1*0b57cec5SDimitry Andric//===-- ARMRegisterInfo.td - ARM Register defs -------------*- tablegen -*-===// 2*0b57cec5SDimitry Andric// 3*0b57cec5SDimitry Andric// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4*0b57cec5SDimitry Andric// See https://llvm.org/LICENSE.txt for license information. 5*0b57cec5SDimitry Andric// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6*0b57cec5SDimitry Andric// 7*0b57cec5SDimitry Andric//===----------------------------------------------------------------------===// 8*0b57cec5SDimitry Andric 9*0b57cec5SDimitry Andricinclude "ARMSystemRegister.td" 10*0b57cec5SDimitry Andric 11*0b57cec5SDimitry Andric//===----------------------------------------------------------------------===// 12*0b57cec5SDimitry Andric// Declarations that describe the ARM register file 13*0b57cec5SDimitry Andric//===----------------------------------------------------------------------===// 14*0b57cec5SDimitry Andric 15*0b57cec5SDimitry Andric// Registers are identified with 4-bit ID numbers. 16*0b57cec5SDimitry Andricclass ARMReg<bits<16> Enc, string n, list<Register> subregs = [], 17*0b57cec5SDimitry Andric list<string> altNames = []> : Register<n, altNames> { 18*0b57cec5SDimitry Andric let HWEncoding = Enc; 19*0b57cec5SDimitry Andric let Namespace = "ARM"; 20*0b57cec5SDimitry Andric let SubRegs = subregs; 21*0b57cec5SDimitry Andric // All bits of ARM registers with sub-registers are covered by sub-registers. 22*0b57cec5SDimitry Andric let CoveredBySubRegs = 1; 23*0b57cec5SDimitry Andric} 24*0b57cec5SDimitry Andric 25*0b57cec5SDimitry Andricclass ARMFReg<bits<16> Enc, string n> : Register<n> { 26*0b57cec5SDimitry Andric let HWEncoding = Enc; 27*0b57cec5SDimitry Andric let Namespace = "ARM"; 28*0b57cec5SDimitry Andric} 29*0b57cec5SDimitry Andric 30*0b57cec5SDimitry Andriclet Namespace = "ARM", 31*0b57cec5SDimitry Andric FallbackRegAltNameIndex = NoRegAltName in { 32*0b57cec5SDimitry Andric def RegNamesRaw : RegAltNameIndex; 33*0b57cec5SDimitry Andric} 34*0b57cec5SDimitry Andric 35*0b57cec5SDimitry Andric// Subregister indices. 36*0b57cec5SDimitry Andriclet Namespace = "ARM" in { 37*0b57cec5SDimitry Andricdef qqsub_0 : SubRegIndex<256>; 38*0b57cec5SDimitry Andricdef qqsub_1 : SubRegIndex<256, 256>; 39*0b57cec5SDimitry Andric 40*0b57cec5SDimitry Andric// Note: Code depends on these having consecutive numbers. 41*0b57cec5SDimitry Andricdef qsub_0 : SubRegIndex<128>; 42*0b57cec5SDimitry Andricdef qsub_1 : SubRegIndex<128, 128>; 43*0b57cec5SDimitry Andricdef qsub_2 : ComposedSubRegIndex<qqsub_1, qsub_0>; 44*0b57cec5SDimitry Andricdef qsub_3 : ComposedSubRegIndex<qqsub_1, qsub_1>; 45*0b57cec5SDimitry Andric 46*0b57cec5SDimitry Andricdef dsub_0 : SubRegIndex<64>; 47*0b57cec5SDimitry Andricdef dsub_1 : SubRegIndex<64, 64>; 48*0b57cec5SDimitry Andricdef dsub_2 : ComposedSubRegIndex<qsub_1, dsub_0>; 49*0b57cec5SDimitry Andricdef dsub_3 : ComposedSubRegIndex<qsub_1, dsub_1>; 50*0b57cec5SDimitry Andricdef dsub_4 : ComposedSubRegIndex<qsub_2, dsub_0>; 51*0b57cec5SDimitry Andricdef dsub_5 : ComposedSubRegIndex<qsub_2, dsub_1>; 52*0b57cec5SDimitry Andricdef dsub_6 : ComposedSubRegIndex<qsub_3, dsub_0>; 53*0b57cec5SDimitry Andricdef dsub_7 : ComposedSubRegIndex<qsub_3, dsub_1>; 54*0b57cec5SDimitry Andric 55*0b57cec5SDimitry Andricdef ssub_0 : SubRegIndex<32>; 56*0b57cec5SDimitry Andricdef ssub_1 : SubRegIndex<32, 32>; 57*0b57cec5SDimitry Andricdef ssub_2 : ComposedSubRegIndex<dsub_1, ssub_0>; 58*0b57cec5SDimitry Andricdef ssub_3 : ComposedSubRegIndex<dsub_1, ssub_1>; 59*0b57cec5SDimitry Andricdef ssub_4 : ComposedSubRegIndex<dsub_2, ssub_0>; 60*0b57cec5SDimitry Andricdef ssub_5 : ComposedSubRegIndex<dsub_2, ssub_1>; 61*0b57cec5SDimitry Andricdef ssub_6 : ComposedSubRegIndex<dsub_3, ssub_0>; 62*0b57cec5SDimitry Andricdef ssub_7 : ComposedSubRegIndex<dsub_3, ssub_1>; 63*0b57cec5SDimitry Andricdef ssub_8 : ComposedSubRegIndex<dsub_4, ssub_0>; 64*0b57cec5SDimitry Andricdef ssub_9 : ComposedSubRegIndex<dsub_4, ssub_1>; 65*0b57cec5SDimitry Andricdef ssub_10 : ComposedSubRegIndex<dsub_5, ssub_0>; 66*0b57cec5SDimitry Andricdef ssub_11 : ComposedSubRegIndex<dsub_5, ssub_1>; 67*0b57cec5SDimitry Andricdef ssub_12 : ComposedSubRegIndex<dsub_6, ssub_0>; 68*0b57cec5SDimitry Andricdef ssub_13 : ComposedSubRegIndex<dsub_6, ssub_1>; 69*0b57cec5SDimitry Andric 70*0b57cec5SDimitry Andricdef gsub_0 : SubRegIndex<32>; 71*0b57cec5SDimitry Andricdef gsub_1 : SubRegIndex<32, 32>; 72*0b57cec5SDimitry Andric// Let TableGen synthesize the remaining 12 ssub_* indices. 73*0b57cec5SDimitry Andric// We don't need to name them. 74*0b57cec5SDimitry Andric} 75*0b57cec5SDimitry Andric 76*0b57cec5SDimitry Andric// Integer registers 77*0b57cec5SDimitry Andricdef R0 : ARMReg< 0, "r0">, DwarfRegNum<[0]>; 78*0b57cec5SDimitry Andricdef R1 : ARMReg< 1, "r1">, DwarfRegNum<[1]>; 79*0b57cec5SDimitry Andricdef R2 : ARMReg< 2, "r2">, DwarfRegNum<[2]>; 80*0b57cec5SDimitry Andricdef R3 : ARMReg< 3, "r3">, DwarfRegNum<[3]>; 81*0b57cec5SDimitry Andricdef R4 : ARMReg< 4, "r4">, DwarfRegNum<[4]>; 82*0b57cec5SDimitry Andricdef R5 : ARMReg< 5, "r5">, DwarfRegNum<[5]>; 83*0b57cec5SDimitry Andricdef R6 : ARMReg< 6, "r6">, DwarfRegNum<[6]>; 84*0b57cec5SDimitry Andricdef R7 : ARMReg< 7, "r7">, DwarfRegNum<[7]>; 85*0b57cec5SDimitry Andric// These require 32-bit instructions. 86*0b57cec5SDimitry Andriclet CostPerUse = 1 in { 87*0b57cec5SDimitry Andricdef R8 : ARMReg< 8, "r8">, DwarfRegNum<[8]>; 88*0b57cec5SDimitry Andricdef R9 : ARMReg< 9, "r9">, DwarfRegNum<[9]>; 89*0b57cec5SDimitry Andricdef R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>; 90*0b57cec5SDimitry Andricdef R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>; 91*0b57cec5SDimitry Andricdef R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>; 92*0b57cec5SDimitry Andriclet RegAltNameIndices = [RegNamesRaw] in { 93*0b57cec5SDimitry Andricdef SP : ARMReg<13, "sp", [], ["r13"]>, DwarfRegNum<[13]>; 94*0b57cec5SDimitry Andricdef LR : ARMReg<14, "lr", [], ["r14"]>, DwarfRegNum<[14]>; 95*0b57cec5SDimitry Andricdef PC : ARMReg<15, "pc", [], ["r15"]>, DwarfRegNum<[15]>; 96*0b57cec5SDimitry Andric} 97*0b57cec5SDimitry Andric} 98*0b57cec5SDimitry Andric 99*0b57cec5SDimitry Andric// Float registers 100*0b57cec5SDimitry Andricdef S0 : ARMFReg< 0, "s0">; def S1 : ARMFReg< 1, "s1">; 101*0b57cec5SDimitry Andricdef S2 : ARMFReg< 2, "s2">; def S3 : ARMFReg< 3, "s3">; 102*0b57cec5SDimitry Andricdef S4 : ARMFReg< 4, "s4">; def S5 : ARMFReg< 5, "s5">; 103*0b57cec5SDimitry Andricdef S6 : ARMFReg< 6, "s6">; def S7 : ARMFReg< 7, "s7">; 104*0b57cec5SDimitry Andricdef S8 : ARMFReg< 8, "s8">; def S9 : ARMFReg< 9, "s9">; 105*0b57cec5SDimitry Andricdef S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">; 106*0b57cec5SDimitry Andricdef S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">; 107*0b57cec5SDimitry Andricdef S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">; 108*0b57cec5SDimitry Andricdef S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">; 109*0b57cec5SDimitry Andricdef S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">; 110*0b57cec5SDimitry Andricdef S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">; 111*0b57cec5SDimitry Andricdef S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">; 112*0b57cec5SDimitry Andricdef S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">; 113*0b57cec5SDimitry Andricdef S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">; 114*0b57cec5SDimitry Andricdef S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">; 115*0b57cec5SDimitry Andricdef S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">; 116*0b57cec5SDimitry Andric 117*0b57cec5SDimitry Andric// Aliases of the F* registers used to hold 64-bit fp values (doubles) 118*0b57cec5SDimitry Andriclet SubRegIndices = [ssub_0, ssub_1] in { 119*0b57cec5SDimitry Andricdef D0 : ARMReg< 0, "d0", [S0, S1]>, DwarfRegNum<[256]>; 120*0b57cec5SDimitry Andricdef D1 : ARMReg< 1, "d1", [S2, S3]>, DwarfRegNum<[257]>; 121*0b57cec5SDimitry Andricdef D2 : ARMReg< 2, "d2", [S4, S5]>, DwarfRegNum<[258]>; 122*0b57cec5SDimitry Andricdef D3 : ARMReg< 3, "d3", [S6, S7]>, DwarfRegNum<[259]>; 123*0b57cec5SDimitry Andricdef D4 : ARMReg< 4, "d4", [S8, S9]>, DwarfRegNum<[260]>; 124*0b57cec5SDimitry Andricdef D5 : ARMReg< 5, "d5", [S10, S11]>, DwarfRegNum<[261]>; 125*0b57cec5SDimitry Andricdef D6 : ARMReg< 6, "d6", [S12, S13]>, DwarfRegNum<[262]>; 126*0b57cec5SDimitry Andricdef D7 : ARMReg< 7, "d7", [S14, S15]>, DwarfRegNum<[263]>; 127*0b57cec5SDimitry Andricdef D8 : ARMReg< 8, "d8", [S16, S17]>, DwarfRegNum<[264]>; 128*0b57cec5SDimitry Andricdef D9 : ARMReg< 9, "d9", [S18, S19]>, DwarfRegNum<[265]>; 129*0b57cec5SDimitry Andricdef D10 : ARMReg<10, "d10", [S20, S21]>, DwarfRegNum<[266]>; 130*0b57cec5SDimitry Andricdef D11 : ARMReg<11, "d11", [S22, S23]>, DwarfRegNum<[267]>; 131*0b57cec5SDimitry Andricdef D12 : ARMReg<12, "d12", [S24, S25]>, DwarfRegNum<[268]>; 132*0b57cec5SDimitry Andricdef D13 : ARMReg<13, "d13", [S26, S27]>, DwarfRegNum<[269]>; 133*0b57cec5SDimitry Andricdef D14 : ARMReg<14, "d14", [S28, S29]>, DwarfRegNum<[270]>; 134*0b57cec5SDimitry Andricdef D15 : ARMReg<15, "d15", [S30, S31]>, DwarfRegNum<[271]>; 135*0b57cec5SDimitry Andric} 136*0b57cec5SDimitry Andric 137*0b57cec5SDimitry Andric// VFP3 defines 16 additional double registers 138*0b57cec5SDimitry Andricdef D16 : ARMFReg<16, "d16">, DwarfRegNum<[272]>; 139*0b57cec5SDimitry Andricdef D17 : ARMFReg<17, "d17">, DwarfRegNum<[273]>; 140*0b57cec5SDimitry Andricdef D18 : ARMFReg<18, "d18">, DwarfRegNum<[274]>; 141*0b57cec5SDimitry Andricdef D19 : ARMFReg<19, "d19">, DwarfRegNum<[275]>; 142*0b57cec5SDimitry Andricdef D20 : ARMFReg<20, "d20">, DwarfRegNum<[276]>; 143*0b57cec5SDimitry Andricdef D21 : ARMFReg<21, "d21">, DwarfRegNum<[277]>; 144*0b57cec5SDimitry Andricdef D22 : ARMFReg<22, "d22">, DwarfRegNum<[278]>; 145*0b57cec5SDimitry Andricdef D23 : ARMFReg<23, "d23">, DwarfRegNum<[279]>; 146*0b57cec5SDimitry Andricdef D24 : ARMFReg<24, "d24">, DwarfRegNum<[280]>; 147*0b57cec5SDimitry Andricdef D25 : ARMFReg<25, "d25">, DwarfRegNum<[281]>; 148*0b57cec5SDimitry Andricdef D26 : ARMFReg<26, "d26">, DwarfRegNum<[282]>; 149*0b57cec5SDimitry Andricdef D27 : ARMFReg<27, "d27">, DwarfRegNum<[283]>; 150*0b57cec5SDimitry Andricdef D28 : ARMFReg<28, "d28">, DwarfRegNum<[284]>; 151*0b57cec5SDimitry Andricdef D29 : ARMFReg<29, "d29">, DwarfRegNum<[285]>; 152*0b57cec5SDimitry Andricdef D30 : ARMFReg<30, "d30">, DwarfRegNum<[286]>; 153*0b57cec5SDimitry Andricdef D31 : ARMFReg<31, "d31">, DwarfRegNum<[287]>; 154*0b57cec5SDimitry Andric 155*0b57cec5SDimitry Andric// Advanced SIMD (NEON) defines 16 quad-word aliases 156*0b57cec5SDimitry Andriclet SubRegIndices = [dsub_0, dsub_1] in { 157*0b57cec5SDimitry Andricdef Q0 : ARMReg< 0, "q0", [D0, D1]>; 158*0b57cec5SDimitry Andricdef Q1 : ARMReg< 1, "q1", [D2, D3]>; 159*0b57cec5SDimitry Andricdef Q2 : ARMReg< 2, "q2", [D4, D5]>; 160*0b57cec5SDimitry Andricdef Q3 : ARMReg< 3, "q3", [D6, D7]>; 161*0b57cec5SDimitry Andricdef Q4 : ARMReg< 4, "q4", [D8, D9]>; 162*0b57cec5SDimitry Andricdef Q5 : ARMReg< 5, "q5", [D10, D11]>; 163*0b57cec5SDimitry Andricdef Q6 : ARMReg< 6, "q6", [D12, D13]>; 164*0b57cec5SDimitry Andricdef Q7 : ARMReg< 7, "q7", [D14, D15]>; 165*0b57cec5SDimitry Andric} 166*0b57cec5SDimitry Andriclet SubRegIndices = [dsub_0, dsub_1] in { 167*0b57cec5SDimitry Andricdef Q8 : ARMReg< 8, "q8", [D16, D17]>; 168*0b57cec5SDimitry Andricdef Q9 : ARMReg< 9, "q9", [D18, D19]>; 169*0b57cec5SDimitry Andricdef Q10 : ARMReg<10, "q10", [D20, D21]>; 170*0b57cec5SDimitry Andricdef Q11 : ARMReg<11, "q11", [D22, D23]>; 171*0b57cec5SDimitry Andricdef Q12 : ARMReg<12, "q12", [D24, D25]>; 172*0b57cec5SDimitry Andricdef Q13 : ARMReg<13, "q13", [D26, D27]>; 173*0b57cec5SDimitry Andricdef Q14 : ARMReg<14, "q14", [D28, D29]>; 174*0b57cec5SDimitry Andricdef Q15 : ARMReg<15, "q15", [D30, D31]>; 175*0b57cec5SDimitry Andric} 176*0b57cec5SDimitry Andric 177*0b57cec5SDimitry Andric// Current Program Status Register. 178*0b57cec5SDimitry Andric// We model fpscr with two registers: FPSCR models the control bits and will be 179*0b57cec5SDimitry Andric// reserved. FPSCR_NZCV models the flag bits and will be unreserved. APSR_NZCV 180*0b57cec5SDimitry Andric// models the APSR when it's accessed by some special instructions. In such cases 181*0b57cec5SDimitry Andric// it has the same encoding as PC. 182*0b57cec5SDimitry Andricdef CPSR : ARMReg<0, "cpsr">; 183*0b57cec5SDimitry Andricdef APSR : ARMReg<1, "apsr">; 184*0b57cec5SDimitry Andricdef APSR_NZCV : ARMReg<15, "apsr_nzcv">; 185*0b57cec5SDimitry Andricdef SPSR : ARMReg<2, "spsr">; 186*0b57cec5SDimitry Andricdef FPSCR : ARMReg<3, "fpscr">; 187*0b57cec5SDimitry Andricdef FPSCR_NZCV : ARMReg<3, "fpscr_nzcv"> { 188*0b57cec5SDimitry Andric let Aliases = [FPSCR]; 189*0b57cec5SDimitry Andric} 190*0b57cec5SDimitry Andricdef ITSTATE : ARMReg<4, "itstate">; 191*0b57cec5SDimitry Andric 192*0b57cec5SDimitry Andric// Special Registers - only available in privileged mode. 193*0b57cec5SDimitry Andricdef FPSID : ARMReg<0, "fpsid">; 194*0b57cec5SDimitry Andricdef MVFR2 : ARMReg<5, "mvfr2">; 195*0b57cec5SDimitry Andricdef MVFR1 : ARMReg<6, "mvfr1">; 196*0b57cec5SDimitry Andricdef MVFR0 : ARMReg<7, "mvfr0">; 197*0b57cec5SDimitry Andricdef FPEXC : ARMReg<8, "fpexc">; 198*0b57cec5SDimitry Andricdef FPINST : ARMReg<9, "fpinst">; 199*0b57cec5SDimitry Andricdef FPINST2 : ARMReg<10, "fpinst2">; 200*0b57cec5SDimitry Andric// These encodings aren't actual instruction encodings, their encoding depends 201*0b57cec5SDimitry Andric// on the instruction they are used in and for VPR 32 was chosen such that it 202*0b57cec5SDimitry Andric// always comes last in spr_reglist_with_vpr. 203*0b57cec5SDimitry Andricdef VPR : ARMReg<32, "vpr">; 204*0b57cec5SDimitry Andricdef FPSCR_NZCVQC 205*0b57cec5SDimitry Andric : ARMReg<2, "fpscr_nzcvqc">; 206*0b57cec5SDimitry Andricdef P0 : ARMReg<13, "p0">; 207*0b57cec5SDimitry Andricdef FPCXTNS : ARMReg<14, "fpcxtns">; 208*0b57cec5SDimitry Andricdef FPCXTS : ARMReg<15, "fpcxts">; 209*0b57cec5SDimitry Andric 210*0b57cec5SDimitry Andricdef ZR : ARMReg<15, "zr">, DwarfRegNum<[15]>; 211*0b57cec5SDimitry Andric 212*0b57cec5SDimitry Andric// Register classes. 213*0b57cec5SDimitry Andric// 214*0b57cec5SDimitry Andric// pc == Program Counter 215*0b57cec5SDimitry Andric// lr == Link Register 216*0b57cec5SDimitry Andric// sp == Stack Pointer 217*0b57cec5SDimitry Andric// r12 == ip (scratch) 218*0b57cec5SDimitry Andric// r7 == Frame Pointer (thumb-style backtraces) 219*0b57cec5SDimitry Andric// r9 == May be reserved as Thread Register 220*0b57cec5SDimitry Andric// r11 == Frame Pointer (arm-style backtraces) 221*0b57cec5SDimitry Andric// r10 == Stack Limit 222*0b57cec5SDimitry Andric// 223*0b57cec5SDimitry Andricdef GPR : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), 224*0b57cec5SDimitry Andric SP, LR, PC)> { 225*0b57cec5SDimitry Andric // Allocate LR as the first CSR since it is always saved anyway. 226*0b57cec5SDimitry Andric // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't 227*0b57cec5SDimitry Andric // know how to spill them. If we make our prologue/epilogue code smarter at 228*0b57cec5SDimitry Andric // some point, we can go back to using the above allocation orders for the 229*0b57cec5SDimitry Andric // Thumb1 instructions that know how to use hi regs. 230*0b57cec5SDimitry Andric let AltOrders = [(add LR, GPR), (trunc GPR, 8), 231*0b57cec5SDimitry Andric (add (trunc GPR, 8), R12, LR, (shl GPR, 8))]; 232*0b57cec5SDimitry Andric let AltOrderSelect = [{ 233*0b57cec5SDimitry Andric return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF); 234*0b57cec5SDimitry Andric }]; 235*0b57cec5SDimitry Andric let DiagnosticString = "operand must be a register in range [r0, r15]"; 236*0b57cec5SDimitry Andric} 237*0b57cec5SDimitry Andric 238*0b57cec5SDimitry Andric// GPRs without the PC. Some ARM instructions do not allow the PC in 239*0b57cec5SDimitry Andric// certain operand slots, particularly as the destination. Primarily 240*0b57cec5SDimitry Andric// useful for disassembly. 241*0b57cec5SDimitry Andricdef GPRnopc : RegisterClass<"ARM", [i32], 32, (sub GPR, PC)> { 242*0b57cec5SDimitry Andric let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8), 243*0b57cec5SDimitry Andric (add (trunc GPRnopc, 8), R12, LR, (shl GPRnopc, 8))]; 244*0b57cec5SDimitry Andric let AltOrderSelect = [{ 245*0b57cec5SDimitry Andric return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF); 246*0b57cec5SDimitry Andric }]; 247*0b57cec5SDimitry Andric let DiagnosticString = "operand must be a register in range [r0, r14]"; 248*0b57cec5SDimitry Andric} 249*0b57cec5SDimitry Andric 250*0b57cec5SDimitry Andric// GPRs without the PC but with APSR. Some instructions allow accessing the 251*0b57cec5SDimitry Andric// APSR, while actually encoding PC in the register field. This is useful 252*0b57cec5SDimitry Andric// for assembly and disassembly only. 253*0b57cec5SDimitry Andricdef GPRwithAPSR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), APSR_NZCV)> { 254*0b57cec5SDimitry Andric let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)]; 255*0b57cec5SDimitry Andric let AltOrderSelect = [{ 256*0b57cec5SDimitry Andric return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 257*0b57cec5SDimitry Andric }]; 258*0b57cec5SDimitry Andric let DiagnosticString = "operand must be a register in range [r0, r14] or apsr_nzcv"; 259*0b57cec5SDimitry Andric} 260*0b57cec5SDimitry Andric 261*0b57cec5SDimitry Andric// GPRs without the PC and SP registers but with APSR. Used by CLRM instruction. 262*0b57cec5SDimitry Andricdef GPRwithAPSRnosp : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), LR, APSR)> { 263*0b57cec5SDimitry Andric let isAllocatable = 0; 264*0b57cec5SDimitry Andric} 265*0b57cec5SDimitry Andric 266*0b57cec5SDimitry Andricdef GPRwithZR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), ZR)> { 267*0b57cec5SDimitry Andric let AltOrders = [(add LR, GPRwithZR), (trunc GPRwithZR, 8)]; 268*0b57cec5SDimitry Andric let AltOrderSelect = [{ 269*0b57cec5SDimitry Andric return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 270*0b57cec5SDimitry Andric }]; 271*0b57cec5SDimitry Andric let DiagnosticString = "operand must be a register in range [r0, r14] or zr"; 272*0b57cec5SDimitry Andric} 273*0b57cec5SDimitry Andric 274*0b57cec5SDimitry Andricdef GPRwithZRnosp : RegisterClass<"ARM", [i32], 32, (sub GPRwithZR, SP)> { 275*0b57cec5SDimitry Andric let AltOrders = [(add LR, GPRwithZRnosp), (trunc GPRwithZRnosp, 8)]; 276*0b57cec5SDimitry Andric let AltOrderSelect = [{ 277*0b57cec5SDimitry Andric return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 278*0b57cec5SDimitry Andric }]; 279*0b57cec5SDimitry Andric let DiagnosticString = "operand must be a register in range [r0, r12] or r14 or zr"; 280*0b57cec5SDimitry Andric} 281*0b57cec5SDimitry Andric 282*0b57cec5SDimitry Andric// GPRsp - Only the SP is legal. Used by Thumb1 instructions that want the 283*0b57cec5SDimitry Andric// implied SP argument list. 284*0b57cec5SDimitry Andric// FIXME: It would be better to not use this at all and refactor the 285*0b57cec5SDimitry Andric// instructions to not have SP an an explicit argument. That makes 286*0b57cec5SDimitry Andric// frame index resolution a bit trickier, though. 287*0b57cec5SDimitry Andricdef GPRsp : RegisterClass<"ARM", [i32], 32, (add SP)> { 288*0b57cec5SDimitry Andric let DiagnosticString = "operand must be a register sp"; 289*0b57cec5SDimitry Andric} 290*0b57cec5SDimitry Andric 291*0b57cec5SDimitry Andric// GPRlr - Only LR is legal. Used by ARMv8.1-M Low Overhead Loop instructions 292*0b57cec5SDimitry Andric// where LR is the only legal loop counter register. 293*0b57cec5SDimitry Andricdef GPRlr : RegisterClass<"ARM", [i32], 32, (add LR)>; 294*0b57cec5SDimitry Andric 295*0b57cec5SDimitry Andric// restricted GPR register class. Many Thumb2 instructions allow the full 296*0b57cec5SDimitry Andric// register range for operands, but have undefined behaviours when PC 297*0b57cec5SDimitry Andric// or SP (R13 or R15) are used. The ARM ISA refers to these operands 298*0b57cec5SDimitry Andric// via the BadReg() pseudo-code description. 299*0b57cec5SDimitry Andricdef rGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, SP, PC)> { 300*0b57cec5SDimitry Andric let AltOrders = [(add LR, rGPR), (trunc rGPR, 8), 301*0b57cec5SDimitry Andric (add (trunc rGPR, 8), R12, LR, (shl rGPR, 8))]; 302*0b57cec5SDimitry Andric let AltOrderSelect = [{ 303*0b57cec5SDimitry Andric return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF); 304*0b57cec5SDimitry Andric }]; 305*0b57cec5SDimitry Andric let DiagnosticType = "rGPR"; 306*0b57cec5SDimitry Andric} 307*0b57cec5SDimitry Andric 308*0b57cec5SDimitry Andric// Thumb registers are R0-R7 normally. Some instructions can still use 309*0b57cec5SDimitry Andric// the general GPR register class above (MOV, e.g.) 310*0b57cec5SDimitry Andricdef tGPR : RegisterClass<"ARM", [i32], 32, (trunc GPR, 8)> { 311*0b57cec5SDimitry Andric let DiagnosticString = "operand must be a register in range [r0, r7]"; 312*0b57cec5SDimitry Andric} 313*0b57cec5SDimitry Andric 314*0b57cec5SDimitry Andric// Thumb registers R0-R7 and the PC. Some instructions like TBB or THH allow 315*0b57cec5SDimitry Andric// the PC to be used as a destination operand as well. 316*0b57cec5SDimitry Andricdef tGPRwithpc : RegisterClass<"ARM", [i32], 32, (add tGPR, PC)>; 317*0b57cec5SDimitry Andric 318*0b57cec5SDimitry Andric// The high registers in thumb mode, R8-R15. 319*0b57cec5SDimitry Andricdef hGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, tGPR)> { 320*0b57cec5SDimitry Andric let DiagnosticString = "operand must be a register in range [r8, r15]"; 321*0b57cec5SDimitry Andric} 322*0b57cec5SDimitry Andric 323*0b57cec5SDimitry Andric// For tail calls, we can't use callee-saved registers, as they are restored 324*0b57cec5SDimitry Andric// to the saved value before the tail call, which would clobber a call address. 325*0b57cec5SDimitry Andric// Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of 326*0b57cec5SDimitry Andric// this class and the preceding one(!) This is what we want. 327*0b57cec5SDimitry Andricdef tcGPR : RegisterClass<"ARM", [i32], 32, (add R0, R1, R2, R3, R12)> { 328*0b57cec5SDimitry Andric let AltOrders = [(and tcGPR, tGPR)]; 329*0b57cec5SDimitry Andric let AltOrderSelect = [{ 330*0b57cec5SDimitry Andric return MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 331*0b57cec5SDimitry Andric }]; 332*0b57cec5SDimitry Andric} 333*0b57cec5SDimitry Andric 334*0b57cec5SDimitry Andricdef tGPROdd : RegisterClass<"ARM", [i32], 32, (add R1, R3, R5, R7, R9, R11)> { 335*0b57cec5SDimitry Andric let AltOrders = [(and tGPROdd, tGPR)]; 336*0b57cec5SDimitry Andric let AltOrderSelect = [{ 337*0b57cec5SDimitry Andric return MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 338*0b57cec5SDimitry Andric }]; 339*0b57cec5SDimitry Andric let DiagnosticString = 340*0b57cec5SDimitry Andric "operand must be an odd-numbered register in range [r1,r11]"; 341*0b57cec5SDimitry Andric} 342*0b57cec5SDimitry Andric 343*0b57cec5SDimitry Andricdef tGPREven : RegisterClass<"ARM", [i32], 32, (add R0, R2, R4, R6, R8, R10, R12, LR)> { 344*0b57cec5SDimitry Andric let AltOrders = [(and tGPREven, tGPR)]; 345*0b57cec5SDimitry Andric let AltOrderSelect = [{ 346*0b57cec5SDimitry Andric return MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 347*0b57cec5SDimitry Andric }]; 348*0b57cec5SDimitry Andric let DiagnosticString = "operand must be an even-numbered register"; 349*0b57cec5SDimitry Andric} 350*0b57cec5SDimitry Andric 351*0b57cec5SDimitry Andric// Condition code registers. 352*0b57cec5SDimitry Andricdef CCR : RegisterClass<"ARM", [i32], 32, (add CPSR)> { 353*0b57cec5SDimitry Andric let CopyCost = -1; // Don't allow copying of status registers. 354*0b57cec5SDimitry Andric let isAllocatable = 0; 355*0b57cec5SDimitry Andric} 356*0b57cec5SDimitry Andric 357*0b57cec5SDimitry Andric// MVE Condition code register. 358*0b57cec5SDimitry Andricdef VCCR : RegisterClass<"ARM", [i32, v16i1, v8i1, v4i1], 32, (add VPR)> { 359*0b57cec5SDimitry Andric// let CopyCost = -1; // Don't allow copying of status registers. 360*0b57cec5SDimitry Andric} 361*0b57cec5SDimitry Andric 362*0b57cec5SDimitry Andric// FPSCR, when the flags at the top of it are used as the input or 363*0b57cec5SDimitry Andric// output to an instruction such as MVE VADC. 364*0b57cec5SDimitry Andricdef cl_FPSCR_NZCV : RegisterClass<"ARM", [i32], 32, (add FPSCR_NZCV)>; 365*0b57cec5SDimitry Andric 366*0b57cec5SDimitry Andric// Scalar single precision floating point register class.. 367*0b57cec5SDimitry Andric// FIXME: Allocation order changed to s0, s2, ... or s0, s4, ... as a quick hack 368*0b57cec5SDimitry Andric// to avoid partial-write dependencies on D or Q (depending on platform) 369*0b57cec5SDimitry Andric// registers (S registers are renamed as portions of D/Q registers). 370*0b57cec5SDimitry Andricdef SPR : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 31)> { 371*0b57cec5SDimitry Andric let AltOrders = [(add (decimate SPR, 2), SPR), 372*0b57cec5SDimitry Andric (add (decimate SPR, 4), 373*0b57cec5SDimitry Andric (decimate SPR, 2), 374*0b57cec5SDimitry Andric (decimate (rotl SPR, 1), 4), 375*0b57cec5SDimitry Andric (decimate (rotl SPR, 1), 2))]; 376*0b57cec5SDimitry Andric let AltOrderSelect = [{ 377*0b57cec5SDimitry Andric return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs(); 378*0b57cec5SDimitry Andric }]; 379*0b57cec5SDimitry Andric let DiagnosticString = "operand must be a register in range [s0, s31]"; 380*0b57cec5SDimitry Andric} 381*0b57cec5SDimitry Andric 382*0b57cec5SDimitry Andricdef HPR : RegisterClass<"ARM", [f16], 32, (sequence "S%u", 0, 31)> { 383*0b57cec5SDimitry Andric let AltOrders = [(add (decimate HPR, 2), SPR), 384*0b57cec5SDimitry Andric (add (decimate HPR, 4), 385*0b57cec5SDimitry Andric (decimate HPR, 2), 386*0b57cec5SDimitry Andric (decimate (rotl HPR, 1), 4), 387*0b57cec5SDimitry Andric (decimate (rotl HPR, 1), 2))]; 388*0b57cec5SDimitry Andric let AltOrderSelect = [{ 389*0b57cec5SDimitry Andric return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs(); 390*0b57cec5SDimitry Andric }]; 391*0b57cec5SDimitry Andric let DiagnosticString = "operand must be a register in range [s0, s31]"; 392*0b57cec5SDimitry Andric} 393*0b57cec5SDimitry Andric 394*0b57cec5SDimitry Andric// Subset of SPR which can be used as a source of NEON scalars for 16-bit 395*0b57cec5SDimitry Andric// operations 396*0b57cec5SDimitry Andricdef SPR_8 : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 15)> { 397*0b57cec5SDimitry Andric let DiagnosticString = "operand must be a register in range [s0, s15]"; 398*0b57cec5SDimitry Andric} 399*0b57cec5SDimitry Andric 400*0b57cec5SDimitry Andric// Scalar double precision floating point / generic 64-bit vector register 401*0b57cec5SDimitry Andric// class. 402*0b57cec5SDimitry Andric// ARM requires only word alignment for double. It's more performant if it 403*0b57cec5SDimitry Andric// is double-word alignment though. 404*0b57cec5SDimitry Andricdef DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16], 64, 405*0b57cec5SDimitry Andric (sequence "D%u", 0, 31)> { 406*0b57cec5SDimitry Andric // Allocate non-VFP2 registers D16-D31 first, and prefer even registers on 407*0b57cec5SDimitry Andric // Darwin platforms. 408*0b57cec5SDimitry Andric let AltOrders = [(rotl DPR, 16), 409*0b57cec5SDimitry Andric (add (decimate (rotl DPR, 16), 2), (rotl DPR, 16))]; 410*0b57cec5SDimitry Andric let AltOrderSelect = [{ 411*0b57cec5SDimitry Andric return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs(); 412*0b57cec5SDimitry Andric }]; 413*0b57cec5SDimitry Andric let DiagnosticType = "DPR"; 414*0b57cec5SDimitry Andric} 415*0b57cec5SDimitry Andric 416*0b57cec5SDimitry Andric// Scalar single and double precision floating point and VPR register class, 417*0b57cec5SDimitry Andric// this is only used for parsing, don't use it anywhere else as the size and 418*0b57cec5SDimitry Andric// types don't match! 419*0b57cec5SDimitry Andricdef FPWithVPR : RegisterClass<"ARM", [f32], 32, (add SPR, DPR, VPR)> { 420*0b57cec5SDimitry Andric let isAllocatable = 0; 421*0b57cec5SDimitry Andric} 422*0b57cec5SDimitry Andric 423*0b57cec5SDimitry Andric// Subset of DPR that are accessible with VFP2 (and so that also have 424*0b57cec5SDimitry Andric// 32-bit SPR subregs). 425*0b57cec5SDimitry Andricdef DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16], 64, 426*0b57cec5SDimitry Andric (trunc DPR, 16)> { 427*0b57cec5SDimitry Andric let DiagnosticString = "operand must be a register in range [d0, d15]"; 428*0b57cec5SDimitry Andric} 429*0b57cec5SDimitry Andric 430*0b57cec5SDimitry Andric// Subset of DPR which can be used as a source of NEON scalars for 16-bit 431*0b57cec5SDimitry Andric// operations 432*0b57cec5SDimitry Andricdef DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16], 64, 433*0b57cec5SDimitry Andric (trunc DPR, 8)> { 434*0b57cec5SDimitry Andric let DiagnosticString = "operand must be a register in range [d0, d7]"; 435*0b57cec5SDimitry Andric} 436*0b57cec5SDimitry Andric 437*0b57cec5SDimitry Andric// Generic 128-bit vector register class. 438*0b57cec5SDimitry Andricdef QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, v8f16], 128, 439*0b57cec5SDimitry Andric (sequence "Q%u", 0, 15)> { 440*0b57cec5SDimitry Andric // Allocate non-VFP2 aliases Q8-Q15 first. 441*0b57cec5SDimitry Andric let AltOrders = [(rotl QPR, 8), (trunc QPR, 8)]; 442*0b57cec5SDimitry Andric let AltOrderSelect = [{ 443*0b57cec5SDimitry Andric return 1 + MF.getSubtarget<ARMSubtarget>().hasMVEIntegerOps(); 444*0b57cec5SDimitry Andric }]; 445*0b57cec5SDimitry Andric let DiagnosticString = "operand must be a register in range [q0, q15]"; 446*0b57cec5SDimitry Andric} 447*0b57cec5SDimitry Andric 448*0b57cec5SDimitry Andric// Subset of QPR that have 32-bit SPR subregs. 449*0b57cec5SDimitry Andricdef QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 450*0b57cec5SDimitry Andric 128, (trunc QPR, 8)> { 451*0b57cec5SDimitry Andric let DiagnosticString = "operand must be a register in range [q0, q7]"; 452*0b57cec5SDimitry Andric} 453*0b57cec5SDimitry Andric 454*0b57cec5SDimitry Andric// Subset of QPR that have DPR_8 and SPR_8 subregs. 455*0b57cec5SDimitry Andricdef QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 456*0b57cec5SDimitry Andric 128, (trunc QPR, 4)> { 457*0b57cec5SDimitry Andric let DiagnosticString = "operand must be a register in range [q0, q3]"; 458*0b57cec5SDimitry Andric} 459*0b57cec5SDimitry Andric 460*0b57cec5SDimitry Andric// MVE 128-bit vector register class. This class is only really needed for 461*0b57cec5SDimitry Andric// parsing assembly, since we still have to truncate the register set in the QPR 462*0b57cec5SDimitry Andric// class anyway. 463*0b57cec5SDimitry Andricdef MQPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, v8f16], 464*0b57cec5SDimitry Andric 128, (trunc QPR, 8)>; 465*0b57cec5SDimitry Andric 466*0b57cec5SDimitry Andric// Pseudo-registers representing odd-even pairs of D registers. The even-odd 467*0b57cec5SDimitry Andric// pairs are already represented by the Q registers. 468*0b57cec5SDimitry Andric// These are needed by NEON instructions requiring two consecutive D registers. 469*0b57cec5SDimitry Andric// There is no D31_D0 register as that is always an UNPREDICTABLE encoding. 470*0b57cec5SDimitry Andricdef TuplesOE2D : RegisterTuples<[dsub_0, dsub_1], 471*0b57cec5SDimitry Andric [(decimate (shl DPR, 1), 2), 472*0b57cec5SDimitry Andric (decimate (shl DPR, 2), 2)]>; 473*0b57cec5SDimitry Andric 474*0b57cec5SDimitry Andric// Register class representing a pair of consecutive D registers. 475*0b57cec5SDimitry Andric// Use the Q registers for the even-odd pairs. 476*0b57cec5SDimitry Andricdef DPair : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 477*0b57cec5SDimitry Andric 128, (interleave QPR, TuplesOE2D)> { 478*0b57cec5SDimitry Andric // Allocate starting at non-VFP2 registers D16-D31 first. 479*0b57cec5SDimitry Andric // Prefer even-odd pairs as they are easier to copy. 480*0b57cec5SDimitry Andric let AltOrders = [(add (rotl QPR, 8), (rotl DPair, 16)), 481*0b57cec5SDimitry Andric (add (trunc QPR, 8), (trunc DPair, 16))]; 482*0b57cec5SDimitry Andric let AltOrderSelect = [{ 483*0b57cec5SDimitry Andric return 1 + MF.getSubtarget<ARMSubtarget>().hasMVEIntegerOps(); 484*0b57cec5SDimitry Andric }]; 485*0b57cec5SDimitry Andric} 486*0b57cec5SDimitry Andric 487*0b57cec5SDimitry Andric// Pseudo-registers representing even-odd pairs of GPRs from R1 to R13/SP. 488*0b57cec5SDimitry Andric// These are needed by instructions (e.g. ldrexd/strexd) requiring even-odd GPRs. 489*0b57cec5SDimitry Andricdef Tuples2R : RegisterTuples<[gsub_0, gsub_1], 490*0b57cec5SDimitry Andric [(add R0, R2, R4, R6, R8, R10, R12), 491*0b57cec5SDimitry Andric (add R1, R3, R5, R7, R9, R11, SP)]>; 492*0b57cec5SDimitry Andric 493*0b57cec5SDimitry Andric// Register class representing a pair of even-odd GPRs. 494*0b57cec5SDimitry Andricdef GPRPair : RegisterClass<"ARM", [untyped], 64, (add Tuples2R)> { 495*0b57cec5SDimitry Andric let Size = 64; // 2 x 32 bits, we have no predefined type of that size. 496*0b57cec5SDimitry Andric} 497*0b57cec5SDimitry Andric 498*0b57cec5SDimitry Andric// Pseudo-registers representing 3 consecutive D registers. 499*0b57cec5SDimitry Andricdef Tuples3D : RegisterTuples<[dsub_0, dsub_1, dsub_2], 500*0b57cec5SDimitry Andric [(shl DPR, 0), 501*0b57cec5SDimitry Andric (shl DPR, 1), 502*0b57cec5SDimitry Andric (shl DPR, 2)]>; 503*0b57cec5SDimitry Andric 504*0b57cec5SDimitry Andric// 3 consecutive D registers. 505*0b57cec5SDimitry Andricdef DTriple : RegisterClass<"ARM", [untyped], 64, (add Tuples3D)> { 506*0b57cec5SDimitry Andric let Size = 192; // 3 x 64 bits, we have no predefined type of that size. 507*0b57cec5SDimitry Andric} 508*0b57cec5SDimitry Andric 509*0b57cec5SDimitry Andric// Pseudo 256-bit registers to represent pairs of Q registers. These should 510*0b57cec5SDimitry Andric// never be present in the emitted code. 511*0b57cec5SDimitry Andric// These are used for NEON load / store instructions, e.g., vld4, vst3. 512*0b57cec5SDimitry Andricdef Tuples2Q : RegisterTuples<[qsub_0, qsub_1], [(shl QPR, 0), (shl QPR, 1)]>; 513*0b57cec5SDimitry Andric 514*0b57cec5SDimitry Andric// Pseudo 256-bit vector register class to model pairs of Q registers 515*0b57cec5SDimitry Andric// (4 consecutive D registers). 516*0b57cec5SDimitry Andricdef QQPR : RegisterClass<"ARM", [v4i64], 256, (add Tuples2Q)> { 517*0b57cec5SDimitry Andric // Allocate non-VFP2 aliases first. 518*0b57cec5SDimitry Andric let AltOrders = [(rotl QQPR, 8)]; 519*0b57cec5SDimitry Andric let AltOrderSelect = [{ return 1; }]; 520*0b57cec5SDimitry Andric} 521*0b57cec5SDimitry Andric 522*0b57cec5SDimitry Andric// Tuples of 4 D regs that isn't also a pair of Q regs. 523*0b57cec5SDimitry Andricdef TuplesOE4D : RegisterTuples<[dsub_0, dsub_1, dsub_2, dsub_3], 524*0b57cec5SDimitry Andric [(decimate (shl DPR, 1), 2), 525*0b57cec5SDimitry Andric (decimate (shl DPR, 2), 2), 526*0b57cec5SDimitry Andric (decimate (shl DPR, 3), 2), 527*0b57cec5SDimitry Andric (decimate (shl DPR, 4), 2)]>; 528*0b57cec5SDimitry Andric 529*0b57cec5SDimitry Andric// 4 consecutive D registers. 530*0b57cec5SDimitry Andricdef DQuad : RegisterClass<"ARM", [v4i64], 256, 531*0b57cec5SDimitry Andric (interleave Tuples2Q, TuplesOE4D)>; 532*0b57cec5SDimitry Andric 533*0b57cec5SDimitry Andric// Pseudo 512-bit registers to represent four consecutive Q registers. 534*0b57cec5SDimitry Andricdef Tuples2QQ : RegisterTuples<[qqsub_0, qqsub_1], 535*0b57cec5SDimitry Andric [(shl QQPR, 0), (shl QQPR, 2)]>; 536*0b57cec5SDimitry Andric 537*0b57cec5SDimitry Andric// Pseudo 512-bit vector register class to model 4 consecutive Q registers 538*0b57cec5SDimitry Andric// (8 consecutive D registers). 539*0b57cec5SDimitry Andricdef QQQQPR : RegisterClass<"ARM", [v8i64], 256, (add Tuples2QQ)> { 540*0b57cec5SDimitry Andric // Allocate non-VFP2 aliases first. 541*0b57cec5SDimitry Andric let AltOrders = [(rotl QQQQPR, 8)]; 542*0b57cec5SDimitry Andric let AltOrderSelect = [{ return 1; }]; 543*0b57cec5SDimitry Andric} 544*0b57cec5SDimitry Andric 545*0b57cec5SDimitry Andric 546*0b57cec5SDimitry Andric// Pseudo-registers representing 2-spaced consecutive D registers. 547*0b57cec5SDimitry Andricdef Tuples2DSpc : RegisterTuples<[dsub_0, dsub_2], 548*0b57cec5SDimitry Andric [(shl DPR, 0), 549*0b57cec5SDimitry Andric (shl DPR, 2)]>; 550*0b57cec5SDimitry Andric 551*0b57cec5SDimitry Andric// Spaced pairs of D registers. 552*0b57cec5SDimitry Andricdef DPairSpc : RegisterClass<"ARM", [v2i64], 64, (add Tuples2DSpc)>; 553*0b57cec5SDimitry Andric 554*0b57cec5SDimitry Andricdef Tuples3DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4], 555*0b57cec5SDimitry Andric [(shl DPR, 0), 556*0b57cec5SDimitry Andric (shl DPR, 2), 557*0b57cec5SDimitry Andric (shl DPR, 4)]>; 558*0b57cec5SDimitry Andric 559*0b57cec5SDimitry Andric// Spaced triples of D registers. 560*0b57cec5SDimitry Andricdef DTripleSpc : RegisterClass<"ARM", [untyped], 64, (add Tuples3DSpc)> { 561*0b57cec5SDimitry Andric let Size = 192; // 3 x 64 bits, we have no predefined type of that size. 562*0b57cec5SDimitry Andric} 563*0b57cec5SDimitry Andric 564*0b57cec5SDimitry Andricdef Tuples4DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4, dsub_6], 565*0b57cec5SDimitry Andric [(shl DPR, 0), 566*0b57cec5SDimitry Andric (shl DPR, 2), 567*0b57cec5SDimitry Andric (shl DPR, 4), 568*0b57cec5SDimitry Andric (shl DPR, 6)]>; 569*0b57cec5SDimitry Andric 570*0b57cec5SDimitry Andric// Spaced quads of D registers. 571*0b57cec5SDimitry Andricdef DQuadSpc : RegisterClass<"ARM", [v4i64], 64, (add Tuples3DSpc)>; 572