1//===-- ARMRegisterInfo.td - ARM Register defs -------------*- tablegen -*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8 9include "ARMSystemRegister.td" 10 11//===----------------------------------------------------------------------===// 12// Declarations that describe the ARM register file 13//===----------------------------------------------------------------------===// 14 15// Registers are identified with 4-bit ID numbers. 16class ARMReg<bits<16> Enc, string n, list<Register> subregs = [], 17 list<string> altNames = []> : Register<n, altNames> { 18 let HWEncoding = Enc; 19 let Namespace = "ARM"; 20 let SubRegs = subregs; 21 // All bits of ARM registers with sub-registers are covered by sub-registers. 22 let CoveredBySubRegs = 1; 23} 24 25class ARMFReg<bits<16> Enc, string n> : Register<n> { 26 let HWEncoding = Enc; 27 let Namespace = "ARM"; 28} 29 30let Namespace = "ARM", 31 FallbackRegAltNameIndex = NoRegAltName in { 32 def RegNamesRaw : RegAltNameIndex; 33} 34 35// Subregister indices. 36let Namespace = "ARM" in { 37def qqsub_0 : SubRegIndex<256>; 38def qqsub_1 : SubRegIndex<256, 256>; 39 40// Note: Code depends on these having consecutive numbers. 41def qsub_0 : SubRegIndex<128>; 42def qsub_1 : SubRegIndex<128, 128>; 43def qsub_2 : ComposedSubRegIndex<qqsub_1, qsub_0>; 44def qsub_3 : ComposedSubRegIndex<qqsub_1, qsub_1>; 45 46def dsub_0 : SubRegIndex<64>; 47def dsub_1 : SubRegIndex<64, 64>; 48def dsub_2 : ComposedSubRegIndex<qsub_1, dsub_0>; 49def dsub_3 : ComposedSubRegIndex<qsub_1, dsub_1>; 50def dsub_4 : ComposedSubRegIndex<qsub_2, dsub_0>; 51def dsub_5 : ComposedSubRegIndex<qsub_2, dsub_1>; 52def dsub_6 : ComposedSubRegIndex<qsub_3, dsub_0>; 53def dsub_7 : ComposedSubRegIndex<qsub_3, dsub_1>; 54 55def ssub_0 : SubRegIndex<32>; 56def ssub_1 : SubRegIndex<32, 32>; 57def ssub_2 : ComposedSubRegIndex<dsub_1, ssub_0>; 58def ssub_3 : ComposedSubRegIndex<dsub_1, ssub_1>; 59def ssub_4 : ComposedSubRegIndex<dsub_2, ssub_0>; 60def ssub_5 : ComposedSubRegIndex<dsub_2, ssub_1>; 61def ssub_6 : ComposedSubRegIndex<dsub_3, ssub_0>; 62def ssub_7 : ComposedSubRegIndex<dsub_3, ssub_1>; 63def ssub_8 : ComposedSubRegIndex<dsub_4, ssub_0>; 64def ssub_9 : ComposedSubRegIndex<dsub_4, ssub_1>; 65def ssub_10 : ComposedSubRegIndex<dsub_5, ssub_0>; 66def ssub_11 : ComposedSubRegIndex<dsub_5, ssub_1>; 67def ssub_12 : ComposedSubRegIndex<dsub_6, ssub_0>; 68def ssub_13 : ComposedSubRegIndex<dsub_6, ssub_1>; 69def ssub_14 : ComposedSubRegIndex<dsub_7, ssub_0>; 70def ssub_15 : ComposedSubRegIndex<dsub_7, ssub_1>; 71 72def gsub_0 : SubRegIndex<32>; 73def gsub_1 : SubRegIndex<32, 32>; 74// Let TableGen synthesize the remaining 12 ssub_* indices. 75// We don't need to name them. 76} 77 78// Integer registers 79def R0 : ARMReg< 0, "r0">, DwarfRegNum<[0]>; 80def R1 : ARMReg< 1, "r1">, DwarfRegNum<[1]>; 81def R2 : ARMReg< 2, "r2">, DwarfRegNum<[2]>; 82def R3 : ARMReg< 3, "r3">, DwarfRegNum<[3]>; 83def R4 : ARMReg< 4, "r4">, DwarfRegNum<[4]>; 84def R5 : ARMReg< 5, "r5">, DwarfRegNum<[5]>; 85def R6 : ARMReg< 6, "r6">, DwarfRegNum<[6]>; 86def R7 : ARMReg< 7, "r7">, DwarfRegNum<[7]>; 87// These require 32-bit instructions. 88let CostPerUse = [1] in { 89def R8 : ARMReg< 8, "r8">, DwarfRegNum<[8]>; 90def R9 : ARMReg< 9, "r9">, DwarfRegNum<[9]>; 91def R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>; 92def R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>; 93def R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>; 94let RegAltNameIndices = [RegNamesRaw] in { 95def SP : ARMReg<13, "sp", [], ["r13"]>, DwarfRegNum<[13]>; 96def LR : ARMReg<14, "lr", [], ["r14"]>, DwarfRegNum<[14]>; 97def PC : ARMReg<15, "pc", [], ["r15"]>, DwarfRegNum<[15]>; 98} 99} 100 101// Float registers 102def S0 : ARMFReg< 0, "s0">; def S1 : ARMFReg< 1, "s1">; 103def S2 : ARMFReg< 2, "s2">; def S3 : ARMFReg< 3, "s3">; 104def S4 : ARMFReg< 4, "s4">; def S5 : ARMFReg< 5, "s5">; 105def S6 : ARMFReg< 6, "s6">; def S7 : ARMFReg< 7, "s7">; 106def S8 : ARMFReg< 8, "s8">; def S9 : ARMFReg< 9, "s9">; 107def S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">; 108def S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">; 109def S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">; 110def S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">; 111def S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">; 112def S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">; 113def S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">; 114def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">; 115def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">; 116def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">; 117def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">; 118 119// Aliases of the F* registers used to hold 64-bit fp values (doubles) 120let SubRegIndices = [ssub_0, ssub_1] in { 121def D0 : ARMReg< 0, "d0", [S0, S1]>, DwarfRegNum<[256]>; 122def D1 : ARMReg< 1, "d1", [S2, S3]>, DwarfRegNum<[257]>; 123def D2 : ARMReg< 2, "d2", [S4, S5]>, DwarfRegNum<[258]>; 124def D3 : ARMReg< 3, "d3", [S6, S7]>, DwarfRegNum<[259]>; 125def D4 : ARMReg< 4, "d4", [S8, S9]>, DwarfRegNum<[260]>; 126def D5 : ARMReg< 5, "d5", [S10, S11]>, DwarfRegNum<[261]>; 127def D6 : ARMReg< 6, "d6", [S12, S13]>, DwarfRegNum<[262]>; 128def D7 : ARMReg< 7, "d7", [S14, S15]>, DwarfRegNum<[263]>; 129def D8 : ARMReg< 8, "d8", [S16, S17]>, DwarfRegNum<[264]>; 130def D9 : ARMReg< 9, "d9", [S18, S19]>, DwarfRegNum<[265]>; 131def D10 : ARMReg<10, "d10", [S20, S21]>, DwarfRegNum<[266]>; 132def D11 : ARMReg<11, "d11", [S22, S23]>, DwarfRegNum<[267]>; 133def D12 : ARMReg<12, "d12", [S24, S25]>, DwarfRegNum<[268]>; 134def D13 : ARMReg<13, "d13", [S26, S27]>, DwarfRegNum<[269]>; 135def D14 : ARMReg<14, "d14", [S28, S29]>, DwarfRegNum<[270]>; 136def D15 : ARMReg<15, "d15", [S30, S31]>, DwarfRegNum<[271]>; 137} 138 139// VFP3 defines 16 additional double registers 140def D16 : ARMFReg<16, "d16">, DwarfRegNum<[272]>; 141def D17 : ARMFReg<17, "d17">, DwarfRegNum<[273]>; 142def D18 : ARMFReg<18, "d18">, DwarfRegNum<[274]>; 143def D19 : ARMFReg<19, "d19">, DwarfRegNum<[275]>; 144def D20 : ARMFReg<20, "d20">, DwarfRegNum<[276]>; 145def D21 : ARMFReg<21, "d21">, DwarfRegNum<[277]>; 146def D22 : ARMFReg<22, "d22">, DwarfRegNum<[278]>; 147def D23 : ARMFReg<23, "d23">, DwarfRegNum<[279]>; 148def D24 : ARMFReg<24, "d24">, DwarfRegNum<[280]>; 149def D25 : ARMFReg<25, "d25">, DwarfRegNum<[281]>; 150def D26 : ARMFReg<26, "d26">, DwarfRegNum<[282]>; 151def D27 : ARMFReg<27, "d27">, DwarfRegNum<[283]>; 152def D28 : ARMFReg<28, "d28">, DwarfRegNum<[284]>; 153def D29 : ARMFReg<29, "d29">, DwarfRegNum<[285]>; 154def D30 : ARMFReg<30, "d30">, DwarfRegNum<[286]>; 155def D31 : ARMFReg<31, "d31">, DwarfRegNum<[287]>; 156 157// Advanced SIMD (NEON) defines 16 quad-word aliases 158let SubRegIndices = [dsub_0, dsub_1] in { 159def Q0 : ARMReg< 0, "q0", [D0, D1]>; 160def Q1 : ARMReg< 1, "q1", [D2, D3]>; 161def Q2 : ARMReg< 2, "q2", [D4, D5]>; 162def Q3 : ARMReg< 3, "q3", [D6, D7]>; 163def Q4 : ARMReg< 4, "q4", [D8, D9]>; 164def Q5 : ARMReg< 5, "q5", [D10, D11]>; 165def Q6 : ARMReg< 6, "q6", [D12, D13]>; 166def Q7 : ARMReg< 7, "q7", [D14, D15]>; 167} 168let SubRegIndices = [dsub_0, dsub_1] in { 169def Q8 : ARMReg< 8, "q8", [D16, D17]>; 170def Q9 : ARMReg< 9, "q9", [D18, D19]>; 171def Q10 : ARMReg<10, "q10", [D20, D21]>; 172def Q11 : ARMReg<11, "q11", [D22, D23]>; 173def Q12 : ARMReg<12, "q12", [D24, D25]>; 174def Q13 : ARMReg<13, "q13", [D26, D27]>; 175def Q14 : ARMReg<14, "q14", [D28, D29]>; 176def Q15 : ARMReg<15, "q15", [D30, D31]>; 177} 178 179// Current Program Status Register. 180// We model fpscr with two registers: FPSCR models the control bits and will be 181// reserved. FPSCR_NZCV models the flag bits and will be unreserved. APSR_NZCV 182// models the APSR when it's accessed by some special instructions. In such cases 183// it has the same encoding as PC. 184def CPSR : ARMReg<0, "cpsr">; 185def APSR : ARMReg<15, "apsr">; 186def APSR_NZCV : ARMReg<15, "apsr_nzcv">; 187def SPSR : ARMReg<2, "spsr">; 188def FPSCR : ARMReg<3, "fpscr">; 189def FPSCR_NZCV : ARMReg<3, "fpscr_nzcv"> { 190 let Aliases = [FPSCR]; 191} 192def ITSTATE : ARMReg<4, "itstate">; 193 194// Special Registers - only available in privileged mode. 195def FPSID : ARMReg<0, "fpsid">; 196def MVFR2 : ARMReg<5, "mvfr2">; 197def MVFR1 : ARMReg<6, "mvfr1">; 198def MVFR0 : ARMReg<7, "mvfr0">; 199def FPEXC : ARMReg<8, "fpexc">; 200def FPINST : ARMReg<9, "fpinst">; 201def FPINST2 : ARMReg<10, "fpinst2">; 202// These encodings aren't actual instruction encodings, their encoding depends 203// on the instruction they are used in and for VPR 32 was chosen such that it 204// always comes last in spr_reglist_with_vpr. 205def VPR : ARMReg<32, "vpr">; 206def FPSCR_NZCVQC 207 : ARMReg<2, "fpscr_nzcvqc">; 208def P0 : ARMReg<13, "p0">; 209def FPCXTNS : ARMReg<14, "fpcxtns">; 210def FPCXTS : ARMReg<15, "fpcxts">; 211 212def ZR : ARMReg<15, "zr">, DwarfRegNum<[15]>; 213 214// Register classes. 215// 216// pc == Program Counter 217// lr == Link Register 218// sp == Stack Pointer 219// r12 == ip (scratch) 220// r7 == Frame Pointer (thumb-style backtraces) 221// r9 == May be reserved as Thread Register 222// r11 == Frame Pointer (arm-style backtraces) 223// r10 == Stack Limit 224// 225def GPR : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), 226 SP, LR, PC)> { 227 // Allocate LR as the first CSR since it is always saved anyway. 228 // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't 229 // know how to spill them. If we make our prologue/epilogue code smarter at 230 // some point, we can go back to using the above allocation orders for the 231 // Thumb1 instructions that know how to use hi regs. 232 let AltOrders = [(add LR, GPR), (trunc GPR, 8), 233 (add (trunc GPR, 8), R12, LR, (shl GPR, 8))]; 234 let AltOrderSelect = [{ 235 return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF); 236 }]; 237 let DiagnosticString = "operand must be a register in range [r0, r15]"; 238} 239 240// Register set that excludes registers that are reserved for procedure calls. 241// This is used for pseudo-instructions that are actually implemented using a 242// procedure call. 243def GPRnoip : RegisterClass<"ARM", [i32], 32, (sub GPR, R12, LR)> { 244 // Allocate LR as the first CSR since it is always saved anyway. 245 // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't 246 // know how to spill them. If we make our prologue/epilogue code smarter at 247 // some point, we can go back to using the above allocation orders for the 248 // Thumb1 instructions that know how to use hi regs. 249 let AltOrders = [(add GPRnoip, GPRnoip), (trunc GPRnoip, 8), 250 (add (trunc GPRnoip, 8), (shl GPRnoip, 8))]; 251 let AltOrderSelect = [{ 252 return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF); 253 }]; 254 let DiagnosticString = "operand must be a register in range [r0, r14]"; 255} 256 257// GPRs without the PC. Some ARM instructions do not allow the PC in 258// certain operand slots, particularly as the destination. Primarily 259// useful for disassembly. 260def GPRnopc : RegisterClass<"ARM", [i32], 32, (sub GPR, PC)> { 261 let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8), 262 (add (trunc GPRnopc, 8), R12, LR, (shl GPRnopc, 8))]; 263 let AltOrderSelect = [{ 264 return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF); 265 }]; 266 let DiagnosticString = "operand must be a register in range [r0, r14]"; 267} 268 269// GPRs without the PC but with APSR. Some instructions allow accessing the 270// APSR, while actually encoding PC in the register field. This is useful 271// for assembly and disassembly only. 272def GPRwithAPSR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), APSR_NZCV)> { 273 let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)]; 274 let AltOrderSelect = [{ 275 return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 276 }]; 277 let DiagnosticString = "operand must be a register in range [r0, r14] or apsr_nzcv"; 278} 279 280// GPRs without the PC and SP registers but with APSR. Used by CLRM instruction. 281def GPRwithAPSRnosp : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), LR, APSR)> { 282 let isAllocatable = 0; 283} 284 285def GPRwithZR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), ZR)> { 286 let AltOrders = [(add LR, GPRwithZR), (trunc GPRwithZR, 8)]; 287 let AltOrderSelect = [{ 288 return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 289 }]; 290 let DiagnosticString = "operand must be a register in range [r0, r14] or zr"; 291} 292 293def GPRwithZRnosp : RegisterClass<"ARM", [i32], 32, (sub GPRwithZR, SP)> { 294 let AltOrders = [(add LR, GPRwithZRnosp), (trunc GPRwithZRnosp, 8)]; 295 let AltOrderSelect = [{ 296 return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 297 }]; 298 let DiagnosticString = "operand must be a register in range [r0, r12] or r14 or zr"; 299} 300 301// GPRsp - Only the SP is legal. Used by Thumb1 instructions that want the 302// implied SP argument list. 303// FIXME: It would be better to not use this at all and refactor the 304// instructions to not have SP an an explicit argument. That makes 305// frame index resolution a bit trickier, though. 306def GPRsp : RegisterClass<"ARM", [i32], 32, (add SP)> { 307 let DiagnosticString = "operand must be a register sp"; 308} 309 310// GPRlr - Only LR is legal. Used by ARMv8.1-M Low Overhead Loop instructions 311// where LR is the only legal loop counter register. 312def GPRlr : RegisterClass<"ARM", [i32], 32, (add LR)>; 313 314// restricted GPR register class. Many Thumb2 instructions allow the full 315// register range for operands, but have undefined behaviours when PC 316// or SP (R13 or R15) are used. The ARM ISA refers to these operands 317// via the BadReg() pseudo-code description. 318def rGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, SP, PC)> { 319 let AltOrders = [(add LR, rGPR), (trunc rGPR, 8), 320 (add (trunc rGPR, 8), R12, LR, (shl rGPR, 8))]; 321 let AltOrderSelect = [{ 322 return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF); 323 }]; 324 let DiagnosticType = "rGPR"; 325} 326 327// GPRs without the PC and SP but with APSR_NZCV.Some instructions allow 328// accessing the APSR_NZCV, while actually encoding PC in the register field. 329// This is useful for assembly and disassembly only. 330// Currently used by the CDE extension. 331def GPRwithAPSR_NZCVnosp 332 : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), LR, APSR_NZCV)> { 333 let isAllocatable = 0; 334 let DiagnosticString = 335 "operand must be a register in the range [r0, r12], r14 or apsr_nzcv"; 336} 337 338// Thumb registers are R0-R7 normally. Some instructions can still use 339// the general GPR register class above (MOV, e.g.) 340def tGPR : RegisterClass<"ARM", [i32], 32, (trunc GPR, 8)> { 341 let DiagnosticString = "operand must be a register in range [r0, r7]"; 342} 343 344// Thumb registers R0-R7 and the PC. Some instructions like TBB or THH allow 345// the PC to be used as a destination operand as well. 346def tGPRwithpc : RegisterClass<"ARM", [i32], 32, (add tGPR, PC)>; 347 348// The high registers in thumb mode, R8-R15. 349def hGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, tGPR)> { 350 let DiagnosticString = "operand must be a register in range [r8, r15]"; 351} 352 353// For tail calls, we can't use callee-saved registers, as they are restored 354// to the saved value before the tail call, which would clobber a call address. 355// Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of 356// this class and the preceding one(!) This is what we want. 357def tcGPR : RegisterClass<"ARM", [i32], 32, (add R0, R1, R2, R3, R12)> { 358 let AltOrders = [(and tcGPR, tGPR)]; 359 let AltOrderSelect = [{ 360 return MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 361 }]; 362} 363 364def tGPROdd : RegisterClass<"ARM", [i32], 32, (add R1, R3, R5, R7, R9, R11)> { 365 let AltOrders = [(and tGPROdd, tGPR)]; 366 let AltOrderSelect = [{ 367 return MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 368 }]; 369 let DiagnosticString = 370 "operand must be an odd-numbered register in range [r1,r11]"; 371} 372 373def tGPREven : RegisterClass<"ARM", [i32], 32, (add R0, R2, R4, R6, R8, R10, R12, LR)> { 374 let AltOrders = [(and tGPREven, tGPR)]; 375 let AltOrderSelect = [{ 376 return MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 377 }]; 378 let DiagnosticString = "operand must be an even-numbered register"; 379} 380 381// Condition code registers. 382def CCR : RegisterClass<"ARM", [i32], 32, (add CPSR)> { 383 let CopyCost = -1; // Don't allow copying of status registers. 384 let isAllocatable = 0; 385} 386 387// MVE Condition code register. 388def VCCR : RegisterClass<"ARM", [i32, v16i1, v8i1, v4i1], 32, (add VPR)> { 389// let CopyCost = -1; // Don't allow copying of status registers. 390} 391 392// FPSCR, when the flags at the top of it are used as the input or 393// output to an instruction such as MVE VADC. 394def cl_FPSCR_NZCV : RegisterClass<"ARM", [i32], 32, (add FPSCR_NZCV)>; 395 396// Scalar single precision floating point register class.. 397// FIXME: Allocation order changed to s0, s2, ... or s0, s4, ... as a quick hack 398// to avoid partial-write dependencies on D or Q (depending on platform) 399// registers (S registers are renamed as portions of D/Q registers). 400def SPR : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 31)> { 401 let AltOrders = [(add (decimate SPR, 2), SPR), 402 (add (decimate SPR, 4), 403 (decimate SPR, 2), 404 (decimate (rotl SPR, 1), 4), 405 (decimate (rotl SPR, 1), 2))]; 406 let AltOrderSelect = [{ 407 return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs(); 408 }]; 409 let DiagnosticString = "operand must be a register in range [s0, s31]"; 410} 411 412def HPR : RegisterClass<"ARM", [f16, bf16], 32, (sequence "S%u", 0, 31)> { 413 let AltOrders = [(add (decimate HPR, 2), SPR), 414 (add (decimate HPR, 4), 415 (decimate HPR, 2), 416 (decimate (rotl HPR, 1), 4), 417 (decimate (rotl HPR, 1), 2))]; 418 let AltOrderSelect = [{ 419 return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs(); 420 }]; 421 let DiagnosticString = "operand must be a register in range [s0, s31]"; 422} 423 424// Subset of SPR which can be used as a source of NEON scalars for 16-bit 425// operations 426def SPR_8 : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 15)> { 427 let DiagnosticString = "operand must be a register in range [s0, s15]"; 428} 429 430// Scalar double precision floating point / generic 64-bit vector register 431// class. 432// ARM requires only word alignment for double. It's more performant if it 433// is double-word alignment though. 434def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16, v4bf16], 64, 435 (sequence "D%u", 0, 31)> { 436 // Allocate non-VFP2 registers D16-D31 first, and prefer even registers on 437 // Darwin platforms. 438 let AltOrders = [(rotl DPR, 16), 439 (add (decimate (rotl DPR, 16), 2), (rotl DPR, 16))]; 440 let AltOrderSelect = [{ 441 return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs(); 442 }]; 443 let DiagnosticType = "DPR"; 444} 445 446// Scalar single and double precision floating point and VPR register class, 447// this is only used for parsing, don't use it anywhere else as the size and 448// types don't match! 449def FPWithVPR : RegisterClass<"ARM", [f32], 32, (add SPR, DPR, VPR)> { 450 let isAllocatable = 0; 451} 452 453// Subset of DPR that are accessible with VFP2 (and so that also have 454// 32-bit SPR subregs). 455def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16, v4bf16], 64, 456 (trunc DPR, 16)> { 457 let DiagnosticString = "operand must be a register in range [d0, d15]"; 458} 459 460// Subset of DPR which can be used as a source of NEON scalars for 16-bit 461// operations 462def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16, v4bf16], 64, 463 (trunc DPR, 8)> { 464 let DiagnosticString = "operand must be a register in range [d0, d7]"; 465} 466 467// Generic 128-bit vector register class. 468def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, v8f16, v8bf16], 128, 469 (sequence "Q%u", 0, 15)> { 470 // Allocate non-VFP2 aliases Q8-Q15 first. 471 let AltOrders = [(rotl QPR, 8), (trunc QPR, 8)]; 472 let AltOrderSelect = [{ 473 return 1 + MF.getSubtarget<ARMSubtarget>().hasMVEIntegerOps(); 474 }]; 475 let DiagnosticString = "operand must be a register in range [q0, q15]"; 476} 477 478// Subset of QPR that have 32-bit SPR subregs. 479def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 480 128, (trunc QPR, 8)> { 481 let DiagnosticString = "operand must be a register in range [q0, q7]"; 482} 483 484// Subset of QPR that have DPR_8 and SPR_8 subregs. 485def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 486 128, (trunc QPR, 4)> { 487 let DiagnosticString = "operand must be a register in range [q0, q3]"; 488} 489 490// MVE 128-bit vector register class. This class is only really needed for 491// parsing assembly, since we still have to truncate the register set in the QPR 492// class anyway. 493def MQPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, v8f16], 494 128, (trunc QPR, 8)>; 495 496// Pseudo-registers representing odd-even pairs of D registers. The even-odd 497// pairs are already represented by the Q registers. 498// These are needed by NEON instructions requiring two consecutive D registers. 499// There is no D31_D0 register as that is always an UNPREDICTABLE encoding. 500def TuplesOE2D : RegisterTuples<[dsub_0, dsub_1], 501 [(decimate (shl DPR, 1), 2), 502 (decimate (shl DPR, 2), 2)]>; 503 504// Register class representing a pair of consecutive D registers. 505// Use the Q registers for the even-odd pairs. 506def DPair : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 507 128, (interleave QPR, TuplesOE2D)> { 508 // Allocate starting at non-VFP2 registers D16-D31 first. 509 // Prefer even-odd pairs as they are easier to copy. 510 let AltOrders = [(add (rotl QPR, 8), (rotl DPair, 16)), 511 (add (trunc QPR, 8), (trunc DPair, 16))]; 512 let AltOrderSelect = [{ 513 return 1 + MF.getSubtarget<ARMSubtarget>().hasMVEIntegerOps(); 514 }]; 515} 516 517// Pseudo-registers representing even-odd pairs of GPRs from R1 to R13/SP. 518// These are needed by instructions (e.g. ldrexd/strexd) requiring even-odd GPRs. 519def Tuples2Rnosp : RegisterTuples<[gsub_0, gsub_1], 520 [(add R0, R2, R4, R6, R8, R10), 521 (add R1, R3, R5, R7, R9, R11)]>; 522 523def Tuples2Rsp : RegisterTuples<[gsub_0, gsub_1], 524 [(add R12), (add SP)]>; 525 526// Register class representing a pair of even-odd GPRs. 527def GPRPair : RegisterClass<"ARM", [untyped], 64, (add Tuples2Rnosp, Tuples2Rsp)> { 528 let Size = 64; // 2 x 32 bits, we have no predefined type of that size. 529} 530 531// Register class representing a pair of even-odd GPRs, except (R12, SP). 532def GPRPairnosp : RegisterClass<"ARM", [untyped], 64, (add Tuples2Rnosp)> { 533 let Size = 64; // 2 x 32 bits, we have no predefined type of that size. 534} 535 536// Pseudo-registers representing 3 consecutive D registers. 537def Tuples3D : RegisterTuples<[dsub_0, dsub_1, dsub_2], 538 [(shl DPR, 0), 539 (shl DPR, 1), 540 (shl DPR, 2)]>; 541 542// 3 consecutive D registers. 543def DTriple : RegisterClass<"ARM", [untyped], 64, (add Tuples3D)> { 544 let Size = 192; // 3 x 64 bits, we have no predefined type of that size. 545} 546 547// Pseudo 256-bit registers to represent pairs of Q registers. These should 548// never be present in the emitted code. 549// These are used for NEON load / store instructions, e.g., vld4, vst3. 550def Tuples2Q : RegisterTuples<[qsub_0, qsub_1], [(shl QPR, 0), (shl QPR, 1)]>; 551 552// Pseudo 256-bit vector register class to model pairs of Q registers 553// (4 consecutive D registers). 554def QQPR : RegisterClass<"ARM", [v4i64], 256, (add Tuples2Q)> { 555 // Allocate non-VFP2 aliases first. 556 let AltOrders = [(rotl QQPR, 8)]; 557 let AltOrderSelect = [{ return 1; }]; 558} 559 560// Same as QQPR but for MVE, containing the 7 register pairs made up from Q0-Q7. 561def MQQPR : RegisterClass<"ARM", [v4i64], 256, (trunc QQPR, 7)>; 562 563// Tuples of 4 D regs that isn't also a pair of Q regs. 564def TuplesOE4D : RegisterTuples<[dsub_0, dsub_1, dsub_2, dsub_3], 565 [(decimate (shl DPR, 1), 2), 566 (decimate (shl DPR, 2), 2), 567 (decimate (shl DPR, 3), 2), 568 (decimate (shl DPR, 4), 2)]>; 569 570// 4 consecutive D registers. 571def DQuad : RegisterClass<"ARM", [v4i64], 256, 572 (interleave Tuples2Q, TuplesOE4D)>; 573 574// Pseudo 512-bit registers to represent four consecutive Q registers. 575def Tuples2QQ : RegisterTuples<[qqsub_0, qqsub_1], 576 [(shl QQPR, 0), (shl QQPR, 2)]>; 577 578// Pseudo 512-bit vector register class to model 4 consecutive Q registers 579// (8 consecutive D registers). 580def QQQQPR : RegisterClass<"ARM", [v8i64], 256, (add Tuples2QQ)> { 581 // Allocate non-VFP2 aliases first. 582 let AltOrders = [(rotl QQQQPR, 8)]; 583 let AltOrderSelect = [{ return 1; }]; 584} 585 586// Same as QQPR but for MVE, containing the 5 register quads made up from Q0-Q7. 587def MQQQQPR : RegisterClass<"ARM", [v8i64], 256, (trunc QQQQPR, 5)>; 588 589 590// Pseudo-registers representing 2-spaced consecutive D registers. 591def Tuples2DSpc : RegisterTuples<[dsub_0, dsub_2], 592 [(shl DPR, 0), 593 (shl DPR, 2)]>; 594 595// Spaced pairs of D registers. 596def DPairSpc : RegisterClass<"ARM", [v2i64], 64, (add Tuples2DSpc)>; 597 598def Tuples3DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4], 599 [(shl DPR, 0), 600 (shl DPR, 2), 601 (shl DPR, 4)]>; 602 603// Spaced triples of D registers. 604def DTripleSpc : RegisterClass<"ARM", [untyped], 64, (add Tuples3DSpc)> { 605 let Size = 192; // 3 x 64 bits, we have no predefined type of that size. 606} 607 608def Tuples4DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4, dsub_6], 609 [(shl DPR, 0), 610 (shl DPR, 2), 611 (shl DPR, 4), 612 (shl DPR, 6)]>; 613 614// Spaced quads of D registers. 615def DQuadSpc : RegisterClass<"ARM", [v4i64], 64, (add Tuples3DSpc)>; 616 617// FP context payload 618def FPCXTRegs : RegisterClass<"ARM", [i32], 32, (add FPCXTNS)>; 619