xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMTargetMachine.cpp (revision f9fd7337f63698f33239c58c07bf430198235a22)
1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //
10 //===----------------------------------------------------------------------===//
11 
12 #include "ARMTargetMachine.h"
13 #include "ARM.h"
14 #include "ARMMacroFusion.h"
15 #include "ARMSubtarget.h"
16 #include "ARMTargetObjectFile.h"
17 #include "ARMTargetTransformInfo.h"
18 #include "MCTargetDesc/ARMMCTargetDesc.h"
19 #include "TargetInfo/ARMTargetInfo.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/CodeGen/ExecutionDomainFix.h"
26 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
27 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
28 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
29 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
30 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
31 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
33 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineScheduler.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/CodeGen.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/TargetParser.h"
46 #include "llvm/Support/TargetRegistry.h"
47 #include "llvm/Target/TargetLoweringObjectFile.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include "llvm/Transforms/CFGuard.h"
50 #include "llvm/Transforms/Scalar.h"
51 #include <cassert>
52 #include <memory>
53 #include <string>
54 
55 using namespace llvm;
56 
57 static cl::opt<bool>
58 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
59                    cl::desc("Inhibit optimization of S->D register accesses on A15"),
60                    cl::init(false));
61 
62 static cl::opt<bool>
63 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
64                  cl::desc("Run SimplifyCFG after expanding atomic operations"
65                           " to make use of cmpxchg flow-based information"),
66                  cl::init(true));
67 
68 static cl::opt<bool>
69 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
70                       cl::desc("Enable ARM load/store optimization pass"),
71                       cl::init(true));
72 
73 // FIXME: Unify control over GlobalMerge.
74 static cl::opt<cl::boolOrDefault>
75 EnableGlobalMerge("arm-global-merge", cl::Hidden,
76                   cl::desc("Enable the global merge pass"));
77 
78 namespace llvm {
79   void initializeARMExecutionDomainFixPass(PassRegistry&);
80 }
81 
82 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMTarget() {
83   // Register the target.
84   RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget());
85   RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget());
86   RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget());
87   RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget());
88 
89   PassRegistry &Registry = *PassRegistry::getPassRegistry();
90   initializeGlobalISel(Registry);
91   initializeARMLoadStoreOptPass(Registry);
92   initializeARMPreAllocLoadStoreOptPass(Registry);
93   initializeARMParallelDSPPass(Registry);
94   initializeARMConstantIslandsPass(Registry);
95   initializeARMExecutionDomainFixPass(Registry);
96   initializeARMExpandPseudoPass(Registry);
97   initializeThumb2SizeReducePass(Registry);
98   initializeMVEVPTBlockPass(Registry);
99   initializeMVEVPTOptimisationsPass(Registry);
100   initializeMVETailPredicationPass(Registry);
101   initializeARMLowOverheadLoopsPass(Registry);
102   initializeMVEGatherScatterLoweringPass(Registry);
103 }
104 
105 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
106   if (TT.isOSBinFormatMachO())
107     return std::make_unique<TargetLoweringObjectFileMachO>();
108   if (TT.isOSWindows())
109     return std::make_unique<TargetLoweringObjectFileCOFF>();
110   return std::make_unique<ARMElfTargetObjectFile>();
111 }
112 
113 static ARMBaseTargetMachine::ARMABI
114 computeTargetABI(const Triple &TT, StringRef CPU,
115                  const TargetOptions &Options) {
116   StringRef ABIName = Options.MCOptions.getABIName();
117 
118   if (ABIName.empty())
119     ABIName = ARM::computeDefaultTargetABI(TT, CPU);
120 
121   if (ABIName == "aapcs16")
122     return ARMBaseTargetMachine::ARM_ABI_AAPCS16;
123   else if (ABIName.startswith("aapcs"))
124     return ARMBaseTargetMachine::ARM_ABI_AAPCS;
125   else if (ABIName.startswith("apcs"))
126     return ARMBaseTargetMachine::ARM_ABI_APCS;
127 
128   llvm_unreachable("Unhandled/unknown ABI Name!");
129   return ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
130 }
131 
132 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
133                                      const TargetOptions &Options,
134                                      bool isLittle) {
135   auto ABI = computeTargetABI(TT, CPU, Options);
136   std::string Ret;
137 
138   if (isLittle)
139     // Little endian.
140     Ret += "e";
141   else
142     // Big endian.
143     Ret += "E";
144 
145   Ret += DataLayout::getManglingComponent(TT);
146 
147   // Pointers are 32 bits and aligned to 32 bits.
148   Ret += "-p:32:32";
149 
150   // Function pointers are aligned to 8 bits (because the LSB stores the
151   // ARM/Thumb state).
152   Ret += "-Fi8";
153 
154   // ABIs other than APCS have 64 bit integers with natural alignment.
155   if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
156     Ret += "-i64:64";
157 
158   // We have 64 bits floats. The APCS ABI requires them to be aligned to 32
159   // bits, others to 64 bits. We always try to align to 64 bits.
160   if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
161     Ret += "-f64:32:64";
162 
163   // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
164   // to 64. We always ty to give them natural alignment.
165   if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
166     Ret += "-v64:32:64-v128:32:128";
167   else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16)
168     Ret += "-v128:64:128";
169 
170   // Try to align aggregates to 32 bits (the default is 64 bits, which has no
171   // particular hardware support on 32-bit ARM).
172   Ret += "-a:0:32";
173 
174   // Integer registers are 32 bits.
175   Ret += "-n32";
176 
177   // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
178   // aligned everywhere else.
179   if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16)
180     Ret += "-S128";
181   else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
182     Ret += "-S64";
183   else
184     Ret += "-S32";
185 
186   return Ret;
187 }
188 
189 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
190                                            Optional<Reloc::Model> RM) {
191   if (!RM.hasValue())
192     // Default relocation model on Darwin is PIC.
193     return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static;
194 
195   if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI)
196     assert(TT.isOSBinFormatELF() &&
197            "ROPI/RWPI currently only supported for ELF");
198 
199   // DynamicNoPIC is only used on darwin.
200   if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin())
201     return Reloc::Static;
202 
203   return *RM;
204 }
205 
206 /// Create an ARM architecture model.
207 ///
208 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
209                                            StringRef CPU, StringRef FS,
210                                            const TargetOptions &Options,
211                                            Optional<Reloc::Model> RM,
212                                            Optional<CodeModel::Model> CM,
213                                            CodeGenOpt::Level OL, bool isLittle)
214     : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
215                         CPU, FS, Options, getEffectiveRelocModel(TT, RM),
216                         getEffectiveCodeModel(CM, CodeModel::Small), OL),
217       TargetABI(computeTargetABI(TT, CPU, Options)),
218       TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) {
219 
220   // Default to triple-appropriate float ABI
221   if (Options.FloatABIType == FloatABI::Default) {
222     if (isTargetHardFloat())
223       this->Options.FloatABIType = FloatABI::Hard;
224     else
225       this->Options.FloatABIType = FloatABI::Soft;
226   }
227 
228   // Default to triple-appropriate EABI
229   if (Options.EABIVersion == EABI::Default ||
230       Options.EABIVersion == EABI::Unknown) {
231     // musl is compatible with glibc with regard to EABI version
232     if ((TargetTriple.getEnvironment() == Triple::GNUEABI ||
233          TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
234          TargetTriple.getEnvironment() == Triple::MuslEABI ||
235          TargetTriple.getEnvironment() == Triple::MuslEABIHF) &&
236         !(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin()))
237       this->Options.EABIVersion = EABI::GNU;
238     else
239       this->Options.EABIVersion = EABI::EABI5;
240   }
241 
242   if (TT.isOSBinFormatMachO()) {
243     this->Options.TrapUnreachable = true;
244     this->Options.NoTrapAfterNoreturn = true;
245   }
246 
247   // ARM supports the debug entry values.
248   setSupportsDebugEntryValues(true);
249 
250   initAsmInfo();
251 
252   // ARM supports the MachineOutliner.
253   setMachineOutliner(true);
254   setSupportsDefaultOutlining(false);
255 }
256 
257 ARMBaseTargetMachine::~ARMBaseTargetMachine() = default;
258 
259 const ARMSubtarget *
260 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
261   Attribute CPUAttr = F.getFnAttribute("target-cpu");
262   Attribute FSAttr = F.getFnAttribute("target-features");
263 
264   std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
265                         ? CPUAttr.getValueAsString().str()
266                         : TargetCPU;
267   std::string FS = !FSAttr.hasAttribute(Attribute::None)
268                        ? FSAttr.getValueAsString().str()
269                        : TargetFS;
270 
271   // FIXME: This is related to the code below to reset the target options,
272   // we need to know whether or not the soft float flag is set on the
273   // function before we can generate a subtarget. We also need to use
274   // it as a key for the subtarget since that can be the only difference
275   // between two functions.
276   bool SoftFloat =
277       F.getFnAttribute("use-soft-float").getValueAsString() == "true";
278   // If the soft float attribute is set on the function turn on the soft float
279   // subtarget feature.
280   if (SoftFloat)
281     FS += FS.empty() ? "+soft-float" : ",+soft-float";
282 
283   // Use the optminsize to identify the subtarget, but don't use it in the
284   // feature string.
285   std::string Key = CPU + FS;
286   if (F.hasMinSize())
287     Key += "+minsize";
288 
289   auto &I = SubtargetMap[Key];
290   if (!I) {
291     // This needs to be done before we create a new subtarget since any
292     // creation will depend on the TM and the code generation flags on the
293     // function that reside in TargetOptions.
294     resetTargetOptions(F);
295     I = std::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle,
296                                         F.hasMinSize());
297 
298     if (!I->isThumb() && !I->hasARMOps())
299       F.getContext().emitError("Function '" + F.getName() + "' uses ARM "
300           "instructions, but the target does not support ARM mode execution.");
301   }
302 
303   return I.get();
304 }
305 
306 TargetTransformInfo
307 ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) {
308   return TargetTransformInfo(ARMTTIImpl(this, F));
309 }
310 
311 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
312                                        StringRef CPU, StringRef FS,
313                                        const TargetOptions &Options,
314                                        Optional<Reloc::Model> RM,
315                                        Optional<CodeModel::Model> CM,
316                                        CodeGenOpt::Level OL, bool JIT)
317     : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
318 
319 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
320                                        StringRef CPU, StringRef FS,
321                                        const TargetOptions &Options,
322                                        Optional<Reloc::Model> RM,
323                                        Optional<CodeModel::Model> CM,
324                                        CodeGenOpt::Level OL, bool JIT)
325     : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
326 
327 namespace {
328 
329 /// ARM Code Generator Pass Configuration Options.
330 class ARMPassConfig : public TargetPassConfig {
331 public:
332   ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM)
333       : TargetPassConfig(TM, PM) {}
334 
335   ARMBaseTargetMachine &getARMTargetMachine() const {
336     return getTM<ARMBaseTargetMachine>();
337   }
338 
339   ScheduleDAGInstrs *
340   createMachineScheduler(MachineSchedContext *C) const override {
341     ScheduleDAGMILive *DAG = createGenericSchedLive(C);
342     // add DAG Mutations here.
343     const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
344     if (ST.hasFusion())
345       DAG->addMutation(createARMMacroFusionDAGMutation());
346     return DAG;
347   }
348 
349   ScheduleDAGInstrs *
350   createPostMachineScheduler(MachineSchedContext *C) const override {
351     ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
352     // add DAG Mutations here.
353     const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
354     if (ST.hasFusion())
355       DAG->addMutation(createARMMacroFusionDAGMutation());
356     return DAG;
357   }
358 
359   void addIRPasses() override;
360   void addCodeGenPrepare() override;
361   bool addPreISel() override;
362   bool addInstSelector() override;
363   bool addIRTranslator() override;
364   bool addLegalizeMachineIR() override;
365   bool addRegBankSelect() override;
366   bool addGlobalInstructionSelect() override;
367   void addPreRegAlloc() override;
368   void addPreSched2() override;
369   void addPreEmitPass() override;
370   void addPreEmitPass2() override;
371 
372   std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
373 };
374 
375 class ARMExecutionDomainFix : public ExecutionDomainFix {
376 public:
377   static char ID;
378   ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {}
379   StringRef getPassName() const override {
380     return "ARM Execution Domain Fix";
381   }
382 };
383 char ARMExecutionDomainFix::ID;
384 
385 } // end anonymous namespace
386 
387 INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix",
388   "ARM Execution Domain Fix", false, false)
389 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
390 INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix",
391   "ARM Execution Domain Fix", false, false)
392 
393 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
394   return new ARMPassConfig(*this, PM);
395 }
396 
397 std::unique_ptr<CSEConfigBase> ARMPassConfig::getCSEConfig() const {
398   return getStandardCSEConfigForOpt(TM->getOptLevel());
399 }
400 
401 void ARMPassConfig::addIRPasses() {
402   if (TM->Options.ThreadModel == ThreadModel::Single)
403     addPass(createLowerAtomicPass());
404   else
405     addPass(createAtomicExpandPass());
406 
407   // Cmpxchg instructions are often used with a subsequent comparison to
408   // determine whether it succeeded. We can exploit existing control-flow in
409   // ldrex/strex loops to simplify this, but it needs tidying up.
410   if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
411     addPass(createCFGSimplificationPass(
412         1, false, false, true, true, [this](const Function &F) {
413           const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
414           return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
415         }));
416 
417   addPass(createMVEGatherScatterLoweringPass());
418 
419   TargetPassConfig::addIRPasses();
420 
421   // Run the parallel DSP pass.
422   if (getOptLevel() == CodeGenOpt::Aggressive)
423     addPass(createARMParallelDSPPass());
424 
425   // Match interleaved memory accesses to ldN/stN intrinsics.
426   if (TM->getOptLevel() != CodeGenOpt::None)
427     addPass(createInterleavedAccessPass());
428 
429   // Add Control Flow Guard checks.
430   if (TM->getTargetTriple().isOSWindows())
431     addPass(createCFGuardCheckPass());
432 }
433 
434 void ARMPassConfig::addCodeGenPrepare() {
435   if (getOptLevel() != CodeGenOpt::None)
436     addPass(createTypePromotionPass());
437   TargetPassConfig::addCodeGenPrepare();
438 }
439 
440 bool ARMPassConfig::addPreISel() {
441   if ((TM->getOptLevel() != CodeGenOpt::None &&
442        EnableGlobalMerge == cl::BOU_UNSET) ||
443       EnableGlobalMerge == cl::BOU_TRUE) {
444     // FIXME: This is using the thumb1 only constant value for
445     // maximal global offset for merging globals. We may want
446     // to look into using the old value for non-thumb1 code of
447     // 4095 based on the TargetMachine, but this starts to become
448     // tricky when doing code gen per function.
449     bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
450                                (EnableGlobalMerge == cl::BOU_UNSET);
451     // Merging of extern globals is enabled by default on non-Mach-O as we
452     // expect it to be generally either beneficial or harmless. On Mach-O it
453     // is disabled as we emit the .subsections_via_symbols directive which
454     // means that merging extern globals is not safe.
455     bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
456     addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize,
457                                   MergeExternalByDefault));
458   }
459 
460   if (TM->getOptLevel() != CodeGenOpt::None) {
461     addPass(createHardwareLoopsPass());
462     addPass(createMVETailPredicationPass());
463   }
464 
465   return false;
466 }
467 
468 bool ARMPassConfig::addInstSelector() {
469   addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
470   return false;
471 }
472 
473 bool ARMPassConfig::addIRTranslator() {
474   addPass(new IRTranslator());
475   return false;
476 }
477 
478 bool ARMPassConfig::addLegalizeMachineIR() {
479   addPass(new Legalizer());
480   return false;
481 }
482 
483 bool ARMPassConfig::addRegBankSelect() {
484   addPass(new RegBankSelect());
485   return false;
486 }
487 
488 bool ARMPassConfig::addGlobalInstructionSelect() {
489   addPass(new InstructionSelect());
490   return false;
491 }
492 
493 void ARMPassConfig::addPreRegAlloc() {
494   if (getOptLevel() != CodeGenOpt::None) {
495     addPass(createMVEVPTOptimisationsPass());
496 
497     addPass(createMLxExpansionPass());
498 
499     if (EnableARMLoadStoreOpt)
500       addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true));
501 
502     if (!DisableA15SDOptimization)
503       addPass(createA15SDOptimizerPass());
504   }
505 }
506 
507 void ARMPassConfig::addPreSched2() {
508   if (getOptLevel() != CodeGenOpt::None) {
509     if (EnableARMLoadStoreOpt)
510       addPass(createARMLoadStoreOptimizationPass());
511 
512     addPass(new ARMExecutionDomainFix());
513     addPass(createBreakFalseDeps());
514   }
515 
516   // Expand some pseudo instructions into multiple instructions to allow
517   // proper scheduling.
518   addPass(createARMExpandPseudoPass());
519 
520   if (getOptLevel() != CodeGenOpt::None) {
521     // When optimising for size, always run the Thumb2SizeReduction pass before
522     // IfConversion. Otherwise, check whether IT blocks are restricted
523     // (e.g. in v8, IfConversion depends on Thumb instruction widths)
524     addPass(createThumb2SizeReductionPass([this](const Function &F) {
525       return this->TM->getSubtarget<ARMSubtarget>(F).hasMinSize() ||
526              this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
527     }));
528 
529     addPass(createIfConverter([](const MachineFunction &MF) {
530       return !MF.getSubtarget<ARMSubtarget>().isThumb1Only();
531     }));
532   }
533   addPass(createMVEVPTBlockPass());
534   addPass(createThumb2ITBlockPass());
535 
536   // Add both scheduling passes to give the subtarget an opportunity to pick
537   // between them.
538   if (getOptLevel() != CodeGenOpt::None) {
539     addPass(&PostMachineSchedulerID);
540     addPass(&PostRASchedulerID);
541   }
542 }
543 
544 void ARMPassConfig::addPreEmitPass() {
545   addPass(createThumb2SizeReductionPass());
546 
547   // Constant island pass work on unbundled instructions.
548   addPass(createUnpackMachineBundles([](const MachineFunction &MF) {
549     return MF.getSubtarget<ARMSubtarget>().isThumb2();
550   }));
551 
552   // Don't optimize barriers at -O0.
553   if (getOptLevel() != CodeGenOpt::None)
554     addPass(createARMOptimizeBarriersPass());
555 }
556 
557 void ARMPassConfig::addPreEmitPass2() {
558   addPass(createARMConstantIslandPass());
559   addPass(createARMLowOverheadLoopsPass());
560 
561   // Identify valid longjmp targets for Windows Control Flow Guard.
562   if (TM->getTargetTriple().isOSWindows())
563     addPass(createCFGuardLongjmpPass());
564 }
565