1 //===-- ARMSelectionDAGInfo.cpp - ARM SelectionDAG Info -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the ARMSelectionDAGInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ARMTargetMachine.h" 14 #include "ARMTargetTransformInfo.h" 15 #include "llvm/CodeGen/SelectionDAG.h" 16 #include "llvm/IR/DerivedTypes.h" 17 #include "llvm/Support/CommandLine.h" 18 using namespace llvm; 19 20 #define DEBUG_TYPE "arm-selectiondag-info" 21 22 cl::opt<TPLoop::MemTransfer> EnableMemtransferTPLoop( 23 "arm-memtransfer-tploop", cl::Hidden, 24 cl::desc("Control conversion of memcpy to " 25 "Tail predicated loops (WLSTP)"), 26 cl::init(TPLoop::ForceDisabled), 27 cl::values(clEnumValN(TPLoop::ForceDisabled, "force-disabled", 28 "Don't convert memcpy to TP loop."), 29 clEnumValN(TPLoop::ForceEnabled, "force-enabled", 30 "Always convert memcpy to TP loop."), 31 clEnumValN(TPLoop::Allow, "allow", 32 "Allow (may be subject to certain conditions) " 33 "conversion of memcpy to TP loop."))); 34 35 // Emit, if possible, a specialized version of the given Libcall. Typically this 36 // means selecting the appropriately aligned version, but we also convert memset 37 // of 0 into memclr. 38 SDValue ARMSelectionDAGInfo::EmitSpecializedLibcall( 39 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, 40 SDValue Size, unsigned Align, RTLIB::Libcall LC) const { 41 const ARMSubtarget &Subtarget = 42 DAG.getMachineFunction().getSubtarget<ARMSubtarget>(); 43 const ARMTargetLowering *TLI = Subtarget.getTargetLowering(); 44 45 // Only use a specialized AEABI function if the default version of this 46 // Libcall is an AEABI function. 47 if (std::strncmp(TLI->getLibcallName(LC), "__aeabi", 7) != 0) 48 return SDValue(); 49 50 // Translate RTLIB::Libcall to AEABILibcall. We only do this in order to be 51 // able to translate memset to memclr and use the value to index the function 52 // name array. 53 enum { 54 AEABI_MEMCPY = 0, 55 AEABI_MEMMOVE, 56 AEABI_MEMSET, 57 AEABI_MEMCLR 58 } AEABILibcall; 59 switch (LC) { 60 case RTLIB::MEMCPY: 61 AEABILibcall = AEABI_MEMCPY; 62 break; 63 case RTLIB::MEMMOVE: 64 AEABILibcall = AEABI_MEMMOVE; 65 break; 66 case RTLIB::MEMSET: 67 AEABILibcall = AEABI_MEMSET; 68 if (ConstantSDNode *ConstantSrc = dyn_cast<ConstantSDNode>(Src)) 69 if (ConstantSrc->getZExtValue() == 0) 70 AEABILibcall = AEABI_MEMCLR; 71 break; 72 default: 73 return SDValue(); 74 } 75 76 // Choose the most-aligned libcall variant that we can 77 enum { 78 ALIGN1 = 0, 79 ALIGN4, 80 ALIGN8 81 } AlignVariant; 82 if ((Align & 7) == 0) 83 AlignVariant = ALIGN8; 84 else if ((Align & 3) == 0) 85 AlignVariant = ALIGN4; 86 else 87 AlignVariant = ALIGN1; 88 89 TargetLowering::ArgListTy Args; 90 TargetLowering::ArgListEntry Entry; 91 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 92 Entry.Node = Dst; 93 Args.push_back(Entry); 94 if (AEABILibcall == AEABI_MEMCLR) { 95 Entry.Node = Size; 96 Args.push_back(Entry); 97 } else if (AEABILibcall == AEABI_MEMSET) { 98 // Adjust parameters for memset, EABI uses format (ptr, size, value), 99 // GNU library uses (ptr, value, size) 100 // See RTABI section 4.3.4 101 Entry.Node = Size; 102 Args.push_back(Entry); 103 104 // Extend or truncate the argument to be an i32 value for the call. 105 if (Src.getValueType().bitsGT(MVT::i32)) 106 Src = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src); 107 else if (Src.getValueType().bitsLT(MVT::i32)) 108 Src = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src); 109 110 Entry.Node = Src; 111 Entry.Ty = Type::getInt32Ty(*DAG.getContext()); 112 Entry.IsSExt = false; 113 Args.push_back(Entry); 114 } else { 115 Entry.Node = Src; 116 Args.push_back(Entry); 117 118 Entry.Node = Size; 119 Args.push_back(Entry); 120 } 121 122 char const *FunctionNames[4][3] = { 123 { "__aeabi_memcpy", "__aeabi_memcpy4", "__aeabi_memcpy8" }, 124 { "__aeabi_memmove", "__aeabi_memmove4", "__aeabi_memmove8" }, 125 { "__aeabi_memset", "__aeabi_memset4", "__aeabi_memset8" }, 126 { "__aeabi_memclr", "__aeabi_memclr4", "__aeabi_memclr8" } 127 }; 128 TargetLowering::CallLoweringInfo CLI(DAG); 129 CLI.setDebugLoc(dl) 130 .setChain(Chain) 131 .setLibCallee( 132 TLI->getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), 133 DAG.getExternalSymbol(FunctionNames[AEABILibcall][AlignVariant], 134 TLI->getPointerTy(DAG.getDataLayout())), 135 std::move(Args)) 136 .setDiscardResult(); 137 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 138 139 return CallResult.second; 140 } 141 142 static bool shouldGenerateInlineTPLoop(const ARMSubtarget &Subtarget, 143 const SelectionDAG &DAG, 144 ConstantSDNode *ConstantSize, 145 Align Alignment, bool IsMemcpy) { 146 auto &F = DAG.getMachineFunction().getFunction(); 147 if (!EnableMemtransferTPLoop) 148 return false; 149 if (EnableMemtransferTPLoop == TPLoop::ForceEnabled) 150 return true; 151 // Do not generate inline TP loop if optimizations is disabled, 152 // or if optimization for size (-Os or -Oz) is on. 153 if (F.hasOptNone() || F.hasOptSize()) 154 return false; 155 // If cli option is unset, for memset always generate inline TP. 156 // For memcpy, check some conditions 157 if (!IsMemcpy) 158 return true; 159 if (!ConstantSize && Alignment >= Align(4)) 160 return true; 161 if (ConstantSize && 162 ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold() && 163 ConstantSize->getZExtValue() < 164 Subtarget.getMaxMemcpyTPInlineSizeThreshold()) 165 return true; 166 return false; 167 } 168 169 SDValue ARMSelectionDAGInfo::EmitTargetCodeForMemcpy( 170 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, 171 SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline, 172 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const { 173 const ARMSubtarget &Subtarget = 174 DAG.getMachineFunction().getSubtarget<ARMSubtarget>(); 175 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 176 177 if (Subtarget.hasMVEIntegerOps() && 178 shouldGenerateInlineTPLoop(Subtarget, DAG, ConstantSize, Alignment, true)) 179 return DAG.getNode(ARMISD::MEMCPYLOOP, dl, MVT::Other, Chain, Dst, Src, 180 DAG.getZExtOrTrunc(Size, dl, MVT::i32)); 181 182 // Do repeated 4-byte loads and stores. To be improved. 183 // This requires 4-byte alignment. 184 if (Alignment < Align(4)) 185 return SDValue(); 186 // This requires the copy size to be a constant, preferably 187 // within a subtarget-specific limit. 188 if (!ConstantSize) 189 return EmitSpecializedLibcall(DAG, dl, Chain, Dst, Src, Size, 190 Alignment.value(), RTLIB::MEMCPY); 191 uint64_t SizeVal = ConstantSize->getZExtValue(); 192 if (!AlwaysInline && SizeVal > Subtarget.getMaxInlineSizeThreshold()) 193 return EmitSpecializedLibcall(DAG, dl, Chain, Dst, Src, Size, 194 Alignment.value(), RTLIB::MEMCPY); 195 196 unsigned BytesLeft = SizeVal & 3; 197 unsigned NumMemOps = SizeVal >> 2; 198 unsigned EmittedNumMemOps = 0; 199 EVT VT = MVT::i32; 200 unsigned VTSize = 4; 201 unsigned i = 0; 202 // Emit a maximum of 4 loads in Thumb1 since we have fewer registers 203 const unsigned MaxLoadsInLDM = Subtarget.isThumb1Only() ? 4 : 6; 204 SDValue TFOps[6]; 205 SDValue Loads[6]; 206 uint64_t SrcOff = 0, DstOff = 0; 207 208 // FIXME: We should invent a VMEMCPY pseudo-instruction that lowers to 209 // VLDM/VSTM and make this code emit it when appropriate. This would reduce 210 // pressure on the general purpose registers. However this seems harder to map 211 // onto the register allocator's view of the world. 212 213 // The number of MEMCPY pseudo-instructions to emit. We use up to 214 // MaxLoadsInLDM registers per mcopy, which will get lowered into ldm/stm 215 // later on. This is a lower bound on the number of MEMCPY operations we must 216 // emit. 217 unsigned NumMEMCPYs = (NumMemOps + MaxLoadsInLDM - 1) / MaxLoadsInLDM; 218 219 // Code size optimisation: do not inline memcpy if expansion results in 220 // more instructions than the libary call. 221 if (NumMEMCPYs > 1 && Subtarget.hasMinSize()) { 222 return SDValue(); 223 } 224 225 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other, MVT::Glue); 226 227 for (unsigned I = 0; I != NumMEMCPYs; ++I) { 228 // Evenly distribute registers among MEMCPY operations to reduce register 229 // pressure. 230 unsigned NextEmittedNumMemOps = NumMemOps * (I + 1) / NumMEMCPYs; 231 unsigned NumRegs = NextEmittedNumMemOps - EmittedNumMemOps; 232 233 Dst = DAG.getNode(ARMISD::MEMCPY, dl, VTs, Chain, Dst, Src, 234 DAG.getConstant(NumRegs, dl, MVT::i32)); 235 Src = Dst.getValue(1); 236 Chain = Dst.getValue(2); 237 238 DstPtrInfo = DstPtrInfo.getWithOffset(NumRegs * VTSize); 239 SrcPtrInfo = SrcPtrInfo.getWithOffset(NumRegs * VTSize); 240 241 EmittedNumMemOps = NextEmittedNumMemOps; 242 } 243 244 if (BytesLeft == 0) 245 return Chain; 246 247 // Issue loads / stores for the trailing (1 - 3) bytes. 248 auto getRemainingValueType = [](unsigned BytesLeft) { 249 return (BytesLeft >= 2) ? MVT::i16 : MVT::i8; 250 }; 251 auto getRemainingSize = [](unsigned BytesLeft) { 252 return (BytesLeft >= 2) ? 2 : 1; 253 }; 254 255 unsigned BytesLeftSave = BytesLeft; 256 i = 0; 257 while (BytesLeft) { 258 VT = getRemainingValueType(BytesLeft); 259 VTSize = getRemainingSize(BytesLeft); 260 Loads[i] = DAG.getLoad(VT, dl, Chain, 261 DAG.getNode(ISD::ADD, dl, MVT::i32, Src, 262 DAG.getConstant(SrcOff, dl, MVT::i32)), 263 SrcPtrInfo.getWithOffset(SrcOff)); 264 TFOps[i] = Loads[i].getValue(1); 265 ++i; 266 SrcOff += VTSize; 267 BytesLeft -= VTSize; 268 } 269 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 270 makeArrayRef(TFOps, i)); 271 272 i = 0; 273 BytesLeft = BytesLeftSave; 274 while (BytesLeft) { 275 VT = getRemainingValueType(BytesLeft); 276 VTSize = getRemainingSize(BytesLeft); 277 TFOps[i] = DAG.getStore(Chain, dl, Loads[i], 278 DAG.getNode(ISD::ADD, dl, MVT::i32, Dst, 279 DAG.getConstant(DstOff, dl, MVT::i32)), 280 DstPtrInfo.getWithOffset(DstOff)); 281 ++i; 282 DstOff += VTSize; 283 BytesLeft -= VTSize; 284 } 285 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 286 makeArrayRef(TFOps, i)); 287 } 288 289 SDValue ARMSelectionDAGInfo::EmitTargetCodeForMemmove( 290 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, 291 SDValue Size, Align Alignment, bool isVolatile, 292 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const { 293 return EmitSpecializedLibcall(DAG, dl, Chain, Dst, Src, Size, 294 Alignment.value(), RTLIB::MEMMOVE); 295 } 296 297 SDValue ARMSelectionDAGInfo::EmitTargetCodeForMemset( 298 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, 299 SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline, 300 MachinePointerInfo DstPtrInfo) const { 301 302 const ARMSubtarget &Subtarget = 303 DAG.getMachineFunction().getSubtarget<ARMSubtarget>(); 304 305 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 306 307 // Generate TP loop for llvm.memset 308 if (Subtarget.hasMVEIntegerOps() && 309 shouldGenerateInlineTPLoop(Subtarget, DAG, ConstantSize, Alignment, 310 false)) { 311 Src = DAG.getSplatBuildVector(MVT::v16i8, dl, 312 DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src)); 313 return DAG.getNode(ARMISD::MEMSETLOOP, dl, MVT::Other, Chain, Dst, Src, 314 DAG.getZExtOrTrunc(Size, dl, MVT::i32)); 315 } 316 317 if (!AlwaysInline) 318 return EmitSpecializedLibcall(DAG, dl, Chain, Dst, Src, Size, 319 Alignment.value(), RTLIB::MEMSET); 320 321 return SDValue(); 322 } 323