1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "ARMTargetMachine.h" 13 #include "ARM.h" 14 #include "ARMMacroFusion.h" 15 #include "ARMSubtarget.h" 16 #include "ARMTargetObjectFile.h" 17 #include "ARMTargetTransformInfo.h" 18 #include "MCTargetDesc/ARMMCTargetDesc.h" 19 #include "TargetInfo/ARMTargetInfo.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/CodeGen/ExecutionDomainFix.h" 26 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 27 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 28 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 29 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" 30 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 31 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/CodeGen.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/TargetParser.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/CFGuard.h" 50 #include "llvm/Transforms/Scalar.h" 51 #include <cassert> 52 #include <memory> 53 #include <string> 54 55 using namespace llvm; 56 57 static cl::opt<bool> 58 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden, 59 cl::desc("Inhibit optimization of S->D register accesses on A15"), 60 cl::init(false)); 61 62 static cl::opt<bool> 63 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden, 64 cl::desc("Run SimplifyCFG after expanding atomic operations" 65 " to make use of cmpxchg flow-based information"), 66 cl::init(true)); 67 68 static cl::opt<bool> 69 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden, 70 cl::desc("Enable ARM load/store optimization pass"), 71 cl::init(true)); 72 73 // FIXME: Unify control over GlobalMerge. 74 static cl::opt<cl::boolOrDefault> 75 EnableGlobalMerge("arm-global-merge", cl::Hidden, 76 cl::desc("Enable the global merge pass")); 77 78 namespace llvm { 79 void initializeARMExecutionDomainFixPass(PassRegistry&); 80 } 81 82 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMTarget() { 83 // Register the target. 84 RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget()); 85 RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget()); 86 RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget()); 87 RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget()); 88 89 PassRegistry &Registry = *PassRegistry::getPassRegistry(); 90 initializeGlobalISel(Registry); 91 initializeARMLoadStoreOptPass(Registry); 92 initializeARMPreAllocLoadStoreOptPass(Registry); 93 initializeARMParallelDSPPass(Registry); 94 initializeARMConstantIslandsPass(Registry); 95 initializeARMExecutionDomainFixPass(Registry); 96 initializeARMExpandPseudoPass(Registry); 97 initializeThumb2SizeReducePass(Registry); 98 initializeMVEVPTBlockPass(Registry); 99 initializeMVETailPredicationPass(Registry); 100 initializeARMLowOverheadLoopsPass(Registry); 101 initializeMVEGatherScatterLoweringPass(Registry); 102 } 103 104 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 105 if (TT.isOSBinFormatMachO()) 106 return std::make_unique<TargetLoweringObjectFileMachO>(); 107 if (TT.isOSWindows()) 108 return std::make_unique<TargetLoweringObjectFileCOFF>(); 109 return std::make_unique<ARMElfTargetObjectFile>(); 110 } 111 112 static ARMBaseTargetMachine::ARMABI 113 computeTargetABI(const Triple &TT, StringRef CPU, 114 const TargetOptions &Options) { 115 StringRef ABIName = Options.MCOptions.getABIName(); 116 117 if (ABIName.empty()) 118 ABIName = ARM::computeDefaultTargetABI(TT, CPU); 119 120 if (ABIName == "aapcs16") 121 return ARMBaseTargetMachine::ARM_ABI_AAPCS16; 122 else if (ABIName.startswith("aapcs")) 123 return ARMBaseTargetMachine::ARM_ABI_AAPCS; 124 else if (ABIName.startswith("apcs")) 125 return ARMBaseTargetMachine::ARM_ABI_APCS; 126 127 llvm_unreachable("Unhandled/unknown ABI Name!"); 128 return ARMBaseTargetMachine::ARM_ABI_UNKNOWN; 129 } 130 131 static std::string computeDataLayout(const Triple &TT, StringRef CPU, 132 const TargetOptions &Options, 133 bool isLittle) { 134 auto ABI = computeTargetABI(TT, CPU, Options); 135 std::string Ret; 136 137 if (isLittle) 138 // Little endian. 139 Ret += "e"; 140 else 141 // Big endian. 142 Ret += "E"; 143 144 Ret += DataLayout::getManglingComponent(TT); 145 146 // Pointers are 32 bits and aligned to 32 bits. 147 Ret += "-p:32:32"; 148 149 // Function pointers are aligned to 8 bits (because the LSB stores the 150 // ARM/Thumb state). 151 Ret += "-Fi8"; 152 153 // ABIs other than APCS have 64 bit integers with natural alignment. 154 if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS) 155 Ret += "-i64:64"; 156 157 // We have 64 bits floats. The APCS ABI requires them to be aligned to 32 158 // bits, others to 64 bits. We always try to align to 64 bits. 159 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS) 160 Ret += "-f64:32:64"; 161 162 // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others 163 // to 64. We always ty to give them natural alignment. 164 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS) 165 Ret += "-v64:32:64-v128:32:128"; 166 else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16) 167 Ret += "-v128:64:128"; 168 169 // Try to align aggregates to 32 bits (the default is 64 bits, which has no 170 // particular hardware support on 32-bit ARM). 171 Ret += "-a:0:32"; 172 173 // Integer registers are 32 bits. 174 Ret += "-n32"; 175 176 // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit 177 // aligned everywhere else. 178 if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16) 179 Ret += "-S128"; 180 else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS) 181 Ret += "-S64"; 182 else 183 Ret += "-S32"; 184 185 return Ret; 186 } 187 188 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 189 Optional<Reloc::Model> RM) { 190 if (!RM.hasValue()) 191 // Default relocation model on Darwin is PIC. 192 return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static; 193 194 if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI) 195 assert(TT.isOSBinFormatELF() && 196 "ROPI/RWPI currently only supported for ELF"); 197 198 // DynamicNoPIC is only used on darwin. 199 if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin()) 200 return Reloc::Static; 201 202 return *RM; 203 } 204 205 /// Create an ARM architecture model. 206 /// 207 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT, 208 StringRef CPU, StringRef FS, 209 const TargetOptions &Options, 210 Optional<Reloc::Model> RM, 211 Optional<CodeModel::Model> CM, 212 CodeGenOpt::Level OL, bool isLittle) 213 : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT, 214 CPU, FS, Options, getEffectiveRelocModel(TT, RM), 215 getEffectiveCodeModel(CM, CodeModel::Small), OL), 216 TargetABI(computeTargetABI(TT, CPU, Options)), 217 TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) { 218 219 // Default to triple-appropriate float ABI 220 if (Options.FloatABIType == FloatABI::Default) { 221 if (isTargetHardFloat()) 222 this->Options.FloatABIType = FloatABI::Hard; 223 else 224 this->Options.FloatABIType = FloatABI::Soft; 225 } 226 227 // Default to triple-appropriate EABI 228 if (Options.EABIVersion == EABI::Default || 229 Options.EABIVersion == EABI::Unknown) { 230 // musl is compatible with glibc with regard to EABI version 231 if ((TargetTriple.getEnvironment() == Triple::GNUEABI || 232 TargetTriple.getEnvironment() == Triple::GNUEABIHF || 233 TargetTriple.getEnvironment() == Triple::MuslEABI || 234 TargetTriple.getEnvironment() == Triple::MuslEABIHF) && 235 !(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin())) 236 this->Options.EABIVersion = EABI::GNU; 237 else 238 this->Options.EABIVersion = EABI::EABI5; 239 } 240 241 if (TT.isOSBinFormatMachO()) { 242 this->Options.TrapUnreachable = true; 243 this->Options.NoTrapAfterNoreturn = true; 244 } 245 246 initAsmInfo(); 247 } 248 249 ARMBaseTargetMachine::~ARMBaseTargetMachine() = default; 250 251 const ARMSubtarget * 252 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const { 253 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 254 Attribute FSAttr = F.getFnAttribute("target-features"); 255 256 std::string CPU = !CPUAttr.hasAttribute(Attribute::None) 257 ? CPUAttr.getValueAsString().str() 258 : TargetCPU; 259 std::string FS = !FSAttr.hasAttribute(Attribute::None) 260 ? FSAttr.getValueAsString().str() 261 : TargetFS; 262 263 // FIXME: This is related to the code below to reset the target options, 264 // we need to know whether or not the soft float flag is set on the 265 // function before we can generate a subtarget. We also need to use 266 // it as a key for the subtarget since that can be the only difference 267 // between two functions. 268 bool SoftFloat = 269 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 270 // If the soft float attribute is set on the function turn on the soft float 271 // subtarget feature. 272 if (SoftFloat) 273 FS += FS.empty() ? "+soft-float" : ",+soft-float"; 274 275 // Use the optminsize to identify the subtarget, but don't use it in the 276 // feature string. 277 std::string Key = CPU + FS; 278 if (F.hasMinSize()) 279 Key += "+minsize"; 280 281 auto &I = SubtargetMap[Key]; 282 if (!I) { 283 // This needs to be done before we create a new subtarget since any 284 // creation will depend on the TM and the code generation flags on the 285 // function that reside in TargetOptions. 286 resetTargetOptions(F); 287 I = std::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle, 288 F.hasMinSize()); 289 290 if (!I->isThumb() && !I->hasARMOps()) 291 F.getContext().emitError("Function '" + F.getName() + "' uses ARM " 292 "instructions, but the target does not support ARM mode execution."); 293 } 294 295 return I.get(); 296 } 297 298 TargetTransformInfo 299 ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) { 300 return TargetTransformInfo(ARMTTIImpl(this, F)); 301 } 302 303 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT, 304 StringRef CPU, StringRef FS, 305 const TargetOptions &Options, 306 Optional<Reloc::Model> RM, 307 Optional<CodeModel::Model> CM, 308 CodeGenOpt::Level OL, bool JIT) 309 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {} 310 311 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT, 312 StringRef CPU, StringRef FS, 313 const TargetOptions &Options, 314 Optional<Reloc::Model> RM, 315 Optional<CodeModel::Model> CM, 316 CodeGenOpt::Level OL, bool JIT) 317 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {} 318 319 namespace { 320 321 /// ARM Code Generator Pass Configuration Options. 322 class ARMPassConfig : public TargetPassConfig { 323 public: 324 ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM) 325 : TargetPassConfig(TM, PM) {} 326 327 ARMBaseTargetMachine &getARMTargetMachine() const { 328 return getTM<ARMBaseTargetMachine>(); 329 } 330 331 ScheduleDAGInstrs * 332 createMachineScheduler(MachineSchedContext *C) const override { 333 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 334 // add DAG Mutations here. 335 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>(); 336 if (ST.hasFusion()) 337 DAG->addMutation(createARMMacroFusionDAGMutation()); 338 return DAG; 339 } 340 341 ScheduleDAGInstrs * 342 createPostMachineScheduler(MachineSchedContext *C) const override { 343 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 344 // add DAG Mutations here. 345 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>(); 346 if (ST.hasFusion()) 347 DAG->addMutation(createARMMacroFusionDAGMutation()); 348 return DAG; 349 } 350 351 void addIRPasses() override; 352 void addCodeGenPrepare() override; 353 bool addPreISel() override; 354 bool addInstSelector() override; 355 bool addIRTranslator() override; 356 bool addLegalizeMachineIR() override; 357 bool addRegBankSelect() override; 358 bool addGlobalInstructionSelect() override; 359 void addPreRegAlloc() override; 360 void addPreSched2() override; 361 void addPreEmitPass() override; 362 363 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 364 }; 365 366 class ARMExecutionDomainFix : public ExecutionDomainFix { 367 public: 368 static char ID; 369 ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {} 370 StringRef getPassName() const override { 371 return "ARM Execution Domain Fix"; 372 } 373 }; 374 char ARMExecutionDomainFix::ID; 375 376 } // end anonymous namespace 377 378 INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix", 379 "ARM Execution Domain Fix", false, false) 380 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 381 INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix", 382 "ARM Execution Domain Fix", false, false) 383 384 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) { 385 return new ARMPassConfig(*this, PM); 386 } 387 388 std::unique_ptr<CSEConfigBase> ARMPassConfig::getCSEConfig() const { 389 return getStandardCSEConfigForOpt(TM->getOptLevel()); 390 } 391 392 void ARMPassConfig::addIRPasses() { 393 if (TM->Options.ThreadModel == ThreadModel::Single) 394 addPass(createLowerAtomicPass()); 395 else 396 addPass(createAtomicExpandPass()); 397 398 // Cmpxchg instructions are often used with a subsequent comparison to 399 // determine whether it succeeded. We can exploit existing control-flow in 400 // ldrex/strex loops to simplify this, but it needs tidying up. 401 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) 402 addPass(createCFGSimplificationPass( 403 1, false, false, true, true, [this](const Function &F) { 404 const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F); 405 return ST.hasAnyDataBarrier() && !ST.isThumb1Only(); 406 })); 407 408 addPass(createMVEGatherScatterLoweringPass()); 409 410 TargetPassConfig::addIRPasses(); 411 412 // Run the parallel DSP pass. 413 if (getOptLevel() == CodeGenOpt::Aggressive) 414 addPass(createARMParallelDSPPass()); 415 416 // Match interleaved memory accesses to ldN/stN intrinsics. 417 if (TM->getOptLevel() != CodeGenOpt::None) 418 addPass(createInterleavedAccessPass()); 419 420 // Add Control Flow Guard checks. 421 if (TM->getTargetTriple().isOSWindows()) 422 addPass(createCFGuardCheckPass()); 423 } 424 425 void ARMPassConfig::addCodeGenPrepare() { 426 if (getOptLevel() != CodeGenOpt::None) 427 addPass(createTypePromotionPass()); 428 TargetPassConfig::addCodeGenPrepare(); 429 } 430 431 bool ARMPassConfig::addPreISel() { 432 if ((TM->getOptLevel() != CodeGenOpt::None && 433 EnableGlobalMerge == cl::BOU_UNSET) || 434 EnableGlobalMerge == cl::BOU_TRUE) { 435 // FIXME: This is using the thumb1 only constant value for 436 // maximal global offset for merging globals. We may want 437 // to look into using the old value for non-thumb1 code of 438 // 4095 based on the TargetMachine, but this starts to become 439 // tricky when doing code gen per function. 440 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && 441 (EnableGlobalMerge == cl::BOU_UNSET); 442 // Merging of extern globals is enabled by default on non-Mach-O as we 443 // expect it to be generally either beneficial or harmless. On Mach-O it 444 // is disabled as we emit the .subsections_via_symbols directive which 445 // means that merging extern globals is not safe. 446 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 447 addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize, 448 MergeExternalByDefault)); 449 } 450 451 if (TM->getOptLevel() != CodeGenOpt::None) { 452 addPass(createHardwareLoopsPass()); 453 addPass(createMVETailPredicationPass()); 454 } 455 456 return false; 457 } 458 459 bool ARMPassConfig::addInstSelector() { 460 addPass(createARMISelDag(getARMTargetMachine(), getOptLevel())); 461 return false; 462 } 463 464 bool ARMPassConfig::addIRTranslator() { 465 addPass(new IRTranslator()); 466 return false; 467 } 468 469 bool ARMPassConfig::addLegalizeMachineIR() { 470 addPass(new Legalizer()); 471 return false; 472 } 473 474 bool ARMPassConfig::addRegBankSelect() { 475 addPass(new RegBankSelect()); 476 return false; 477 } 478 479 bool ARMPassConfig::addGlobalInstructionSelect() { 480 addPass(new InstructionSelect()); 481 return false; 482 } 483 484 void ARMPassConfig::addPreRegAlloc() { 485 if (getOptLevel() != CodeGenOpt::None) { 486 addPass(createMLxExpansionPass()); 487 488 if (EnableARMLoadStoreOpt) 489 addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true)); 490 491 if (!DisableA15SDOptimization) 492 addPass(createA15SDOptimizerPass()); 493 } 494 } 495 496 void ARMPassConfig::addPreSched2() { 497 if (getOptLevel() != CodeGenOpt::None) { 498 if (EnableARMLoadStoreOpt) 499 addPass(createARMLoadStoreOptimizationPass()); 500 501 addPass(new ARMExecutionDomainFix()); 502 addPass(createBreakFalseDeps()); 503 } 504 505 // Expand some pseudo instructions into multiple instructions to allow 506 // proper scheduling. 507 addPass(createARMExpandPseudoPass()); 508 509 if (getOptLevel() != CodeGenOpt::None) { 510 // in v8, IfConversion depends on Thumb instruction widths 511 addPass(createThumb2SizeReductionPass([this](const Function &F) { 512 return this->TM->getSubtarget<ARMSubtarget>(F).restrictIT(); 513 })); 514 515 addPass(createIfConverter([](const MachineFunction &MF) { 516 return !MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 517 })); 518 } 519 addPass(createMVEVPTBlockPass()); 520 addPass(createThumb2ITBlockPass()); 521 522 // Add both scheduling passes to give the subtarget an opportunity to pick 523 // between them. 524 if (getOptLevel() != CodeGenOpt::None) { 525 addPass(&PostMachineSchedulerID); 526 addPass(&PostRASchedulerID); 527 } 528 } 529 530 void ARMPassConfig::addPreEmitPass() { 531 addPass(createThumb2SizeReductionPass()); 532 533 // Constant island pass work on unbundled instructions. 534 addPass(createUnpackMachineBundles([](const MachineFunction &MF) { 535 return MF.getSubtarget<ARMSubtarget>().isThumb2(); 536 })); 537 538 // Don't optimize barriers at -O0. 539 if (getOptLevel() != CodeGenOpt::None) 540 addPass(createARMOptimizeBarriersPass()); 541 542 addPass(createARMConstantIslandPass()); 543 addPass(createARMLowOverheadLoopsPass()); 544 545 // Identify valid longjmp targets for Windows Control Flow Guard. 546 if (TM->getTargetTriple().isOSWindows()) 547 addPass(createCFGuardLongjmpPass()); 548 } 549