xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMTargetMachine.cpp (revision f2530c80db7b29b95368fce956b3a778f096b368)
1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //
10 //===----------------------------------------------------------------------===//
11 
12 #include "ARMTargetMachine.h"
13 #include "ARM.h"
14 #include "ARMMacroFusion.h"
15 #include "ARMSubtarget.h"
16 #include "ARMTargetObjectFile.h"
17 #include "ARMTargetTransformInfo.h"
18 #include "MCTargetDesc/ARMMCTargetDesc.h"
19 #include "TargetInfo/ARMTargetInfo.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/CodeGen/ExecutionDomainFix.h"
26 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
27 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
28 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
29 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
30 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
31 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
33 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineScheduler.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/CodeGen.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/TargetParser.h"
46 #include "llvm/Support/TargetRegistry.h"
47 #include "llvm/Target/TargetLoweringObjectFile.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include "llvm/Transforms/Scalar.h"
50 #include <cassert>
51 #include <memory>
52 #include <string>
53 
54 using namespace llvm;
55 
56 static cl::opt<bool>
57 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
58                    cl::desc("Inhibit optimization of S->D register accesses on A15"),
59                    cl::init(false));
60 
61 static cl::opt<bool>
62 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
63                  cl::desc("Run SimplifyCFG after expanding atomic operations"
64                           " to make use of cmpxchg flow-based information"),
65                  cl::init(true));
66 
67 static cl::opt<bool>
68 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
69                       cl::desc("Enable ARM load/store optimization pass"),
70                       cl::init(true));
71 
72 // FIXME: Unify control over GlobalMerge.
73 static cl::opt<cl::boolOrDefault>
74 EnableGlobalMerge("arm-global-merge", cl::Hidden,
75                   cl::desc("Enable the global merge pass"));
76 
77 namespace llvm {
78   void initializeARMExecutionDomainFixPass(PassRegistry&);
79 }
80 
81 extern "C" void LLVMInitializeARMTarget() {
82   // Register the target.
83   RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget());
84   RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget());
85   RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget());
86   RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget());
87 
88   PassRegistry &Registry = *PassRegistry::getPassRegistry();
89   initializeGlobalISel(Registry);
90   initializeARMLoadStoreOptPass(Registry);
91   initializeARMPreAllocLoadStoreOptPass(Registry);
92   initializeARMParallelDSPPass(Registry);
93   initializeARMCodeGenPreparePass(Registry);
94   initializeARMConstantIslandsPass(Registry);
95   initializeARMExecutionDomainFixPass(Registry);
96   initializeARMExpandPseudoPass(Registry);
97   initializeThumb2SizeReducePass(Registry);
98   initializeMVEVPTBlockPass(Registry);
99   initializeARMLowOverheadLoopsPass(Registry);
100 }
101 
102 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
103   if (TT.isOSBinFormatMachO())
104     return llvm::make_unique<TargetLoweringObjectFileMachO>();
105   if (TT.isOSWindows())
106     return llvm::make_unique<TargetLoweringObjectFileCOFF>();
107   return llvm::make_unique<ARMElfTargetObjectFile>();
108 }
109 
110 static ARMBaseTargetMachine::ARMABI
111 computeTargetABI(const Triple &TT, StringRef CPU,
112                  const TargetOptions &Options) {
113   StringRef ABIName = Options.MCOptions.getABIName();
114 
115   if (ABIName.empty())
116     ABIName = ARM::computeDefaultTargetABI(TT, CPU);
117 
118   if (ABIName == "aapcs16")
119     return ARMBaseTargetMachine::ARM_ABI_AAPCS16;
120   else if (ABIName.startswith("aapcs"))
121     return ARMBaseTargetMachine::ARM_ABI_AAPCS;
122   else if (ABIName.startswith("apcs"))
123     return ARMBaseTargetMachine::ARM_ABI_APCS;
124 
125   llvm_unreachable("Unhandled/unknown ABI Name!");
126   return ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
127 }
128 
129 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
130                                      const TargetOptions &Options,
131                                      bool isLittle) {
132   auto ABI = computeTargetABI(TT, CPU, Options);
133   std::string Ret;
134 
135   if (isLittle)
136     // Little endian.
137     Ret += "e";
138   else
139     // Big endian.
140     Ret += "E";
141 
142   Ret += DataLayout::getManglingComponent(TT);
143 
144   // Pointers are 32 bits and aligned to 32 bits.
145   Ret += "-p:32:32";
146 
147   // Function pointers are aligned to 8 bits (because the LSB stores the
148   // ARM/Thumb state).
149   Ret += "-Fi8";
150 
151   // ABIs other than APCS have 64 bit integers with natural alignment.
152   if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
153     Ret += "-i64:64";
154 
155   // We have 64 bits floats. The APCS ABI requires them to be aligned to 32
156   // bits, others to 64 bits. We always try to align to 64 bits.
157   if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
158     Ret += "-f64:32:64";
159 
160   // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
161   // to 64. We always ty to give them natural alignment.
162   if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
163     Ret += "-v64:32:64-v128:32:128";
164   else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16)
165     Ret += "-v128:64:128";
166 
167   // Try to align aggregates to 32 bits (the default is 64 bits, which has no
168   // particular hardware support on 32-bit ARM).
169   Ret += "-a:0:32";
170 
171   // Integer registers are 32 bits.
172   Ret += "-n32";
173 
174   // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
175   // aligned everywhere else.
176   if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16)
177     Ret += "-S128";
178   else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
179     Ret += "-S64";
180   else
181     Ret += "-S32";
182 
183   return Ret;
184 }
185 
186 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
187                                            Optional<Reloc::Model> RM) {
188   if (!RM.hasValue())
189     // Default relocation model on Darwin is PIC.
190     return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static;
191 
192   if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI)
193     assert(TT.isOSBinFormatELF() &&
194            "ROPI/RWPI currently only supported for ELF");
195 
196   // DynamicNoPIC is only used on darwin.
197   if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin())
198     return Reloc::Static;
199 
200   return *RM;
201 }
202 
203 /// Create an ARM architecture model.
204 ///
205 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
206                                            StringRef CPU, StringRef FS,
207                                            const TargetOptions &Options,
208                                            Optional<Reloc::Model> RM,
209                                            Optional<CodeModel::Model> CM,
210                                            CodeGenOpt::Level OL, bool isLittle)
211     : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
212                         CPU, FS, Options, getEffectiveRelocModel(TT, RM),
213                         getEffectiveCodeModel(CM, CodeModel::Small), OL),
214       TargetABI(computeTargetABI(TT, CPU, Options)),
215       TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) {
216 
217   // Default to triple-appropriate float ABI
218   if (Options.FloatABIType == FloatABI::Default) {
219     if (isTargetHardFloat())
220       this->Options.FloatABIType = FloatABI::Hard;
221     else
222       this->Options.FloatABIType = FloatABI::Soft;
223   }
224 
225   // Default to triple-appropriate EABI
226   if (Options.EABIVersion == EABI::Default ||
227       Options.EABIVersion == EABI::Unknown) {
228     // musl is compatible with glibc with regard to EABI version
229     if ((TargetTriple.getEnvironment() == Triple::GNUEABI ||
230          TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
231          TargetTriple.getEnvironment() == Triple::MuslEABI ||
232          TargetTriple.getEnvironment() == Triple::MuslEABIHF) &&
233         !(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin()))
234       this->Options.EABIVersion = EABI::GNU;
235     else
236       this->Options.EABIVersion = EABI::EABI5;
237   }
238 
239   if (TT.isOSBinFormatMachO()) {
240     this->Options.TrapUnreachable = true;
241     this->Options.NoTrapAfterNoreturn = true;
242   }
243 
244   initAsmInfo();
245 }
246 
247 ARMBaseTargetMachine::~ARMBaseTargetMachine() = default;
248 
249 const ARMSubtarget *
250 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
251   Attribute CPUAttr = F.getFnAttribute("target-cpu");
252   Attribute FSAttr = F.getFnAttribute("target-features");
253 
254   std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
255                         ? CPUAttr.getValueAsString().str()
256                         : TargetCPU;
257   std::string FS = !FSAttr.hasAttribute(Attribute::None)
258                        ? FSAttr.getValueAsString().str()
259                        : TargetFS;
260 
261   // FIXME: This is related to the code below to reset the target options,
262   // we need to know whether or not the soft float flag is set on the
263   // function before we can generate a subtarget. We also need to use
264   // it as a key for the subtarget since that can be the only difference
265   // between two functions.
266   bool SoftFloat =
267       F.getFnAttribute("use-soft-float").getValueAsString() == "true";
268   // If the soft float attribute is set on the function turn on the soft float
269   // subtarget feature.
270   if (SoftFloat)
271     FS += FS.empty() ? "+soft-float" : ",+soft-float";
272 
273   // Use the optminsize to identify the subtarget, but don't use it in the
274   // feature string.
275   std::string Key = CPU + FS;
276   if (F.hasMinSize())
277     Key += "+minsize";
278 
279   auto &I = SubtargetMap[Key];
280   if (!I) {
281     // This needs to be done before we create a new subtarget since any
282     // creation will depend on the TM and the code generation flags on the
283     // function that reside in TargetOptions.
284     resetTargetOptions(F);
285     I = llvm::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle,
286                                         F.hasMinSize());
287 
288     if (!I->isThumb() && !I->hasARMOps())
289       F.getContext().emitError("Function '" + F.getName() + "' uses ARM "
290           "instructions, but the target does not support ARM mode execution.");
291   }
292 
293   return I.get();
294 }
295 
296 TargetTransformInfo
297 ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) {
298   return TargetTransformInfo(ARMTTIImpl(this, F));
299 }
300 
301 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
302                                        StringRef CPU, StringRef FS,
303                                        const TargetOptions &Options,
304                                        Optional<Reloc::Model> RM,
305                                        Optional<CodeModel::Model> CM,
306                                        CodeGenOpt::Level OL, bool JIT)
307     : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
308 
309 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
310                                        StringRef CPU, StringRef FS,
311                                        const TargetOptions &Options,
312                                        Optional<Reloc::Model> RM,
313                                        Optional<CodeModel::Model> CM,
314                                        CodeGenOpt::Level OL, bool JIT)
315     : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
316 
317 namespace {
318 
319 /// ARM Code Generator Pass Configuration Options.
320 class ARMPassConfig : public TargetPassConfig {
321 public:
322   ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM)
323       : TargetPassConfig(TM, PM) {
324     if (TM.getOptLevel() != CodeGenOpt::None) {
325       ARMGenSubtargetInfo STI(TM.getTargetTriple(), TM.getTargetCPU(),
326                               TM.getTargetFeatureString());
327       if (STI.hasFeature(ARM::FeatureUseMISched))
328         substitutePass(&PostRASchedulerID, &PostMachineSchedulerID);
329     }
330   }
331 
332   ARMBaseTargetMachine &getARMTargetMachine() const {
333     return getTM<ARMBaseTargetMachine>();
334   }
335 
336   ScheduleDAGInstrs *
337   createMachineScheduler(MachineSchedContext *C) const override {
338     ScheduleDAGMILive *DAG = createGenericSchedLive(C);
339     // add DAG Mutations here.
340     const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
341     if (ST.hasFusion())
342       DAG->addMutation(createARMMacroFusionDAGMutation());
343     return DAG;
344   }
345 
346   ScheduleDAGInstrs *
347   createPostMachineScheduler(MachineSchedContext *C) const override {
348     ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
349     // add DAG Mutations here.
350     const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
351     if (ST.hasFusion())
352       DAG->addMutation(createARMMacroFusionDAGMutation());
353     return DAG;
354   }
355 
356   void addIRPasses() override;
357   void addCodeGenPrepare() override;
358   bool addPreISel() override;
359   bool addInstSelector() override;
360   bool addIRTranslator() override;
361   bool addLegalizeMachineIR() override;
362   bool addRegBankSelect() override;
363   bool addGlobalInstructionSelect() override;
364   void addPreRegAlloc() override;
365   void addPreSched2() override;
366   void addPreEmitPass() override;
367 
368   std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
369 };
370 
371 class ARMExecutionDomainFix : public ExecutionDomainFix {
372 public:
373   static char ID;
374   ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {}
375   StringRef getPassName() const override {
376     return "ARM Execution Domain Fix";
377   }
378 };
379 char ARMExecutionDomainFix::ID;
380 
381 } // end anonymous namespace
382 
383 INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix",
384   "ARM Execution Domain Fix", false, false)
385 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
386 INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix",
387   "ARM Execution Domain Fix", false, false)
388 
389 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
390   return new ARMPassConfig(*this, PM);
391 }
392 
393 std::unique_ptr<CSEConfigBase> ARMPassConfig::getCSEConfig() const {
394   return getStandardCSEConfigForOpt(TM->getOptLevel());
395 }
396 
397 void ARMPassConfig::addIRPasses() {
398   if (TM->Options.ThreadModel == ThreadModel::Single)
399     addPass(createLowerAtomicPass());
400   else
401     addPass(createAtomicExpandPass());
402 
403   // Cmpxchg instructions are often used with a subsequent comparison to
404   // determine whether it succeeded. We can exploit existing control-flow in
405   // ldrex/strex loops to simplify this, but it needs tidying up.
406   if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
407     addPass(createCFGSimplificationPass(
408         1, false, false, true, true, [this](const Function &F) {
409           const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
410           return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
411         }));
412 
413   TargetPassConfig::addIRPasses();
414 
415   // Run the parallel DSP pass.
416   if (getOptLevel() == CodeGenOpt::Aggressive)
417     addPass(createARMParallelDSPPass());
418 
419   // Match interleaved memory accesses to ldN/stN intrinsics.
420   if (TM->getOptLevel() != CodeGenOpt::None)
421     addPass(createInterleavedAccessPass());
422 }
423 
424 void ARMPassConfig::addCodeGenPrepare() {
425   if (getOptLevel() != CodeGenOpt::None)
426     addPass(createARMCodeGenPreparePass());
427   TargetPassConfig::addCodeGenPrepare();
428 }
429 
430 bool ARMPassConfig::addPreISel() {
431   if ((TM->getOptLevel() != CodeGenOpt::None &&
432        EnableGlobalMerge == cl::BOU_UNSET) ||
433       EnableGlobalMerge == cl::BOU_TRUE) {
434     // FIXME: This is using the thumb1 only constant value for
435     // maximal global offset for merging globals. We may want
436     // to look into using the old value for non-thumb1 code of
437     // 4095 based on the TargetMachine, but this starts to become
438     // tricky when doing code gen per function.
439     bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
440                                (EnableGlobalMerge == cl::BOU_UNSET);
441     // Merging of extern globals is enabled by default on non-Mach-O as we
442     // expect it to be generally either beneficial or harmless. On Mach-O it
443     // is disabled as we emit the .subsections_via_symbols directive which
444     // means that merging extern globals is not safe.
445     bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
446     addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize,
447                                   MergeExternalByDefault));
448   }
449 
450   if (TM->getOptLevel() != CodeGenOpt::None)
451     addPass(createHardwareLoopsPass());
452 
453   return false;
454 }
455 
456 bool ARMPassConfig::addInstSelector() {
457   addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
458   return false;
459 }
460 
461 bool ARMPassConfig::addIRTranslator() {
462   addPass(new IRTranslator());
463   return false;
464 }
465 
466 bool ARMPassConfig::addLegalizeMachineIR() {
467   addPass(new Legalizer());
468   return false;
469 }
470 
471 bool ARMPassConfig::addRegBankSelect() {
472   addPass(new RegBankSelect());
473   return false;
474 }
475 
476 bool ARMPassConfig::addGlobalInstructionSelect() {
477   addPass(new InstructionSelect());
478   return false;
479 }
480 
481 void ARMPassConfig::addPreRegAlloc() {
482   if (getOptLevel() != CodeGenOpt::None) {
483     addPass(createMLxExpansionPass());
484 
485     if (EnableARMLoadStoreOpt)
486       addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true));
487 
488     if (!DisableA15SDOptimization)
489       addPass(createA15SDOptimizerPass());
490   }
491 }
492 
493 void ARMPassConfig::addPreSched2() {
494   if (getOptLevel() != CodeGenOpt::None) {
495     if (EnableARMLoadStoreOpt)
496       addPass(createARMLoadStoreOptimizationPass());
497 
498     addPass(new ARMExecutionDomainFix());
499     addPass(createBreakFalseDeps());
500   }
501 
502   // Expand some pseudo instructions into multiple instructions to allow
503   // proper scheduling.
504   addPass(createARMExpandPseudoPass());
505 
506   if (getOptLevel() != CodeGenOpt::None) {
507     // in v8, IfConversion depends on Thumb instruction widths
508     addPass(createThumb2SizeReductionPass([this](const Function &F) {
509       return this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
510     }));
511 
512     addPass(createIfConverter([](const MachineFunction &MF) {
513       return !MF.getSubtarget<ARMSubtarget>().isThumb1Only();
514     }));
515   }
516   addPass(createMVEVPTBlockPass());
517   addPass(createThumb2ITBlockPass());
518 }
519 
520 void ARMPassConfig::addPreEmitPass() {
521   addPass(createThumb2SizeReductionPass());
522 
523   // Constant island pass work on unbundled instructions.
524   addPass(createUnpackMachineBundles([](const MachineFunction &MF) {
525     return MF.getSubtarget<ARMSubtarget>().isThumb2();
526   }));
527 
528   // Don't optimize barriers at -O0.
529   if (getOptLevel() != CodeGenOpt::None)
530     addPass(createARMOptimizeBarriersPass());
531 
532   addPass(createARMConstantIslandPass());
533   addPass(createARMLowOverheadLoopsPass());
534 }
535