xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMRegisterInfo.td (revision 349cc55c9796c4596a5b9904cd3281af295f878f)
1//===-- ARMRegisterInfo.td - ARM Register defs -------------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9include "ARMSystemRegister.td"
10
11//===----------------------------------------------------------------------===//
12//  Declarations that describe the ARM register file
13//===----------------------------------------------------------------------===//
14
15// Registers are identified with 4-bit ID numbers.
16class ARMReg<bits<16> Enc, string n, list<Register> subregs = [],
17             list<string> altNames = []> : Register<n, altNames> {
18  let HWEncoding = Enc;
19  let Namespace = "ARM";
20  let SubRegs = subregs;
21  // All bits of ARM registers with sub-registers are covered by sub-registers.
22  let CoveredBySubRegs = 1;
23}
24
25class ARMFReg<bits<16> Enc, string n> : Register<n> {
26  let HWEncoding = Enc;
27  let Namespace = "ARM";
28}
29
30let Namespace = "ARM",
31    FallbackRegAltNameIndex = NoRegAltName in {
32  def RegNamesRaw : RegAltNameIndex;
33}
34
35// Subregister indices.
36let Namespace = "ARM" in {
37def qqsub_0 : SubRegIndex<256>;
38def qqsub_1 : SubRegIndex<256, 256>;
39
40// Note: Code depends on these having consecutive numbers.
41def qsub_0 : SubRegIndex<128>;
42def qsub_1 : SubRegIndex<128, 128>;
43def qsub_2 : ComposedSubRegIndex<qqsub_1, qsub_0>;
44def qsub_3 : ComposedSubRegIndex<qqsub_1, qsub_1>;
45
46def dsub_0 : SubRegIndex<64>;
47def dsub_1 : SubRegIndex<64, 64>;
48def dsub_2 : ComposedSubRegIndex<qsub_1, dsub_0>;
49def dsub_3 : ComposedSubRegIndex<qsub_1, dsub_1>;
50def dsub_4 : ComposedSubRegIndex<qsub_2, dsub_0>;
51def dsub_5 : ComposedSubRegIndex<qsub_2, dsub_1>;
52def dsub_6 : ComposedSubRegIndex<qsub_3, dsub_0>;
53def dsub_7 : ComposedSubRegIndex<qsub_3, dsub_1>;
54
55def ssub_0  : SubRegIndex<32>;
56def ssub_1  : SubRegIndex<32, 32>;
57def ssub_2  : ComposedSubRegIndex<dsub_1, ssub_0>;
58def ssub_3  : ComposedSubRegIndex<dsub_1, ssub_1>;
59def ssub_4  : ComposedSubRegIndex<dsub_2, ssub_0>;
60def ssub_5  : ComposedSubRegIndex<dsub_2, ssub_1>;
61def ssub_6  : ComposedSubRegIndex<dsub_3, ssub_0>;
62def ssub_7  : ComposedSubRegIndex<dsub_3, ssub_1>;
63def ssub_8  : ComposedSubRegIndex<dsub_4, ssub_0>;
64def ssub_9  : ComposedSubRegIndex<dsub_4, ssub_1>;
65def ssub_10 : ComposedSubRegIndex<dsub_5, ssub_0>;
66def ssub_11 : ComposedSubRegIndex<dsub_5, ssub_1>;
67def ssub_12 : ComposedSubRegIndex<dsub_6, ssub_0>;
68def ssub_13 : ComposedSubRegIndex<dsub_6, ssub_1>;
69def ssub_14 : ComposedSubRegIndex<dsub_7, ssub_0>;
70def ssub_15 : ComposedSubRegIndex<dsub_7, ssub_1>;
71
72def gsub_0 : SubRegIndex<32>;
73def gsub_1 : SubRegIndex<32, 32>;
74// Let TableGen synthesize the remaining 12 ssub_* indices.
75// We don't need to name them.
76}
77
78// Integer registers
79def R0  : ARMReg< 0, "r0">,  DwarfRegNum<[0]>;
80def R1  : ARMReg< 1, "r1">,  DwarfRegNum<[1]>;
81def R2  : ARMReg< 2, "r2">,  DwarfRegNum<[2]>;
82def R3  : ARMReg< 3, "r3">,  DwarfRegNum<[3]>;
83def R4  : ARMReg< 4, "r4">,  DwarfRegNum<[4]>;
84def R5  : ARMReg< 5, "r5">,  DwarfRegNum<[5]>;
85def R6  : ARMReg< 6, "r6">,  DwarfRegNum<[6]>;
86def R7  : ARMReg< 7, "r7">,  DwarfRegNum<[7]>;
87// These require 32-bit instructions.
88let CostPerUse = [1] in {
89def R8  : ARMReg< 8, "r8">,  DwarfRegNum<[8]>;
90def R9  : ARMReg< 9, "r9">,  DwarfRegNum<[9]>;
91def R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>;
92def R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>;
93def R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>;
94let RegAltNameIndices = [RegNamesRaw] in {
95def SP  : ARMReg<13, "sp", [], ["r13"]>,  DwarfRegNum<[13]>;
96def LR  : ARMReg<14, "lr", [], ["r14"]>,  DwarfRegNum<[14]>;
97def PC  : ARMReg<15, "pc", [], ["r15"]>,  DwarfRegNum<[15]>;
98}
99}
100
101// Float registers
102def S0  : ARMFReg< 0, "s0">;  def S1  : ARMFReg< 1, "s1">;
103def S2  : ARMFReg< 2, "s2">;  def S3  : ARMFReg< 3, "s3">;
104def S4  : ARMFReg< 4, "s4">;  def S5  : ARMFReg< 5, "s5">;
105def S6  : ARMFReg< 6, "s6">;  def S7  : ARMFReg< 7, "s7">;
106def S8  : ARMFReg< 8, "s8">;  def S9  : ARMFReg< 9, "s9">;
107def S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">;
108def S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">;
109def S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">;
110def S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">;
111def S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">;
112def S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">;
113def S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">;
114def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">;
115def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">;
116def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">;
117def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">;
118
119// Aliases of the F* registers used to hold 64-bit fp values (doubles)
120let SubRegIndices = [ssub_0, ssub_1] in {
121def D0  : ARMReg< 0,  "d0", [S0,   S1]>, DwarfRegNum<[256]>;
122def D1  : ARMReg< 1,  "d1", [S2,   S3]>, DwarfRegNum<[257]>;
123def D2  : ARMReg< 2,  "d2", [S4,   S5]>, DwarfRegNum<[258]>;
124def D3  : ARMReg< 3,  "d3", [S6,   S7]>, DwarfRegNum<[259]>;
125def D4  : ARMReg< 4,  "d4", [S8,   S9]>, DwarfRegNum<[260]>;
126def D5  : ARMReg< 5,  "d5", [S10, S11]>, DwarfRegNum<[261]>;
127def D6  : ARMReg< 6,  "d6", [S12, S13]>, DwarfRegNum<[262]>;
128def D7  : ARMReg< 7,  "d7", [S14, S15]>, DwarfRegNum<[263]>;
129def D8  : ARMReg< 8,  "d8", [S16, S17]>, DwarfRegNum<[264]>;
130def D9  : ARMReg< 9,  "d9", [S18, S19]>, DwarfRegNum<[265]>;
131def D10 : ARMReg<10, "d10", [S20, S21]>, DwarfRegNum<[266]>;
132def D11 : ARMReg<11, "d11", [S22, S23]>, DwarfRegNum<[267]>;
133def D12 : ARMReg<12, "d12", [S24, S25]>, DwarfRegNum<[268]>;
134def D13 : ARMReg<13, "d13", [S26, S27]>, DwarfRegNum<[269]>;
135def D14 : ARMReg<14, "d14", [S28, S29]>, DwarfRegNum<[270]>;
136def D15 : ARMReg<15, "d15", [S30, S31]>, DwarfRegNum<[271]>;
137}
138
139// VFP3 defines 16 additional double registers
140def D16 : ARMFReg<16, "d16">, DwarfRegNum<[272]>;
141def D17 : ARMFReg<17, "d17">, DwarfRegNum<[273]>;
142def D18 : ARMFReg<18, "d18">, DwarfRegNum<[274]>;
143def D19 : ARMFReg<19, "d19">, DwarfRegNum<[275]>;
144def D20 : ARMFReg<20, "d20">, DwarfRegNum<[276]>;
145def D21 : ARMFReg<21, "d21">, DwarfRegNum<[277]>;
146def D22 : ARMFReg<22, "d22">, DwarfRegNum<[278]>;
147def D23 : ARMFReg<23, "d23">, DwarfRegNum<[279]>;
148def D24 : ARMFReg<24, "d24">, DwarfRegNum<[280]>;
149def D25 : ARMFReg<25, "d25">, DwarfRegNum<[281]>;
150def D26 : ARMFReg<26, "d26">, DwarfRegNum<[282]>;
151def D27 : ARMFReg<27, "d27">, DwarfRegNum<[283]>;
152def D28 : ARMFReg<28, "d28">, DwarfRegNum<[284]>;
153def D29 : ARMFReg<29, "d29">, DwarfRegNum<[285]>;
154def D30 : ARMFReg<30, "d30">, DwarfRegNum<[286]>;
155def D31 : ARMFReg<31, "d31">, DwarfRegNum<[287]>;
156
157// Advanced SIMD (NEON) defines 16 quad-word aliases
158let SubRegIndices = [dsub_0, dsub_1] in {
159def Q0  : ARMReg< 0,  "q0", [D0,   D1]>;
160def Q1  : ARMReg< 1,  "q1", [D2,   D3]>;
161def Q2  : ARMReg< 2,  "q2", [D4,   D5]>;
162def Q3  : ARMReg< 3,  "q3", [D6,   D7]>;
163def Q4  : ARMReg< 4,  "q4", [D8,   D9]>;
164def Q5  : ARMReg< 5,  "q5", [D10, D11]>;
165def Q6  : ARMReg< 6,  "q6", [D12, D13]>;
166def Q7  : ARMReg< 7,  "q7", [D14, D15]>;
167}
168let SubRegIndices = [dsub_0, dsub_1] in {
169def Q8  : ARMReg< 8,  "q8", [D16, D17]>;
170def Q9  : ARMReg< 9,  "q9", [D18, D19]>;
171def Q10 : ARMReg<10, "q10", [D20, D21]>;
172def Q11 : ARMReg<11, "q11", [D22, D23]>;
173def Q12 : ARMReg<12, "q12", [D24, D25]>;
174def Q13 : ARMReg<13, "q13", [D26, D27]>;
175def Q14 : ARMReg<14, "q14", [D28, D29]>;
176def Q15 : ARMReg<15, "q15", [D30, D31]>;
177}
178
179// Current Program Status Register.
180// We model fpscr with two registers: FPSCR models the control bits and will be
181// reserved. FPSCR_NZCV models the flag bits and will be unreserved. APSR_NZCV
182// models the APSR when it's accessed by some special instructions. In such cases
183// it has the same encoding as PC.
184def CPSR       : ARMReg<0,  "cpsr">;
185def APSR       : ARMReg<15, "apsr">;
186def APSR_NZCV  : ARMReg<15, "apsr_nzcv">;
187def SPSR       : ARMReg<2,  "spsr">;
188def FPSCR      : ARMReg<3,  "fpscr">;
189def FPSCR_NZCV : ARMReg<3,  "fpscr_nzcv"> {
190  let Aliases = [FPSCR];
191}
192def ITSTATE    : ARMReg<4, "itstate">;
193
194// Special Registers - only available in privileged mode.
195def FPSID   : ARMReg<0,  "fpsid">;
196def MVFR2   : ARMReg<5,  "mvfr2">;
197def MVFR1   : ARMReg<6,  "mvfr1">;
198def MVFR0   : ARMReg<7,  "mvfr0">;
199def FPEXC   : ARMReg<8,  "fpexc">;
200def FPINST  : ARMReg<9,  "fpinst">;
201def FPINST2 : ARMReg<10, "fpinst2">;
202// These encodings aren't actual instruction encodings, their encoding depends
203// on the instruction they are used in and for VPR 32 was chosen such that it
204// always comes last in spr_reglist_with_vpr.
205def VPR     : ARMReg<32, "vpr">;
206def FPSCR_NZCVQC
207            : ARMReg<2, "fpscr_nzcvqc">;
208def P0      : ARMReg<13, "p0">;
209def FPCXTNS : ARMReg<14, "fpcxtns">;
210def FPCXTS  : ARMReg<15, "fpcxts">;
211
212def ZR  : ARMReg<15, "zr">,  DwarfRegNum<[15]>;
213
214// Register classes.
215//
216// pc  == Program Counter
217// lr  == Link Register
218// sp  == Stack Pointer
219// r12 == ip (scratch)
220// r7  == Frame Pointer (thumb-style backtraces)
221// r9  == May be reserved as Thread Register
222// r11 == Frame Pointer (arm-style backtraces)
223// r10 == Stack Limit
224//
225def GPR : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12),
226                                               SP, LR, PC)> {
227  // Allocate LR as the first CSR since it is always saved anyway.
228  // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't
229  // know how to spill them. If we make our prologue/epilogue code smarter at
230  // some point, we can go back to using the above allocation orders for the
231  // Thumb1 instructions that know how to use hi regs.
232  let AltOrders = [(add LR, GPR), (trunc GPR, 8),
233                   (add (trunc GPR, 8), R12, LR, (shl GPR, 8))];
234  let AltOrderSelect = [{
235      return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF);
236  }];
237  let DiagnosticString = "operand must be a register in range [r0, r15]";
238}
239
240// Register set that excludes registers that are reserved for procedure calls.
241// This is used for pseudo-instructions that are actually implemented using a
242// procedure call.
243def GPRnoip : RegisterClass<"ARM", [i32], 32, (sub GPR, R12, LR)> {
244  // Allocate LR as the first CSR since it is always saved anyway.
245  // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't
246  // know how to spill them. If we make our prologue/epilogue code smarter at
247  // some point, we can go back to using the above allocation orders for the
248  // Thumb1 instructions that know how to use hi regs.
249  let AltOrders = [(add GPRnoip, GPRnoip), (trunc GPRnoip, 8),
250                   (add (trunc GPRnoip, 8), (shl GPRnoip, 8))];
251  let AltOrderSelect = [{
252      return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF);
253  }];
254  let DiagnosticString = "operand must be a register in range [r0, r14]";
255}
256
257// GPRs without the PC.  Some ARM instructions do not allow the PC in
258// certain operand slots, particularly as the destination.  Primarily
259// useful for disassembly.
260def GPRnopc : RegisterClass<"ARM", [i32], 32, (sub GPR, PC)> {
261  let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8),
262                   (add (trunc GPRnopc, 8), R12, LR, (shl GPRnopc, 8))];
263  let AltOrderSelect = [{
264      return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF);
265  }];
266  let DiagnosticString = "operand must be a register in range [r0, r14]";
267}
268
269// GPRs without the PC but with APSR. Some instructions allow accessing the
270// APSR, while actually encoding PC in the register field. This is useful
271// for assembly and disassembly only.
272def GPRwithAPSR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), APSR_NZCV)> {
273  let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)];
274  let AltOrderSelect = [{
275      return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
276  }];
277  let DiagnosticString = "operand must be a register in range [r0, r14] or apsr_nzcv";
278}
279
280// GPRs without the PC and SP registers but with APSR. Used by CLRM instruction.
281def GPRwithAPSRnosp : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), LR, APSR)> {
282  let isAllocatable = 0;
283}
284
285def GPRwithZR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), ZR)> {
286  let AltOrders = [(add LR, GPRwithZR), (trunc GPRwithZR, 8)];
287  let AltOrderSelect = [{
288      return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
289  }];
290  let DiagnosticString = "operand must be a register in range [r0, r14] or zr";
291}
292
293def GPRwithZRnosp : RegisterClass<"ARM", [i32], 32, (sub GPRwithZR, SP)> {
294  let AltOrders = [(add LR, GPRwithZRnosp), (trunc GPRwithZRnosp, 8)];
295  let AltOrderSelect = [{
296      return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
297  }];
298  let DiagnosticString = "operand must be a register in range [r0, r12] or r14 or zr";
299}
300
301// GPRsp - Only the SP is legal. Used by Thumb1 instructions that want the
302// implied SP argument list.
303// FIXME: It would be better to not use this at all and refactor the
304// instructions to not have SP an an explicit argument. That makes
305// frame index resolution a bit trickier, though.
306def GPRsp : RegisterClass<"ARM", [i32], 32, (add SP)> {
307  let DiagnosticString = "operand must be a register sp";
308}
309
310// GPRlr - Only LR is legal. Used by ARMv8.1-M Low Overhead Loop instructions
311// where LR is the only legal loop counter register.
312def GPRlr : RegisterClass<"ARM", [i32], 32, (add LR)>;
313
314// restricted GPR register class. Many Thumb2 instructions allow the full
315// register range for operands, but have undefined behaviours when PC
316// or SP (R13 or R15) are used. The ARM ISA refers to these operands
317// via the BadReg() pseudo-code description.
318def rGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, SP, PC)> {
319  let AltOrders = [(add LR, rGPR), (trunc rGPR, 8),
320                   (add (trunc rGPR, 8), R12, LR, (shl rGPR, 8))];
321  let AltOrderSelect = [{
322      return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF);
323  }];
324  let DiagnosticType = "rGPR";
325}
326
327// GPRs without the PC and SP but with APSR_NZCV.Some instructions allow
328// accessing the APSR_NZCV, while actually encoding PC in the register field.
329// This is useful for assembly and disassembly only.
330// Currently used by the CDE extension.
331def GPRwithAPSR_NZCVnosp
332  : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), LR, APSR_NZCV)> {
333  let isAllocatable = 0;
334  let DiagnosticString =
335    "operand must be a register in the range [r0, r12], r14 or apsr_nzcv";
336}
337
338// Thumb registers are R0-R7 normally. Some instructions can still use
339// the general GPR register class above (MOV, e.g.)
340def tGPR : RegisterClass<"ARM", [i32], 32, (trunc GPR, 8)> {
341  let DiagnosticString = "operand must be a register in range [r0, r7]";
342}
343
344// Thumb registers R0-R7 and the PC. Some instructions like TBB or THH allow
345// the PC to be used as a destination operand as well.
346def tGPRwithpc : RegisterClass<"ARM", [i32], 32, (add tGPR, PC)>;
347
348// The high registers in thumb mode, R8-R15.
349def hGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, tGPR)> {
350  let DiagnosticString = "operand must be a register in range [r8, r15]";
351}
352
353// For tail calls, we can't use callee-saved registers, as they are restored
354// to the saved value before the tail call, which would clobber a call address.
355// Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of
356// this class and the preceding one(!)  This is what we want.
357def tcGPR : RegisterClass<"ARM", [i32], 32, (add R0, R1, R2, R3, R12)> {
358  let AltOrders = [(and tcGPR, tGPR)];
359  let AltOrderSelect = [{
360      return MF.getSubtarget<ARMSubtarget>().isThumb1Only();
361  }];
362}
363
364def tGPROdd : RegisterClass<"ARM", [i32], 32, (add R1, R3, R5, R7, R9, R11)> {
365  let AltOrders = [(and tGPROdd, tGPR)];
366  let AltOrderSelect = [{
367      return MF.getSubtarget<ARMSubtarget>().isThumb1Only();
368  }];
369  let DiagnosticString =
370    "operand must be an odd-numbered register in range [r1,r11]";
371}
372
373def tGPREven : RegisterClass<"ARM", [i32], 32, (add R0, R2, R4, R6, R8, R10, R12, LR)> {
374  let AltOrders = [(and tGPREven, tGPR)];
375  let AltOrderSelect = [{
376      return MF.getSubtarget<ARMSubtarget>().isThumb1Only();
377  }];
378  let DiagnosticString = "operand must be an even-numbered register";
379}
380
381// Condition code registers.
382def CCR : RegisterClass<"ARM", [i32], 32, (add CPSR)> {
383  let CopyCost = -1;  // Don't allow copying of status registers.
384  let isAllocatable = 0;
385}
386
387// MVE Condition code register.
388def VCCR : RegisterClass<"ARM", [i32, v16i1, v8i1, v4i1], 32, (add VPR)> {
389//  let CopyCost = -1;  // Don't allow copying of status registers.
390}
391
392// FPSCR, when the flags at the top of it are used as the input or
393// output to an instruction such as MVE VADC.
394def cl_FPSCR_NZCV : RegisterClass<"ARM", [i32], 32, (add FPSCR_NZCV)>;
395
396// Scalar single precision floating point register class..
397// FIXME: Allocation order changed to s0, s2, ... or s0, s4, ... as a quick hack
398// to avoid partial-write dependencies on D or Q (depending on platform)
399// registers (S registers are renamed as portions of D/Q registers).
400def SPR : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 31)> {
401  let AltOrders = [(add (decimate SPR, 2), SPR),
402                   (add (decimate SPR, 4),
403                        (decimate SPR, 2),
404                        (decimate (rotl SPR, 1), 4),
405                        (decimate (rotl SPR, 1), 2))];
406  let AltOrderSelect = [{
407    return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs();
408  }];
409  let DiagnosticString = "operand must be a register in range [s0, s31]";
410}
411
412def HPR : RegisterClass<"ARM", [f16, bf16], 32, (sequence "S%u", 0, 31)> {
413  let AltOrders = [(add (decimate HPR, 2), SPR),
414                   (add (decimate HPR, 4),
415                        (decimate HPR, 2),
416                        (decimate (rotl HPR, 1), 4),
417                        (decimate (rotl HPR, 1), 2))];
418  let AltOrderSelect = [{
419    return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs();
420  }];
421  let DiagnosticString = "operand must be a register in range [s0, s31]";
422}
423
424// Subset of SPR which can be used as a source of NEON scalars for 16-bit
425// operations
426def SPR_8 : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 15)> {
427  let DiagnosticString = "operand must be a register in range [s0, s15]";
428}
429
430// Scalar double precision floating point / generic 64-bit vector register
431// class.
432// ARM requires only word alignment for double. It's more performant if it
433// is double-word alignment though.
434def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16, v4bf16], 64,
435                        (sequence "D%u", 0, 31)> {
436  // Allocate non-VFP2 registers D16-D31 first, and prefer even registers on
437  // Darwin platforms.
438  let AltOrders = [(rotl DPR, 16),
439                   (add (decimate (rotl DPR, 16), 2), (rotl DPR, 16))];
440  let AltOrderSelect = [{
441    return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs();
442  }];
443  let DiagnosticType = "DPR";
444}
445
446// Scalar single and double precision floating point and VPR register class,
447// this is only used for parsing, don't use it anywhere else as the size and
448// types don't match!
449def FPWithVPR : RegisterClass<"ARM", [f32], 32, (add SPR, DPR, VPR)> {
450    let isAllocatable = 0;
451}
452
453// Subset of DPR that are accessible with VFP2 (and so that also have
454// 32-bit SPR subregs).
455def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16, v4bf16], 64,
456                             (trunc DPR, 16)> {
457  let DiagnosticString = "operand must be a register in range [d0, d15]";
458}
459
460// Subset of DPR which can be used as a source of NEON scalars for 16-bit
461// operations
462def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16, v4bf16], 64,
463                          (trunc DPR, 8)> {
464  let DiagnosticString = "operand must be a register in range [d0, d7]";
465}
466
467// Generic 128-bit vector register class.
468def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, v8f16, v8bf16], 128,
469                        (sequence "Q%u", 0, 15)> {
470  // Allocate non-VFP2 aliases Q8-Q15 first.
471  let AltOrders = [(rotl QPR, 8), (trunc QPR, 8)];
472  let AltOrderSelect = [{
473    return 1 + MF.getSubtarget<ARMSubtarget>().hasMVEIntegerOps();
474  }];
475  let DiagnosticString = "operand must be a register in range [q0, q15]";
476}
477
478// Subset of QPR that have 32-bit SPR subregs.
479def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
480                             128, (trunc QPR, 8)> {
481  let DiagnosticString = "operand must be a register in range [q0, q7]";
482}
483
484// Subset of QPR that have DPR_8 and SPR_8 subregs.
485def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
486                           128, (trunc QPR, 4)> {
487  let DiagnosticString = "operand must be a register in range [q0, q3]";
488}
489
490// MVE 128-bit vector register class. This class is only really needed for
491// parsing assembly, since we still have to truncate the register set in the QPR
492// class anyway.
493def MQPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, v8f16],
494                         128, (trunc QPR, 8)>;
495
496// Pseudo-registers representing odd-even pairs of D registers. The even-odd
497// pairs are already represented by the Q registers.
498// These are needed by NEON instructions requiring two consecutive D registers.
499// There is no D31_D0 register as that is always an UNPREDICTABLE encoding.
500def TuplesOE2D : RegisterTuples<[dsub_0, dsub_1],
501                                [(decimate (shl DPR, 1), 2),
502                                 (decimate (shl DPR, 2), 2)]>;
503
504// Register class representing a pair of consecutive D registers.
505// Use the Q registers for the even-odd pairs.
506def DPair : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
507                          128, (interleave QPR, TuplesOE2D)> {
508  // Allocate starting at non-VFP2 registers D16-D31 first.
509  // Prefer even-odd pairs as they are easier to copy.
510  let AltOrders = [(add (rotl QPR, 8),  (rotl DPair, 16)),
511                   (add (trunc QPR, 8), (trunc DPair, 16))];
512  let AltOrderSelect = [{
513    return 1 + MF.getSubtarget<ARMSubtarget>().hasMVEIntegerOps();
514  }];
515}
516
517// Pseudo-registers representing even-odd pairs of GPRs from R1 to R13/SP.
518// These are needed by instructions (e.g. ldrexd/strexd) requiring even-odd GPRs.
519def Tuples2Rnosp : RegisterTuples<[gsub_0, gsub_1],
520                                  [(add R0, R2, R4, R6, R8, R10),
521                                   (add R1, R3, R5, R7, R9, R11)]>;
522
523def Tuples2Rsp   : RegisterTuples<[gsub_0, gsub_1],
524                                  [(add R12), (add SP)]>;
525
526// Register class representing a pair of even-odd GPRs.
527def GPRPair : RegisterClass<"ARM", [untyped], 64, (add Tuples2Rnosp, Tuples2Rsp)> {
528  let Size = 64; // 2 x 32 bits, we have no predefined type of that size.
529}
530
531// Register class representing a pair of even-odd GPRs, except (R12, SP).
532def GPRPairnosp : RegisterClass<"ARM", [untyped], 64, (add Tuples2Rnosp)> {
533  let Size = 64; // 2 x 32 bits, we have no predefined type of that size.
534}
535
536// Pseudo-registers representing 3 consecutive D registers.
537def Tuples3D : RegisterTuples<[dsub_0, dsub_1, dsub_2],
538                              [(shl DPR, 0),
539                               (shl DPR, 1),
540                               (shl DPR, 2)]>;
541
542// 3 consecutive D registers.
543def DTriple : RegisterClass<"ARM", [untyped], 64, (add Tuples3D)> {
544  let Size = 192; // 3 x 64 bits, we have no predefined type of that size.
545}
546
547// Pseudo 256-bit registers to represent pairs of Q registers. These should
548// never be present in the emitted code.
549// These are used for NEON load / store instructions, e.g., vld4, vst3.
550def Tuples2Q : RegisterTuples<[qsub_0, qsub_1], [(shl QPR, 0), (shl QPR, 1)]>;
551
552// Pseudo 256-bit vector register class to model pairs of Q registers
553// (4 consecutive D registers).
554def QQPR : RegisterClass<"ARM", [v4i64], 256, (add Tuples2Q)> {
555  // Allocate non-VFP2 aliases first.
556  let AltOrders = [(rotl QQPR, 8)];
557  let AltOrderSelect = [{ return 1; }];
558}
559
560// Same as QQPR but for MVE, containing the 7 register pairs made up from Q0-Q7.
561def MQQPR : RegisterClass<"ARM", [v4i64], 256, (trunc QQPR, 7)>;
562
563// Tuples of 4 D regs that isn't also a pair of Q regs.
564def TuplesOE4D : RegisterTuples<[dsub_0, dsub_1, dsub_2, dsub_3],
565                                [(decimate (shl DPR, 1), 2),
566                                 (decimate (shl DPR, 2), 2),
567                                 (decimate (shl DPR, 3), 2),
568                                 (decimate (shl DPR, 4), 2)]>;
569
570// 4 consecutive D registers.
571def DQuad : RegisterClass<"ARM", [v4i64], 256,
572                          (interleave Tuples2Q, TuplesOE4D)>;
573
574// Pseudo 512-bit registers to represent four consecutive Q registers.
575def Tuples2QQ : RegisterTuples<[qqsub_0, qqsub_1],
576                               [(shl QQPR, 0), (shl QQPR, 2)]>;
577
578// Pseudo 512-bit vector register class to model 4 consecutive Q registers
579// (8 consecutive D registers).
580def QQQQPR : RegisterClass<"ARM", [v8i64], 256, (add Tuples2QQ)> {
581  // Allocate non-VFP2 aliases first.
582  let AltOrders = [(rotl QQQQPR, 8)];
583  let AltOrderSelect = [{ return 1; }];
584}
585
586// Same as QQPR but for MVE, containing the 5 register quads made up from Q0-Q7.
587def MQQQQPR : RegisterClass<"ARM", [v8i64], 256, (trunc QQQQPR, 5)>;
588
589
590// Pseudo-registers representing 2-spaced consecutive D registers.
591def Tuples2DSpc : RegisterTuples<[dsub_0, dsub_2],
592                                 [(shl DPR, 0),
593                                  (shl DPR, 2)]>;
594
595// Spaced pairs of D registers.
596def DPairSpc : RegisterClass<"ARM", [v2i64], 64, (add Tuples2DSpc)>;
597
598def Tuples3DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4],
599                                 [(shl DPR, 0),
600                                  (shl DPR, 2),
601                                  (shl DPR, 4)]>;
602
603// Spaced triples of D registers.
604def DTripleSpc : RegisterClass<"ARM", [untyped], 64, (add Tuples3DSpc)> {
605  let Size = 192; // 3 x 64 bits, we have no predefined type of that size.
606}
607
608def Tuples4DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4, dsub_6],
609                                 [(shl DPR, 0),
610                                  (shl DPR, 2),
611                                  (shl DPR, 4),
612                                  (shl DPR, 6)]>;
613
614// Spaced quads of D registers.
615def DQuadSpc : RegisterClass<"ARM", [v4i64], 64, (add Tuples3DSpc)>;
616
617// FP context payload
618def FPCXTRegs : RegisterClass<"ARM", [i32], 32, (add FPCXTNS)>;
619