrolled loop. Look at the 2199 // number of LCSSA phis as a rough measure of how many registers will need to 2200 // be live out of the loop, reducing the default unroll count if more than 1 2201 // value is needed. In the long run, all of this should be being learnt by a 2202 // machine. 2203 unsigned UnrollCount = 4; 2204 if (ST->isThumb1Only()) { 2205 unsigned ExitingValues = 0; 2206 SmallVector<BasicBlock *, 4> ExitBlocks; 2207 L->getExitBlocks(ExitBlocks); 2208 for (auto *Exit : ExitBlocks) { 2209 // Count the number of LCSSA phis. Exclude values coming from GEP's as 2210 // only the last is expected to be needed for address operands. 2211 unsigned LiveOuts = count_if(Exit->phis(), [](auto &PH) { 2212 return PH.getNumOperands() != 1 || 2213 !isa<GetElementPtrInst>(PH.getOperand(0)); 2214 }); 2215 ExitingValues = ExitingValues < LiveOuts ? LiveOuts : ExitingValues; 2216 } 2217 if (ExitingValues) 2218 UnrollCount /= ExitingValues; 2219 if (UnrollCount <= 1) 2220 return; 2221 } 2222 2223 LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n"); 2224 LLVM_DEBUG(dbgs() << "Default Runtime Unroll Count: " << UnrollCount << "\n"); 2225 2226 UP.Partial = true; 2227 UP.Runtime = true; 2228 UP.UnrollRemainder = true; 2229 UP.DefaultUnrollRuntimeCount = UnrollCount; 2230 UP.UnrollAndJam = true; 2231 UP.UnrollAndJamInnerLoopThreshold = 60; 2232 2233 // Force unrolling small loops can be very useful because of the branch 2234 // taken cost of the backedge. 2235 if (Cost < 12) 2236 UP.Force = true; 2237 } 2238 2239 void ARMTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 2240 TTI::PeelingPreferences &PP) { 2241 BaseT::getPeelingPreferences(L, SE, PP); 2242 } 2243 2244 bool ARMTTIImpl::preferInLoopReduction(unsigned Opcode, Type *Ty, 2245 TTI::ReductionFlags Flags) const { 2246 if (!ST->hasMVEIntegerOps()) 2247 return false; 2248 2249 unsigned ScalarBits = Ty->getScalarSizeInBits(); 2250 switch (Opcode) { 2251 case Instruction::Add: 2252 return ScalarBits <= 64; 2253 default: 2254 return false; 2255 } 2256 } 2257 2258 bool ARMTTIImpl::preferPredicatedReductionSelect( 2259 unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const { 2260 if (!ST->hasMVEIntegerOps()) 2261 return false; 2262 return true; 2263 } 2264