1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMTargetTransformInfo.h" 10 #include "ARMSubtarget.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "llvm/ADT/APInt.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Analysis/LoopInfo.h" 15 #include "llvm/CodeGen/CostTable.h" 16 #include "llvm/CodeGen/ISDOpcodes.h" 17 #include "llvm/CodeGen/ValueTypes.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Instruction.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/IntrinsicsARM.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/MC/SubtargetFeature.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MachineValueType.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Transforms/InstCombine/InstCombiner.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/Transforms/Utils/LoopUtils.h" 36 #include <algorithm> 37 #include <cassert> 38 #include <cstdint> 39 #include <utility> 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "armtti" 44 45 static cl::opt<bool> EnableMaskedLoadStores( 46 "enable-arm-maskedldst", cl::Hidden, cl::init(true), 47 cl::desc("Enable the generation of masked loads and stores")); 48 49 static cl::opt<bool> DisableLowOverheadLoops( 50 "disable-arm-loloops", cl::Hidden, cl::init(false), 51 cl::desc("Disable the generation of low-overhead loops")); 52 53 static cl::opt<bool> 54 AllowWLSLoops("allow-arm-wlsloops", cl::Hidden, cl::init(true), 55 cl::desc("Enable the generation of WLS loops")); 56 57 extern cl::opt<TailPredication::Mode> EnableTailPredication; 58 59 extern cl::opt<bool> EnableMaskedGatherScatters; 60 61 extern cl::opt<unsigned> MVEMaxSupportedInterleaveFactor; 62 63 /// Convert a vector load intrinsic into a simple llvm load instruction. 64 /// This is beneficial when the underlying object being addressed comes 65 /// from a constant, since we get constant-folding for free. 66 static Value *simplifyNeonVld1(const IntrinsicInst &II, unsigned MemAlign, 67 InstCombiner::BuilderTy &Builder) { 68 auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1)); 69 70 if (!IntrAlign) 71 return nullptr; 72 73 unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign 74 ? MemAlign 75 : IntrAlign->getLimitedValue(); 76 77 if (!isPowerOf2_32(Alignment)) 78 return nullptr; 79 80 auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0), 81 PointerType::get(II.getType(), 0)); 82 return Builder.CreateAlignedLoad(II.getType(), BCastInst, Align(Alignment)); 83 } 84 85 bool ARMTTIImpl::areInlineCompatible(const Function *Caller, 86 const Function *Callee) const { 87 const TargetMachine &TM = getTLI()->getTargetMachine(); 88 const FeatureBitset &CallerBits = 89 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 90 const FeatureBitset &CalleeBits = 91 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 92 93 // To inline a callee, all features not in the allowed list must match exactly. 94 bool MatchExact = (CallerBits & ~InlineFeaturesAllowed) == 95 (CalleeBits & ~InlineFeaturesAllowed); 96 // For features in the allowed list, the callee's features must be a subset of 97 // the callers'. 98 bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeaturesAllowed) == 99 (CalleeBits & InlineFeaturesAllowed); 100 return MatchExact && MatchSubset; 101 } 102 103 TTI::AddressingModeKind 104 ARMTTIImpl::getPreferredAddressingMode(const Loop *L, 105 ScalarEvolution *SE) const { 106 if (ST->hasMVEIntegerOps()) 107 return TTI::AMK_PostIndexed; 108 109 if (L->getHeader()->getParent()->hasOptSize()) 110 return TTI::AMK_None; 111 112 if (ST->isMClass() && ST->isThumb2() && 113 L->getNumBlocks() == 1) 114 return TTI::AMK_PreIndexed; 115 116 return TTI::AMK_None; 117 } 118 119 Optional<Instruction *> 120 ARMTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { 121 using namespace PatternMatch; 122 Intrinsic::ID IID = II.getIntrinsicID(); 123 switch (IID) { 124 default: 125 break; 126 case Intrinsic::arm_neon_vld1: { 127 Align MemAlign = 128 getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II, 129 &IC.getAssumptionCache(), &IC.getDominatorTree()); 130 if (Value *V = simplifyNeonVld1(II, MemAlign.value(), IC.Builder)) { 131 return IC.replaceInstUsesWith(II, V); 132 } 133 break; 134 } 135 136 case Intrinsic::arm_neon_vld2: 137 case Intrinsic::arm_neon_vld3: 138 case Intrinsic::arm_neon_vld4: 139 case Intrinsic::arm_neon_vld2lane: 140 case Intrinsic::arm_neon_vld3lane: 141 case Intrinsic::arm_neon_vld4lane: 142 case Intrinsic::arm_neon_vst1: 143 case Intrinsic::arm_neon_vst2: 144 case Intrinsic::arm_neon_vst3: 145 case Intrinsic::arm_neon_vst4: 146 case Intrinsic::arm_neon_vst2lane: 147 case Intrinsic::arm_neon_vst3lane: 148 case Intrinsic::arm_neon_vst4lane: { 149 Align MemAlign = 150 getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II, 151 &IC.getAssumptionCache(), &IC.getDominatorTree()); 152 unsigned AlignArg = II.arg_size() - 1; 153 Value *AlignArgOp = II.getArgOperand(AlignArg); 154 MaybeAlign Align = cast<ConstantInt>(AlignArgOp)->getMaybeAlignValue(); 155 if (Align && *Align < MemAlign) { 156 return IC.replaceOperand( 157 II, AlignArg, 158 ConstantInt::get(Type::getInt32Ty(II.getContext()), MemAlign.value(), 159 false)); 160 } 161 break; 162 } 163 164 case Intrinsic::arm_mve_pred_i2v: { 165 Value *Arg = II.getArgOperand(0); 166 Value *ArgArg; 167 if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>( 168 PatternMatch::m_Value(ArgArg))) && 169 II.getType() == ArgArg->getType()) { 170 return IC.replaceInstUsesWith(II, ArgArg); 171 } 172 Constant *XorMask; 173 if (match(Arg, m_Xor(PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>( 174 PatternMatch::m_Value(ArgArg)), 175 PatternMatch::m_Constant(XorMask))) && 176 II.getType() == ArgArg->getType()) { 177 if (auto *CI = dyn_cast<ConstantInt>(XorMask)) { 178 if (CI->getValue().trunc(16).isAllOnes()) { 179 auto TrueVector = IC.Builder.CreateVectorSplat( 180 cast<FixedVectorType>(II.getType())->getNumElements(), 181 IC.Builder.getTrue()); 182 return BinaryOperator::Create(Instruction::Xor, ArgArg, TrueVector); 183 } 184 } 185 } 186 KnownBits ScalarKnown(32); 187 if (IC.SimplifyDemandedBits(&II, 0, APInt::getLowBitsSet(32, 16), 188 ScalarKnown, 0)) { 189 return &II; 190 } 191 break; 192 } 193 case Intrinsic::arm_mve_pred_v2i: { 194 Value *Arg = II.getArgOperand(0); 195 Value *ArgArg; 196 if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_i2v>( 197 PatternMatch::m_Value(ArgArg)))) { 198 return IC.replaceInstUsesWith(II, ArgArg); 199 } 200 if (!II.getMetadata(LLVMContext::MD_range)) { 201 Type *IntTy32 = Type::getInt32Ty(II.getContext()); 202 Metadata *M[] = { 203 ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0)), 204 ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0x10000))}; 205 II.setMetadata(LLVMContext::MD_range, MDNode::get(II.getContext(), M)); 206 return &II; 207 } 208 break; 209 } 210 case Intrinsic::arm_mve_vadc: 211 case Intrinsic::arm_mve_vadc_predicated: { 212 unsigned CarryOp = 213 (II.getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated) ? 3 : 2; 214 assert(II.getArgOperand(CarryOp)->getType()->getScalarSizeInBits() == 32 && 215 "Bad type for intrinsic!"); 216 217 KnownBits CarryKnown(32); 218 if (IC.SimplifyDemandedBits(&II, CarryOp, APInt::getOneBitSet(32, 29), 219 CarryKnown)) { 220 return &II; 221 } 222 break; 223 } 224 case Intrinsic::arm_mve_vmldava: { 225 Instruction *I = cast<Instruction>(&II); 226 if (I->hasOneUse()) { 227 auto *User = cast<Instruction>(*I->user_begin()); 228 Value *OpZ; 229 if (match(User, m_c_Add(m_Specific(I), m_Value(OpZ))) && 230 match(I->getOperand(3), m_Zero())) { 231 Value *OpX = I->getOperand(4); 232 Value *OpY = I->getOperand(5); 233 Type *OpTy = OpX->getType(); 234 235 IC.Builder.SetInsertPoint(User); 236 Value *V = 237 IC.Builder.CreateIntrinsic(Intrinsic::arm_mve_vmldava, {OpTy}, 238 {I->getOperand(0), I->getOperand(1), 239 I->getOperand(2), OpZ, OpX, OpY}); 240 241 IC.replaceInstUsesWith(*User, V); 242 return IC.eraseInstFromFunction(*User); 243 } 244 } 245 return None; 246 } 247 } 248 return None; 249 } 250 251 Optional<Value *> ARMTTIImpl::simplifyDemandedVectorEltsIntrinsic( 252 InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts, 253 APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, 254 std::function<void(Instruction *, unsigned, APInt, APInt &)> 255 SimplifyAndSetOp) const { 256 257 // Compute the demanded bits for a narrowing MVE intrinsic. The TopOpc is the 258 // opcode specifying a Top/Bottom instruction, which can change between 259 // instructions. 260 auto SimplifyNarrowInstrTopBottom =[&](unsigned TopOpc) { 261 unsigned NumElts = cast<FixedVectorType>(II.getType())->getNumElements(); 262 unsigned IsTop = cast<ConstantInt>(II.getOperand(TopOpc))->getZExtValue(); 263 264 // The only odd/even lanes of operand 0 will only be demanded depending 265 // on whether this is a top/bottom instruction. 266 APInt DemandedElts = 267 APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1) 268 : APInt::getHighBitsSet(2, 1)); 269 SimplifyAndSetOp(&II, 0, OrigDemandedElts & DemandedElts, UndefElts); 270 // The other lanes will be defined from the inserted elements. 271 UndefElts &= APInt::getSplat(NumElts, !IsTop ? APInt::getLowBitsSet(2, 1) 272 : APInt::getHighBitsSet(2, 1)); 273 return None; 274 }; 275 276 switch (II.getIntrinsicID()) { 277 default: 278 break; 279 case Intrinsic::arm_mve_vcvt_narrow: 280 SimplifyNarrowInstrTopBottom(2); 281 break; 282 case Intrinsic::arm_mve_vqmovn: 283 SimplifyNarrowInstrTopBottom(4); 284 break; 285 case Intrinsic::arm_mve_vshrn: 286 SimplifyNarrowInstrTopBottom(7); 287 break; 288 } 289 290 return None; 291 } 292 293 InstructionCost ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 294 TTI::TargetCostKind CostKind) { 295 assert(Ty->isIntegerTy()); 296 297 unsigned Bits = Ty->getPrimitiveSizeInBits(); 298 if (Bits == 0 || Imm.getActiveBits() >= 64) 299 return 4; 300 301 int64_t SImmVal = Imm.getSExtValue(); 302 uint64_t ZImmVal = Imm.getZExtValue(); 303 if (!ST->isThumb()) { 304 if ((SImmVal >= 0 && SImmVal < 65536) || 305 (ARM_AM::getSOImmVal(ZImmVal) != -1) || 306 (ARM_AM::getSOImmVal(~ZImmVal) != -1)) 307 return 1; 308 return ST->hasV6T2Ops() ? 2 : 3; 309 } 310 if (ST->isThumb2()) { 311 if ((SImmVal >= 0 && SImmVal < 65536) || 312 (ARM_AM::getT2SOImmVal(ZImmVal) != -1) || 313 (ARM_AM::getT2SOImmVal(~ZImmVal) != -1)) 314 return 1; 315 return ST->hasV6T2Ops() ? 2 : 3; 316 } 317 // Thumb1, any i8 imm cost 1. 318 if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256)) 319 return 1; 320 if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal)) 321 return 2; 322 // Load from constantpool. 323 return 3; 324 } 325 326 // Constants smaller than 256 fit in the immediate field of 327 // Thumb1 instructions so we return a zero cost and 1 otherwise. 328 InstructionCost ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 329 const APInt &Imm, Type *Ty) { 330 if (Imm.isNonNegative() && Imm.getLimitedValue() < 256) 331 return 0; 332 333 return 1; 334 } 335 336 // Checks whether Inst is part of a min(max()) or max(min()) pattern 337 // that will match to an SSAT instruction 338 static bool isSSATMinMaxPattern(Instruction *Inst, const APInt &Imm) { 339 Value *LHS, *RHS; 340 ConstantInt *C; 341 SelectPatternFlavor InstSPF = matchSelectPattern(Inst, LHS, RHS).Flavor; 342 343 if (InstSPF == SPF_SMAX && 344 PatternMatch::match(RHS, PatternMatch::m_ConstantInt(C)) && 345 C->getValue() == Imm && Imm.isNegative() && Imm.isNegatedPowerOf2()) { 346 347 auto isSSatMin = [&](Value *MinInst) { 348 if (isa<SelectInst>(MinInst)) { 349 Value *MinLHS, *MinRHS; 350 ConstantInt *MinC; 351 SelectPatternFlavor MinSPF = 352 matchSelectPattern(MinInst, MinLHS, MinRHS).Flavor; 353 if (MinSPF == SPF_SMIN && 354 PatternMatch::match(MinRHS, PatternMatch::m_ConstantInt(MinC)) && 355 MinC->getValue() == ((-Imm) - 1)) 356 return true; 357 } 358 return false; 359 }; 360 361 if (isSSatMin(Inst->getOperand(1)) || 362 (Inst->hasNUses(2) && (isSSatMin(*Inst->user_begin()) || 363 isSSatMin(*(++Inst->user_begin()))))) 364 return true; 365 } 366 return false; 367 } 368 369 InstructionCost ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 370 const APInt &Imm, Type *Ty, 371 TTI::TargetCostKind CostKind, 372 Instruction *Inst) { 373 // Division by a constant can be turned into multiplication, but only if we 374 // know it's constant. So it's not so much that the immediate is cheap (it's 375 // not), but that the alternative is worse. 376 // FIXME: this is probably unneeded with GlobalISel. 377 if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv || 378 Opcode == Instruction::SRem || Opcode == Instruction::URem) && 379 Idx == 1) 380 return 0; 381 382 // Leave any gep offsets for the CodeGenPrepare, which will do a better job at 383 // splitting any large offsets. 384 if (Opcode == Instruction::GetElementPtr && Idx != 0) 385 return 0; 386 387 if (Opcode == Instruction::And) { 388 // UXTB/UXTH 389 if (Imm == 255 || Imm == 65535) 390 return 0; 391 // Conversion to BIC is free, and means we can use ~Imm instead. 392 return std::min(getIntImmCost(Imm, Ty, CostKind), 393 getIntImmCost(~Imm, Ty, CostKind)); 394 } 395 396 if (Opcode == Instruction::Add) 397 // Conversion to SUB is free, and means we can use -Imm instead. 398 return std::min(getIntImmCost(Imm, Ty, CostKind), 399 getIntImmCost(-Imm, Ty, CostKind)); 400 401 if (Opcode == Instruction::ICmp && Imm.isNegative() && 402 Ty->getIntegerBitWidth() == 32) { 403 int64_t NegImm = -Imm.getSExtValue(); 404 if (ST->isThumb2() && NegImm < 1<<12) 405 // icmp X, #-C -> cmn X, #C 406 return 0; 407 if (ST->isThumb() && NegImm < 1<<8) 408 // icmp X, #-C -> adds X, #C 409 return 0; 410 } 411 412 // xor a, -1 can always be folded to MVN 413 if (Opcode == Instruction::Xor && Imm.isAllOnes()) 414 return 0; 415 416 // Ensures negative constant of min(max()) or max(min()) patterns that 417 // match to SSAT instructions don't get hoisted 418 if (Inst && ((ST->hasV6Ops() && !ST->isThumb()) || ST->isThumb2()) && 419 Ty->getIntegerBitWidth() <= 32) { 420 if (isSSATMinMaxPattern(Inst, Imm) || 421 (isa<ICmpInst>(Inst) && Inst->hasOneUse() && 422 isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm))) 423 return 0; 424 } 425 426 // We can convert <= -1 to < 0, which is generally quite cheap. 427 if (Inst && Opcode == Instruction::ICmp && Idx == 1 && Imm.isAllOnesValue()) { 428 ICmpInst::Predicate Pred = cast<ICmpInst>(Inst)->getPredicate(); 429 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) 430 return std::min(getIntImmCost(Imm, Ty, CostKind), 431 getIntImmCost(Imm + 1, Ty, CostKind)); 432 } 433 434 return getIntImmCost(Imm, Ty, CostKind); 435 } 436 437 InstructionCost ARMTTIImpl::getCFInstrCost(unsigned Opcode, 438 TTI::TargetCostKind CostKind, 439 const Instruction *I) { 440 if (CostKind == TTI::TCK_RecipThroughput && 441 (ST->hasNEON() || ST->hasMVEIntegerOps())) { 442 // FIXME: The vectorizer is highly sensistive to the cost of these 443 // instructions, which suggests that it may be using the costs incorrectly. 444 // But, for now, just make them free to avoid performance regressions for 445 // vector targets. 446 return 0; 447 } 448 return BaseT::getCFInstrCost(Opcode, CostKind, I); 449 } 450 451 InstructionCost ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 452 Type *Src, 453 TTI::CastContextHint CCH, 454 TTI::TargetCostKind CostKind, 455 const Instruction *I) { 456 int ISD = TLI->InstructionOpcodeToISD(Opcode); 457 assert(ISD && "Invalid opcode"); 458 459 // TODO: Allow non-throughput costs that aren't binary. 460 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost { 461 if (CostKind != TTI::TCK_RecipThroughput) 462 return Cost == 0 ? 0 : 1; 463 return Cost; 464 }; 465 auto IsLegalFPType = [this](EVT VT) { 466 EVT EltVT = VT.getScalarType(); 467 return (EltVT == MVT::f32 && ST->hasVFP2Base()) || 468 (EltVT == MVT::f64 && ST->hasFP64()) || 469 (EltVT == MVT::f16 && ST->hasFullFP16()); 470 }; 471 472 EVT SrcTy = TLI->getValueType(DL, Src); 473 EVT DstTy = TLI->getValueType(DL, Dst); 474 475 if (!SrcTy.isSimple() || !DstTy.isSimple()) 476 return AdjustCost( 477 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 478 479 // Extending masked load/Truncating masked stores is expensive because we 480 // currently don't split them. This means that we'll likely end up 481 // loading/storing each element individually (hence the high cost). 482 if ((ST->hasMVEIntegerOps() && 483 (Opcode == Instruction::Trunc || Opcode == Instruction::ZExt || 484 Opcode == Instruction::SExt)) || 485 (ST->hasMVEFloatOps() && 486 (Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc) && 487 IsLegalFPType(SrcTy) && IsLegalFPType(DstTy))) 488 if (CCH == TTI::CastContextHint::Masked && DstTy.getSizeInBits() > 128) 489 return 2 * DstTy.getVectorNumElements() * 490 ST->getMVEVectorCostFactor(CostKind); 491 492 // The extend of other kinds of load is free 493 if (CCH == TTI::CastContextHint::Normal || 494 CCH == TTI::CastContextHint::Masked) { 495 static const TypeConversionCostTblEntry LoadConversionTbl[] = { 496 {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0}, 497 {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0}, 498 {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0}, 499 {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0}, 500 {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0}, 501 {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0}, 502 {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1}, 503 {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1}, 504 {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1}, 505 {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1}, 506 {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1}, 507 {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1}, 508 }; 509 if (const auto *Entry = ConvertCostTableLookup( 510 LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 511 return AdjustCost(Entry->Cost); 512 513 static const TypeConversionCostTblEntry MVELoadConversionTbl[] = { 514 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0}, 515 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0}, 516 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0}, 517 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0}, 518 {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0}, 519 {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0}, 520 // The following extend from a legal type to an illegal type, so need to 521 // split the load. This introduced an extra load operation, but the 522 // extend is still "free". 523 {ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1}, 524 {ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1}, 525 {ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 3}, 526 {ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 3}, 527 {ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1}, 528 {ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1}, 529 }; 530 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 531 if (const auto *Entry = 532 ConvertCostTableLookup(MVELoadConversionTbl, ISD, 533 DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 534 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 535 } 536 537 static const TypeConversionCostTblEntry MVEFLoadConversionTbl[] = { 538 // FPExtends are similar but also require the VCVT instructions. 539 {ISD::FP_EXTEND, MVT::v4f32, MVT::v4f16, 1}, 540 {ISD::FP_EXTEND, MVT::v8f32, MVT::v8f16, 3}, 541 }; 542 if (SrcTy.isVector() && ST->hasMVEFloatOps()) { 543 if (const auto *Entry = 544 ConvertCostTableLookup(MVEFLoadConversionTbl, ISD, 545 DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 546 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 547 } 548 549 // The truncate of a store is free. This is the mirror of extends above. 550 static const TypeConversionCostTblEntry MVEStoreConversionTbl[] = { 551 {ISD::TRUNCATE, MVT::v4i32, MVT::v4i16, 0}, 552 {ISD::TRUNCATE, MVT::v4i32, MVT::v4i8, 0}, 553 {ISD::TRUNCATE, MVT::v8i16, MVT::v8i8, 0}, 554 {ISD::TRUNCATE, MVT::v8i32, MVT::v8i16, 1}, 555 {ISD::TRUNCATE, MVT::v8i32, MVT::v8i8, 1}, 556 {ISD::TRUNCATE, MVT::v16i32, MVT::v16i8, 3}, 557 {ISD::TRUNCATE, MVT::v16i16, MVT::v16i8, 1}, 558 }; 559 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 560 if (const auto *Entry = 561 ConvertCostTableLookup(MVEStoreConversionTbl, ISD, 562 SrcTy.getSimpleVT(), DstTy.getSimpleVT())) 563 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 564 } 565 566 static const TypeConversionCostTblEntry MVEFStoreConversionTbl[] = { 567 {ISD::FP_ROUND, MVT::v4f32, MVT::v4f16, 1}, 568 {ISD::FP_ROUND, MVT::v8f32, MVT::v8f16, 3}, 569 }; 570 if (SrcTy.isVector() && ST->hasMVEFloatOps()) { 571 if (const auto *Entry = 572 ConvertCostTableLookup(MVEFStoreConversionTbl, ISD, 573 SrcTy.getSimpleVT(), DstTy.getSimpleVT())) 574 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 575 } 576 } 577 578 // NEON vector operations that can extend their inputs. 579 if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) && 580 I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) { 581 static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = { 582 // vaddl 583 { ISD::ADD, MVT::v4i32, MVT::v4i16, 0 }, 584 { ISD::ADD, MVT::v8i16, MVT::v8i8, 0 }, 585 // vsubl 586 { ISD::SUB, MVT::v4i32, MVT::v4i16, 0 }, 587 { ISD::SUB, MVT::v8i16, MVT::v8i8, 0 }, 588 // vmull 589 { ISD::MUL, MVT::v4i32, MVT::v4i16, 0 }, 590 { ISD::MUL, MVT::v8i16, MVT::v8i8, 0 }, 591 // vshll 592 { ISD::SHL, MVT::v4i32, MVT::v4i16, 0 }, 593 { ISD::SHL, MVT::v8i16, MVT::v8i8, 0 }, 594 }; 595 596 auto *User = cast<Instruction>(*I->user_begin()); 597 int UserISD = TLI->InstructionOpcodeToISD(User->getOpcode()); 598 if (auto *Entry = ConvertCostTableLookup(NEONDoubleWidthTbl, UserISD, 599 DstTy.getSimpleVT(), 600 SrcTy.getSimpleVT())) { 601 return AdjustCost(Entry->Cost); 602 } 603 } 604 605 // Single to/from double precision conversions. 606 if (Src->isVectorTy() && ST->hasNEON() && 607 ((ISD == ISD::FP_ROUND && SrcTy.getScalarType() == MVT::f64 && 608 DstTy.getScalarType() == MVT::f32) || 609 (ISD == ISD::FP_EXTEND && SrcTy.getScalarType() == MVT::f32 && 610 DstTy.getScalarType() == MVT::f64))) { 611 static const CostTblEntry NEONFltDblTbl[] = { 612 // Vector fptrunc/fpext conversions. 613 {ISD::FP_ROUND, MVT::v2f64, 2}, 614 {ISD::FP_EXTEND, MVT::v2f32, 2}, 615 {ISD::FP_EXTEND, MVT::v4f32, 4}}; 616 617 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 618 if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second)) 619 return AdjustCost(LT.first * Entry->Cost); 620 } 621 622 // Some arithmetic, load and store operations have specific instructions 623 // to cast up/down their types automatically at no extra cost. 624 // TODO: Get these tables to know at least what the related operations are. 625 static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = { 626 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 627 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 628 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 629 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 630 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 631 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 632 633 // The number of vmovl instructions for the extension. 634 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 635 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 636 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 637 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 638 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 3 }, 639 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 3 }, 640 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 641 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 642 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 643 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 644 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 645 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 646 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 647 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 648 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 649 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 650 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 651 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 652 653 // Operations that we legalize using splitting. 654 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 655 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 656 657 // Vector float <-> i32 conversions. 658 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 659 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 660 661 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 662 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 663 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, 664 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, 665 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 666 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 667 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 668 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 669 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 670 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 671 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 672 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 673 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 674 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 675 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 676 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 677 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, 678 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, 679 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, 680 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, 681 682 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 683 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 684 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 }, 685 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 }, 686 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 687 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 688 689 // Vector double <-> i32 conversions. 690 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 691 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 692 693 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 694 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 695 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, 696 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, 697 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 698 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 699 700 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 701 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 702 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 }, 703 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 }, 704 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 }, 705 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 } 706 }; 707 708 if (SrcTy.isVector() && ST->hasNEON()) { 709 if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD, 710 DstTy.getSimpleVT(), 711 SrcTy.getSimpleVT())) 712 return AdjustCost(Entry->Cost); 713 } 714 715 // Scalar float to integer conversions. 716 static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = { 717 { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 }, 718 { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 }, 719 { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 }, 720 { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 }, 721 { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 }, 722 { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 }, 723 { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 }, 724 { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 }, 725 { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 }, 726 { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 }, 727 { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 }, 728 { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 }, 729 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 }, 730 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 }, 731 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 }, 732 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 }, 733 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 }, 734 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 }, 735 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 }, 736 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 } 737 }; 738 if (SrcTy.isFloatingPoint() && ST->hasNEON()) { 739 if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD, 740 DstTy.getSimpleVT(), 741 SrcTy.getSimpleVT())) 742 return AdjustCost(Entry->Cost); 743 } 744 745 // Scalar integer to float conversions. 746 static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = { 747 { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 }, 748 { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 }, 749 { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 }, 750 { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 }, 751 { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 }, 752 { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 }, 753 { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 }, 754 { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 }, 755 { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 }, 756 { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 }, 757 { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 }, 758 { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 }, 759 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 }, 760 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 }, 761 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 }, 762 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 }, 763 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 }, 764 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 }, 765 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 }, 766 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 } 767 }; 768 769 if (SrcTy.isInteger() && ST->hasNEON()) { 770 if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl, 771 ISD, DstTy.getSimpleVT(), 772 SrcTy.getSimpleVT())) 773 return AdjustCost(Entry->Cost); 774 } 775 776 // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one 777 // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext 778 // are linearised so take more. 779 static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = { 780 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 781 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 782 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 783 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 784 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 }, 785 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 }, 786 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 787 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 788 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 }, 789 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 790 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 }, 791 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 }, 792 }; 793 794 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 795 if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl, 796 ISD, DstTy.getSimpleVT(), 797 SrcTy.getSimpleVT())) 798 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 799 } 800 801 if (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND) { 802 // As general rule, fp converts that were not matched above are scalarized 803 // and cost 1 vcvt for each lane, so long as the instruction is available. 804 // If not it will become a series of function calls. 805 const InstructionCost CallCost = 806 getCallInstrCost(nullptr, Dst, {Src}, CostKind); 807 int Lanes = 1; 808 if (SrcTy.isFixedLengthVector()) 809 Lanes = SrcTy.getVectorNumElements(); 810 811 if (IsLegalFPType(SrcTy) && IsLegalFPType(DstTy)) 812 return Lanes; 813 else 814 return Lanes * CallCost; 815 } 816 817 if (ISD == ISD::TRUNCATE && ST->hasMVEIntegerOps() && 818 SrcTy.isFixedLengthVector()) { 819 // Treat a truncate with larger than legal source (128bits for MVE) as 820 // expensive, 2 instructions per lane. 821 if ((SrcTy.getScalarType() == MVT::i8 || 822 SrcTy.getScalarType() == MVT::i16 || 823 SrcTy.getScalarType() == MVT::i32) && 824 SrcTy.getSizeInBits() > 128 && 825 SrcTy.getSizeInBits() > DstTy.getSizeInBits()) 826 return SrcTy.getVectorNumElements() * 2; 827 } 828 829 // Scalar integer conversion costs. 830 static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = { 831 // i16 -> i64 requires two dependent operations. 832 { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 }, 833 834 // Truncates on i64 are assumed to be free. 835 { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 }, 836 { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 }, 837 { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 }, 838 { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 } 839 }; 840 841 if (SrcTy.isInteger()) { 842 if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD, 843 DstTy.getSimpleVT(), 844 SrcTy.getSimpleVT())) 845 return AdjustCost(Entry->Cost); 846 } 847 848 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() 849 ? ST->getMVEVectorCostFactor(CostKind) 850 : 1; 851 return AdjustCost( 852 BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 853 } 854 855 InstructionCost ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 856 unsigned Index) { 857 // Penalize inserting into an D-subregister. We end up with a three times 858 // lower estimated throughput on swift. 859 if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement && 860 ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32) 861 return 3; 862 863 if (ST->hasNEON() && (Opcode == Instruction::InsertElement || 864 Opcode == Instruction::ExtractElement)) { 865 // Cross-class copies are expensive on many microarchitectures, 866 // so assume they are expensive by default. 867 if (cast<VectorType>(ValTy)->getElementType()->isIntegerTy()) 868 return 3; 869 870 // Even if it's not a cross class copy, this likely leads to mixing 871 // of NEON and VFP code and should be therefore penalized. 872 if (ValTy->isVectorTy() && 873 ValTy->getScalarSizeInBits() <= 32) 874 return std::max<InstructionCost>( 875 BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U); 876 } 877 878 if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement || 879 Opcode == Instruction::ExtractElement)) { 880 // Integer cross-lane moves are more expensive than float, which can 881 // sometimes just be vmovs. Integer involve being passes to GPR registers, 882 // causing more of a delay. 883 std::pair<InstructionCost, MVT> LT = 884 getTLI()->getTypeLegalizationCost(DL, ValTy->getScalarType()); 885 return LT.first * (ValTy->getScalarType()->isIntegerTy() ? 4 : 1); 886 } 887 888 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 889 } 890 891 InstructionCost ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 892 Type *CondTy, 893 CmpInst::Predicate VecPred, 894 TTI::TargetCostKind CostKind, 895 const Instruction *I) { 896 int ISD = TLI->InstructionOpcodeToISD(Opcode); 897 898 // Thumb scalar code size cost for select. 899 if (CostKind == TTI::TCK_CodeSize && ISD == ISD::SELECT && 900 ST->isThumb() && !ValTy->isVectorTy()) { 901 // Assume expensive structs. 902 if (TLI->getValueType(DL, ValTy, true) == MVT::Other) 903 return TTI::TCC_Expensive; 904 905 // Select costs can vary because they: 906 // - may require one or more conditional mov (including an IT), 907 // - can't operate directly on immediates, 908 // - require live flags, which we can't copy around easily. 909 InstructionCost Cost = TLI->getTypeLegalizationCost(DL, ValTy).first; 910 911 // Possible IT instruction for Thumb2, or more for Thumb1. 912 ++Cost; 913 914 // i1 values may need rematerialising by using mov immediates and/or 915 // flag setting instructions. 916 if (ValTy->isIntegerTy(1)) 917 ++Cost; 918 919 return Cost; 920 } 921 922 // If this is a vector min/max/abs, use the cost of that intrinsic directly 923 // instead. Hopefully when min/max intrinsics are more prevalent this code 924 // will not be needed. 925 const Instruction *Sel = I; 926 if ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && Sel && 927 Sel->hasOneUse()) 928 Sel = cast<Instruction>(Sel->user_back()); 929 if (Sel && ValTy->isVectorTy() && 930 (ValTy->isIntOrIntVectorTy() || ValTy->isFPOrFPVectorTy())) { 931 const Value *LHS, *RHS; 932 SelectPatternFlavor SPF = matchSelectPattern(Sel, LHS, RHS).Flavor; 933 unsigned IID = 0; 934 switch (SPF) { 935 case SPF_ABS: 936 IID = Intrinsic::abs; 937 break; 938 case SPF_SMIN: 939 IID = Intrinsic::smin; 940 break; 941 case SPF_SMAX: 942 IID = Intrinsic::smax; 943 break; 944 case SPF_UMIN: 945 IID = Intrinsic::umin; 946 break; 947 case SPF_UMAX: 948 IID = Intrinsic::umax; 949 break; 950 case SPF_FMINNUM: 951 IID = Intrinsic::minnum; 952 break; 953 case SPF_FMAXNUM: 954 IID = Intrinsic::maxnum; 955 break; 956 default: 957 break; 958 } 959 if (IID) { 960 // The ICmp is free, the select gets the cost of the min/max/etc 961 if (Sel != I) 962 return 0; 963 IntrinsicCostAttributes CostAttrs(IID, ValTy, {ValTy, ValTy}); 964 return getIntrinsicInstrCost(CostAttrs, CostKind); 965 } 966 } 967 968 // On NEON a vector select gets lowered to vbsl. 969 if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT && CondTy) { 970 // Lowering of some vector selects is currently far from perfect. 971 static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = { 972 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 }, 973 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 }, 974 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 } 975 }; 976 977 EVT SelCondTy = TLI->getValueType(DL, CondTy); 978 EVT SelValTy = TLI->getValueType(DL, ValTy); 979 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 980 if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD, 981 SelCondTy.getSimpleVT(), 982 SelValTy.getSimpleVT())) 983 return Entry->Cost; 984 } 985 986 std::pair<InstructionCost, MVT> LT = 987 TLI->getTypeLegalizationCost(DL, ValTy); 988 return LT.first; 989 } 990 991 if (ST->hasMVEIntegerOps() && ValTy->isVectorTy() && 992 (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 993 cast<FixedVectorType>(ValTy)->getNumElements() > 1) { 994 FixedVectorType *VecValTy = cast<FixedVectorType>(ValTy); 995 FixedVectorType *VecCondTy = dyn_cast_or_null<FixedVectorType>(CondTy); 996 if (!VecCondTy) 997 VecCondTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(VecValTy)); 998 999 // If we don't have mve.fp any fp operations will need to be scalarized. 1000 if (Opcode == Instruction::FCmp && !ST->hasMVEFloatOps()) { 1001 // One scalaization insert, one scalarization extract and the cost of the 1002 // fcmps. 1003 return BaseT::getScalarizationOverhead(VecValTy, false, true) + 1004 BaseT::getScalarizationOverhead(VecCondTy, true, false) + 1005 VecValTy->getNumElements() * 1006 getCmpSelInstrCost(Opcode, ValTy->getScalarType(), 1007 VecCondTy->getScalarType(), VecPred, CostKind, 1008 I); 1009 } 1010 1011 std::pair<InstructionCost, MVT> LT = 1012 TLI->getTypeLegalizationCost(DL, ValTy); 1013 int BaseCost = ST->getMVEVectorCostFactor(CostKind); 1014 // There are two types - the input that specifies the type of the compare 1015 // and the output vXi1 type. Because we don't know how the output will be 1016 // split, we may need an expensive shuffle to get two in sync. This has the 1017 // effect of making larger than legal compares (v8i32 for example) 1018 // expensive. 1019 if (LT.second.getVectorNumElements() > 2) { 1020 if (LT.first > 1) 1021 return LT.first * BaseCost + 1022 BaseT::getScalarizationOverhead(VecCondTy, true, false); 1023 return BaseCost; 1024 } 1025 } 1026 1027 // Default to cheap (throughput/size of 1 instruction) but adjust throughput 1028 // for "multiple beats" potentially needed by MVE instructions. 1029 int BaseCost = 1; 1030 if (ST->hasMVEIntegerOps() && ValTy->isVectorTy()) 1031 BaseCost = ST->getMVEVectorCostFactor(CostKind); 1032 1033 return BaseCost * 1034 BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 1035 } 1036 1037 InstructionCost ARMTTIImpl::getAddressComputationCost(Type *Ty, 1038 ScalarEvolution *SE, 1039 const SCEV *Ptr) { 1040 // Address computations in vectorized code with non-consecutive addresses will 1041 // likely result in more instructions compared to scalar code where the 1042 // computation can more often be merged into the index mode. The resulting 1043 // extra micro-ops can significantly decrease throughput. 1044 unsigned NumVectorInstToHideOverhead = 10; 1045 int MaxMergeDistance = 64; 1046 1047 if (ST->hasNEON()) { 1048 if (Ty->isVectorTy() && SE && 1049 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 1050 return NumVectorInstToHideOverhead; 1051 1052 // In many cases the address computation is not merged into the instruction 1053 // addressing mode. 1054 return 1; 1055 } 1056 return BaseT::getAddressComputationCost(Ty, SE, Ptr); 1057 } 1058 1059 bool ARMTTIImpl::isProfitableLSRChainElement(Instruction *I) { 1060 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1061 // If a VCTP is part of a chain, it's already profitable and shouldn't be 1062 // optimized, else LSR may block tail-predication. 1063 switch (II->getIntrinsicID()) { 1064 case Intrinsic::arm_mve_vctp8: 1065 case Intrinsic::arm_mve_vctp16: 1066 case Intrinsic::arm_mve_vctp32: 1067 case Intrinsic::arm_mve_vctp64: 1068 return true; 1069 default: 1070 break; 1071 } 1072 } 1073 return false; 1074 } 1075 1076 bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) { 1077 if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps()) 1078 return false; 1079 1080 if (auto *VecTy = dyn_cast<FixedVectorType>(DataTy)) { 1081 // Don't support v2i1 yet. 1082 if (VecTy->getNumElements() == 2) 1083 return false; 1084 1085 // We don't support extending fp types. 1086 unsigned VecWidth = DataTy->getPrimitiveSizeInBits(); 1087 if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy()) 1088 return false; 1089 } 1090 1091 unsigned EltWidth = DataTy->getScalarSizeInBits(); 1092 return (EltWidth == 32 && Alignment >= 4) || 1093 (EltWidth == 16 && Alignment >= 2) || (EltWidth == 8); 1094 } 1095 1096 bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, Align Alignment) { 1097 if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps()) 1098 return false; 1099 1100 // This method is called in 2 places: 1101 // - from the vectorizer with a scalar type, in which case we need to get 1102 // this as good as we can with the limited info we have (and rely on the cost 1103 // model for the rest). 1104 // - from the masked intrinsic lowering pass with the actual vector type. 1105 // For MVE, we have a custom lowering pass that will already have custom 1106 // legalised any gathers that we can to MVE intrinsics, and want to expand all 1107 // the rest. The pass runs before the masked intrinsic lowering pass, so if we 1108 // are here, we know we want to expand. 1109 if (isa<VectorType>(Ty)) 1110 return false; 1111 1112 unsigned EltWidth = Ty->getScalarSizeInBits(); 1113 return ((EltWidth == 32 && Alignment >= 4) || 1114 (EltWidth == 16 && Alignment >= 2) || EltWidth == 8); 1115 } 1116 1117 /// Given a memcpy/memset/memmove instruction, return the number of memory 1118 /// operations performed, via querying findOptimalMemOpLowering. Returns -1 if a 1119 /// call is used. 1120 int ARMTTIImpl::getNumMemOps(const IntrinsicInst *I) const { 1121 MemOp MOp; 1122 unsigned DstAddrSpace = ~0u; 1123 unsigned SrcAddrSpace = ~0u; 1124 const Function *F = I->getParent()->getParent(); 1125 1126 if (const auto *MC = dyn_cast<MemTransferInst>(I)) { 1127 ConstantInt *C = dyn_cast<ConstantInt>(MC->getLength()); 1128 // If 'size' is not a constant, a library call will be generated. 1129 if (!C) 1130 return -1; 1131 1132 const unsigned Size = C->getValue().getZExtValue(); 1133 const Align DstAlign = *MC->getDestAlign(); 1134 const Align SrcAlign = *MC->getSourceAlign(); 1135 1136 MOp = MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign, 1137 /*IsVolatile*/ false); 1138 DstAddrSpace = MC->getDestAddressSpace(); 1139 SrcAddrSpace = MC->getSourceAddressSpace(); 1140 } 1141 else if (const auto *MS = dyn_cast<MemSetInst>(I)) { 1142 ConstantInt *C = dyn_cast<ConstantInt>(MS->getLength()); 1143 // If 'size' is not a constant, a library call will be generated. 1144 if (!C) 1145 return -1; 1146 1147 const unsigned Size = C->getValue().getZExtValue(); 1148 const Align DstAlign = *MS->getDestAlign(); 1149 1150 MOp = MemOp::Set(Size, /*DstAlignCanChange*/ false, DstAlign, 1151 /*IsZeroMemset*/ false, /*IsVolatile*/ false); 1152 DstAddrSpace = MS->getDestAddressSpace(); 1153 } 1154 else 1155 llvm_unreachable("Expected a memcpy/move or memset!"); 1156 1157 unsigned Limit, Factor = 2; 1158 switch(I->getIntrinsicID()) { 1159 case Intrinsic::memcpy: 1160 Limit = TLI->getMaxStoresPerMemcpy(F->hasMinSize()); 1161 break; 1162 case Intrinsic::memmove: 1163 Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize()); 1164 break; 1165 case Intrinsic::memset: 1166 Limit = TLI->getMaxStoresPerMemset(F->hasMinSize()); 1167 Factor = 1; 1168 break; 1169 default: 1170 llvm_unreachable("Expected a memcpy/move or memset!"); 1171 } 1172 1173 // MemOps will be poplulated with a list of data types that needs to be 1174 // loaded and stored. That's why we multiply the number of elements by 2 to 1175 // get the cost for this memcpy. 1176 std::vector<EVT> MemOps; 1177 if (getTLI()->findOptimalMemOpLowering( 1178 MemOps, Limit, MOp, DstAddrSpace, 1179 SrcAddrSpace, F->getAttributes())) 1180 return MemOps.size() * Factor; 1181 1182 // If we can't find an optimal memop lowering, return the default cost 1183 return -1; 1184 } 1185 1186 InstructionCost ARMTTIImpl::getMemcpyCost(const Instruction *I) { 1187 int NumOps = getNumMemOps(cast<IntrinsicInst>(I)); 1188 1189 // To model the cost of a library call, we assume 1 for the call, and 1190 // 3 for the argument setup. 1191 if (NumOps == -1) 1192 return 4; 1193 return NumOps; 1194 } 1195 1196 InstructionCost ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 1197 VectorType *Tp, ArrayRef<int> Mask, 1198 int Index, VectorType *SubTp) { 1199 Kind = improveShuffleKindFromMask(Kind, Mask); 1200 if (ST->hasNEON()) { 1201 if (Kind == TTI::SK_Broadcast) { 1202 static const CostTblEntry NEONDupTbl[] = { 1203 // VDUP handles these cases. 1204 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 1205 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 1206 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 1207 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 1208 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, 1209 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, 1210 1211 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, 1212 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, 1213 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, 1214 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}}; 1215 1216 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1217 if (const auto *Entry = 1218 CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second)) 1219 return LT.first * Entry->Cost; 1220 } 1221 if (Kind == TTI::SK_Reverse) { 1222 static const CostTblEntry NEONShuffleTbl[] = { 1223 // Reverse shuffle cost one instruction if we are shuffling within a 1224 // double word (vrev) or two if we shuffle a quad word (vrev, vext). 1225 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 1226 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 1227 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 1228 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 1229 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, 1230 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, 1231 1232 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 1233 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 1234 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2}, 1235 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}}; 1236 1237 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1238 if (const auto *Entry = 1239 CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second)) 1240 return LT.first * Entry->Cost; 1241 } 1242 if (Kind == TTI::SK_Select) { 1243 static const CostTblEntry NEONSelShuffleTbl[] = { 1244 // Select shuffle cost table for ARM. Cost is the number of 1245 // instructions 1246 // required to create the shuffled vector. 1247 1248 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 1249 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 1250 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 1251 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 1252 1253 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 1254 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 1255 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2}, 1256 1257 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16}, 1258 1259 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}}; 1260 1261 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1262 if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl, 1263 ISD::VECTOR_SHUFFLE, LT.second)) 1264 return LT.first * Entry->Cost; 1265 } 1266 } 1267 if (ST->hasMVEIntegerOps()) { 1268 if (Kind == TTI::SK_Broadcast) { 1269 static const CostTblEntry MVEDupTbl[] = { 1270 // VDUP handles these cases. 1271 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, 1272 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, 1273 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}, 1274 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, 1275 {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}}; 1276 1277 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1278 if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE, 1279 LT.second)) 1280 return LT.first * Entry->Cost * 1281 ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput); 1282 } 1283 1284 if (!Mask.empty()) { 1285 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1286 if (Mask.size() <= LT.second.getVectorNumElements() && 1287 (isVREVMask(Mask, LT.second, 16) || isVREVMask(Mask, LT.second, 32) || 1288 isVREVMask(Mask, LT.second, 64))) 1289 return ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) * LT.first; 1290 } 1291 } 1292 1293 int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy() 1294 ? ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) 1295 : 1; 1296 return BaseCost * BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp); 1297 } 1298 1299 InstructionCost ARMTTIImpl::getArithmeticInstrCost( 1300 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 1301 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, 1302 TTI::OperandValueProperties Opd1PropInfo, 1303 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 1304 const Instruction *CxtI) { 1305 int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); 1306 if (ST->isThumb() && CostKind == TTI::TCK_CodeSize && Ty->isIntegerTy(1)) { 1307 // Make operations on i1 relatively expensive as this often involves 1308 // combining predicates. AND and XOR should be easier to handle with IT 1309 // blocks. 1310 switch (ISDOpcode) { 1311 default: 1312 break; 1313 case ISD::AND: 1314 case ISD::XOR: 1315 return 2; 1316 case ISD::OR: 1317 return 3; 1318 } 1319 } 1320 1321 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 1322 1323 if (ST->hasNEON()) { 1324 const unsigned FunctionCallDivCost = 20; 1325 const unsigned ReciprocalDivCost = 10; 1326 static const CostTblEntry CostTbl[] = { 1327 // Division. 1328 // These costs are somewhat random. Choose a cost of 20 to indicate that 1329 // vectorizing devision (added function call) is going to be very expensive. 1330 // Double registers types. 1331 { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost}, 1332 { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost}, 1333 { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost}, 1334 { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost}, 1335 { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost}, 1336 { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost}, 1337 { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost}, 1338 { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost}, 1339 { ISD::SDIV, MVT::v4i16, ReciprocalDivCost}, 1340 { ISD::UDIV, MVT::v4i16, ReciprocalDivCost}, 1341 { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost}, 1342 { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost}, 1343 { ISD::SDIV, MVT::v8i8, ReciprocalDivCost}, 1344 { ISD::UDIV, MVT::v8i8, ReciprocalDivCost}, 1345 { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost}, 1346 { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost}, 1347 // Quad register types. 1348 { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost}, 1349 { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost}, 1350 { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost}, 1351 { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost}, 1352 { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost}, 1353 { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost}, 1354 { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost}, 1355 { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost}, 1356 { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost}, 1357 { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost}, 1358 { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost}, 1359 { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost}, 1360 { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost}, 1361 { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost}, 1362 { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost}, 1363 { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost}, 1364 // Multiplication. 1365 }; 1366 1367 if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second)) 1368 return LT.first * Entry->Cost; 1369 1370 InstructionCost Cost = BaseT::getArithmeticInstrCost( 1371 Opcode, Ty, CostKind, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo); 1372 1373 // This is somewhat of a hack. The problem that we are facing is that SROA 1374 // creates a sequence of shift, and, or instructions to construct values. 1375 // These sequences are recognized by the ISel and have zero-cost. Not so for 1376 // the vectorized code. Because we have support for v2i64 but not i64 those 1377 // sequences look particularly beneficial to vectorize. 1378 // To work around this we increase the cost of v2i64 operations to make them 1379 // seem less beneficial. 1380 if (LT.second == MVT::v2i64 && 1381 Op2Info == TargetTransformInfo::OK_UniformConstantValue) 1382 Cost += 4; 1383 1384 return Cost; 1385 } 1386 1387 // If this operation is a shift on arm/thumb2, it might well be folded into 1388 // the following instruction, hence having a cost of 0. 1389 auto LooksLikeAFreeShift = [&]() { 1390 if (ST->isThumb1Only() || Ty->isVectorTy()) 1391 return false; 1392 1393 if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift()) 1394 return false; 1395 if (Op2Info != TargetTransformInfo::OK_UniformConstantValue) 1396 return false; 1397 1398 // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB 1399 switch (cast<Instruction>(CxtI->user_back())->getOpcode()) { 1400 case Instruction::Add: 1401 case Instruction::Sub: 1402 case Instruction::And: 1403 case Instruction::Xor: 1404 case Instruction::Or: 1405 case Instruction::ICmp: 1406 return true; 1407 default: 1408 return false; 1409 } 1410 }; 1411 if (LooksLikeAFreeShift()) 1412 return 0; 1413 1414 // Default to cheap (throughput/size of 1 instruction) but adjust throughput 1415 // for "multiple beats" potentially needed by MVE instructions. 1416 int BaseCost = 1; 1417 if (ST->hasMVEIntegerOps() && Ty->isVectorTy()) 1418 BaseCost = ST->getMVEVectorCostFactor(CostKind); 1419 1420 // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost, 1421 // without treating floats as more expensive that scalars or increasing the 1422 // costs for custom operations. The results is also multiplied by the 1423 // MVEVectorCostFactor where appropriate. 1424 if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second)) 1425 return LT.first * BaseCost; 1426 1427 // Else this is expand, assume that we need to scalarize this op. 1428 if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) { 1429 unsigned Num = VTy->getNumElements(); 1430 InstructionCost Cost = 1431 getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind); 1432 // Return the cost of multiple scalar invocation plus the cost of 1433 // inserting and extracting the values. 1434 SmallVector<Type *> Tys(Args.size(), Ty); 1435 return BaseT::getScalarizationOverhead(VTy, Args, Tys) + Num * Cost; 1436 } 1437 1438 return BaseCost; 1439 } 1440 1441 InstructionCost ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 1442 MaybeAlign Alignment, 1443 unsigned AddressSpace, 1444 TTI::TargetCostKind CostKind, 1445 const Instruction *I) { 1446 // TODO: Handle other cost kinds. 1447 if (CostKind != TTI::TCK_RecipThroughput) 1448 return 1; 1449 1450 // Type legalization can't handle structs 1451 if (TLI->getValueType(DL, Src, true) == MVT::Other) 1452 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1453 CostKind); 1454 1455 if (ST->hasNEON() && Src->isVectorTy() && 1456 (Alignment && *Alignment != Align(16)) && 1457 cast<VectorType>(Src)->getElementType()->isDoubleTy()) { 1458 // Unaligned loads/stores are extremely inefficient. 1459 // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr. 1460 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 1461 return LT.first * 4; 1462 } 1463 1464 // MVE can optimize a fpext(load(4xhalf)) using an extending integer load. 1465 // Same for stores. 1466 if (ST->hasMVEFloatOps() && isa<FixedVectorType>(Src) && I && 1467 ((Opcode == Instruction::Load && I->hasOneUse() && 1468 isa<FPExtInst>(*I->user_begin())) || 1469 (Opcode == Instruction::Store && isa<FPTruncInst>(I->getOperand(0))))) { 1470 FixedVectorType *SrcVTy = cast<FixedVectorType>(Src); 1471 Type *DstTy = 1472 Opcode == Instruction::Load 1473 ? (*I->user_begin())->getType() 1474 : cast<Instruction>(I->getOperand(0))->getOperand(0)->getType(); 1475 if (SrcVTy->getNumElements() == 4 && SrcVTy->getScalarType()->isHalfTy() && 1476 DstTy->getScalarType()->isFloatTy()) 1477 return ST->getMVEVectorCostFactor(CostKind); 1478 } 1479 1480 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() 1481 ? ST->getMVEVectorCostFactor(CostKind) 1482 : 1; 1483 return BaseCost * BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1484 CostKind, I); 1485 } 1486 1487 InstructionCost 1488 ARMTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, 1489 unsigned AddressSpace, 1490 TTI::TargetCostKind CostKind) { 1491 if (ST->hasMVEIntegerOps()) { 1492 if (Opcode == Instruction::Load && isLegalMaskedLoad(Src, Alignment)) 1493 return ST->getMVEVectorCostFactor(CostKind); 1494 if (Opcode == Instruction::Store && isLegalMaskedStore(Src, Alignment)) 1495 return ST->getMVEVectorCostFactor(CostKind); 1496 } 1497 if (!isa<FixedVectorType>(Src)) 1498 return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1499 CostKind); 1500 // Scalar cost, which is currently very high due to the efficiency of the 1501 // generated code. 1502 return cast<FixedVectorType>(Src)->getNumElements() * 8; 1503 } 1504 1505 InstructionCost ARMTTIImpl::getInterleavedMemoryOpCost( 1506 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 1507 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 1508 bool UseMaskForCond, bool UseMaskForGaps) { 1509 assert(Factor >= 2 && "Invalid interleave factor"); 1510 assert(isa<VectorType>(VecTy) && "Expect a vector type"); 1511 1512 // vldN/vstN doesn't support vector types of i64/f64 element. 1513 bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64; 1514 1515 if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits && 1516 !UseMaskForCond && !UseMaskForGaps) { 1517 unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements(); 1518 auto *SubVecTy = 1519 FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor); 1520 1521 // vldN/vstN only support legal vector types of size 64 or 128 in bits. 1522 // Accesses having vector types that are a multiple of 128 bits can be 1523 // matched to more than one vldN/vstN instruction. 1524 int BaseCost = 1525 ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor(CostKind) : 1; 1526 if (NumElts % Factor == 0 && 1527 TLI->isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL)) 1528 return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL); 1529 1530 // Some smaller than legal interleaved patterns are cheap as we can make 1531 // use of the vmovn or vrev patterns to interleave a standard load. This is 1532 // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is 1533 // promoted differently). The cost of 2 here is then a load and vrev or 1534 // vmovn. 1535 if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 && 1536 VecTy->isIntOrIntVectorTy() && 1537 DL.getTypeSizeInBits(SubVecTy).getFixedSize() <= 64) 1538 return 2 * BaseCost; 1539 } 1540 1541 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1542 Alignment, AddressSpace, CostKind, 1543 UseMaskForCond, UseMaskForGaps); 1544 } 1545 1546 InstructionCost ARMTTIImpl::getGatherScatterOpCost( 1547 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 1548 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) { 1549 using namespace PatternMatch; 1550 if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters) 1551 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 1552 Alignment, CostKind, I); 1553 1554 assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!"); 1555 auto *VTy = cast<FixedVectorType>(DataTy); 1556 1557 // TODO: Splitting, once we do that. 1558 1559 unsigned NumElems = VTy->getNumElements(); 1560 unsigned EltSize = VTy->getScalarSizeInBits(); 1561 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, DataTy); 1562 1563 // For now, it is assumed that for the MVE gather instructions the loads are 1564 // all effectively serialised. This means the cost is the scalar cost 1565 // multiplied by the number of elements being loaded. This is possibly very 1566 // conservative, but even so we still end up vectorising loops because the 1567 // cost per iteration for many loops is lower than for scalar loops. 1568 InstructionCost VectorCost = 1569 NumElems * LT.first * ST->getMVEVectorCostFactor(CostKind); 1570 // The scalarization cost should be a lot higher. We use the number of vector 1571 // elements plus the scalarization overhead. 1572 InstructionCost ScalarCost = 1573 NumElems * LT.first + BaseT::getScalarizationOverhead(VTy, true, false) + 1574 BaseT::getScalarizationOverhead(VTy, false, true); 1575 1576 if (EltSize < 8 || Alignment < EltSize / 8) 1577 return ScalarCost; 1578 1579 unsigned ExtSize = EltSize; 1580 // Check whether there's a single user that asks for an extended type 1581 if (I != nullptr) { 1582 // Dependent of the caller of this function, a gather instruction will 1583 // either have opcode Instruction::Load or be a call to the masked_gather 1584 // intrinsic 1585 if ((I->getOpcode() == Instruction::Load || 1586 match(I, m_Intrinsic<Intrinsic::masked_gather>())) && 1587 I->hasOneUse()) { 1588 const User *Us = *I->users().begin(); 1589 if (isa<ZExtInst>(Us) || isa<SExtInst>(Us)) { 1590 // only allow valid type combinations 1591 unsigned TypeSize = 1592 cast<Instruction>(Us)->getType()->getScalarSizeInBits(); 1593 if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) || 1594 (TypeSize == 16 && EltSize == 8)) && 1595 TypeSize * NumElems == 128) { 1596 ExtSize = TypeSize; 1597 } 1598 } 1599 } 1600 // Check whether the input data needs to be truncated 1601 TruncInst *T; 1602 if ((I->getOpcode() == Instruction::Store || 1603 match(I, m_Intrinsic<Intrinsic::masked_scatter>())) && 1604 (T = dyn_cast<TruncInst>(I->getOperand(0)))) { 1605 // Only allow valid type combinations 1606 unsigned TypeSize = T->getOperand(0)->getType()->getScalarSizeInBits(); 1607 if (((EltSize == 16 && TypeSize == 32) || 1608 (EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) && 1609 TypeSize * NumElems == 128) 1610 ExtSize = TypeSize; 1611 } 1612 } 1613 1614 if (ExtSize * NumElems != 128 || NumElems < 4) 1615 return ScalarCost; 1616 1617 // Any (aligned) i32 gather will not need to be scalarised. 1618 if (ExtSize == 32) 1619 return VectorCost; 1620 // For smaller types, we need to ensure that the gep's inputs are correctly 1621 // extended from a small enough value. Other sizes (including i64) are 1622 // scalarized for now. 1623 if (ExtSize != 8 && ExtSize != 16) 1624 return ScalarCost; 1625 1626 if (const auto *BC = dyn_cast<BitCastInst>(Ptr)) 1627 Ptr = BC->getOperand(0); 1628 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1629 if (GEP->getNumOperands() != 2) 1630 return ScalarCost; 1631 unsigned Scale = DL.getTypeAllocSize(GEP->getResultElementType()); 1632 // Scale needs to be correct (which is only relevant for i16s). 1633 if (Scale != 1 && Scale * 8 != ExtSize) 1634 return ScalarCost; 1635 // And we need to zext (not sext) the indexes from a small enough type. 1636 if (const auto *ZExt = dyn_cast<ZExtInst>(GEP->getOperand(1))) { 1637 if (ZExt->getOperand(0)->getType()->getScalarSizeInBits() <= ExtSize) 1638 return VectorCost; 1639 } 1640 return ScalarCost; 1641 } 1642 return ScalarCost; 1643 } 1644 1645 InstructionCost 1646 ARMTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy, 1647 Optional<FastMathFlags> FMF, 1648 TTI::TargetCostKind CostKind) { 1649 if (TTI::requiresOrderedReduction(FMF)) 1650 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 1651 1652 EVT ValVT = TLI->getValueType(DL, ValTy); 1653 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1654 if (!ST->hasMVEIntegerOps() || !ValVT.isSimple() || ISD != ISD::ADD) 1655 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 1656 1657 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 1658 1659 static const CostTblEntry CostTblAdd[]{ 1660 {ISD::ADD, MVT::v16i8, 1}, 1661 {ISD::ADD, MVT::v8i16, 1}, 1662 {ISD::ADD, MVT::v4i32, 1}, 1663 }; 1664 if (const auto *Entry = CostTableLookup(CostTblAdd, ISD, LT.second)) 1665 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first; 1666 1667 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 1668 } 1669 1670 InstructionCost 1671 ARMTTIImpl::getExtendedAddReductionCost(bool IsMLA, bool IsUnsigned, 1672 Type *ResTy, VectorType *ValTy, 1673 TTI::TargetCostKind CostKind) { 1674 EVT ValVT = TLI->getValueType(DL, ValTy); 1675 EVT ResVT = TLI->getValueType(DL, ResTy); 1676 1677 if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) { 1678 std::pair<InstructionCost, MVT> LT = 1679 TLI->getTypeLegalizationCost(DL, ValTy); 1680 1681 // The legal cases are: 1682 // VADDV u/s 8/16/32 1683 // VMLAV u/s 8/16/32 1684 // VADDLV u/s 32 1685 // VMLALV u/s 16/32 1686 // Codegen currently cannot always handle larger than legal vectors very 1687 // well, especially for predicated reductions where the mask needs to be 1688 // split, so restrict to 128bit or smaller input types. 1689 unsigned RevVTSize = ResVT.getSizeInBits(); 1690 if (ValVT.getSizeInBits() <= 128 && 1691 ((LT.second == MVT::v16i8 && RevVTSize <= 32) || 1692 (LT.second == MVT::v8i16 && RevVTSize <= (IsMLA ? 64u : 32u)) || 1693 (LT.second == MVT::v4i32 && RevVTSize <= 64))) 1694 return ST->getMVEVectorCostFactor(CostKind) * LT.first; 1695 } 1696 1697 return BaseT::getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, ValTy, 1698 CostKind); 1699 } 1700 1701 InstructionCost 1702 ARMTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 1703 TTI::TargetCostKind CostKind) { 1704 switch (ICA.getID()) { 1705 case Intrinsic::get_active_lane_mask: 1706 // Currently we make a somewhat optimistic assumption that 1707 // active_lane_mask's are always free. In reality it may be freely folded 1708 // into a tail predicated loop, expanded into a VCPT or expanded into a lot 1709 // of add/icmp code. We may need to improve this in the future, but being 1710 // able to detect if it is free or not involves looking at a lot of other 1711 // code. We currently assume that the vectorizer inserted these, and knew 1712 // what it was doing in adding one. 1713 if (ST->hasMVEIntegerOps()) 1714 return 0; 1715 break; 1716 case Intrinsic::sadd_sat: 1717 case Intrinsic::ssub_sat: 1718 case Intrinsic::uadd_sat: 1719 case Intrinsic::usub_sat: { 1720 if (!ST->hasMVEIntegerOps()) 1721 break; 1722 Type *VT = ICA.getReturnType(); 1723 1724 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT); 1725 if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 || 1726 LT.second == MVT::v16i8) { 1727 // This is a base cost of 1 for the vqadd, plus 3 extract shifts if we 1728 // need to extend the type, as it uses shr(qadd(shl, shl)). 1729 unsigned Instrs = 1730 LT.second.getScalarSizeInBits() == VT->getScalarSizeInBits() ? 1 : 4; 1731 return LT.first * ST->getMVEVectorCostFactor(CostKind) * Instrs; 1732 } 1733 break; 1734 } 1735 case Intrinsic::abs: 1736 case Intrinsic::smin: 1737 case Intrinsic::smax: 1738 case Intrinsic::umin: 1739 case Intrinsic::umax: { 1740 if (!ST->hasMVEIntegerOps()) 1741 break; 1742 Type *VT = ICA.getReturnType(); 1743 1744 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT); 1745 if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 || 1746 LT.second == MVT::v16i8) 1747 return LT.first * ST->getMVEVectorCostFactor(CostKind); 1748 break; 1749 } 1750 case Intrinsic::minnum: 1751 case Intrinsic::maxnum: { 1752 if (!ST->hasMVEFloatOps()) 1753 break; 1754 Type *VT = ICA.getReturnType(); 1755 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT); 1756 if (LT.second == MVT::v4f32 || LT.second == MVT::v8f16) 1757 return LT.first * ST->getMVEVectorCostFactor(CostKind); 1758 break; 1759 } 1760 } 1761 1762 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 1763 } 1764 1765 bool ARMTTIImpl::isLoweredToCall(const Function *F) { 1766 if (!F->isIntrinsic()) 1767 BaseT::isLoweredToCall(F); 1768 1769 // Assume all Arm-specific intrinsics map to an instruction. 1770 if (F->getName().startswith("llvm.arm")) 1771 return false; 1772 1773 switch (F->getIntrinsicID()) { 1774 default: break; 1775 case Intrinsic::powi: 1776 case Intrinsic::sin: 1777 case Intrinsic::cos: 1778 case Intrinsic::pow: 1779 case Intrinsic::log: 1780 case Intrinsic::log10: 1781 case Intrinsic::log2: 1782 case Intrinsic::exp: 1783 case Intrinsic::exp2: 1784 return true; 1785 case Intrinsic::sqrt: 1786 case Intrinsic::fabs: 1787 case Intrinsic::copysign: 1788 case Intrinsic::floor: 1789 case Intrinsic::ceil: 1790 case Intrinsic::trunc: 1791 case Intrinsic::rint: 1792 case Intrinsic::nearbyint: 1793 case Intrinsic::round: 1794 case Intrinsic::canonicalize: 1795 case Intrinsic::lround: 1796 case Intrinsic::llround: 1797 case Intrinsic::lrint: 1798 case Intrinsic::llrint: 1799 if (F->getReturnType()->isDoubleTy() && !ST->hasFP64()) 1800 return true; 1801 if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16()) 1802 return true; 1803 // Some operations can be handled by vector instructions and assume 1804 // unsupported vectors will be expanded into supported scalar ones. 1805 // TODO Handle scalar operations properly. 1806 return !ST->hasFPARMv8Base() && !ST->hasVFP2Base(); 1807 case Intrinsic::masked_store: 1808 case Intrinsic::masked_load: 1809 case Intrinsic::masked_gather: 1810 case Intrinsic::masked_scatter: 1811 return !ST->hasMVEIntegerOps(); 1812 case Intrinsic::sadd_with_overflow: 1813 case Intrinsic::uadd_with_overflow: 1814 case Intrinsic::ssub_with_overflow: 1815 case Intrinsic::usub_with_overflow: 1816 case Intrinsic::sadd_sat: 1817 case Intrinsic::uadd_sat: 1818 case Intrinsic::ssub_sat: 1819 case Intrinsic::usub_sat: 1820 return false; 1821 } 1822 1823 return BaseT::isLoweredToCall(F); 1824 } 1825 1826 bool ARMTTIImpl::maybeLoweredToCall(Instruction &I) { 1827 unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode()); 1828 EVT VT = TLI->getValueType(DL, I.getType(), true); 1829 if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall) 1830 return true; 1831 1832 // Check if an intrinsic will be lowered to a call and assume that any 1833 // other CallInst will generate a bl. 1834 if (auto *Call = dyn_cast<CallInst>(&I)) { 1835 if (auto *II = dyn_cast<IntrinsicInst>(Call)) { 1836 switch(II->getIntrinsicID()) { 1837 case Intrinsic::memcpy: 1838 case Intrinsic::memset: 1839 case Intrinsic::memmove: 1840 return getNumMemOps(II) == -1; 1841 default: 1842 if (const Function *F = Call->getCalledFunction()) 1843 return isLoweredToCall(F); 1844 } 1845 } 1846 return true; 1847 } 1848 1849 // FPv5 provides conversions between integer, double-precision, 1850 // single-precision, and half-precision formats. 1851 switch (I.getOpcode()) { 1852 default: 1853 break; 1854 case Instruction::FPToSI: 1855 case Instruction::FPToUI: 1856 case Instruction::SIToFP: 1857 case Instruction::UIToFP: 1858 case Instruction::FPTrunc: 1859 case Instruction::FPExt: 1860 return !ST->hasFPARMv8Base(); 1861 } 1862 1863 // FIXME: Unfortunately the approach of checking the Operation Action does 1864 // not catch all cases of Legalization that use library calls. Our 1865 // Legalization step categorizes some transformations into library calls as 1866 // Custom, Expand or even Legal when doing type legalization. So for now 1867 // we have to special case for instance the SDIV of 64bit integers and the 1868 // use of floating point emulation. 1869 if (VT.isInteger() && VT.getSizeInBits() >= 64) { 1870 switch (ISD) { 1871 default: 1872 break; 1873 case ISD::SDIV: 1874 case ISD::UDIV: 1875 case ISD::SREM: 1876 case ISD::UREM: 1877 case ISD::SDIVREM: 1878 case ISD::UDIVREM: 1879 return true; 1880 } 1881 } 1882 1883 // Assume all other non-float operations are supported. 1884 if (!VT.isFloatingPoint()) 1885 return false; 1886 1887 // We'll need a library call to handle most floats when using soft. 1888 if (TLI->useSoftFloat()) { 1889 switch (I.getOpcode()) { 1890 default: 1891 return true; 1892 case Instruction::Alloca: 1893 case Instruction::Load: 1894 case Instruction::Store: 1895 case Instruction::Select: 1896 case Instruction::PHI: 1897 return false; 1898 } 1899 } 1900 1901 // We'll need a libcall to perform double precision operations on a single 1902 // precision only FPU. 1903 if (I.getType()->isDoubleTy() && !ST->hasFP64()) 1904 return true; 1905 1906 // Likewise for half precision arithmetic. 1907 if (I.getType()->isHalfTy() && !ST->hasFullFP16()) 1908 return true; 1909 1910 return false; 1911 } 1912 1913 bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, 1914 AssumptionCache &AC, 1915 TargetLibraryInfo *LibInfo, 1916 HardwareLoopInfo &HWLoopInfo) { 1917 // Low-overhead branches are only supported in the 'low-overhead branch' 1918 // extension of v8.1-m. 1919 if (!ST->hasLOB() || DisableLowOverheadLoops) { 1920 LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n"); 1921 return false; 1922 } 1923 1924 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { 1925 LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n"); 1926 return false; 1927 } 1928 1929 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1930 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 1931 LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n"); 1932 return false; 1933 } 1934 1935 const SCEV *TripCountSCEV = 1936 SE.getAddExpr(BackedgeTakenCount, 1937 SE.getOne(BackedgeTakenCount->getType())); 1938 1939 // We need to store the trip count in LR, a 32-bit register. 1940 if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) { 1941 LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n"); 1942 return false; 1943 } 1944 1945 // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little 1946 // point in generating a hardware loop if that's going to happen. 1947 1948 auto IsHardwareLoopIntrinsic = [](Instruction &I) { 1949 if (auto *Call = dyn_cast<IntrinsicInst>(&I)) { 1950 switch (Call->getIntrinsicID()) { 1951 default: 1952 break; 1953 case Intrinsic::start_loop_iterations: 1954 case Intrinsic::test_start_loop_iterations: 1955 case Intrinsic::loop_decrement: 1956 case Intrinsic::loop_decrement_reg: 1957 return true; 1958 } 1959 } 1960 return false; 1961 }; 1962 1963 // Scan the instructions to see if there's any that we know will turn into a 1964 // call or if this loop is already a low-overhead loop or will become a tail 1965 // predicated loop. 1966 bool IsTailPredLoop = false; 1967 auto ScanLoop = [&](Loop *L) { 1968 for (auto *BB : L->getBlocks()) { 1969 for (auto &I : *BB) { 1970 if (maybeLoweredToCall(I) || IsHardwareLoopIntrinsic(I) || 1971 isa<InlineAsm>(I)) { 1972 LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n"); 1973 return false; 1974 } 1975 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1976 IsTailPredLoop |= 1977 II->getIntrinsicID() == Intrinsic::get_active_lane_mask || 1978 II->getIntrinsicID() == Intrinsic::arm_mve_vctp8 || 1979 II->getIntrinsicID() == Intrinsic::arm_mve_vctp16 || 1980 II->getIntrinsicID() == Intrinsic::arm_mve_vctp32 || 1981 II->getIntrinsicID() == Intrinsic::arm_mve_vctp64; 1982 } 1983 } 1984 return true; 1985 }; 1986 1987 // Visit inner loops. 1988 for (auto Inner : *L) 1989 if (!ScanLoop(Inner)) 1990 return false; 1991 1992 if (!ScanLoop(L)) 1993 return false; 1994 1995 // TODO: Check whether the trip count calculation is expensive. If L is the 1996 // inner loop but we know it has a low trip count, calculating that trip 1997 // count (in the parent loop) may be detrimental. 1998 1999 LLVMContext &C = L->getHeader()->getContext(); 2000 HWLoopInfo.CounterInReg = true; 2001 HWLoopInfo.IsNestingLegal = false; 2002 HWLoopInfo.PerformEntryTest = AllowWLSLoops && !IsTailPredLoop; 2003 HWLoopInfo.CountType = Type::getInt32Ty(C); 2004 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1); 2005 return true; 2006 } 2007 2008 static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) { 2009 // We don't allow icmp's, and because we only look at single block loops, 2010 // we simply count the icmps, i.e. there should only be 1 for the backedge. 2011 if (isa<ICmpInst>(&I) && ++ICmpCount > 1) 2012 return false; 2013 // FIXME: This is a workaround for poor cost modelling. Min/Max intrinsics are 2014 // not currently canonical, but soon will be. Code without them uses icmp, and 2015 // so is not tail predicated as per the condition above. In order to get the 2016 // same performance we treat min and max the same as an icmp for tailpred 2017 // purposes for the moment (we often rely on non-tailpred and higher VF's to 2018 // pick more optimial instructions like VQDMULH. They need to be recognized 2019 // directly by the vectorizer). 2020 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2021 if ((II->getIntrinsicID() == Intrinsic::smin || 2022 II->getIntrinsicID() == Intrinsic::smax || 2023 II->getIntrinsicID() == Intrinsic::umin || 2024 II->getIntrinsicID() == Intrinsic::umax) && 2025 ++ICmpCount > 1) 2026 return false; 2027 2028 if (isa<FCmpInst>(&I)) 2029 return false; 2030 2031 // We could allow extending/narrowing FP loads/stores, but codegen is 2032 // too inefficient so reject this for now. 2033 if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I)) 2034 return false; 2035 2036 // Extends have to be extending-loads 2037 if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) ) 2038 if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0))) 2039 return false; 2040 2041 // Truncs have to be narrowing-stores 2042 if (isa<TruncInst>(&I) ) 2043 if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin())) 2044 return false; 2045 2046 return true; 2047 } 2048 2049 // To set up a tail-predicated loop, we need to know the total number of 2050 // elements processed by that loop. Thus, we need to determine the element 2051 // size and: 2052 // 1) it should be uniform for all operations in the vector loop, so we 2053 // e.g. don't want any widening/narrowing operations. 2054 // 2) it should be smaller than i64s because we don't have vector operations 2055 // that work on i64s. 2056 // 3) we don't want elements to be reversed or shuffled, to make sure the 2057 // tail-predication masks/predicates the right lanes. 2058 // 2059 static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE, 2060 const DataLayout &DL, 2061 const LoopAccessInfo *LAI) { 2062 LLVM_DEBUG(dbgs() << "Tail-predication: checking allowed instructions\n"); 2063 2064 // If there are live-out values, it is probably a reduction. We can predicate 2065 // most reduction operations freely under MVE using a combination of 2066 // prefer-predicated-reduction-select and inloop reductions. We limit this to 2067 // floating point and integer reductions, but don't check for operators 2068 // specifically here. If the value ends up not being a reduction (and so the 2069 // vectorizer cannot tailfold the loop), we should fall back to standard 2070 // vectorization automatically. 2071 SmallVector< Instruction *, 8 > LiveOuts; 2072 LiveOuts = llvm::findDefsUsedOutsideOfLoop(L); 2073 bool ReductionsDisabled = 2074 EnableTailPredication == TailPredication::EnabledNoReductions || 2075 EnableTailPredication == TailPredication::ForceEnabledNoReductions; 2076 2077 for (auto *I : LiveOuts) { 2078 if (!I->getType()->isIntegerTy() && !I->getType()->isFloatTy() && 2079 !I->getType()->isHalfTy()) { 2080 LLVM_DEBUG(dbgs() << "Don't tail-predicate loop with non-integer/float " 2081 "live-out value\n"); 2082 return false; 2083 } 2084 if (ReductionsDisabled) { 2085 LLVM_DEBUG(dbgs() << "Reductions not enabled\n"); 2086 return false; 2087 } 2088 } 2089 2090 // Next, check that all instructions can be tail-predicated. 2091 PredicatedScalarEvolution PSE = LAI->getPSE(); 2092 SmallVector<Instruction *, 16> LoadStores; 2093 int ICmpCount = 0; 2094 2095 for (BasicBlock *BB : L->blocks()) { 2096 for (Instruction &I : BB->instructionsWithoutDebug()) { 2097 if (isa<PHINode>(&I)) 2098 continue; 2099 if (!canTailPredicateInstruction(I, ICmpCount)) { 2100 LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump()); 2101 return false; 2102 } 2103 2104 Type *T = I.getType(); 2105 if (T->isPointerTy()) 2106 T = T->getPointerElementType(); 2107 2108 if (T->getScalarSizeInBits() > 32) { 2109 LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump()); 2110 return false; 2111 } 2112 if (isa<StoreInst>(I) || isa<LoadInst>(I)) { 2113 Value *Ptr = getLoadStorePointerOperand(&I); 2114 Type *AccessTy = getLoadStoreType(&I); 2115 int64_t NextStride = getPtrStride(PSE, AccessTy, Ptr, L); 2116 if (NextStride == 1) { 2117 // TODO: for now only allow consecutive strides of 1. We could support 2118 // other strides as long as it is uniform, but let's keep it simple 2119 // for now. 2120 continue; 2121 } else if (NextStride == -1 || 2122 (NextStride == 2 && MVEMaxSupportedInterleaveFactor >= 2) || 2123 (NextStride == 4 && MVEMaxSupportedInterleaveFactor >= 4)) { 2124 LLVM_DEBUG(dbgs() 2125 << "Consecutive strides of 2 found, vld2/vstr2 can't " 2126 "be tail-predicated\n."); 2127 return false; 2128 // TODO: don't tail predicate if there is a reversed load? 2129 } else if (EnableMaskedGatherScatters) { 2130 // Gather/scatters do allow loading from arbitrary strides, at 2131 // least if they are loop invariant. 2132 // TODO: Loop variant strides should in theory work, too, but 2133 // this requires further testing. 2134 const SCEV *PtrScev = PSE.getSE()->getSCEV(Ptr); 2135 if (auto AR = dyn_cast<SCEVAddRecExpr>(PtrScev)) { 2136 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 2137 if (PSE.getSE()->isLoopInvariant(Step, L)) 2138 continue; 2139 } 2140 } 2141 LLVM_DEBUG(dbgs() << "Bad stride found, can't " 2142 "tail-predicate\n."); 2143 return false; 2144 } 2145 } 2146 } 2147 2148 LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n"); 2149 return true; 2150 } 2151 2152 bool ARMTTIImpl::preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, 2153 ScalarEvolution &SE, 2154 AssumptionCache &AC, 2155 TargetLibraryInfo *TLI, 2156 DominatorTree *DT, 2157 const LoopAccessInfo *LAI) { 2158 if (!EnableTailPredication) { 2159 LLVM_DEBUG(dbgs() << "Tail-predication not enabled.\n"); 2160 return false; 2161 } 2162 2163 // Creating a predicated vector loop is the first step for generating a 2164 // tail-predicated hardware loop, for which we need the MVE masked 2165 // load/stores instructions: 2166 if (!ST->hasMVEIntegerOps()) 2167 return false; 2168 2169 // For now, restrict this to single block loops. 2170 if (L->getNumBlocks() > 1) { 2171 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block " 2172 "loop.\n"); 2173 return false; 2174 } 2175 2176 assert(L->isInnermost() && "preferPredicateOverEpilogue: inner-loop expected"); 2177 2178 HardwareLoopInfo HWLoopInfo(L); 2179 if (!HWLoopInfo.canAnalyze(*LI)) { 2180 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 2181 "analyzable.\n"); 2182 return false; 2183 } 2184 2185 // This checks if we have the low-overhead branch architecture 2186 // extension, and if we will create a hardware-loop: 2187 if (!isHardwareLoopProfitable(L, SE, AC, TLI, HWLoopInfo)) { 2188 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 2189 "profitable.\n"); 2190 return false; 2191 } 2192 2193 if (!HWLoopInfo.isHardwareLoopCandidate(SE, *LI, *DT)) { 2194 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 2195 "a candidate.\n"); 2196 return false; 2197 } 2198 2199 return canTailPredicateLoop(L, LI, SE, DL, LAI); 2200 } 2201 2202 bool ARMTTIImpl::emitGetActiveLaneMask() const { 2203 if (!ST->hasMVEIntegerOps() || !EnableTailPredication) 2204 return false; 2205 2206 // Intrinsic @llvm.get.active.lane.mask is supported. 2207 // It is used in the MVETailPredication pass, which requires the number of 2208 // elements processed by this vector loop to setup the tail-predicated 2209 // loop. 2210 return true; 2211 } 2212 void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 2213 TTI::UnrollingPreferences &UP, 2214 OptimizationRemarkEmitter *ORE) { 2215 // Enable Upper bound unrolling universally, not dependant upon the conditions 2216 // below. 2217 UP.UpperBound = true; 2218 2219 // Only currently enable these preferences for M-Class cores. 2220 if (!ST->isMClass()) 2221 return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE); 2222 2223 // Disable loop unrolling for Oz and Os. 2224 UP.OptSizeThreshold = 0; 2225 UP.PartialOptSizeThreshold = 0; 2226 if (L->getHeader()->getParent()->hasOptSize()) 2227 return; 2228 2229 SmallVector<BasicBlock*, 4> ExitingBlocks; 2230 L->getExitingBlocks(ExitingBlocks); 2231 LLVM_DEBUG(dbgs() << "Loop has:\n" 2232 << "Blocks: " << L->getNumBlocks() << "\n" 2233 << "Exit blocks: " << ExitingBlocks.size() << "\n"); 2234 2235 // Only allow another exit other than the latch. This acts as an early exit 2236 // as it mirrors the profitability calculation of the runtime unroller. 2237 if (ExitingBlocks.size() > 2) 2238 return; 2239 2240 // Limit the CFG of the loop body for targets with a branch predictor. 2241 // Allowing 4 blocks permits if-then-else diamonds in the body. 2242 if (ST->hasBranchPredictor() && L->getNumBlocks() > 4) 2243 return; 2244 2245 // Don't unroll vectorized loops, including the remainder loop 2246 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 2247 return; 2248 2249 // Scan the loop: don't unroll loops with calls as this could prevent 2250 // inlining. 2251 InstructionCost Cost = 0; 2252 for (auto *BB : L->getBlocks()) { 2253 for (auto &I : *BB) { 2254 // Don't unroll vectorised loop. MVE does not benefit from it as much as 2255 // scalar code. 2256 if (I.getType()->isVectorTy()) 2257 return; 2258 2259 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 2260 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 2261 if (!isLoweredToCall(F)) 2262 continue; 2263 } 2264 return; 2265 } 2266 2267 SmallVector<const Value*, 4> Operands(I.operand_values()); 2268 Cost += 2269 getUserCost(&I, Operands, TargetTransformInfo::TCK_SizeAndLatency); 2270 } 2271 } 2272 2273 // On v6m cores, there are very few registers available. We can easily end up 2274 // spilling and reloading more registers in an unrolled loop. Look at the 2275 // number of LCSSA phis as a rough measure of how many registers will need to 2276 // be live out of the loop, reducing the default unroll count if more than 1 2277 // value is needed. In the long run, all of this should be being learnt by a 2278 // machine. 2279 unsigned UnrollCount = 4; 2280 if (ST->isThumb1Only()) { 2281 unsigned ExitingValues = 0; 2282 SmallVector<BasicBlock *, 4> ExitBlocks; 2283 L->getExitBlocks(ExitBlocks); 2284 for (auto *Exit : ExitBlocks) { 2285 // Count the number of LCSSA phis. Exclude values coming from GEP's as 2286 // only the last is expected to be needed for address operands. 2287 unsigned LiveOuts = count_if(Exit->phis(), [](auto &PH) { 2288 return PH.getNumOperands() != 1 || 2289 !isa<GetElementPtrInst>(PH.getOperand(0)); 2290 }); 2291 ExitingValues = ExitingValues < LiveOuts ? LiveOuts : ExitingValues; 2292 } 2293 if (ExitingValues) 2294 UnrollCount /= ExitingValues; 2295 if (UnrollCount <= 1) 2296 return; 2297 } 2298 2299 LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n"); 2300 LLVM_DEBUG(dbgs() << "Default Runtime Unroll Count: " << UnrollCount << "\n"); 2301 2302 UP.Partial = true; 2303 UP.Runtime = true; 2304 UP.UnrollRemainder = true; 2305 UP.DefaultUnrollRuntimeCount = UnrollCount; 2306 UP.UnrollAndJam = true; 2307 UP.UnrollAndJamInnerLoopThreshold = 60; 2308 2309 // Force unrolling small loops can be very useful because of the branch 2310 // taken cost of the backedge. 2311 if (Cost < 12) 2312 UP.Force = true; 2313 } 2314 2315 void ARMTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 2316 TTI::PeelingPreferences &PP) { 2317 BaseT::getPeelingPreferences(L, SE, PP); 2318 } 2319 2320 bool ARMTTIImpl::preferInLoopReduction(unsigned Opcode, Type *Ty, 2321 TTI::ReductionFlags Flags) const { 2322 if (!ST->hasMVEIntegerOps()) 2323 return false; 2324 2325 unsigned ScalarBits = Ty->getScalarSizeInBits(); 2326 switch (Opcode) { 2327 case Instruction::Add: 2328 return ScalarBits <= 64; 2329 default: 2330 return false; 2331 } 2332 } 2333 2334 bool ARMTTIImpl::preferPredicatedReductionSelect( 2335 unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const { 2336 if (!ST->hasMVEIntegerOps()) 2337 return false; 2338 return true; 2339 } 2340