1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "ARMTargetMachine.h" 13 #include "ARM.h" 14 #include "ARMMachineFunctionInfo.h" 15 #include "ARMMacroFusion.h" 16 #include "ARMSubtarget.h" 17 #include "ARMTargetObjectFile.h" 18 #include "ARMTargetTransformInfo.h" 19 #include "MCTargetDesc/ARMMCTargetDesc.h" 20 #include "TargetInfo/ARMTargetInfo.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/CodeGen/ExecutionDomainFix.h" 25 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 26 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 27 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 28 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 29 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" 30 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 31 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/MIRParser/MIParser.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/RegisterBankInfo.h" 38 #include "llvm/CodeGen/TargetPassConfig.h" 39 #include "llvm/IR/Attributes.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/MC/TargetRegistry.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/CodeGen.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/TargetParser/ARMTargetParser.h" 50 #include "llvm/TargetParser/TargetParser.h" 51 #include "llvm/TargetParser/Triple.h" 52 #include "llvm/Transforms/CFGuard.h" 53 #include "llvm/Transforms/IPO.h" 54 #include "llvm/Transforms/Scalar.h" 55 #include <cassert> 56 #include <memory> 57 #include <optional> 58 #include <string> 59 60 using namespace llvm; 61 62 static cl::opt<bool> 63 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden, 64 cl::desc("Inhibit optimization of S->D register accesses on A15"), 65 cl::init(false)); 66 67 static cl::opt<bool> 68 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden, 69 cl::desc("Run SimplifyCFG after expanding atomic operations" 70 " to make use of cmpxchg flow-based information"), 71 cl::init(true)); 72 73 static cl::opt<bool> 74 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden, 75 cl::desc("Enable ARM load/store optimization pass"), 76 cl::init(true)); 77 78 // FIXME: Unify control over GlobalMerge. 79 static cl::opt<cl::boolOrDefault> 80 EnableGlobalMerge("arm-global-merge", cl::Hidden, 81 cl::desc("Enable the global merge pass")); 82 83 namespace llvm { 84 void initializeARMExecutionDomainFixPass(PassRegistry&); 85 } 86 87 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMTarget() { 88 // Register the target. 89 RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget()); 90 RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget()); 91 RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget()); 92 RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget()); 93 94 PassRegistry &Registry = *PassRegistry::getPassRegistry(); 95 initializeGlobalISel(Registry); 96 initializeARMLoadStoreOptPass(Registry); 97 initializeARMPreAllocLoadStoreOptPass(Registry); 98 initializeARMParallelDSPPass(Registry); 99 initializeARMBranchTargetsPass(Registry); 100 initializeARMConstantIslandsPass(Registry); 101 initializeARMExecutionDomainFixPass(Registry); 102 initializeARMExpandPseudoPass(Registry); 103 initializeThumb2SizeReducePass(Registry); 104 initializeMVEVPTBlockPass(Registry); 105 initializeMVETPAndVPTOptimisationsPass(Registry); 106 initializeMVETailPredicationPass(Registry); 107 initializeARMLowOverheadLoopsPass(Registry); 108 initializeARMBlockPlacementPass(Registry); 109 initializeMVEGatherScatterLoweringPass(Registry); 110 initializeARMSLSHardeningPass(Registry); 111 initializeMVELaneInterleavingPass(Registry); 112 initializeARMFixCortexA57AES1742098Pass(Registry); 113 initializeARMDAGToDAGISelLegacyPass(Registry); 114 } 115 116 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 117 if (TT.isOSBinFormatMachO()) 118 return std::make_unique<TargetLoweringObjectFileMachO>(); 119 if (TT.isOSWindows()) 120 return std::make_unique<TargetLoweringObjectFileCOFF>(); 121 return std::make_unique<ARMElfTargetObjectFile>(); 122 } 123 124 static ARMBaseTargetMachine::ARMABI 125 computeTargetABI(const Triple &TT, StringRef CPU, 126 const TargetOptions &Options) { 127 StringRef ABIName = Options.MCOptions.getABIName(); 128 129 if (ABIName.empty()) 130 ABIName = ARM::computeDefaultTargetABI(TT, CPU); 131 132 if (ABIName == "aapcs16") 133 return ARMBaseTargetMachine::ARM_ABI_AAPCS16; 134 else if (ABIName.starts_with("aapcs")) 135 return ARMBaseTargetMachine::ARM_ABI_AAPCS; 136 else if (ABIName.starts_with("apcs")) 137 return ARMBaseTargetMachine::ARM_ABI_APCS; 138 139 llvm_unreachable("Unhandled/unknown ABI Name!"); 140 return ARMBaseTargetMachine::ARM_ABI_UNKNOWN; 141 } 142 143 static std::string computeDataLayout(const Triple &TT, StringRef CPU, 144 const TargetOptions &Options, 145 bool isLittle) { 146 auto ABI = computeTargetABI(TT, CPU, Options); 147 std::string Ret; 148 149 if (isLittle) 150 // Little endian. 151 Ret += "e"; 152 else 153 // Big endian. 154 Ret += "E"; 155 156 Ret += DataLayout::getManglingComponent(TT); 157 158 // Pointers are 32 bits and aligned to 32 bits. 159 Ret += "-p:32:32"; 160 161 // Function pointers are aligned to 8 bits (because the LSB stores the 162 // ARM/Thumb state). 163 Ret += "-Fi8"; 164 165 // ABIs other than APCS have 64 bit integers with natural alignment. 166 if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS) 167 Ret += "-i64:64"; 168 169 // We have 64 bits floats. The APCS ABI requires them to be aligned to 32 170 // bits, others to 64 bits. We always try to align to 64 bits. 171 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS) 172 Ret += "-f64:32:64"; 173 174 // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others 175 // to 64. We always ty to give them natural alignment. 176 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS) 177 Ret += "-v64:32:64-v128:32:128"; 178 else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16) 179 Ret += "-v128:64:128"; 180 181 // Try to align aggregates to 32 bits (the default is 64 bits, which has no 182 // particular hardware support on 32-bit ARM). 183 Ret += "-a:0:32"; 184 185 // Integer registers are 32 bits. 186 Ret += "-n32"; 187 188 // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit 189 // aligned everywhere else. 190 if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16) 191 Ret += "-S128"; 192 else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS) 193 Ret += "-S64"; 194 else 195 Ret += "-S32"; 196 197 return Ret; 198 } 199 200 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 201 std::optional<Reloc::Model> RM) { 202 if (!RM) 203 // Default relocation model on Darwin is PIC. 204 return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static; 205 206 if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI) 207 assert(TT.isOSBinFormatELF() && 208 "ROPI/RWPI currently only supported for ELF"); 209 210 // DynamicNoPIC is only used on darwin. 211 if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin()) 212 return Reloc::Static; 213 214 return *RM; 215 } 216 217 /// Create an ARM architecture model. 218 /// 219 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT, 220 StringRef CPU, StringRef FS, 221 const TargetOptions &Options, 222 std::optional<Reloc::Model> RM, 223 std::optional<CodeModel::Model> CM, 224 CodeGenOptLevel OL, bool isLittle) 225 : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT, 226 CPU, FS, Options, getEffectiveRelocModel(TT, RM), 227 getEffectiveCodeModel(CM, CodeModel::Small), OL), 228 TargetABI(computeTargetABI(TT, CPU, Options)), 229 TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) { 230 231 // Default to triple-appropriate float ABI 232 if (Options.FloatABIType == FloatABI::Default) { 233 if (isTargetHardFloat()) 234 this->Options.FloatABIType = FloatABI::Hard; 235 else 236 this->Options.FloatABIType = FloatABI::Soft; 237 } 238 239 // Default to triple-appropriate EABI 240 if (Options.EABIVersion == EABI::Default || 241 Options.EABIVersion == EABI::Unknown) { 242 // musl is compatible with glibc with regard to EABI version 243 if ((TargetTriple.getEnvironment() == Triple::GNUEABI || 244 TargetTriple.getEnvironment() == Triple::GNUEABIT64 || 245 TargetTriple.getEnvironment() == Triple::GNUEABIHF || 246 TargetTriple.getEnvironment() == Triple::GNUEABIHFT64 || 247 TargetTriple.getEnvironment() == Triple::MuslEABI || 248 TargetTriple.getEnvironment() == Triple::MuslEABIHF || 249 TargetTriple.getEnvironment() == Triple::OpenHOS) && 250 !(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin())) 251 this->Options.EABIVersion = EABI::GNU; 252 else 253 this->Options.EABIVersion = EABI::EABI5; 254 } 255 256 if (TT.isOSBinFormatMachO()) { 257 this->Options.TrapUnreachable = true; 258 this->Options.NoTrapAfterNoreturn = true; 259 } 260 261 // ARM supports the debug entry values. 262 setSupportsDebugEntryValues(true); 263 264 initAsmInfo(); 265 266 // ARM supports the MachineOutliner. 267 setMachineOutliner(true); 268 setSupportsDefaultOutlining(true); 269 } 270 271 ARMBaseTargetMachine::~ARMBaseTargetMachine() = default; 272 273 MachineFunctionInfo *ARMBaseTargetMachine::createMachineFunctionInfo( 274 BumpPtrAllocator &Allocator, const Function &F, 275 const TargetSubtargetInfo *STI) const { 276 return ARMFunctionInfo::create<ARMFunctionInfo>( 277 Allocator, F, static_cast<const ARMSubtarget *>(STI)); 278 } 279 280 const ARMSubtarget * 281 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const { 282 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 283 Attribute FSAttr = F.getFnAttribute("target-features"); 284 285 std::string CPU = 286 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU; 287 std::string FS = 288 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; 289 290 // FIXME: This is related to the code below to reset the target options, 291 // we need to know whether or not the soft float flag is set on the 292 // function before we can generate a subtarget. We also need to use 293 // it as a key for the subtarget since that can be the only difference 294 // between two functions. 295 bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool(); 296 // If the soft float attribute is set on the function turn on the soft float 297 // subtarget feature. 298 if (SoftFloat) 299 FS += FS.empty() ? "+soft-float" : ",+soft-float"; 300 301 // Use the optminsize to identify the subtarget, but don't use it in the 302 // feature string. 303 std::string Key = CPU + FS; 304 if (F.hasMinSize()) 305 Key += "+minsize"; 306 307 auto &I = SubtargetMap[Key]; 308 if (!I) { 309 // This needs to be done before we create a new subtarget since any 310 // creation will depend on the TM and the code generation flags on the 311 // function that reside in TargetOptions. 312 resetTargetOptions(F); 313 I = std::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle, 314 F.hasMinSize()); 315 316 if (!I->isThumb() && !I->hasARMOps()) 317 F.getContext().emitError("Function '" + F.getName() + "' uses ARM " 318 "instructions, but the target does not support ARM mode execution."); 319 } 320 321 return I.get(); 322 } 323 324 TargetTransformInfo 325 ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) const { 326 return TargetTransformInfo(ARMTTIImpl(this, F)); 327 } 328 329 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT, 330 StringRef CPU, StringRef FS, 331 const TargetOptions &Options, 332 std::optional<Reloc::Model> RM, 333 std::optional<CodeModel::Model> CM, 334 CodeGenOptLevel OL, bool JIT) 335 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {} 336 337 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT, 338 StringRef CPU, StringRef FS, 339 const TargetOptions &Options, 340 std::optional<Reloc::Model> RM, 341 std::optional<CodeModel::Model> CM, 342 CodeGenOptLevel OL, bool JIT) 343 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {} 344 345 namespace { 346 347 /// ARM Code Generator Pass Configuration Options. 348 class ARMPassConfig : public TargetPassConfig { 349 public: 350 ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM) 351 : TargetPassConfig(TM, PM) {} 352 353 ARMBaseTargetMachine &getARMTargetMachine() const { 354 return getTM<ARMBaseTargetMachine>(); 355 } 356 357 ScheduleDAGInstrs * 358 createMachineScheduler(MachineSchedContext *C) const override { 359 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 360 // add DAG Mutations here. 361 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>(); 362 if (ST.hasFusion()) 363 DAG->addMutation(createARMMacroFusionDAGMutation()); 364 return DAG; 365 } 366 367 ScheduleDAGInstrs * 368 createPostMachineScheduler(MachineSchedContext *C) const override { 369 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 370 // add DAG Mutations here. 371 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>(); 372 if (ST.hasFusion()) 373 DAG->addMutation(createARMMacroFusionDAGMutation()); 374 return DAG; 375 } 376 377 void addIRPasses() override; 378 void addCodeGenPrepare() override; 379 bool addPreISel() override; 380 bool addInstSelector() override; 381 bool addIRTranslator() override; 382 bool addLegalizeMachineIR() override; 383 bool addRegBankSelect() override; 384 bool addGlobalInstructionSelect() override; 385 void addPreRegAlloc() override; 386 void addPreSched2() override; 387 void addPreEmitPass() override; 388 void addPreEmitPass2() override; 389 390 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 391 }; 392 393 class ARMExecutionDomainFix : public ExecutionDomainFix { 394 public: 395 static char ID; 396 ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {} 397 StringRef getPassName() const override { 398 return "ARM Execution Domain Fix"; 399 } 400 }; 401 char ARMExecutionDomainFix::ID; 402 403 } // end anonymous namespace 404 405 INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix", 406 "ARM Execution Domain Fix", false, false) 407 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 408 INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix", 409 "ARM Execution Domain Fix", false, false) 410 411 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) { 412 return new ARMPassConfig(*this, PM); 413 } 414 415 std::unique_ptr<CSEConfigBase> ARMPassConfig::getCSEConfig() const { 416 return getStandardCSEConfigForOpt(TM->getOptLevel()); 417 } 418 419 void ARMPassConfig::addIRPasses() { 420 if (TM->Options.ThreadModel == ThreadModel::Single) 421 addPass(createLowerAtomicPass()); 422 else 423 addPass(createAtomicExpandLegacyPass()); 424 425 // Cmpxchg instructions are often used with a subsequent comparison to 426 // determine whether it succeeded. We can exploit existing control-flow in 427 // ldrex/strex loops to simplify this, but it needs tidying up. 428 if (TM->getOptLevel() != CodeGenOptLevel::None && EnableAtomicTidy) 429 addPass(createCFGSimplificationPass( 430 SimplifyCFGOptions().hoistCommonInsts(true).sinkCommonInsts(true), 431 [this](const Function &F) { 432 const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F); 433 return ST.hasAnyDataBarrier() && !ST.isThumb1Only(); 434 })); 435 436 addPass(createMVEGatherScatterLoweringPass()); 437 addPass(createMVELaneInterleavingPass()); 438 439 TargetPassConfig::addIRPasses(); 440 441 // Run the parallel DSP pass. 442 if (getOptLevel() == CodeGenOptLevel::Aggressive) 443 addPass(createARMParallelDSPPass()); 444 445 // Match complex arithmetic patterns 446 if (TM->getOptLevel() >= CodeGenOptLevel::Default) 447 addPass(createComplexDeinterleavingPass(TM)); 448 449 // Match interleaved memory accesses to ldN/stN intrinsics. 450 if (TM->getOptLevel() != CodeGenOptLevel::None) 451 addPass(createInterleavedAccessPass()); 452 453 // Add Control Flow Guard checks. 454 if (TM->getTargetTriple().isOSWindows()) 455 addPass(createCFGuardCheckPass()); 456 457 if (TM->Options.JMCInstrument) 458 addPass(createJMCInstrumenterPass()); 459 } 460 461 void ARMPassConfig::addCodeGenPrepare() { 462 if (getOptLevel() != CodeGenOptLevel::None) 463 addPass(createTypePromotionLegacyPass()); 464 TargetPassConfig::addCodeGenPrepare(); 465 } 466 467 bool ARMPassConfig::addPreISel() { 468 if ((TM->getOptLevel() != CodeGenOptLevel::None && 469 EnableGlobalMerge == cl::BOU_UNSET) || 470 EnableGlobalMerge == cl::BOU_TRUE) { 471 // FIXME: This is using the thumb1 only constant value for 472 // maximal global offset for merging globals. We may want 473 // to look into using the old value for non-thumb1 code of 474 // 4095 based on the TargetMachine, but this starts to become 475 // tricky when doing code gen per function. 476 bool OnlyOptimizeForSize = 477 (TM->getOptLevel() < CodeGenOptLevel::Aggressive) && 478 (EnableGlobalMerge == cl::BOU_UNSET); 479 // Merging of extern globals is enabled by default on non-Mach-O as we 480 // expect it to be generally either beneficial or harmless. On Mach-O it 481 // is disabled as we emit the .subsections_via_symbols directive which 482 // means that merging extern globals is not safe. 483 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 484 addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize, 485 MergeExternalByDefault)); 486 } 487 488 if (TM->getOptLevel() != CodeGenOptLevel::None) { 489 addPass(createHardwareLoopsLegacyPass()); 490 addPass(createMVETailPredicationPass()); 491 // FIXME: IR passes can delete address-taken basic blocks, deleting 492 // corresponding blockaddresses. ARMConstantPoolConstant holds references to 493 // address-taken basic blocks which can be invalidated if the function 494 // containing the blockaddress has already been codegen'd and the basic 495 // block is removed. Work around this by forcing all IR passes to run before 496 // any ISel takes place. We should have a more principled way of handling 497 // this. See D99707 for more details. 498 addPass(createBarrierNoopPass()); 499 } 500 501 return false; 502 } 503 504 bool ARMPassConfig::addInstSelector() { 505 addPass(createARMISelDag(getARMTargetMachine(), getOptLevel())); 506 return false; 507 } 508 509 bool ARMPassConfig::addIRTranslator() { 510 addPass(new IRTranslator(getOptLevel())); 511 return false; 512 } 513 514 bool ARMPassConfig::addLegalizeMachineIR() { 515 addPass(new Legalizer()); 516 return false; 517 } 518 519 bool ARMPassConfig::addRegBankSelect() { 520 addPass(new RegBankSelect()); 521 return false; 522 } 523 524 bool ARMPassConfig::addGlobalInstructionSelect() { 525 addPass(new InstructionSelect(getOptLevel())); 526 return false; 527 } 528 529 void ARMPassConfig::addPreRegAlloc() { 530 if (getOptLevel() != CodeGenOptLevel::None) { 531 if (getOptLevel() == CodeGenOptLevel::Aggressive) 532 addPass(&MachinePipelinerID); 533 534 addPass(createMVETPAndVPTOptimisationsPass()); 535 536 addPass(createMLxExpansionPass()); 537 538 if (EnableARMLoadStoreOpt) 539 addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true)); 540 541 if (!DisableA15SDOptimization) 542 addPass(createA15SDOptimizerPass()); 543 } 544 } 545 546 void ARMPassConfig::addPreSched2() { 547 if (getOptLevel() != CodeGenOptLevel::None) { 548 if (EnableARMLoadStoreOpt) 549 addPass(createARMLoadStoreOptimizationPass()); 550 551 addPass(new ARMExecutionDomainFix()); 552 addPass(createBreakFalseDeps()); 553 } 554 555 // Expand some pseudo instructions into multiple instructions to allow 556 // proper scheduling. 557 addPass(createARMExpandPseudoPass()); 558 559 if (getOptLevel() != CodeGenOptLevel::None) { 560 // When optimising for size, always run the Thumb2SizeReduction pass before 561 // IfConversion. Otherwise, check whether IT blocks are restricted 562 // (e.g. in v8, IfConversion depends on Thumb instruction widths) 563 addPass(createThumb2SizeReductionPass([this](const Function &F) { 564 return this->TM->getSubtarget<ARMSubtarget>(F).hasMinSize() || 565 this->TM->getSubtarget<ARMSubtarget>(F).restrictIT(); 566 })); 567 568 addPass(createIfConverter([](const MachineFunction &MF) { 569 return !MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 570 })); 571 } 572 addPass(createThumb2ITBlockPass()); 573 574 // Add both scheduling passes to give the subtarget an opportunity to pick 575 // between them. 576 if (getOptLevel() != CodeGenOptLevel::None) { 577 addPass(&PostMachineSchedulerID); 578 addPass(&PostRASchedulerID); 579 } 580 581 addPass(createMVEVPTBlockPass()); 582 addPass(createARMIndirectThunks()); 583 addPass(createARMSLSHardeningPass()); 584 } 585 586 void ARMPassConfig::addPreEmitPass() { 587 addPass(createThumb2SizeReductionPass()); 588 589 // Constant island pass work on unbundled instructions. 590 addPass(createUnpackMachineBundles([](const MachineFunction &MF) { 591 return MF.getSubtarget<ARMSubtarget>().isThumb2(); 592 })); 593 594 // Don't optimize barriers or block placement at -O0. 595 if (getOptLevel() != CodeGenOptLevel::None) { 596 addPass(createARMBlockPlacementPass()); 597 addPass(createARMOptimizeBarriersPass()); 598 } 599 } 600 601 void ARMPassConfig::addPreEmitPass2() { 602 // Inserts fixup instructions before unsafe AES operations. Instructions may 603 // be inserted at the start of blocks and at within blocks so this pass has to 604 // come before those below. 605 addPass(createARMFixCortexA57AES1742098Pass()); 606 // Inserts BTIs at the start of functions and indirectly-called basic blocks, 607 // so passes cannot add to the start of basic blocks once this has run. 608 addPass(createARMBranchTargetsPass()); 609 // Inserts Constant Islands. Block sizes cannot be increased after this point, 610 // as this may push the branch ranges and load offsets of accessing constant 611 // pools out of range.. 612 addPass(createARMConstantIslandPass()); 613 // Finalises Low-Overhead Loops. This replaces pseudo instructions with real 614 // instructions, but the pseudos all have conservative sizes so that block 615 // sizes will only be decreased by this pass. 616 addPass(createARMLowOverheadLoopsPass()); 617 618 if (TM->getTargetTriple().isOSWindows()) { 619 // Identify valid longjmp targets for Windows Control Flow Guard. 620 addPass(createCFGuardLongjmpPass()); 621 // Identify valid eh continuation targets for Windows EHCont Guard. 622 addPass(createEHContGuardCatchretPass()); 623 } 624 } 625 626 yaml::MachineFunctionInfo * 627 ARMBaseTargetMachine::createDefaultFuncInfoYAML() const { 628 return new yaml::ARMFunctionInfo(); 629 } 630 631 yaml::MachineFunctionInfo * 632 ARMBaseTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 633 const auto *MFI = MF.getInfo<ARMFunctionInfo>(); 634 return new yaml::ARMFunctionInfo(*MFI); 635 } 636 637 bool ARMBaseTargetMachine::parseMachineFunctionInfo( 638 const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS, 639 SMDiagnostic &Error, SMRange &SourceRange) const { 640 const auto &YamlMFI = static_cast<const yaml::ARMFunctionInfo &>(MFI); 641 MachineFunction &MF = PFS.MF; 642 MF.getInfo<ARMFunctionInfo>()->initializeBaseYamlFields(YamlMFI); 643 return false; 644 } 645