1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMTargetTransformInfo.h" 10 #include "ARMSubtarget.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "llvm/ADT/APInt.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Analysis/LoopInfo.h" 15 #include "llvm/CodeGen/CostTable.h" 16 #include "llvm/CodeGen/ISDOpcodes.h" 17 #include "llvm/CodeGen/MachineValueType.h" 18 #include "llvm/CodeGen/ValueTypes.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/Intrinsics.h" 26 #include "llvm/IR/IntrinsicsARM.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/IR/Type.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Target/TargetMachine.h" 32 #include "llvm/TargetParser/SubtargetFeature.h" 33 #include "llvm/Transforms/InstCombine/InstCombiner.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/Transforms/Utils/LoopUtils.h" 36 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 37 #include <algorithm> 38 #include <cassert> 39 #include <cstdint> 40 #include <optional> 41 #include <utility> 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "armtti" 46 47 static cl::opt<bool> EnableMaskedLoadStores( 48 "enable-arm-maskedldst", cl::Hidden, cl::init(true), 49 cl::desc("Enable the generation of masked loads and stores")); 50 51 static cl::opt<bool> DisableLowOverheadLoops( 52 "disable-arm-loloops", cl::Hidden, cl::init(false), 53 cl::desc("Disable the generation of low-overhead loops")); 54 55 static cl::opt<bool> 56 AllowWLSLoops("allow-arm-wlsloops", cl::Hidden, cl::init(true), 57 cl::desc("Enable the generation of WLS loops")); 58 59 extern cl::opt<TailPredication::Mode> EnableTailPredication; 60 61 extern cl::opt<bool> EnableMaskedGatherScatters; 62 63 extern cl::opt<unsigned> MVEMaxSupportedInterleaveFactor; 64 65 /// Convert a vector load intrinsic into a simple llvm load instruction. 66 /// This is beneficial when the underlying object being addressed comes 67 /// from a constant, since we get constant-folding for free. 68 static Value *simplifyNeonVld1(const IntrinsicInst &II, unsigned MemAlign, 69 InstCombiner::BuilderTy &Builder) { 70 auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1)); 71 72 if (!IntrAlign) 73 return nullptr; 74 75 unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign 76 ? MemAlign 77 : IntrAlign->getLimitedValue(); 78 79 if (!isPowerOf2_32(Alignment)) 80 return nullptr; 81 82 auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0), 83 PointerType::get(II.getType(), 0)); 84 return Builder.CreateAlignedLoad(II.getType(), BCastInst, Align(Alignment)); 85 } 86 87 bool ARMTTIImpl::areInlineCompatible(const Function *Caller, 88 const Function *Callee) const { 89 const TargetMachine &TM = getTLI()->getTargetMachine(); 90 const FeatureBitset &CallerBits = 91 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 92 const FeatureBitset &CalleeBits = 93 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 94 95 // To inline a callee, all features not in the allowed list must match exactly. 96 bool MatchExact = (CallerBits & ~InlineFeaturesAllowed) == 97 (CalleeBits & ~InlineFeaturesAllowed); 98 // For features in the allowed list, the callee's features must be a subset of 99 // the callers'. 100 bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeaturesAllowed) == 101 (CalleeBits & InlineFeaturesAllowed); 102 return MatchExact && MatchSubset; 103 } 104 105 TTI::AddressingModeKind 106 ARMTTIImpl::getPreferredAddressingMode(const Loop *L, 107 ScalarEvolution *SE) const { 108 if (ST->hasMVEIntegerOps()) 109 return TTI::AMK_PostIndexed; 110 111 if (L->getHeader()->getParent()->hasOptSize()) 112 return TTI::AMK_None; 113 114 if (ST->isMClass() && ST->isThumb2() && 115 L->getNumBlocks() == 1) 116 return TTI::AMK_PreIndexed; 117 118 return TTI::AMK_None; 119 } 120 121 std::optional<Instruction *> 122 ARMTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { 123 using namespace PatternMatch; 124 Intrinsic::ID IID = II.getIntrinsicID(); 125 switch (IID) { 126 default: 127 break; 128 case Intrinsic::arm_neon_vld1: { 129 Align MemAlign = 130 getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II, 131 &IC.getAssumptionCache(), &IC.getDominatorTree()); 132 if (Value *V = simplifyNeonVld1(II, MemAlign.value(), IC.Builder)) { 133 return IC.replaceInstUsesWith(II, V); 134 } 135 break; 136 } 137 138 case Intrinsic::arm_neon_vld2: 139 case Intrinsic::arm_neon_vld3: 140 case Intrinsic::arm_neon_vld4: 141 case Intrinsic::arm_neon_vld2lane: 142 case Intrinsic::arm_neon_vld3lane: 143 case Intrinsic::arm_neon_vld4lane: 144 case Intrinsic::arm_neon_vst1: 145 case Intrinsic::arm_neon_vst2: 146 case Intrinsic::arm_neon_vst3: 147 case Intrinsic::arm_neon_vst4: 148 case Intrinsic::arm_neon_vst2lane: 149 case Intrinsic::arm_neon_vst3lane: 150 case Intrinsic::arm_neon_vst4lane: { 151 Align MemAlign = 152 getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II, 153 &IC.getAssumptionCache(), &IC.getDominatorTree()); 154 unsigned AlignArg = II.arg_size() - 1; 155 Value *AlignArgOp = II.getArgOperand(AlignArg); 156 MaybeAlign Align = cast<ConstantInt>(AlignArgOp)->getMaybeAlignValue(); 157 if (Align && *Align < MemAlign) { 158 return IC.replaceOperand( 159 II, AlignArg, 160 ConstantInt::get(Type::getInt32Ty(II.getContext()), MemAlign.value(), 161 false)); 162 } 163 break; 164 } 165 166 case Intrinsic::arm_mve_pred_i2v: { 167 Value *Arg = II.getArgOperand(0); 168 Value *ArgArg; 169 if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>( 170 PatternMatch::m_Value(ArgArg))) && 171 II.getType() == ArgArg->getType()) { 172 return IC.replaceInstUsesWith(II, ArgArg); 173 } 174 Constant *XorMask; 175 if (match(Arg, m_Xor(PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>( 176 PatternMatch::m_Value(ArgArg)), 177 PatternMatch::m_Constant(XorMask))) && 178 II.getType() == ArgArg->getType()) { 179 if (auto *CI = dyn_cast<ConstantInt>(XorMask)) { 180 if (CI->getValue().trunc(16).isAllOnes()) { 181 auto TrueVector = IC.Builder.CreateVectorSplat( 182 cast<FixedVectorType>(II.getType())->getNumElements(), 183 IC.Builder.getTrue()); 184 return BinaryOperator::Create(Instruction::Xor, ArgArg, TrueVector); 185 } 186 } 187 } 188 KnownBits ScalarKnown(32); 189 if (IC.SimplifyDemandedBits(&II, 0, APInt::getLowBitsSet(32, 16), 190 ScalarKnown, 0)) { 191 return &II; 192 } 193 break; 194 } 195 case Intrinsic::arm_mve_pred_v2i: { 196 Value *Arg = II.getArgOperand(0); 197 Value *ArgArg; 198 if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_i2v>( 199 PatternMatch::m_Value(ArgArg)))) { 200 return IC.replaceInstUsesWith(II, ArgArg); 201 } 202 if (!II.getMetadata(LLVMContext::MD_range)) { 203 Type *IntTy32 = Type::getInt32Ty(II.getContext()); 204 Metadata *M[] = { 205 ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0)), 206 ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0x10000))}; 207 II.setMetadata(LLVMContext::MD_range, MDNode::get(II.getContext(), M)); 208 II.setMetadata(LLVMContext::MD_noundef, 209 MDNode::get(II.getContext(), std::nullopt)); 210 return &II; 211 } 212 break; 213 } 214 case Intrinsic::arm_mve_vadc: 215 case Intrinsic::arm_mve_vadc_predicated: { 216 unsigned CarryOp = 217 (II.getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated) ? 3 : 2; 218 assert(II.getArgOperand(CarryOp)->getType()->getScalarSizeInBits() == 32 && 219 "Bad type for intrinsic!"); 220 221 KnownBits CarryKnown(32); 222 if (IC.SimplifyDemandedBits(&II, CarryOp, APInt::getOneBitSet(32, 29), 223 CarryKnown)) { 224 return &II; 225 } 226 break; 227 } 228 case Intrinsic::arm_mve_vmldava: { 229 Instruction *I = cast<Instruction>(&II); 230 if (I->hasOneUse()) { 231 auto *User = cast<Instruction>(*I->user_begin()); 232 Value *OpZ; 233 if (match(User, m_c_Add(m_Specific(I), m_Value(OpZ))) && 234 match(I->getOperand(3), m_Zero())) { 235 Value *OpX = I->getOperand(4); 236 Value *OpY = I->getOperand(5); 237 Type *OpTy = OpX->getType(); 238 239 IC.Builder.SetInsertPoint(User); 240 Value *V = 241 IC.Builder.CreateIntrinsic(Intrinsic::arm_mve_vmldava, {OpTy}, 242 {I->getOperand(0), I->getOperand(1), 243 I->getOperand(2), OpZ, OpX, OpY}); 244 245 IC.replaceInstUsesWith(*User, V); 246 return IC.eraseInstFromFunction(*User); 247 } 248 } 249 return std::nullopt; 250 } 251 } 252 return std::nullopt; 253 } 254 255 std::optional<Value *> ARMTTIImpl::simplifyDemandedVectorEltsIntrinsic( 256 InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts, 257 APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, 258 std::function<void(Instruction *, unsigned, APInt, APInt &)> 259 SimplifyAndSetOp) const { 260 261 // Compute the demanded bits for a narrowing MVE intrinsic. The TopOpc is the 262 // opcode specifying a Top/Bottom instruction, which can change between 263 // instructions. 264 auto SimplifyNarrowInstrTopBottom =[&](unsigned TopOpc) { 265 unsigned NumElts = cast<FixedVectorType>(II.getType())->getNumElements(); 266 unsigned IsTop = cast<ConstantInt>(II.getOperand(TopOpc))->getZExtValue(); 267 268 // The only odd/even lanes of operand 0 will only be demanded depending 269 // on whether this is a top/bottom instruction. 270 APInt DemandedElts = 271 APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1) 272 : APInt::getHighBitsSet(2, 1)); 273 SimplifyAndSetOp(&II, 0, OrigDemandedElts & DemandedElts, UndefElts); 274 // The other lanes will be defined from the inserted elements. 275 UndefElts &= APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1) 276 : APInt::getHighBitsSet(2, 1)); 277 return std::nullopt; 278 }; 279 280 switch (II.getIntrinsicID()) { 281 default: 282 break; 283 case Intrinsic::arm_mve_vcvt_narrow: 284 SimplifyNarrowInstrTopBottom(2); 285 break; 286 case Intrinsic::arm_mve_vqmovn: 287 SimplifyNarrowInstrTopBottom(4); 288 break; 289 case Intrinsic::arm_mve_vshrn: 290 SimplifyNarrowInstrTopBottom(7); 291 break; 292 } 293 294 return std::nullopt; 295 } 296 297 InstructionCost ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 298 TTI::TargetCostKind CostKind) { 299 assert(Ty->isIntegerTy()); 300 301 unsigned Bits = Ty->getPrimitiveSizeInBits(); 302 if (Bits == 0 || Imm.getActiveBits() >= 64) 303 return 4; 304 305 int64_t SImmVal = Imm.getSExtValue(); 306 uint64_t ZImmVal = Imm.getZExtValue(); 307 if (!ST->isThumb()) { 308 if ((SImmVal >= 0 && SImmVal < 65536) || 309 (ARM_AM::getSOImmVal(ZImmVal) != -1) || 310 (ARM_AM::getSOImmVal(~ZImmVal) != -1)) 311 return 1; 312 return ST->hasV6T2Ops() ? 2 : 3; 313 } 314 if (ST->isThumb2()) { 315 if ((SImmVal >= 0 && SImmVal < 65536) || 316 (ARM_AM::getT2SOImmVal(ZImmVal) != -1) || 317 (ARM_AM::getT2SOImmVal(~ZImmVal) != -1)) 318 return 1; 319 return ST->hasV6T2Ops() ? 2 : 3; 320 } 321 // Thumb1, any i8 imm cost 1. 322 if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256)) 323 return 1; 324 if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal)) 325 return 2; 326 // Load from constantpool. 327 return 3; 328 } 329 330 // Constants smaller than 256 fit in the immediate field of 331 // Thumb1 instructions so we return a zero cost and 1 otherwise. 332 InstructionCost ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 333 const APInt &Imm, Type *Ty) { 334 if (Imm.isNonNegative() && Imm.getLimitedValue() < 256) 335 return 0; 336 337 return 1; 338 } 339 340 // Checks whether Inst is part of a min(max()) or max(min()) pattern 341 // that will match to an SSAT instruction. Returns the instruction being 342 // saturated, or null if no saturation pattern was found. 343 static Value *isSSATMinMaxPattern(Instruction *Inst, const APInt &Imm) { 344 Value *LHS, *RHS; 345 ConstantInt *C; 346 SelectPatternFlavor InstSPF = matchSelectPattern(Inst, LHS, RHS).Flavor; 347 348 if (InstSPF == SPF_SMAX && 349 PatternMatch::match(RHS, PatternMatch::m_ConstantInt(C)) && 350 C->getValue() == Imm && Imm.isNegative() && Imm.isNegatedPowerOf2()) { 351 352 auto isSSatMin = [&](Value *MinInst) { 353 if (isa<SelectInst>(MinInst)) { 354 Value *MinLHS, *MinRHS; 355 ConstantInt *MinC; 356 SelectPatternFlavor MinSPF = 357 matchSelectPattern(MinInst, MinLHS, MinRHS).Flavor; 358 if (MinSPF == SPF_SMIN && 359 PatternMatch::match(MinRHS, PatternMatch::m_ConstantInt(MinC)) && 360 MinC->getValue() == ((-Imm) - 1)) 361 return true; 362 } 363 return false; 364 }; 365 366 if (isSSatMin(Inst->getOperand(1))) 367 return cast<Instruction>(Inst->getOperand(1))->getOperand(1); 368 if (Inst->hasNUses(2) && 369 (isSSatMin(*Inst->user_begin()) || isSSatMin(*(++Inst->user_begin())))) 370 return Inst->getOperand(1); 371 } 372 return nullptr; 373 } 374 375 // Look for a FP Saturation pattern, where the instruction can be simplified to 376 // a fptosi.sat. max(min(fptosi)). The constant in this case is always free. 377 static bool isFPSatMinMaxPattern(Instruction *Inst, const APInt &Imm) { 378 if (Imm.getBitWidth() != 64 || 379 Imm != APInt::getHighBitsSet(64, 33)) // -2147483648 380 return false; 381 Value *FP = isSSATMinMaxPattern(Inst, Imm); 382 if (!FP && isa<ICmpInst>(Inst) && Inst->hasOneUse()) 383 FP = isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm); 384 if (!FP) 385 return false; 386 return isa<FPToSIInst>(FP); 387 } 388 389 InstructionCost ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 390 const APInt &Imm, Type *Ty, 391 TTI::TargetCostKind CostKind, 392 Instruction *Inst) { 393 // Division by a constant can be turned into multiplication, but only if we 394 // know it's constant. So it's not so much that the immediate is cheap (it's 395 // not), but that the alternative is worse. 396 // FIXME: this is probably unneeded with GlobalISel. 397 if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv || 398 Opcode == Instruction::SRem || Opcode == Instruction::URem) && 399 Idx == 1) 400 return 0; 401 402 // Leave any gep offsets for the CodeGenPrepare, which will do a better job at 403 // splitting any large offsets. 404 if (Opcode == Instruction::GetElementPtr && Idx != 0) 405 return 0; 406 407 if (Opcode == Instruction::And) { 408 // UXTB/UXTH 409 if (Imm == 255 || Imm == 65535) 410 return 0; 411 // Conversion to BIC is free, and means we can use ~Imm instead. 412 return std::min(getIntImmCost(Imm, Ty, CostKind), 413 getIntImmCost(~Imm, Ty, CostKind)); 414 } 415 416 if (Opcode == Instruction::Add) 417 // Conversion to SUB is free, and means we can use -Imm instead. 418 return std::min(getIntImmCost(Imm, Ty, CostKind), 419 getIntImmCost(-Imm, Ty, CostKind)); 420 421 if (Opcode == Instruction::ICmp && Imm.isNegative() && 422 Ty->getIntegerBitWidth() == 32) { 423 int64_t NegImm = -Imm.getSExtValue(); 424 if (ST->isThumb2() && NegImm < 1<<12) 425 // icmp X, #-C -> cmn X, #C 426 return 0; 427 if (ST->isThumb() && NegImm < 1<<8) 428 // icmp X, #-C -> adds X, #C 429 return 0; 430 } 431 432 // xor a, -1 can always be folded to MVN 433 if (Opcode == Instruction::Xor && Imm.isAllOnes()) 434 return 0; 435 436 // Ensures negative constant of min(max()) or max(min()) patterns that 437 // match to SSAT instructions don't get hoisted 438 if (Inst && ((ST->hasV6Ops() && !ST->isThumb()) || ST->isThumb2()) && 439 Ty->getIntegerBitWidth() <= 32) { 440 if (isSSATMinMaxPattern(Inst, Imm) || 441 (isa<ICmpInst>(Inst) && Inst->hasOneUse() && 442 isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm))) 443 return 0; 444 } 445 446 if (Inst && ST->hasVFP2Base() && isFPSatMinMaxPattern(Inst, Imm)) 447 return 0; 448 449 // We can convert <= -1 to < 0, which is generally quite cheap. 450 if (Inst && Opcode == Instruction::ICmp && Idx == 1 && Imm.isAllOnes()) { 451 ICmpInst::Predicate Pred = cast<ICmpInst>(Inst)->getPredicate(); 452 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) 453 return std::min(getIntImmCost(Imm, Ty, CostKind), 454 getIntImmCost(Imm + 1, Ty, CostKind)); 455 } 456 457 return getIntImmCost(Imm, Ty, CostKind); 458 } 459 460 InstructionCost ARMTTIImpl::getCFInstrCost(unsigned Opcode, 461 TTI::TargetCostKind CostKind, 462 const Instruction *I) { 463 if (CostKind == TTI::TCK_RecipThroughput && 464 (ST->hasNEON() || ST->hasMVEIntegerOps())) { 465 // FIXME: The vectorizer is highly sensistive to the cost of these 466 // instructions, which suggests that it may be using the costs incorrectly. 467 // But, for now, just make them free to avoid performance regressions for 468 // vector targets. 469 return 0; 470 } 471 return BaseT::getCFInstrCost(Opcode, CostKind, I); 472 } 473 474 InstructionCost ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 475 Type *Src, 476 TTI::CastContextHint CCH, 477 TTI::TargetCostKind CostKind, 478 const Instruction *I) { 479 int ISD = TLI->InstructionOpcodeToISD(Opcode); 480 assert(ISD && "Invalid opcode"); 481 482 // TODO: Allow non-throughput costs that aren't binary. 483 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost { 484 if (CostKind != TTI::TCK_RecipThroughput) 485 return Cost == 0 ? 0 : 1; 486 return Cost; 487 }; 488 auto IsLegalFPType = [this](EVT VT) { 489 EVT EltVT = VT.getScalarType(); 490 return (EltVT == MVT::f32 && ST->hasVFP2Base()) || 491 (EltVT == MVT::f64 && ST->hasFP64()) || 492 (EltVT == MVT::f16 && ST->hasFullFP16()); 493 }; 494 495 EVT SrcTy = TLI->getValueType(DL, Src); 496 EVT DstTy = TLI->getValueType(DL, Dst); 497 498 if (!SrcTy.isSimple() || !DstTy.isSimple()) 499 return AdjustCost( 500 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 501 502 // Extending masked load/Truncating masked stores is expensive because we 503 // currently don't split them. This means that we'll likely end up 504 // loading/storing each element individually (hence the high cost). 505 if ((ST->hasMVEIntegerOps() && 506 (Opcode == Instruction::Trunc || Opcode == Instruction::ZExt || 507 Opcode == Instruction::SExt)) || 508 (ST->hasMVEFloatOps() && 509 (Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc) && 510 IsLegalFPType(SrcTy) && IsLegalFPType(DstTy))) 511 if (CCH == TTI::CastContextHint::Masked && DstTy.getSizeInBits() > 128) 512 return 2 * DstTy.getVectorNumElements() * 513 ST->getMVEVectorCostFactor(CostKind); 514 515 // The extend of other kinds of load is free 516 if (CCH == TTI::CastContextHint::Normal || 517 CCH == TTI::CastContextHint::Masked) { 518 static const TypeConversionCostTblEntry LoadConversionTbl[] = { 519 {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0}, 520 {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0}, 521 {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0}, 522 {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0}, 523 {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0}, 524 {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0}, 525 {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1}, 526 {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1}, 527 {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1}, 528 {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1}, 529 {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1}, 530 {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1}, 531 }; 532 if (const auto *Entry = ConvertCostTableLookup( 533 LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 534 return AdjustCost(Entry->Cost); 535 536 static const TypeConversionCostTblEntry MVELoadConversionTbl[] = { 537 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0}, 538 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0}, 539 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0}, 540 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0}, 541 {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0}, 542 {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0}, 543 // The following extend from a legal type to an illegal type, so need to 544 // split the load. This introduced an extra load operation, but the 545 // extend is still "free". 546 {ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1}, 547 {ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1}, 548 {ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 3}, 549 {ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 3}, 550 {ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1}, 551 {ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1}, 552 }; 553 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 554 if (const auto *Entry = 555 ConvertCostTableLookup(MVELoadConversionTbl, ISD, 556 DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 557 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 558 } 559 560 static const TypeConversionCostTblEntry MVEFLoadConversionTbl[] = { 561 // FPExtends are similar but also require the VCVT instructions. 562 {ISD::FP_EXTEND, MVT::v4f32, MVT::v4f16, 1}, 563 {ISD::FP_EXTEND, MVT::v8f32, MVT::v8f16, 3}, 564 }; 565 if (SrcTy.isVector() && ST->hasMVEFloatOps()) { 566 if (const auto *Entry = 567 ConvertCostTableLookup(MVEFLoadConversionTbl, ISD, 568 DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 569 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 570 } 571 572 // The truncate of a store is free. This is the mirror of extends above. 573 static const TypeConversionCostTblEntry MVEStoreConversionTbl[] = { 574 {ISD::TRUNCATE, MVT::v4i32, MVT::v4i16, 0}, 575 {ISD::TRUNCATE, MVT::v4i32, MVT::v4i8, 0}, 576 {ISD::TRUNCATE, MVT::v8i16, MVT::v8i8, 0}, 577 {ISD::TRUNCATE, MVT::v8i32, MVT::v8i16, 1}, 578 {ISD::TRUNCATE, MVT::v8i32, MVT::v8i8, 1}, 579 {ISD::TRUNCATE, MVT::v16i32, MVT::v16i8, 3}, 580 {ISD::TRUNCATE, MVT::v16i16, MVT::v16i8, 1}, 581 }; 582 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 583 if (const auto *Entry = 584 ConvertCostTableLookup(MVEStoreConversionTbl, ISD, 585 SrcTy.getSimpleVT(), DstTy.getSimpleVT())) 586 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 587 } 588 589 static const TypeConversionCostTblEntry MVEFStoreConversionTbl[] = { 590 {ISD::FP_ROUND, MVT::v4f32, MVT::v4f16, 1}, 591 {ISD::FP_ROUND, MVT::v8f32, MVT::v8f16, 3}, 592 }; 593 if (SrcTy.isVector() && ST->hasMVEFloatOps()) { 594 if (const auto *Entry = 595 ConvertCostTableLookup(MVEFStoreConversionTbl, ISD, 596 SrcTy.getSimpleVT(), DstTy.getSimpleVT())) 597 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 598 } 599 } 600 601 // NEON vector operations that can extend their inputs. 602 if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) && 603 I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) { 604 static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = { 605 // vaddl 606 { ISD::ADD, MVT::v4i32, MVT::v4i16, 0 }, 607 { ISD::ADD, MVT::v8i16, MVT::v8i8, 0 }, 608 // vsubl 609 { ISD::SUB, MVT::v4i32, MVT::v4i16, 0 }, 610 { ISD::SUB, MVT::v8i16, MVT::v8i8, 0 }, 611 // vmull 612 { ISD::MUL, MVT::v4i32, MVT::v4i16, 0 }, 613 { ISD::MUL, MVT::v8i16, MVT::v8i8, 0 }, 614 // vshll 615 { ISD::SHL, MVT::v4i32, MVT::v4i16, 0 }, 616 { ISD::SHL, MVT::v8i16, MVT::v8i8, 0 }, 617 }; 618 619 auto *User = cast<Instruction>(*I->user_begin()); 620 int UserISD = TLI->InstructionOpcodeToISD(User->getOpcode()); 621 if (auto *Entry = ConvertCostTableLookup(NEONDoubleWidthTbl, UserISD, 622 DstTy.getSimpleVT(), 623 SrcTy.getSimpleVT())) { 624 return AdjustCost(Entry->Cost); 625 } 626 } 627 628 // Single to/from double precision conversions. 629 if (Src->isVectorTy() && ST->hasNEON() && 630 ((ISD == ISD::FP_ROUND && SrcTy.getScalarType() == MVT::f64 && 631 DstTy.getScalarType() == MVT::f32) || 632 (ISD == ISD::FP_EXTEND && SrcTy.getScalarType() == MVT::f32 && 633 DstTy.getScalarType() == MVT::f64))) { 634 static const CostTblEntry NEONFltDblTbl[] = { 635 // Vector fptrunc/fpext conversions. 636 {ISD::FP_ROUND, MVT::v2f64, 2}, 637 {ISD::FP_EXTEND, MVT::v2f32, 2}, 638 {ISD::FP_EXTEND, MVT::v4f32, 4}}; 639 640 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src); 641 if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second)) 642 return AdjustCost(LT.first * Entry->Cost); 643 } 644 645 // Some arithmetic, load and store operations have specific instructions 646 // to cast up/down their types automatically at no extra cost. 647 // TODO: Get these tables to know at least what the related operations are. 648 static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = { 649 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 650 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 651 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 652 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 653 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 654 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 655 656 // The number of vmovl instructions for the extension. 657 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 658 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 659 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 660 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 661 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 3 }, 662 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 3 }, 663 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 664 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 665 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 666 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 667 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 668 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 669 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 670 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 671 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 672 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 673 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 674 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 675 676 // Operations that we legalize using splitting. 677 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 678 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 679 680 // Vector float <-> i32 conversions. 681 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 682 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 683 684 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 685 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 686 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, 687 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, 688 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 689 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 690 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 691 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 692 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 693 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 694 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 695 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 696 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 697 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 698 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 699 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 700 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, 701 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, 702 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, 703 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, 704 705 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 706 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 707 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 }, 708 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 }, 709 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 710 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 711 712 // Vector double <-> i32 conversions. 713 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 714 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 715 716 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 717 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 718 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, 719 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, 720 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 721 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 722 723 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 724 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 725 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 }, 726 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 }, 727 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 }, 728 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 } 729 }; 730 731 if (SrcTy.isVector() && ST->hasNEON()) { 732 if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD, 733 DstTy.getSimpleVT(), 734 SrcTy.getSimpleVT())) 735 return AdjustCost(Entry->Cost); 736 } 737 738 // Scalar float to integer conversions. 739 static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = { 740 { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 }, 741 { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 }, 742 { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 }, 743 { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 }, 744 { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 }, 745 { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 }, 746 { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 }, 747 { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 }, 748 { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 }, 749 { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 }, 750 { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 }, 751 { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 }, 752 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 }, 753 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 }, 754 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 }, 755 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 }, 756 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 }, 757 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 }, 758 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 }, 759 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 } 760 }; 761 if (SrcTy.isFloatingPoint() && ST->hasNEON()) { 762 if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD, 763 DstTy.getSimpleVT(), 764 SrcTy.getSimpleVT())) 765 return AdjustCost(Entry->Cost); 766 } 767 768 // Scalar integer to float conversions. 769 static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = { 770 { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 }, 771 { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 }, 772 { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 }, 773 { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 }, 774 { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 }, 775 { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 }, 776 { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 }, 777 { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 }, 778 { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 }, 779 { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 }, 780 { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 }, 781 { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 }, 782 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 }, 783 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 }, 784 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 }, 785 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 }, 786 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 }, 787 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 }, 788 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 }, 789 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 } 790 }; 791 792 if (SrcTy.isInteger() && ST->hasNEON()) { 793 if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl, 794 ISD, DstTy.getSimpleVT(), 795 SrcTy.getSimpleVT())) 796 return AdjustCost(Entry->Cost); 797 } 798 799 // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one 800 // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext 801 // are linearised so take more. 802 static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = { 803 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 804 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 805 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 806 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 807 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 }, 808 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 }, 809 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 810 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 811 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 }, 812 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 813 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 }, 814 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 }, 815 }; 816 817 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 818 if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl, 819 ISD, DstTy.getSimpleVT(), 820 SrcTy.getSimpleVT())) 821 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 822 } 823 824 if (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND) { 825 // As general rule, fp converts that were not matched above are scalarized 826 // and cost 1 vcvt for each lane, so long as the instruction is available. 827 // If not it will become a series of function calls. 828 const InstructionCost CallCost = 829 getCallInstrCost(nullptr, Dst, {Src}, CostKind); 830 int Lanes = 1; 831 if (SrcTy.isFixedLengthVector()) 832 Lanes = SrcTy.getVectorNumElements(); 833 834 if (IsLegalFPType(SrcTy) && IsLegalFPType(DstTy)) 835 return Lanes; 836 else 837 return Lanes * CallCost; 838 } 839 840 if (ISD == ISD::TRUNCATE && ST->hasMVEIntegerOps() && 841 SrcTy.isFixedLengthVector()) { 842 // Treat a truncate with larger than legal source (128bits for MVE) as 843 // expensive, 2 instructions per lane. 844 if ((SrcTy.getScalarType() == MVT::i8 || 845 SrcTy.getScalarType() == MVT::i16 || 846 SrcTy.getScalarType() == MVT::i32) && 847 SrcTy.getSizeInBits() > 128 && 848 SrcTy.getSizeInBits() > DstTy.getSizeInBits()) 849 return SrcTy.getVectorNumElements() * 2; 850 } 851 852 // Scalar integer conversion costs. 853 static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = { 854 // i16 -> i64 requires two dependent operations. 855 { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 }, 856 857 // Truncates on i64 are assumed to be free. 858 { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 }, 859 { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 }, 860 { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 }, 861 { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 } 862 }; 863 864 if (SrcTy.isInteger()) { 865 if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD, 866 DstTy.getSimpleVT(), 867 SrcTy.getSimpleVT())) 868 return AdjustCost(Entry->Cost); 869 } 870 871 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() 872 ? ST->getMVEVectorCostFactor(CostKind) 873 : 1; 874 return AdjustCost( 875 BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 876 } 877 878 InstructionCost ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 879 TTI::TargetCostKind CostKind, 880 unsigned Index, Value *Op0, 881 Value *Op1) { 882 // Penalize inserting into an D-subregister. We end up with a three times 883 // lower estimated throughput on swift. 884 if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement && 885 ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32) 886 return 3; 887 888 if (ST->hasNEON() && (Opcode == Instruction::InsertElement || 889 Opcode == Instruction::ExtractElement)) { 890 // Cross-class copies are expensive on many microarchitectures, 891 // so assume they are expensive by default. 892 if (cast<VectorType>(ValTy)->getElementType()->isIntegerTy()) 893 return 3; 894 895 // Even if it's not a cross class copy, this likely leads to mixing 896 // of NEON and VFP code and should be therefore penalized. 897 if (ValTy->isVectorTy() && 898 ValTy->getScalarSizeInBits() <= 32) 899 return std::max<InstructionCost>( 900 BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0, Op1), 901 2U); 902 } 903 904 if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement || 905 Opcode == Instruction::ExtractElement)) { 906 // Integer cross-lane moves are more expensive than float, which can 907 // sometimes just be vmovs. Integer involve being passes to GPR registers, 908 // causing more of a delay. 909 std::pair<InstructionCost, MVT> LT = 910 getTypeLegalizationCost(ValTy->getScalarType()); 911 return LT.first * (ValTy->getScalarType()->isIntegerTy() ? 4 : 1); 912 } 913 914 return BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0, Op1); 915 } 916 917 InstructionCost ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 918 Type *CondTy, 919 CmpInst::Predicate VecPred, 920 TTI::TargetCostKind CostKind, 921 const Instruction *I) { 922 int ISD = TLI->InstructionOpcodeToISD(Opcode); 923 924 // Thumb scalar code size cost for select. 925 if (CostKind == TTI::TCK_CodeSize && ISD == ISD::SELECT && 926 ST->isThumb() && !ValTy->isVectorTy()) { 927 // Assume expensive structs. 928 if (TLI->getValueType(DL, ValTy, true) == MVT::Other) 929 return TTI::TCC_Expensive; 930 931 // Select costs can vary because they: 932 // - may require one or more conditional mov (including an IT), 933 // - can't operate directly on immediates, 934 // - require live flags, which we can't copy around easily. 935 InstructionCost Cost = getTypeLegalizationCost(ValTy).first; 936 937 // Possible IT instruction for Thumb2, or more for Thumb1. 938 ++Cost; 939 940 // i1 values may need rematerialising by using mov immediates and/or 941 // flag setting instructions. 942 if (ValTy->isIntegerTy(1)) 943 ++Cost; 944 945 return Cost; 946 } 947 948 // If this is a vector min/max/abs, use the cost of that intrinsic directly 949 // instead. Hopefully when min/max intrinsics are more prevalent this code 950 // will not be needed. 951 const Instruction *Sel = I; 952 if ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && Sel && 953 Sel->hasOneUse()) 954 Sel = cast<Instruction>(Sel->user_back()); 955 if (Sel && ValTy->isVectorTy() && 956 (ValTy->isIntOrIntVectorTy() || ValTy->isFPOrFPVectorTy())) { 957 const Value *LHS, *RHS; 958 SelectPatternFlavor SPF = matchSelectPattern(Sel, LHS, RHS).Flavor; 959 unsigned IID = 0; 960 switch (SPF) { 961 case SPF_ABS: 962 IID = Intrinsic::abs; 963 break; 964 case SPF_SMIN: 965 IID = Intrinsic::smin; 966 break; 967 case SPF_SMAX: 968 IID = Intrinsic::smax; 969 break; 970 case SPF_UMIN: 971 IID = Intrinsic::umin; 972 break; 973 case SPF_UMAX: 974 IID = Intrinsic::umax; 975 break; 976 case SPF_FMINNUM: 977 IID = Intrinsic::minnum; 978 break; 979 case SPF_FMAXNUM: 980 IID = Intrinsic::maxnum; 981 break; 982 default: 983 break; 984 } 985 if (IID) { 986 // The ICmp is free, the select gets the cost of the min/max/etc 987 if (Sel != I) 988 return 0; 989 IntrinsicCostAttributes CostAttrs(IID, ValTy, {ValTy, ValTy}); 990 return getIntrinsicInstrCost(CostAttrs, CostKind); 991 } 992 } 993 994 // On NEON a vector select gets lowered to vbsl. 995 if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT && CondTy) { 996 // Lowering of some vector selects is currently far from perfect. 997 static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = { 998 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 }, 999 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 }, 1000 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 } 1001 }; 1002 1003 EVT SelCondTy = TLI->getValueType(DL, CondTy); 1004 EVT SelValTy = TLI->getValueType(DL, ValTy); 1005 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 1006 if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD, 1007 SelCondTy.getSimpleVT(), 1008 SelValTy.getSimpleVT())) 1009 return Entry->Cost; 1010 } 1011 1012 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy); 1013 return LT.first; 1014 } 1015 1016 if (ST->hasMVEIntegerOps() && ValTy->isVectorTy() && 1017 (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 1018 cast<FixedVectorType>(ValTy)->getNumElements() > 1) { 1019 FixedVectorType *VecValTy = cast<FixedVectorType>(ValTy); 1020 FixedVectorType *VecCondTy = dyn_cast_or_null<FixedVectorType>(CondTy); 1021 if (!VecCondTy) 1022 VecCondTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(VecValTy)); 1023 1024 // If we don't have mve.fp any fp operations will need to be scalarized. 1025 if (Opcode == Instruction::FCmp && !ST->hasMVEFloatOps()) { 1026 // One scalaization insert, one scalarization extract and the cost of the 1027 // fcmps. 1028 return BaseT::getScalarizationOverhead(VecValTy, /*Insert*/ false, 1029 /*Extract*/ true, CostKind) + 1030 BaseT::getScalarizationOverhead(VecCondTy, /*Insert*/ true, 1031 /*Extract*/ false, CostKind) + 1032 VecValTy->getNumElements() * 1033 getCmpSelInstrCost(Opcode, ValTy->getScalarType(), 1034 VecCondTy->getScalarType(), VecPred, 1035 CostKind, I); 1036 } 1037 1038 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy); 1039 int BaseCost = ST->getMVEVectorCostFactor(CostKind); 1040 // There are two types - the input that specifies the type of the compare 1041 // and the output vXi1 type. Because we don't know how the output will be 1042 // split, we may need an expensive shuffle to get two in sync. This has the 1043 // effect of making larger than legal compares (v8i32 for example) 1044 // expensive. 1045 if (LT.second.isVector() && LT.second.getVectorNumElements() > 2) { 1046 if (LT.first > 1) 1047 return LT.first * BaseCost + 1048 BaseT::getScalarizationOverhead(VecCondTy, /*Insert*/ true, 1049 /*Extract*/ false, CostKind); 1050 return BaseCost; 1051 } 1052 } 1053 1054 // Default to cheap (throughput/size of 1 instruction) but adjust throughput 1055 // for "multiple beats" potentially needed by MVE instructions. 1056 int BaseCost = 1; 1057 if (ST->hasMVEIntegerOps() && ValTy->isVectorTy()) 1058 BaseCost = ST->getMVEVectorCostFactor(CostKind); 1059 1060 return BaseCost * 1061 BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 1062 } 1063 1064 InstructionCost ARMTTIImpl::getAddressComputationCost(Type *Ty, 1065 ScalarEvolution *SE, 1066 const SCEV *Ptr) { 1067 // Address computations in vectorized code with non-consecutive addresses will 1068 // likely result in more instructions compared to scalar code where the 1069 // computation can more often be merged into the index mode. The resulting 1070 // extra micro-ops can significantly decrease throughput. 1071 unsigned NumVectorInstToHideOverhead = 10; 1072 int MaxMergeDistance = 64; 1073 1074 if (ST->hasNEON()) { 1075 if (Ty->isVectorTy() && SE && 1076 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 1077 return NumVectorInstToHideOverhead; 1078 1079 // In many cases the address computation is not merged into the instruction 1080 // addressing mode. 1081 return 1; 1082 } 1083 return BaseT::getAddressComputationCost(Ty, SE, Ptr); 1084 } 1085 1086 bool ARMTTIImpl::isProfitableLSRChainElement(Instruction *I) { 1087 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1088 // If a VCTP is part of a chain, it's already profitable and shouldn't be 1089 // optimized, else LSR may block tail-predication. 1090 switch (II->getIntrinsicID()) { 1091 case Intrinsic::arm_mve_vctp8: 1092 case Intrinsic::arm_mve_vctp16: 1093 case Intrinsic::arm_mve_vctp32: 1094 case Intrinsic::arm_mve_vctp64: 1095 return true; 1096 default: 1097 break; 1098 } 1099 } 1100 return false; 1101 } 1102 1103 bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) { 1104 if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps()) 1105 return false; 1106 1107 if (auto *VecTy = dyn_cast<FixedVectorType>(DataTy)) { 1108 // Don't support v2i1 yet. 1109 if (VecTy->getNumElements() == 2) 1110 return false; 1111 1112 // We don't support extending fp types. 1113 unsigned VecWidth = DataTy->getPrimitiveSizeInBits(); 1114 if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy()) 1115 return false; 1116 } 1117 1118 unsigned EltWidth = DataTy->getScalarSizeInBits(); 1119 return (EltWidth == 32 && Alignment >= 4) || 1120 (EltWidth == 16 && Alignment >= 2) || (EltWidth == 8); 1121 } 1122 1123 bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, Align Alignment) { 1124 if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps()) 1125 return false; 1126 1127 unsigned EltWidth = Ty->getScalarSizeInBits(); 1128 return ((EltWidth == 32 && Alignment >= 4) || 1129 (EltWidth == 16 && Alignment >= 2) || EltWidth == 8); 1130 } 1131 1132 /// Given a memcpy/memset/memmove instruction, return the number of memory 1133 /// operations performed, via querying findOptimalMemOpLowering. Returns -1 if a 1134 /// call is used. 1135 int ARMTTIImpl::getNumMemOps(const IntrinsicInst *I) const { 1136 MemOp MOp; 1137 unsigned DstAddrSpace = ~0u; 1138 unsigned SrcAddrSpace = ~0u; 1139 const Function *F = I->getParent()->getParent(); 1140 1141 if (const auto *MC = dyn_cast<MemTransferInst>(I)) { 1142 ConstantInt *C = dyn_cast<ConstantInt>(MC->getLength()); 1143 // If 'size' is not a constant, a library call will be generated. 1144 if (!C) 1145 return -1; 1146 1147 const unsigned Size = C->getValue().getZExtValue(); 1148 const Align DstAlign = *MC->getDestAlign(); 1149 const Align SrcAlign = *MC->getSourceAlign(); 1150 1151 MOp = MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign, 1152 /*IsVolatile*/ false); 1153 DstAddrSpace = MC->getDestAddressSpace(); 1154 SrcAddrSpace = MC->getSourceAddressSpace(); 1155 } 1156 else if (const auto *MS = dyn_cast<MemSetInst>(I)) { 1157 ConstantInt *C = dyn_cast<ConstantInt>(MS->getLength()); 1158 // If 'size' is not a constant, a library call will be generated. 1159 if (!C) 1160 return -1; 1161 1162 const unsigned Size = C->getValue().getZExtValue(); 1163 const Align DstAlign = *MS->getDestAlign(); 1164 1165 MOp = MemOp::Set(Size, /*DstAlignCanChange*/ false, DstAlign, 1166 /*IsZeroMemset*/ false, /*IsVolatile*/ false); 1167 DstAddrSpace = MS->getDestAddressSpace(); 1168 } 1169 else 1170 llvm_unreachable("Expected a memcpy/move or memset!"); 1171 1172 unsigned Limit, Factor = 2; 1173 switch(I->getIntrinsicID()) { 1174 case Intrinsic::memcpy: 1175 Limit = TLI->getMaxStoresPerMemcpy(F->hasMinSize()); 1176 break; 1177 case Intrinsic::memmove: 1178 Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize()); 1179 break; 1180 case Intrinsic::memset: 1181 Limit = TLI->getMaxStoresPerMemset(F->hasMinSize()); 1182 Factor = 1; 1183 break; 1184 default: 1185 llvm_unreachable("Expected a memcpy/move or memset!"); 1186 } 1187 1188 // MemOps will be poplulated with a list of data types that needs to be 1189 // loaded and stored. That's why we multiply the number of elements by 2 to 1190 // get the cost for this memcpy. 1191 std::vector<EVT> MemOps; 1192 if (getTLI()->findOptimalMemOpLowering( 1193 MemOps, Limit, MOp, DstAddrSpace, 1194 SrcAddrSpace, F->getAttributes())) 1195 return MemOps.size() * Factor; 1196 1197 // If we can't find an optimal memop lowering, return the default cost 1198 return -1; 1199 } 1200 1201 InstructionCost ARMTTIImpl::getMemcpyCost(const Instruction *I) { 1202 int NumOps = getNumMemOps(cast<IntrinsicInst>(I)); 1203 1204 // To model the cost of a library call, we assume 1 for the call, and 1205 // 3 for the argument setup. 1206 if (NumOps == -1) 1207 return 4; 1208 return NumOps; 1209 } 1210 1211 InstructionCost ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 1212 VectorType *Tp, ArrayRef<int> Mask, 1213 TTI::TargetCostKind CostKind, 1214 int Index, VectorType *SubTp, 1215 ArrayRef<const Value *> Args) { 1216 Kind = improveShuffleKindFromMask(Kind, Mask, Tp, Index, SubTp); 1217 if (ST->hasNEON()) { 1218 if (Kind == TTI::SK_Broadcast) { 1219 static const CostTblEntry NEONDupTbl[] = { 1220 // VDUP handles these cases. 1221 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 1222 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 1223 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 1224 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 1225 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, 1226 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, 1227 1228 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, 1229 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, 1230 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, 1231 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}}; 1232 1233 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp); 1234 if (const auto *Entry = 1235 CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second)) 1236 return LT.first * Entry->Cost; 1237 } 1238 if (Kind == TTI::SK_Reverse) { 1239 static const CostTblEntry NEONShuffleTbl[] = { 1240 // Reverse shuffle cost one instruction if we are shuffling within a 1241 // double word (vrev) or two if we shuffle a quad word (vrev, vext). 1242 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 1243 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 1244 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 1245 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 1246 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, 1247 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, 1248 1249 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 1250 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 1251 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2}, 1252 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}}; 1253 1254 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp); 1255 if (const auto *Entry = 1256 CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second)) 1257 return LT.first * Entry->Cost; 1258 } 1259 if (Kind == TTI::SK_Select) { 1260 static const CostTblEntry NEONSelShuffleTbl[] = { 1261 // Select shuffle cost table for ARM. Cost is the number of 1262 // instructions 1263 // required to create the shuffled vector. 1264 1265 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 1266 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 1267 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 1268 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 1269 1270 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 1271 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 1272 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2}, 1273 1274 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16}, 1275 1276 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}}; 1277 1278 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp); 1279 if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl, 1280 ISD::VECTOR_SHUFFLE, LT.second)) 1281 return LT.first * Entry->Cost; 1282 } 1283 } 1284 if (ST->hasMVEIntegerOps()) { 1285 if (Kind == TTI::SK_Broadcast) { 1286 static const CostTblEntry MVEDupTbl[] = { 1287 // VDUP handles these cases. 1288 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, 1289 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, 1290 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}, 1291 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, 1292 {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}}; 1293 1294 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp); 1295 if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE, 1296 LT.second)) 1297 return LT.first * Entry->Cost * 1298 ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput); 1299 } 1300 1301 if (!Mask.empty()) { 1302 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp); 1303 if (LT.second.isVector() && 1304 Mask.size() <= LT.second.getVectorNumElements() && 1305 (isVREVMask(Mask, LT.second, 16) || isVREVMask(Mask, LT.second, 32) || 1306 isVREVMask(Mask, LT.second, 64))) 1307 return ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) * LT.first; 1308 } 1309 } 1310 1311 int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy() 1312 ? ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) 1313 : 1; 1314 return BaseCost * 1315 BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp); 1316 } 1317 1318 InstructionCost ARMTTIImpl::getArithmeticInstrCost( 1319 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 1320 TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info, 1321 ArrayRef<const Value *> Args, 1322 const Instruction *CxtI) { 1323 int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); 1324 if (ST->isThumb() && CostKind == TTI::TCK_CodeSize && Ty->isIntegerTy(1)) { 1325 // Make operations on i1 relatively expensive as this often involves 1326 // combining predicates. AND and XOR should be easier to handle with IT 1327 // blocks. 1328 switch (ISDOpcode) { 1329 default: 1330 break; 1331 case ISD::AND: 1332 case ISD::XOR: 1333 return 2; 1334 case ISD::OR: 1335 return 3; 1336 } 1337 } 1338 1339 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty); 1340 1341 if (ST->hasNEON()) { 1342 const unsigned FunctionCallDivCost = 20; 1343 const unsigned ReciprocalDivCost = 10; 1344 static const CostTblEntry CostTbl[] = { 1345 // Division. 1346 // These costs are somewhat random. Choose a cost of 20 to indicate that 1347 // vectorizing devision (added function call) is going to be very expensive. 1348 // Double registers types. 1349 { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost}, 1350 { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost}, 1351 { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost}, 1352 { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost}, 1353 { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost}, 1354 { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost}, 1355 { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost}, 1356 { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost}, 1357 { ISD::SDIV, MVT::v4i16, ReciprocalDivCost}, 1358 { ISD::UDIV, MVT::v4i16, ReciprocalDivCost}, 1359 { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost}, 1360 { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost}, 1361 { ISD::SDIV, MVT::v8i8, ReciprocalDivCost}, 1362 { ISD::UDIV, MVT::v8i8, ReciprocalDivCost}, 1363 { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost}, 1364 { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost}, 1365 // Quad register types. 1366 { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost}, 1367 { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost}, 1368 { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost}, 1369 { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost}, 1370 { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost}, 1371 { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost}, 1372 { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost}, 1373 { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost}, 1374 { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost}, 1375 { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost}, 1376 { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost}, 1377 { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost}, 1378 { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost}, 1379 { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost}, 1380 { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost}, 1381 { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost}, 1382 // Multiplication. 1383 }; 1384 1385 if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second)) 1386 return LT.first * Entry->Cost; 1387 1388 InstructionCost Cost = BaseT::getArithmeticInstrCost( 1389 Opcode, Ty, CostKind, Op1Info, Op2Info); 1390 1391 // This is somewhat of a hack. The problem that we are facing is that SROA 1392 // creates a sequence of shift, and, or instructions to construct values. 1393 // These sequences are recognized by the ISel and have zero-cost. Not so for 1394 // the vectorized code. Because we have support for v2i64 but not i64 those 1395 // sequences look particularly beneficial to vectorize. 1396 // To work around this we increase the cost of v2i64 operations to make them 1397 // seem less beneficial. 1398 if (LT.second == MVT::v2i64 && Op2Info.isUniform() && Op2Info.isConstant()) 1399 Cost += 4; 1400 1401 return Cost; 1402 } 1403 1404 // If this operation is a shift on arm/thumb2, it might well be folded into 1405 // the following instruction, hence having a cost of 0. 1406 auto LooksLikeAFreeShift = [&]() { 1407 if (ST->isThumb1Only() || Ty->isVectorTy()) 1408 return false; 1409 1410 if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift()) 1411 return false; 1412 if (!Op2Info.isUniform() || !Op2Info.isConstant()) 1413 return false; 1414 1415 // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB 1416 switch (cast<Instruction>(CxtI->user_back())->getOpcode()) { 1417 case Instruction::Add: 1418 case Instruction::Sub: 1419 case Instruction::And: 1420 case Instruction::Xor: 1421 case Instruction::Or: 1422 case Instruction::ICmp: 1423 return true; 1424 default: 1425 return false; 1426 } 1427 }; 1428 if (LooksLikeAFreeShift()) 1429 return 0; 1430 1431 // Default to cheap (throughput/size of 1 instruction) but adjust throughput 1432 // for "multiple beats" potentially needed by MVE instructions. 1433 int BaseCost = 1; 1434 if (ST->hasMVEIntegerOps() && Ty->isVectorTy()) 1435 BaseCost = ST->getMVEVectorCostFactor(CostKind); 1436 1437 // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost, 1438 // without treating floats as more expensive that scalars or increasing the 1439 // costs for custom operations. The results is also multiplied by the 1440 // MVEVectorCostFactor where appropriate. 1441 if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second)) 1442 return LT.first * BaseCost; 1443 1444 // Else this is expand, assume that we need to scalarize this op. 1445 if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) { 1446 unsigned Num = VTy->getNumElements(); 1447 InstructionCost Cost = 1448 getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind); 1449 // Return the cost of multiple scalar invocation plus the cost of 1450 // inserting and extracting the values. 1451 SmallVector<Type *> Tys(Args.size(), Ty); 1452 return BaseT::getScalarizationOverhead(VTy, Args, Tys, CostKind) + 1453 Num * Cost; 1454 } 1455 1456 return BaseCost; 1457 } 1458 1459 InstructionCost ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 1460 MaybeAlign Alignment, 1461 unsigned AddressSpace, 1462 TTI::TargetCostKind CostKind, 1463 TTI::OperandValueInfo OpInfo, 1464 const Instruction *I) { 1465 // TODO: Handle other cost kinds. 1466 if (CostKind != TTI::TCK_RecipThroughput) 1467 return 1; 1468 1469 // Type legalization can't handle structs 1470 if (TLI->getValueType(DL, Src, true) == MVT::Other) 1471 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1472 CostKind); 1473 1474 if (ST->hasNEON() && Src->isVectorTy() && 1475 (Alignment && *Alignment != Align(16)) && 1476 cast<VectorType>(Src)->getElementType()->isDoubleTy()) { 1477 // Unaligned loads/stores are extremely inefficient. 1478 // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr. 1479 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src); 1480 return LT.first * 4; 1481 } 1482 1483 // MVE can optimize a fpext(load(4xhalf)) using an extending integer load. 1484 // Same for stores. 1485 if (ST->hasMVEFloatOps() && isa<FixedVectorType>(Src) && I && 1486 ((Opcode == Instruction::Load && I->hasOneUse() && 1487 isa<FPExtInst>(*I->user_begin())) || 1488 (Opcode == Instruction::Store && isa<FPTruncInst>(I->getOperand(0))))) { 1489 FixedVectorType *SrcVTy = cast<FixedVectorType>(Src); 1490 Type *DstTy = 1491 Opcode == Instruction::Load 1492 ? (*I->user_begin())->getType() 1493 : cast<Instruction>(I->getOperand(0))->getOperand(0)->getType(); 1494 if (SrcVTy->getNumElements() == 4 && SrcVTy->getScalarType()->isHalfTy() && 1495 DstTy->getScalarType()->isFloatTy()) 1496 return ST->getMVEVectorCostFactor(CostKind); 1497 } 1498 1499 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() 1500 ? ST->getMVEVectorCostFactor(CostKind) 1501 : 1; 1502 return BaseCost * BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1503 CostKind, OpInfo, I); 1504 } 1505 1506 InstructionCost 1507 ARMTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, 1508 unsigned AddressSpace, 1509 TTI::TargetCostKind CostKind) { 1510 if (ST->hasMVEIntegerOps()) { 1511 if (Opcode == Instruction::Load && isLegalMaskedLoad(Src, Alignment)) 1512 return ST->getMVEVectorCostFactor(CostKind); 1513 if (Opcode == Instruction::Store && isLegalMaskedStore(Src, Alignment)) 1514 return ST->getMVEVectorCostFactor(CostKind); 1515 } 1516 if (!isa<FixedVectorType>(Src)) 1517 return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1518 CostKind); 1519 // Scalar cost, which is currently very high due to the efficiency of the 1520 // generated code. 1521 return cast<FixedVectorType>(Src)->getNumElements() * 8; 1522 } 1523 1524 InstructionCost ARMTTIImpl::getInterleavedMemoryOpCost( 1525 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 1526 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 1527 bool UseMaskForCond, bool UseMaskForGaps) { 1528 assert(Factor >= 2 && "Invalid interleave factor"); 1529 assert(isa<VectorType>(VecTy) && "Expect a vector type"); 1530 1531 // vldN/vstN doesn't support vector types of i64/f64 element. 1532 bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64; 1533 1534 if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits && 1535 !UseMaskForCond && !UseMaskForGaps) { 1536 unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements(); 1537 auto *SubVecTy = 1538 FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor); 1539 1540 // vldN/vstN only support legal vector types of size 64 or 128 in bits. 1541 // Accesses having vector types that are a multiple of 128 bits can be 1542 // matched to more than one vldN/vstN instruction. 1543 int BaseCost = 1544 ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor(CostKind) : 1; 1545 if (NumElts % Factor == 0 && 1546 TLI->isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL)) 1547 return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL); 1548 1549 // Some smaller than legal interleaved patterns are cheap as we can make 1550 // use of the vmovn or vrev patterns to interleave a standard load. This is 1551 // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is 1552 // promoted differently). The cost of 2 here is then a load and vrev or 1553 // vmovn. 1554 if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 && 1555 VecTy->isIntOrIntVectorTy() && 1556 DL.getTypeSizeInBits(SubVecTy).getFixedValue() <= 64) 1557 return 2 * BaseCost; 1558 } 1559 1560 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1561 Alignment, AddressSpace, CostKind, 1562 UseMaskForCond, UseMaskForGaps); 1563 } 1564 1565 InstructionCost ARMTTIImpl::getGatherScatterOpCost( 1566 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 1567 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) { 1568 using namespace PatternMatch; 1569 if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters) 1570 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 1571 Alignment, CostKind, I); 1572 1573 assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!"); 1574 auto *VTy = cast<FixedVectorType>(DataTy); 1575 1576 // TODO: Splitting, once we do that. 1577 1578 unsigned NumElems = VTy->getNumElements(); 1579 unsigned EltSize = VTy->getScalarSizeInBits(); 1580 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(DataTy); 1581 1582 // For now, it is assumed that for the MVE gather instructions the loads are 1583 // all effectively serialised. This means the cost is the scalar cost 1584 // multiplied by the number of elements being loaded. This is possibly very 1585 // conservative, but even so we still end up vectorising loops because the 1586 // cost per iteration for many loops is lower than for scalar loops. 1587 InstructionCost VectorCost = 1588 NumElems * LT.first * ST->getMVEVectorCostFactor(CostKind); 1589 // The scalarization cost should be a lot higher. We use the number of vector 1590 // elements plus the scalarization overhead. If masking is required then a lot 1591 // of little blocks will be needed and potentially a scalarized p0 mask, 1592 // greatly increasing the cost. 1593 InstructionCost ScalarCost = 1594 NumElems * LT.first + (VariableMask ? NumElems * 5 : 0) + 1595 BaseT::getScalarizationOverhead(VTy, /*Insert*/ true, /*Extract*/ false, 1596 CostKind) + 1597 BaseT::getScalarizationOverhead(VTy, /*Insert*/ false, /*Extract*/ true, 1598 CostKind); 1599 1600 if (EltSize < 8 || Alignment < EltSize / 8) 1601 return ScalarCost; 1602 1603 unsigned ExtSize = EltSize; 1604 // Check whether there's a single user that asks for an extended type 1605 if (I != nullptr) { 1606 // Dependent of the caller of this function, a gather instruction will 1607 // either have opcode Instruction::Load or be a call to the masked_gather 1608 // intrinsic 1609 if ((I->getOpcode() == Instruction::Load || 1610 match(I, m_Intrinsic<Intrinsic::masked_gather>())) && 1611 I->hasOneUse()) { 1612 const User *Us = *I->users().begin(); 1613 if (isa<ZExtInst>(Us) || isa<SExtInst>(Us)) { 1614 // only allow valid type combinations 1615 unsigned TypeSize = 1616 cast<Instruction>(Us)->getType()->getScalarSizeInBits(); 1617 if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) || 1618 (TypeSize == 16 && EltSize == 8)) && 1619 TypeSize * NumElems == 128) { 1620 ExtSize = TypeSize; 1621 } 1622 } 1623 } 1624 // Check whether the input data needs to be truncated 1625 TruncInst *T; 1626 if ((I->getOpcode() == Instruction::Store || 1627 match(I, m_Intrinsic<Intrinsic::masked_scatter>())) && 1628 (T = dyn_cast<TruncInst>(I->getOperand(0)))) { 1629 // Only allow valid type combinations 1630 unsigned TypeSize = T->getOperand(0)->getType()->getScalarSizeInBits(); 1631 if (((EltSize == 16 && TypeSize == 32) || 1632 (EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) && 1633 TypeSize * NumElems == 128) 1634 ExtSize = TypeSize; 1635 } 1636 } 1637 1638 if (ExtSize * NumElems != 128 || NumElems < 4) 1639 return ScalarCost; 1640 1641 // Any (aligned) i32 gather will not need to be scalarised. 1642 if (ExtSize == 32) 1643 return VectorCost; 1644 // For smaller types, we need to ensure that the gep's inputs are correctly 1645 // extended from a small enough value. Other sizes (including i64) are 1646 // scalarized for now. 1647 if (ExtSize != 8 && ExtSize != 16) 1648 return ScalarCost; 1649 1650 if (const auto *BC = dyn_cast<BitCastInst>(Ptr)) 1651 Ptr = BC->getOperand(0); 1652 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1653 if (GEP->getNumOperands() != 2) 1654 return ScalarCost; 1655 unsigned Scale = DL.getTypeAllocSize(GEP->getResultElementType()); 1656 // Scale needs to be correct (which is only relevant for i16s). 1657 if (Scale != 1 && Scale * 8 != ExtSize) 1658 return ScalarCost; 1659 // And we need to zext (not sext) the indexes from a small enough type. 1660 if (const auto *ZExt = dyn_cast<ZExtInst>(GEP->getOperand(1))) { 1661 if (ZExt->getOperand(0)->getType()->getScalarSizeInBits() <= ExtSize) 1662 return VectorCost; 1663 } 1664 return ScalarCost; 1665 } 1666 return ScalarCost; 1667 } 1668 1669 InstructionCost 1670 ARMTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy, 1671 std::optional<FastMathFlags> FMF, 1672 TTI::TargetCostKind CostKind) { 1673 1674 EVT ValVT = TLI->getValueType(DL, ValTy); 1675 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1676 unsigned EltSize = ValVT.getScalarSizeInBits(); 1677 1678 // In general floating point reductions are a series of elementwise 1679 // operations, with free extracts on each step. These are either in-order or 1680 // treewise depending on whether that is allowed by the fast math flags. 1681 if ((ISD == ISD::FADD || ISD == ISD::FMUL) && 1682 ((EltSize == 32 && ST->hasVFP2Base()) || 1683 (EltSize == 64 && ST->hasFP64()) || 1684 (EltSize == 16 && ST->hasFullFP16()))) { 1685 unsigned NumElts = cast<FixedVectorType>(ValTy)->getNumElements(); 1686 unsigned VecLimit = ST->hasMVEFloatOps() ? 128 : (ST->hasNEON() ? 64 : -1); 1687 InstructionCost VecCost = 0; 1688 while (!TTI::requiresOrderedReduction(FMF) && isPowerOf2_32(NumElts) && 1689 NumElts * EltSize > VecLimit) { 1690 Type *VecTy = FixedVectorType::get(ValTy->getElementType(), NumElts / 2); 1691 VecCost += getArithmeticInstrCost(Opcode, VecTy, CostKind); 1692 NumElts /= 2; 1693 } 1694 1695 // For fp16 we need to extract the upper lane elements. MVE can add a 1696 // VREV+FMIN/MAX to perform another vector step instead. 1697 InstructionCost ExtractCost = 0; 1698 if (!TTI::requiresOrderedReduction(FMF) && ST->hasMVEFloatOps() && 1699 ValVT.getVectorElementType() == MVT::f16 && NumElts == 8) { 1700 VecCost += ST->getMVEVectorCostFactor(CostKind) * 2; 1701 NumElts /= 2; 1702 } else if (ValVT.getVectorElementType() == MVT::f16) 1703 ExtractCost = NumElts / 2; 1704 1705 return VecCost + ExtractCost + 1706 NumElts * 1707 getArithmeticInstrCost(Opcode, ValTy->getElementType(), CostKind); 1708 } 1709 1710 if ((ISD == ISD::AND || ISD == ISD::OR || ISD == ISD::XOR) && 1711 (EltSize == 64 || EltSize == 32 || EltSize == 16 || EltSize == 8)) { 1712 unsigned NumElts = cast<FixedVectorType>(ValTy)->getNumElements(); 1713 unsigned VecLimit = 1714 ST->hasMVEIntegerOps() ? 128 : (ST->hasNEON() ? 64 : -1); 1715 InstructionCost VecCost = 0; 1716 while (isPowerOf2_32(NumElts) && NumElts * EltSize > VecLimit) { 1717 Type *VecTy = FixedVectorType::get(ValTy->getElementType(), NumElts / 2); 1718 VecCost += getArithmeticInstrCost(Opcode, VecTy, CostKind); 1719 NumElts /= 2; 1720 } 1721 // For i16/i8, MVE will perform a VREV + VORR/VAND/VEOR for the 64bit vector 1722 // step. 1723 if (ST->hasMVEIntegerOps() && ValVT.getScalarSizeInBits() <= 16 && 1724 NumElts * EltSize == 64) { 1725 Type *VecTy = FixedVectorType::get(ValTy->getElementType(), NumElts); 1726 VecCost += ST->getMVEVectorCostFactor(CostKind) + 1727 getArithmeticInstrCost(Opcode, VecTy, CostKind); 1728 NumElts /= 2; 1729 } 1730 1731 // From here we extract the elements and perform the and/or/xor. 1732 InstructionCost ExtractCost = NumElts; 1733 return VecCost + ExtractCost + 1734 (NumElts - 1) * getArithmeticInstrCost( 1735 Opcode, ValTy->getElementType(), CostKind); 1736 } 1737 1738 if (!ST->hasMVEIntegerOps() || !ValVT.isSimple() || ISD != ISD::ADD || 1739 TTI::requiresOrderedReduction(FMF)) 1740 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 1741 1742 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy); 1743 1744 static const CostTblEntry CostTblAdd[]{ 1745 {ISD::ADD, MVT::v16i8, 1}, 1746 {ISD::ADD, MVT::v8i16, 1}, 1747 {ISD::ADD, MVT::v4i32, 1}, 1748 }; 1749 if (const auto *Entry = CostTableLookup(CostTblAdd, ISD, LT.second)) 1750 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first; 1751 1752 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 1753 } 1754 1755 InstructionCost ARMTTIImpl::getExtendedReductionCost( 1756 unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy, 1757 FastMathFlags FMF, TTI::TargetCostKind CostKind) { 1758 EVT ValVT = TLI->getValueType(DL, ValTy); 1759 EVT ResVT = TLI->getValueType(DL, ResTy); 1760 1761 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1762 1763 switch (ISD) { 1764 case ISD::ADD: 1765 if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) { 1766 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy); 1767 1768 // The legal cases are: 1769 // VADDV u/s 8/16/32 1770 // VADDLV u/s 32 1771 // Codegen currently cannot always handle larger than legal vectors very 1772 // well, especially for predicated reductions where the mask needs to be 1773 // split, so restrict to 128bit or smaller input types. 1774 unsigned RevVTSize = ResVT.getSizeInBits(); 1775 if (ValVT.getSizeInBits() <= 128 && 1776 ((LT.second == MVT::v16i8 && RevVTSize <= 32) || 1777 (LT.second == MVT::v8i16 && RevVTSize <= 32) || 1778 (LT.second == MVT::v4i32 && RevVTSize <= 64))) 1779 return ST->getMVEVectorCostFactor(CostKind) * LT.first; 1780 } 1781 break; 1782 default: 1783 break; 1784 } 1785 return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy, FMF, 1786 CostKind); 1787 } 1788 1789 InstructionCost 1790 ARMTTIImpl::getMulAccReductionCost(bool IsUnsigned, Type *ResTy, 1791 VectorType *ValTy, 1792 TTI::TargetCostKind CostKind) { 1793 EVT ValVT = TLI->getValueType(DL, ValTy); 1794 EVT ResVT = TLI->getValueType(DL, ResTy); 1795 1796 if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) { 1797 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy); 1798 1799 // The legal cases are: 1800 // VMLAV u/s 8/16/32 1801 // VMLALV u/s 16/32 1802 // Codegen currently cannot always handle larger than legal vectors very 1803 // well, especially for predicated reductions where the mask needs to be 1804 // split, so restrict to 128bit or smaller input types. 1805 unsigned RevVTSize = ResVT.getSizeInBits(); 1806 if (ValVT.getSizeInBits() <= 128 && 1807 ((LT.second == MVT::v16i8 && RevVTSize <= 32) || 1808 (LT.second == MVT::v8i16 && RevVTSize <= 64) || 1809 (LT.second == MVT::v4i32 && RevVTSize <= 64))) 1810 return ST->getMVEVectorCostFactor(CostKind) * LT.first; 1811 } 1812 1813 return BaseT::getMulAccReductionCost(IsUnsigned, ResTy, ValTy, CostKind); 1814 } 1815 1816 InstructionCost 1817 ARMTTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, 1818 FastMathFlags FMF, 1819 TTI::TargetCostKind CostKind) { 1820 EVT ValVT = TLI->getValueType(DL, Ty); 1821 1822 // In general floating point reductions are a series of elementwise 1823 // operations, with free extracts on each step. These are either in-order or 1824 // treewise depending on whether that is allowed by the fast math flags. 1825 if ((IID == Intrinsic::minnum || IID == Intrinsic::maxnum) && 1826 ((ValVT.getVectorElementType() == MVT::f32 && ST->hasVFP2Base()) || 1827 (ValVT.getVectorElementType() == MVT::f64 && ST->hasFP64()) || 1828 (ValVT.getVectorElementType() == MVT::f16 && ST->hasFullFP16()))) { 1829 unsigned NumElts = cast<FixedVectorType>(Ty)->getNumElements(); 1830 unsigned EltSize = ValVT.getScalarSizeInBits(); 1831 unsigned VecLimit = ST->hasMVEFloatOps() ? 128 : (ST->hasNEON() ? 64 : -1); 1832 InstructionCost VecCost; 1833 while (isPowerOf2_32(NumElts) && NumElts * EltSize > VecLimit) { 1834 Type *VecTy = FixedVectorType::get(Ty->getElementType(), NumElts/2); 1835 IntrinsicCostAttributes ICA(IID, VecTy, {VecTy, VecTy}, FMF); 1836 VecCost += getIntrinsicInstrCost(ICA, CostKind); 1837 NumElts /= 2; 1838 } 1839 1840 // For fp16 we need to extract the upper lane elements. MVE can add a 1841 // VREV+FMIN/MAX to perform another vector step instead. 1842 InstructionCost ExtractCost = 0; 1843 if (ST->hasMVEFloatOps() && ValVT.getVectorElementType() == MVT::f16 && 1844 NumElts == 8) { 1845 VecCost += ST->getMVEVectorCostFactor(CostKind) * 2; 1846 NumElts /= 2; 1847 } else if (ValVT.getVectorElementType() == MVT::f16) 1848 ExtractCost = cast<FixedVectorType>(Ty)->getNumElements() / 2; 1849 1850 IntrinsicCostAttributes ICA(IID, Ty->getElementType(), 1851 {Ty->getElementType(), Ty->getElementType()}, 1852 FMF); 1853 return VecCost + ExtractCost + 1854 (NumElts - 1) * getIntrinsicInstrCost(ICA, CostKind); 1855 } 1856 1857 if (IID == Intrinsic::smin || IID == Intrinsic::smax || 1858 IID == Intrinsic::umin || IID == Intrinsic::umax) { 1859 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty); 1860 1861 // All costs are the same for u/s min/max. These lower to vminv, which are 1862 // given a slightly higher cost as they tend to take multiple cycles for 1863 // smaller type sizes. 1864 static const CostTblEntry CostTblAdd[]{ 1865 {ISD::SMIN, MVT::v16i8, 4}, 1866 {ISD::SMIN, MVT::v8i16, 3}, 1867 {ISD::SMIN, MVT::v4i32, 2}, 1868 }; 1869 if (const auto *Entry = CostTableLookup(CostTblAdd, ISD::SMIN, LT.second)) 1870 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first; 1871 } 1872 1873 return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind); 1874 } 1875 1876 InstructionCost 1877 ARMTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 1878 TTI::TargetCostKind CostKind) { 1879 switch (ICA.getID()) { 1880 case Intrinsic::get_active_lane_mask: 1881 // Currently we make a somewhat optimistic assumption that 1882 // active_lane_mask's are always free. In reality it may be freely folded 1883 // into a tail predicated loop, expanded into a VCPT or expanded into a lot 1884 // of add/icmp code. We may need to improve this in the future, but being 1885 // able to detect if it is free or not involves looking at a lot of other 1886 // code. We currently assume that the vectorizer inserted these, and knew 1887 // what it was doing in adding one. 1888 if (ST->hasMVEIntegerOps()) 1889 return 0; 1890 break; 1891 case Intrinsic::sadd_sat: 1892 case Intrinsic::ssub_sat: 1893 case Intrinsic::uadd_sat: 1894 case Intrinsic::usub_sat: { 1895 if (!ST->hasMVEIntegerOps()) 1896 break; 1897 Type *VT = ICA.getReturnType(); 1898 1899 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VT); 1900 if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 || 1901 LT.second == MVT::v16i8) { 1902 // This is a base cost of 1 for the vqadd, plus 3 extract shifts if we 1903 // need to extend the type, as it uses shr(qadd(shl, shl)). 1904 unsigned Instrs = 1905 LT.second.getScalarSizeInBits() == VT->getScalarSizeInBits() ? 1 : 4; 1906 return LT.first * ST->getMVEVectorCostFactor(CostKind) * Instrs; 1907 } 1908 break; 1909 } 1910 case Intrinsic::abs: 1911 case Intrinsic::smin: 1912 case Intrinsic::smax: 1913 case Intrinsic::umin: 1914 case Intrinsic::umax: { 1915 if (!ST->hasMVEIntegerOps()) 1916 break; 1917 Type *VT = ICA.getReturnType(); 1918 1919 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VT); 1920 if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 || 1921 LT.second == MVT::v16i8) 1922 return LT.first * ST->getMVEVectorCostFactor(CostKind); 1923 break; 1924 } 1925 case Intrinsic::minnum: 1926 case Intrinsic::maxnum: { 1927 if (!ST->hasMVEFloatOps()) 1928 break; 1929 Type *VT = ICA.getReturnType(); 1930 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VT); 1931 if (LT.second == MVT::v4f32 || LT.second == MVT::v8f16) 1932 return LT.first * ST->getMVEVectorCostFactor(CostKind); 1933 break; 1934 } 1935 case Intrinsic::fptosi_sat: 1936 case Intrinsic::fptoui_sat: { 1937 if (ICA.getArgTypes().empty()) 1938 break; 1939 bool IsSigned = ICA.getID() == Intrinsic::fptosi_sat; 1940 auto LT = getTypeLegalizationCost(ICA.getArgTypes()[0]); 1941 EVT MTy = TLI->getValueType(DL, ICA.getReturnType()); 1942 // Check for the legal types, with the corect subtarget features. 1943 if ((ST->hasVFP2Base() && LT.second == MVT::f32 && MTy == MVT::i32) || 1944 (ST->hasFP64() && LT.second == MVT::f64 && MTy == MVT::i32) || 1945 (ST->hasFullFP16() && LT.second == MVT::f16 && MTy == MVT::i32)) 1946 return LT.first; 1947 1948 // Equally for MVE vector types 1949 if (ST->hasMVEFloatOps() && 1950 (LT.second == MVT::v4f32 || LT.second == MVT::v8f16) && 1951 LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits()) 1952 return LT.first * ST->getMVEVectorCostFactor(CostKind); 1953 1954 // Otherwise we use a legal convert followed by a min+max 1955 if (((ST->hasVFP2Base() && LT.second == MVT::f32) || 1956 (ST->hasFP64() && LT.second == MVT::f64) || 1957 (ST->hasFullFP16() && LT.second == MVT::f16) || 1958 (ST->hasMVEFloatOps() && 1959 (LT.second == MVT::v4f32 || LT.second == MVT::v8f16))) && 1960 LT.second.getScalarSizeInBits() >= MTy.getScalarSizeInBits()) { 1961 Type *LegalTy = Type::getIntNTy(ICA.getReturnType()->getContext(), 1962 LT.second.getScalarSizeInBits()); 1963 InstructionCost Cost = 1964 LT.second.isVector() ? ST->getMVEVectorCostFactor(CostKind) : 1; 1965 IntrinsicCostAttributes Attrs1(IsSigned ? Intrinsic::smin 1966 : Intrinsic::umin, 1967 LegalTy, {LegalTy, LegalTy}); 1968 Cost += getIntrinsicInstrCost(Attrs1, CostKind); 1969 IntrinsicCostAttributes Attrs2(IsSigned ? Intrinsic::smax 1970 : Intrinsic::umax, 1971 LegalTy, {LegalTy, LegalTy}); 1972 Cost += getIntrinsicInstrCost(Attrs2, CostKind); 1973 return LT.first * Cost; 1974 } 1975 break; 1976 } 1977 } 1978 1979 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 1980 } 1981 1982 bool ARMTTIImpl::isLoweredToCall(const Function *F) { 1983 if (!F->isIntrinsic()) 1984 return BaseT::isLoweredToCall(F); 1985 1986 // Assume all Arm-specific intrinsics map to an instruction. 1987 if (F->getName().starts_with("llvm.arm")) 1988 return false; 1989 1990 switch (F->getIntrinsicID()) { 1991 default: break; 1992 case Intrinsic::powi: 1993 case Intrinsic::sin: 1994 case Intrinsic::cos: 1995 case Intrinsic::pow: 1996 case Intrinsic::log: 1997 case Intrinsic::log10: 1998 case Intrinsic::log2: 1999 case Intrinsic::exp: 2000 case Intrinsic::exp2: 2001 return true; 2002 case Intrinsic::sqrt: 2003 case Intrinsic::fabs: 2004 case Intrinsic::copysign: 2005 case Intrinsic::floor: 2006 case Intrinsic::ceil: 2007 case Intrinsic::trunc: 2008 case Intrinsic::rint: 2009 case Intrinsic::nearbyint: 2010 case Intrinsic::round: 2011 case Intrinsic::canonicalize: 2012 case Intrinsic::lround: 2013 case Intrinsic::llround: 2014 case Intrinsic::lrint: 2015 case Intrinsic::llrint: 2016 if (F->getReturnType()->isDoubleTy() && !ST->hasFP64()) 2017 return true; 2018 if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16()) 2019 return true; 2020 // Some operations can be handled by vector instructions and assume 2021 // unsupported vectors will be expanded into supported scalar ones. 2022 // TODO Handle scalar operations properly. 2023 return !ST->hasFPARMv8Base() && !ST->hasVFP2Base(); 2024 case Intrinsic::masked_store: 2025 case Intrinsic::masked_load: 2026 case Intrinsic::masked_gather: 2027 case Intrinsic::masked_scatter: 2028 return !ST->hasMVEIntegerOps(); 2029 case Intrinsic::sadd_with_overflow: 2030 case Intrinsic::uadd_with_overflow: 2031 case Intrinsic::ssub_with_overflow: 2032 case Intrinsic::usub_with_overflow: 2033 case Intrinsic::sadd_sat: 2034 case Intrinsic::uadd_sat: 2035 case Intrinsic::ssub_sat: 2036 case Intrinsic::usub_sat: 2037 return false; 2038 } 2039 2040 return BaseT::isLoweredToCall(F); 2041 } 2042 2043 bool ARMTTIImpl::maybeLoweredToCall(Instruction &I) { 2044 unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode()); 2045 EVT VT = TLI->getValueType(DL, I.getType(), true); 2046 if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall) 2047 return true; 2048 2049 // Check if an intrinsic will be lowered to a call and assume that any 2050 // other CallInst will generate a bl. 2051 if (auto *Call = dyn_cast<CallInst>(&I)) { 2052 if (auto *II = dyn_cast<IntrinsicInst>(Call)) { 2053 switch(II->getIntrinsicID()) { 2054 case Intrinsic::memcpy: 2055 case Intrinsic::memset: 2056 case Intrinsic::memmove: 2057 return getNumMemOps(II) == -1; 2058 default: 2059 if (const Function *F = Call->getCalledFunction()) 2060 return isLoweredToCall(F); 2061 } 2062 } 2063 return true; 2064 } 2065 2066 // FPv5 provides conversions between integer, double-precision, 2067 // single-precision, and half-precision formats. 2068 switch (I.getOpcode()) { 2069 default: 2070 break; 2071 case Instruction::FPToSI: 2072 case Instruction::FPToUI: 2073 case Instruction::SIToFP: 2074 case Instruction::UIToFP: 2075 case Instruction::FPTrunc: 2076 case Instruction::FPExt: 2077 return !ST->hasFPARMv8Base(); 2078 } 2079 2080 // FIXME: Unfortunately the approach of checking the Operation Action does 2081 // not catch all cases of Legalization that use library calls. Our 2082 // Legalization step categorizes some transformations into library calls as 2083 // Custom, Expand or even Legal when doing type legalization. So for now 2084 // we have to special case for instance the SDIV of 64bit integers and the 2085 // use of floating point emulation. 2086 if (VT.isInteger() && VT.getSizeInBits() >= 64) { 2087 switch (ISD) { 2088 default: 2089 break; 2090 case ISD::SDIV: 2091 case ISD::UDIV: 2092 case ISD::SREM: 2093 case ISD::UREM: 2094 case ISD::SDIVREM: 2095 case ISD::UDIVREM: 2096 return true; 2097 } 2098 } 2099 2100 // Assume all other non-float operations are supported. 2101 if (!VT.isFloatingPoint()) 2102 return false; 2103 2104 // We'll need a library call to handle most floats when using soft. 2105 if (TLI->useSoftFloat()) { 2106 switch (I.getOpcode()) { 2107 default: 2108 return true; 2109 case Instruction::Alloca: 2110 case Instruction::Load: 2111 case Instruction::Store: 2112 case Instruction::Select: 2113 case Instruction::PHI: 2114 return false; 2115 } 2116 } 2117 2118 // We'll need a libcall to perform double precision operations on a single 2119 // precision only FPU. 2120 if (I.getType()->isDoubleTy() && !ST->hasFP64()) 2121 return true; 2122 2123 // Likewise for half precision arithmetic. 2124 if (I.getType()->isHalfTy() && !ST->hasFullFP16()) 2125 return true; 2126 2127 return false; 2128 } 2129 2130 bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, 2131 AssumptionCache &AC, 2132 TargetLibraryInfo *LibInfo, 2133 HardwareLoopInfo &HWLoopInfo) { 2134 // Low-overhead branches are only supported in the 'low-overhead branch' 2135 // extension of v8.1-m. 2136 if (!ST->hasLOB() || DisableLowOverheadLoops) { 2137 LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n"); 2138 return false; 2139 } 2140 2141 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { 2142 LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n"); 2143 return false; 2144 } 2145 2146 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2147 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2148 LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n"); 2149 return false; 2150 } 2151 2152 const SCEV *TripCountSCEV = 2153 SE.getAddExpr(BackedgeTakenCount, 2154 SE.getOne(BackedgeTakenCount->getType())); 2155 2156 // We need to store the trip count in LR, a 32-bit register. 2157 if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) { 2158 LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n"); 2159 return false; 2160 } 2161 2162 // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little 2163 // point in generating a hardware loop if that's going to happen. 2164 2165 auto IsHardwareLoopIntrinsic = [](Instruction &I) { 2166 if (auto *Call = dyn_cast<IntrinsicInst>(&I)) { 2167 switch (Call->getIntrinsicID()) { 2168 default: 2169 break; 2170 case Intrinsic::start_loop_iterations: 2171 case Intrinsic::test_start_loop_iterations: 2172 case Intrinsic::loop_decrement: 2173 case Intrinsic::loop_decrement_reg: 2174 return true; 2175 } 2176 } 2177 return false; 2178 }; 2179 2180 // Scan the instructions to see if there's any that we know will turn into a 2181 // call or if this loop is already a low-overhead loop or will become a tail 2182 // predicated loop. 2183 bool IsTailPredLoop = false; 2184 auto ScanLoop = [&](Loop *L) { 2185 for (auto *BB : L->getBlocks()) { 2186 for (auto &I : *BB) { 2187 if (maybeLoweredToCall(I) || IsHardwareLoopIntrinsic(I) || 2188 isa<InlineAsm>(I)) { 2189 LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n"); 2190 return false; 2191 } 2192 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2193 IsTailPredLoop |= 2194 II->getIntrinsicID() == Intrinsic::get_active_lane_mask || 2195 II->getIntrinsicID() == Intrinsic::arm_mve_vctp8 || 2196 II->getIntrinsicID() == Intrinsic::arm_mve_vctp16 || 2197 II->getIntrinsicID() == Intrinsic::arm_mve_vctp32 || 2198 II->getIntrinsicID() == Intrinsic::arm_mve_vctp64; 2199 } 2200 } 2201 return true; 2202 }; 2203 2204 // Visit inner loops. 2205 for (auto *Inner : *L) 2206 if (!ScanLoop(Inner)) 2207 return false; 2208 2209 if (!ScanLoop(L)) 2210 return false; 2211 2212 // TODO: Check whether the trip count calculation is expensive. If L is the 2213 // inner loop but we know it has a low trip count, calculating that trip 2214 // count (in the parent loop) may be detrimental. 2215 2216 LLVMContext &C = L->getHeader()->getContext(); 2217 HWLoopInfo.CounterInReg = true; 2218 HWLoopInfo.IsNestingLegal = false; 2219 HWLoopInfo.PerformEntryTest = AllowWLSLoops && !IsTailPredLoop; 2220 HWLoopInfo.CountType = Type::getInt32Ty(C); 2221 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1); 2222 return true; 2223 } 2224 2225 static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) { 2226 // We don't allow icmp's, and because we only look at single block loops, 2227 // we simply count the icmps, i.e. there should only be 1 for the backedge. 2228 if (isa<ICmpInst>(&I) && ++ICmpCount > 1) 2229 return false; 2230 // FIXME: This is a workaround for poor cost modelling. Min/Max intrinsics are 2231 // not currently canonical, but soon will be. Code without them uses icmp, and 2232 // so is not tail predicated as per the condition above. In order to get the 2233 // same performance we treat min and max the same as an icmp for tailpred 2234 // purposes for the moment (we often rely on non-tailpred and higher VF's to 2235 // pick more optimial instructions like VQDMULH. They need to be recognized 2236 // directly by the vectorizer). 2237 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2238 if ((II->getIntrinsicID() == Intrinsic::smin || 2239 II->getIntrinsicID() == Intrinsic::smax || 2240 II->getIntrinsicID() == Intrinsic::umin || 2241 II->getIntrinsicID() == Intrinsic::umax) && 2242 ++ICmpCount > 1) 2243 return false; 2244 2245 if (isa<FCmpInst>(&I)) 2246 return false; 2247 2248 // We could allow extending/narrowing FP loads/stores, but codegen is 2249 // too inefficient so reject this for now. 2250 if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I)) 2251 return false; 2252 2253 // Extends have to be extending-loads 2254 if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) ) 2255 if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0))) 2256 return false; 2257 2258 // Truncs have to be narrowing-stores 2259 if (isa<TruncInst>(&I) ) 2260 if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin())) 2261 return false; 2262 2263 return true; 2264 } 2265 2266 // To set up a tail-predicated loop, we need to know the total number of 2267 // elements processed by that loop. Thus, we need to determine the element 2268 // size and: 2269 // 1) it should be uniform for all operations in the vector loop, so we 2270 // e.g. don't want any widening/narrowing operations. 2271 // 2) it should be smaller than i64s because we don't have vector operations 2272 // that work on i64s. 2273 // 3) we don't want elements to be reversed or shuffled, to make sure the 2274 // tail-predication masks/predicates the right lanes. 2275 // 2276 static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE, 2277 const DataLayout &DL, 2278 const LoopAccessInfo *LAI) { 2279 LLVM_DEBUG(dbgs() << "Tail-predication: checking allowed instructions\n"); 2280 2281 // If there are live-out values, it is probably a reduction. We can predicate 2282 // most reduction operations freely under MVE using a combination of 2283 // prefer-predicated-reduction-select and inloop reductions. We limit this to 2284 // floating point and integer reductions, but don't check for operators 2285 // specifically here. If the value ends up not being a reduction (and so the 2286 // vectorizer cannot tailfold the loop), we should fall back to standard 2287 // vectorization automatically. 2288 SmallVector< Instruction *, 8 > LiveOuts; 2289 LiveOuts = llvm::findDefsUsedOutsideOfLoop(L); 2290 bool ReductionsDisabled = 2291 EnableTailPredication == TailPredication::EnabledNoReductions || 2292 EnableTailPredication == TailPredication::ForceEnabledNoReductions; 2293 2294 for (auto *I : LiveOuts) { 2295 if (!I->getType()->isIntegerTy() && !I->getType()->isFloatTy() && 2296 !I->getType()->isHalfTy()) { 2297 LLVM_DEBUG(dbgs() << "Don't tail-predicate loop with non-integer/float " 2298 "live-out value\n"); 2299 return false; 2300 } 2301 if (ReductionsDisabled) { 2302 LLVM_DEBUG(dbgs() << "Reductions not enabled\n"); 2303 return false; 2304 } 2305 } 2306 2307 // Next, check that all instructions can be tail-predicated. 2308 PredicatedScalarEvolution PSE = LAI->getPSE(); 2309 SmallVector<Instruction *, 16> LoadStores; 2310 int ICmpCount = 0; 2311 2312 for (BasicBlock *BB : L->blocks()) { 2313 for (Instruction &I : BB->instructionsWithoutDebug()) { 2314 if (isa<PHINode>(&I)) 2315 continue; 2316 if (!canTailPredicateInstruction(I, ICmpCount)) { 2317 LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump()); 2318 return false; 2319 } 2320 2321 Type *T = I.getType(); 2322 if (T->getScalarSizeInBits() > 32) { 2323 LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump()); 2324 return false; 2325 } 2326 if (isa<StoreInst>(I) || isa<LoadInst>(I)) { 2327 Value *Ptr = getLoadStorePointerOperand(&I); 2328 Type *AccessTy = getLoadStoreType(&I); 2329 int64_t NextStride = getPtrStride(PSE, AccessTy, Ptr, L).value_or(0); 2330 if (NextStride == 1) { 2331 // TODO: for now only allow consecutive strides of 1. We could support 2332 // other strides as long as it is uniform, but let's keep it simple 2333 // for now. 2334 continue; 2335 } else if (NextStride == -1 || 2336 (NextStride == 2 && MVEMaxSupportedInterleaveFactor >= 2) || 2337 (NextStride == 4 && MVEMaxSupportedInterleaveFactor >= 4)) { 2338 LLVM_DEBUG(dbgs() 2339 << "Consecutive strides of 2 found, vld2/vstr2 can't " 2340 "be tail-predicated\n."); 2341 return false; 2342 // TODO: don't tail predicate if there is a reversed load? 2343 } else if (EnableMaskedGatherScatters) { 2344 // Gather/scatters do allow loading from arbitrary strides, at 2345 // least if they are loop invariant. 2346 // TODO: Loop variant strides should in theory work, too, but 2347 // this requires further testing. 2348 const SCEV *PtrScev = PSE.getSE()->getSCEV(Ptr); 2349 if (auto AR = dyn_cast<SCEVAddRecExpr>(PtrScev)) { 2350 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 2351 if (PSE.getSE()->isLoopInvariant(Step, L)) 2352 continue; 2353 } 2354 } 2355 LLVM_DEBUG(dbgs() << "Bad stride found, can't " 2356 "tail-predicate\n."); 2357 return false; 2358 } 2359 } 2360 } 2361 2362 LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n"); 2363 return true; 2364 } 2365 2366 bool ARMTTIImpl::preferPredicateOverEpilogue(TailFoldingInfo *TFI) { 2367 if (!EnableTailPredication) { 2368 LLVM_DEBUG(dbgs() << "Tail-predication not enabled.\n"); 2369 return false; 2370 } 2371 2372 // Creating a predicated vector loop is the first step for generating a 2373 // tail-predicated hardware loop, for which we need the MVE masked 2374 // load/stores instructions: 2375 if (!ST->hasMVEIntegerOps()) 2376 return false; 2377 2378 LoopVectorizationLegality *LVL = TFI->LVL; 2379 Loop *L = LVL->getLoop(); 2380 2381 // For now, restrict this to single block loops. 2382 if (L->getNumBlocks() > 1) { 2383 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block " 2384 "loop.\n"); 2385 return false; 2386 } 2387 2388 assert(L->isInnermost() && "preferPredicateOverEpilogue: inner-loop expected"); 2389 2390 LoopInfo *LI = LVL->getLoopInfo(); 2391 HardwareLoopInfo HWLoopInfo(L); 2392 if (!HWLoopInfo.canAnalyze(*LI)) { 2393 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 2394 "analyzable.\n"); 2395 return false; 2396 } 2397 2398 AssumptionCache *AC = LVL->getAssumptionCache(); 2399 ScalarEvolution *SE = LVL->getScalarEvolution(); 2400 2401 // This checks if we have the low-overhead branch architecture 2402 // extension, and if we will create a hardware-loop: 2403 if (!isHardwareLoopProfitable(L, *SE, *AC, TFI->TLI, HWLoopInfo)) { 2404 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 2405 "profitable.\n"); 2406 return false; 2407 } 2408 2409 DominatorTree *DT = LVL->getDominatorTree(); 2410 if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT)) { 2411 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 2412 "a candidate.\n"); 2413 return false; 2414 } 2415 2416 return canTailPredicateLoop(L, LI, *SE, DL, LVL->getLAI()); 2417 } 2418 2419 TailFoldingStyle 2420 ARMTTIImpl::getPreferredTailFoldingStyle(bool IVUpdateMayOverflow) const { 2421 if (!ST->hasMVEIntegerOps() || !EnableTailPredication) 2422 return TailFoldingStyle::DataWithoutLaneMask; 2423 2424 // Intrinsic @llvm.get.active.lane.mask is supported. 2425 // It is used in the MVETailPredication pass, which requires the number of 2426 // elements processed by this vector loop to setup the tail-predicated 2427 // loop. 2428 return TailFoldingStyle::Data; 2429 } 2430 void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 2431 TTI::UnrollingPreferences &UP, 2432 OptimizationRemarkEmitter *ORE) { 2433 // Enable Upper bound unrolling universally, providing that we do not see an 2434 // active lane mask, which will be better kept as a loop to become tail 2435 // predicated than to be conditionally unrolled. 2436 UP.UpperBound = 2437 !ST->hasMVEIntegerOps() || !any_of(*L->getHeader(), [](Instruction &I) { 2438 return isa<IntrinsicInst>(I) && 2439 cast<IntrinsicInst>(I).getIntrinsicID() == 2440 Intrinsic::get_active_lane_mask; 2441 }); 2442 2443 // Only currently enable these preferences for M-Class cores. 2444 if (!ST->isMClass()) 2445 return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE); 2446 2447 // Disable loop unrolling for Oz and Os. 2448 UP.OptSizeThreshold = 0; 2449 UP.PartialOptSizeThreshold = 0; 2450 if (L->getHeader()->getParent()->hasOptSize()) 2451 return; 2452 2453 SmallVector<BasicBlock*, 4> ExitingBlocks; 2454 L->getExitingBlocks(ExitingBlocks); 2455 LLVM_DEBUG(dbgs() << "Loop has:\n" 2456 << "Blocks: " << L->getNumBlocks() << "\n" 2457 << "Exit blocks: " << ExitingBlocks.size() << "\n"); 2458 2459 // Only allow another exit other than the latch. This acts as an early exit 2460 // as it mirrors the profitability calculation of the runtime unroller. 2461 if (ExitingBlocks.size() > 2) 2462 return; 2463 2464 // Limit the CFG of the loop body for targets with a branch predictor. 2465 // Allowing 4 blocks permits if-then-else diamonds in the body. 2466 if (ST->hasBranchPredictor() && L->getNumBlocks() > 4) 2467 return; 2468 2469 // Don't unroll vectorized loops, including the remainder loop 2470 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 2471 return; 2472 2473 // Scan the loop: don't unroll loops with calls as this could prevent 2474 // inlining. 2475 InstructionCost Cost = 0; 2476 for (auto *BB : L->getBlocks()) { 2477 for (auto &I : *BB) { 2478 // Don't unroll vectorised loop. MVE does not benefit from it as much as 2479 // scalar code. 2480 if (I.getType()->isVectorTy()) 2481 return; 2482 2483 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 2484 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 2485 if (!isLoweredToCall(F)) 2486 continue; 2487 } 2488 return; 2489 } 2490 2491 SmallVector<const Value*, 4> Operands(I.operand_values()); 2492 Cost += getInstructionCost(&I, Operands, 2493 TargetTransformInfo::TCK_SizeAndLatency); 2494 } 2495 } 2496 2497 // On v6m cores, there are very few registers available. We can easily end up 2498 // spilling and reloading more registers in an unrolled loop. Look at the 2499 // number of LCSSA phis as a rough measure of how many registers will need to 2500 // be live out of the loop, reducing the default unroll count if more than 1 2501 // value is needed. In the long run, all of this should be being learnt by a 2502 // machine. 2503 unsigned UnrollCount = 4; 2504 if (ST->isThumb1Only()) { 2505 unsigned ExitingValues = 0; 2506 SmallVector<BasicBlock *, 4> ExitBlocks; 2507 L->getExitBlocks(ExitBlocks); 2508 for (auto *Exit : ExitBlocks) { 2509 // Count the number of LCSSA phis. Exclude values coming from GEP's as 2510 // only the last is expected to be needed for address operands. 2511 unsigned LiveOuts = count_if(Exit->phis(), [](auto &PH) { 2512 return PH.getNumOperands() != 1 || 2513 !isa<GetElementPtrInst>(PH.getOperand(0)); 2514 }); 2515 ExitingValues = ExitingValues < LiveOuts ? LiveOuts : ExitingValues; 2516 } 2517 if (ExitingValues) 2518 UnrollCount /= ExitingValues; 2519 if (UnrollCount <= 1) 2520 return; 2521 } 2522 2523 LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n"); 2524 LLVM_DEBUG(dbgs() << "Default Runtime Unroll Count: " << UnrollCount << "\n"); 2525 2526 UP.Partial = true; 2527 UP.Runtime = true; 2528 UP.UnrollRemainder = true; 2529 UP.DefaultUnrollRuntimeCount = UnrollCount; 2530 UP.UnrollAndJam = true; 2531 UP.UnrollAndJamInnerLoopThreshold = 60; 2532 2533 // Force unrolling small loops can be very useful because of the branch 2534 // taken cost of the backedge. 2535 if (Cost < 12) 2536 UP.Force = true; 2537 } 2538 2539 void ARMTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 2540 TTI::PeelingPreferences &PP) { 2541 BaseT::getPeelingPreferences(L, SE, PP); 2542 } 2543 2544 bool ARMTTIImpl::preferInLoopReduction(unsigned Opcode, Type *Ty, 2545 TTI::ReductionFlags Flags) const { 2546 if (!ST->hasMVEIntegerOps()) 2547 return false; 2548 2549 unsigned ScalarBits = Ty->getScalarSizeInBits(); 2550 switch (Opcode) { 2551 case Instruction::Add: 2552 return ScalarBits <= 64; 2553 default: 2554 return false; 2555 } 2556 } 2557 2558 bool ARMTTIImpl::preferPredicatedReductionSelect( 2559 unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const { 2560 if (!ST->hasMVEIntegerOps()) 2561 return false; 2562 return true; 2563 } 2564 2565 InstructionCost ARMTTIImpl::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 2566 int64_t BaseOffset, 2567 bool HasBaseReg, int64_t Scale, 2568 unsigned AddrSpace) const { 2569 TargetLoweringBase::AddrMode AM; 2570 AM.BaseGV = BaseGV; 2571 AM.BaseOffs = BaseOffset; 2572 AM.HasBaseReg = HasBaseReg; 2573 AM.Scale = Scale; 2574 if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace)) { 2575 if (ST->hasFPAO()) 2576 return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster 2577 return 0; 2578 } 2579 return -1; 2580 } 2581 2582 bool ARMTTIImpl::hasArmWideBranch(bool Thumb) const { 2583 if (Thumb) { 2584 // B.W is available in any Thumb2-supporting target, and also in every 2585 // version of Armv8-M, even Baseline which does not include the rest of 2586 // Thumb2. 2587 return ST->isThumb2() || ST->hasV8MBaselineOps(); 2588 } else { 2589 // B is available in all versions of the Arm ISA, so the only question is 2590 // whether that ISA is available at all. 2591 return ST->hasARMOps(); 2592 } 2593 } 2594