xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMSubtarget.h (revision 47ef2a131091508e049ab10cad7f91a3c1342cd9)
1 //===-- ARMSubtarget.h - Define Subtarget for the ARM ----------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the ARM specific subclass of TargetSubtargetInfo.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
14 #define LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
15 
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMFrameLowering.h"
20 #include "ARMISelLowering.h"
21 #include "ARMMachineFunctionInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
25 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
26 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/RegisterBankInfo.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/MC/MCInstrItineraries.h"
31 #include "llvm/MC/MCSchedule.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include "llvm/TargetParser/Triple.h"
35 #include <bitset>
36 #include <memory>
37 #include <string>
38 
39 #define GET_SUBTARGETINFO_HEADER
40 #include "ARMGenSubtargetInfo.inc"
41 
42 namespace llvm {
43 
44 class ARMBaseTargetMachine;
45 class GlobalValue;
46 class StringRef;
47 
48 class ARMSubtarget : public ARMGenSubtargetInfo {
49 protected:
50   enum ARMProcFamilyEnum {
51     Others,
52 #define ARM_PROCESSOR_FAMILY(ENUM) ENUM,
53 #include "llvm/TargetParser/ARMTargetParserDef.inc"
54 #undef ARM_PROCESSOR_FAMILY
55   };
56   enum ARMProcClassEnum {
57     None,
58 
59     AClass,
60     MClass,
61     RClass
62   };
63   enum ARMArchEnum {
64 #define ARM_ARCHITECTURE(ENUM) ENUM,
65 #include "llvm/TargetParser/ARMTargetParserDef.inc"
66 #undef ARM_ARCHITECTURE
67   };
68 
69 public:
70   /// What kind of timing do load multiple/store multiple instructions have.
71   enum ARMLdStMultipleTiming {
72     /// Can load/store 2 registers/cycle.
73     DoubleIssue,
74     /// Can load/store 2 registers/cycle, but needs an extra cycle if the access
75     /// is not 64-bit aligned.
76     DoubleIssueCheckUnalignedAccess,
77     /// Can load/store 1 register/cycle.
78     SingleIssue,
79     /// Can load/store 1 register/cycle, but needs an extra cycle for address
80     /// computation and potentially also for register writeback.
81     SingleIssuePlusExtras,
82   };
83 
84 protected:
85 // Bool members corresponding to the SubtargetFeatures defined in tablegen
86 #define GET_SUBTARGETINFO_MACRO(ATTRIBUTE, DEFAULT, GETTER)                    \
87   bool ATTRIBUTE = DEFAULT;
88 #include "ARMGenSubtargetInfo.inc"
89 
90   /// ARMProcFamily - ARM processor family: Cortex-A8, Cortex-A9, and others.
91   ARMProcFamilyEnum ARMProcFamily = Others;
92 
93   /// ARMProcClass - ARM processor class: None, AClass, RClass or MClass.
94   ARMProcClassEnum ARMProcClass = None;
95 
96   /// ARMArch - ARM architecture
97   ARMArchEnum ARMArch = ARMv4t;
98 
99   /// UseMulOps - True if non-microcoded fused integer multiply-add and
100   /// multiply-subtract instructions should be used.
101   bool UseMulOps = false;
102 
103   /// SupportsTailCall - True if the OS supports tail call. The dynamic linker
104   /// must be able to synthesize call stubs for interworking between ARM and
105   /// Thumb.
106   bool SupportsTailCall = false;
107 
108   /// RestrictIT - If true, the subtarget disallows generation of complex IT
109   ///  blocks.
110   bool RestrictIT = false;
111 
112   /// UseSjLjEH - If true, the target uses SjLj exception handling (e.g. iOS).
113   bool UseSjLjEH = false;
114 
115   /// stackAlignment - The minimum alignment known to hold of the stack frame on
116   /// entry to the function and which must be maintained by every function.
117   Align stackAlignment = Align(4);
118 
119   /// CPUString - String name of used CPU.
120   std::string CPUString;
121 
122   unsigned MaxInterleaveFactor = 1;
123 
124   /// Clearance before partial register updates (in number of instructions)
125   unsigned PartialUpdateClearance = 0;
126 
127   /// What kind of timing do load multiple/store multiple have (double issue,
128   /// single issue etc).
129   ARMLdStMultipleTiming LdStMultipleTiming = SingleIssue;
130 
131   /// The adjustment that we need to apply to get the operand latency from the
132   /// operand cycle returned by the itinerary data for pre-ISel operands.
133   int PreISelOperandLatencyAdjustment = 2;
134 
135   /// What alignment is preferred for loop bodies and functions, in log2(bytes).
136   unsigned PrefLoopLogAlignment = 0;
137 
138   /// The cost factor for MVE instructions, representing the multiple beats an
139   // instruction can take. The default is 2, (set in initSubtargetFeatures so
140   // that we can use subtarget features less than 2).
141   unsigned MVEVectorCostFactor = 0;
142 
143   /// OptMinSize - True if we're optimising for minimum code size, equal to
144   /// the function attribute.
145   bool OptMinSize = false;
146 
147   /// IsLittle - The target is Little Endian
148   bool IsLittle;
149 
150   /// TargetTriple - What processor and OS we're targeting.
151   Triple TargetTriple;
152 
153   /// SchedModel - Processor specific instruction costs.
154   MCSchedModel SchedModel;
155 
156   /// Selected instruction itineraries (one entry per itinerary class.)
157   InstrItineraryData InstrItins;
158 
159   /// Options passed via command line that could influence the target
160   const TargetOptions &Options;
161 
162   const ARMBaseTargetMachine &TM;
163 
164 public:
165   /// This constructor initializes the data members to match that
166   /// of the specified triple.
167   ///
168   ARMSubtarget(const Triple &TT, const std::string &CPU, const std::string &FS,
169                const ARMBaseTargetMachine &TM, bool IsLittle,
170                bool MinSize = false);
171 
172   /// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size
173   /// that still makes it profitable to inline the call.
174   unsigned getMaxInlineSizeThreshold() const {
175     return 64;
176   }
177 
178   /// getMaxMemcpyTPInlineSizeThreshold - Returns the maximum size
179   /// that still makes it profitable to inline a llvm.memcpy as a Tail
180   /// Predicated loop.
181   /// This threshold should only be used for constant size inputs.
182   unsigned getMaxMemcpyTPInlineSizeThreshold() const { return 128; }
183 
184   /// ParseSubtargetFeatures - Parses features string setting specified
185   /// subtarget options.  Definition of function is auto generated by tblgen.
186   void ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS);
187 
188   /// initializeSubtargetDependencies - Initializes using a CPU and feature string
189   /// so that we can use initializer lists for subtarget initialization.
190   ARMSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
191 
192   const ARMSelectionDAGInfo *getSelectionDAGInfo() const override {
193     return &TSInfo;
194   }
195 
196   const ARMBaseInstrInfo *getInstrInfo() const override {
197     return InstrInfo.get();
198   }
199 
200   const ARMTargetLowering *getTargetLowering() const override {
201     return &TLInfo;
202   }
203 
204   const ARMFrameLowering *getFrameLowering() const override {
205     return FrameLowering.get();
206   }
207 
208   const ARMBaseRegisterInfo *getRegisterInfo() const override {
209     return &InstrInfo->getRegisterInfo();
210   }
211 
212   /// The correct instructions have been implemented to initialize undef
213   /// registers, therefore the ARM Architecture is supported by the Init Undef
214   /// Pass. This will return true as the pass needs to be supported for all
215   /// types of instructions. The pass will then perform more checks to ensure it
216   /// should be applying the Pseudo Instructions.
217   bool supportsInitUndef() const override { return true; }
218 
219   const CallLowering *getCallLowering() const override;
220   InstructionSelector *getInstructionSelector() const override;
221   const LegalizerInfo *getLegalizerInfo() const override;
222   const RegisterBankInfo *getRegBankInfo() const override;
223 
224 private:
225   ARMSelectionDAGInfo TSInfo;
226   // Either Thumb1FrameLowering or ARMFrameLowering.
227   std::unique_ptr<ARMFrameLowering> FrameLowering;
228   // Either Thumb1InstrInfo or Thumb2InstrInfo.
229   std::unique_ptr<ARMBaseInstrInfo> InstrInfo;
230   ARMTargetLowering   TLInfo;
231 
232   /// GlobalISel related APIs.
233   std::unique_ptr<CallLowering> CallLoweringInfo;
234   std::unique_ptr<InstructionSelector> InstSelector;
235   std::unique_ptr<LegalizerInfo> Legalizer;
236   std::unique_ptr<RegisterBankInfo> RegBankInfo;
237 
238   void initializeEnvironment();
239   void initSubtargetFeatures(StringRef CPU, StringRef FS);
240   ARMFrameLowering *initializeFrameLowering(StringRef CPU, StringRef FS);
241 
242   std::bitset<8> CoprocCDE = {};
243 public:
244 // Getters for SubtargetFeatures defined in tablegen
245 #define GET_SUBTARGETINFO_MACRO(ATTRIBUTE, DEFAULT, GETTER)                    \
246   bool GETTER() const { return ATTRIBUTE; }
247 #include "ARMGenSubtargetInfo.inc"
248 
249   /// @{
250   /// These functions are obsolete, please consider adding subtarget features
251   /// or properties instead of calling them.
252   bool isCortexA5() const { return ARMProcFamily == CortexA5; }
253   bool isCortexA7() const { return ARMProcFamily == CortexA7; }
254   bool isCortexA8() const { return ARMProcFamily == CortexA8; }
255   bool isCortexA9() const { return ARMProcFamily == CortexA9; }
256   bool isCortexA15() const { return ARMProcFamily == CortexA15; }
257   bool isSwift()    const { return ARMProcFamily == Swift; }
258   bool isCortexM3() const { return ARMProcFamily == CortexM3; }
259   bool isCortexM7() const { return ARMProcFamily == CortexM7; }
260   bool isLikeA9() const { return isCortexA9() || isCortexA15() || isKrait(); }
261   bool isCortexR5() const { return ARMProcFamily == CortexR5; }
262   bool isKrait() const { return ARMProcFamily == Krait; }
263   /// @}
264 
265   bool hasARMOps() const { return !NoARM; }
266 
267   bool useNEONForSinglePrecisionFP() const {
268     return hasNEON() && hasNEONForFP();
269   }
270 
271   bool hasVFP2Base() const { return hasVFPv2SP(); }
272   bool hasVFP3Base() const { return hasVFPv3D16SP(); }
273   bool hasVFP4Base() const { return hasVFPv4D16SP(); }
274   bool hasFPARMv8Base() const { return hasFPARMv8D16SP(); }
275 
276   bool hasAnyDataBarrier() const {
277     return HasDataBarrier || (hasV6Ops() && !isThumb());
278   }
279 
280   bool useMulOps() const { return UseMulOps; }
281   bool useFPVMLx() const { return !SlowFPVMLx; }
282   bool useFPVFMx() const {
283     return !isTargetDarwin() && hasVFP4Base() && !SlowFPVFMx;
284   }
285   bool useFPVFMx16() const { return useFPVFMx() && hasFullFP16(); }
286   bool useFPVFMx64() const { return useFPVFMx() && hasFP64(); }
287   bool useSjLjEH() const { return UseSjLjEH; }
288   bool hasBaseDSP() const {
289     if (isThumb())
290       return hasThumb2() && hasDSP();
291     else
292       return hasV5TEOps();
293   }
294 
295   /// Return true if the CPU supports any kind of instruction fusion.
296   bool hasFusion() const { return hasFuseAES() || hasFuseLiterals(); }
297 
298   const Triple &getTargetTriple() const { return TargetTriple; }
299 
300   bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
301   bool isTargetIOS() const { return TargetTriple.isiOS(); }
302   bool isTargetWatchOS() const { return TargetTriple.isWatchOS(); }
303   bool isTargetWatchABI() const { return TargetTriple.isWatchABI(); }
304   bool isTargetDriverKit() const { return TargetTriple.isDriverKit(); }
305   bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
306   bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
307   bool isTargetNetBSD() const { return TargetTriple.isOSNetBSD(); }
308   bool isTargetWindows() const { return TargetTriple.isOSWindows(); }
309 
310   bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
311   bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
312   bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
313 
314   // ARM EABI is the bare-metal EABI described in ARM ABI documents and
315   // can be accessed via -target arm-none-eabi. This is NOT GNUEABI.
316   // FIXME: Add a flag for bare-metal for that target and set Triple::EABI
317   // even for GNUEABI, so we can make a distinction here and still conform to
318   // the EABI on GNU (and Android) mode. This requires change in Clang, too.
319   // FIXME: The Darwin exception is temporary, while we move users to
320   // "*-*-*-macho" triples as quickly as possible.
321   bool isTargetAEABI() const {
322     return (TargetTriple.getEnvironment() == Triple::EABI ||
323             TargetTriple.getEnvironment() == Triple::EABIHF) &&
324            !isTargetDarwin() && !isTargetWindows();
325   }
326   bool isTargetGNUAEABI() const {
327     return (TargetTriple.getEnvironment() == Triple::GNUEABI ||
328             TargetTriple.getEnvironment() == Triple::GNUEABIHF) &&
329            !isTargetDarwin() && !isTargetWindows();
330   }
331   bool isTargetMuslAEABI() const {
332     return (TargetTriple.getEnvironment() == Triple::MuslEABI ||
333             TargetTriple.getEnvironment() == Triple::MuslEABIHF ||
334             TargetTriple.getEnvironment() == Triple::OpenHOS) &&
335            !isTargetDarwin() && !isTargetWindows();
336   }
337 
338   // ARM Targets that support EHABI exception handling standard
339   // Darwin uses SjLj. Other targets might need more checks.
340   bool isTargetEHABICompatible() const {
341     return TargetTriple.isTargetEHABICompatible();
342   }
343 
344   bool isTargetHardFloat() const;
345 
346   bool isReadTPSoft() const {
347     return !(isReadTPTPIDRURW() || isReadTPTPIDRURO() || isReadTPTPIDRPRW());
348   }
349 
350   bool isTargetAndroid() const { return TargetTriple.isAndroid(); }
351 
352   bool isXRaySupported() const override;
353 
354   bool isAPCS_ABI() const;
355   bool isAAPCS_ABI() const;
356   bool isAAPCS16_ABI() const;
357 
358   bool isROPI() const;
359   bool isRWPI() const;
360 
361   bool useMachineScheduler() const { return UseMISched; }
362   bool useMachinePipeliner() const { return UseMIPipeliner; }
363   bool hasMinSize() const { return OptMinSize; }
364   bool isThumb1Only() const { return isThumb() && !hasThumb2(); }
365   bool isThumb2() const { return isThumb() && hasThumb2(); }
366   bool isMClass() const { return ARMProcClass == MClass; }
367   bool isRClass() const { return ARMProcClass == RClass; }
368   bool isAClass() const { return ARMProcClass == AClass; }
369 
370   bool isR9Reserved() const {
371     return isTargetMachO() ? (ReserveR9 || !HasV6Ops) : ReserveR9;
372   }
373 
374   MCPhysReg getFramePointerReg() const {
375     if (isTargetDarwin() ||
376         (!isTargetWindows() && isThumb() && !createAAPCSFrameChain()))
377       return ARM::R7;
378     return ARM::R11;
379   }
380 
381   /// Returns true if the frame setup is split into two separate pushes (first
382   /// r0-r7,lr then r8-r11), principally so that the frame pointer is adjacent
383   /// to lr. This is always required on Thumb1-only targets, as the push and
384   /// pop instructions can't access the high registers.
385   bool splitFramePushPop(const MachineFunction &MF) const {
386     if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress())
387       return true;
388     return (getFramePointerReg() == ARM::R7 &&
389             MF.getTarget().Options.DisableFramePointerElim(MF)) ||
390            isThumb1Only();
391   }
392 
393   bool splitFramePointerPush(const MachineFunction &MF) const;
394 
395   bool useStride4VFPs() const;
396 
397   bool useMovt() const;
398 
399   bool supportsTailCall() const { return SupportsTailCall; }
400 
401   bool allowsUnalignedMem() const { return !StrictAlign; }
402 
403   bool restrictIT() const { return RestrictIT; }
404 
405   const std::string & getCPUString() const { return CPUString; }
406 
407   bool isLittle() const { return IsLittle; }
408 
409   unsigned getMispredictionPenalty() const;
410 
411   /// Returns true if machine scheduler should be enabled.
412   bool enableMachineScheduler() const override;
413 
414   /// Returns true if machine pipeliner should be enabled.
415   bool enableMachinePipeliner() const override;
416   bool useDFAforSMS() const override;
417 
418   /// True for some subtargets at > -O0.
419   bool enablePostRAScheduler() const override;
420 
421   /// True for some subtargets at > -O0.
422   bool enablePostRAMachineScheduler() const override;
423 
424   /// Check whether this subtarget wants to use subregister liveness.
425   bool enableSubRegLiveness() const override;
426 
427   /// Enable use of alias analysis during code generation (during MI
428   /// scheduling, DAGCombine, etc.).
429   bool useAA() const override { return true; }
430 
431   /// getInstrItins - Return the instruction itineraries based on subtarget
432   /// selection.
433   const InstrItineraryData *getInstrItineraryData() const override {
434     return &InstrItins;
435   }
436 
437   /// getStackAlignment - Returns the minimum alignment known to hold of the
438   /// stack frame on entry to the function and which must be maintained by every
439   /// function for this subtarget.
440   Align getStackAlignment() const { return stackAlignment; }
441 
442   // Returns the required alignment for LDRD/STRD instructions
443   Align getDualLoadStoreAlignment() const {
444     return Align(hasV7Ops() || allowsUnalignedMem() ? 4 : 8);
445   }
446 
447   unsigned getMaxInterleaveFactor() const { return MaxInterleaveFactor; }
448 
449   unsigned getPartialUpdateClearance() const { return PartialUpdateClearance; }
450 
451   ARMLdStMultipleTiming getLdStMultipleTiming() const {
452     return LdStMultipleTiming;
453   }
454 
455   int getPreISelOperandLatencyAdjustment() const {
456     return PreISelOperandLatencyAdjustment;
457   }
458 
459   /// True if the GV will be accessed via an indirect symbol.
460   bool isGVIndirectSymbol(const GlobalValue *GV) const;
461 
462   /// Returns the constant pool modifier needed to access the GV.
463   bool isGVInGOT(const GlobalValue *GV) const;
464 
465   /// True if fast-isel is used.
466   bool useFastISel() const;
467 
468   /// Returns the correct return opcode for the current feature set.
469   /// Use BX if available to allow mixing thumb/arm code, but fall back
470   /// to plain mov pc,lr on ARMv4.
471   unsigned getReturnOpcode() const {
472     if (isThumb())
473       return ARM::tBX_RET;
474     if (hasV4TOps())
475       return ARM::BX_RET;
476     return ARM::MOVPCLR;
477   }
478 
479   /// Allow movt+movw for PIC global address calculation.
480   /// ELF does not have GOT relocations for movt+movw.
481   /// ROPI does not use GOT.
482   bool allowPositionIndependentMovt() const {
483     return isROPI() || !isTargetELF();
484   }
485 
486   unsigned getPrefLoopLogAlignment() const { return PrefLoopLogAlignment; }
487 
488   unsigned
489   getMVEVectorCostFactor(TargetTransformInfo::TargetCostKind CostKind) const {
490     if (CostKind == TargetTransformInfo::TCK_CodeSize)
491       return 1;
492     return MVEVectorCostFactor;
493   }
494 
495   bool ignoreCSRForAllocationOrder(const MachineFunction &MF,
496                                    unsigned PhysReg) const override;
497   unsigned getGPRAllocationOrder(const MachineFunction &MF) const;
498 };
499 
500 } // end namespace llvm
501 
502 #endif  // LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
503