xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMTargetMachine.cpp (revision b5a3a89c50671a1ad29e7c43fe15e7b16feac239)
1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //
10 //===----------------------------------------------------------------------===//
11 
12 #include "ARMTargetMachine.h"
13 #include "ARM.h"
14 #include "ARMMachineFunctionInfo.h"
15 #include "ARMMacroFusion.h"
16 #include "ARMSubtarget.h"
17 #include "ARMTargetObjectFile.h"
18 #include "ARMTargetTransformInfo.h"
19 #include "MCTargetDesc/ARMMCTargetDesc.h"
20 #include "TargetInfo/ARMTargetInfo.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/CodeGen/ExecutionDomainFix.h"
26 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
27 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
28 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
29 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
30 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
31 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
32 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineScheduler.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/RegisterBankInfo.h"
38 #include "llvm/CodeGen/TargetPassConfig.h"
39 #include "llvm/IR/Attributes.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/MC/TargetRegistry.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/ARMTargetParser.h"
45 #include "llvm/Support/CodeGen.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/TargetParser.h"
49 #include "llvm/Target/TargetLoweringObjectFile.h"
50 #include "llvm/Target/TargetOptions.h"
51 #include "llvm/Transforms/CFGuard.h"
52 #include "llvm/Transforms/IPO.h"
53 #include "llvm/Transforms/Scalar.h"
54 #include <cassert>
55 #include <memory>
56 #include <optional>
57 #include <string>
58 
59 using namespace llvm;
60 
61 static cl::opt<bool>
62 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
63                    cl::desc("Inhibit optimization of S->D register accesses on A15"),
64                    cl::init(false));
65 
66 static cl::opt<bool>
67 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
68                  cl::desc("Run SimplifyCFG after expanding atomic operations"
69                           " to make use of cmpxchg flow-based information"),
70                  cl::init(true));
71 
72 static cl::opt<bool>
73 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
74                       cl::desc("Enable ARM load/store optimization pass"),
75                       cl::init(true));
76 
77 // FIXME: Unify control over GlobalMerge.
78 static cl::opt<cl::boolOrDefault>
79 EnableGlobalMerge("arm-global-merge", cl::Hidden,
80                   cl::desc("Enable the global merge pass"));
81 
82 namespace llvm {
83   void initializeARMExecutionDomainFixPass(PassRegistry&);
84 }
85 
86 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMTarget() {
87   // Register the target.
88   RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget());
89   RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget());
90   RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget());
91   RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget());
92 
93   PassRegistry &Registry = *PassRegistry::getPassRegistry();
94   initializeGlobalISel(Registry);
95   initializeARMLoadStoreOptPass(Registry);
96   initializeARMPreAllocLoadStoreOptPass(Registry);
97   initializeARMParallelDSPPass(Registry);
98   initializeARMBranchTargetsPass(Registry);
99   initializeARMConstantIslandsPass(Registry);
100   initializeARMExecutionDomainFixPass(Registry);
101   initializeARMExpandPseudoPass(Registry);
102   initializeThumb2SizeReducePass(Registry);
103   initializeMVEVPTBlockPass(Registry);
104   initializeMVETPAndVPTOptimisationsPass(Registry);
105   initializeMVETailPredicationPass(Registry);
106   initializeARMLowOverheadLoopsPass(Registry);
107   initializeARMBlockPlacementPass(Registry);
108   initializeMVEGatherScatterLoweringPass(Registry);
109   initializeARMSLSHardeningPass(Registry);
110   initializeMVELaneInterleavingPass(Registry);
111   initializeARMFixCortexA57AES1742098Pass(Registry);
112   initializeARMDAGToDAGISelPass(Registry);
113 }
114 
115 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
116   if (TT.isOSBinFormatMachO())
117     return std::make_unique<TargetLoweringObjectFileMachO>();
118   if (TT.isOSWindows())
119     return std::make_unique<TargetLoweringObjectFileCOFF>();
120   return std::make_unique<ARMElfTargetObjectFile>();
121 }
122 
123 static ARMBaseTargetMachine::ARMABI
124 computeTargetABI(const Triple &TT, StringRef CPU,
125                  const TargetOptions &Options) {
126   StringRef ABIName = Options.MCOptions.getABIName();
127 
128   if (ABIName.empty())
129     ABIName = ARM::computeDefaultTargetABI(TT, CPU);
130 
131   if (ABIName == "aapcs16")
132     return ARMBaseTargetMachine::ARM_ABI_AAPCS16;
133   else if (ABIName.startswith("aapcs"))
134     return ARMBaseTargetMachine::ARM_ABI_AAPCS;
135   else if (ABIName.startswith("apcs"))
136     return ARMBaseTargetMachine::ARM_ABI_APCS;
137 
138   llvm_unreachable("Unhandled/unknown ABI Name!");
139   return ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
140 }
141 
142 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
143                                      const TargetOptions &Options,
144                                      bool isLittle) {
145   auto ABI = computeTargetABI(TT, CPU, Options);
146   std::string Ret;
147 
148   if (isLittle)
149     // Little endian.
150     Ret += "e";
151   else
152     // Big endian.
153     Ret += "E";
154 
155   Ret += DataLayout::getManglingComponent(TT);
156 
157   // Pointers are 32 bits and aligned to 32 bits.
158   Ret += "-p:32:32";
159 
160   // Function pointers are aligned to 8 bits (because the LSB stores the
161   // ARM/Thumb state).
162   Ret += "-Fi8";
163 
164   // ABIs other than APCS have 64 bit integers with natural alignment.
165   if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
166     Ret += "-i64:64";
167 
168   // We have 64 bits floats. The APCS ABI requires them to be aligned to 32
169   // bits, others to 64 bits. We always try to align to 64 bits.
170   if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
171     Ret += "-f64:32:64";
172 
173   // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
174   // to 64. We always ty to give them natural alignment.
175   if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
176     Ret += "-v64:32:64-v128:32:128";
177   else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16)
178     Ret += "-v128:64:128";
179 
180   // Try to align aggregates to 32 bits (the default is 64 bits, which has no
181   // particular hardware support on 32-bit ARM).
182   Ret += "-a:0:32";
183 
184   // Integer registers are 32 bits.
185   Ret += "-n32";
186 
187   // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
188   // aligned everywhere else.
189   if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16)
190     Ret += "-S128";
191   else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
192     Ret += "-S64";
193   else
194     Ret += "-S32";
195 
196   return Ret;
197 }
198 
199 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
200                                            std::optional<Reloc::Model> RM) {
201   if (!RM)
202     // Default relocation model on Darwin is PIC.
203     return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static;
204 
205   if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI)
206     assert(TT.isOSBinFormatELF() &&
207            "ROPI/RWPI currently only supported for ELF");
208 
209   // DynamicNoPIC is only used on darwin.
210   if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin())
211     return Reloc::Static;
212 
213   return *RM;
214 }
215 
216 /// Create an ARM architecture model.
217 ///
218 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
219                                            StringRef CPU, StringRef FS,
220                                            const TargetOptions &Options,
221                                            std::optional<Reloc::Model> RM,
222                                            std::optional<CodeModel::Model> CM,
223                                            CodeGenOpt::Level OL, bool isLittle)
224     : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
225                         CPU, FS, Options, getEffectiveRelocModel(TT, RM),
226                         getEffectiveCodeModel(CM, CodeModel::Small), OL),
227       TargetABI(computeTargetABI(TT, CPU, Options)),
228       TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) {
229 
230   // Default to triple-appropriate float ABI
231   if (Options.FloatABIType == FloatABI::Default) {
232     if (isTargetHardFloat())
233       this->Options.FloatABIType = FloatABI::Hard;
234     else
235       this->Options.FloatABIType = FloatABI::Soft;
236   }
237 
238   // Default to triple-appropriate EABI
239   if (Options.EABIVersion == EABI::Default ||
240       Options.EABIVersion == EABI::Unknown) {
241     // musl is compatible with glibc with regard to EABI version
242     if ((TargetTriple.getEnvironment() == Triple::GNUEABI ||
243          TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
244          TargetTriple.getEnvironment() == Triple::MuslEABI ||
245          TargetTriple.getEnvironment() == Triple::MuslEABIHF) &&
246         !(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin()))
247       this->Options.EABIVersion = EABI::GNU;
248     else
249       this->Options.EABIVersion = EABI::EABI5;
250   }
251 
252   if (TT.isOSBinFormatMachO()) {
253     this->Options.TrapUnreachable = true;
254     this->Options.NoTrapAfterNoreturn = true;
255   }
256 
257   // ARM supports the debug entry values.
258   setSupportsDebugEntryValues(true);
259 
260   initAsmInfo();
261 
262   // ARM supports the MachineOutliner.
263   setMachineOutliner(true);
264   setSupportsDefaultOutlining(true);
265 }
266 
267 ARMBaseTargetMachine::~ARMBaseTargetMachine() = default;
268 
269 MachineFunctionInfo *ARMBaseTargetMachine::createMachineFunctionInfo(
270     BumpPtrAllocator &Allocator, const Function &F,
271     const TargetSubtargetInfo *STI) const {
272   return ARMFunctionInfo::create<ARMFunctionInfo>(
273       Allocator, F, static_cast<const ARMSubtarget *>(STI));
274 }
275 
276 const ARMSubtarget *
277 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
278   Attribute CPUAttr = F.getFnAttribute("target-cpu");
279   Attribute FSAttr = F.getFnAttribute("target-features");
280 
281   std::string CPU =
282       CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
283   std::string FS =
284       FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
285 
286   // FIXME: This is related to the code below to reset the target options,
287   // we need to know whether or not the soft float flag is set on the
288   // function before we can generate a subtarget. We also need to use
289   // it as a key for the subtarget since that can be the only difference
290   // between two functions.
291   bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
292   // If the soft float attribute is set on the function turn on the soft float
293   // subtarget feature.
294   if (SoftFloat)
295     FS += FS.empty() ? "+soft-float" : ",+soft-float";
296 
297   // Use the optminsize to identify the subtarget, but don't use it in the
298   // feature string.
299   std::string Key = CPU + FS;
300   if (F.hasMinSize())
301     Key += "+minsize";
302 
303   auto &I = SubtargetMap[Key];
304   if (!I) {
305     // This needs to be done before we create a new subtarget since any
306     // creation will depend on the TM and the code generation flags on the
307     // function that reside in TargetOptions.
308     resetTargetOptions(F);
309     I = std::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle,
310                                         F.hasMinSize());
311 
312     if (!I->isThumb() && !I->hasARMOps())
313       F.getContext().emitError("Function '" + F.getName() + "' uses ARM "
314           "instructions, but the target does not support ARM mode execution.");
315   }
316 
317   return I.get();
318 }
319 
320 TargetTransformInfo
321 ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) const {
322   return TargetTransformInfo(ARMTTIImpl(this, F));
323 }
324 
325 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
326                                        StringRef CPU, StringRef FS,
327                                        const TargetOptions &Options,
328                                        std::optional<Reloc::Model> RM,
329                                        std::optional<CodeModel::Model> CM,
330                                        CodeGenOpt::Level OL, bool JIT)
331     : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
332 
333 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
334                                        StringRef CPU, StringRef FS,
335                                        const TargetOptions &Options,
336                                        std::optional<Reloc::Model> RM,
337                                        std::optional<CodeModel::Model> CM,
338                                        CodeGenOpt::Level OL, bool JIT)
339     : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
340 
341 namespace {
342 
343 /// ARM Code Generator Pass Configuration Options.
344 class ARMPassConfig : public TargetPassConfig {
345 public:
346   ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM)
347       : TargetPassConfig(TM, PM) {}
348 
349   ARMBaseTargetMachine &getARMTargetMachine() const {
350     return getTM<ARMBaseTargetMachine>();
351   }
352 
353   ScheduleDAGInstrs *
354   createMachineScheduler(MachineSchedContext *C) const override {
355     ScheduleDAGMILive *DAG = createGenericSchedLive(C);
356     // add DAG Mutations here.
357     const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
358     if (ST.hasFusion())
359       DAG->addMutation(createARMMacroFusionDAGMutation());
360     return DAG;
361   }
362 
363   ScheduleDAGInstrs *
364   createPostMachineScheduler(MachineSchedContext *C) const override {
365     ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
366     // add DAG Mutations here.
367     const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
368     if (ST.hasFusion())
369       DAG->addMutation(createARMMacroFusionDAGMutation());
370     return DAG;
371   }
372 
373   void addIRPasses() override;
374   void addCodeGenPrepare() override;
375   bool addPreISel() override;
376   bool addInstSelector() override;
377   bool addIRTranslator() override;
378   bool addLegalizeMachineIR() override;
379   bool addRegBankSelect() override;
380   bool addGlobalInstructionSelect() override;
381   void addPreRegAlloc() override;
382   void addPreSched2() override;
383   void addPreEmitPass() override;
384   void addPreEmitPass2() override;
385 
386   std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
387 };
388 
389 class ARMExecutionDomainFix : public ExecutionDomainFix {
390 public:
391   static char ID;
392   ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {}
393   StringRef getPassName() const override {
394     return "ARM Execution Domain Fix";
395   }
396 };
397 char ARMExecutionDomainFix::ID;
398 
399 } // end anonymous namespace
400 
401 INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix",
402   "ARM Execution Domain Fix", false, false)
403 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
404 INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix",
405   "ARM Execution Domain Fix", false, false)
406 
407 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
408   return new ARMPassConfig(*this, PM);
409 }
410 
411 std::unique_ptr<CSEConfigBase> ARMPassConfig::getCSEConfig() const {
412   return getStandardCSEConfigForOpt(TM->getOptLevel());
413 }
414 
415 void ARMPassConfig::addIRPasses() {
416   if (TM->Options.ThreadModel == ThreadModel::Single)
417     addPass(createLowerAtomicPass());
418   else
419     addPass(createAtomicExpandPass());
420 
421   // Cmpxchg instructions are often used with a subsequent comparison to
422   // determine whether it succeeded. We can exploit existing control-flow in
423   // ldrex/strex loops to simplify this, but it needs tidying up.
424   if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
425     addPass(createCFGSimplificationPass(
426         SimplifyCFGOptions().hoistCommonInsts(true).sinkCommonInsts(true),
427         [this](const Function &F) {
428           const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
429           return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
430         }));
431 
432   addPass(createMVEGatherScatterLoweringPass());
433   addPass(createMVELaneInterleavingPass());
434 
435   TargetPassConfig::addIRPasses();
436 
437   // Run the parallel DSP pass.
438   if (getOptLevel() == CodeGenOpt::Aggressive)
439     addPass(createARMParallelDSPPass());
440 
441   // Match complex arithmetic patterns
442   if (TM->getOptLevel() >= CodeGenOpt::Default)
443     addPass(createComplexDeinterleavingPass(TM));
444 
445   // Match interleaved memory accesses to ldN/stN intrinsics.
446   if (TM->getOptLevel() != CodeGenOpt::None)
447     addPass(createInterleavedAccessPass());
448 
449   // Add Control Flow Guard checks.
450   if (TM->getTargetTriple().isOSWindows())
451     addPass(createCFGuardCheckPass());
452 
453   if (TM->Options.JMCInstrument)
454     addPass(createJMCInstrumenterPass());
455 }
456 
457 void ARMPassConfig::addCodeGenPrepare() {
458   if (getOptLevel() != CodeGenOpt::None)
459     addPass(createTypePromotionLegacyPass());
460   TargetPassConfig::addCodeGenPrepare();
461 }
462 
463 bool ARMPassConfig::addPreISel() {
464   if ((TM->getOptLevel() != CodeGenOpt::None &&
465        EnableGlobalMerge == cl::BOU_UNSET) ||
466       EnableGlobalMerge == cl::BOU_TRUE) {
467     // FIXME: This is using the thumb1 only constant value for
468     // maximal global offset for merging globals. We may want
469     // to look into using the old value for non-thumb1 code of
470     // 4095 based on the TargetMachine, but this starts to become
471     // tricky when doing code gen per function.
472     bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
473                                (EnableGlobalMerge == cl::BOU_UNSET);
474     // Merging of extern globals is enabled by default on non-Mach-O as we
475     // expect it to be generally either beneficial or harmless. On Mach-O it
476     // is disabled as we emit the .subsections_via_symbols directive which
477     // means that merging extern globals is not safe.
478     bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
479     addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize,
480                                   MergeExternalByDefault));
481   }
482 
483   if (TM->getOptLevel() != CodeGenOpt::None) {
484     addPass(createHardwareLoopsPass());
485     addPass(createMVETailPredicationPass());
486     // FIXME: IR passes can delete address-taken basic blocks, deleting
487     // corresponding blockaddresses. ARMConstantPoolConstant holds references to
488     // address-taken basic blocks which can be invalidated if the function
489     // containing the blockaddress has already been codegen'd and the basic
490     // block is removed. Work around this by forcing all IR passes to run before
491     // any ISel takes place. We should have a more principled way of handling
492     // this. See D99707 for more details.
493     addPass(createBarrierNoopPass());
494   }
495 
496   return false;
497 }
498 
499 bool ARMPassConfig::addInstSelector() {
500   addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
501   return false;
502 }
503 
504 bool ARMPassConfig::addIRTranslator() {
505   addPass(new IRTranslator(getOptLevel()));
506   return false;
507 }
508 
509 bool ARMPassConfig::addLegalizeMachineIR() {
510   addPass(new Legalizer());
511   return false;
512 }
513 
514 bool ARMPassConfig::addRegBankSelect() {
515   addPass(new RegBankSelect());
516   return false;
517 }
518 
519 bool ARMPassConfig::addGlobalInstructionSelect() {
520   addPass(new InstructionSelect(getOptLevel()));
521   return false;
522 }
523 
524 void ARMPassConfig::addPreRegAlloc() {
525   if (getOptLevel() != CodeGenOpt::None) {
526     if (getOptLevel() == CodeGenOpt::Aggressive)
527       addPass(&MachinePipelinerID);
528 
529     addPass(createMVETPAndVPTOptimisationsPass());
530 
531     addPass(createMLxExpansionPass());
532 
533     if (EnableARMLoadStoreOpt)
534       addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true));
535 
536     if (!DisableA15SDOptimization)
537       addPass(createA15SDOptimizerPass());
538   }
539 }
540 
541 void ARMPassConfig::addPreSched2() {
542   if (getOptLevel() != CodeGenOpt::None) {
543     if (EnableARMLoadStoreOpt)
544       addPass(createARMLoadStoreOptimizationPass());
545 
546     addPass(new ARMExecutionDomainFix());
547     addPass(createBreakFalseDeps());
548   }
549 
550   // Expand some pseudo instructions into multiple instructions to allow
551   // proper scheduling.
552   addPass(createARMExpandPseudoPass());
553 
554   if (getOptLevel() != CodeGenOpt::None) {
555     // When optimising for size, always run the Thumb2SizeReduction pass before
556     // IfConversion. Otherwise, check whether IT blocks are restricted
557     // (e.g. in v8, IfConversion depends on Thumb instruction widths)
558     addPass(createThumb2SizeReductionPass([this](const Function &F) {
559       return this->TM->getSubtarget<ARMSubtarget>(F).hasMinSize() ||
560              this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
561     }));
562 
563     addPass(createIfConverter([](const MachineFunction &MF) {
564       return !MF.getSubtarget<ARMSubtarget>().isThumb1Only();
565     }));
566   }
567   addPass(createThumb2ITBlockPass());
568 
569   // Add both scheduling passes to give the subtarget an opportunity to pick
570   // between them.
571   if (getOptLevel() != CodeGenOpt::None) {
572     addPass(&PostMachineSchedulerID);
573     addPass(&PostRASchedulerID);
574   }
575 
576   addPass(createMVEVPTBlockPass());
577   addPass(createARMIndirectThunks());
578   addPass(createARMSLSHardeningPass());
579 }
580 
581 void ARMPassConfig::addPreEmitPass() {
582   addPass(createThumb2SizeReductionPass());
583 
584   // Constant island pass work on unbundled instructions.
585   addPass(createUnpackMachineBundles([](const MachineFunction &MF) {
586     return MF.getSubtarget<ARMSubtarget>().isThumb2();
587   }));
588 
589   // Don't optimize barriers or block placement at -O0.
590   if (getOptLevel() != CodeGenOpt::None) {
591     addPass(createARMBlockPlacementPass());
592     addPass(createARMOptimizeBarriersPass());
593   }
594 }
595 
596 void ARMPassConfig::addPreEmitPass2() {
597   // Inserts fixup instructions before unsafe AES operations. Instructions may
598   // be inserted at the start of blocks and at within blocks so this pass has to
599   // come before those below.
600   addPass(createARMFixCortexA57AES1742098Pass());
601   // Inserts BTIs at the start of functions and indirectly-called basic blocks,
602   // so passes cannot add to the start of basic blocks once this has run.
603   addPass(createARMBranchTargetsPass());
604   // Inserts Constant Islands. Block sizes cannot be increased after this point,
605   // as this may push the branch ranges and load offsets of accessing constant
606   // pools out of range..
607   addPass(createARMConstantIslandPass());
608   // Finalises Low-Overhead Loops. This replaces pseudo instructions with real
609   // instructions, but the pseudos all have conservative sizes so that block
610   // sizes will only be decreased by this pass.
611   addPass(createARMLowOverheadLoopsPass());
612 
613   if (TM->getTargetTriple().isOSWindows()) {
614     // Identify valid longjmp targets for Windows Control Flow Guard.
615     addPass(createCFGuardLongjmpPass());
616     // Identify valid eh continuation targets for Windows EHCont Guard.
617     addPass(createEHContGuardCatchretPass());
618   }
619 }
620