1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "ARMTargetMachine.h" 13 #include "ARM.h" 14 #include "ARMMachineFunctionInfo.h" 15 #include "ARMMacroFusion.h" 16 #include "ARMSubtarget.h" 17 #include "ARMTargetObjectFile.h" 18 #include "ARMTargetTransformInfo.h" 19 #include "MCTargetDesc/ARMMCTargetDesc.h" 20 #include "TargetInfo/ARMTargetInfo.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/CodeGen/ExecutionDomainFix.h" 25 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 26 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 27 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 28 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 29 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" 30 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 31 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineScheduler.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterBankInfo.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/MC/TargetRegistry.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CodeGen.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Target/TargetLoweringObjectFile.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/TargetParser/ARMTargetParser.h" 49 #include "llvm/TargetParser/TargetParser.h" 50 #include "llvm/TargetParser/Triple.h" 51 #include "llvm/Transforms/CFGuard.h" 52 #include "llvm/Transforms/IPO.h" 53 #include "llvm/Transforms/Scalar.h" 54 #include <cassert> 55 #include <memory> 56 #include <optional> 57 #include <string> 58 59 using namespace llvm; 60 61 static cl::opt<bool> 62 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden, 63 cl::desc("Inhibit optimization of S->D register accesses on A15"), 64 cl::init(false)); 65 66 static cl::opt<bool> 67 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden, 68 cl::desc("Run SimplifyCFG after expanding atomic operations" 69 " to make use of cmpxchg flow-based information"), 70 cl::init(true)); 71 72 static cl::opt<bool> 73 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden, 74 cl::desc("Enable ARM load/store optimization pass"), 75 cl::init(true)); 76 77 // FIXME: Unify control over GlobalMerge. 78 static cl::opt<cl::boolOrDefault> 79 EnableGlobalMerge("arm-global-merge", cl::Hidden, 80 cl::desc("Enable the global merge pass")); 81 82 namespace llvm { 83 void initializeARMExecutionDomainFixPass(PassRegistry&); 84 } 85 86 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMTarget() { 87 // Register the target. 88 RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget()); 89 RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget()); 90 RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget()); 91 RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget()); 92 93 PassRegistry &Registry = *PassRegistry::getPassRegistry(); 94 initializeGlobalISel(Registry); 95 initializeARMLoadStoreOptPass(Registry); 96 initializeARMPreAllocLoadStoreOptPass(Registry); 97 initializeARMParallelDSPPass(Registry); 98 initializeARMBranchTargetsPass(Registry); 99 initializeARMConstantIslandsPass(Registry); 100 initializeARMExecutionDomainFixPass(Registry); 101 initializeARMExpandPseudoPass(Registry); 102 initializeThumb2SizeReducePass(Registry); 103 initializeMVEVPTBlockPass(Registry); 104 initializeMVETPAndVPTOptimisationsPass(Registry); 105 initializeMVETailPredicationPass(Registry); 106 initializeARMLowOverheadLoopsPass(Registry); 107 initializeARMBlockPlacementPass(Registry); 108 initializeMVEGatherScatterLoweringPass(Registry); 109 initializeARMSLSHardeningPass(Registry); 110 initializeMVELaneInterleavingPass(Registry); 111 initializeARMFixCortexA57AES1742098Pass(Registry); 112 initializeARMDAGToDAGISelPass(Registry); 113 } 114 115 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 116 if (TT.isOSBinFormatMachO()) 117 return std::make_unique<TargetLoweringObjectFileMachO>(); 118 if (TT.isOSWindows()) 119 return std::make_unique<TargetLoweringObjectFileCOFF>(); 120 return std::make_unique<ARMElfTargetObjectFile>(); 121 } 122 123 static ARMBaseTargetMachine::ARMABI 124 computeTargetABI(const Triple &TT, StringRef CPU, 125 const TargetOptions &Options) { 126 StringRef ABIName = Options.MCOptions.getABIName(); 127 128 if (ABIName.empty()) 129 ABIName = ARM::computeDefaultTargetABI(TT, CPU); 130 131 if (ABIName == "aapcs16") 132 return ARMBaseTargetMachine::ARM_ABI_AAPCS16; 133 else if (ABIName.startswith("aapcs")) 134 return ARMBaseTargetMachine::ARM_ABI_AAPCS; 135 else if (ABIName.startswith("apcs")) 136 return ARMBaseTargetMachine::ARM_ABI_APCS; 137 138 llvm_unreachable("Unhandled/unknown ABI Name!"); 139 return ARMBaseTargetMachine::ARM_ABI_UNKNOWN; 140 } 141 142 static std::string computeDataLayout(const Triple &TT, StringRef CPU, 143 const TargetOptions &Options, 144 bool isLittle) { 145 auto ABI = computeTargetABI(TT, CPU, Options); 146 std::string Ret; 147 148 if (isLittle) 149 // Little endian. 150 Ret += "e"; 151 else 152 // Big endian. 153 Ret += "E"; 154 155 Ret += DataLayout::getManglingComponent(TT); 156 157 // Pointers are 32 bits and aligned to 32 bits. 158 Ret += "-p:32:32"; 159 160 // Function pointers are aligned to 8 bits (because the LSB stores the 161 // ARM/Thumb state). 162 Ret += "-Fi8"; 163 164 // ABIs other than APCS have 64 bit integers with natural alignment. 165 if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS) 166 Ret += "-i64:64"; 167 168 // We have 64 bits floats. The APCS ABI requires them to be aligned to 32 169 // bits, others to 64 bits. We always try to align to 64 bits. 170 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS) 171 Ret += "-f64:32:64"; 172 173 // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others 174 // to 64. We always ty to give them natural alignment. 175 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS) 176 Ret += "-v64:32:64-v128:32:128"; 177 else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16) 178 Ret += "-v128:64:128"; 179 180 // Try to align aggregates to 32 bits (the default is 64 bits, which has no 181 // particular hardware support on 32-bit ARM). 182 Ret += "-a:0:32"; 183 184 // Integer registers are 32 bits. 185 Ret += "-n32"; 186 187 // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit 188 // aligned everywhere else. 189 if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16) 190 Ret += "-S128"; 191 else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS) 192 Ret += "-S64"; 193 else 194 Ret += "-S32"; 195 196 return Ret; 197 } 198 199 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 200 std::optional<Reloc::Model> RM) { 201 if (!RM) 202 // Default relocation model on Darwin is PIC. 203 return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static; 204 205 if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI) 206 assert(TT.isOSBinFormatELF() && 207 "ROPI/RWPI currently only supported for ELF"); 208 209 // DynamicNoPIC is only used on darwin. 210 if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin()) 211 return Reloc::Static; 212 213 return *RM; 214 } 215 216 /// Create an ARM architecture model. 217 /// 218 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT, 219 StringRef CPU, StringRef FS, 220 const TargetOptions &Options, 221 std::optional<Reloc::Model> RM, 222 std::optional<CodeModel::Model> CM, 223 CodeGenOpt::Level OL, bool isLittle) 224 : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT, 225 CPU, FS, Options, getEffectiveRelocModel(TT, RM), 226 getEffectiveCodeModel(CM, CodeModel::Small), OL), 227 TargetABI(computeTargetABI(TT, CPU, Options)), 228 TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) { 229 230 // Default to triple-appropriate float ABI 231 if (Options.FloatABIType == FloatABI::Default) { 232 if (isTargetHardFloat()) 233 this->Options.FloatABIType = FloatABI::Hard; 234 else 235 this->Options.FloatABIType = FloatABI::Soft; 236 } 237 238 // Default to triple-appropriate EABI 239 if (Options.EABIVersion == EABI::Default || 240 Options.EABIVersion == EABI::Unknown) { 241 // musl is compatible with glibc with regard to EABI version 242 if ((TargetTriple.getEnvironment() == Triple::GNUEABI || 243 TargetTriple.getEnvironment() == Triple::GNUEABIHF || 244 TargetTriple.getEnvironment() == Triple::MuslEABI || 245 TargetTriple.getEnvironment() == Triple::MuslEABIHF || 246 TargetTriple.getEnvironment() == Triple::OpenHOS) && 247 !(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin())) 248 this->Options.EABIVersion = EABI::GNU; 249 else 250 this->Options.EABIVersion = EABI::EABI5; 251 } 252 253 if (TT.isOSBinFormatMachO()) { 254 this->Options.TrapUnreachable = true; 255 this->Options.NoTrapAfterNoreturn = true; 256 } 257 258 // ARM supports the debug entry values. 259 setSupportsDebugEntryValues(true); 260 261 initAsmInfo(); 262 263 // ARM supports the MachineOutliner. 264 setMachineOutliner(true); 265 setSupportsDefaultOutlining(true); 266 } 267 268 ARMBaseTargetMachine::~ARMBaseTargetMachine() = default; 269 270 MachineFunctionInfo *ARMBaseTargetMachine::createMachineFunctionInfo( 271 BumpPtrAllocator &Allocator, const Function &F, 272 const TargetSubtargetInfo *STI) const { 273 return ARMFunctionInfo::create<ARMFunctionInfo>( 274 Allocator, F, static_cast<const ARMSubtarget *>(STI)); 275 } 276 277 const ARMSubtarget * 278 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const { 279 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 280 Attribute FSAttr = F.getFnAttribute("target-features"); 281 282 std::string CPU = 283 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU; 284 std::string FS = 285 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; 286 287 // FIXME: This is related to the code below to reset the target options, 288 // we need to know whether or not the soft float flag is set on the 289 // function before we can generate a subtarget. We also need to use 290 // it as a key for the subtarget since that can be the only difference 291 // between two functions. 292 bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool(); 293 // If the soft float attribute is set on the function turn on the soft float 294 // subtarget feature. 295 if (SoftFloat) 296 FS += FS.empty() ? "+soft-float" : ",+soft-float"; 297 298 // Use the optminsize to identify the subtarget, but don't use it in the 299 // feature string. 300 std::string Key = CPU + FS; 301 if (F.hasMinSize()) 302 Key += "+minsize"; 303 304 auto &I = SubtargetMap[Key]; 305 if (!I) { 306 // This needs to be done before we create a new subtarget since any 307 // creation will depend on the TM and the code generation flags on the 308 // function that reside in TargetOptions. 309 resetTargetOptions(F); 310 I = std::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle, 311 F.hasMinSize()); 312 313 if (!I->isThumb() && !I->hasARMOps()) 314 F.getContext().emitError("Function '" + F.getName() + "' uses ARM " 315 "instructions, but the target does not support ARM mode execution."); 316 } 317 318 return I.get(); 319 } 320 321 TargetTransformInfo 322 ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) const { 323 return TargetTransformInfo(ARMTTIImpl(this, F)); 324 } 325 326 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT, 327 StringRef CPU, StringRef FS, 328 const TargetOptions &Options, 329 std::optional<Reloc::Model> RM, 330 std::optional<CodeModel::Model> CM, 331 CodeGenOpt::Level OL, bool JIT) 332 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {} 333 334 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT, 335 StringRef CPU, StringRef FS, 336 const TargetOptions &Options, 337 std::optional<Reloc::Model> RM, 338 std::optional<CodeModel::Model> CM, 339 CodeGenOpt::Level OL, bool JIT) 340 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {} 341 342 namespace { 343 344 /// ARM Code Generator Pass Configuration Options. 345 class ARMPassConfig : public TargetPassConfig { 346 public: 347 ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM) 348 : TargetPassConfig(TM, PM) {} 349 350 ARMBaseTargetMachine &getARMTargetMachine() const { 351 return getTM<ARMBaseTargetMachine>(); 352 } 353 354 ScheduleDAGInstrs * 355 createMachineScheduler(MachineSchedContext *C) const override { 356 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 357 // add DAG Mutations here. 358 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>(); 359 if (ST.hasFusion()) 360 DAG->addMutation(createARMMacroFusionDAGMutation()); 361 return DAG; 362 } 363 364 ScheduleDAGInstrs * 365 createPostMachineScheduler(MachineSchedContext *C) const override { 366 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 367 // add DAG Mutations here. 368 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>(); 369 if (ST.hasFusion()) 370 DAG->addMutation(createARMMacroFusionDAGMutation()); 371 return DAG; 372 } 373 374 void addIRPasses() override; 375 void addCodeGenPrepare() override; 376 bool addPreISel() override; 377 bool addInstSelector() override; 378 bool addIRTranslator() override; 379 bool addLegalizeMachineIR() override; 380 bool addRegBankSelect() override; 381 bool addGlobalInstructionSelect() override; 382 void addPreRegAlloc() override; 383 void addPreSched2() override; 384 void addPreEmitPass() override; 385 void addPreEmitPass2() override; 386 387 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 388 }; 389 390 class ARMExecutionDomainFix : public ExecutionDomainFix { 391 public: 392 static char ID; 393 ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {} 394 StringRef getPassName() const override { 395 return "ARM Execution Domain Fix"; 396 } 397 }; 398 char ARMExecutionDomainFix::ID; 399 400 } // end anonymous namespace 401 402 INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix", 403 "ARM Execution Domain Fix", false, false) 404 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 405 INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix", 406 "ARM Execution Domain Fix", false, false) 407 408 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) { 409 return new ARMPassConfig(*this, PM); 410 } 411 412 std::unique_ptr<CSEConfigBase> ARMPassConfig::getCSEConfig() const { 413 return getStandardCSEConfigForOpt(TM->getOptLevel()); 414 } 415 416 void ARMPassConfig::addIRPasses() { 417 if (TM->Options.ThreadModel == ThreadModel::Single) 418 addPass(createLowerAtomicPass()); 419 else 420 addPass(createAtomicExpandPass()); 421 422 // Cmpxchg instructions are often used with a subsequent comparison to 423 // determine whether it succeeded. We can exploit existing control-flow in 424 // ldrex/strex loops to simplify this, but it needs tidying up. 425 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) 426 addPass(createCFGSimplificationPass( 427 SimplifyCFGOptions().hoistCommonInsts(true).sinkCommonInsts(true), 428 [this](const Function &F) { 429 const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F); 430 return ST.hasAnyDataBarrier() && !ST.isThumb1Only(); 431 })); 432 433 addPass(createMVEGatherScatterLoweringPass()); 434 addPass(createMVELaneInterleavingPass()); 435 436 TargetPassConfig::addIRPasses(); 437 438 // Run the parallel DSP pass. 439 if (getOptLevel() == CodeGenOpt::Aggressive) 440 addPass(createARMParallelDSPPass()); 441 442 // Match complex arithmetic patterns 443 if (TM->getOptLevel() >= CodeGenOpt::Default) 444 addPass(createComplexDeinterleavingPass(TM)); 445 446 // Match interleaved memory accesses to ldN/stN intrinsics. 447 if (TM->getOptLevel() != CodeGenOpt::None) 448 addPass(createInterleavedAccessPass()); 449 450 // Add Control Flow Guard checks. 451 if (TM->getTargetTriple().isOSWindows()) 452 addPass(createCFGuardCheckPass()); 453 454 if (TM->Options.JMCInstrument) 455 addPass(createJMCInstrumenterPass()); 456 } 457 458 void ARMPassConfig::addCodeGenPrepare() { 459 if (getOptLevel() != CodeGenOpt::None) 460 addPass(createTypePromotionLegacyPass()); 461 TargetPassConfig::addCodeGenPrepare(); 462 } 463 464 bool ARMPassConfig::addPreISel() { 465 if ((TM->getOptLevel() != CodeGenOpt::None && 466 EnableGlobalMerge == cl::BOU_UNSET) || 467 EnableGlobalMerge == cl::BOU_TRUE) { 468 // FIXME: This is using the thumb1 only constant value for 469 // maximal global offset for merging globals. We may want 470 // to look into using the old value for non-thumb1 code of 471 // 4095 based on the TargetMachine, but this starts to become 472 // tricky when doing code gen per function. 473 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && 474 (EnableGlobalMerge == cl::BOU_UNSET); 475 // Merging of extern globals is enabled by default on non-Mach-O as we 476 // expect it to be generally either beneficial or harmless. On Mach-O it 477 // is disabled as we emit the .subsections_via_symbols directive which 478 // means that merging extern globals is not safe. 479 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 480 addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize, 481 MergeExternalByDefault)); 482 } 483 484 if (TM->getOptLevel() != CodeGenOpt::None) { 485 addPass(createHardwareLoopsLegacyPass()); 486 addPass(createMVETailPredicationPass()); 487 // FIXME: IR passes can delete address-taken basic blocks, deleting 488 // corresponding blockaddresses. ARMConstantPoolConstant holds references to 489 // address-taken basic blocks which can be invalidated if the function 490 // containing the blockaddress has already been codegen'd and the basic 491 // block is removed. Work around this by forcing all IR passes to run before 492 // any ISel takes place. We should have a more principled way of handling 493 // this. See D99707 for more details. 494 addPass(createBarrierNoopPass()); 495 } 496 497 return false; 498 } 499 500 bool ARMPassConfig::addInstSelector() { 501 addPass(createARMISelDag(getARMTargetMachine(), getOptLevel())); 502 return false; 503 } 504 505 bool ARMPassConfig::addIRTranslator() { 506 addPass(new IRTranslator(getOptLevel())); 507 return false; 508 } 509 510 bool ARMPassConfig::addLegalizeMachineIR() { 511 addPass(new Legalizer()); 512 return false; 513 } 514 515 bool ARMPassConfig::addRegBankSelect() { 516 addPass(new RegBankSelect()); 517 return false; 518 } 519 520 bool ARMPassConfig::addGlobalInstructionSelect() { 521 addPass(new InstructionSelect(getOptLevel())); 522 return false; 523 } 524 525 void ARMPassConfig::addPreRegAlloc() { 526 if (getOptLevel() != CodeGenOpt::None) { 527 if (getOptLevel() == CodeGenOpt::Aggressive) 528 addPass(&MachinePipelinerID); 529 530 addPass(createMVETPAndVPTOptimisationsPass()); 531 532 addPass(createMLxExpansionPass()); 533 534 if (EnableARMLoadStoreOpt) 535 addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true)); 536 537 if (!DisableA15SDOptimization) 538 addPass(createA15SDOptimizerPass()); 539 } 540 } 541 542 void ARMPassConfig::addPreSched2() { 543 if (getOptLevel() != CodeGenOpt::None) { 544 if (EnableARMLoadStoreOpt) 545 addPass(createARMLoadStoreOptimizationPass()); 546 547 addPass(new ARMExecutionDomainFix()); 548 addPass(createBreakFalseDeps()); 549 } 550 551 // Expand some pseudo instructions into multiple instructions to allow 552 // proper scheduling. 553 addPass(createARMExpandPseudoPass()); 554 555 if (getOptLevel() != CodeGenOpt::None) { 556 // When optimising for size, always run the Thumb2SizeReduction pass before 557 // IfConversion. Otherwise, check whether IT blocks are restricted 558 // (e.g. in v8, IfConversion depends on Thumb instruction widths) 559 addPass(createThumb2SizeReductionPass([this](const Function &F) { 560 return this->TM->getSubtarget<ARMSubtarget>(F).hasMinSize() || 561 this->TM->getSubtarget<ARMSubtarget>(F).restrictIT(); 562 })); 563 564 addPass(createIfConverter([](const MachineFunction &MF) { 565 return !MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 566 })); 567 } 568 addPass(createThumb2ITBlockPass()); 569 570 // Add both scheduling passes to give the subtarget an opportunity to pick 571 // between them. 572 if (getOptLevel() != CodeGenOpt::None) { 573 addPass(&PostMachineSchedulerID); 574 addPass(&PostRASchedulerID); 575 } 576 577 addPass(createMVEVPTBlockPass()); 578 addPass(createARMIndirectThunks()); 579 addPass(createARMSLSHardeningPass()); 580 } 581 582 void ARMPassConfig::addPreEmitPass() { 583 addPass(createThumb2SizeReductionPass()); 584 585 // Constant island pass work on unbundled instructions. 586 addPass(createUnpackMachineBundles([](const MachineFunction &MF) { 587 return MF.getSubtarget<ARMSubtarget>().isThumb2(); 588 })); 589 590 // Don't optimize barriers or block placement at -O0. 591 if (getOptLevel() != CodeGenOpt::None) { 592 addPass(createARMBlockPlacementPass()); 593 addPass(createARMOptimizeBarriersPass()); 594 } 595 } 596 597 void ARMPassConfig::addPreEmitPass2() { 598 // Inserts fixup instructions before unsafe AES operations. Instructions may 599 // be inserted at the start of blocks and at within blocks so this pass has to 600 // come before those below. 601 addPass(createARMFixCortexA57AES1742098Pass()); 602 // Inserts BTIs at the start of functions and indirectly-called basic blocks, 603 // so passes cannot add to the start of basic blocks once this has run. 604 addPass(createARMBranchTargetsPass()); 605 // Inserts Constant Islands. Block sizes cannot be increased after this point, 606 // as this may push the branch ranges and load offsets of accessing constant 607 // pools out of range.. 608 addPass(createARMConstantIslandPass()); 609 // Finalises Low-Overhead Loops. This replaces pseudo instructions with real 610 // instructions, but the pseudos all have conservative sizes so that block 611 // sizes will only be decreased by this pass. 612 addPass(createARMLowOverheadLoopsPass()); 613 614 if (TM->getTargetTriple().isOSWindows()) { 615 // Identify valid longjmp targets for Windows Control Flow Guard. 616 addPass(createCFGuardLongjmpPass()); 617 // Identify valid eh continuation targets for Windows EHCont Guard. 618 addPass(createEHContGuardCatchretPass()); 619 } 620 } 621