xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ARMTargetTransformInfo.h"
10 #include "ARMSubtarget.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "llvm/ADT/APInt.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/Analysis/LoopInfo.h"
15 #include "llvm/CodeGen/CostTable.h"
16 #include "llvm/CodeGen/ISDOpcodes.h"
17 #include "llvm/CodeGen/ValueTypes.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/Intrinsics.h"
25 #include "llvm/IR/IntrinsicsARM.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/MC/SubtargetFeature.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MachineValueType.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Transforms/InstCombine/InstCombiner.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include "llvm/Transforms/Utils/LoopUtils.h"
36 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstdint>
40 #include <utility>
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "armtti"
45 
46 static cl::opt<bool> EnableMaskedLoadStores(
47   "enable-arm-maskedldst", cl::Hidden, cl::init(true),
48   cl::desc("Enable the generation of masked loads and stores"));
49 
50 static cl::opt<bool> DisableLowOverheadLoops(
51   "disable-arm-loloops", cl::Hidden, cl::init(false),
52   cl::desc("Disable the generation of low-overhead loops"));
53 
54 static cl::opt<bool>
55     AllowWLSLoops("allow-arm-wlsloops", cl::Hidden, cl::init(true),
56                   cl::desc("Enable the generation of WLS loops"));
57 
58 extern cl::opt<TailPredication::Mode> EnableTailPredication;
59 
60 extern cl::opt<bool> EnableMaskedGatherScatters;
61 
62 extern cl::opt<unsigned> MVEMaxSupportedInterleaveFactor;
63 
64 /// Convert a vector load intrinsic into a simple llvm load instruction.
65 /// This is beneficial when the underlying object being addressed comes
66 /// from a constant, since we get constant-folding for free.
67 static Value *simplifyNeonVld1(const IntrinsicInst &II, unsigned MemAlign,
68                                InstCombiner::BuilderTy &Builder) {
69   auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1));
70 
71   if (!IntrAlign)
72     return nullptr;
73 
74   unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign
75                            ? MemAlign
76                            : IntrAlign->getLimitedValue();
77 
78   if (!isPowerOf2_32(Alignment))
79     return nullptr;
80 
81   auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0),
82                                           PointerType::get(II.getType(), 0));
83   return Builder.CreateAlignedLoad(II.getType(), BCastInst, Align(Alignment));
84 }
85 
86 bool ARMTTIImpl::areInlineCompatible(const Function *Caller,
87                                      const Function *Callee) const {
88   const TargetMachine &TM = getTLI()->getTargetMachine();
89   const FeatureBitset &CallerBits =
90       TM.getSubtargetImpl(*Caller)->getFeatureBits();
91   const FeatureBitset &CalleeBits =
92       TM.getSubtargetImpl(*Callee)->getFeatureBits();
93 
94   // To inline a callee, all features not in the allowed list must match exactly.
95   bool MatchExact = (CallerBits & ~InlineFeaturesAllowed) ==
96                     (CalleeBits & ~InlineFeaturesAllowed);
97   // For features in the allowed list, the callee's features must be a subset of
98   // the callers'.
99   bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeaturesAllowed) ==
100                      (CalleeBits & InlineFeaturesAllowed);
101   return MatchExact && MatchSubset;
102 }
103 
104 TTI::AddressingModeKind
105 ARMTTIImpl::getPreferredAddressingMode(const Loop *L,
106                                        ScalarEvolution *SE) const {
107   if (ST->hasMVEIntegerOps())
108     return TTI::AMK_PostIndexed;
109 
110   if (L->getHeader()->getParent()->hasOptSize())
111     return TTI::AMK_None;
112 
113   if (ST->isMClass() && ST->isThumb2() &&
114       L->getNumBlocks() == 1)
115     return TTI::AMK_PreIndexed;
116 
117   return TTI::AMK_None;
118 }
119 
120 Optional<Instruction *>
121 ARMTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
122   using namespace PatternMatch;
123   Intrinsic::ID IID = II.getIntrinsicID();
124   switch (IID) {
125   default:
126     break;
127   case Intrinsic::arm_neon_vld1: {
128     Align MemAlign =
129         getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II,
130                           &IC.getAssumptionCache(), &IC.getDominatorTree());
131     if (Value *V = simplifyNeonVld1(II, MemAlign.value(), IC.Builder)) {
132       return IC.replaceInstUsesWith(II, V);
133     }
134     break;
135   }
136 
137   case Intrinsic::arm_neon_vld2:
138   case Intrinsic::arm_neon_vld3:
139   case Intrinsic::arm_neon_vld4:
140   case Intrinsic::arm_neon_vld2lane:
141   case Intrinsic::arm_neon_vld3lane:
142   case Intrinsic::arm_neon_vld4lane:
143   case Intrinsic::arm_neon_vst1:
144   case Intrinsic::arm_neon_vst2:
145   case Intrinsic::arm_neon_vst3:
146   case Intrinsic::arm_neon_vst4:
147   case Intrinsic::arm_neon_vst2lane:
148   case Intrinsic::arm_neon_vst3lane:
149   case Intrinsic::arm_neon_vst4lane: {
150     Align MemAlign =
151         getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II,
152                           &IC.getAssumptionCache(), &IC.getDominatorTree());
153     unsigned AlignArg = II.arg_size() - 1;
154     Value *AlignArgOp = II.getArgOperand(AlignArg);
155     MaybeAlign Align = cast<ConstantInt>(AlignArgOp)->getMaybeAlignValue();
156     if (Align && *Align < MemAlign) {
157       return IC.replaceOperand(
158           II, AlignArg,
159           ConstantInt::get(Type::getInt32Ty(II.getContext()), MemAlign.value(),
160                            false));
161     }
162     break;
163   }
164 
165   case Intrinsic::arm_mve_pred_i2v: {
166     Value *Arg = II.getArgOperand(0);
167     Value *ArgArg;
168     if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(
169                        PatternMatch::m_Value(ArgArg))) &&
170         II.getType() == ArgArg->getType()) {
171       return IC.replaceInstUsesWith(II, ArgArg);
172     }
173     Constant *XorMask;
174     if (match(Arg, m_Xor(PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(
175                              PatternMatch::m_Value(ArgArg)),
176                          PatternMatch::m_Constant(XorMask))) &&
177         II.getType() == ArgArg->getType()) {
178       if (auto *CI = dyn_cast<ConstantInt>(XorMask)) {
179         if (CI->getValue().trunc(16).isAllOnes()) {
180           auto TrueVector = IC.Builder.CreateVectorSplat(
181               cast<FixedVectorType>(II.getType())->getNumElements(),
182               IC.Builder.getTrue());
183           return BinaryOperator::Create(Instruction::Xor, ArgArg, TrueVector);
184         }
185       }
186     }
187     KnownBits ScalarKnown(32);
188     if (IC.SimplifyDemandedBits(&II, 0, APInt::getLowBitsSet(32, 16),
189                                 ScalarKnown, 0)) {
190       return &II;
191     }
192     break;
193   }
194   case Intrinsic::arm_mve_pred_v2i: {
195     Value *Arg = II.getArgOperand(0);
196     Value *ArgArg;
197     if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_i2v>(
198                        PatternMatch::m_Value(ArgArg)))) {
199       return IC.replaceInstUsesWith(II, ArgArg);
200     }
201     if (!II.getMetadata(LLVMContext::MD_range)) {
202       Type *IntTy32 = Type::getInt32Ty(II.getContext());
203       Metadata *M[] = {
204           ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0)),
205           ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0x10000))};
206       II.setMetadata(LLVMContext::MD_range, MDNode::get(II.getContext(), M));
207       return &II;
208     }
209     break;
210   }
211   case Intrinsic::arm_mve_vadc:
212   case Intrinsic::arm_mve_vadc_predicated: {
213     unsigned CarryOp =
214         (II.getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated) ? 3 : 2;
215     assert(II.getArgOperand(CarryOp)->getType()->getScalarSizeInBits() == 32 &&
216            "Bad type for intrinsic!");
217 
218     KnownBits CarryKnown(32);
219     if (IC.SimplifyDemandedBits(&II, CarryOp, APInt::getOneBitSet(32, 29),
220                                 CarryKnown)) {
221       return &II;
222     }
223     break;
224   }
225   case Intrinsic::arm_mve_vmldava: {
226     Instruction *I = cast<Instruction>(&II);
227     if (I->hasOneUse()) {
228       auto *User = cast<Instruction>(*I->user_begin());
229       Value *OpZ;
230       if (match(User, m_c_Add(m_Specific(I), m_Value(OpZ))) &&
231           match(I->getOperand(3), m_Zero())) {
232         Value *OpX = I->getOperand(4);
233         Value *OpY = I->getOperand(5);
234         Type *OpTy = OpX->getType();
235 
236         IC.Builder.SetInsertPoint(User);
237         Value *V =
238             IC.Builder.CreateIntrinsic(Intrinsic::arm_mve_vmldava, {OpTy},
239                                        {I->getOperand(0), I->getOperand(1),
240                                         I->getOperand(2), OpZ, OpX, OpY});
241 
242         IC.replaceInstUsesWith(*User, V);
243         return IC.eraseInstFromFunction(*User);
244       }
245     }
246     return None;
247   }
248   }
249   return None;
250 }
251 
252 Optional<Value *> ARMTTIImpl::simplifyDemandedVectorEltsIntrinsic(
253     InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts,
254     APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
255     std::function<void(Instruction *, unsigned, APInt, APInt &)>
256         SimplifyAndSetOp) const {
257 
258   // Compute the demanded bits for a narrowing MVE intrinsic. The TopOpc is the
259   // opcode specifying a Top/Bottom instruction, which can change between
260   // instructions.
261   auto SimplifyNarrowInstrTopBottom =[&](unsigned TopOpc) {
262     unsigned NumElts = cast<FixedVectorType>(II.getType())->getNumElements();
263     unsigned IsTop = cast<ConstantInt>(II.getOperand(TopOpc))->getZExtValue();
264 
265     // The only odd/even lanes of operand 0 will only be demanded depending
266     // on whether this is a top/bottom instruction.
267     APInt DemandedElts =
268         APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1)
269                                        : APInt::getHighBitsSet(2, 1));
270     SimplifyAndSetOp(&II, 0, OrigDemandedElts & DemandedElts, UndefElts);
271     // The other lanes will be defined from the inserted elements.
272     UndefElts &= APInt::getSplat(NumElts, !IsTop ? APInt::getLowBitsSet(2, 1)
273                                                  : APInt::getHighBitsSet(2, 1));
274     return None;
275   };
276 
277   switch (II.getIntrinsicID()) {
278   default:
279     break;
280   case Intrinsic::arm_mve_vcvt_narrow:
281     SimplifyNarrowInstrTopBottom(2);
282     break;
283   case Intrinsic::arm_mve_vqmovn:
284     SimplifyNarrowInstrTopBottom(4);
285     break;
286   case Intrinsic::arm_mve_vshrn:
287     SimplifyNarrowInstrTopBottom(7);
288     break;
289   }
290 
291   return None;
292 }
293 
294 InstructionCost ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
295                                           TTI::TargetCostKind CostKind) {
296   assert(Ty->isIntegerTy());
297 
298  unsigned Bits = Ty->getPrimitiveSizeInBits();
299  if (Bits == 0 || Imm.getActiveBits() >= 64)
300    return 4;
301 
302   int64_t SImmVal = Imm.getSExtValue();
303   uint64_t ZImmVal = Imm.getZExtValue();
304   if (!ST->isThumb()) {
305     if ((SImmVal >= 0 && SImmVal < 65536) ||
306         (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
307         (ARM_AM::getSOImmVal(~ZImmVal) != -1))
308       return 1;
309     return ST->hasV6T2Ops() ? 2 : 3;
310   }
311   if (ST->isThumb2()) {
312     if ((SImmVal >= 0 && SImmVal < 65536) ||
313         (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
314         (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
315       return 1;
316     return ST->hasV6T2Ops() ? 2 : 3;
317   }
318   // Thumb1, any i8 imm cost 1.
319   if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256))
320     return 1;
321   if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
322     return 2;
323   // Load from constantpool.
324   return 3;
325 }
326 
327 // Constants smaller than 256 fit in the immediate field of
328 // Thumb1 instructions so we return a zero cost and 1 otherwise.
329 InstructionCost ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
330                                                   const APInt &Imm, Type *Ty) {
331   if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
332     return 0;
333 
334   return 1;
335 }
336 
337 // Checks whether Inst is part of a min(max()) or max(min()) pattern
338 // that will match to an SSAT instruction. Returns the instruction being
339 // saturated, or null if no saturation pattern was found.
340 static Value *isSSATMinMaxPattern(Instruction *Inst, const APInt &Imm) {
341   Value *LHS, *RHS;
342   ConstantInt *C;
343   SelectPatternFlavor InstSPF = matchSelectPattern(Inst, LHS, RHS).Flavor;
344 
345   if (InstSPF == SPF_SMAX &&
346       PatternMatch::match(RHS, PatternMatch::m_ConstantInt(C)) &&
347       C->getValue() == Imm && Imm.isNegative() && Imm.isNegatedPowerOf2()) {
348 
349     auto isSSatMin = [&](Value *MinInst) {
350       if (isa<SelectInst>(MinInst)) {
351         Value *MinLHS, *MinRHS;
352         ConstantInt *MinC;
353         SelectPatternFlavor MinSPF =
354             matchSelectPattern(MinInst, MinLHS, MinRHS).Flavor;
355         if (MinSPF == SPF_SMIN &&
356             PatternMatch::match(MinRHS, PatternMatch::m_ConstantInt(MinC)) &&
357             MinC->getValue() == ((-Imm) - 1))
358           return true;
359       }
360       return false;
361     };
362 
363     if (isSSatMin(Inst->getOperand(1)))
364       return cast<Instruction>(Inst->getOperand(1))->getOperand(1);
365     if (Inst->hasNUses(2) &&
366         (isSSatMin(*Inst->user_begin()) || isSSatMin(*(++Inst->user_begin()))))
367       return Inst->getOperand(1);
368   }
369   return nullptr;
370 }
371 
372 // Look for a FP Saturation pattern, where the instruction can be simplified to
373 // a fptosi.sat. max(min(fptosi)). The constant in this case is always free.
374 static bool isFPSatMinMaxPattern(Instruction *Inst, const APInt &Imm) {
375   if (Imm.getBitWidth() != 64 ||
376       Imm != APInt::getHighBitsSet(64, 33)) // -2147483648
377     return false;
378   Value *FP = isSSATMinMaxPattern(Inst, Imm);
379   if (!FP && isa<ICmpInst>(Inst) && Inst->hasOneUse())
380     FP = isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm);
381   if (!FP)
382     return false;
383   return isa<FPToSIInst>(FP);
384 }
385 
386 InstructionCost ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
387                                               const APInt &Imm, Type *Ty,
388                                               TTI::TargetCostKind CostKind,
389                                               Instruction *Inst) {
390   // Division by a constant can be turned into multiplication, but only if we
391   // know it's constant. So it's not so much that the immediate is cheap (it's
392   // not), but that the alternative is worse.
393   // FIXME: this is probably unneeded with GlobalISel.
394   if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
395        Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
396       Idx == 1)
397     return 0;
398 
399   // Leave any gep offsets for the CodeGenPrepare, which will do a better job at
400   // splitting any large offsets.
401   if (Opcode == Instruction::GetElementPtr && Idx != 0)
402     return 0;
403 
404   if (Opcode == Instruction::And) {
405     // UXTB/UXTH
406     if (Imm == 255 || Imm == 65535)
407       return 0;
408     // Conversion to BIC is free, and means we can use ~Imm instead.
409     return std::min(getIntImmCost(Imm, Ty, CostKind),
410                     getIntImmCost(~Imm, Ty, CostKind));
411   }
412 
413   if (Opcode == Instruction::Add)
414     // Conversion to SUB is free, and means we can use -Imm instead.
415     return std::min(getIntImmCost(Imm, Ty, CostKind),
416                     getIntImmCost(-Imm, Ty, CostKind));
417 
418   if (Opcode == Instruction::ICmp && Imm.isNegative() &&
419       Ty->getIntegerBitWidth() == 32) {
420     int64_t NegImm = -Imm.getSExtValue();
421     if (ST->isThumb2() && NegImm < 1<<12)
422       // icmp X, #-C -> cmn X, #C
423       return 0;
424     if (ST->isThumb() && NegImm < 1<<8)
425       // icmp X, #-C -> adds X, #C
426       return 0;
427   }
428 
429   // xor a, -1 can always be folded to MVN
430   if (Opcode == Instruction::Xor && Imm.isAllOnes())
431     return 0;
432 
433   // Ensures negative constant of min(max()) or max(min()) patterns that
434   // match to SSAT instructions don't get hoisted
435   if (Inst && ((ST->hasV6Ops() && !ST->isThumb()) || ST->isThumb2()) &&
436       Ty->getIntegerBitWidth() <= 32) {
437     if (isSSATMinMaxPattern(Inst, Imm) ||
438         (isa<ICmpInst>(Inst) && Inst->hasOneUse() &&
439          isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm)))
440       return 0;
441   }
442 
443   if (Inst && ST->hasVFP2Base() && isFPSatMinMaxPattern(Inst, Imm))
444     return 0;
445 
446   // We can convert <= -1 to < 0, which is generally quite cheap.
447   if (Inst && Opcode == Instruction::ICmp && Idx == 1 && Imm.isAllOnesValue()) {
448     ICmpInst::Predicate Pred = cast<ICmpInst>(Inst)->getPredicate();
449     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE)
450       return std::min(getIntImmCost(Imm, Ty, CostKind),
451                       getIntImmCost(Imm + 1, Ty, CostKind));
452   }
453 
454   return getIntImmCost(Imm, Ty, CostKind);
455 }
456 
457 InstructionCost ARMTTIImpl::getCFInstrCost(unsigned Opcode,
458                                            TTI::TargetCostKind CostKind,
459                                            const Instruction *I) {
460   if (CostKind == TTI::TCK_RecipThroughput &&
461       (ST->hasNEON() || ST->hasMVEIntegerOps())) {
462     // FIXME: The vectorizer is highly sensistive to the cost of these
463     // instructions, which suggests that it may be using the costs incorrectly.
464     // But, for now, just make them free to avoid performance regressions for
465     // vector targets.
466     return 0;
467   }
468   return BaseT::getCFInstrCost(Opcode, CostKind, I);
469 }
470 
471 InstructionCost ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
472                                              Type *Src,
473                                              TTI::CastContextHint CCH,
474                                              TTI::TargetCostKind CostKind,
475                                              const Instruction *I) {
476   int ISD = TLI->InstructionOpcodeToISD(Opcode);
477   assert(ISD && "Invalid opcode");
478 
479   // TODO: Allow non-throughput costs that aren't binary.
480   auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
481     if (CostKind != TTI::TCK_RecipThroughput)
482       return Cost == 0 ? 0 : 1;
483     return Cost;
484   };
485   auto IsLegalFPType = [this](EVT VT) {
486     EVT EltVT = VT.getScalarType();
487     return (EltVT == MVT::f32 && ST->hasVFP2Base()) ||
488             (EltVT == MVT::f64 && ST->hasFP64()) ||
489             (EltVT == MVT::f16 && ST->hasFullFP16());
490   };
491 
492   EVT SrcTy = TLI->getValueType(DL, Src);
493   EVT DstTy = TLI->getValueType(DL, Dst);
494 
495   if (!SrcTy.isSimple() || !DstTy.isSimple())
496     return AdjustCost(
497         BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
498 
499   // Extending masked load/Truncating masked stores is expensive because we
500   // currently don't split them. This means that we'll likely end up
501   // loading/storing each element individually (hence the high cost).
502   if ((ST->hasMVEIntegerOps() &&
503        (Opcode == Instruction::Trunc || Opcode == Instruction::ZExt ||
504         Opcode == Instruction::SExt)) ||
505       (ST->hasMVEFloatOps() &&
506        (Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc) &&
507        IsLegalFPType(SrcTy) && IsLegalFPType(DstTy)))
508     if (CCH == TTI::CastContextHint::Masked && DstTy.getSizeInBits() > 128)
509       return 2 * DstTy.getVectorNumElements() *
510              ST->getMVEVectorCostFactor(CostKind);
511 
512   // The extend of other kinds of load is free
513   if (CCH == TTI::CastContextHint::Normal ||
514       CCH == TTI::CastContextHint::Masked) {
515     static const TypeConversionCostTblEntry LoadConversionTbl[] = {
516         {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0},
517         {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0},
518         {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0},
519         {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0},
520         {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0},
521         {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0},
522         {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1},
523         {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1},
524         {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1},
525         {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1},
526         {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1},
527         {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1},
528     };
529     if (const auto *Entry = ConvertCostTableLookup(
530             LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
531       return AdjustCost(Entry->Cost);
532 
533     static const TypeConversionCostTblEntry MVELoadConversionTbl[] = {
534         {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0},
535         {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0},
536         {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0},
537         {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0},
538         {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0},
539         {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0},
540         // The following extend from a legal type to an illegal type, so need to
541         // split the load. This introduced an extra load operation, but the
542         // extend is still "free".
543         {ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1},
544         {ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1},
545         {ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 3},
546         {ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 3},
547         {ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1},
548         {ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1},
549     };
550     if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
551       if (const auto *Entry =
552               ConvertCostTableLookup(MVELoadConversionTbl, ISD,
553                                      DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
554         return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
555     }
556 
557     static const TypeConversionCostTblEntry MVEFLoadConversionTbl[] = {
558         // FPExtends are similar but also require the VCVT instructions.
559         {ISD::FP_EXTEND, MVT::v4f32, MVT::v4f16, 1},
560         {ISD::FP_EXTEND, MVT::v8f32, MVT::v8f16, 3},
561     };
562     if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
563       if (const auto *Entry =
564               ConvertCostTableLookup(MVEFLoadConversionTbl, ISD,
565                                      DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
566         return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
567     }
568 
569     // The truncate of a store is free. This is the mirror of extends above.
570     static const TypeConversionCostTblEntry MVEStoreConversionTbl[] = {
571         {ISD::TRUNCATE, MVT::v4i32, MVT::v4i16, 0},
572         {ISD::TRUNCATE, MVT::v4i32, MVT::v4i8, 0},
573         {ISD::TRUNCATE, MVT::v8i16, MVT::v8i8, 0},
574         {ISD::TRUNCATE, MVT::v8i32, MVT::v8i16, 1},
575         {ISD::TRUNCATE, MVT::v8i32, MVT::v8i8, 1},
576         {ISD::TRUNCATE, MVT::v16i32, MVT::v16i8, 3},
577         {ISD::TRUNCATE, MVT::v16i16, MVT::v16i8, 1},
578     };
579     if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
580       if (const auto *Entry =
581               ConvertCostTableLookup(MVEStoreConversionTbl, ISD,
582                                      SrcTy.getSimpleVT(), DstTy.getSimpleVT()))
583         return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
584     }
585 
586     static const TypeConversionCostTblEntry MVEFStoreConversionTbl[] = {
587         {ISD::FP_ROUND, MVT::v4f32, MVT::v4f16, 1},
588         {ISD::FP_ROUND, MVT::v8f32, MVT::v8f16, 3},
589     };
590     if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
591       if (const auto *Entry =
592               ConvertCostTableLookup(MVEFStoreConversionTbl, ISD,
593                                      SrcTy.getSimpleVT(), DstTy.getSimpleVT()))
594         return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
595     }
596   }
597 
598   // NEON vector operations that can extend their inputs.
599   if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) &&
600       I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) {
601     static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = {
602       // vaddl
603       { ISD::ADD, MVT::v4i32, MVT::v4i16, 0 },
604       { ISD::ADD, MVT::v8i16, MVT::v8i8,  0 },
605       // vsubl
606       { ISD::SUB, MVT::v4i32, MVT::v4i16, 0 },
607       { ISD::SUB, MVT::v8i16, MVT::v8i8,  0 },
608       // vmull
609       { ISD::MUL, MVT::v4i32, MVT::v4i16, 0 },
610       { ISD::MUL, MVT::v8i16, MVT::v8i8,  0 },
611       // vshll
612       { ISD::SHL, MVT::v4i32, MVT::v4i16, 0 },
613       { ISD::SHL, MVT::v8i16, MVT::v8i8,  0 },
614     };
615 
616     auto *User = cast<Instruction>(*I->user_begin());
617     int UserISD = TLI->InstructionOpcodeToISD(User->getOpcode());
618     if (auto *Entry = ConvertCostTableLookup(NEONDoubleWidthTbl, UserISD,
619                                              DstTy.getSimpleVT(),
620                                              SrcTy.getSimpleVT())) {
621       return AdjustCost(Entry->Cost);
622     }
623   }
624 
625   // Single to/from double precision conversions.
626   if (Src->isVectorTy() && ST->hasNEON() &&
627       ((ISD == ISD::FP_ROUND && SrcTy.getScalarType() == MVT::f64 &&
628         DstTy.getScalarType() == MVT::f32) ||
629        (ISD == ISD::FP_EXTEND && SrcTy.getScalarType() == MVT::f32 &&
630         DstTy.getScalarType() == MVT::f64))) {
631     static const CostTblEntry NEONFltDblTbl[] = {
632         // Vector fptrunc/fpext conversions.
633         {ISD::FP_ROUND, MVT::v2f64, 2},
634         {ISD::FP_EXTEND, MVT::v2f32, 2},
635         {ISD::FP_EXTEND, MVT::v4f32, 4}};
636 
637     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
638     if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
639       return AdjustCost(LT.first * Entry->Cost);
640   }
641 
642   // Some arithmetic, load and store operations have specific instructions
643   // to cast up/down their types automatically at no extra cost.
644   // TODO: Get these tables to know at least what the related operations are.
645   static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
646     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
647     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
648     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
649     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
650     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
651     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },
652 
653     // The number of vmovl instructions for the extension.
654     { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8,  1 },
655     { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8,  1 },
656     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8,  2 },
657     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8,  2 },
658     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8,  3 },
659     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8,  3 },
660     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
661     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
662     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
663     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
664     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
665     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
666     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
667     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
668     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
669     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
670     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
671     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
672 
673     // Operations that we legalize using splitting.
674     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 },
675     { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 },
676 
677     // Vector float <-> i32 conversions.
678     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
679     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
680 
681     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
682     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
683     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
684     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
685     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
686     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
687     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
688     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
689     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
690     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
691     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
692     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
693     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
694     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
695     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
696     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
697     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
698     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
699     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
700     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
701 
702     { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
703     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
704     { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 },
705     { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 },
706     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 },
707     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 },
708 
709     // Vector double <-> i32 conversions.
710     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
711     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
712 
713     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
714     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
715     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
716     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
717     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
718     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
719 
720     { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
721     { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 },
722     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 },
723     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 },
724     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 },
725     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 }
726   };
727 
728   if (SrcTy.isVector() && ST->hasNEON()) {
729     if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
730                                                    DstTy.getSimpleVT(),
731                                                    SrcTy.getSimpleVT()))
732       return AdjustCost(Entry->Cost);
733   }
734 
735   // Scalar float to integer conversions.
736   static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
737     { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
738     { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
739     { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
740     { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
741     { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
742     { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
743     { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
744     { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
745     { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
746     { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
747     { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
748     { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
749     { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
750     { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
751     { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
752     { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
753     { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
754     { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
755     { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
756     { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
757   };
758   if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
759     if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
760                                                    DstTy.getSimpleVT(),
761                                                    SrcTy.getSimpleVT()))
762       return AdjustCost(Entry->Cost);
763   }
764 
765   // Scalar integer to float conversions.
766   static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
767     { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
768     { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
769     { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
770     { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
771     { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
772     { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
773     { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
774     { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
775     { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
776     { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
777     { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
778     { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
779     { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
780     { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
781     { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
782     { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
783     { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
784     { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
785     { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
786     { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
787   };
788 
789   if (SrcTy.isInteger() && ST->hasNEON()) {
790     if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
791                                                    ISD, DstTy.getSimpleVT(),
792                                                    SrcTy.getSimpleVT()))
793       return AdjustCost(Entry->Cost);
794   }
795 
796   // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one
797   // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext
798   // are linearised so take more.
799   static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = {
800     { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
801     { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
802     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
803     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
804     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 },
805     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 },
806     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
807     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
808     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 },
809     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
810     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 },
811     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 },
812   };
813 
814   if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
815     if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl,
816                                                    ISD, DstTy.getSimpleVT(),
817                                                    SrcTy.getSimpleVT()))
818       return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
819   }
820 
821   if (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND) {
822     // As general rule, fp converts that were not matched above are scalarized
823     // and cost 1 vcvt for each lane, so long as the instruction is available.
824     // If not it will become a series of function calls.
825     const InstructionCost CallCost =
826         getCallInstrCost(nullptr, Dst, {Src}, CostKind);
827     int Lanes = 1;
828     if (SrcTy.isFixedLengthVector())
829       Lanes = SrcTy.getVectorNumElements();
830 
831     if (IsLegalFPType(SrcTy) && IsLegalFPType(DstTy))
832       return Lanes;
833     else
834       return Lanes * CallCost;
835   }
836 
837   if (ISD == ISD::TRUNCATE && ST->hasMVEIntegerOps() &&
838       SrcTy.isFixedLengthVector()) {
839     // Treat a truncate with larger than legal source (128bits for MVE) as
840     // expensive, 2 instructions per lane.
841     if ((SrcTy.getScalarType() == MVT::i8 ||
842          SrcTy.getScalarType() == MVT::i16 ||
843          SrcTy.getScalarType() == MVT::i32) &&
844         SrcTy.getSizeInBits() > 128 &&
845         SrcTy.getSizeInBits() > DstTy.getSizeInBits())
846       return SrcTy.getVectorNumElements() * 2;
847   }
848 
849   // Scalar integer conversion costs.
850   static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
851     // i16 -> i64 requires two dependent operations.
852     { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
853 
854     // Truncates on i64 are assumed to be free.
855     { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
856     { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
857     { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
858     { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
859   };
860 
861   if (SrcTy.isInteger()) {
862     if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
863                                                    DstTy.getSimpleVT(),
864                                                    SrcTy.getSimpleVT()))
865       return AdjustCost(Entry->Cost);
866   }
867 
868   int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
869                      ? ST->getMVEVectorCostFactor(CostKind)
870                      : 1;
871   return AdjustCost(
872       BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
873 }
874 
875 InstructionCost ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
876                                                unsigned Index) {
877   // Penalize inserting into an D-subregister. We end up with a three times
878   // lower estimated throughput on swift.
879   if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
880       ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
881     return 3;
882 
883   if (ST->hasNEON() && (Opcode == Instruction::InsertElement ||
884                         Opcode == Instruction::ExtractElement)) {
885     // Cross-class copies are expensive on many microarchitectures,
886     // so assume they are expensive by default.
887     if (cast<VectorType>(ValTy)->getElementType()->isIntegerTy())
888       return 3;
889 
890     // Even if it's not a cross class copy, this likely leads to mixing
891     // of NEON and VFP code and should be therefore penalized.
892     if (ValTy->isVectorTy() &&
893         ValTy->getScalarSizeInBits() <= 32)
894       return std::max<InstructionCost>(
895           BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
896   }
897 
898   if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement ||
899                                  Opcode == Instruction::ExtractElement)) {
900     // Integer cross-lane moves are more expensive than float, which can
901     // sometimes just be vmovs. Integer involve being passes to GPR registers,
902     // causing more of a delay.
903     std::pair<InstructionCost, MVT> LT =
904         getTLI()->getTypeLegalizationCost(DL, ValTy->getScalarType());
905     return LT.first * (ValTy->getScalarType()->isIntegerTy() ? 4 : 1);
906   }
907 
908   return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
909 }
910 
911 InstructionCost ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
912                                                Type *CondTy,
913                                                CmpInst::Predicate VecPred,
914                                                TTI::TargetCostKind CostKind,
915                                                const Instruction *I) {
916   int ISD = TLI->InstructionOpcodeToISD(Opcode);
917 
918   // Thumb scalar code size cost for select.
919   if (CostKind == TTI::TCK_CodeSize && ISD == ISD::SELECT &&
920       ST->isThumb() && !ValTy->isVectorTy()) {
921     // Assume expensive structs.
922     if (TLI->getValueType(DL, ValTy, true) == MVT::Other)
923       return TTI::TCC_Expensive;
924 
925     // Select costs can vary because they:
926     // - may require one or more conditional mov (including an IT),
927     // - can't operate directly on immediates,
928     // - require live flags, which we can't copy around easily.
929     InstructionCost Cost = TLI->getTypeLegalizationCost(DL, ValTy).first;
930 
931     // Possible IT instruction for Thumb2, or more for Thumb1.
932     ++Cost;
933 
934     // i1 values may need rematerialising by using mov immediates and/or
935     // flag setting instructions.
936     if (ValTy->isIntegerTy(1))
937       ++Cost;
938 
939     return Cost;
940   }
941 
942   // If this is a vector min/max/abs, use the cost of that intrinsic directly
943   // instead. Hopefully when min/max intrinsics are more prevalent this code
944   // will not be needed.
945   const Instruction *Sel = I;
946   if ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && Sel &&
947       Sel->hasOneUse())
948     Sel = cast<Instruction>(Sel->user_back());
949   if (Sel && ValTy->isVectorTy() &&
950       (ValTy->isIntOrIntVectorTy() || ValTy->isFPOrFPVectorTy())) {
951     const Value *LHS, *RHS;
952     SelectPatternFlavor SPF = matchSelectPattern(Sel, LHS, RHS).Flavor;
953     unsigned IID = 0;
954     switch (SPF) {
955     case SPF_ABS:
956       IID = Intrinsic::abs;
957       break;
958     case SPF_SMIN:
959       IID = Intrinsic::smin;
960       break;
961     case SPF_SMAX:
962       IID = Intrinsic::smax;
963       break;
964     case SPF_UMIN:
965       IID = Intrinsic::umin;
966       break;
967     case SPF_UMAX:
968       IID = Intrinsic::umax;
969       break;
970     case SPF_FMINNUM:
971       IID = Intrinsic::minnum;
972       break;
973     case SPF_FMAXNUM:
974       IID = Intrinsic::maxnum;
975       break;
976     default:
977       break;
978     }
979     if (IID) {
980       // The ICmp is free, the select gets the cost of the min/max/etc
981       if (Sel != I)
982         return 0;
983       IntrinsicCostAttributes CostAttrs(IID, ValTy, {ValTy, ValTy});
984       return getIntrinsicInstrCost(CostAttrs, CostKind);
985     }
986   }
987 
988   // On NEON a vector select gets lowered to vbsl.
989   if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT && CondTy) {
990     // Lowering of some vector selects is currently far from perfect.
991     static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
992       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
993       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
994       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
995     };
996 
997     EVT SelCondTy = TLI->getValueType(DL, CondTy);
998     EVT SelValTy = TLI->getValueType(DL, ValTy);
999     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
1000       if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
1001                                                      SelCondTy.getSimpleVT(),
1002                                                      SelValTy.getSimpleVT()))
1003         return Entry->Cost;
1004     }
1005 
1006     std::pair<InstructionCost, MVT> LT =
1007         TLI->getTypeLegalizationCost(DL, ValTy);
1008     return LT.first;
1009   }
1010 
1011   if (ST->hasMVEIntegerOps() && ValTy->isVectorTy() &&
1012       (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
1013       cast<FixedVectorType>(ValTy)->getNumElements() > 1) {
1014     FixedVectorType *VecValTy = cast<FixedVectorType>(ValTy);
1015     FixedVectorType *VecCondTy = dyn_cast_or_null<FixedVectorType>(CondTy);
1016     if (!VecCondTy)
1017       VecCondTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(VecValTy));
1018 
1019     // If we don't have mve.fp any fp operations will need to be scalarized.
1020     if (Opcode == Instruction::FCmp && !ST->hasMVEFloatOps()) {
1021       // One scalaization insert, one scalarization extract and the cost of the
1022       // fcmps.
1023       return BaseT::getScalarizationOverhead(VecValTy, false, true) +
1024              BaseT::getScalarizationOverhead(VecCondTy, true, false) +
1025              VecValTy->getNumElements() *
1026                  getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
1027                                     VecCondTy->getScalarType(), VecPred, CostKind,
1028                                     I);
1029     }
1030 
1031     std::pair<InstructionCost, MVT> LT =
1032         TLI->getTypeLegalizationCost(DL, ValTy);
1033     int BaseCost = ST->getMVEVectorCostFactor(CostKind);
1034     // There are two types - the input that specifies the type of the compare
1035     // and the output vXi1 type. Because we don't know how the output will be
1036     // split, we may need an expensive shuffle to get two in sync. This has the
1037     // effect of making larger than legal compares (v8i32 for example)
1038     // expensive.
1039     if (LT.second.isVector() && LT.second.getVectorNumElements() > 2) {
1040       if (LT.first > 1)
1041         return LT.first * BaseCost +
1042                BaseT::getScalarizationOverhead(VecCondTy, true, false);
1043       return BaseCost;
1044     }
1045   }
1046 
1047   // Default to cheap (throughput/size of 1 instruction) but adjust throughput
1048   // for "multiple beats" potentially needed by MVE instructions.
1049   int BaseCost = 1;
1050   if (ST->hasMVEIntegerOps() && ValTy->isVectorTy())
1051     BaseCost = ST->getMVEVectorCostFactor(CostKind);
1052 
1053   return BaseCost *
1054          BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
1055 }
1056 
1057 InstructionCost ARMTTIImpl::getAddressComputationCost(Type *Ty,
1058                                                       ScalarEvolution *SE,
1059                                                       const SCEV *Ptr) {
1060   // Address computations in vectorized code with non-consecutive addresses will
1061   // likely result in more instructions compared to scalar code where the
1062   // computation can more often be merged into the index mode. The resulting
1063   // extra micro-ops can significantly decrease throughput.
1064   unsigned NumVectorInstToHideOverhead = 10;
1065   int MaxMergeDistance = 64;
1066 
1067   if (ST->hasNEON()) {
1068     if (Ty->isVectorTy() && SE &&
1069         !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
1070       return NumVectorInstToHideOverhead;
1071 
1072     // In many cases the address computation is not merged into the instruction
1073     // addressing mode.
1074     return 1;
1075   }
1076   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
1077 }
1078 
1079 bool ARMTTIImpl::isProfitableLSRChainElement(Instruction *I) {
1080   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1081     // If a VCTP is part of a chain, it's already profitable and shouldn't be
1082     // optimized, else LSR may block tail-predication.
1083     switch (II->getIntrinsicID()) {
1084     case Intrinsic::arm_mve_vctp8:
1085     case Intrinsic::arm_mve_vctp16:
1086     case Intrinsic::arm_mve_vctp32:
1087     case Intrinsic::arm_mve_vctp64:
1088       return true;
1089     default:
1090       break;
1091     }
1092   }
1093   return false;
1094 }
1095 
1096 bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
1097   if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps())
1098     return false;
1099 
1100   if (auto *VecTy = dyn_cast<FixedVectorType>(DataTy)) {
1101     // Don't support v2i1 yet.
1102     if (VecTy->getNumElements() == 2)
1103       return false;
1104 
1105     // We don't support extending fp types.
1106      unsigned VecWidth = DataTy->getPrimitiveSizeInBits();
1107     if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy())
1108       return false;
1109   }
1110 
1111   unsigned EltWidth = DataTy->getScalarSizeInBits();
1112   return (EltWidth == 32 && Alignment >= 4) ||
1113          (EltWidth == 16 && Alignment >= 2) || (EltWidth == 8);
1114 }
1115 
1116 bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, Align Alignment) {
1117   if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps())
1118     return false;
1119 
1120   unsigned EltWidth = Ty->getScalarSizeInBits();
1121   return ((EltWidth == 32 && Alignment >= 4) ||
1122           (EltWidth == 16 && Alignment >= 2) || EltWidth == 8);
1123 }
1124 
1125 /// Given a memcpy/memset/memmove instruction, return the number of memory
1126 /// operations performed, via querying findOptimalMemOpLowering. Returns -1 if a
1127 /// call is used.
1128 int ARMTTIImpl::getNumMemOps(const IntrinsicInst *I) const {
1129   MemOp MOp;
1130   unsigned DstAddrSpace = ~0u;
1131   unsigned SrcAddrSpace = ~0u;
1132   const Function *F = I->getParent()->getParent();
1133 
1134   if (const auto *MC = dyn_cast<MemTransferInst>(I)) {
1135     ConstantInt *C = dyn_cast<ConstantInt>(MC->getLength());
1136     // If 'size' is not a constant, a library call will be generated.
1137     if (!C)
1138       return -1;
1139 
1140     const unsigned Size = C->getValue().getZExtValue();
1141     const Align DstAlign = *MC->getDestAlign();
1142     const Align SrcAlign = *MC->getSourceAlign();
1143 
1144     MOp = MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign,
1145                       /*IsVolatile*/ false);
1146     DstAddrSpace = MC->getDestAddressSpace();
1147     SrcAddrSpace = MC->getSourceAddressSpace();
1148   }
1149   else if (const auto *MS = dyn_cast<MemSetInst>(I)) {
1150     ConstantInt *C = dyn_cast<ConstantInt>(MS->getLength());
1151     // If 'size' is not a constant, a library call will be generated.
1152     if (!C)
1153       return -1;
1154 
1155     const unsigned Size = C->getValue().getZExtValue();
1156     const Align DstAlign = *MS->getDestAlign();
1157 
1158     MOp = MemOp::Set(Size, /*DstAlignCanChange*/ false, DstAlign,
1159                      /*IsZeroMemset*/ false, /*IsVolatile*/ false);
1160     DstAddrSpace = MS->getDestAddressSpace();
1161   }
1162   else
1163     llvm_unreachable("Expected a memcpy/move or memset!");
1164 
1165   unsigned Limit, Factor = 2;
1166   switch(I->getIntrinsicID()) {
1167     case Intrinsic::memcpy:
1168       Limit = TLI->getMaxStoresPerMemcpy(F->hasMinSize());
1169       break;
1170     case Intrinsic::memmove:
1171       Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize());
1172       break;
1173     case Intrinsic::memset:
1174       Limit = TLI->getMaxStoresPerMemset(F->hasMinSize());
1175       Factor = 1;
1176       break;
1177     default:
1178       llvm_unreachable("Expected a memcpy/move or memset!");
1179   }
1180 
1181   // MemOps will be poplulated with a list of data types that needs to be
1182   // loaded and stored. That's why we multiply the number of elements by 2 to
1183   // get the cost for this memcpy.
1184   std::vector<EVT> MemOps;
1185   if (getTLI()->findOptimalMemOpLowering(
1186           MemOps, Limit, MOp, DstAddrSpace,
1187           SrcAddrSpace, F->getAttributes()))
1188     return MemOps.size() * Factor;
1189 
1190   // If we can't find an optimal memop lowering, return the default cost
1191   return -1;
1192 }
1193 
1194 InstructionCost ARMTTIImpl::getMemcpyCost(const Instruction *I) {
1195   int NumOps = getNumMemOps(cast<IntrinsicInst>(I));
1196 
1197   // To model the cost of a library call, we assume 1 for the call, and
1198   // 3 for the argument setup.
1199   if (NumOps == -1)
1200     return 4;
1201   return NumOps;
1202 }
1203 
1204 InstructionCost ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
1205                                            VectorType *Tp, ArrayRef<int> Mask,
1206                                            int Index, VectorType *SubTp,
1207                                            ArrayRef<const Value *> Args) {
1208   Kind = improveShuffleKindFromMask(Kind, Mask);
1209   if (ST->hasNEON()) {
1210     if (Kind == TTI::SK_Broadcast) {
1211       static const CostTblEntry NEONDupTbl[] = {
1212           // VDUP handles these cases.
1213           {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
1214           {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
1215           {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
1216           {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
1217           {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
1218           {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
1219 
1220           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
1221           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
1222           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
1223           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}};
1224 
1225       std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1226       if (const auto *Entry =
1227               CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second))
1228         return LT.first * Entry->Cost;
1229     }
1230     if (Kind == TTI::SK_Reverse) {
1231       static const CostTblEntry NEONShuffleTbl[] = {
1232           // Reverse shuffle cost one instruction if we are shuffling within a
1233           // double word (vrev) or two if we shuffle a quad word (vrev, vext).
1234           {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
1235           {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
1236           {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
1237           {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
1238           {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
1239           {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
1240 
1241           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
1242           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
1243           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
1244           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
1245 
1246       std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1247       if (const auto *Entry =
1248               CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second))
1249         return LT.first * Entry->Cost;
1250     }
1251     if (Kind == TTI::SK_Select) {
1252       static const CostTblEntry NEONSelShuffleTbl[] = {
1253           // Select shuffle cost table for ARM. Cost is the number of
1254           // instructions
1255           // required to create the shuffled vector.
1256 
1257           {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
1258           {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
1259           {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
1260           {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
1261 
1262           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
1263           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
1264           {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
1265 
1266           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
1267 
1268           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
1269 
1270       std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1271       if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl,
1272                                               ISD::VECTOR_SHUFFLE, LT.second))
1273         return LT.first * Entry->Cost;
1274     }
1275   }
1276   if (ST->hasMVEIntegerOps()) {
1277     if (Kind == TTI::SK_Broadcast) {
1278       static const CostTblEntry MVEDupTbl[] = {
1279           // VDUP handles these cases.
1280           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
1281           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
1282           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1},
1283           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
1284           {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}};
1285 
1286       std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1287       if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE,
1288                                               LT.second))
1289         return LT.first * Entry->Cost *
1290                ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput);
1291     }
1292 
1293     if (!Mask.empty()) {
1294       std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1295       if (LT.second.isVector() &&
1296           Mask.size() <= LT.second.getVectorNumElements() &&
1297           (isVREVMask(Mask, LT.second, 16) || isVREVMask(Mask, LT.second, 32) ||
1298            isVREVMask(Mask, LT.second, 64)))
1299         return ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) * LT.first;
1300     }
1301   }
1302 
1303   int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy()
1304                      ? ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput)
1305                      : 1;
1306   return BaseCost * BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp);
1307 }
1308 
1309 InstructionCost ARMTTIImpl::getArithmeticInstrCost(
1310     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
1311     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
1312     TTI::OperandValueProperties Opd1PropInfo,
1313     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
1314     const Instruction *CxtI) {
1315   int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
1316   if (ST->isThumb() && CostKind == TTI::TCK_CodeSize && Ty->isIntegerTy(1)) {
1317     // Make operations on i1 relatively expensive as this often involves
1318     // combining predicates. AND and XOR should be easier to handle with IT
1319     // blocks.
1320     switch (ISDOpcode) {
1321     default:
1322       break;
1323     case ISD::AND:
1324     case ISD::XOR:
1325       return 2;
1326     case ISD::OR:
1327       return 3;
1328     }
1329   }
1330 
1331   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
1332 
1333   if (ST->hasNEON()) {
1334     const unsigned FunctionCallDivCost = 20;
1335     const unsigned ReciprocalDivCost = 10;
1336     static const CostTblEntry CostTbl[] = {
1337       // Division.
1338       // These costs are somewhat random. Choose a cost of 20 to indicate that
1339       // vectorizing devision (added function call) is going to be very expensive.
1340       // Double registers types.
1341       { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
1342       { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
1343       { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
1344       { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
1345       { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
1346       { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
1347       { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
1348       { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
1349       { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost},
1350       { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost},
1351       { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
1352       { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
1353       { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost},
1354       { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost},
1355       { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost},
1356       { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost},
1357       // Quad register types.
1358       { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
1359       { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
1360       { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
1361       { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
1362       { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
1363       { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
1364       { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
1365       { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
1366       { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
1367       { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
1368       { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
1369       { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
1370       { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
1371       { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
1372       { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
1373       { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
1374       // Multiplication.
1375     };
1376 
1377     if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
1378       return LT.first * Entry->Cost;
1379 
1380     InstructionCost Cost = BaseT::getArithmeticInstrCost(
1381         Opcode, Ty, CostKind, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo);
1382 
1383     // This is somewhat of a hack. The problem that we are facing is that SROA
1384     // creates a sequence of shift, and, or instructions to construct values.
1385     // These sequences are recognized by the ISel and have zero-cost. Not so for
1386     // the vectorized code. Because we have support for v2i64 but not i64 those
1387     // sequences look particularly beneficial to vectorize.
1388     // To work around this we increase the cost of v2i64 operations to make them
1389     // seem less beneficial.
1390     if (LT.second == MVT::v2i64 &&
1391         Op2Info == TargetTransformInfo::OK_UniformConstantValue)
1392       Cost += 4;
1393 
1394     return Cost;
1395   }
1396 
1397   // If this operation is a shift on arm/thumb2, it might well be folded into
1398   // the following instruction, hence having a cost of 0.
1399   auto LooksLikeAFreeShift = [&]() {
1400     if (ST->isThumb1Only() || Ty->isVectorTy())
1401       return false;
1402 
1403     if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift())
1404       return false;
1405     if (Op2Info != TargetTransformInfo::OK_UniformConstantValue)
1406       return false;
1407 
1408     // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB
1409     switch (cast<Instruction>(CxtI->user_back())->getOpcode()) {
1410     case Instruction::Add:
1411     case Instruction::Sub:
1412     case Instruction::And:
1413     case Instruction::Xor:
1414     case Instruction::Or:
1415     case Instruction::ICmp:
1416       return true;
1417     default:
1418       return false;
1419     }
1420   };
1421   if (LooksLikeAFreeShift())
1422     return 0;
1423 
1424   // Default to cheap (throughput/size of 1 instruction) but adjust throughput
1425   // for "multiple beats" potentially needed by MVE instructions.
1426   int BaseCost = 1;
1427   if (ST->hasMVEIntegerOps() && Ty->isVectorTy())
1428     BaseCost = ST->getMVEVectorCostFactor(CostKind);
1429 
1430   // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost,
1431   // without treating floats as more expensive that scalars or increasing the
1432   // costs for custom operations. The results is also multiplied by the
1433   // MVEVectorCostFactor where appropriate.
1434   if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second))
1435     return LT.first * BaseCost;
1436 
1437   // Else this is expand, assume that we need to scalarize this op.
1438   if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
1439     unsigned Num = VTy->getNumElements();
1440     InstructionCost Cost =
1441         getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind);
1442     // Return the cost of multiple scalar invocation plus the cost of
1443     // inserting and extracting the values.
1444     SmallVector<Type *> Tys(Args.size(), Ty);
1445     return BaseT::getScalarizationOverhead(VTy, Args, Tys) + Num * Cost;
1446   }
1447 
1448   return BaseCost;
1449 }
1450 
1451 InstructionCost ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
1452                                             MaybeAlign Alignment,
1453                                             unsigned AddressSpace,
1454                                             TTI::TargetCostKind CostKind,
1455                                             const Instruction *I) {
1456   // TODO: Handle other cost kinds.
1457   if (CostKind != TTI::TCK_RecipThroughput)
1458     return 1;
1459 
1460   // Type legalization can't handle structs
1461   if (TLI->getValueType(DL, Src, true) == MVT::Other)
1462     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1463                                   CostKind);
1464 
1465   if (ST->hasNEON() && Src->isVectorTy() &&
1466       (Alignment && *Alignment != Align(16)) &&
1467       cast<VectorType>(Src)->getElementType()->isDoubleTy()) {
1468     // Unaligned loads/stores are extremely inefficient.
1469     // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
1470     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
1471     return LT.first * 4;
1472   }
1473 
1474   // MVE can optimize a fpext(load(4xhalf)) using an extending integer load.
1475   // Same for stores.
1476   if (ST->hasMVEFloatOps() && isa<FixedVectorType>(Src) && I &&
1477       ((Opcode == Instruction::Load && I->hasOneUse() &&
1478         isa<FPExtInst>(*I->user_begin())) ||
1479        (Opcode == Instruction::Store && isa<FPTruncInst>(I->getOperand(0))))) {
1480     FixedVectorType *SrcVTy = cast<FixedVectorType>(Src);
1481     Type *DstTy =
1482         Opcode == Instruction::Load
1483             ? (*I->user_begin())->getType()
1484             : cast<Instruction>(I->getOperand(0))->getOperand(0)->getType();
1485     if (SrcVTy->getNumElements() == 4 && SrcVTy->getScalarType()->isHalfTy() &&
1486         DstTy->getScalarType()->isFloatTy())
1487       return ST->getMVEVectorCostFactor(CostKind);
1488   }
1489 
1490   int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
1491                      ? ST->getMVEVectorCostFactor(CostKind)
1492                      : 1;
1493   return BaseCost * BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1494                                            CostKind, I);
1495 }
1496 
1497 InstructionCost
1498 ARMTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1499                                   unsigned AddressSpace,
1500                                   TTI::TargetCostKind CostKind) {
1501   if (ST->hasMVEIntegerOps()) {
1502     if (Opcode == Instruction::Load && isLegalMaskedLoad(Src, Alignment))
1503       return ST->getMVEVectorCostFactor(CostKind);
1504     if (Opcode == Instruction::Store && isLegalMaskedStore(Src, Alignment))
1505       return ST->getMVEVectorCostFactor(CostKind);
1506   }
1507   if (!isa<FixedVectorType>(Src))
1508     return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1509                                         CostKind);
1510   // Scalar cost, which is currently very high due to the efficiency of the
1511   // generated code.
1512   return cast<FixedVectorType>(Src)->getNumElements() * 8;
1513 }
1514 
1515 InstructionCost ARMTTIImpl::getInterleavedMemoryOpCost(
1516     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1517     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1518     bool UseMaskForCond, bool UseMaskForGaps) {
1519   assert(Factor >= 2 && "Invalid interleave factor");
1520   assert(isa<VectorType>(VecTy) && "Expect a vector type");
1521 
1522   // vldN/vstN doesn't support vector types of i64/f64 element.
1523   bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
1524 
1525   if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits &&
1526       !UseMaskForCond && !UseMaskForGaps) {
1527     unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements();
1528     auto *SubVecTy =
1529         FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);
1530 
1531     // vldN/vstN only support legal vector types of size 64 or 128 in bits.
1532     // Accesses having vector types that are a multiple of 128 bits can be
1533     // matched to more than one vldN/vstN instruction.
1534     int BaseCost =
1535         ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor(CostKind) : 1;
1536     if (NumElts % Factor == 0 &&
1537         TLI->isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL))
1538       return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL);
1539 
1540     // Some smaller than legal interleaved patterns are cheap as we can make
1541     // use of the vmovn or vrev patterns to interleave a standard load. This is
1542     // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is
1543     // promoted differently). The cost of 2 here is then a load and vrev or
1544     // vmovn.
1545     if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 &&
1546         VecTy->isIntOrIntVectorTy() &&
1547         DL.getTypeSizeInBits(SubVecTy).getFixedSize() <= 64)
1548       return 2 * BaseCost;
1549   }
1550 
1551   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1552                                            Alignment, AddressSpace, CostKind,
1553                                            UseMaskForCond, UseMaskForGaps);
1554 }
1555 
1556 InstructionCost ARMTTIImpl::getGatherScatterOpCost(
1557     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1558     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
1559   using namespace PatternMatch;
1560   if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters)
1561     return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
1562                                          Alignment, CostKind, I);
1563 
1564   assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!");
1565   auto *VTy = cast<FixedVectorType>(DataTy);
1566 
1567   // TODO: Splitting, once we do that.
1568 
1569   unsigned NumElems = VTy->getNumElements();
1570   unsigned EltSize = VTy->getScalarSizeInBits();
1571   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, DataTy);
1572 
1573   // For now, it is assumed that for the MVE gather instructions the loads are
1574   // all effectively serialised. This means the cost is the scalar cost
1575   // multiplied by the number of elements being loaded. This is possibly very
1576   // conservative, but even so we still end up vectorising loops because the
1577   // cost per iteration for many loops is lower than for scalar loops.
1578   InstructionCost VectorCost =
1579       NumElems * LT.first * ST->getMVEVectorCostFactor(CostKind);
1580   // The scalarization cost should be a lot higher. We use the number of vector
1581   // elements plus the scalarization overhead.
1582   InstructionCost ScalarCost =
1583       NumElems * LT.first + BaseT::getScalarizationOverhead(VTy, true, false) +
1584       BaseT::getScalarizationOverhead(VTy, false, true);
1585 
1586   if (EltSize < 8 || Alignment < EltSize / 8)
1587     return ScalarCost;
1588 
1589   unsigned ExtSize = EltSize;
1590   // Check whether there's a single user that asks for an extended type
1591   if (I != nullptr) {
1592     // Dependent of the caller of this function, a gather instruction will
1593     // either have opcode Instruction::Load or be a call to the masked_gather
1594     // intrinsic
1595     if ((I->getOpcode() == Instruction::Load ||
1596          match(I, m_Intrinsic<Intrinsic::masked_gather>())) &&
1597         I->hasOneUse()) {
1598       const User *Us = *I->users().begin();
1599       if (isa<ZExtInst>(Us) || isa<SExtInst>(Us)) {
1600         // only allow valid type combinations
1601         unsigned TypeSize =
1602             cast<Instruction>(Us)->getType()->getScalarSizeInBits();
1603         if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) ||
1604              (TypeSize == 16 && EltSize == 8)) &&
1605             TypeSize * NumElems == 128) {
1606           ExtSize = TypeSize;
1607         }
1608       }
1609     }
1610     // Check whether the input data needs to be truncated
1611     TruncInst *T;
1612     if ((I->getOpcode() == Instruction::Store ||
1613          match(I, m_Intrinsic<Intrinsic::masked_scatter>())) &&
1614         (T = dyn_cast<TruncInst>(I->getOperand(0)))) {
1615       // Only allow valid type combinations
1616       unsigned TypeSize = T->getOperand(0)->getType()->getScalarSizeInBits();
1617       if (((EltSize == 16 && TypeSize == 32) ||
1618            (EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) &&
1619           TypeSize * NumElems == 128)
1620         ExtSize = TypeSize;
1621     }
1622   }
1623 
1624   if (ExtSize * NumElems != 128 || NumElems < 4)
1625     return ScalarCost;
1626 
1627   // Any (aligned) i32 gather will not need to be scalarised.
1628   if (ExtSize == 32)
1629     return VectorCost;
1630   // For smaller types, we need to ensure that the gep's inputs are correctly
1631   // extended from a small enough value. Other sizes (including i64) are
1632   // scalarized for now.
1633   if (ExtSize != 8 && ExtSize != 16)
1634     return ScalarCost;
1635 
1636   if (const auto *BC = dyn_cast<BitCastInst>(Ptr))
1637     Ptr = BC->getOperand(0);
1638   if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1639     if (GEP->getNumOperands() != 2)
1640       return ScalarCost;
1641     unsigned Scale = DL.getTypeAllocSize(GEP->getResultElementType());
1642     // Scale needs to be correct (which is only relevant for i16s).
1643     if (Scale != 1 && Scale * 8 != ExtSize)
1644       return ScalarCost;
1645     // And we need to zext (not sext) the indexes from a small enough type.
1646     if (const auto *ZExt = dyn_cast<ZExtInst>(GEP->getOperand(1))) {
1647       if (ZExt->getOperand(0)->getType()->getScalarSizeInBits() <= ExtSize)
1648         return VectorCost;
1649     }
1650     return ScalarCost;
1651   }
1652   return ScalarCost;
1653 }
1654 
1655 InstructionCost
1656 ARMTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
1657                                        Optional<FastMathFlags> FMF,
1658                                        TTI::TargetCostKind CostKind) {
1659   if (TTI::requiresOrderedReduction(FMF))
1660     return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
1661 
1662   EVT ValVT = TLI->getValueType(DL, ValTy);
1663   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1664   if (!ST->hasMVEIntegerOps() || !ValVT.isSimple() || ISD != ISD::ADD)
1665     return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
1666 
1667   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
1668 
1669   static const CostTblEntry CostTblAdd[]{
1670       {ISD::ADD, MVT::v16i8, 1},
1671       {ISD::ADD, MVT::v8i16, 1},
1672       {ISD::ADD, MVT::v4i32, 1},
1673   };
1674   if (const auto *Entry = CostTableLookup(CostTblAdd, ISD, LT.second))
1675     return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first;
1676 
1677   return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
1678 }
1679 
1680 InstructionCost
1681 ARMTTIImpl::getExtendedAddReductionCost(bool IsMLA, bool IsUnsigned,
1682                                         Type *ResTy, VectorType *ValTy,
1683                                         TTI::TargetCostKind CostKind) {
1684   EVT ValVT = TLI->getValueType(DL, ValTy);
1685   EVT ResVT = TLI->getValueType(DL, ResTy);
1686 
1687   if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) {
1688     std::pair<InstructionCost, MVT> LT =
1689         TLI->getTypeLegalizationCost(DL, ValTy);
1690 
1691     // The legal cases are:
1692     //   VADDV u/s 8/16/32
1693     //   VMLAV u/s 8/16/32
1694     //   VADDLV u/s 32
1695     //   VMLALV u/s 16/32
1696     // Codegen currently cannot always handle larger than legal vectors very
1697     // well, especially for predicated reductions where the mask needs to be
1698     // split, so restrict to 128bit or smaller input types.
1699     unsigned RevVTSize = ResVT.getSizeInBits();
1700     if (ValVT.getSizeInBits() <= 128 &&
1701         ((LT.second == MVT::v16i8 && RevVTSize <= 32) ||
1702          (LT.second == MVT::v8i16 && RevVTSize <= (IsMLA ? 64u : 32u)) ||
1703          (LT.second == MVT::v4i32 && RevVTSize <= 64)))
1704       return ST->getMVEVectorCostFactor(CostKind) * LT.first;
1705   }
1706 
1707   return BaseT::getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, ValTy,
1708                                             CostKind);
1709 }
1710 
1711 InstructionCost
1712 ARMTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1713                                   TTI::TargetCostKind CostKind) {
1714   switch (ICA.getID()) {
1715   case Intrinsic::get_active_lane_mask:
1716     // Currently we make a somewhat optimistic assumption that
1717     // active_lane_mask's are always free. In reality it may be freely folded
1718     // into a tail predicated loop, expanded into a VCPT or expanded into a lot
1719     // of add/icmp code. We may need to improve this in the future, but being
1720     // able to detect if it is free or not involves looking at a lot of other
1721     // code. We currently assume that the vectorizer inserted these, and knew
1722     // what it was doing in adding one.
1723     if (ST->hasMVEIntegerOps())
1724       return 0;
1725     break;
1726   case Intrinsic::sadd_sat:
1727   case Intrinsic::ssub_sat:
1728   case Intrinsic::uadd_sat:
1729   case Intrinsic::usub_sat: {
1730     if (!ST->hasMVEIntegerOps())
1731       break;
1732     Type *VT = ICA.getReturnType();
1733 
1734     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT);
1735     if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 ||
1736         LT.second == MVT::v16i8) {
1737       // This is a base cost of 1 for the vqadd, plus 3 extract shifts if we
1738       // need to extend the type, as it uses shr(qadd(shl, shl)).
1739       unsigned Instrs =
1740           LT.second.getScalarSizeInBits() == VT->getScalarSizeInBits() ? 1 : 4;
1741       return LT.first * ST->getMVEVectorCostFactor(CostKind) * Instrs;
1742     }
1743     break;
1744   }
1745   case Intrinsic::abs:
1746   case Intrinsic::smin:
1747   case Intrinsic::smax:
1748   case Intrinsic::umin:
1749   case Intrinsic::umax: {
1750     if (!ST->hasMVEIntegerOps())
1751       break;
1752     Type *VT = ICA.getReturnType();
1753 
1754     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT);
1755     if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 ||
1756         LT.second == MVT::v16i8)
1757       return LT.first * ST->getMVEVectorCostFactor(CostKind);
1758     break;
1759   }
1760   case Intrinsic::minnum:
1761   case Intrinsic::maxnum: {
1762     if (!ST->hasMVEFloatOps())
1763       break;
1764     Type *VT = ICA.getReturnType();
1765     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT);
1766     if (LT.second == MVT::v4f32 || LT.second == MVT::v8f16)
1767       return LT.first * ST->getMVEVectorCostFactor(CostKind);
1768     break;
1769   }
1770   case Intrinsic::fptosi_sat:
1771   case Intrinsic::fptoui_sat: {
1772     if (ICA.getArgTypes().empty())
1773       break;
1774     bool IsSigned = ICA.getID() == Intrinsic::fptosi_sat;
1775     auto LT = TLI->getTypeLegalizationCost(DL, ICA.getArgTypes()[0]);
1776     EVT MTy = TLI->getValueType(DL, ICA.getReturnType());
1777     // Check for the legal types, with the corect subtarget features.
1778     if ((ST->hasVFP2Base() && LT.second == MVT::f32 && MTy == MVT::i32) ||
1779         (ST->hasFP64() && LT.second == MVT::f64 && MTy == MVT::i32) ||
1780         (ST->hasFullFP16() && LT.second == MVT::f16 && MTy == MVT::i32))
1781       return LT.first;
1782 
1783     // Equally for MVE vector types
1784     if (ST->hasMVEFloatOps() &&
1785         (LT.second == MVT::v4f32 || LT.second == MVT::v8f16) &&
1786         LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits())
1787       return LT.first * ST->getMVEVectorCostFactor(CostKind);
1788 
1789     // Otherwise we use a legal convert followed by a min+max
1790     if (((ST->hasVFP2Base() && LT.second == MVT::f32) ||
1791          (ST->hasFP64() && LT.second == MVT::f64) ||
1792          (ST->hasFullFP16() && LT.second == MVT::f16) ||
1793          (ST->hasMVEFloatOps() &&
1794           (LT.second == MVT::v4f32 || LT.second == MVT::v8f16))) &&
1795         LT.second.getScalarSizeInBits() >= MTy.getScalarSizeInBits()) {
1796       Type *LegalTy = Type::getIntNTy(ICA.getReturnType()->getContext(),
1797                                       LT.second.getScalarSizeInBits());
1798       InstructionCost Cost =
1799           LT.second.isVector() ? ST->getMVEVectorCostFactor(CostKind) : 1;
1800       IntrinsicCostAttributes Attrs1(IsSigned ? Intrinsic::smin
1801                                               : Intrinsic::umin,
1802                                      LegalTy, {LegalTy, LegalTy});
1803       Cost += getIntrinsicInstrCost(Attrs1, CostKind);
1804       IntrinsicCostAttributes Attrs2(IsSigned ? Intrinsic::smax
1805                                               : Intrinsic::umax,
1806                                      LegalTy, {LegalTy, LegalTy});
1807       Cost += getIntrinsicInstrCost(Attrs2, CostKind);
1808       return LT.first * Cost;
1809     }
1810     break;
1811   }
1812   }
1813 
1814   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
1815 }
1816 
1817 bool ARMTTIImpl::isLoweredToCall(const Function *F) {
1818   if (!F->isIntrinsic())
1819     return BaseT::isLoweredToCall(F);
1820 
1821   // Assume all Arm-specific intrinsics map to an instruction.
1822   if (F->getName().startswith("llvm.arm"))
1823     return false;
1824 
1825   switch (F->getIntrinsicID()) {
1826   default: break;
1827   case Intrinsic::powi:
1828   case Intrinsic::sin:
1829   case Intrinsic::cos:
1830   case Intrinsic::pow:
1831   case Intrinsic::log:
1832   case Intrinsic::log10:
1833   case Intrinsic::log2:
1834   case Intrinsic::exp:
1835   case Intrinsic::exp2:
1836     return true;
1837   case Intrinsic::sqrt:
1838   case Intrinsic::fabs:
1839   case Intrinsic::copysign:
1840   case Intrinsic::floor:
1841   case Intrinsic::ceil:
1842   case Intrinsic::trunc:
1843   case Intrinsic::rint:
1844   case Intrinsic::nearbyint:
1845   case Intrinsic::round:
1846   case Intrinsic::canonicalize:
1847   case Intrinsic::lround:
1848   case Intrinsic::llround:
1849   case Intrinsic::lrint:
1850   case Intrinsic::llrint:
1851     if (F->getReturnType()->isDoubleTy() && !ST->hasFP64())
1852       return true;
1853     if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16())
1854       return true;
1855     // Some operations can be handled by vector instructions and assume
1856     // unsupported vectors will be expanded into supported scalar ones.
1857     // TODO Handle scalar operations properly.
1858     return !ST->hasFPARMv8Base() && !ST->hasVFP2Base();
1859   case Intrinsic::masked_store:
1860   case Intrinsic::masked_load:
1861   case Intrinsic::masked_gather:
1862   case Intrinsic::masked_scatter:
1863     return !ST->hasMVEIntegerOps();
1864   case Intrinsic::sadd_with_overflow:
1865   case Intrinsic::uadd_with_overflow:
1866   case Intrinsic::ssub_with_overflow:
1867   case Intrinsic::usub_with_overflow:
1868   case Intrinsic::sadd_sat:
1869   case Intrinsic::uadd_sat:
1870   case Intrinsic::ssub_sat:
1871   case Intrinsic::usub_sat:
1872     return false;
1873   }
1874 
1875   return BaseT::isLoweredToCall(F);
1876 }
1877 
1878 bool ARMTTIImpl::maybeLoweredToCall(Instruction &I) {
1879   unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode());
1880   EVT VT = TLI->getValueType(DL, I.getType(), true);
1881   if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall)
1882     return true;
1883 
1884   // Check if an intrinsic will be lowered to a call and assume that any
1885   // other CallInst will generate a bl.
1886   if (auto *Call = dyn_cast<CallInst>(&I)) {
1887     if (auto *II = dyn_cast<IntrinsicInst>(Call)) {
1888       switch(II->getIntrinsicID()) {
1889         case Intrinsic::memcpy:
1890         case Intrinsic::memset:
1891         case Intrinsic::memmove:
1892           return getNumMemOps(II) == -1;
1893         default:
1894           if (const Function *F = Call->getCalledFunction())
1895             return isLoweredToCall(F);
1896       }
1897     }
1898     return true;
1899   }
1900 
1901   // FPv5 provides conversions between integer, double-precision,
1902   // single-precision, and half-precision formats.
1903   switch (I.getOpcode()) {
1904   default:
1905     break;
1906   case Instruction::FPToSI:
1907   case Instruction::FPToUI:
1908   case Instruction::SIToFP:
1909   case Instruction::UIToFP:
1910   case Instruction::FPTrunc:
1911   case Instruction::FPExt:
1912     return !ST->hasFPARMv8Base();
1913   }
1914 
1915   // FIXME: Unfortunately the approach of checking the Operation Action does
1916   // not catch all cases of Legalization that use library calls. Our
1917   // Legalization step categorizes some transformations into library calls as
1918   // Custom, Expand or even Legal when doing type legalization. So for now
1919   // we have to special case for instance the SDIV of 64bit integers and the
1920   // use of floating point emulation.
1921   if (VT.isInteger() && VT.getSizeInBits() >= 64) {
1922     switch (ISD) {
1923     default:
1924       break;
1925     case ISD::SDIV:
1926     case ISD::UDIV:
1927     case ISD::SREM:
1928     case ISD::UREM:
1929     case ISD::SDIVREM:
1930     case ISD::UDIVREM:
1931       return true;
1932     }
1933   }
1934 
1935   // Assume all other non-float operations are supported.
1936   if (!VT.isFloatingPoint())
1937     return false;
1938 
1939   // We'll need a library call to handle most floats when using soft.
1940   if (TLI->useSoftFloat()) {
1941     switch (I.getOpcode()) {
1942     default:
1943       return true;
1944     case Instruction::Alloca:
1945     case Instruction::Load:
1946     case Instruction::Store:
1947     case Instruction::Select:
1948     case Instruction::PHI:
1949       return false;
1950     }
1951   }
1952 
1953   // We'll need a libcall to perform double precision operations on a single
1954   // precision only FPU.
1955   if (I.getType()->isDoubleTy() && !ST->hasFP64())
1956     return true;
1957 
1958   // Likewise for half precision arithmetic.
1959   if (I.getType()->isHalfTy() && !ST->hasFullFP16())
1960     return true;
1961 
1962   return false;
1963 }
1964 
1965 bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
1966                                           AssumptionCache &AC,
1967                                           TargetLibraryInfo *LibInfo,
1968                                           HardwareLoopInfo &HWLoopInfo) {
1969   // Low-overhead branches are only supported in the 'low-overhead branch'
1970   // extension of v8.1-m.
1971   if (!ST->hasLOB() || DisableLowOverheadLoops) {
1972     LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n");
1973     return false;
1974   }
1975 
1976   if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
1977     LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n");
1978     return false;
1979   }
1980 
1981   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1982   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1983     LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n");
1984     return false;
1985   }
1986 
1987   const SCEV *TripCountSCEV =
1988     SE.getAddExpr(BackedgeTakenCount,
1989                   SE.getOne(BackedgeTakenCount->getType()));
1990 
1991   // We need to store the trip count in LR, a 32-bit register.
1992   if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) {
1993     LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n");
1994     return false;
1995   }
1996 
1997   // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little
1998   // point in generating a hardware loop if that's going to happen.
1999 
2000   auto IsHardwareLoopIntrinsic = [](Instruction &I) {
2001     if (auto *Call = dyn_cast<IntrinsicInst>(&I)) {
2002       switch (Call->getIntrinsicID()) {
2003       default:
2004         break;
2005       case Intrinsic::start_loop_iterations:
2006       case Intrinsic::test_start_loop_iterations:
2007       case Intrinsic::loop_decrement:
2008       case Intrinsic::loop_decrement_reg:
2009         return true;
2010       }
2011     }
2012     return false;
2013   };
2014 
2015   // Scan the instructions to see if there's any that we know will turn into a
2016   // call or if this loop is already a low-overhead loop or will become a tail
2017   // predicated loop.
2018   bool IsTailPredLoop = false;
2019   auto ScanLoop = [&](Loop *L) {
2020     for (auto *BB : L->getBlocks()) {
2021       for (auto &I : *BB) {
2022         if (maybeLoweredToCall(I) || IsHardwareLoopIntrinsic(I) ||
2023             isa<InlineAsm>(I)) {
2024           LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n");
2025           return false;
2026         }
2027         if (auto *II = dyn_cast<IntrinsicInst>(&I))
2028           IsTailPredLoop |=
2029               II->getIntrinsicID() == Intrinsic::get_active_lane_mask ||
2030               II->getIntrinsicID() == Intrinsic::arm_mve_vctp8 ||
2031               II->getIntrinsicID() == Intrinsic::arm_mve_vctp16 ||
2032               II->getIntrinsicID() == Intrinsic::arm_mve_vctp32 ||
2033               II->getIntrinsicID() == Intrinsic::arm_mve_vctp64;
2034       }
2035     }
2036     return true;
2037   };
2038 
2039   // Visit inner loops.
2040   for (auto Inner : *L)
2041     if (!ScanLoop(Inner))
2042       return false;
2043 
2044   if (!ScanLoop(L))
2045     return false;
2046 
2047   // TODO: Check whether the trip count calculation is expensive. If L is the
2048   // inner loop but we know it has a low trip count, calculating that trip
2049   // count (in the parent loop) may be detrimental.
2050 
2051   LLVMContext &C = L->getHeader()->getContext();
2052   HWLoopInfo.CounterInReg = true;
2053   HWLoopInfo.IsNestingLegal = false;
2054   HWLoopInfo.PerformEntryTest = AllowWLSLoops && !IsTailPredLoop;
2055   HWLoopInfo.CountType = Type::getInt32Ty(C);
2056   HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
2057   return true;
2058 }
2059 
2060 static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) {
2061   // We don't allow icmp's, and because we only look at single block loops,
2062   // we simply count the icmps, i.e. there should only be 1 for the backedge.
2063   if (isa<ICmpInst>(&I) && ++ICmpCount > 1)
2064     return false;
2065   // FIXME: This is a workaround for poor cost modelling. Min/Max intrinsics are
2066   // not currently canonical, but soon will be. Code without them uses icmp, and
2067   // so is not tail predicated as per the condition above. In order to get the
2068   // same performance we treat min and max the same as an icmp for tailpred
2069   // purposes for the moment (we often rely on non-tailpred and higher VF's to
2070   // pick more optimial instructions like VQDMULH. They need to be recognized
2071   // directly by the vectorizer).
2072   if (auto *II = dyn_cast<IntrinsicInst>(&I))
2073     if ((II->getIntrinsicID() == Intrinsic::smin ||
2074          II->getIntrinsicID() == Intrinsic::smax ||
2075          II->getIntrinsicID() == Intrinsic::umin ||
2076          II->getIntrinsicID() == Intrinsic::umax) &&
2077         ++ICmpCount > 1)
2078       return false;
2079 
2080   if (isa<FCmpInst>(&I))
2081     return false;
2082 
2083   // We could allow extending/narrowing FP loads/stores, but codegen is
2084   // too inefficient so reject this for now.
2085   if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I))
2086     return false;
2087 
2088   // Extends have to be extending-loads
2089   if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) )
2090     if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0)))
2091       return false;
2092 
2093   // Truncs have to be narrowing-stores
2094   if (isa<TruncInst>(&I) )
2095     if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin()))
2096       return false;
2097 
2098   return true;
2099 }
2100 
2101 // To set up a tail-predicated loop, we need to know the total number of
2102 // elements processed by that loop. Thus, we need to determine the element
2103 // size and:
2104 // 1) it should be uniform for all operations in the vector loop, so we
2105 //    e.g. don't want any widening/narrowing operations.
2106 // 2) it should be smaller than i64s because we don't have vector operations
2107 //    that work on i64s.
2108 // 3) we don't want elements to be reversed or shuffled, to make sure the
2109 //    tail-predication masks/predicates the right lanes.
2110 //
2111 static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
2112                                  const DataLayout &DL,
2113                                  const LoopAccessInfo *LAI) {
2114   LLVM_DEBUG(dbgs() << "Tail-predication: checking allowed instructions\n");
2115 
2116   // If there are live-out values, it is probably a reduction. We can predicate
2117   // most reduction operations freely under MVE using a combination of
2118   // prefer-predicated-reduction-select and inloop reductions. We limit this to
2119   // floating point and integer reductions, but don't check for operators
2120   // specifically here. If the value ends up not being a reduction (and so the
2121   // vectorizer cannot tailfold the loop), we should fall back to standard
2122   // vectorization automatically.
2123   SmallVector< Instruction *, 8 > LiveOuts;
2124   LiveOuts = llvm::findDefsUsedOutsideOfLoop(L);
2125   bool ReductionsDisabled =
2126       EnableTailPredication == TailPredication::EnabledNoReductions ||
2127       EnableTailPredication == TailPredication::ForceEnabledNoReductions;
2128 
2129   for (auto *I : LiveOuts) {
2130     if (!I->getType()->isIntegerTy() && !I->getType()->isFloatTy() &&
2131         !I->getType()->isHalfTy()) {
2132       LLVM_DEBUG(dbgs() << "Don't tail-predicate loop with non-integer/float "
2133                            "live-out value\n");
2134       return false;
2135     }
2136     if (ReductionsDisabled) {
2137       LLVM_DEBUG(dbgs() << "Reductions not enabled\n");
2138       return false;
2139     }
2140   }
2141 
2142   // Next, check that all instructions can be tail-predicated.
2143   PredicatedScalarEvolution PSE = LAI->getPSE();
2144   SmallVector<Instruction *, 16> LoadStores;
2145   int ICmpCount = 0;
2146 
2147   for (BasicBlock *BB : L->blocks()) {
2148     for (Instruction &I : BB->instructionsWithoutDebug()) {
2149       if (isa<PHINode>(&I))
2150         continue;
2151       if (!canTailPredicateInstruction(I, ICmpCount)) {
2152         LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump());
2153         return false;
2154       }
2155 
2156       Type *T  = I.getType();
2157       if (T->getScalarSizeInBits() > 32) {
2158         LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump());
2159         return false;
2160       }
2161       if (isa<StoreInst>(I) || isa<LoadInst>(I)) {
2162         Value *Ptr = getLoadStorePointerOperand(&I);
2163         Type *AccessTy = getLoadStoreType(&I);
2164         int64_t NextStride = getPtrStride(PSE, AccessTy, Ptr, L);
2165         if (NextStride == 1) {
2166           // TODO: for now only allow consecutive strides of 1. We could support
2167           // other strides as long as it is uniform, but let's keep it simple
2168           // for now.
2169           continue;
2170         } else if (NextStride == -1 ||
2171                    (NextStride == 2 && MVEMaxSupportedInterleaveFactor >= 2) ||
2172                    (NextStride == 4 && MVEMaxSupportedInterleaveFactor >= 4)) {
2173           LLVM_DEBUG(dbgs()
2174                      << "Consecutive strides of 2 found, vld2/vstr2 can't "
2175                         "be tail-predicated\n.");
2176           return false;
2177           // TODO: don't tail predicate if there is a reversed load?
2178         } else if (EnableMaskedGatherScatters) {
2179           // Gather/scatters do allow loading from arbitrary strides, at
2180           // least if they are loop invariant.
2181           // TODO: Loop variant strides should in theory work, too, but
2182           // this requires further testing.
2183           const SCEV *PtrScev = PSE.getSE()->getSCEV(Ptr);
2184           if (auto AR = dyn_cast<SCEVAddRecExpr>(PtrScev)) {
2185             const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
2186             if (PSE.getSE()->isLoopInvariant(Step, L))
2187               continue;
2188           }
2189         }
2190         LLVM_DEBUG(dbgs() << "Bad stride found, can't "
2191                              "tail-predicate\n.");
2192         return false;
2193       }
2194     }
2195   }
2196 
2197   LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n");
2198   return true;
2199 }
2200 
2201 bool ARMTTIImpl::preferPredicateOverEpilogue(
2202     Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
2203     TargetLibraryInfo *TLI, DominatorTree *DT, LoopVectorizationLegality *LVL) {
2204   if (!EnableTailPredication) {
2205     LLVM_DEBUG(dbgs() << "Tail-predication not enabled.\n");
2206     return false;
2207   }
2208 
2209   // Creating a predicated vector loop is the first step for generating a
2210   // tail-predicated hardware loop, for which we need the MVE masked
2211   // load/stores instructions:
2212   if (!ST->hasMVEIntegerOps())
2213     return false;
2214 
2215   // For now, restrict this to single block loops.
2216   if (L->getNumBlocks() > 1) {
2217     LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block "
2218                          "loop.\n");
2219     return false;
2220   }
2221 
2222   assert(L->isInnermost() && "preferPredicateOverEpilogue: inner-loop expected");
2223 
2224   HardwareLoopInfo HWLoopInfo(L);
2225   if (!HWLoopInfo.canAnalyze(*LI)) {
2226     LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2227                          "analyzable.\n");
2228     return false;
2229   }
2230 
2231   // This checks if we have the low-overhead branch architecture
2232   // extension, and if we will create a hardware-loop:
2233   if (!isHardwareLoopProfitable(L, SE, AC, TLI, HWLoopInfo)) {
2234     LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2235                          "profitable.\n");
2236     return false;
2237   }
2238 
2239   if (!HWLoopInfo.isHardwareLoopCandidate(SE, *LI, *DT)) {
2240     LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2241                          "a candidate.\n");
2242     return false;
2243   }
2244 
2245   return canTailPredicateLoop(L, LI, SE, DL, LVL->getLAI());
2246 }
2247 
2248 PredicationStyle ARMTTIImpl::emitGetActiveLaneMask() const {
2249   if (!ST->hasMVEIntegerOps() || !EnableTailPredication)
2250     return PredicationStyle::None;
2251 
2252   // Intrinsic @llvm.get.active.lane.mask is supported.
2253   // It is used in the MVETailPredication pass, which requires the number of
2254   // elements processed by this vector loop to setup the tail-predicated
2255   // loop.
2256   return PredicationStyle::Data;
2257 }
2258 void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
2259                                          TTI::UnrollingPreferences &UP,
2260                                          OptimizationRemarkEmitter *ORE) {
2261   // Enable Upper bound unrolling universally, not dependant upon the conditions
2262   // below.
2263   UP.UpperBound = true;
2264 
2265   // Only currently enable these preferences for M-Class cores.
2266   if (!ST->isMClass())
2267     return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE);
2268 
2269   // Disable loop unrolling for Oz and Os.
2270   UP.OptSizeThreshold = 0;
2271   UP.PartialOptSizeThreshold = 0;
2272   if (L->getHeader()->getParent()->hasOptSize())
2273     return;
2274 
2275   SmallVector<BasicBlock*, 4> ExitingBlocks;
2276   L->getExitingBlocks(ExitingBlocks);
2277   LLVM_DEBUG(dbgs() << "Loop has:\n"
2278                     << "Blocks: " << L->getNumBlocks() << "\n"
2279                     << "Exit blocks: " << ExitingBlocks.size() << "\n");
2280 
2281   // Only allow another exit other than the latch. This acts as an early exit
2282   // as it mirrors the profitability calculation of the runtime unroller.
2283   if (ExitingBlocks.size() > 2)
2284     return;
2285 
2286   // Limit the CFG of the loop body for targets with a branch predictor.
2287   // Allowing 4 blocks permits if-then-else diamonds in the body.
2288   if (ST->hasBranchPredictor() && L->getNumBlocks() > 4)
2289     return;
2290 
2291   // Don't unroll vectorized loops, including the remainder loop
2292   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
2293     return;
2294 
2295   // Scan the loop: don't unroll loops with calls as this could prevent
2296   // inlining.
2297   InstructionCost Cost = 0;
2298   for (auto *BB : L->getBlocks()) {
2299     for (auto &I : *BB) {
2300       // Don't unroll vectorised loop. MVE does not benefit from it as much as
2301       // scalar code.
2302       if (I.getType()->isVectorTy())
2303         return;
2304 
2305       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
2306         if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
2307           if (!isLoweredToCall(F))
2308             continue;
2309         }
2310         return;
2311       }
2312 
2313       SmallVector<const Value*, 4> Operands(I.operand_values());
2314       Cost +=
2315         getUserCost(&I, Operands, TargetTransformInfo::TCK_SizeAndLatency);
2316     }
2317   }
2318 
2319   // On v6m cores, there are very few registers available. We can easily end up
2320   // spilling and reloading more registers in an unrolled loop. Look at the
2321   // number of LCSSA phis as a rough measure of how many registers will need to
2322   // be live out of the loop, reducing the default unroll count if more than 1
2323   // value is needed.  In the long run, all of this should be being learnt by a
2324   // machine.
2325   unsigned UnrollCount = 4;
2326   if (ST->isThumb1Only()) {
2327     unsigned ExitingValues = 0;
2328     SmallVector<BasicBlock *, 4> ExitBlocks;
2329     L->getExitBlocks(ExitBlocks);
2330     for (auto *Exit : ExitBlocks) {
2331       // Count the number of LCSSA phis. Exclude values coming from GEP's as
2332       // only the last is expected to be needed for address operands.
2333       unsigned LiveOuts = count_if(Exit->phis(), [](auto &PH) {
2334         return PH.getNumOperands() != 1 ||
2335                !isa<GetElementPtrInst>(PH.getOperand(0));
2336       });
2337       ExitingValues = ExitingValues < LiveOuts ? LiveOuts : ExitingValues;
2338     }
2339     if (ExitingValues)
2340       UnrollCount /= ExitingValues;
2341     if (UnrollCount <= 1)
2342       return;
2343   }
2344 
2345   LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
2346   LLVM_DEBUG(dbgs() << "Default Runtime Unroll Count: " << UnrollCount << "\n");
2347 
2348   UP.Partial = true;
2349   UP.Runtime = true;
2350   UP.UnrollRemainder = true;
2351   UP.DefaultUnrollRuntimeCount = UnrollCount;
2352   UP.UnrollAndJam = true;
2353   UP.UnrollAndJamInnerLoopThreshold = 60;
2354 
2355   // Force unrolling small loops can be very useful because of the branch
2356   // taken cost of the backedge.
2357   if (Cost < 12)
2358     UP.Force = true;
2359 }
2360 
2361 void ARMTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
2362                                        TTI::PeelingPreferences &PP) {
2363   BaseT::getPeelingPreferences(L, SE, PP);
2364 }
2365 
2366 bool ARMTTIImpl::preferInLoopReduction(unsigned Opcode, Type *Ty,
2367                                        TTI::ReductionFlags Flags) const {
2368   if (!ST->hasMVEIntegerOps())
2369     return false;
2370 
2371   unsigned ScalarBits = Ty->getScalarSizeInBits();
2372   switch (Opcode) {
2373   case Instruction::Add:
2374     return ScalarBits <= 64;
2375   default:
2376     return false;
2377   }
2378 }
2379 
2380 bool ARMTTIImpl::preferPredicatedReductionSelect(
2381     unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const {
2382   if (!ST->hasMVEIntegerOps())
2383     return false;
2384   return true;
2385 }
2386