xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMTargetMachine.cpp (revision 85868e8a1daeaae7a0e48effb2ea2310ae3b02c6)
1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //
10 //===----------------------------------------------------------------------===//
11 
12 #include "ARMTargetMachine.h"
13 #include "ARM.h"
14 #include "ARMMacroFusion.h"
15 #include "ARMSubtarget.h"
16 #include "ARMTargetObjectFile.h"
17 #include "ARMTargetTransformInfo.h"
18 #include "MCTargetDesc/ARMMCTargetDesc.h"
19 #include "TargetInfo/ARMTargetInfo.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/CodeGen/ExecutionDomainFix.h"
26 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
27 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
28 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
29 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
30 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
31 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
33 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineScheduler.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/CodeGen.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/TargetParser.h"
46 #include "llvm/Support/TargetRegistry.h"
47 #include "llvm/Target/TargetLoweringObjectFile.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include "llvm/Transforms/Scalar.h"
50 #include <cassert>
51 #include <memory>
52 #include <string>
53 
54 using namespace llvm;
55 
56 static cl::opt<bool>
57 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
58                    cl::desc("Inhibit optimization of S->D register accesses on A15"),
59                    cl::init(false));
60 
61 static cl::opt<bool>
62 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
63                  cl::desc("Run SimplifyCFG after expanding atomic operations"
64                           " to make use of cmpxchg flow-based information"),
65                  cl::init(true));
66 
67 static cl::opt<bool>
68 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
69                       cl::desc("Enable ARM load/store optimization pass"),
70                       cl::init(true));
71 
72 // FIXME: Unify control over GlobalMerge.
73 static cl::opt<cl::boolOrDefault>
74 EnableGlobalMerge("arm-global-merge", cl::Hidden,
75                   cl::desc("Enable the global merge pass"));
76 
77 namespace llvm {
78   void initializeARMExecutionDomainFixPass(PassRegistry&);
79 }
80 
81 extern "C" void LLVMInitializeARMTarget() {
82   // Register the target.
83   RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget());
84   RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget());
85   RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget());
86   RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget());
87 
88   PassRegistry &Registry = *PassRegistry::getPassRegistry();
89   initializeGlobalISel(Registry);
90   initializeARMLoadStoreOptPass(Registry);
91   initializeARMPreAllocLoadStoreOptPass(Registry);
92   initializeARMParallelDSPPass(Registry);
93   initializeARMCodeGenPreparePass(Registry);
94   initializeARMConstantIslandsPass(Registry);
95   initializeARMExecutionDomainFixPass(Registry);
96   initializeARMExpandPseudoPass(Registry);
97   initializeThumb2SizeReducePass(Registry);
98   initializeMVEVPTBlockPass(Registry);
99   initializeMVETailPredicationPass(Registry);
100   initializeARMLowOverheadLoopsPass(Registry);
101 }
102 
103 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
104   if (TT.isOSBinFormatMachO())
105     return std::make_unique<TargetLoweringObjectFileMachO>();
106   if (TT.isOSWindows())
107     return std::make_unique<TargetLoweringObjectFileCOFF>();
108   return std::make_unique<ARMElfTargetObjectFile>();
109 }
110 
111 static ARMBaseTargetMachine::ARMABI
112 computeTargetABI(const Triple &TT, StringRef CPU,
113                  const TargetOptions &Options) {
114   StringRef ABIName = Options.MCOptions.getABIName();
115 
116   if (ABIName.empty())
117     ABIName = ARM::computeDefaultTargetABI(TT, CPU);
118 
119   if (ABIName == "aapcs16")
120     return ARMBaseTargetMachine::ARM_ABI_AAPCS16;
121   else if (ABIName.startswith("aapcs"))
122     return ARMBaseTargetMachine::ARM_ABI_AAPCS;
123   else if (ABIName.startswith("apcs"))
124     return ARMBaseTargetMachine::ARM_ABI_APCS;
125 
126   llvm_unreachable("Unhandled/unknown ABI Name!");
127   return ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
128 }
129 
130 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
131                                      const TargetOptions &Options,
132                                      bool isLittle) {
133   auto ABI = computeTargetABI(TT, CPU, Options);
134   std::string Ret;
135 
136   if (isLittle)
137     // Little endian.
138     Ret += "e";
139   else
140     // Big endian.
141     Ret += "E";
142 
143   Ret += DataLayout::getManglingComponent(TT);
144 
145   // Pointers are 32 bits and aligned to 32 bits.
146   Ret += "-p:32:32";
147 
148   // Function pointers are aligned to 8 bits (because the LSB stores the
149   // ARM/Thumb state).
150   Ret += "-Fi8";
151 
152   // ABIs other than APCS have 64 bit integers with natural alignment.
153   if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
154     Ret += "-i64:64";
155 
156   // We have 64 bits floats. The APCS ABI requires them to be aligned to 32
157   // bits, others to 64 bits. We always try to align to 64 bits.
158   if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
159     Ret += "-f64:32:64";
160 
161   // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
162   // to 64. We always ty to give them natural alignment.
163   if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
164     Ret += "-v64:32:64-v128:32:128";
165   else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16)
166     Ret += "-v128:64:128";
167 
168   // Try to align aggregates to 32 bits (the default is 64 bits, which has no
169   // particular hardware support on 32-bit ARM).
170   Ret += "-a:0:32";
171 
172   // Integer registers are 32 bits.
173   Ret += "-n32";
174 
175   // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
176   // aligned everywhere else.
177   if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16)
178     Ret += "-S128";
179   else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
180     Ret += "-S64";
181   else
182     Ret += "-S32";
183 
184   return Ret;
185 }
186 
187 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
188                                            Optional<Reloc::Model> RM) {
189   if (!RM.hasValue())
190     // Default relocation model on Darwin is PIC.
191     return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static;
192 
193   if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI)
194     assert(TT.isOSBinFormatELF() &&
195            "ROPI/RWPI currently only supported for ELF");
196 
197   // DynamicNoPIC is only used on darwin.
198   if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin())
199     return Reloc::Static;
200 
201   return *RM;
202 }
203 
204 /// Create an ARM architecture model.
205 ///
206 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
207                                            StringRef CPU, StringRef FS,
208                                            const TargetOptions &Options,
209                                            Optional<Reloc::Model> RM,
210                                            Optional<CodeModel::Model> CM,
211                                            CodeGenOpt::Level OL, bool isLittle)
212     : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
213                         CPU, FS, Options, getEffectiveRelocModel(TT, RM),
214                         getEffectiveCodeModel(CM, CodeModel::Small), OL),
215       TargetABI(computeTargetABI(TT, CPU, Options)),
216       TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) {
217 
218   // Default to triple-appropriate float ABI
219   if (Options.FloatABIType == FloatABI::Default) {
220     if (isTargetHardFloat())
221       this->Options.FloatABIType = FloatABI::Hard;
222     else
223       this->Options.FloatABIType = FloatABI::Soft;
224   }
225 
226   // Default to triple-appropriate EABI
227   if (Options.EABIVersion == EABI::Default ||
228       Options.EABIVersion == EABI::Unknown) {
229     // musl is compatible with glibc with regard to EABI version
230     if ((TargetTriple.getEnvironment() == Triple::GNUEABI ||
231          TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
232          TargetTriple.getEnvironment() == Triple::MuslEABI ||
233          TargetTriple.getEnvironment() == Triple::MuslEABIHF) &&
234         !(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin()))
235       this->Options.EABIVersion = EABI::GNU;
236     else
237       this->Options.EABIVersion = EABI::EABI5;
238   }
239 
240   if (TT.isOSBinFormatMachO()) {
241     this->Options.TrapUnreachable = true;
242     this->Options.NoTrapAfterNoreturn = true;
243   }
244 
245   initAsmInfo();
246 }
247 
248 ARMBaseTargetMachine::~ARMBaseTargetMachine() = default;
249 
250 const ARMSubtarget *
251 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
252   Attribute CPUAttr = F.getFnAttribute("target-cpu");
253   Attribute FSAttr = F.getFnAttribute("target-features");
254 
255   std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
256                         ? CPUAttr.getValueAsString().str()
257                         : TargetCPU;
258   std::string FS = !FSAttr.hasAttribute(Attribute::None)
259                        ? FSAttr.getValueAsString().str()
260                        : TargetFS;
261 
262   // FIXME: This is related to the code below to reset the target options,
263   // we need to know whether or not the soft float flag is set on the
264   // function before we can generate a subtarget. We also need to use
265   // it as a key for the subtarget since that can be the only difference
266   // between two functions.
267   bool SoftFloat =
268       F.getFnAttribute("use-soft-float").getValueAsString() == "true";
269   // If the soft float attribute is set on the function turn on the soft float
270   // subtarget feature.
271   if (SoftFloat)
272     FS += FS.empty() ? "+soft-float" : ",+soft-float";
273 
274   // Use the optminsize to identify the subtarget, but don't use it in the
275   // feature string.
276   std::string Key = CPU + FS;
277   if (F.hasMinSize())
278     Key += "+minsize";
279 
280   auto &I = SubtargetMap[Key];
281   if (!I) {
282     // This needs to be done before we create a new subtarget since any
283     // creation will depend on the TM and the code generation flags on the
284     // function that reside in TargetOptions.
285     resetTargetOptions(F);
286     I = std::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle,
287                                         F.hasMinSize());
288 
289     if (!I->isThumb() && !I->hasARMOps())
290       F.getContext().emitError("Function '" + F.getName() + "' uses ARM "
291           "instructions, but the target does not support ARM mode execution.");
292   }
293 
294   return I.get();
295 }
296 
297 TargetTransformInfo
298 ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) {
299   return TargetTransformInfo(ARMTTIImpl(this, F));
300 }
301 
302 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
303                                        StringRef CPU, StringRef FS,
304                                        const TargetOptions &Options,
305                                        Optional<Reloc::Model> RM,
306                                        Optional<CodeModel::Model> CM,
307                                        CodeGenOpt::Level OL, bool JIT)
308     : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
309 
310 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
311                                        StringRef CPU, StringRef FS,
312                                        const TargetOptions &Options,
313                                        Optional<Reloc::Model> RM,
314                                        Optional<CodeModel::Model> CM,
315                                        CodeGenOpt::Level OL, bool JIT)
316     : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
317 
318 namespace {
319 
320 /// ARM Code Generator Pass Configuration Options.
321 class ARMPassConfig : public TargetPassConfig {
322 public:
323   ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM)
324       : TargetPassConfig(TM, PM) {
325     if (TM.getOptLevel() != CodeGenOpt::None) {
326       ARMGenSubtargetInfo STI(TM.getTargetTriple(), TM.getTargetCPU(),
327                               TM.getTargetFeatureString());
328       if (STI.hasFeature(ARM::FeatureUseMISched))
329         substitutePass(&PostRASchedulerID, &PostMachineSchedulerID);
330     }
331   }
332 
333   ARMBaseTargetMachine &getARMTargetMachine() const {
334     return getTM<ARMBaseTargetMachine>();
335   }
336 
337   ScheduleDAGInstrs *
338   createMachineScheduler(MachineSchedContext *C) const override {
339     ScheduleDAGMILive *DAG = createGenericSchedLive(C);
340     // add DAG Mutations here.
341     const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
342     if (ST.hasFusion())
343       DAG->addMutation(createARMMacroFusionDAGMutation());
344     return DAG;
345   }
346 
347   ScheduleDAGInstrs *
348   createPostMachineScheduler(MachineSchedContext *C) const override {
349     ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
350     // add DAG Mutations here.
351     const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
352     if (ST.hasFusion())
353       DAG->addMutation(createARMMacroFusionDAGMutation());
354     return DAG;
355   }
356 
357   void addIRPasses() override;
358   void addCodeGenPrepare() override;
359   bool addPreISel() override;
360   bool addInstSelector() override;
361   bool addIRTranslator() override;
362   bool addLegalizeMachineIR() override;
363   bool addRegBankSelect() override;
364   bool addGlobalInstructionSelect() override;
365   void addPreRegAlloc() override;
366   void addPreSched2() override;
367   void addPreEmitPass() override;
368 
369   std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
370 };
371 
372 class ARMExecutionDomainFix : public ExecutionDomainFix {
373 public:
374   static char ID;
375   ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {}
376   StringRef getPassName() const override {
377     return "ARM Execution Domain Fix";
378   }
379 };
380 char ARMExecutionDomainFix::ID;
381 
382 } // end anonymous namespace
383 
384 INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix",
385   "ARM Execution Domain Fix", false, false)
386 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
387 INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix",
388   "ARM Execution Domain Fix", false, false)
389 
390 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
391   return new ARMPassConfig(*this, PM);
392 }
393 
394 std::unique_ptr<CSEConfigBase> ARMPassConfig::getCSEConfig() const {
395   return getStandardCSEConfigForOpt(TM->getOptLevel());
396 }
397 
398 void ARMPassConfig::addIRPasses() {
399   if (TM->Options.ThreadModel == ThreadModel::Single)
400     addPass(createLowerAtomicPass());
401   else
402     addPass(createAtomicExpandPass());
403 
404   // Cmpxchg instructions are often used with a subsequent comparison to
405   // determine whether it succeeded. We can exploit existing control-flow in
406   // ldrex/strex loops to simplify this, but it needs tidying up.
407   if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
408     addPass(createCFGSimplificationPass(
409         1, false, false, true, true, [this](const Function &F) {
410           const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
411           return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
412         }));
413 
414   TargetPassConfig::addIRPasses();
415 
416   // Run the parallel DSP pass.
417   if (getOptLevel() == CodeGenOpt::Aggressive)
418     addPass(createARMParallelDSPPass());
419 
420   // Match interleaved memory accesses to ldN/stN intrinsics.
421   if (TM->getOptLevel() != CodeGenOpt::None)
422     addPass(createInterleavedAccessPass());
423 }
424 
425 void ARMPassConfig::addCodeGenPrepare() {
426   if (getOptLevel() != CodeGenOpt::None)
427     addPass(createARMCodeGenPreparePass());
428   TargetPassConfig::addCodeGenPrepare();
429 }
430 
431 bool ARMPassConfig::addPreISel() {
432   if ((TM->getOptLevel() != CodeGenOpt::None &&
433        EnableGlobalMerge == cl::BOU_UNSET) ||
434       EnableGlobalMerge == cl::BOU_TRUE) {
435     // FIXME: This is using the thumb1 only constant value for
436     // maximal global offset for merging globals. We may want
437     // to look into using the old value for non-thumb1 code of
438     // 4095 based on the TargetMachine, but this starts to become
439     // tricky when doing code gen per function.
440     bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
441                                (EnableGlobalMerge == cl::BOU_UNSET);
442     // Merging of extern globals is enabled by default on non-Mach-O as we
443     // expect it to be generally either beneficial or harmless. On Mach-O it
444     // is disabled as we emit the .subsections_via_symbols directive which
445     // means that merging extern globals is not safe.
446     bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
447     addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize,
448                                   MergeExternalByDefault));
449   }
450 
451   if (TM->getOptLevel() != CodeGenOpt::None) {
452     addPass(createHardwareLoopsPass());
453     addPass(createMVETailPredicationPass());
454   }
455 
456   return false;
457 }
458 
459 bool ARMPassConfig::addInstSelector() {
460   addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
461   return false;
462 }
463 
464 bool ARMPassConfig::addIRTranslator() {
465   addPass(new IRTranslator());
466   return false;
467 }
468 
469 bool ARMPassConfig::addLegalizeMachineIR() {
470   addPass(new Legalizer());
471   return false;
472 }
473 
474 bool ARMPassConfig::addRegBankSelect() {
475   addPass(new RegBankSelect());
476   return false;
477 }
478 
479 bool ARMPassConfig::addGlobalInstructionSelect() {
480   addPass(new InstructionSelect());
481   return false;
482 }
483 
484 void ARMPassConfig::addPreRegAlloc() {
485   if (getOptLevel() != CodeGenOpt::None) {
486     addPass(createMLxExpansionPass());
487 
488     if (EnableARMLoadStoreOpt)
489       addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true));
490 
491     if (!DisableA15SDOptimization)
492       addPass(createA15SDOptimizerPass());
493   }
494 }
495 
496 void ARMPassConfig::addPreSched2() {
497   if (getOptLevel() != CodeGenOpt::None) {
498     if (EnableARMLoadStoreOpt)
499       addPass(createARMLoadStoreOptimizationPass());
500 
501     addPass(new ARMExecutionDomainFix());
502     addPass(createBreakFalseDeps());
503   }
504 
505   // Expand some pseudo instructions into multiple instructions to allow
506   // proper scheduling.
507   addPass(createARMExpandPseudoPass());
508 
509   if (getOptLevel() != CodeGenOpt::None) {
510     // in v8, IfConversion depends on Thumb instruction widths
511     addPass(createThumb2SizeReductionPass([this](const Function &F) {
512       return this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
513     }));
514 
515     addPass(createIfConverter([](const MachineFunction &MF) {
516       return !MF.getSubtarget<ARMSubtarget>().isThumb1Only();
517     }));
518   }
519   addPass(createMVEVPTBlockPass());
520   addPass(createThumb2ITBlockPass());
521 }
522 
523 void ARMPassConfig::addPreEmitPass() {
524   addPass(createThumb2SizeReductionPass());
525 
526   // Constant island pass work on unbundled instructions.
527   addPass(createUnpackMachineBundles([](const MachineFunction &MF) {
528     return MF.getSubtarget<ARMSubtarget>().isThumb2();
529   }));
530 
531   // Don't optimize barriers at -O0.
532   if (getOptLevel() != CodeGenOpt::None)
533     addPass(createARMOptimizeBarriersPass());
534 
535   addPass(createARMConstantIslandPass());
536   addPass(createARMLowOverheadLoopsPass());
537 }
538