1//=- ARMScheduleM7.td - ARM Cortex-M7 Scheduling Definitions -*- tablegen -*-=// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file defines the SchedRead/Write data for the ARM Cortex-M7 processor. 10// 11//===----------------------------------------------------------------------===// 12 13def CortexM7Model : SchedMachineModel { 14 let IssueWidth = 2; // Dual issue for most instructions. 15 let MicroOpBufferSize = 0; // The Cortex-M7 is in-order. 16 let LoadLatency = 2; // Best case for load-use case. 17 let MispredictPenalty = 4; // Mispredict cost for forward branches is 6, 18 // but 4 works better 19 let CompleteModel = 0; 20} 21 22//===--------------------------------------------------------------------===// 23// The Cortex-M7 has two ALU, two LOAD, a STORE, a MAC, a BRANCH and a VFP 24// pipe. The stages relevant to scheduling are as follows: 25// 26// EX1: address generation shifts 27// EX2: fast load data ALUs FP operation 28// EX3: slow load data integer writeback FP operation 29// EX4: store data FP writeback 30// 31// There are shifters in both EX1 and EX2, and some instructions can be 32// flexibly allocated between them. EX2 is used as the "zero" point 33// for scheduling, so simple ALU operations executing in EX2 will have 34// ReadAdvance<0> (the default) for their source operands and Latency = 1. 35 36def M7UnitLoad : ProcResource<2> { let BufferSize = 0; } 37def M7UnitStore : ProcResource<1> { let BufferSize = 0; } 38def M7UnitALU : ProcResource<2>; 39def M7UnitShift1 : ProcResource<1> { let BufferSize = 0; } 40def M7UnitShift2 : ProcResource<1> { let BufferSize = 0; } 41def M7UnitMAC : ProcResource<1> { let BufferSize = 0; } 42def M7UnitBranch : ProcResource<1> { let BufferSize = 0; } 43def M7UnitVFP : ProcResource<1> { let BufferSize = 0; } 44def M7UnitVPort : ProcResource<2> { let BufferSize = 0; } 45def M7UnitSIMD : ProcResource<1> { let BufferSize = 0; } 46 47//===---------------------------------------------------------------------===// 48// Subtarget-specific SchedWrite types with map ProcResources and set latency. 49 50let SchedModel = CortexM7Model in { 51 52def : WriteRes<WriteALU, [M7UnitALU]> { let Latency = 1; } 53 54// Basic ALU with shifts. 55let Latency = 1 in { 56 def : WriteRes<WriteALUsi, [M7UnitALU, M7UnitShift1]>; 57 def : WriteRes<WriteALUsr, [M7UnitALU, M7UnitShift1]>; 58 def : WriteRes<WriteALUSsr, [M7UnitALU, M7UnitShift1]>; 59} 60 61// Compares. 62def : WriteRes<WriteCMP, [M7UnitALU]> { let Latency = 1; } 63def : WriteRes<WriteCMPsi, [M7UnitALU, M7UnitShift1]> { let Latency = 2; } 64def : WriteRes<WriteCMPsr, [M7UnitALU, M7UnitShift1]> { let Latency = 2; } 65 66// Multiplies. 67let Latency = 2 in { 68 def : WriteRes<WriteMUL16, [M7UnitMAC]>; 69 def : WriteRes<WriteMUL32, [M7UnitMAC]>; 70 def : WriteRes<WriteMUL64Lo, [M7UnitMAC]>; 71 def : WriteRes<WriteMUL64Hi, []> { let NumMicroOps = 0; } 72} 73 74// Multiply-accumulates. 75let Latency = 2 in { 76 def : WriteRes<WriteMAC16, [M7UnitMAC]>; 77 def : WriteRes<WriteMAC32, [M7UnitMAC]>; 78 def : WriteRes<WriteMAC64Lo, [M7UnitMAC]> { let Latency = 2; } 79 def : WriteRes<WriteMAC64Hi, []> { let NumMicroOps = 0; } 80} 81 82// Divisions. 83// These cannot be dual-issued with any instructions. 84def : WriteRes<WriteDIV, [M7UnitALU]> { 85 let Latency = 7; 86 let SingleIssue = 1; 87} 88 89// Loads/Stores. 90def : WriteRes<WriteLd, [M7UnitLoad]> { let Latency = 1; } 91def : WriteRes<WritePreLd, [M7UnitLoad]> { let Latency = 2; } 92def : WriteRes<WriteST, [M7UnitStore]> { let Latency = 2; } 93 94// Branches. 95def : WriteRes<WriteBr, [M7UnitBranch]> { let Latency = 2; } 96def : WriteRes<WriteBrL, [M7UnitBranch]> { let Latency = 2; } 97def : WriteRes<WriteBrTbl, [M7UnitBranch]> { let Latency = 2; } 98 99// Noop. 100def : WriteRes<WriteNoop, []> { let Latency = 0; } 101 102//===---------------------------------------------------------------------===// 103// Sched definitions for floating-point instructions 104// 105// Floating point conversions. 106def : WriteRes<WriteFPCVT, [M7UnitVFP, M7UnitVPort]> { let Latency = 3; } 107def : WriteRes<WriteFPMOV, [M7UnitVPort]> { let Latency = 3; } 108 109// The FP pipeline has a latency of 3 cycles. 110// ALU operations (32/64-bit). These go down the FP pipeline. 111def : WriteRes<WriteFPALU32, [M7UnitVFP, M7UnitVPort]> { let Latency = 3; } 112def : WriteRes<WriteFPALU64, [M7UnitVFP, M7UnitVPort, M7UnitVPort]> { 113 let Latency = 4; 114 let BeginGroup = 1; 115} 116 117// Multiplication 118def : WriteRes<WriteFPMUL32, [M7UnitVFP, M7UnitVPort]> { let Latency = 3; } 119def : WriteRes<WriteFPMUL64, [M7UnitVFP, M7UnitVPort, M7UnitVPort]> { 120 let Latency = 7; 121 let BeginGroup = 1; 122} 123 124// Multiply-accumulate. FPMAC goes down the FP Pipeline. 125def : WriteRes<WriteFPMAC32, [M7UnitVFP, M7UnitVPort]> { let Latency = 6; } 126def : WriteRes<WriteFPMAC64, [M7UnitVFP, M7UnitVPort, M7UnitVPort]> { 127 let Latency = 11; 128 let BeginGroup = 1; 129} 130 131// Division. Effective scheduling latency is 3, though real latency is larger 132def : WriteRes<WriteFPDIV32, [M7UnitVFP, M7UnitVPort]> { let Latency = 16; } 133def : WriteRes<WriteFPDIV64, [M7UnitVFP, M7UnitVPort, M7UnitVPort]> { 134 let Latency = 30; 135 let BeginGroup = 1; 136} 137 138// Square-root. Effective scheduling latency is 3; real latency is larger 139def : WriteRes<WriteFPSQRT32, [M7UnitVFP, M7UnitVPort]> { let Latency = 16; } 140def : WriteRes<WriteFPSQRT64, [M7UnitVFP, M7UnitVPort, M7UnitVPort]> { 141 let Latency = 30; 142 let BeginGroup = 1; 143} 144 145def M7WriteShift2 : SchedWriteRes<[M7UnitALU, M7UnitShift2]> {} 146 147// Not used for M7, but needing definitions anyway 148def : WriteRes<WriteVLD1, []>; 149def : WriteRes<WriteVLD2, []>; 150def : WriteRes<WriteVLD3, []>; 151def : WriteRes<WriteVLD4, []>; 152def : WriteRes<WriteVST1, []>; 153def : WriteRes<WriteVST2, []>; 154def : WriteRes<WriteVST3, []>; 155def : WriteRes<WriteVST4, []>; 156 157def M7SingleIssue : SchedWriteRes<[]> { 158 let SingleIssue = 1; 159 let NumMicroOps = 0; 160} 161def M7Slot0Only : SchedWriteRes<[]> { 162 let BeginGroup = 1; 163 let NumMicroOps = 0; 164} 165 166// What pipeline stage operands need to be ready for depending on 167// where they come from. 168def : ReadAdvance<ReadALUsr, 0>; 169def : ReadAdvance<ReadMUL, 0>; 170def : ReadAdvance<ReadMAC, 1>; 171def : ReadAdvance<ReadALU, 0>; 172def : ReadAdvance<ReadFPMUL, 0>; 173def : ReadAdvance<ReadFPMAC, 3>; 174def M7Read_ISS : SchedReadAdvance<-1>; // operands needed at EX1 175def M7Read_EX2 : SchedReadAdvance<1>; // operands needed at EX3 176def M7Read_EX3 : SchedReadAdvance<2>; // operands needed at EX4 177 178// Non general purpose instructions may not be dual issued. These 179// use both issue units. 180def M7NonGeneralPurpose : SchedWriteRes<[]> { 181 // Assume that these will go down the main ALU pipeline. 182 // In reality, many look likely to stall the whole pipeline. 183 let Latency = 3; 184 let SingleIssue = 1; 185} 186 187// List the non general purpose instructions. 188def : InstRW<[M7NonGeneralPurpose], (instregex "t2MRS", "tSVC", "tBKPT", 189 "t2MSR", "t2DMB", "t2DSB", "t2ISB", 190 "t2HVC", "t2SMC", "t2UDF", "ERET", 191 "tHINT", "t2HINT", "t2CLREX", "BUNDLE")>; 192 193//===---------------------------------------------------------------------===// 194// Sched definitions for load/store 195// 196// Mark whether the loads/stores must be single-issue 197// Address operands are needed earlier 198// Data operands are needed later 199 200def M7BaseUpdate : SchedWriteRes<[]> { 201 let Latency = 0; // Update is bypassable out of EX1 202 let NumMicroOps = 0; 203} 204def M7LoadLatency1 : SchedWriteRes<[]> { 205 let Latency = 1; 206 let NumMicroOps = 0; 207} 208def M7SlowLoad : SchedWriteRes<[M7UnitLoad]> { let Latency = 2; } 209 210// Byte and half-word loads should have greater latency than other loads. 211// So should load exclusive. 212 213def : InstRW<[M7SlowLoad], 214 (instregex "t2LDR(B|H|SB|SH)pc")>; 215def : InstRW<[M7SlowLoad, M7Read_ISS], 216 (instregex "t2LDR(B|H|SB|SH)T", "t2LDR(B|H|SB|SH)i", 217 "tLDR(B|H)i")>; 218def : InstRW<[M7SlowLoad, M7Read_ISS, M7Read_ISS], 219 (instregex "t2LDR(B|H|SB|SH)s", "tLDR(B|H)r", "tLDR(SB|SH)")>; 220def : InstRW<[M7SlowLoad, M7BaseUpdate, M7Read_ISS], 221 (instregex "t2LDR(B|H|SB|SH)_(POST|PRE)")>; 222 223// Exclusive loads/stores cannot be dual-issued 224def : InstRW<[WriteLd, M7Slot0Only, M7Read_ISS], 225 (instregex "t2LDREX$")>; 226def : InstRW<[M7SlowLoad, M7Slot0Only, M7Read_ISS], 227 (instregex "t2LDREX(B|H)")>; 228def : InstRW<[WriteST, M7SingleIssue, M7Read_EX2, M7Read_ISS], 229 (instregex "t2STREX(B|H)?$")>; 230 231// Load/store multiples cannot be dual-issued. Note that default scheduling 232// occurs around read/write times of individual registers in the list; read 233// time for STM cannot be overridden because it is a variadic source operand. 234 235def : InstRW<[WriteLd, M7SingleIssue, M7Read_ISS], 236 (instregex "(t|t2)LDM(DB|IA)$")>; 237def : InstRW<[WriteST, M7SingleIssue, M7Read_ISS], 238 (instregex "(t|t2)STM(DB|IA)$")>; 239def : InstRW<[M7BaseUpdate, WriteLd, M7SingleIssue, M7Read_ISS], 240 (instregex "(t|t2)LDM(DB|IA)_UPD$", "tPOP")>; 241def : InstRW<[M7BaseUpdate, WriteST, M7SingleIssue, M7Read_ISS], 242 (instregex "(t|t2)STM(DB|IA)_UPD$", "tPUSH")>; 243 244// Load/store doubles cannot be dual-issued. 245 246def : InstRW<[M7BaseUpdate, WriteST, M7SingleIssue, 247 M7Read_EX2, M7Read_EX2, M7Read_ISS], 248 (instregex "t2STRD_(PRE|POST)")>; 249def : InstRW<[WriteST, M7SingleIssue, M7Read_EX2, M7Read_EX2, M7Read_ISS], 250 (instregex "t2STRDi")>; 251def : InstRW<[WriteLd, M7LoadLatency1, M7SingleIssue, M7BaseUpdate, M7Read_ISS], 252 (instregex "t2LDRD_(PRE|POST)")>; 253def : InstRW<[WriteLd, M7LoadLatency1, M7SingleIssue, M7Read_ISS], 254 (instregex "t2LDRDi")>; 255 256// Word load / preload 257def : InstRW<[WriteLd], 258 (instregex "t2LDRpc", "t2PL[DI]pci", "tLDRpci")>; 259def : InstRW<[WriteLd, M7Read_ISS], 260 (instregex "t2LDR(i|T)", "t2PL[DI](W)?i", "tLDRi", "tLDRspi")>; 261def : InstRW<[WriteLd, M7Read_ISS, M7Read_ISS], 262 (instregex "t2LDRs", "t2PL[DI](w)?s", "tLDRr")>; 263def : InstRW<[WriteLd, M7BaseUpdate, M7Read_ISS], 264 (instregex "t2LDR_(POST|PRE)")>; 265 266// Stores 267def : InstRW<[M7BaseUpdate, WriteST, M7Read_EX2, M7Read_ISS], 268 (instregex "t2STR(B|H)?_(POST|PRE)")>; 269def : InstRW<[WriteST, M7Read_EX2, M7Read_ISS, M7Read_ISS], 270 (instregex "t2STR(B|H)?s$", "tSTR(B|H)?r$")>; 271def : InstRW<[WriteST, M7Read_EX2, M7Read_ISS], 272 (instregex "t2STR(B|H)?(i|T)", "tSTR(B|H)?i$", "tSTRspi")>; 273 274// TBB/TBH - single-issue only; takes two cycles to issue 275 276def M7TableLoad : SchedWriteRes<[M7UnitLoad]> { 277 let NumMicroOps = 2; 278 let SingleIssue = 1; 279} 280 281def : InstRW<[M7TableLoad, M7Read_ISS, M7Read_ISS], (instregex "t2TB")>; 282 283// VFP loads and stores 284 285def M7LoadSP : SchedWriteRes<[M7UnitLoad, M7UnitVPort]> { let Latency = 1; } 286def M7LoadDP : SchedWriteRes<[M7UnitLoad, M7UnitVPort, M7UnitVPort]> { 287 let Latency = 2; 288 let SingleIssue = 1; 289} 290def M7StoreSP : SchedWriteRes<[M7UnitStore, M7UnitVPort]>; 291def M7StoreDP : SchedWriteRes<[M7UnitStore, M7UnitVPort, M7UnitVPort]> { 292 let SingleIssue = 1; 293} 294 295def : InstRW<[M7LoadSP, M7Read_ISS], (instregex "VLDR(S|H)$")>; 296def : InstRW<[M7LoadDP, M7Read_ISS], (instregex "VLDRD$")>; 297def : InstRW<[M7StoreSP, M7Read_EX3, M7Read_ISS], (instregex "VSTR(S|H)$")>; 298def : InstRW<[M7StoreDP, M7Read_EX3, M7Read_ISS], (instregex "VSTRD$")>; 299 300// Load/store multiples cannot be dual-issued. 301 302def : InstRW<[WriteLd, M7SingleIssue, M7Read_ISS], 303 (instregex "VLDM(S|D|Q)(DB|IA)$")>; 304def : InstRW<[WriteST, M7SingleIssue, M7Read_ISS], 305 (instregex "VSTM(S|D|Q)(DB|IA)$")>; 306def : InstRW<[M7BaseUpdate, WriteLd, M7SingleIssue, M7Read_ISS], 307 (instregex "VLDM(S|D|Q)(DB|IA)_UPD$")>; 308def : InstRW<[M7BaseUpdate, WriteST, M7SingleIssue, M7Read_ISS], 309 (instregex "VSTM(S|D|Q)(DB|IA)_UPD$")>; 310 311//===---------------------------------------------------------------------===// 312// Sched definitions for ALU 313// 314 315// Shifted ALU operands are read a cycle early. 316def M7Ex1ReadNoFastBypass : SchedReadAdvance<-1, [WriteLd, M7LoadLatency1]>; 317 318def : InstRW<[WriteALUsi, M7Ex1ReadNoFastBypass, M7Read_ISS], 319 (instregex "t2(ADC|ADDS|ADD|BIC|EOR|ORN|ORR|RSBS|RSB|SBC|SUBS)rs$", 320 "t2(SUB|CMP|CMNz|TEQ|TST)rs$", 321 "t2MOVsr(a|l)")>; 322def : InstRW<[WriteALUsi, M7Read_ISS], 323 (instregex "t2MVNs")>; 324 325// Treat pure shift operations (except for RRX) as if they used the EX1 326// shifter but have timing as if they used the EX2 shifter as they usually 327// can choose the EX2 shifter when needed. Will miss a few dual-issue cases, 328// but the results prove to be better than trying to get them exact. 329 330def : InstRW<[M7WriteShift2, M7Read_ISS], (instregex "t2RRX$")>; 331def : InstRW<[WriteALUsi], (instregex "(t|t2)(LSL|LSR|ASR|ROR)")>; 332 333// Instructions that use the shifter, but have normal timing. 334 335def : InstRW<[WriteALUsi,M7Slot0Only], (instregex "t2(BFC|BFI)$")>; 336 337// Instructions which are slot zero only but otherwise normal. 338 339def : InstRW<[WriteALU, M7Slot0Only], (instregex "t2CLZ")>; 340 341// MAC operations that don't have SchedRW set. 342 343def : InstRW<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC], (instregex "t2SML[AS]D")>; 344 345// Divides are special because they stall for their latency, and so look like a 346// single-cycle as far as scheduling opportunities go. By putting WriteALU 347// first, we make the operand latency 1, but keep the instruction latency 7. 348 349def : InstRW<[WriteALU, WriteDIV], (instregex "t2(S|U)DIV")>; 350 351// DSP extension operations 352 353def M7WriteSIMD1 : SchedWriteRes<[M7UnitSIMD, M7UnitALU]> { 354 let Latency = 1; 355 let BeginGroup = 1; 356} 357def M7WriteSIMD2 : SchedWriteRes<[M7UnitSIMD, M7UnitALU]> { 358 let Latency = 2; 359 let BeginGroup = 1; 360} 361def M7WriteShSIMD1 : SchedWriteRes<[M7UnitSIMD, M7UnitALU, M7UnitShift1]> { 362 let Latency = 1; 363 let BeginGroup = 1; 364} 365def M7WriteShSIMD0 : SchedWriteRes<[M7UnitSIMD, M7UnitALU, M7UnitShift1]> { 366 let Latency = 0; // Bypassable out of EX1 367 let BeginGroup = 1; 368} 369def M7WriteShSIMD2 : SchedWriteRes<[M7UnitSIMD, M7UnitALU, M7UnitShift1]> { 370 let Latency = 2; 371 let BeginGroup = 1; 372} 373 374def : InstRW<[M7WriteShSIMD2, M7Read_ISS], 375 (instregex "t2(S|U)SAT")>; 376def : InstRW<[M7WriteSIMD1, ReadALU], 377 (instregex "(t|t2)(S|U)XT(B|H)")>; 378def : InstRW<[M7WriteSIMD1, ReadALU, ReadALU], 379 (instregex "t2(S|SH|U|UH)(ADD16|ADD8|ASX|SAX|SUB16|SUB8)", 380 "t2SEL")>; 381def : InstRW<[M7WriteSIMD2, ReadALU, ReadALU], 382 (instregex "t2(Q|UQ)(ADD|ASX|SAX|SUB)", "t2USAD8")>; 383def : InstRW<[M7WriteShSIMD2, M7Read_ISS, M7Read_ISS], 384 (instregex "t2QD(ADD|SUB)")>; 385def : InstRW<[M7WriteShSIMD0, M7Read_ISS], 386 (instregex "t2(RBIT|REV)", "tREV")>; 387def : InstRW<[M7WriteShSIMD1, M7Read_ISS], 388 (instregex "t2(SBFX|UBFX)")>; 389def : InstRW<[M7WriteShSIMD1, ReadALU, M7Read_ISS], 390 (instregex "t2PKH(BT|TB)", "t2(S|U)XTA")>; 391def : InstRW<[M7WriteSIMD2, ReadALU, ReadALU, M7Read_EX2], 392 (instregex "t2USADA8")>; 393 394// MSR/MRS 395def : InstRW<[M7NonGeneralPurpose], (instregex "MSR", "MRS")>; 396 397//===---------------------------------------------------------------------===// 398// Sched definitions for FP operations 399// 400 401// Effective scheduling latency is really 3 for nearly all FP operations, 402// even if their true latency is higher. 403def M7WriteVFPLatOverride : SchedWriteRes<[]> { 404 let Latency = 3; 405 let NumMicroOps = 0; 406} 407def M7WriteVFPExtraVPort : SchedWriteRes<[M7UnitVPort]> { 408 let Latency = 3; 409 let NumMicroOps = 0; 410} 411 412// Instructions which are missing default schedules. 413def : InstRW<[WriteFPALU32], 414 (instregex "V(ABS|CVT.*|NEG|FP_VMAX.*|FP_VMIN.*|RINT.*)S$")>; 415def : InstRW<[M7WriteVFPLatOverride, WriteFPALU64], 416 (instregex "V(ABS|CVT.*|NEG|FP_VMAX.*|FP_VMIN.*|RINT.*)D$")>; 417 418// VCMP 419def M7WriteVCMPS : SchedWriteRes<[M7UnitVFP, M7UnitVPort]> { let Latency = 0; } 420def M7WriteVCMPD : SchedWriteRes<[M7UnitVFP, M7UnitVPort, M7UnitVPort]> { 421 let Latency = 0; 422 let BeginGroup = 1; 423} 424def : InstRW<[M7WriteVCMPS], (instregex "VCMPS$")>; 425def : InstRW<[M7WriteVCMPD], (instregex "VCMPD$")>; 426 427 // VMRS/VMSR 428def M7VMRS : SchedWriteRes<[M7UnitVFP, M7UnitVPort]> { let SingleIssue = 1; } 429def M7VMSR : SchedWriteRes<[M7UnitVFP, M7UnitVPort]> { let SingleIssue = 1; } 430def : InstRW<[M7VMRS], (instregex "FMSTAT")>; 431def : InstRW<[M7VMSR], (instregex "VMSR")>; 432 433// VSEL cannot bypass in its implied $cpsr operand; model as earlier read 434def : InstRW<[WriteFPALU32, M7Slot0Only, ReadALU, ReadALU, M7Read_ISS], 435 (instregex "VSEL.*S$")>; 436def : InstRW<[M7WriteVFPLatOverride, WriteFPALU64, M7Slot0Only, 437 ReadALU, ReadALU, M7Read_ISS], 438 (instregex "VSEL.*D$")>; 439 440// VMOV 441def : InstRW<[WriteFPMOV], 442 (instregex "VMOV(H|S)$", "FCONST(H|S)")>; 443def : InstRW<[WriteFPMOV, M7WriteVFPExtraVPort, M7Slot0Only], 444 (instregex "VMOVD$")>; 445def : InstRW<[WriteFPMOV, M7WriteVFPExtraVPort, M7Slot0Only], 446 (instregex "FCONSTD")>; 447def : InstRW<[WriteFPMOV, M7WriteVFPExtraVPort, M7SingleIssue], 448 (instregex "VMOV(DRR|RRD|RRS|SRR)")>; 449 450// Larger-latency overrides. 451 452def : InstRW<[M7WriteVFPLatOverride, WriteFPDIV32], (instregex "VDIVS")>; 453def : InstRW<[M7WriteVFPLatOverride, WriteFPDIV64], (instregex "VDIVD")>; 454def : InstRW<[M7WriteVFPLatOverride, WriteFPSQRT32], (instregex "VSQRTS")>; 455def : InstRW<[M7WriteVFPLatOverride, WriteFPSQRT64], (instregex "VSQRTD")>; 456def : InstRW<[M7WriteVFPLatOverride, WriteFPMUL64], 457 (instregex "V(MUL|NMUL)D")>; 458def : InstRW<[M7WriteVFPLatOverride, WriteFPALU64], 459 (instregex "V(ADD|SUB)D")>; 460 461// Multiply-accumulate. Chained SP timing is correct; rest need overrides 462// Double-precision chained MAC stalls the pipeline behind it for 3 cycles, 463// making it appear to have 3 cycle latency for scheduling. 464 465def : InstRW<[M7WriteVFPLatOverride, WriteFPMAC64, 466 ReadFPMAC, ReadFPMUL, ReadFPMUL], 467 (instregex "V(N)?ML(A|S)D$")>; 468 469// Single-precision fused MACs look like latency 5 with advance of 2. 470 471def M7WriteVFPLatOverride5 : SchedWriteRes<[]> { 472 let Latency = 5; 473 let NumMicroOps = 0; 474} 475def M7ReadFPMAC2 : SchedReadAdvance<2>; 476 477def : InstRW<[M7WriteVFPLatOverride5, WriteFPMAC32, 478 M7ReadFPMAC2, ReadFPMUL, ReadFPMUL], 479 (instregex "VF(N)?M(A|S)S$")>; 480 481// Double-precision fused MAC stalls the pipeline behind it for 2 cycles, making 482// it appear to have 3 cycle latency for scheduling. 483 484def : InstRW<[M7WriteVFPLatOverride, WriteFPMAC64, 485 ReadFPMAC, ReadFPMUL, ReadFPMUL], 486 (instregex "VF(N)?M(A|S)D$")>; 487 488} // SchedModel = CortexM7Model 489