xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMSubtarget.cpp (revision b3e7694832e81d7a904a10f525f8797b753bf0d3)
1 //===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ARM specific subclass of TargetSubtargetInfo.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARM.h"
14 
15 #include "ARMCallLowering.h"
16 #include "ARMLegalizerInfo.h"
17 #include "ARMRegisterBankInfo.h"
18 #include "ARMFrameLowering.h"
19 #include "ARMInstrInfo.h"
20 #include "ARMSubtarget.h"
21 #include "ARMTargetMachine.h"
22 #include "MCTargetDesc/ARMMCTargetDesc.h"
23 #include "Thumb1FrameLowering.h"
24 #include "Thumb1InstrInfo.h"
25 #include "Thumb2InstrInfo.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GlobalValue.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCTargetOptions.h"
36 #include "llvm/Support/CodeGen.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/ARMTargetParser.h"
39 #include "llvm/Support/TargetParser.h"
40 #include "llvm/Target/TargetOptions.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "arm-subtarget"
45 
46 #define GET_SUBTARGETINFO_TARGET_DESC
47 #define GET_SUBTARGETINFO_CTOR
48 #include "ARMGenSubtargetInfo.inc"
49 
50 static cl::opt<bool>
51 UseFusedMulOps("arm-use-mulops",
52                cl::init(true), cl::Hidden);
53 
54 enum ITMode {
55   DefaultIT,
56   RestrictedIT
57 };
58 
59 static cl::opt<ITMode>
60     IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT),
61        cl::values(clEnumValN(DefaultIT, "arm-default-it",
62                              "Generate any type of IT block"),
63                   clEnumValN(RestrictedIT, "arm-restrict-it",
64                              "Disallow complex IT blocks")));
65 
66 /// ForceFastISel - Use the fast-isel, even for subtargets where it is not
67 /// currently supported (for testing only).
68 static cl::opt<bool>
69 ForceFastISel("arm-force-fast-isel",
70                cl::init(false), cl::Hidden);
71 
72 static cl::opt<bool> EnableSubRegLiveness("arm-enable-subreg-liveness",
73                                           cl::init(false), cl::Hidden);
74 
75 /// initializeSubtargetDependencies - Initializes using a CPU and feature string
76 /// so that we can use initializer lists for subtarget initialization.
77 ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU,
78                                                             StringRef FS) {
79   initializeEnvironment();
80   initSubtargetFeatures(CPU, FS);
81   return *this;
82 }
83 
84 ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU,
85                                                         StringRef FS) {
86   ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS);
87   if (STI.isThumb1Only())
88     return (ARMFrameLowering *)new Thumb1FrameLowering(STI);
89 
90   return new ARMFrameLowering(STI);
91 }
92 
93 ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU,
94                            const std::string &FS,
95                            const ARMBaseTargetMachine &TM, bool IsLittle,
96                            bool MinSize)
97     : ARMGenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS),
98       UseMulOps(UseFusedMulOps), CPUString(CPU), OptMinSize(MinSize),
99       IsLittle(IsLittle), TargetTriple(TT), Options(TM.Options), TM(TM),
100       FrameLowering(initializeFrameLowering(CPU, FS)),
101       // At this point initializeSubtargetDependencies has been called so
102       // we can query directly.
103       InstrInfo(isThumb1Only()
104                     ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this)
105                     : !isThumb()
106                           ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this)
107                           : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)),
108       TLInfo(TM, *this) {
109 
110   CallLoweringInfo.reset(new ARMCallLowering(*getTargetLowering()));
111   Legalizer.reset(new ARMLegalizerInfo(*this));
112 
113   auto *RBI = new ARMRegisterBankInfo(*getRegisterInfo());
114 
115   // FIXME: At this point, we can't rely on Subtarget having RBI.
116   // It's awkward to mix passing RBI and the Subtarget; should we pass
117   // TII/TRI as well?
118   InstSelector.reset(createARMInstructionSelector(
119       *static_cast<const ARMBaseTargetMachine *>(&TM), *this, *RBI));
120 
121   RegBankInfo.reset(RBI);
122 }
123 
124 const CallLowering *ARMSubtarget::getCallLowering() const {
125   return CallLoweringInfo.get();
126 }
127 
128 InstructionSelector *ARMSubtarget::getInstructionSelector() const {
129   return InstSelector.get();
130 }
131 
132 const LegalizerInfo *ARMSubtarget::getLegalizerInfo() const {
133   return Legalizer.get();
134 }
135 
136 const RegisterBankInfo *ARMSubtarget::getRegBankInfo() const {
137   return RegBankInfo.get();
138 }
139 
140 bool ARMSubtarget::isXRaySupported() const {
141   // We don't currently suppport Thumb, but Windows requires Thumb.
142   return hasV6Ops() && hasARMOps() && !isTargetWindows();
143 }
144 
145 void ARMSubtarget::initializeEnvironment() {
146   // MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this
147   // directly from it, but we can try to make sure they're consistent when both
148   // available.
149   UseSjLjEH = (isTargetDarwin() && !isTargetWatchABI() &&
150                Options.ExceptionModel == ExceptionHandling::None) ||
151               Options.ExceptionModel == ExceptionHandling::SjLj;
152   assert((!TM.getMCAsmInfo() ||
153           (TM.getMCAsmInfo()->getExceptionHandlingType() ==
154            ExceptionHandling::SjLj) == UseSjLjEH) &&
155          "inconsistent sjlj choice between CodeGen and MC");
156 }
157 
158 void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
159   if (CPUString.empty()) {
160     CPUString = "generic";
161 
162     if (isTargetDarwin()) {
163       StringRef ArchName = TargetTriple.getArchName();
164       ARM::ArchKind AK = ARM::parseArch(ArchName);
165       if (AK == ARM::ArchKind::ARMV7S)
166         // Default to the Swift CPU when targeting armv7s/thumbv7s.
167         CPUString = "swift";
168       else if (AK == ARM::ArchKind::ARMV7K)
169         // Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k.
170         // ARMv7k does not use SjLj exception handling.
171         CPUString = "cortex-a7";
172     }
173   }
174 
175   // Insert the architecture feature derived from the target triple into the
176   // feature string. This is important for setting features that are implied
177   // based on the architecture version.
178   std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString);
179   if (!FS.empty()) {
180     if (!ArchFS.empty())
181       ArchFS = (Twine(ArchFS) + "," + FS).str();
182     else
183       ArchFS = std::string(FS);
184   }
185   ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, ArchFS);
186 
187   // FIXME: This used enable V6T2 support implicitly for Thumb2 mode.
188   // Assert this for now to make the change obvious.
189   assert(hasV6T2Ops() || !hasThumb2());
190 
191   // Execute only support requires movt support
192   if (genExecuteOnly()) {
193     NoMovt = false;
194     assert(hasV8MBaselineOps() && "Cannot generate execute-only code for this target");
195   }
196 
197   // Keep a pointer to static instruction cost data for the specified CPU.
198   SchedModel = getSchedModelForCPU(CPUString);
199 
200   // Initialize scheduling itinerary for the specified CPU.
201   InstrItins = getInstrItineraryForCPU(CPUString);
202 
203   // FIXME: this is invalid for WindowsCE
204   if (isTargetWindows())
205     NoARM = true;
206 
207   if (isAAPCS_ABI())
208     stackAlignment = Align(8);
209   if (isTargetNaCl() || isAAPCS16_ABI())
210     stackAlignment = Align(16);
211 
212   // FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo::
213   // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
214   // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
215   // support in the assembler and linker to be used. This would need to be
216   // fixed to fully support tail calls in Thumb1.
217   //
218   // For ARMv8-M, we /do/ implement tail calls.  Doing this is tricky for v8-M
219   // baseline, since the LDM/POP instruction on Thumb doesn't take LR.  This
220   // means if we need to reload LR, it takes extra instructions, which outweighs
221   // the value of the tail call; but here we don't know yet whether LR is going
222   // to be used. We take the optimistic approach of generating the tail call and
223   // perhaps taking a hit if we need to restore the LR.
224 
225   // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
226   // but we need to make sure there are enough registers; the only valid
227   // registers are the 4 used for parameters.  We don't currently do this
228   // case.
229 
230   SupportsTailCall = !isThumb1Only() || hasV8MBaselineOps();
231 
232   if (isTargetMachO() && isTargetIOS() && getTargetTriple().isOSVersionLT(5, 0))
233     SupportsTailCall = false;
234 
235   switch (IT) {
236   case DefaultIT:
237     RestrictIT = false;
238     break;
239   case RestrictedIT:
240     RestrictIT = true;
241     break;
242   }
243 
244   // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default.
245   const FeatureBitset &Bits = getFeatureBits();
246   if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters
247       (Options.UnsafeFPMath || isTargetDarwin()))
248     HasNEONForFP = true;
249 
250   if (isRWPI())
251     ReserveR9 = true;
252 
253   // If MVEVectorCostFactor is still 0 (has not been set to anything else), default it to 2
254   if (MVEVectorCostFactor == 0)
255     MVEVectorCostFactor = 2;
256 
257   // FIXME: Teach TableGen to deal with these instead of doing it manually here.
258   switch (ARMProcFamily) {
259   case Others:
260   case CortexA5:
261     break;
262   case CortexA7:
263     LdStMultipleTiming = DoubleIssue;
264     break;
265   case CortexA8:
266     LdStMultipleTiming = DoubleIssue;
267     break;
268   case CortexA9:
269     LdStMultipleTiming = DoubleIssueCheckUnalignedAccess;
270     PreISelOperandLatencyAdjustment = 1;
271     break;
272   case CortexA12:
273     break;
274   case CortexA15:
275     MaxInterleaveFactor = 2;
276     PreISelOperandLatencyAdjustment = 1;
277     PartialUpdateClearance = 12;
278     break;
279   case CortexA17:
280   case CortexA32:
281   case CortexA35:
282   case CortexA53:
283   case CortexA55:
284   case CortexA57:
285   case CortexA72:
286   case CortexA73:
287   case CortexA75:
288   case CortexA76:
289   case CortexA77:
290   case CortexA78:
291   case CortexA78C:
292   case CortexA710:
293   case CortexR4:
294   case CortexR4F:
295   case CortexR5:
296   case CortexR7:
297   case CortexM3:
298   case CortexM7:
299   case CortexR52:
300   case CortexX1:
301   case CortexX1C:
302     break;
303   case Exynos:
304     LdStMultipleTiming = SingleIssuePlusExtras;
305     MaxInterleaveFactor = 4;
306     if (!isThumb())
307       PrefLoopLogAlignment = 3;
308     break;
309   case Kryo:
310     break;
311   case Krait:
312     PreISelOperandLatencyAdjustment = 1;
313     break;
314   case NeoverseN1:
315   case NeoverseN2:
316   case NeoverseV1:
317     break;
318   case Swift:
319     MaxInterleaveFactor = 2;
320     LdStMultipleTiming = SingleIssuePlusExtras;
321     PreISelOperandLatencyAdjustment = 1;
322     PartialUpdateClearance = 12;
323     break;
324   }
325 }
326 
327 bool ARMSubtarget::isTargetHardFloat() const { return TM.isTargetHardFloat(); }
328 
329 bool ARMSubtarget::isAPCS_ABI() const {
330   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
331   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS;
332 }
333 bool ARMSubtarget::isAAPCS_ABI() const {
334   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
335   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS ||
336          TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
337 }
338 bool ARMSubtarget::isAAPCS16_ABI() const {
339   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
340   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
341 }
342 
343 bool ARMSubtarget::isROPI() const {
344   return TM.getRelocationModel() == Reloc::ROPI ||
345          TM.getRelocationModel() == Reloc::ROPI_RWPI;
346 }
347 bool ARMSubtarget::isRWPI() const {
348   return TM.getRelocationModel() == Reloc::RWPI ||
349          TM.getRelocationModel() == Reloc::ROPI_RWPI;
350 }
351 
352 bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const {
353   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
354     return true;
355 
356   // 32 bit macho has no relocation for a-b if a is undefined, even if b is in
357   // the section that is being relocated. This means we have to use o load even
358   // for GVs that are known to be local to the dso.
359   if (isTargetMachO() && TM.isPositionIndependent() &&
360       (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
361     return true;
362 
363   return false;
364 }
365 
366 bool ARMSubtarget::isGVInGOT(const GlobalValue *GV) const {
367   return isTargetELF() && TM.isPositionIndependent() &&
368          !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
369 }
370 
371 unsigned ARMSubtarget::getMispredictionPenalty() const {
372   return SchedModel.MispredictPenalty;
373 }
374 
375 bool ARMSubtarget::enableMachineScheduler() const {
376   // The MachineScheduler can increase register usage, so we use more high
377   // registers and end up with more T2 instructions that cannot be converted to
378   // T1 instructions. At least until we do better at converting to thumb1
379   // instructions, on cortex-m at Oz where we are size-paranoid, don't use the
380   // Machine scheduler, relying on the DAG register pressure scheduler instead.
381   if (isMClass() && hasMinSize())
382     return false;
383   // Enable the MachineScheduler before register allocation for subtargets
384   // with the use-misched feature.
385   return useMachineScheduler();
386 }
387 
388 bool ARMSubtarget::enableSubRegLiveness() const {
389   if (EnableSubRegLiveness.getNumOccurrences())
390     return EnableSubRegLiveness;
391   // Enable SubRegLiveness for MVE to better optimize s subregs for mqpr regs
392   // and q subregs for qqqqpr regs.
393   return hasMVEIntegerOps();
394 }
395 
396 bool ARMSubtarget::enableMachinePipeliner() const {
397   // Enable the MachinePipeliner before register allocation for subtargets
398   // with the use-mipipeliner feature.
399   return getSchedModel().hasInstrSchedModel() && useMachinePipeliner();
400 }
401 
402 bool ARMSubtarget::useDFAforSMS() const { return false; }
403 
404 // This overrides the PostRAScheduler bit in the SchedModel for any CPU.
405 bool ARMSubtarget::enablePostRAScheduler() const {
406   if (enableMachineScheduler())
407     return false;
408   if (disablePostRAScheduler())
409     return false;
410   // Thumb1 cores will generally not benefit from post-ra scheduling
411   return !isThumb1Only();
412 }
413 
414 bool ARMSubtarget::enablePostRAMachineScheduler() const {
415   if (!enableMachineScheduler())
416     return false;
417   if (disablePostRAScheduler())
418     return false;
419   return !isThumb1Only();
420 }
421 
422 bool ARMSubtarget::useStride4VFPs() const {
423   // For general targets, the prologue can grow when VFPs are allocated with
424   // stride 4 (more vpush instructions). But WatchOS uses a compact unwind
425   // format which it's more important to get right.
426   return isTargetWatchABI() ||
427          (useWideStrideVFP() && !OptMinSize);
428 }
429 
430 bool ARMSubtarget::useMovt() const {
431   // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit
432   // immediates as it is inherently position independent, and may be out of
433   // range otherwise.
434   return !NoMovt && hasV8MBaselineOps() &&
435          (isTargetWindows() || !OptMinSize || genExecuteOnly());
436 }
437 
438 bool ARMSubtarget::useFastISel() const {
439   // Enable fast-isel for any target, for testing only.
440   if (ForceFastISel)
441     return true;
442 
443   // Limit fast-isel to the targets that are or have been tested.
444   if (!hasV6Ops())
445     return false;
446 
447   // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
448   return TM.Options.EnableFastISel &&
449          ((isTargetMachO() && !isThumb1Only()) ||
450           (isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb()));
451 }
452 
453 unsigned ARMSubtarget::getGPRAllocationOrder(const MachineFunction &MF) const {
454   // The GPR register class has multiple possible allocation orders, with
455   // tradeoffs preferred by different sub-architectures and optimisation goals.
456   // The allocation orders are:
457   // 0: (the default tablegen order, not used)
458   // 1: r14, r0-r13
459   // 2: r0-r7
460   // 3: r0-r7, r12, lr, r8-r11
461   // Note that the register allocator will change this order so that
462   // callee-saved registers are used later, as they require extra work in the
463   // prologue/epilogue (though we sometimes override that).
464 
465   // For thumb1-only targets, only the low registers are allocatable.
466   if (isThumb1Only())
467     return 2;
468 
469   // Allocate low registers first, so we can select more 16-bit instructions.
470   // We also (in ignoreCSRForAllocationOrder) override  the default behaviour
471   // with regards to callee-saved registers, because pushing extra registers is
472   // much cheaper (in terms of code size) than using high registers. After
473   // that, we allocate r12 (doesn't need to be saved), lr (saving it means we
474   // can return with the pop, don't need an extra "bx lr") and then the rest of
475   // the high registers.
476   if (isThumb2() && MF.getFunction().hasMinSize())
477     return 3;
478 
479   // Otherwise, allocate in the default order, using LR first because saving it
480   // allows a shorter epilogue sequence.
481   return 1;
482 }
483 
484 bool ARMSubtarget::ignoreCSRForAllocationOrder(const MachineFunction &MF,
485                                                unsigned PhysReg) const {
486   // To minimize code size in Thumb2, we prefer the usage of low regs (lower
487   // cost per use) so we can  use narrow encoding. By default, caller-saved
488   // registers (e.g. lr, r12) are always  allocated first, regardless of
489   // their cost per use. When optForMinSize, we prefer the low regs even if
490   // they are CSR because usually push/pop can be folded into existing ones.
491   return isThumb2() && MF.getFunction().hasMinSize() &&
492          ARM::GPRRegClass.contains(PhysReg);
493 }
494 
495 bool ARMSubtarget::splitFramePointerPush(const MachineFunction &MF) const {
496   const Function &F = MF.getFunction();
497   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI() ||
498       !F.needsUnwindTableEntry())
499     return false;
500   const MachineFrameInfo &MFI = MF.getFrameInfo();
501   return MFI.hasVarSizedObjects() || getRegisterInfo()->hasStackRealignment(MF);
502 }
503