xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ARMTargetTransformInfo.h"
10 #include "ARMSubtarget.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "llvm/ADT/APInt.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/Analysis/LoopInfo.h"
15 #include "llvm/CodeGen/CostTable.h"
16 #include "llvm/CodeGen/ISDOpcodes.h"
17 #include "llvm/CodeGen/ValueTypes.h"
18 #include "llvm/CodeGenTypes/MachineValueType.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/Intrinsics.h"
26 #include "llvm/IR/IntrinsicsARM.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Target/TargetMachine.h"
32 #include "llvm/TargetParser/SubtargetFeature.h"
33 #include "llvm/Transforms/InstCombine/InstCombiner.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include "llvm/Transforms/Utils/LoopUtils.h"
36 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstdint>
40 #include <optional>
41 #include <utility>
42 
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "armtti"
46 
47 static cl::opt<bool> EnableMaskedLoadStores(
48   "enable-arm-maskedldst", cl::Hidden, cl::init(true),
49   cl::desc("Enable the generation of masked loads and stores"));
50 
51 static cl::opt<bool> DisableLowOverheadLoops(
52   "disable-arm-loloops", cl::Hidden, cl::init(false),
53   cl::desc("Disable the generation of low-overhead loops"));
54 
55 static cl::opt<bool>
56     AllowWLSLoops("allow-arm-wlsloops", cl::Hidden, cl::init(true),
57                   cl::desc("Enable the generation of WLS loops"));
58 
59 extern cl::opt<TailPredication::Mode> EnableTailPredication;
60 
61 extern cl::opt<bool> EnableMaskedGatherScatters;
62 
63 extern cl::opt<unsigned> MVEMaxSupportedInterleaveFactor;
64 
65 /// Convert a vector load intrinsic into a simple llvm load instruction.
66 /// This is beneficial when the underlying object being addressed comes
67 /// from a constant, since we get constant-folding for free.
68 static Value *simplifyNeonVld1(const IntrinsicInst &II, unsigned MemAlign,
69                                InstCombiner::BuilderTy &Builder) {
70   auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1));
71 
72   if (!IntrAlign)
73     return nullptr;
74 
75   unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign
76                            ? MemAlign
77                            : IntrAlign->getLimitedValue();
78 
79   if (!isPowerOf2_32(Alignment))
80     return nullptr;
81 
82   auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0),
83                                           PointerType::get(II.getType(), 0));
84   return Builder.CreateAlignedLoad(II.getType(), BCastInst, Align(Alignment));
85 }
86 
87 bool ARMTTIImpl::areInlineCompatible(const Function *Caller,
88                                      const Function *Callee) const {
89   const TargetMachine &TM = getTLI()->getTargetMachine();
90   const FeatureBitset &CallerBits =
91       TM.getSubtargetImpl(*Caller)->getFeatureBits();
92   const FeatureBitset &CalleeBits =
93       TM.getSubtargetImpl(*Callee)->getFeatureBits();
94 
95   // To inline a callee, all features not in the allowed list must match exactly.
96   bool MatchExact = (CallerBits & ~InlineFeaturesAllowed) ==
97                     (CalleeBits & ~InlineFeaturesAllowed);
98   // For features in the allowed list, the callee's features must be a subset of
99   // the callers'.
100   bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeaturesAllowed) ==
101                      (CalleeBits & InlineFeaturesAllowed);
102   return MatchExact && MatchSubset;
103 }
104 
105 TTI::AddressingModeKind
106 ARMTTIImpl::getPreferredAddressingMode(const Loop *L,
107                                        ScalarEvolution *SE) const {
108   if (ST->hasMVEIntegerOps())
109     return TTI::AMK_PostIndexed;
110 
111   if (L->getHeader()->getParent()->hasOptSize())
112     return TTI::AMK_None;
113 
114   if (ST->isMClass() && ST->isThumb2() &&
115       L->getNumBlocks() == 1)
116     return TTI::AMK_PreIndexed;
117 
118   return TTI::AMK_None;
119 }
120 
121 std::optional<Instruction *>
122 ARMTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
123   using namespace PatternMatch;
124   Intrinsic::ID IID = II.getIntrinsicID();
125   switch (IID) {
126   default:
127     break;
128   case Intrinsic::arm_neon_vld1: {
129     Align MemAlign =
130         getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II,
131                           &IC.getAssumptionCache(), &IC.getDominatorTree());
132     if (Value *V = simplifyNeonVld1(II, MemAlign.value(), IC.Builder)) {
133       return IC.replaceInstUsesWith(II, V);
134     }
135     break;
136   }
137 
138   case Intrinsic::arm_neon_vld2:
139   case Intrinsic::arm_neon_vld3:
140   case Intrinsic::arm_neon_vld4:
141   case Intrinsic::arm_neon_vld2lane:
142   case Intrinsic::arm_neon_vld3lane:
143   case Intrinsic::arm_neon_vld4lane:
144   case Intrinsic::arm_neon_vst1:
145   case Intrinsic::arm_neon_vst2:
146   case Intrinsic::arm_neon_vst3:
147   case Intrinsic::arm_neon_vst4:
148   case Intrinsic::arm_neon_vst2lane:
149   case Intrinsic::arm_neon_vst3lane:
150   case Intrinsic::arm_neon_vst4lane: {
151     Align MemAlign =
152         getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II,
153                           &IC.getAssumptionCache(), &IC.getDominatorTree());
154     unsigned AlignArg = II.arg_size() - 1;
155     Value *AlignArgOp = II.getArgOperand(AlignArg);
156     MaybeAlign Align = cast<ConstantInt>(AlignArgOp)->getMaybeAlignValue();
157     if (Align && *Align < MemAlign) {
158       return IC.replaceOperand(
159           II, AlignArg,
160           ConstantInt::get(Type::getInt32Ty(II.getContext()), MemAlign.value(),
161                            false));
162     }
163     break;
164   }
165 
166   case Intrinsic::arm_mve_pred_i2v: {
167     Value *Arg = II.getArgOperand(0);
168     Value *ArgArg;
169     if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(
170                        PatternMatch::m_Value(ArgArg))) &&
171         II.getType() == ArgArg->getType()) {
172       return IC.replaceInstUsesWith(II, ArgArg);
173     }
174     Constant *XorMask;
175     if (match(Arg, m_Xor(PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(
176                              PatternMatch::m_Value(ArgArg)),
177                          PatternMatch::m_Constant(XorMask))) &&
178         II.getType() == ArgArg->getType()) {
179       if (auto *CI = dyn_cast<ConstantInt>(XorMask)) {
180         if (CI->getValue().trunc(16).isAllOnes()) {
181           auto TrueVector = IC.Builder.CreateVectorSplat(
182               cast<FixedVectorType>(II.getType())->getNumElements(),
183               IC.Builder.getTrue());
184           return BinaryOperator::Create(Instruction::Xor, ArgArg, TrueVector);
185         }
186       }
187     }
188     KnownBits ScalarKnown(32);
189     if (IC.SimplifyDemandedBits(&II, 0, APInt::getLowBitsSet(32, 16),
190                                 ScalarKnown)) {
191       return &II;
192     }
193     break;
194   }
195   case Intrinsic::arm_mve_pred_v2i: {
196     Value *Arg = II.getArgOperand(0);
197     Value *ArgArg;
198     if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_i2v>(
199                        PatternMatch::m_Value(ArgArg)))) {
200       return IC.replaceInstUsesWith(II, ArgArg);
201     }
202 
203     if (II.getMetadata(LLVMContext::MD_range))
204       break;
205 
206     ConstantRange Range(APInt(32, 0), APInt(32, 0x10000));
207 
208     if (auto CurrentRange = II.getRange()) {
209       Range = Range.intersectWith(*CurrentRange);
210       if (Range == CurrentRange)
211         break;
212     }
213 
214     II.addRangeRetAttr(Range);
215     II.addRetAttr(Attribute::NoUndef);
216     return &II;
217   }
218   case Intrinsic::arm_mve_vadc:
219   case Intrinsic::arm_mve_vadc_predicated: {
220     unsigned CarryOp =
221         (II.getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated) ? 3 : 2;
222     assert(II.getArgOperand(CarryOp)->getType()->getScalarSizeInBits() == 32 &&
223            "Bad type for intrinsic!");
224 
225     KnownBits CarryKnown(32);
226     if (IC.SimplifyDemandedBits(&II, CarryOp, APInt::getOneBitSet(32, 29),
227                                 CarryKnown)) {
228       return &II;
229     }
230     break;
231   }
232   case Intrinsic::arm_mve_vmldava: {
233     Instruction *I = cast<Instruction>(&II);
234     if (I->hasOneUse()) {
235       auto *User = cast<Instruction>(*I->user_begin());
236       Value *OpZ;
237       if (match(User, m_c_Add(m_Specific(I), m_Value(OpZ))) &&
238           match(I->getOperand(3), m_Zero())) {
239         Value *OpX = I->getOperand(4);
240         Value *OpY = I->getOperand(5);
241         Type *OpTy = OpX->getType();
242 
243         IC.Builder.SetInsertPoint(User);
244         Value *V =
245             IC.Builder.CreateIntrinsic(Intrinsic::arm_mve_vmldava, {OpTy},
246                                        {I->getOperand(0), I->getOperand(1),
247                                         I->getOperand(2), OpZ, OpX, OpY});
248 
249         IC.replaceInstUsesWith(*User, V);
250         return IC.eraseInstFromFunction(*User);
251       }
252     }
253     return std::nullopt;
254   }
255   }
256   return std::nullopt;
257 }
258 
259 std::optional<Value *> ARMTTIImpl::simplifyDemandedVectorEltsIntrinsic(
260     InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts,
261     APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
262     std::function<void(Instruction *, unsigned, APInt, APInt &)>
263         SimplifyAndSetOp) const {
264 
265   // Compute the demanded bits for a narrowing MVE intrinsic. The TopOpc is the
266   // opcode specifying a Top/Bottom instruction, which can change between
267   // instructions.
268   auto SimplifyNarrowInstrTopBottom =[&](unsigned TopOpc) {
269     unsigned NumElts = cast<FixedVectorType>(II.getType())->getNumElements();
270     unsigned IsTop = cast<ConstantInt>(II.getOperand(TopOpc))->getZExtValue();
271 
272     // The only odd/even lanes of operand 0 will only be demanded depending
273     // on whether this is a top/bottom instruction.
274     APInt DemandedElts =
275         APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1)
276                                        : APInt::getHighBitsSet(2, 1));
277     SimplifyAndSetOp(&II, 0, OrigDemandedElts & DemandedElts, UndefElts);
278     // The other lanes will be defined from the inserted elements.
279     UndefElts &= APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1)
280                                                 : APInt::getHighBitsSet(2, 1));
281     return std::nullopt;
282   };
283 
284   switch (II.getIntrinsicID()) {
285   default:
286     break;
287   case Intrinsic::arm_mve_vcvt_narrow:
288     SimplifyNarrowInstrTopBottom(2);
289     break;
290   case Intrinsic::arm_mve_vqmovn:
291     SimplifyNarrowInstrTopBottom(4);
292     break;
293   case Intrinsic::arm_mve_vshrn:
294     SimplifyNarrowInstrTopBottom(7);
295     break;
296   }
297 
298   return std::nullopt;
299 }
300 
301 InstructionCost ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
302                                           TTI::TargetCostKind CostKind) {
303   assert(Ty->isIntegerTy());
304 
305  unsigned Bits = Ty->getPrimitiveSizeInBits();
306  if (Bits == 0 || Imm.getActiveBits() >= 64)
307    return 4;
308 
309   int64_t SImmVal = Imm.getSExtValue();
310   uint64_t ZImmVal = Imm.getZExtValue();
311   if (!ST->isThumb()) {
312     if ((SImmVal >= 0 && SImmVal < 65536) ||
313         (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
314         (ARM_AM::getSOImmVal(~ZImmVal) != -1))
315       return 1;
316     return ST->hasV6T2Ops() ? 2 : 3;
317   }
318   if (ST->isThumb2()) {
319     if ((SImmVal >= 0 && SImmVal < 65536) ||
320         (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
321         (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
322       return 1;
323     return ST->hasV6T2Ops() ? 2 : 3;
324   }
325   // Thumb1, any i8 imm cost 1.
326   if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256))
327     return 1;
328   if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
329     return 2;
330   // Load from constantpool.
331   return 3;
332 }
333 
334 // Constants smaller than 256 fit in the immediate field of
335 // Thumb1 instructions so we return a zero cost and 1 otherwise.
336 InstructionCost ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
337                                                   const APInt &Imm, Type *Ty) {
338   if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
339     return 0;
340 
341   return 1;
342 }
343 
344 // Checks whether Inst is part of a min(max()) or max(min()) pattern
345 // that will match to an SSAT instruction. Returns the instruction being
346 // saturated, or null if no saturation pattern was found.
347 static Value *isSSATMinMaxPattern(Instruction *Inst, const APInt &Imm) {
348   Value *LHS, *RHS;
349   ConstantInt *C;
350   SelectPatternFlavor InstSPF = matchSelectPattern(Inst, LHS, RHS).Flavor;
351 
352   if (InstSPF == SPF_SMAX &&
353       PatternMatch::match(RHS, PatternMatch::m_ConstantInt(C)) &&
354       C->getValue() == Imm && Imm.isNegative() && Imm.isNegatedPowerOf2()) {
355 
356     auto isSSatMin = [&](Value *MinInst) {
357       if (isa<SelectInst>(MinInst)) {
358         Value *MinLHS, *MinRHS;
359         ConstantInt *MinC;
360         SelectPatternFlavor MinSPF =
361             matchSelectPattern(MinInst, MinLHS, MinRHS).Flavor;
362         if (MinSPF == SPF_SMIN &&
363             PatternMatch::match(MinRHS, PatternMatch::m_ConstantInt(MinC)) &&
364             MinC->getValue() == ((-Imm) - 1))
365           return true;
366       }
367       return false;
368     };
369 
370     if (isSSatMin(Inst->getOperand(1)))
371       return cast<Instruction>(Inst->getOperand(1))->getOperand(1);
372     if (Inst->hasNUses(2) &&
373         (isSSatMin(*Inst->user_begin()) || isSSatMin(*(++Inst->user_begin()))))
374       return Inst->getOperand(1);
375   }
376   return nullptr;
377 }
378 
379 // Look for a FP Saturation pattern, where the instruction can be simplified to
380 // a fptosi.sat. max(min(fptosi)). The constant in this case is always free.
381 static bool isFPSatMinMaxPattern(Instruction *Inst, const APInt &Imm) {
382   if (Imm.getBitWidth() != 64 ||
383       Imm != APInt::getHighBitsSet(64, 33)) // -2147483648
384     return false;
385   Value *FP = isSSATMinMaxPattern(Inst, Imm);
386   if (!FP && isa<ICmpInst>(Inst) && Inst->hasOneUse())
387     FP = isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm);
388   if (!FP)
389     return false;
390   return isa<FPToSIInst>(FP);
391 }
392 
393 InstructionCost ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
394                                               const APInt &Imm, Type *Ty,
395                                               TTI::TargetCostKind CostKind,
396                                               Instruction *Inst) {
397   // Division by a constant can be turned into multiplication, but only if we
398   // know it's constant. So it's not so much that the immediate is cheap (it's
399   // not), but that the alternative is worse.
400   // FIXME: this is probably unneeded with GlobalISel.
401   if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
402        Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
403       Idx == 1)
404     return 0;
405 
406   // Leave any gep offsets for the CodeGenPrepare, which will do a better job at
407   // splitting any large offsets.
408   if (Opcode == Instruction::GetElementPtr && Idx != 0)
409     return 0;
410 
411   if (Opcode == Instruction::And) {
412     // UXTB/UXTH
413     if (Imm == 255 || Imm == 65535)
414       return 0;
415     // Conversion to BIC is free, and means we can use ~Imm instead.
416     return std::min(getIntImmCost(Imm, Ty, CostKind),
417                     getIntImmCost(~Imm, Ty, CostKind));
418   }
419 
420   if (Opcode == Instruction::Add)
421     // Conversion to SUB is free, and means we can use -Imm instead.
422     return std::min(getIntImmCost(Imm, Ty, CostKind),
423                     getIntImmCost(-Imm, Ty, CostKind));
424 
425   if (Opcode == Instruction::ICmp && Imm.isNegative() &&
426       Ty->getIntegerBitWidth() == 32) {
427     int64_t NegImm = -Imm.getSExtValue();
428     if (ST->isThumb2() && NegImm < 1<<12)
429       // icmp X, #-C -> cmn X, #C
430       return 0;
431     if (ST->isThumb() && NegImm < 1<<8)
432       // icmp X, #-C -> adds X, #C
433       return 0;
434   }
435 
436   // xor a, -1 can always be folded to MVN
437   if (Opcode == Instruction::Xor && Imm.isAllOnes())
438     return 0;
439 
440   // Ensures negative constant of min(max()) or max(min()) patterns that
441   // match to SSAT instructions don't get hoisted
442   if (Inst && ((ST->hasV6Ops() && !ST->isThumb()) || ST->isThumb2()) &&
443       Ty->getIntegerBitWidth() <= 32) {
444     if (isSSATMinMaxPattern(Inst, Imm) ||
445         (isa<ICmpInst>(Inst) && Inst->hasOneUse() &&
446          isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm)))
447       return 0;
448   }
449 
450   if (Inst && ST->hasVFP2Base() && isFPSatMinMaxPattern(Inst, Imm))
451     return 0;
452 
453   // We can convert <= -1 to < 0, which is generally quite cheap.
454   if (Inst && Opcode == Instruction::ICmp && Idx == 1 && Imm.isAllOnes()) {
455     ICmpInst::Predicate Pred = cast<ICmpInst>(Inst)->getPredicate();
456     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE)
457       return std::min(getIntImmCost(Imm, Ty, CostKind),
458                       getIntImmCost(Imm + 1, Ty, CostKind));
459   }
460 
461   return getIntImmCost(Imm, Ty, CostKind);
462 }
463 
464 InstructionCost ARMTTIImpl::getCFInstrCost(unsigned Opcode,
465                                            TTI::TargetCostKind CostKind,
466                                            const Instruction *I) {
467   if (CostKind == TTI::TCK_RecipThroughput &&
468       (ST->hasNEON() || ST->hasMVEIntegerOps())) {
469     // FIXME: The vectorizer is highly sensistive to the cost of these
470     // instructions, which suggests that it may be using the costs incorrectly.
471     // But, for now, just make them free to avoid performance regressions for
472     // vector targets.
473     return 0;
474   }
475   return BaseT::getCFInstrCost(Opcode, CostKind, I);
476 }
477 
478 InstructionCost ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
479                                              Type *Src,
480                                              TTI::CastContextHint CCH,
481                                              TTI::TargetCostKind CostKind,
482                                              const Instruction *I) {
483   int ISD = TLI->InstructionOpcodeToISD(Opcode);
484   assert(ISD && "Invalid opcode");
485 
486   // TODO: Allow non-throughput costs that aren't binary.
487   auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
488     if (CostKind != TTI::TCK_RecipThroughput)
489       return Cost == 0 ? 0 : 1;
490     return Cost;
491   };
492   auto IsLegalFPType = [this](EVT VT) {
493     EVT EltVT = VT.getScalarType();
494     return (EltVT == MVT::f32 && ST->hasVFP2Base()) ||
495             (EltVT == MVT::f64 && ST->hasFP64()) ||
496             (EltVT == MVT::f16 && ST->hasFullFP16());
497   };
498 
499   EVT SrcTy = TLI->getValueType(DL, Src);
500   EVT DstTy = TLI->getValueType(DL, Dst);
501 
502   if (!SrcTy.isSimple() || !DstTy.isSimple())
503     return AdjustCost(
504         BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
505 
506   // Extending masked load/Truncating masked stores is expensive because we
507   // currently don't split them. This means that we'll likely end up
508   // loading/storing each element individually (hence the high cost).
509   if ((ST->hasMVEIntegerOps() &&
510        (Opcode == Instruction::Trunc || Opcode == Instruction::ZExt ||
511         Opcode == Instruction::SExt)) ||
512       (ST->hasMVEFloatOps() &&
513        (Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc) &&
514        IsLegalFPType(SrcTy) && IsLegalFPType(DstTy)))
515     if (CCH == TTI::CastContextHint::Masked && DstTy.getSizeInBits() > 128)
516       return 2 * DstTy.getVectorNumElements() *
517              ST->getMVEVectorCostFactor(CostKind);
518 
519   // The extend of other kinds of load is free
520   if (CCH == TTI::CastContextHint::Normal ||
521       CCH == TTI::CastContextHint::Masked) {
522     static const TypeConversionCostTblEntry LoadConversionTbl[] = {
523         {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0},
524         {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0},
525         {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0},
526         {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0},
527         {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0},
528         {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0},
529         {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1},
530         {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1},
531         {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1},
532         {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1},
533         {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1},
534         {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1},
535     };
536     if (const auto *Entry = ConvertCostTableLookup(
537             LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
538       return AdjustCost(Entry->Cost);
539 
540     static const TypeConversionCostTblEntry MVELoadConversionTbl[] = {
541         {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0},
542         {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0},
543         {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0},
544         {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0},
545         {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0},
546         {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0},
547         // The following extend from a legal type to an illegal type, so need to
548         // split the load. This introduced an extra load operation, but the
549         // extend is still "free".
550         {ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1},
551         {ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1},
552         {ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 3},
553         {ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 3},
554         {ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1},
555         {ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1},
556     };
557     if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
558       if (const auto *Entry =
559               ConvertCostTableLookup(MVELoadConversionTbl, ISD,
560                                      DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
561         return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
562     }
563 
564     static const TypeConversionCostTblEntry MVEFLoadConversionTbl[] = {
565         // FPExtends are similar but also require the VCVT instructions.
566         {ISD::FP_EXTEND, MVT::v4f32, MVT::v4f16, 1},
567         {ISD::FP_EXTEND, MVT::v8f32, MVT::v8f16, 3},
568     };
569     if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
570       if (const auto *Entry =
571               ConvertCostTableLookup(MVEFLoadConversionTbl, ISD,
572                                      DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
573         return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
574     }
575 
576     // The truncate of a store is free. This is the mirror of extends above.
577     static const TypeConversionCostTblEntry MVEStoreConversionTbl[] = {
578         {ISD::TRUNCATE, MVT::v4i32, MVT::v4i16, 0},
579         {ISD::TRUNCATE, MVT::v4i32, MVT::v4i8, 0},
580         {ISD::TRUNCATE, MVT::v8i16, MVT::v8i8, 0},
581         {ISD::TRUNCATE, MVT::v8i32, MVT::v8i16, 1},
582         {ISD::TRUNCATE, MVT::v8i32, MVT::v8i8, 1},
583         {ISD::TRUNCATE, MVT::v16i32, MVT::v16i8, 3},
584         {ISD::TRUNCATE, MVT::v16i16, MVT::v16i8, 1},
585     };
586     if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
587       if (const auto *Entry =
588               ConvertCostTableLookup(MVEStoreConversionTbl, ISD,
589                                      SrcTy.getSimpleVT(), DstTy.getSimpleVT()))
590         return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
591     }
592 
593     static const TypeConversionCostTblEntry MVEFStoreConversionTbl[] = {
594         {ISD::FP_ROUND, MVT::v4f32, MVT::v4f16, 1},
595         {ISD::FP_ROUND, MVT::v8f32, MVT::v8f16, 3},
596     };
597     if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
598       if (const auto *Entry =
599               ConvertCostTableLookup(MVEFStoreConversionTbl, ISD,
600                                      SrcTy.getSimpleVT(), DstTy.getSimpleVT()))
601         return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
602     }
603   }
604 
605   // NEON vector operations that can extend their inputs.
606   if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) &&
607       I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) {
608     static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = {
609       // vaddl
610       { ISD::ADD, MVT::v4i32, MVT::v4i16, 0 },
611       { ISD::ADD, MVT::v8i16, MVT::v8i8,  0 },
612       // vsubl
613       { ISD::SUB, MVT::v4i32, MVT::v4i16, 0 },
614       { ISD::SUB, MVT::v8i16, MVT::v8i8,  0 },
615       // vmull
616       { ISD::MUL, MVT::v4i32, MVT::v4i16, 0 },
617       { ISD::MUL, MVT::v8i16, MVT::v8i8,  0 },
618       // vshll
619       { ISD::SHL, MVT::v4i32, MVT::v4i16, 0 },
620       { ISD::SHL, MVT::v8i16, MVT::v8i8,  0 },
621     };
622 
623     auto *User = cast<Instruction>(*I->user_begin());
624     int UserISD = TLI->InstructionOpcodeToISD(User->getOpcode());
625     if (auto *Entry = ConvertCostTableLookup(NEONDoubleWidthTbl, UserISD,
626                                              DstTy.getSimpleVT(),
627                                              SrcTy.getSimpleVT())) {
628       return AdjustCost(Entry->Cost);
629     }
630   }
631 
632   // Single to/from double precision conversions.
633   if (Src->isVectorTy() && ST->hasNEON() &&
634       ((ISD == ISD::FP_ROUND && SrcTy.getScalarType() == MVT::f64 &&
635         DstTy.getScalarType() == MVT::f32) ||
636        (ISD == ISD::FP_EXTEND && SrcTy.getScalarType() == MVT::f32 &&
637         DstTy.getScalarType() == MVT::f64))) {
638     static const CostTblEntry NEONFltDblTbl[] = {
639         // Vector fptrunc/fpext conversions.
640         {ISD::FP_ROUND, MVT::v2f64, 2},
641         {ISD::FP_EXTEND, MVT::v2f32, 2},
642         {ISD::FP_EXTEND, MVT::v4f32, 4}};
643 
644     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
645     if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
646       return AdjustCost(LT.first * Entry->Cost);
647   }
648 
649   // Some arithmetic, load and store operations have specific instructions
650   // to cast up/down their types automatically at no extra cost.
651   // TODO: Get these tables to know at least what the related operations are.
652   static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
653     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
654     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
655     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
656     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
657     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
658     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },
659 
660     // The number of vmovl instructions for the extension.
661     { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8,  1 },
662     { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8,  1 },
663     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8,  2 },
664     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8,  2 },
665     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8,  3 },
666     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8,  3 },
667     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
668     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
669     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
670     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
671     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
672     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
673     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
674     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
675     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
676     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
677     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
678     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
679 
680     // Operations that we legalize using splitting.
681     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 },
682     { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 },
683 
684     // Vector float <-> i32 conversions.
685     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
686     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
687 
688     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
689     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
690     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
691     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
692     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
693     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
694     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
695     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
696     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
697     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
698     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
699     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
700     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
701     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
702     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
703     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
704     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
705     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
706     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
707     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
708 
709     { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
710     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
711     { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 },
712     { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 },
713     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 },
714     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 },
715 
716     // Vector double <-> i32 conversions.
717     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
718     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
719 
720     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
721     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
722     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
723     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
724     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
725     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
726 
727     { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
728     { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 },
729     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 },
730     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 },
731     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 },
732     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 }
733   };
734 
735   if (SrcTy.isVector() && ST->hasNEON()) {
736     if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
737                                                    DstTy.getSimpleVT(),
738                                                    SrcTy.getSimpleVT()))
739       return AdjustCost(Entry->Cost);
740   }
741 
742   // Scalar float to integer conversions.
743   static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
744     { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
745     { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
746     { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
747     { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
748     { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
749     { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
750     { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
751     { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
752     { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
753     { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
754     { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
755     { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
756     { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
757     { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
758     { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
759     { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
760     { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
761     { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
762     { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
763     { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
764   };
765   if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
766     if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
767                                                    DstTy.getSimpleVT(),
768                                                    SrcTy.getSimpleVT()))
769       return AdjustCost(Entry->Cost);
770   }
771 
772   // Scalar integer to float conversions.
773   static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
774     { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
775     { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
776     { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
777     { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
778     { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
779     { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
780     { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
781     { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
782     { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
783     { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
784     { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
785     { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
786     { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
787     { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
788     { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
789     { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
790     { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
791     { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
792     { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
793     { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
794   };
795 
796   if (SrcTy.isInteger() && ST->hasNEON()) {
797     if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
798                                                    ISD, DstTy.getSimpleVT(),
799                                                    SrcTy.getSimpleVT()))
800       return AdjustCost(Entry->Cost);
801   }
802 
803   // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one
804   // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext
805   // are linearised so take more.
806   static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = {
807     { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
808     { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
809     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
810     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
811     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 },
812     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 },
813     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
814     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
815     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 },
816     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
817     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 },
818     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 },
819   };
820 
821   if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
822     if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl,
823                                                    ISD, DstTy.getSimpleVT(),
824                                                    SrcTy.getSimpleVT()))
825       return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
826   }
827 
828   if (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND) {
829     // As general rule, fp converts that were not matched above are scalarized
830     // and cost 1 vcvt for each lane, so long as the instruction is available.
831     // If not it will become a series of function calls.
832     const InstructionCost CallCost =
833         getCallInstrCost(nullptr, Dst, {Src}, CostKind);
834     int Lanes = 1;
835     if (SrcTy.isFixedLengthVector())
836       Lanes = SrcTy.getVectorNumElements();
837 
838     if (IsLegalFPType(SrcTy) && IsLegalFPType(DstTy))
839       return Lanes;
840     else
841       return Lanes * CallCost;
842   }
843 
844   if (ISD == ISD::TRUNCATE && ST->hasMVEIntegerOps() &&
845       SrcTy.isFixedLengthVector()) {
846     // Treat a truncate with larger than legal source (128bits for MVE) as
847     // expensive, 2 instructions per lane.
848     if ((SrcTy.getScalarType() == MVT::i8 ||
849          SrcTy.getScalarType() == MVT::i16 ||
850          SrcTy.getScalarType() == MVT::i32) &&
851         SrcTy.getSizeInBits() > 128 &&
852         SrcTy.getSizeInBits() > DstTy.getSizeInBits())
853       return SrcTy.getVectorNumElements() * 2;
854   }
855 
856   // Scalar integer conversion costs.
857   static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
858     // i16 -> i64 requires two dependent operations.
859     { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
860 
861     // Truncates on i64 are assumed to be free.
862     { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
863     { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
864     { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
865     { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
866   };
867 
868   if (SrcTy.isInteger()) {
869     if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
870                                                    DstTy.getSimpleVT(),
871                                                    SrcTy.getSimpleVT()))
872       return AdjustCost(Entry->Cost);
873   }
874 
875   int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
876                      ? ST->getMVEVectorCostFactor(CostKind)
877                      : 1;
878   return AdjustCost(
879       BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
880 }
881 
882 InstructionCost ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
883                                                TTI::TargetCostKind CostKind,
884                                                unsigned Index, Value *Op0,
885                                                Value *Op1) {
886   // Penalize inserting into an D-subregister. We end up with a three times
887   // lower estimated throughput on swift.
888   if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
889       ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
890     return 3;
891 
892   if (ST->hasNEON() && (Opcode == Instruction::InsertElement ||
893                         Opcode == Instruction::ExtractElement)) {
894     // Cross-class copies are expensive on many microarchitectures,
895     // so assume they are expensive by default.
896     if (cast<VectorType>(ValTy)->getElementType()->isIntegerTy())
897       return 3;
898 
899     // Even if it's not a cross class copy, this likely leads to mixing
900     // of NEON and VFP code and should be therefore penalized.
901     if (ValTy->isVectorTy() &&
902         ValTy->getScalarSizeInBits() <= 32)
903       return std::max<InstructionCost>(
904           BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0, Op1),
905           2U);
906   }
907 
908   if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement ||
909                                  Opcode == Instruction::ExtractElement)) {
910     // Integer cross-lane moves are more expensive than float, which can
911     // sometimes just be vmovs. Integer involve being passes to GPR registers,
912     // causing more of a delay.
913     std::pair<InstructionCost, MVT> LT =
914         getTypeLegalizationCost(ValTy->getScalarType());
915     return LT.first * (ValTy->getScalarType()->isIntegerTy() ? 4 : 1);
916   }
917 
918   return BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0, Op1);
919 }
920 
921 InstructionCost ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
922                                                Type *CondTy,
923                                                CmpInst::Predicate VecPred,
924                                                TTI::TargetCostKind CostKind,
925                                                const Instruction *I) {
926   int ISD = TLI->InstructionOpcodeToISD(Opcode);
927 
928   // Thumb scalar code size cost for select.
929   if (CostKind == TTI::TCK_CodeSize && ISD == ISD::SELECT &&
930       ST->isThumb() && !ValTy->isVectorTy()) {
931     // Assume expensive structs.
932     if (TLI->getValueType(DL, ValTy, true) == MVT::Other)
933       return TTI::TCC_Expensive;
934 
935     // Select costs can vary because they:
936     // - may require one or more conditional mov (including an IT),
937     // - can't operate directly on immediates,
938     // - require live flags, which we can't copy around easily.
939     InstructionCost Cost = getTypeLegalizationCost(ValTy).first;
940 
941     // Possible IT instruction for Thumb2, or more for Thumb1.
942     ++Cost;
943 
944     // i1 values may need rematerialising by using mov immediates and/or
945     // flag setting instructions.
946     if (ValTy->isIntegerTy(1))
947       ++Cost;
948 
949     return Cost;
950   }
951 
952   // If this is a vector min/max/abs, use the cost of that intrinsic directly
953   // instead. Hopefully when min/max intrinsics are more prevalent this code
954   // will not be needed.
955   const Instruction *Sel = I;
956   if ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && Sel &&
957       Sel->hasOneUse())
958     Sel = cast<Instruction>(Sel->user_back());
959   if (Sel && ValTy->isVectorTy() &&
960       (ValTy->isIntOrIntVectorTy() || ValTy->isFPOrFPVectorTy())) {
961     const Value *LHS, *RHS;
962     SelectPatternFlavor SPF = matchSelectPattern(Sel, LHS, RHS).Flavor;
963     unsigned IID = 0;
964     switch (SPF) {
965     case SPF_ABS:
966       IID = Intrinsic::abs;
967       break;
968     case SPF_SMIN:
969       IID = Intrinsic::smin;
970       break;
971     case SPF_SMAX:
972       IID = Intrinsic::smax;
973       break;
974     case SPF_UMIN:
975       IID = Intrinsic::umin;
976       break;
977     case SPF_UMAX:
978       IID = Intrinsic::umax;
979       break;
980     case SPF_FMINNUM:
981       IID = Intrinsic::minnum;
982       break;
983     case SPF_FMAXNUM:
984       IID = Intrinsic::maxnum;
985       break;
986     default:
987       break;
988     }
989     if (IID) {
990       // The ICmp is free, the select gets the cost of the min/max/etc
991       if (Sel != I)
992         return 0;
993       IntrinsicCostAttributes CostAttrs(IID, ValTy, {ValTy, ValTy});
994       return getIntrinsicInstrCost(CostAttrs, CostKind);
995     }
996   }
997 
998   // On NEON a vector select gets lowered to vbsl.
999   if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT && CondTy) {
1000     // Lowering of some vector selects is currently far from perfect.
1001     static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
1002       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
1003       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
1004       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
1005     };
1006 
1007     EVT SelCondTy = TLI->getValueType(DL, CondTy);
1008     EVT SelValTy = TLI->getValueType(DL, ValTy);
1009     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
1010       if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
1011                                                      SelCondTy.getSimpleVT(),
1012                                                      SelValTy.getSimpleVT()))
1013         return Entry->Cost;
1014     }
1015 
1016     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
1017     return LT.first;
1018   }
1019 
1020   if (ST->hasMVEIntegerOps() && ValTy->isVectorTy() &&
1021       (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
1022       cast<FixedVectorType>(ValTy)->getNumElements() > 1) {
1023     FixedVectorType *VecValTy = cast<FixedVectorType>(ValTy);
1024     FixedVectorType *VecCondTy = dyn_cast_or_null<FixedVectorType>(CondTy);
1025     if (!VecCondTy)
1026       VecCondTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(VecValTy));
1027 
1028     // If we don't have mve.fp any fp operations will need to be scalarized.
1029     if (Opcode == Instruction::FCmp && !ST->hasMVEFloatOps()) {
1030       // One scalaization insert, one scalarization extract and the cost of the
1031       // fcmps.
1032       return BaseT::getScalarizationOverhead(VecValTy, /*Insert*/ false,
1033                                              /*Extract*/ true, CostKind) +
1034              BaseT::getScalarizationOverhead(VecCondTy, /*Insert*/ true,
1035                                              /*Extract*/ false, CostKind) +
1036              VecValTy->getNumElements() *
1037                  getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
1038                                     VecCondTy->getScalarType(), VecPred,
1039                                     CostKind, I);
1040     }
1041 
1042     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
1043     int BaseCost = ST->getMVEVectorCostFactor(CostKind);
1044     // There are two types - the input that specifies the type of the compare
1045     // and the output vXi1 type. Because we don't know how the output will be
1046     // split, we may need an expensive shuffle to get two in sync. This has the
1047     // effect of making larger than legal compares (v8i32 for example)
1048     // expensive.
1049     if (LT.second.isVector() && LT.second.getVectorNumElements() > 2) {
1050       if (LT.first > 1)
1051         return LT.first * BaseCost +
1052                BaseT::getScalarizationOverhead(VecCondTy, /*Insert*/ true,
1053                                                /*Extract*/ false, CostKind);
1054       return BaseCost;
1055     }
1056   }
1057 
1058   // Default to cheap (throughput/size of 1 instruction) but adjust throughput
1059   // for "multiple beats" potentially needed by MVE instructions.
1060   int BaseCost = 1;
1061   if (ST->hasMVEIntegerOps() && ValTy->isVectorTy())
1062     BaseCost = ST->getMVEVectorCostFactor(CostKind);
1063 
1064   return BaseCost *
1065          BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
1066 }
1067 
1068 InstructionCost ARMTTIImpl::getAddressComputationCost(Type *Ty,
1069                                                       ScalarEvolution *SE,
1070                                                       const SCEV *Ptr) {
1071   // Address computations in vectorized code with non-consecutive addresses will
1072   // likely result in more instructions compared to scalar code where the
1073   // computation can more often be merged into the index mode. The resulting
1074   // extra micro-ops can significantly decrease throughput.
1075   unsigned NumVectorInstToHideOverhead = 10;
1076   int MaxMergeDistance = 64;
1077 
1078   if (ST->hasNEON()) {
1079     if (Ty->isVectorTy() && SE &&
1080         !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
1081       return NumVectorInstToHideOverhead;
1082 
1083     // In many cases the address computation is not merged into the instruction
1084     // addressing mode.
1085     return 1;
1086   }
1087   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
1088 }
1089 
1090 bool ARMTTIImpl::isProfitableLSRChainElement(Instruction *I) {
1091   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1092     // If a VCTP is part of a chain, it's already profitable and shouldn't be
1093     // optimized, else LSR may block tail-predication.
1094     switch (II->getIntrinsicID()) {
1095     case Intrinsic::arm_mve_vctp8:
1096     case Intrinsic::arm_mve_vctp16:
1097     case Intrinsic::arm_mve_vctp32:
1098     case Intrinsic::arm_mve_vctp64:
1099       return true;
1100     default:
1101       break;
1102     }
1103   }
1104   return false;
1105 }
1106 
1107 bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
1108   if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps())
1109     return false;
1110 
1111   if (auto *VecTy = dyn_cast<FixedVectorType>(DataTy)) {
1112     // Don't support v2i1 yet.
1113     if (VecTy->getNumElements() == 2)
1114       return false;
1115 
1116     // We don't support extending fp types.
1117      unsigned VecWidth = DataTy->getPrimitiveSizeInBits();
1118     if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy())
1119       return false;
1120   }
1121 
1122   unsigned EltWidth = DataTy->getScalarSizeInBits();
1123   return (EltWidth == 32 && Alignment >= 4) ||
1124          (EltWidth == 16 && Alignment >= 2) || (EltWidth == 8);
1125 }
1126 
1127 bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, Align Alignment) {
1128   if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps())
1129     return false;
1130 
1131   unsigned EltWidth = Ty->getScalarSizeInBits();
1132   return ((EltWidth == 32 && Alignment >= 4) ||
1133           (EltWidth == 16 && Alignment >= 2) || EltWidth == 8);
1134 }
1135 
1136 /// Given a memcpy/memset/memmove instruction, return the number of memory
1137 /// operations performed, via querying findOptimalMemOpLowering. Returns -1 if a
1138 /// call is used.
1139 int ARMTTIImpl::getNumMemOps(const IntrinsicInst *I) const {
1140   MemOp MOp;
1141   unsigned DstAddrSpace = ~0u;
1142   unsigned SrcAddrSpace = ~0u;
1143   const Function *F = I->getParent()->getParent();
1144 
1145   if (const auto *MC = dyn_cast<MemTransferInst>(I)) {
1146     ConstantInt *C = dyn_cast<ConstantInt>(MC->getLength());
1147     // If 'size' is not a constant, a library call will be generated.
1148     if (!C)
1149       return -1;
1150 
1151     const unsigned Size = C->getValue().getZExtValue();
1152     const Align DstAlign = *MC->getDestAlign();
1153     const Align SrcAlign = *MC->getSourceAlign();
1154 
1155     MOp = MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign,
1156                       /*IsVolatile*/ false);
1157     DstAddrSpace = MC->getDestAddressSpace();
1158     SrcAddrSpace = MC->getSourceAddressSpace();
1159   }
1160   else if (const auto *MS = dyn_cast<MemSetInst>(I)) {
1161     ConstantInt *C = dyn_cast<ConstantInt>(MS->getLength());
1162     // If 'size' is not a constant, a library call will be generated.
1163     if (!C)
1164       return -1;
1165 
1166     const unsigned Size = C->getValue().getZExtValue();
1167     const Align DstAlign = *MS->getDestAlign();
1168 
1169     MOp = MemOp::Set(Size, /*DstAlignCanChange*/ false, DstAlign,
1170                      /*IsZeroMemset*/ false, /*IsVolatile*/ false);
1171     DstAddrSpace = MS->getDestAddressSpace();
1172   }
1173   else
1174     llvm_unreachable("Expected a memcpy/move or memset!");
1175 
1176   unsigned Limit, Factor = 2;
1177   switch(I->getIntrinsicID()) {
1178     case Intrinsic::memcpy:
1179       Limit = TLI->getMaxStoresPerMemcpy(F->hasMinSize());
1180       break;
1181     case Intrinsic::memmove:
1182       Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize());
1183       break;
1184     case Intrinsic::memset:
1185       Limit = TLI->getMaxStoresPerMemset(F->hasMinSize());
1186       Factor = 1;
1187       break;
1188     default:
1189       llvm_unreachable("Expected a memcpy/move or memset!");
1190   }
1191 
1192   // MemOps will be poplulated with a list of data types that needs to be
1193   // loaded and stored. That's why we multiply the number of elements by 2 to
1194   // get the cost for this memcpy.
1195   std::vector<EVT> MemOps;
1196   if (getTLI()->findOptimalMemOpLowering(
1197           MemOps, Limit, MOp, DstAddrSpace,
1198           SrcAddrSpace, F->getAttributes()))
1199     return MemOps.size() * Factor;
1200 
1201   // If we can't find an optimal memop lowering, return the default cost
1202   return -1;
1203 }
1204 
1205 InstructionCost ARMTTIImpl::getMemcpyCost(const Instruction *I) {
1206   int NumOps = getNumMemOps(cast<IntrinsicInst>(I));
1207 
1208   // To model the cost of a library call, we assume 1 for the call, and
1209   // 3 for the argument setup.
1210   if (NumOps == -1)
1211     return 4;
1212   return NumOps;
1213 }
1214 
1215 InstructionCost ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
1216                                            VectorType *Tp, ArrayRef<int> Mask,
1217                                            TTI::TargetCostKind CostKind,
1218                                            int Index, VectorType *SubTp,
1219                                            ArrayRef<const Value *> Args,
1220                                            const Instruction *CxtI) {
1221   Kind = improveShuffleKindFromMask(Kind, Mask, Tp, Index, SubTp);
1222   // Treat extractsubvector as single op permutation.
1223   bool IsExtractSubvector = Kind == TTI::SK_ExtractSubvector;
1224   if (IsExtractSubvector)
1225     Kind = TTI::SK_PermuteSingleSrc;
1226   if (ST->hasNEON()) {
1227     if (Kind == TTI::SK_Broadcast) {
1228       static const CostTblEntry NEONDupTbl[] = {
1229           // VDUP handles these cases.
1230           {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
1231           {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
1232           {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
1233           {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
1234           {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
1235           {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
1236 
1237           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
1238           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
1239           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
1240           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}};
1241 
1242       std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
1243       if (const auto *Entry =
1244               CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second))
1245         return LT.first * Entry->Cost;
1246     }
1247     if (Kind == TTI::SK_Reverse) {
1248       static const CostTblEntry NEONShuffleTbl[] = {
1249           // Reverse shuffle cost one instruction if we are shuffling within a
1250           // double word (vrev) or two if we shuffle a quad word (vrev, vext).
1251           {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
1252           {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
1253           {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
1254           {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
1255           {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
1256           {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
1257 
1258           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
1259           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
1260           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
1261           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
1262 
1263       std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
1264       if (const auto *Entry =
1265               CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second))
1266         return LT.first * Entry->Cost;
1267     }
1268     if (Kind == TTI::SK_Select) {
1269       static const CostTblEntry NEONSelShuffleTbl[] = {
1270           // Select shuffle cost table for ARM. Cost is the number of
1271           // instructions
1272           // required to create the shuffled vector.
1273 
1274           {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
1275           {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
1276           {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
1277           {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
1278 
1279           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
1280           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
1281           {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
1282 
1283           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
1284 
1285           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
1286 
1287       std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
1288       if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl,
1289                                               ISD::VECTOR_SHUFFLE, LT.second))
1290         return LT.first * Entry->Cost;
1291     }
1292   }
1293   if (ST->hasMVEIntegerOps()) {
1294     if (Kind == TTI::SK_Broadcast) {
1295       static const CostTblEntry MVEDupTbl[] = {
1296           // VDUP handles these cases.
1297           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
1298           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
1299           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1},
1300           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
1301           {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}};
1302 
1303       std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
1304       if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE,
1305                                               LT.second))
1306         return LT.first * Entry->Cost *
1307                ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput);
1308     }
1309 
1310     if (!Mask.empty()) {
1311       std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
1312       if (LT.second.isVector() &&
1313           Mask.size() <= LT.second.getVectorNumElements() &&
1314           (isVREVMask(Mask, LT.second, 16) || isVREVMask(Mask, LT.second, 32) ||
1315            isVREVMask(Mask, LT.second, 64)))
1316         return ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) * LT.first;
1317     }
1318   }
1319 
1320   // Restore optimal kind.
1321   if (IsExtractSubvector)
1322     Kind = TTI::SK_ExtractSubvector;
1323   int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy()
1324                      ? ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput)
1325                      : 1;
1326   return BaseCost *
1327          BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp);
1328 }
1329 
1330 InstructionCost ARMTTIImpl::getArithmeticInstrCost(
1331     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
1332     TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
1333     ArrayRef<const Value *> Args,
1334     const Instruction *CxtI) {
1335   int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
1336   if (ST->isThumb() && CostKind == TTI::TCK_CodeSize && Ty->isIntegerTy(1)) {
1337     // Make operations on i1 relatively expensive as this often involves
1338     // combining predicates. AND and XOR should be easier to handle with IT
1339     // blocks.
1340     switch (ISDOpcode) {
1341     default:
1342       break;
1343     case ISD::AND:
1344     case ISD::XOR:
1345       return 2;
1346     case ISD::OR:
1347       return 3;
1348     }
1349   }
1350 
1351   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
1352 
1353   if (ST->hasNEON()) {
1354     const unsigned FunctionCallDivCost = 20;
1355     const unsigned ReciprocalDivCost = 10;
1356     static const CostTblEntry CostTbl[] = {
1357       // Division.
1358       // These costs are somewhat random. Choose a cost of 20 to indicate that
1359       // vectorizing devision (added function call) is going to be very expensive.
1360       // Double registers types.
1361       { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
1362       { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
1363       { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
1364       { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
1365       { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
1366       { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
1367       { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
1368       { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
1369       { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost},
1370       { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost},
1371       { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
1372       { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
1373       { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost},
1374       { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost},
1375       { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost},
1376       { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost},
1377       // Quad register types.
1378       { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
1379       { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
1380       { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
1381       { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
1382       { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
1383       { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
1384       { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
1385       { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
1386       { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
1387       { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
1388       { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
1389       { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
1390       { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
1391       { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
1392       { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
1393       { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
1394       // Multiplication.
1395     };
1396 
1397     if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
1398       return LT.first * Entry->Cost;
1399 
1400     InstructionCost Cost = BaseT::getArithmeticInstrCost(
1401         Opcode, Ty, CostKind, Op1Info, Op2Info);
1402 
1403     // This is somewhat of a hack. The problem that we are facing is that SROA
1404     // creates a sequence of shift, and, or instructions to construct values.
1405     // These sequences are recognized by the ISel and have zero-cost. Not so for
1406     // the vectorized code. Because we have support for v2i64 but not i64 those
1407     // sequences look particularly beneficial to vectorize.
1408     // To work around this we increase the cost of v2i64 operations to make them
1409     // seem less beneficial.
1410     if (LT.second == MVT::v2i64 && Op2Info.isUniform() && Op2Info.isConstant())
1411       Cost += 4;
1412 
1413     return Cost;
1414   }
1415 
1416   // If this operation is a shift on arm/thumb2, it might well be folded into
1417   // the following instruction, hence having a cost of 0.
1418   auto LooksLikeAFreeShift = [&]() {
1419     if (ST->isThumb1Only() || Ty->isVectorTy())
1420       return false;
1421 
1422     if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift())
1423       return false;
1424     if (!Op2Info.isUniform() || !Op2Info.isConstant())
1425       return false;
1426 
1427     // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB
1428     switch (cast<Instruction>(CxtI->user_back())->getOpcode()) {
1429     case Instruction::Add:
1430     case Instruction::Sub:
1431     case Instruction::And:
1432     case Instruction::Xor:
1433     case Instruction::Or:
1434     case Instruction::ICmp:
1435       return true;
1436     default:
1437       return false;
1438     }
1439   };
1440   if (LooksLikeAFreeShift())
1441     return 0;
1442 
1443   // Default to cheap (throughput/size of 1 instruction) but adjust throughput
1444   // for "multiple beats" potentially needed by MVE instructions.
1445   int BaseCost = 1;
1446   if (ST->hasMVEIntegerOps() && Ty->isVectorTy())
1447     BaseCost = ST->getMVEVectorCostFactor(CostKind);
1448 
1449   // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost,
1450   // without treating floats as more expensive that scalars or increasing the
1451   // costs for custom operations. The results is also multiplied by the
1452   // MVEVectorCostFactor where appropriate.
1453   if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second))
1454     return LT.first * BaseCost;
1455 
1456   // Else this is expand, assume that we need to scalarize this op.
1457   if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
1458     unsigned Num = VTy->getNumElements();
1459     InstructionCost Cost =
1460         getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind);
1461     // Return the cost of multiple scalar invocation plus the cost of
1462     // inserting and extracting the values.
1463     SmallVector<Type *> Tys(Args.size(), Ty);
1464     return BaseT::getScalarizationOverhead(VTy, Args, Tys, CostKind) +
1465            Num * Cost;
1466   }
1467 
1468   return BaseCost;
1469 }
1470 
1471 InstructionCost ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
1472                                             MaybeAlign Alignment,
1473                                             unsigned AddressSpace,
1474                                             TTI::TargetCostKind CostKind,
1475                                             TTI::OperandValueInfo OpInfo,
1476                                             const Instruction *I) {
1477   // TODO: Handle other cost kinds.
1478   if (CostKind != TTI::TCK_RecipThroughput)
1479     return 1;
1480 
1481   // Type legalization can't handle structs
1482   if (TLI->getValueType(DL, Src, true) == MVT::Other)
1483     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1484                                   CostKind);
1485 
1486   if (ST->hasNEON() && Src->isVectorTy() &&
1487       (Alignment && *Alignment != Align(16)) &&
1488       cast<VectorType>(Src)->getElementType()->isDoubleTy()) {
1489     // Unaligned loads/stores are extremely inefficient.
1490     // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
1491     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
1492     return LT.first * 4;
1493   }
1494 
1495   // MVE can optimize a fpext(load(4xhalf)) using an extending integer load.
1496   // Same for stores.
1497   if (ST->hasMVEFloatOps() && isa<FixedVectorType>(Src) && I &&
1498       ((Opcode == Instruction::Load && I->hasOneUse() &&
1499         isa<FPExtInst>(*I->user_begin())) ||
1500        (Opcode == Instruction::Store && isa<FPTruncInst>(I->getOperand(0))))) {
1501     FixedVectorType *SrcVTy = cast<FixedVectorType>(Src);
1502     Type *DstTy =
1503         Opcode == Instruction::Load
1504             ? (*I->user_begin())->getType()
1505             : cast<Instruction>(I->getOperand(0))->getOperand(0)->getType();
1506     if (SrcVTy->getNumElements() == 4 && SrcVTy->getScalarType()->isHalfTy() &&
1507         DstTy->getScalarType()->isFloatTy())
1508       return ST->getMVEVectorCostFactor(CostKind);
1509   }
1510 
1511   int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
1512                      ? ST->getMVEVectorCostFactor(CostKind)
1513                      : 1;
1514   return BaseCost * BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1515                                            CostKind, OpInfo, I);
1516 }
1517 
1518 InstructionCost
1519 ARMTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1520                                   unsigned AddressSpace,
1521                                   TTI::TargetCostKind CostKind) {
1522   if (ST->hasMVEIntegerOps()) {
1523     if (Opcode == Instruction::Load && isLegalMaskedLoad(Src, Alignment))
1524       return ST->getMVEVectorCostFactor(CostKind);
1525     if (Opcode == Instruction::Store && isLegalMaskedStore(Src, Alignment))
1526       return ST->getMVEVectorCostFactor(CostKind);
1527   }
1528   if (!isa<FixedVectorType>(Src))
1529     return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1530                                         CostKind);
1531   // Scalar cost, which is currently very high due to the efficiency of the
1532   // generated code.
1533   return cast<FixedVectorType>(Src)->getNumElements() * 8;
1534 }
1535 
1536 InstructionCost ARMTTIImpl::getInterleavedMemoryOpCost(
1537     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1538     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1539     bool UseMaskForCond, bool UseMaskForGaps) {
1540   assert(Factor >= 2 && "Invalid interleave factor");
1541   assert(isa<VectorType>(VecTy) && "Expect a vector type");
1542 
1543   // vldN/vstN doesn't support vector types of i64/f64 element.
1544   bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
1545 
1546   if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits &&
1547       !UseMaskForCond && !UseMaskForGaps) {
1548     unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements();
1549     auto *SubVecTy =
1550         FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);
1551 
1552     // vldN/vstN only support legal vector types of size 64 or 128 in bits.
1553     // Accesses having vector types that are a multiple of 128 bits can be
1554     // matched to more than one vldN/vstN instruction.
1555     int BaseCost =
1556         ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor(CostKind) : 1;
1557     if (NumElts % Factor == 0 &&
1558         TLI->isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL))
1559       return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL);
1560 
1561     // Some smaller than legal interleaved patterns are cheap as we can make
1562     // use of the vmovn or vrev patterns to interleave a standard load. This is
1563     // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is
1564     // promoted differently). The cost of 2 here is then a load and vrev or
1565     // vmovn.
1566     if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 &&
1567         VecTy->isIntOrIntVectorTy() &&
1568         DL.getTypeSizeInBits(SubVecTy).getFixedValue() <= 64)
1569       return 2 * BaseCost;
1570   }
1571 
1572   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1573                                            Alignment, AddressSpace, CostKind,
1574                                            UseMaskForCond, UseMaskForGaps);
1575 }
1576 
1577 InstructionCost ARMTTIImpl::getGatherScatterOpCost(
1578     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1579     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
1580   using namespace PatternMatch;
1581   if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters)
1582     return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
1583                                          Alignment, CostKind, I);
1584 
1585   assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!");
1586   auto *VTy = cast<FixedVectorType>(DataTy);
1587 
1588   // TODO: Splitting, once we do that.
1589 
1590   unsigned NumElems = VTy->getNumElements();
1591   unsigned EltSize = VTy->getScalarSizeInBits();
1592   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(DataTy);
1593 
1594   // For now, it is assumed that for the MVE gather instructions the loads are
1595   // all effectively serialised. This means the cost is the scalar cost
1596   // multiplied by the number of elements being loaded. This is possibly very
1597   // conservative, but even so we still end up vectorising loops because the
1598   // cost per iteration for many loops is lower than for scalar loops.
1599   InstructionCost VectorCost =
1600       NumElems * LT.first * ST->getMVEVectorCostFactor(CostKind);
1601   // The scalarization cost should be a lot higher. We use the number of vector
1602   // elements plus the scalarization overhead. If masking is required then a lot
1603   // of little blocks will be needed and potentially a scalarized p0 mask,
1604   // greatly increasing the cost.
1605   InstructionCost ScalarCost =
1606       NumElems * LT.first + (VariableMask ? NumElems * 5 : 0) +
1607       BaseT::getScalarizationOverhead(VTy, /*Insert*/ true, /*Extract*/ false,
1608                                       CostKind) +
1609       BaseT::getScalarizationOverhead(VTy, /*Insert*/ false, /*Extract*/ true,
1610                                       CostKind);
1611 
1612   if (EltSize < 8 || Alignment < EltSize / 8)
1613     return ScalarCost;
1614 
1615   unsigned ExtSize = EltSize;
1616   // Check whether there's a single user that asks for an extended type
1617   if (I != nullptr) {
1618     // Dependent of the caller of this function, a gather instruction will
1619     // either have opcode Instruction::Load or be a call to the masked_gather
1620     // intrinsic
1621     if ((I->getOpcode() == Instruction::Load ||
1622          match(I, m_Intrinsic<Intrinsic::masked_gather>())) &&
1623         I->hasOneUse()) {
1624       const User *Us = *I->users().begin();
1625       if (isa<ZExtInst>(Us) || isa<SExtInst>(Us)) {
1626         // only allow valid type combinations
1627         unsigned TypeSize =
1628             cast<Instruction>(Us)->getType()->getScalarSizeInBits();
1629         if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) ||
1630              (TypeSize == 16 && EltSize == 8)) &&
1631             TypeSize * NumElems == 128) {
1632           ExtSize = TypeSize;
1633         }
1634       }
1635     }
1636     // Check whether the input data needs to be truncated
1637     TruncInst *T;
1638     if ((I->getOpcode() == Instruction::Store ||
1639          match(I, m_Intrinsic<Intrinsic::masked_scatter>())) &&
1640         (T = dyn_cast<TruncInst>(I->getOperand(0)))) {
1641       // Only allow valid type combinations
1642       unsigned TypeSize = T->getOperand(0)->getType()->getScalarSizeInBits();
1643       if (((EltSize == 16 && TypeSize == 32) ||
1644            (EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) &&
1645           TypeSize * NumElems == 128)
1646         ExtSize = TypeSize;
1647     }
1648   }
1649 
1650   if (ExtSize * NumElems != 128 || NumElems < 4)
1651     return ScalarCost;
1652 
1653   // Any (aligned) i32 gather will not need to be scalarised.
1654   if (ExtSize == 32)
1655     return VectorCost;
1656   // For smaller types, we need to ensure that the gep's inputs are correctly
1657   // extended from a small enough value. Other sizes (including i64) are
1658   // scalarized for now.
1659   if (ExtSize != 8 && ExtSize != 16)
1660     return ScalarCost;
1661 
1662   if (const auto *BC = dyn_cast<BitCastInst>(Ptr))
1663     Ptr = BC->getOperand(0);
1664   if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1665     if (GEP->getNumOperands() != 2)
1666       return ScalarCost;
1667     unsigned Scale = DL.getTypeAllocSize(GEP->getResultElementType());
1668     // Scale needs to be correct (which is only relevant for i16s).
1669     if (Scale != 1 && Scale * 8 != ExtSize)
1670       return ScalarCost;
1671     // And we need to zext (not sext) the indexes from a small enough type.
1672     if (const auto *ZExt = dyn_cast<ZExtInst>(GEP->getOperand(1))) {
1673       if (ZExt->getOperand(0)->getType()->getScalarSizeInBits() <= ExtSize)
1674         return VectorCost;
1675     }
1676     return ScalarCost;
1677   }
1678   return ScalarCost;
1679 }
1680 
1681 InstructionCost
1682 ARMTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
1683                                        std::optional<FastMathFlags> FMF,
1684                                        TTI::TargetCostKind CostKind) {
1685 
1686   EVT ValVT = TLI->getValueType(DL, ValTy);
1687   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1688   unsigned EltSize = ValVT.getScalarSizeInBits();
1689 
1690   // In general floating point reductions are a series of elementwise
1691   // operations, with free extracts on each step. These are either in-order or
1692   // treewise depending on whether that is allowed by the fast math flags.
1693   if ((ISD == ISD::FADD || ISD == ISD::FMUL) &&
1694       ((EltSize == 32 && ST->hasVFP2Base()) ||
1695        (EltSize == 64 && ST->hasFP64()) ||
1696        (EltSize == 16 && ST->hasFullFP16()))) {
1697     unsigned NumElts = cast<FixedVectorType>(ValTy)->getNumElements();
1698     unsigned VecLimit = ST->hasMVEFloatOps() ? 128 : (ST->hasNEON() ? 64 : -1);
1699     InstructionCost VecCost = 0;
1700     while (!TTI::requiresOrderedReduction(FMF) && isPowerOf2_32(NumElts) &&
1701            NumElts * EltSize > VecLimit) {
1702       Type *VecTy = FixedVectorType::get(ValTy->getElementType(), NumElts / 2);
1703       VecCost += getArithmeticInstrCost(Opcode, VecTy, CostKind);
1704       NumElts /= 2;
1705     }
1706 
1707     // For fp16 we need to extract the upper lane elements. MVE can add a
1708     // VREV+FMIN/MAX to perform another vector step instead.
1709     InstructionCost ExtractCost = 0;
1710     if (!TTI::requiresOrderedReduction(FMF) && ST->hasMVEFloatOps() &&
1711         ValVT.getVectorElementType() == MVT::f16 && NumElts == 8) {
1712       VecCost += ST->getMVEVectorCostFactor(CostKind) * 2;
1713       NumElts /= 2;
1714     } else if (ValVT.getVectorElementType() == MVT::f16)
1715       ExtractCost = NumElts / 2;
1716 
1717     return VecCost + ExtractCost +
1718            NumElts *
1719                getArithmeticInstrCost(Opcode, ValTy->getElementType(), CostKind);
1720   }
1721 
1722   if ((ISD == ISD::AND || ISD == ISD::OR || ISD == ISD::XOR) &&
1723       (EltSize == 64 || EltSize == 32 || EltSize == 16 || EltSize == 8)) {
1724     unsigned NumElts = cast<FixedVectorType>(ValTy)->getNumElements();
1725     unsigned VecLimit =
1726         ST->hasMVEIntegerOps() ? 128 : (ST->hasNEON() ? 64 : -1);
1727     InstructionCost VecCost = 0;
1728     while (isPowerOf2_32(NumElts) && NumElts * EltSize > VecLimit) {
1729       Type *VecTy = FixedVectorType::get(ValTy->getElementType(), NumElts / 2);
1730       VecCost += getArithmeticInstrCost(Opcode, VecTy, CostKind);
1731       NumElts /= 2;
1732     }
1733     // For i16/i8, MVE will perform a VREV + VORR/VAND/VEOR for the 64bit vector
1734     // step.
1735     if (ST->hasMVEIntegerOps() && ValVT.getScalarSizeInBits() <= 16 &&
1736         NumElts * EltSize == 64) {
1737       Type *VecTy = FixedVectorType::get(ValTy->getElementType(), NumElts);
1738       VecCost += ST->getMVEVectorCostFactor(CostKind) +
1739                  getArithmeticInstrCost(Opcode, VecTy, CostKind);
1740       NumElts /= 2;
1741     }
1742 
1743     // From here we extract the elements and perform the and/or/xor.
1744     InstructionCost ExtractCost = NumElts;
1745     return VecCost + ExtractCost +
1746            (NumElts - 1) * getArithmeticInstrCost(
1747                                Opcode, ValTy->getElementType(), CostKind);
1748   }
1749 
1750   if (!ST->hasMVEIntegerOps() || !ValVT.isSimple() || ISD != ISD::ADD ||
1751       TTI::requiresOrderedReduction(FMF))
1752     return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
1753 
1754   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
1755 
1756   static const CostTblEntry CostTblAdd[]{
1757       {ISD::ADD, MVT::v16i8, 1},
1758       {ISD::ADD, MVT::v8i16, 1},
1759       {ISD::ADD, MVT::v4i32, 1},
1760   };
1761   if (const auto *Entry = CostTableLookup(CostTblAdd, ISD, LT.second))
1762     return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first;
1763 
1764   return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
1765 }
1766 
1767 InstructionCost ARMTTIImpl::getExtendedReductionCost(
1768     unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy,
1769     FastMathFlags FMF, TTI::TargetCostKind CostKind) {
1770   EVT ValVT = TLI->getValueType(DL, ValTy);
1771   EVT ResVT = TLI->getValueType(DL, ResTy);
1772 
1773   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1774 
1775   switch (ISD) {
1776   case ISD::ADD:
1777     if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) {
1778       std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
1779 
1780       // The legal cases are:
1781       //   VADDV u/s 8/16/32
1782       //   VADDLV u/s 32
1783       // Codegen currently cannot always handle larger than legal vectors very
1784       // well, especially for predicated reductions where the mask needs to be
1785       // split, so restrict to 128bit or smaller input types.
1786       unsigned RevVTSize = ResVT.getSizeInBits();
1787       if (ValVT.getSizeInBits() <= 128 &&
1788           ((LT.second == MVT::v16i8 && RevVTSize <= 32) ||
1789            (LT.second == MVT::v8i16 && RevVTSize <= 32) ||
1790            (LT.second == MVT::v4i32 && RevVTSize <= 64)))
1791         return ST->getMVEVectorCostFactor(CostKind) * LT.first;
1792     }
1793     break;
1794   default:
1795     break;
1796   }
1797   return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy, FMF,
1798                                          CostKind);
1799 }
1800 
1801 InstructionCost
1802 ARMTTIImpl::getMulAccReductionCost(bool IsUnsigned, Type *ResTy,
1803                                    VectorType *ValTy,
1804                                    TTI::TargetCostKind CostKind) {
1805   EVT ValVT = TLI->getValueType(DL, ValTy);
1806   EVT ResVT = TLI->getValueType(DL, ResTy);
1807 
1808   if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) {
1809     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
1810 
1811     // The legal cases are:
1812     //   VMLAV u/s 8/16/32
1813     //   VMLALV u/s 16/32
1814     // Codegen currently cannot always handle larger than legal vectors very
1815     // well, especially for predicated reductions where the mask needs to be
1816     // split, so restrict to 128bit or smaller input types.
1817     unsigned RevVTSize = ResVT.getSizeInBits();
1818     if (ValVT.getSizeInBits() <= 128 &&
1819         ((LT.second == MVT::v16i8 && RevVTSize <= 32) ||
1820          (LT.second == MVT::v8i16 && RevVTSize <= 64) ||
1821          (LT.second == MVT::v4i32 && RevVTSize <= 64)))
1822       return ST->getMVEVectorCostFactor(CostKind) * LT.first;
1823   }
1824 
1825   return BaseT::getMulAccReductionCost(IsUnsigned, ResTy, ValTy, CostKind);
1826 }
1827 
1828 InstructionCost
1829 ARMTTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty,
1830                                    FastMathFlags FMF,
1831                                    TTI::TargetCostKind CostKind) {
1832   EVT ValVT = TLI->getValueType(DL, Ty);
1833 
1834   // In general floating point reductions are a series of elementwise
1835   // operations, with free extracts on each step. These are either in-order or
1836   // treewise depending on whether that is allowed by the fast math flags.
1837   if ((IID == Intrinsic::minnum || IID == Intrinsic::maxnum) &&
1838       ((ValVT.getVectorElementType() == MVT::f32 && ST->hasVFP2Base()) ||
1839        (ValVT.getVectorElementType() == MVT::f64 && ST->hasFP64()) ||
1840        (ValVT.getVectorElementType() == MVT::f16 && ST->hasFullFP16()))) {
1841     unsigned NumElts = cast<FixedVectorType>(Ty)->getNumElements();
1842     unsigned EltSize = ValVT.getScalarSizeInBits();
1843     unsigned VecLimit = ST->hasMVEFloatOps() ? 128 : (ST->hasNEON() ? 64 : -1);
1844     InstructionCost VecCost;
1845     while (isPowerOf2_32(NumElts) && NumElts * EltSize > VecLimit) {
1846       Type *VecTy = FixedVectorType::get(Ty->getElementType(), NumElts/2);
1847       IntrinsicCostAttributes ICA(IID, VecTy, {VecTy, VecTy}, FMF);
1848       VecCost += getIntrinsicInstrCost(ICA, CostKind);
1849       NumElts /= 2;
1850     }
1851 
1852     // For fp16 we need to extract the upper lane elements. MVE can add a
1853     // VREV+FMIN/MAX to perform another vector step instead.
1854     InstructionCost ExtractCost = 0;
1855     if (ST->hasMVEFloatOps() && ValVT.getVectorElementType() == MVT::f16 &&
1856         NumElts == 8) {
1857       VecCost += ST->getMVEVectorCostFactor(CostKind) * 2;
1858       NumElts /= 2;
1859     } else if (ValVT.getVectorElementType() == MVT::f16)
1860       ExtractCost = cast<FixedVectorType>(Ty)->getNumElements() / 2;
1861 
1862     IntrinsicCostAttributes ICA(IID, Ty->getElementType(),
1863                                 {Ty->getElementType(), Ty->getElementType()},
1864                                 FMF);
1865     return VecCost + ExtractCost +
1866            (NumElts - 1) * getIntrinsicInstrCost(ICA, CostKind);
1867   }
1868 
1869   if (IID == Intrinsic::smin || IID == Intrinsic::smax ||
1870       IID == Intrinsic::umin || IID == Intrinsic::umax) {
1871     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
1872 
1873     // All costs are the same for u/s min/max.  These lower to vminv, which are
1874     // given a slightly higher cost as they tend to take multiple cycles for
1875     // smaller type sizes.
1876     static const CostTblEntry CostTblAdd[]{
1877         {ISD::SMIN, MVT::v16i8, 4},
1878         {ISD::SMIN, MVT::v8i16, 3},
1879         {ISD::SMIN, MVT::v4i32, 2},
1880     };
1881     if (const auto *Entry = CostTableLookup(CostTblAdd, ISD::SMIN, LT.second))
1882       return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first;
1883   }
1884 
1885   return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);
1886 }
1887 
1888 InstructionCost
1889 ARMTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1890                                   TTI::TargetCostKind CostKind) {
1891   switch (ICA.getID()) {
1892   case Intrinsic::get_active_lane_mask:
1893     // Currently we make a somewhat optimistic assumption that
1894     // active_lane_mask's are always free. In reality it may be freely folded
1895     // into a tail predicated loop, expanded into a VCPT or expanded into a lot
1896     // of add/icmp code. We may need to improve this in the future, but being
1897     // able to detect if it is free or not involves looking at a lot of other
1898     // code. We currently assume that the vectorizer inserted these, and knew
1899     // what it was doing in adding one.
1900     if (ST->hasMVEIntegerOps())
1901       return 0;
1902     break;
1903   case Intrinsic::sadd_sat:
1904   case Intrinsic::ssub_sat:
1905   case Intrinsic::uadd_sat:
1906   case Intrinsic::usub_sat: {
1907     if (!ST->hasMVEIntegerOps())
1908       break;
1909     Type *VT = ICA.getReturnType();
1910 
1911     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VT);
1912     if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 ||
1913         LT.second == MVT::v16i8) {
1914       // This is a base cost of 1 for the vqadd, plus 3 extract shifts if we
1915       // need to extend the type, as it uses shr(qadd(shl, shl)).
1916       unsigned Instrs =
1917           LT.second.getScalarSizeInBits() == VT->getScalarSizeInBits() ? 1 : 4;
1918       return LT.first * ST->getMVEVectorCostFactor(CostKind) * Instrs;
1919     }
1920     break;
1921   }
1922   case Intrinsic::abs:
1923   case Intrinsic::smin:
1924   case Intrinsic::smax:
1925   case Intrinsic::umin:
1926   case Intrinsic::umax: {
1927     if (!ST->hasMVEIntegerOps())
1928       break;
1929     Type *VT = ICA.getReturnType();
1930 
1931     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VT);
1932     if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 ||
1933         LT.second == MVT::v16i8)
1934       return LT.first * ST->getMVEVectorCostFactor(CostKind);
1935     break;
1936   }
1937   case Intrinsic::minnum:
1938   case Intrinsic::maxnum: {
1939     if (!ST->hasMVEFloatOps())
1940       break;
1941     Type *VT = ICA.getReturnType();
1942     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VT);
1943     if (LT.second == MVT::v4f32 || LT.second == MVT::v8f16)
1944       return LT.first * ST->getMVEVectorCostFactor(CostKind);
1945     break;
1946   }
1947   case Intrinsic::fptosi_sat:
1948   case Intrinsic::fptoui_sat: {
1949     if (ICA.getArgTypes().empty())
1950       break;
1951     bool IsSigned = ICA.getID() == Intrinsic::fptosi_sat;
1952     auto LT = getTypeLegalizationCost(ICA.getArgTypes()[0]);
1953     EVT MTy = TLI->getValueType(DL, ICA.getReturnType());
1954     // Check for the legal types, with the corect subtarget features.
1955     if ((ST->hasVFP2Base() && LT.second == MVT::f32 && MTy == MVT::i32) ||
1956         (ST->hasFP64() && LT.second == MVT::f64 && MTy == MVT::i32) ||
1957         (ST->hasFullFP16() && LT.second == MVT::f16 && MTy == MVT::i32))
1958       return LT.first;
1959 
1960     // Equally for MVE vector types
1961     if (ST->hasMVEFloatOps() &&
1962         (LT.second == MVT::v4f32 || LT.second == MVT::v8f16) &&
1963         LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits())
1964       return LT.first * ST->getMVEVectorCostFactor(CostKind);
1965 
1966     // Otherwise we use a legal convert followed by a min+max
1967     if (((ST->hasVFP2Base() && LT.second == MVT::f32) ||
1968          (ST->hasFP64() && LT.second == MVT::f64) ||
1969          (ST->hasFullFP16() && LT.second == MVT::f16) ||
1970          (ST->hasMVEFloatOps() &&
1971           (LT.second == MVT::v4f32 || LT.second == MVT::v8f16))) &&
1972         LT.second.getScalarSizeInBits() >= MTy.getScalarSizeInBits()) {
1973       Type *LegalTy = Type::getIntNTy(ICA.getReturnType()->getContext(),
1974                                       LT.second.getScalarSizeInBits());
1975       InstructionCost Cost =
1976           LT.second.isVector() ? ST->getMVEVectorCostFactor(CostKind) : 1;
1977       IntrinsicCostAttributes Attrs1(IsSigned ? Intrinsic::smin
1978                                               : Intrinsic::umin,
1979                                      LegalTy, {LegalTy, LegalTy});
1980       Cost += getIntrinsicInstrCost(Attrs1, CostKind);
1981       IntrinsicCostAttributes Attrs2(IsSigned ? Intrinsic::smax
1982                                               : Intrinsic::umax,
1983                                      LegalTy, {LegalTy, LegalTy});
1984       Cost += getIntrinsicInstrCost(Attrs2, CostKind);
1985       return LT.first * Cost;
1986     }
1987     break;
1988   }
1989   }
1990 
1991   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
1992 }
1993 
1994 bool ARMTTIImpl::isLoweredToCall(const Function *F) {
1995   if (!F->isIntrinsic())
1996     return BaseT::isLoweredToCall(F);
1997 
1998   // Assume all Arm-specific intrinsics map to an instruction.
1999   if (F->getName().starts_with("llvm.arm"))
2000     return false;
2001 
2002   switch (F->getIntrinsicID()) {
2003   default: break;
2004   case Intrinsic::powi:
2005   case Intrinsic::sin:
2006   case Intrinsic::cos:
2007   case Intrinsic::pow:
2008   case Intrinsic::log:
2009   case Intrinsic::log10:
2010   case Intrinsic::log2:
2011   case Intrinsic::exp:
2012   case Intrinsic::exp2:
2013     return true;
2014   case Intrinsic::sqrt:
2015   case Intrinsic::fabs:
2016   case Intrinsic::copysign:
2017   case Intrinsic::floor:
2018   case Intrinsic::ceil:
2019   case Intrinsic::trunc:
2020   case Intrinsic::rint:
2021   case Intrinsic::nearbyint:
2022   case Intrinsic::round:
2023   case Intrinsic::canonicalize:
2024   case Intrinsic::lround:
2025   case Intrinsic::llround:
2026   case Intrinsic::lrint:
2027   case Intrinsic::llrint:
2028     if (F->getReturnType()->isDoubleTy() && !ST->hasFP64())
2029       return true;
2030     if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16())
2031       return true;
2032     // Some operations can be handled by vector instructions and assume
2033     // unsupported vectors will be expanded into supported scalar ones.
2034     // TODO Handle scalar operations properly.
2035     return !ST->hasFPARMv8Base() && !ST->hasVFP2Base();
2036   case Intrinsic::masked_store:
2037   case Intrinsic::masked_load:
2038   case Intrinsic::masked_gather:
2039   case Intrinsic::masked_scatter:
2040     return !ST->hasMVEIntegerOps();
2041   case Intrinsic::sadd_with_overflow:
2042   case Intrinsic::uadd_with_overflow:
2043   case Intrinsic::ssub_with_overflow:
2044   case Intrinsic::usub_with_overflow:
2045   case Intrinsic::sadd_sat:
2046   case Intrinsic::uadd_sat:
2047   case Intrinsic::ssub_sat:
2048   case Intrinsic::usub_sat:
2049     return false;
2050   }
2051 
2052   return BaseT::isLoweredToCall(F);
2053 }
2054 
2055 bool ARMTTIImpl::maybeLoweredToCall(Instruction &I) {
2056   unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode());
2057   EVT VT = TLI->getValueType(DL, I.getType(), true);
2058   if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall)
2059     return true;
2060 
2061   // Check if an intrinsic will be lowered to a call and assume that any
2062   // other CallInst will generate a bl.
2063   if (auto *Call = dyn_cast<CallInst>(&I)) {
2064     if (auto *II = dyn_cast<IntrinsicInst>(Call)) {
2065       switch(II->getIntrinsicID()) {
2066         case Intrinsic::memcpy:
2067         case Intrinsic::memset:
2068         case Intrinsic::memmove:
2069           return getNumMemOps(II) == -1;
2070         default:
2071           if (const Function *F = Call->getCalledFunction())
2072             return isLoweredToCall(F);
2073       }
2074     }
2075     return true;
2076   }
2077 
2078   // FPv5 provides conversions between integer, double-precision,
2079   // single-precision, and half-precision formats.
2080   switch (I.getOpcode()) {
2081   default:
2082     break;
2083   case Instruction::FPToSI:
2084   case Instruction::FPToUI:
2085   case Instruction::SIToFP:
2086   case Instruction::UIToFP:
2087   case Instruction::FPTrunc:
2088   case Instruction::FPExt:
2089     return !ST->hasFPARMv8Base();
2090   }
2091 
2092   // FIXME: Unfortunately the approach of checking the Operation Action does
2093   // not catch all cases of Legalization that use library calls. Our
2094   // Legalization step categorizes some transformations into library calls as
2095   // Custom, Expand or even Legal when doing type legalization. So for now
2096   // we have to special case for instance the SDIV of 64bit integers and the
2097   // use of floating point emulation.
2098   if (VT.isInteger() && VT.getSizeInBits() >= 64) {
2099     switch (ISD) {
2100     default:
2101       break;
2102     case ISD::SDIV:
2103     case ISD::UDIV:
2104     case ISD::SREM:
2105     case ISD::UREM:
2106     case ISD::SDIVREM:
2107     case ISD::UDIVREM:
2108       return true;
2109     }
2110   }
2111 
2112   // Assume all other non-float operations are supported.
2113   if (!VT.isFloatingPoint())
2114     return false;
2115 
2116   // We'll need a library call to handle most floats when using soft.
2117   if (TLI->useSoftFloat()) {
2118     switch (I.getOpcode()) {
2119     default:
2120       return true;
2121     case Instruction::Alloca:
2122     case Instruction::Load:
2123     case Instruction::Store:
2124     case Instruction::Select:
2125     case Instruction::PHI:
2126       return false;
2127     }
2128   }
2129 
2130   // We'll need a libcall to perform double precision operations on a single
2131   // precision only FPU.
2132   if (I.getType()->isDoubleTy() && !ST->hasFP64())
2133     return true;
2134 
2135   // Likewise for half precision arithmetic.
2136   if (I.getType()->isHalfTy() && !ST->hasFullFP16())
2137     return true;
2138 
2139   return false;
2140 }
2141 
2142 bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
2143                                           AssumptionCache &AC,
2144                                           TargetLibraryInfo *LibInfo,
2145                                           HardwareLoopInfo &HWLoopInfo) {
2146   // Low-overhead branches are only supported in the 'low-overhead branch'
2147   // extension of v8.1-m.
2148   if (!ST->hasLOB() || DisableLowOverheadLoops) {
2149     LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n");
2150     return false;
2151   }
2152 
2153   if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
2154     LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n");
2155     return false;
2156   }
2157 
2158   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2159   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2160     LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n");
2161     return false;
2162   }
2163 
2164   const SCEV *TripCountSCEV =
2165     SE.getAddExpr(BackedgeTakenCount,
2166                   SE.getOne(BackedgeTakenCount->getType()));
2167 
2168   // We need to store the trip count in LR, a 32-bit register.
2169   if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) {
2170     LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n");
2171     return false;
2172   }
2173 
2174   // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little
2175   // point in generating a hardware loop if that's going to happen.
2176 
2177   auto IsHardwareLoopIntrinsic = [](Instruction &I) {
2178     if (auto *Call = dyn_cast<IntrinsicInst>(&I)) {
2179       switch (Call->getIntrinsicID()) {
2180       default:
2181         break;
2182       case Intrinsic::start_loop_iterations:
2183       case Intrinsic::test_start_loop_iterations:
2184       case Intrinsic::loop_decrement:
2185       case Intrinsic::loop_decrement_reg:
2186         return true;
2187       }
2188     }
2189     return false;
2190   };
2191 
2192   // Scan the instructions to see if there's any that we know will turn into a
2193   // call or if this loop is already a low-overhead loop or will become a tail
2194   // predicated loop.
2195   bool IsTailPredLoop = false;
2196   auto ScanLoop = [&](Loop *L) {
2197     for (auto *BB : L->getBlocks()) {
2198       for (auto &I : *BB) {
2199         if (maybeLoweredToCall(I) || IsHardwareLoopIntrinsic(I) ||
2200             isa<InlineAsm>(I)) {
2201           LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n");
2202           return false;
2203         }
2204         if (auto *II = dyn_cast<IntrinsicInst>(&I))
2205           IsTailPredLoop |=
2206               II->getIntrinsicID() == Intrinsic::get_active_lane_mask ||
2207               II->getIntrinsicID() == Intrinsic::arm_mve_vctp8 ||
2208               II->getIntrinsicID() == Intrinsic::arm_mve_vctp16 ||
2209               II->getIntrinsicID() == Intrinsic::arm_mve_vctp32 ||
2210               II->getIntrinsicID() == Intrinsic::arm_mve_vctp64;
2211       }
2212     }
2213     return true;
2214   };
2215 
2216   // Visit inner loops.
2217   for (auto *Inner : *L)
2218     if (!ScanLoop(Inner))
2219       return false;
2220 
2221   if (!ScanLoop(L))
2222     return false;
2223 
2224   // TODO: Check whether the trip count calculation is expensive. If L is the
2225   // inner loop but we know it has a low trip count, calculating that trip
2226   // count (in the parent loop) may be detrimental.
2227 
2228   LLVMContext &C = L->getHeader()->getContext();
2229   HWLoopInfo.CounterInReg = true;
2230   HWLoopInfo.IsNestingLegal = false;
2231   HWLoopInfo.PerformEntryTest = AllowWLSLoops && !IsTailPredLoop;
2232   HWLoopInfo.CountType = Type::getInt32Ty(C);
2233   HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
2234   return true;
2235 }
2236 
2237 static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) {
2238   // We don't allow icmp's, and because we only look at single block loops,
2239   // we simply count the icmps, i.e. there should only be 1 for the backedge.
2240   if (isa<ICmpInst>(&I) && ++ICmpCount > 1)
2241     return false;
2242   // FIXME: This is a workaround for poor cost modelling. Min/Max intrinsics are
2243   // not currently canonical, but soon will be. Code without them uses icmp, and
2244   // so is not tail predicated as per the condition above. In order to get the
2245   // same performance we treat min and max the same as an icmp for tailpred
2246   // purposes for the moment (we often rely on non-tailpred and higher VF's to
2247   // pick more optimial instructions like VQDMULH. They need to be recognized
2248   // directly by the vectorizer).
2249   if (auto *II = dyn_cast<IntrinsicInst>(&I))
2250     if ((II->getIntrinsicID() == Intrinsic::smin ||
2251          II->getIntrinsicID() == Intrinsic::smax ||
2252          II->getIntrinsicID() == Intrinsic::umin ||
2253          II->getIntrinsicID() == Intrinsic::umax) &&
2254         ++ICmpCount > 1)
2255       return false;
2256 
2257   if (isa<FCmpInst>(&I))
2258     return false;
2259 
2260   // We could allow extending/narrowing FP loads/stores, but codegen is
2261   // too inefficient so reject this for now.
2262   if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I))
2263     return false;
2264 
2265   // Extends have to be extending-loads
2266   if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) )
2267     if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0)))
2268       return false;
2269 
2270   // Truncs have to be narrowing-stores
2271   if (isa<TruncInst>(&I) )
2272     if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin()))
2273       return false;
2274 
2275   return true;
2276 }
2277 
2278 // To set up a tail-predicated loop, we need to know the total number of
2279 // elements processed by that loop. Thus, we need to determine the element
2280 // size and:
2281 // 1) it should be uniform for all operations in the vector loop, so we
2282 //    e.g. don't want any widening/narrowing operations.
2283 // 2) it should be smaller than i64s because we don't have vector operations
2284 //    that work on i64s.
2285 // 3) we don't want elements to be reversed or shuffled, to make sure the
2286 //    tail-predication masks/predicates the right lanes.
2287 //
2288 static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
2289                                  const DataLayout &DL,
2290                                  const LoopAccessInfo *LAI) {
2291   LLVM_DEBUG(dbgs() << "Tail-predication: checking allowed instructions\n");
2292 
2293   // If there are live-out values, it is probably a reduction. We can predicate
2294   // most reduction operations freely under MVE using a combination of
2295   // prefer-predicated-reduction-select and inloop reductions. We limit this to
2296   // floating point and integer reductions, but don't check for operators
2297   // specifically here. If the value ends up not being a reduction (and so the
2298   // vectorizer cannot tailfold the loop), we should fall back to standard
2299   // vectorization automatically.
2300   SmallVector< Instruction *, 8 > LiveOuts;
2301   LiveOuts = llvm::findDefsUsedOutsideOfLoop(L);
2302   bool ReductionsDisabled =
2303       EnableTailPredication == TailPredication::EnabledNoReductions ||
2304       EnableTailPredication == TailPredication::ForceEnabledNoReductions;
2305 
2306   for (auto *I : LiveOuts) {
2307     if (!I->getType()->isIntegerTy() && !I->getType()->isFloatTy() &&
2308         !I->getType()->isHalfTy()) {
2309       LLVM_DEBUG(dbgs() << "Don't tail-predicate loop with non-integer/float "
2310                            "live-out value\n");
2311       return false;
2312     }
2313     if (ReductionsDisabled) {
2314       LLVM_DEBUG(dbgs() << "Reductions not enabled\n");
2315       return false;
2316     }
2317   }
2318 
2319   // Next, check that all instructions can be tail-predicated.
2320   PredicatedScalarEvolution PSE = LAI->getPSE();
2321   SmallVector<Instruction *, 16> LoadStores;
2322   int ICmpCount = 0;
2323 
2324   for (BasicBlock *BB : L->blocks()) {
2325     for (Instruction &I : BB->instructionsWithoutDebug()) {
2326       if (isa<PHINode>(&I))
2327         continue;
2328       if (!canTailPredicateInstruction(I, ICmpCount)) {
2329         LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump());
2330         return false;
2331       }
2332 
2333       Type *T  = I.getType();
2334       if (T->getScalarSizeInBits() > 32) {
2335         LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump());
2336         return false;
2337       }
2338       if (isa<StoreInst>(I) || isa<LoadInst>(I)) {
2339         Value *Ptr = getLoadStorePointerOperand(&I);
2340         Type *AccessTy = getLoadStoreType(&I);
2341         int64_t NextStride = getPtrStride(PSE, AccessTy, Ptr, L).value_or(0);
2342         if (NextStride == 1) {
2343           // TODO: for now only allow consecutive strides of 1. We could support
2344           // other strides as long as it is uniform, but let's keep it simple
2345           // for now.
2346           continue;
2347         } else if (NextStride == -1 ||
2348                    (NextStride == 2 && MVEMaxSupportedInterleaveFactor >= 2) ||
2349                    (NextStride == 4 && MVEMaxSupportedInterleaveFactor >= 4)) {
2350           LLVM_DEBUG(dbgs()
2351                      << "Consecutive strides of 2 found, vld2/vstr2 can't "
2352                         "be tail-predicated\n.");
2353           return false;
2354           // TODO: don't tail predicate if there is a reversed load?
2355         } else if (EnableMaskedGatherScatters) {
2356           // Gather/scatters do allow loading from arbitrary strides, at
2357           // least if they are loop invariant.
2358           // TODO: Loop variant strides should in theory work, too, but
2359           // this requires further testing.
2360           const SCEV *PtrScev = PSE.getSE()->getSCEV(Ptr);
2361           if (auto AR = dyn_cast<SCEVAddRecExpr>(PtrScev)) {
2362             const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
2363             if (PSE.getSE()->isLoopInvariant(Step, L))
2364               continue;
2365           }
2366         }
2367         LLVM_DEBUG(dbgs() << "Bad stride found, can't "
2368                              "tail-predicate\n.");
2369         return false;
2370       }
2371     }
2372   }
2373 
2374   LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n");
2375   return true;
2376 }
2377 
2378 bool ARMTTIImpl::preferPredicateOverEpilogue(TailFoldingInfo *TFI) {
2379   if (!EnableTailPredication) {
2380     LLVM_DEBUG(dbgs() << "Tail-predication not enabled.\n");
2381     return false;
2382   }
2383 
2384   // Creating a predicated vector loop is the first step for generating a
2385   // tail-predicated hardware loop, for which we need the MVE masked
2386   // load/stores instructions:
2387   if (!ST->hasMVEIntegerOps())
2388     return false;
2389 
2390   LoopVectorizationLegality *LVL = TFI->LVL;
2391   Loop *L = LVL->getLoop();
2392 
2393   // For now, restrict this to single block loops.
2394   if (L->getNumBlocks() > 1) {
2395     LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block "
2396                          "loop.\n");
2397     return false;
2398   }
2399 
2400   assert(L->isInnermost() && "preferPredicateOverEpilogue: inner-loop expected");
2401 
2402   LoopInfo *LI = LVL->getLoopInfo();
2403   HardwareLoopInfo HWLoopInfo(L);
2404   if (!HWLoopInfo.canAnalyze(*LI)) {
2405     LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2406                          "analyzable.\n");
2407     return false;
2408   }
2409 
2410   AssumptionCache *AC = LVL->getAssumptionCache();
2411   ScalarEvolution *SE = LVL->getScalarEvolution();
2412 
2413   // This checks if we have the low-overhead branch architecture
2414   // extension, and if we will create a hardware-loop:
2415   if (!isHardwareLoopProfitable(L, *SE, *AC, TFI->TLI, HWLoopInfo)) {
2416     LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2417                          "profitable.\n");
2418     return false;
2419   }
2420 
2421   DominatorTree *DT = LVL->getDominatorTree();
2422   if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT)) {
2423     LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2424                          "a candidate.\n");
2425     return false;
2426   }
2427 
2428   return canTailPredicateLoop(L, LI, *SE, DL, LVL->getLAI());
2429 }
2430 
2431 TailFoldingStyle
2432 ARMTTIImpl::getPreferredTailFoldingStyle(bool IVUpdateMayOverflow) const {
2433   if (!ST->hasMVEIntegerOps() || !EnableTailPredication)
2434     return TailFoldingStyle::DataWithoutLaneMask;
2435 
2436   // Intrinsic @llvm.get.active.lane.mask is supported.
2437   // It is used in the MVETailPredication pass, which requires the number of
2438   // elements processed by this vector loop to setup the tail-predicated
2439   // loop.
2440   return TailFoldingStyle::Data;
2441 }
2442 void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
2443                                          TTI::UnrollingPreferences &UP,
2444                                          OptimizationRemarkEmitter *ORE) {
2445   // Enable Upper bound unrolling universally, providing that we do not see an
2446   // active lane mask, which will be better kept as a loop to become tail
2447   // predicated than to be conditionally unrolled.
2448   UP.UpperBound =
2449       !ST->hasMVEIntegerOps() || !any_of(*L->getHeader(), [](Instruction &I) {
2450         return isa<IntrinsicInst>(I) &&
2451                cast<IntrinsicInst>(I).getIntrinsicID() ==
2452                    Intrinsic::get_active_lane_mask;
2453       });
2454 
2455   // Only currently enable these preferences for M-Class cores.
2456   if (!ST->isMClass())
2457     return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE);
2458 
2459   // Disable loop unrolling for Oz and Os.
2460   UP.OptSizeThreshold = 0;
2461   UP.PartialOptSizeThreshold = 0;
2462   if (L->getHeader()->getParent()->hasOptSize())
2463     return;
2464 
2465   SmallVector<BasicBlock*, 4> ExitingBlocks;
2466   L->getExitingBlocks(ExitingBlocks);
2467   LLVM_DEBUG(dbgs() << "Loop has:\n"
2468                     << "Blocks: " << L->getNumBlocks() << "\n"
2469                     << "Exit blocks: " << ExitingBlocks.size() << "\n");
2470 
2471   // Only allow another exit other than the latch. This acts as an early exit
2472   // as it mirrors the profitability calculation of the runtime unroller.
2473   if (ExitingBlocks.size() > 2)
2474     return;
2475 
2476   // Limit the CFG of the loop body for targets with a branch predictor.
2477   // Allowing 4 blocks permits if-then-else diamonds in the body.
2478   if (ST->hasBranchPredictor() && L->getNumBlocks() > 4)
2479     return;
2480 
2481   // Don't unroll vectorized loops, including the remainder loop
2482   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
2483     return;
2484 
2485   // Scan the loop: don't unroll loops with calls as this could prevent
2486   // inlining.
2487   InstructionCost Cost = 0;
2488   for (auto *BB : L->getBlocks()) {
2489     for (auto &I : *BB) {
2490       // Don't unroll vectorised loop. MVE does not benefit from it as much as
2491       // scalar code.
2492       if (I.getType()->isVectorTy())
2493         return;
2494 
2495       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
2496         if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
2497           if (!isLoweredToCall(F))
2498             continue;
2499         }
2500         return;
2501       }
2502 
2503       SmallVector<const Value*, 4> Operands(I.operand_values());
2504       Cost += getInstructionCost(&I, Operands,
2505                                  TargetTransformInfo::TCK_SizeAndLatency);
2506     }
2507   }
2508 
2509   // On v6m cores, there are very few registers available. We can easily end up
2510   // spilling and reloading more registers in an unrolled loop. Look at the
2511   // number of LCSSA phis as a rough measure of how many registers will need to
2512   // be live out of the loop, reducing the default unroll count if more than 1
2513   // value is needed.  In the long run, all of this should be being learnt by a
2514   // machine.
2515   unsigned UnrollCount = 4;
2516   if (ST->isThumb1Only()) {
2517     unsigned ExitingValues = 0;
2518     SmallVector<BasicBlock *, 4> ExitBlocks;
2519     L->getExitBlocks(ExitBlocks);
2520     for (auto *Exit : ExitBlocks) {
2521       // Count the number of LCSSA phis. Exclude values coming from GEP's as
2522       // only the last is expected to be needed for address operands.
2523       unsigned LiveOuts = count_if(Exit->phis(), [](auto &PH) {
2524         return PH.getNumOperands() != 1 ||
2525                !isa<GetElementPtrInst>(PH.getOperand(0));
2526       });
2527       ExitingValues = ExitingValues < LiveOuts ? LiveOuts : ExitingValues;
2528     }
2529     if (ExitingValues)
2530       UnrollCount /= ExitingValues;
2531     if (UnrollCount <= 1)
2532       return;
2533   }
2534 
2535   LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
2536   LLVM_DEBUG(dbgs() << "Default Runtime Unroll Count: " << UnrollCount << "\n");
2537 
2538   UP.Partial = true;
2539   UP.Runtime = true;
2540   UP.UnrollRemainder = true;
2541   UP.DefaultUnrollRuntimeCount = UnrollCount;
2542   UP.UnrollAndJam = true;
2543   UP.UnrollAndJamInnerLoopThreshold = 60;
2544 
2545   // Force unrolling small loops can be very useful because of the branch
2546   // taken cost of the backedge.
2547   if (Cost < 12)
2548     UP.Force = true;
2549 }
2550 
2551 void ARMTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
2552                                        TTI::PeelingPreferences &PP) {
2553   BaseT::getPeelingPreferences(L, SE, PP);
2554 }
2555 
2556 bool ARMTTIImpl::preferInLoopReduction(unsigned Opcode, Type *Ty,
2557                                        TTI::ReductionFlags Flags) const {
2558   if (!ST->hasMVEIntegerOps())
2559     return false;
2560 
2561   unsigned ScalarBits = Ty->getScalarSizeInBits();
2562   switch (Opcode) {
2563   case Instruction::Add:
2564     return ScalarBits <= 64;
2565   default:
2566     return false;
2567   }
2568 }
2569 
2570 bool ARMTTIImpl::preferPredicatedReductionSelect(
2571     unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const {
2572   if (!ST->hasMVEIntegerOps())
2573     return false;
2574   return true;
2575 }
2576 
2577 InstructionCost ARMTTIImpl::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
2578                                                  StackOffset BaseOffset,
2579                                                  bool HasBaseReg, int64_t Scale,
2580                                                  unsigned AddrSpace) const {
2581   TargetLoweringBase::AddrMode AM;
2582   AM.BaseGV = BaseGV;
2583   AM.BaseOffs = BaseOffset.getFixed();
2584   AM.HasBaseReg = HasBaseReg;
2585   AM.Scale = Scale;
2586   AM.ScalableOffset = BaseOffset.getScalable();
2587   if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace)) {
2588     if (ST->hasFPAO())
2589       return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
2590     return 0;
2591   }
2592   return -1;
2593 }
2594 
2595 bool ARMTTIImpl::hasArmWideBranch(bool Thumb) const {
2596   if (Thumb) {
2597     // B.W is available in any Thumb2-supporting target, and also in every
2598     // version of Armv8-M, even Baseline which does not include the rest of
2599     // Thumb2.
2600     return ST->isThumb2() || ST->hasV8MBaselineOps();
2601   } else {
2602     // B is available in all versions of the Arm ISA, so the only question is
2603     // whether that ISA is available at all.
2604     return ST->hasARMOps();
2605   }
2606 }
2607