1 //===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the ARM specific subclass of TargetSubtargetInfo. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ARM.h" 14 15 #include "ARMCallLowering.h" 16 #include "ARMLegalizerInfo.h" 17 #include "ARMRegisterBankInfo.h" 18 #include "ARMFrameLowering.h" 19 #include "ARMInstrInfo.h" 20 #include "ARMSubtarget.h" 21 #include "ARMTargetMachine.h" 22 #include "MCTargetDesc/ARMMCTargetDesc.h" 23 #include "Thumb1FrameLowering.h" 24 #include "Thumb1InstrInfo.h" 25 #include "Thumb2InstrInfo.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/MC/MCAsmInfo.h" 35 #include "llvm/MC/MCTargetOptions.h" 36 #include "llvm/Support/CodeGen.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/ARMTargetParser.h" 39 #include "llvm/Support/TargetParser.h" 40 #include "llvm/Target/TargetOptions.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "arm-subtarget" 45 46 #define GET_SUBTARGETINFO_TARGET_DESC 47 #define GET_SUBTARGETINFO_CTOR 48 #include "ARMGenSubtargetInfo.inc" 49 50 static cl::opt<bool> 51 UseFusedMulOps("arm-use-mulops", 52 cl::init(true), cl::Hidden); 53 54 enum ITMode { 55 DefaultIT, 56 RestrictedIT 57 }; 58 59 static cl::opt<ITMode> 60 IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), 61 cl::values(clEnumValN(DefaultIT, "arm-default-it", 62 "Generate any type of IT block"), 63 clEnumValN(RestrictedIT, "arm-restrict-it", 64 "Disallow complex IT blocks"))); 65 66 /// ForceFastISel - Use the fast-isel, even for subtargets where it is not 67 /// currently supported (for testing only). 68 static cl::opt<bool> 69 ForceFastISel("arm-force-fast-isel", 70 cl::init(false), cl::Hidden); 71 72 static cl::opt<bool> EnableSubRegLiveness("arm-enable-subreg-liveness", 73 cl::init(false), cl::Hidden); 74 75 /// initializeSubtargetDependencies - Initializes using a CPU and feature string 76 /// so that we can use initializer lists for subtarget initialization. 77 ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU, 78 StringRef FS) { 79 initializeEnvironment(); 80 initSubtargetFeatures(CPU, FS); 81 return *this; 82 } 83 84 ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU, 85 StringRef FS) { 86 ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS); 87 if (STI.isThumb1Only()) 88 return (ARMFrameLowering *)new Thumb1FrameLowering(STI); 89 90 return new ARMFrameLowering(STI); 91 } 92 93 ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU, 94 const std::string &FS, 95 const ARMBaseTargetMachine &TM, bool IsLittle, 96 bool MinSize) 97 : ARMGenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS), 98 UseMulOps(UseFusedMulOps), CPUString(CPU), OptMinSize(MinSize), 99 IsLittle(IsLittle), TargetTriple(TT), Options(TM.Options), TM(TM), 100 FrameLowering(initializeFrameLowering(CPU, FS)), 101 // At this point initializeSubtargetDependencies has been called so 102 // we can query directly. 103 InstrInfo(isThumb1Only() 104 ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this) 105 : !isThumb() 106 ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this) 107 : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)), 108 TLInfo(TM, *this) { 109 110 CallLoweringInfo.reset(new ARMCallLowering(*getTargetLowering())); 111 Legalizer.reset(new ARMLegalizerInfo(*this)); 112 113 auto *RBI = new ARMRegisterBankInfo(*getRegisterInfo()); 114 115 // FIXME: At this point, we can't rely on Subtarget having RBI. 116 // It's awkward to mix passing RBI and the Subtarget; should we pass 117 // TII/TRI as well? 118 InstSelector.reset(createARMInstructionSelector( 119 *static_cast<const ARMBaseTargetMachine *>(&TM), *this, *RBI)); 120 121 RegBankInfo.reset(RBI); 122 } 123 124 const CallLowering *ARMSubtarget::getCallLowering() const { 125 return CallLoweringInfo.get(); 126 } 127 128 InstructionSelector *ARMSubtarget::getInstructionSelector() const { 129 return InstSelector.get(); 130 } 131 132 const LegalizerInfo *ARMSubtarget::getLegalizerInfo() const { 133 return Legalizer.get(); 134 } 135 136 const RegisterBankInfo *ARMSubtarget::getRegBankInfo() const { 137 return RegBankInfo.get(); 138 } 139 140 bool ARMSubtarget::isXRaySupported() const { 141 // We don't currently suppport Thumb, but Windows requires Thumb. 142 return hasV6Ops() && hasARMOps() && !isTargetWindows(); 143 } 144 145 void ARMSubtarget::initializeEnvironment() { 146 // MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this 147 // directly from it, but we can try to make sure they're consistent when both 148 // available. 149 UseSjLjEH = (isTargetDarwin() && !isTargetWatchABI() && 150 Options.ExceptionModel == ExceptionHandling::None) || 151 Options.ExceptionModel == ExceptionHandling::SjLj; 152 assert((!TM.getMCAsmInfo() || 153 (TM.getMCAsmInfo()->getExceptionHandlingType() == 154 ExceptionHandling::SjLj) == UseSjLjEH) && 155 "inconsistent sjlj choice between CodeGen and MC"); 156 } 157 158 void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) { 159 if (CPUString.empty()) { 160 CPUString = "generic"; 161 162 if (isTargetDarwin()) { 163 StringRef ArchName = TargetTriple.getArchName(); 164 ARM::ArchKind AK = ARM::parseArch(ArchName); 165 if (AK == ARM::ArchKind::ARMV7S) 166 // Default to the Swift CPU when targeting armv7s/thumbv7s. 167 CPUString = "swift"; 168 else if (AK == ARM::ArchKind::ARMV7K) 169 // Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k. 170 // ARMv7k does not use SjLj exception handling. 171 CPUString = "cortex-a7"; 172 } 173 } 174 175 // Insert the architecture feature derived from the target triple into the 176 // feature string. This is important for setting features that are implied 177 // based on the architecture version. 178 std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString); 179 if (!FS.empty()) { 180 if (!ArchFS.empty()) 181 ArchFS = (Twine(ArchFS) + "," + FS).str(); 182 else 183 ArchFS = std::string(FS); 184 } 185 ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, ArchFS); 186 187 // FIXME: This used enable V6T2 support implicitly for Thumb2 mode. 188 // Assert this for now to make the change obvious. 189 assert(hasV6T2Ops() || !hasThumb2()); 190 191 // Execute only support requires movt support 192 if (genExecuteOnly()) { 193 NoMovt = false; 194 assert(hasV8MBaselineOps() && "Cannot generate execute-only code for this target"); 195 } 196 197 // Keep a pointer to static instruction cost data for the specified CPU. 198 SchedModel = getSchedModelForCPU(CPUString); 199 200 // Initialize scheduling itinerary for the specified CPU. 201 InstrItins = getInstrItineraryForCPU(CPUString); 202 203 // FIXME: this is invalid for WindowsCE 204 if (isTargetWindows()) 205 NoARM = true; 206 207 if (isAAPCS_ABI()) 208 stackAlignment = Align(8); 209 if (isTargetNaCl() || isAAPCS16_ABI()) 210 stackAlignment = Align(16); 211 212 // FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo:: 213 // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as 214 // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation 215 // support in the assembler and linker to be used. This would need to be 216 // fixed to fully support tail calls in Thumb1. 217 // 218 // For ARMv8-M, we /do/ implement tail calls. Doing this is tricky for v8-M 219 // baseline, since the LDM/POP instruction on Thumb doesn't take LR. This 220 // means if we need to reload LR, it takes extra instructions, which outweighs 221 // the value of the tail call; but here we don't know yet whether LR is going 222 // to be used. We take the optimistic approach of generating the tail call and 223 // perhaps taking a hit if we need to restore the LR. 224 225 // Thumb1 PIC calls to external symbols use BX, so they can be tail calls, 226 // but we need to make sure there are enough registers; the only valid 227 // registers are the 4 used for parameters. We don't currently do this 228 // case. 229 230 SupportsTailCall = !isThumb1Only() || hasV8MBaselineOps(); 231 232 if (isTargetMachO() && isTargetIOS() && getTargetTriple().isOSVersionLT(5, 0)) 233 SupportsTailCall = false; 234 235 switch (IT) { 236 case DefaultIT: 237 RestrictIT = false; 238 break; 239 case RestrictedIT: 240 RestrictIT = true; 241 break; 242 } 243 244 // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default. 245 const FeatureBitset &Bits = getFeatureBits(); 246 if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters 247 (Options.UnsafeFPMath || isTargetDarwin())) 248 HasNEONForFP = true; 249 250 if (isRWPI()) 251 ReserveR9 = true; 252 253 // If MVEVectorCostFactor is still 0 (has not been set to anything else), default it to 2 254 if (MVEVectorCostFactor == 0) 255 MVEVectorCostFactor = 2; 256 257 // FIXME: Teach TableGen to deal with these instead of doing it manually here. 258 switch (ARMProcFamily) { 259 case Others: 260 case CortexA5: 261 break; 262 case CortexA7: 263 LdStMultipleTiming = DoubleIssue; 264 break; 265 case CortexA8: 266 LdStMultipleTiming = DoubleIssue; 267 break; 268 case CortexA9: 269 LdStMultipleTiming = DoubleIssueCheckUnalignedAccess; 270 PreISelOperandLatencyAdjustment = 1; 271 break; 272 case CortexA12: 273 break; 274 case CortexA15: 275 MaxInterleaveFactor = 2; 276 PreISelOperandLatencyAdjustment = 1; 277 PartialUpdateClearance = 12; 278 break; 279 case CortexA17: 280 case CortexA32: 281 case CortexA35: 282 case CortexA53: 283 case CortexA55: 284 case CortexA57: 285 case CortexA72: 286 case CortexA73: 287 case CortexA75: 288 case CortexA76: 289 case CortexA77: 290 case CortexA78: 291 case CortexA78C: 292 case CortexA710: 293 case CortexR4: 294 case CortexR4F: 295 case CortexR5: 296 case CortexR7: 297 case CortexM3: 298 case CortexM7: 299 case CortexR52: 300 case CortexX1: 301 case CortexX1C: 302 break; 303 case Exynos: 304 LdStMultipleTiming = SingleIssuePlusExtras; 305 MaxInterleaveFactor = 4; 306 if (!isThumb()) 307 PrefLoopLogAlignment = 3; 308 break; 309 case Kryo: 310 break; 311 case Krait: 312 PreISelOperandLatencyAdjustment = 1; 313 break; 314 case NeoverseN1: 315 case NeoverseN2: 316 case NeoverseV1: 317 break; 318 case Swift: 319 MaxInterleaveFactor = 2; 320 LdStMultipleTiming = SingleIssuePlusExtras; 321 PreISelOperandLatencyAdjustment = 1; 322 PartialUpdateClearance = 12; 323 break; 324 } 325 } 326 327 bool ARMSubtarget::isTargetHardFloat() const { return TM.isTargetHardFloat(); } 328 329 bool ARMSubtarget::isAPCS_ABI() const { 330 assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN); 331 return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS; 332 } 333 bool ARMSubtarget::isAAPCS_ABI() const { 334 assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN); 335 return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS || 336 TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16; 337 } 338 bool ARMSubtarget::isAAPCS16_ABI() const { 339 assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN); 340 return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16; 341 } 342 343 bool ARMSubtarget::isROPI() const { 344 return TM.getRelocationModel() == Reloc::ROPI || 345 TM.getRelocationModel() == Reloc::ROPI_RWPI; 346 } 347 bool ARMSubtarget::isRWPI() const { 348 return TM.getRelocationModel() == Reloc::RWPI || 349 TM.getRelocationModel() == Reloc::ROPI_RWPI; 350 } 351 352 bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const { 353 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 354 return true; 355 356 // 32 bit macho has no relocation for a-b if a is undefined, even if b is in 357 // the section that is being relocated. This means we have to use o load even 358 // for GVs that are known to be local to the dso. 359 if (isTargetMachO() && TM.isPositionIndependent() && 360 (GV->isDeclarationForLinker() || GV->hasCommonLinkage())) 361 return true; 362 363 return false; 364 } 365 366 bool ARMSubtarget::isGVInGOT(const GlobalValue *GV) const { 367 return isTargetELF() && TM.isPositionIndependent() && 368 !TM.shouldAssumeDSOLocal(*GV->getParent(), GV); 369 } 370 371 unsigned ARMSubtarget::getMispredictionPenalty() const { 372 return SchedModel.MispredictPenalty; 373 } 374 375 bool ARMSubtarget::enableMachineScheduler() const { 376 // The MachineScheduler can increase register usage, so we use more high 377 // registers and end up with more T2 instructions that cannot be converted to 378 // T1 instructions. At least until we do better at converting to thumb1 379 // instructions, on cortex-m at Oz where we are size-paranoid, don't use the 380 // Machine scheduler, relying on the DAG register pressure scheduler instead. 381 if (isMClass() && hasMinSize()) 382 return false; 383 // Enable the MachineScheduler before register allocation for subtargets 384 // with the use-misched feature. 385 return useMachineScheduler(); 386 } 387 388 bool ARMSubtarget::enableSubRegLiveness() const { 389 if (EnableSubRegLiveness.getNumOccurrences()) 390 return EnableSubRegLiveness; 391 // Enable SubRegLiveness for MVE to better optimize s subregs for mqpr regs 392 // and q subregs for qqqqpr regs. 393 return hasMVEIntegerOps(); 394 } 395 396 bool ARMSubtarget::enableMachinePipeliner() const { 397 // Enable the MachinePipeliner before register allocation for subtargets 398 // with the use-mipipeliner feature. 399 return getSchedModel().hasInstrSchedModel() && useMachinePipeliner(); 400 } 401 402 bool ARMSubtarget::useDFAforSMS() const { return false; } 403 404 // This overrides the PostRAScheduler bit in the SchedModel for any CPU. 405 bool ARMSubtarget::enablePostRAScheduler() const { 406 if (enableMachineScheduler()) 407 return false; 408 if (disablePostRAScheduler()) 409 return false; 410 // Thumb1 cores will generally not benefit from post-ra scheduling 411 return !isThumb1Only(); 412 } 413 414 bool ARMSubtarget::enablePostRAMachineScheduler() const { 415 if (!enableMachineScheduler()) 416 return false; 417 if (disablePostRAScheduler()) 418 return false; 419 return !isThumb1Only(); 420 } 421 422 bool ARMSubtarget::useStride4VFPs() const { 423 // For general targets, the prologue can grow when VFPs are allocated with 424 // stride 4 (more vpush instructions). But WatchOS uses a compact unwind 425 // format which it's more important to get right. 426 return isTargetWatchABI() || 427 (useWideStrideVFP() && !OptMinSize); 428 } 429 430 bool ARMSubtarget::useMovt() const { 431 // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit 432 // immediates as it is inherently position independent, and may be out of 433 // range otherwise. 434 return !NoMovt && hasV8MBaselineOps() && 435 (isTargetWindows() || !OptMinSize || genExecuteOnly()); 436 } 437 438 bool ARMSubtarget::useFastISel() const { 439 // Enable fast-isel for any target, for testing only. 440 if (ForceFastISel) 441 return true; 442 443 // Limit fast-isel to the targets that are or have been tested. 444 if (!hasV6Ops()) 445 return false; 446 447 // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl. 448 return TM.Options.EnableFastISel && 449 ((isTargetMachO() && !isThumb1Only()) || 450 (isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb())); 451 } 452 453 unsigned ARMSubtarget::getGPRAllocationOrder(const MachineFunction &MF) const { 454 // The GPR register class has multiple possible allocation orders, with 455 // tradeoffs preferred by different sub-architectures and optimisation goals. 456 // The allocation orders are: 457 // 0: (the default tablegen order, not used) 458 // 1: r14, r0-r13 459 // 2: r0-r7 460 // 3: r0-r7, r12, lr, r8-r11 461 // Note that the register allocator will change this order so that 462 // callee-saved registers are used later, as they require extra work in the 463 // prologue/epilogue (though we sometimes override that). 464 465 // For thumb1-only targets, only the low registers are allocatable. 466 if (isThumb1Only()) 467 return 2; 468 469 // Allocate low registers first, so we can select more 16-bit instructions. 470 // We also (in ignoreCSRForAllocationOrder) override the default behaviour 471 // with regards to callee-saved registers, because pushing extra registers is 472 // much cheaper (in terms of code size) than using high registers. After 473 // that, we allocate r12 (doesn't need to be saved), lr (saving it means we 474 // can return with the pop, don't need an extra "bx lr") and then the rest of 475 // the high registers. 476 if (isThumb2() && MF.getFunction().hasMinSize()) 477 return 3; 478 479 // Otherwise, allocate in the default order, using LR first because saving it 480 // allows a shorter epilogue sequence. 481 return 1; 482 } 483 484 bool ARMSubtarget::ignoreCSRForAllocationOrder(const MachineFunction &MF, 485 unsigned PhysReg) const { 486 // To minimize code size in Thumb2, we prefer the usage of low regs (lower 487 // cost per use) so we can use narrow encoding. By default, caller-saved 488 // registers (e.g. lr, r12) are always allocated first, regardless of 489 // their cost per use. When optForMinSize, we prefer the low regs even if 490 // they are CSR because usually push/pop can be folded into existing ones. 491 return isThumb2() && MF.getFunction().hasMinSize() && 492 ARM::GPRRegClass.contains(PhysReg); 493 } 494 495 bool ARMSubtarget::splitFramePointerPush(const MachineFunction &MF) const { 496 const Function &F = MF.getFunction(); 497 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || 498 !F.needsUnwindTableEntry()) 499 return false; 500 const MachineFrameInfo &MFI = MF.getFrameInfo(); 501 return MFI.hasVarSizedObjects() || getRegisterInfo()->hasStackRealignment(MF); 502 } 503